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Abstract

In order to make the further extension of the'generated spectrum to the near UV part, we
do the ssimulation and the experimental investigation onthe supercontinuum generation using
the fundamental and its second harmonic femtosecond pulses from a Ti:sapphire laser into the
photonic crystal fiber simultaneously. When these two color pulses are spatialy and
temporally overlap in the photonic crystal fiber, the cross phase modulation will extend the
spectrum toward short wavelength.  In the simulation, we use the Split-Step Fourier Method
to solve the coupled nonlinear Schrodinger equation. The most continuum and flattened
spectrum on the UV part can be generated by using the dual wavelengths of 790 nm and 395
nm. The spectra become more and more continuous and flattened as the input peak power of

these two pulseincrease. Nevertheless, in the experiment, the spectrum on the UV part does



not become broadened as expected in our simulation results. It might be due to the seriously
loss on the UV part or the change of coupling efficiency resulted from thermal expansion by

the launch of the second harmonic pulse to change the core size and the value of numerical

aperture.
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Chapter 1 Introduction

1.1 Photonic Crystal Fibers

The research of photonic crystal fibers (PCFs) started as early as in the 70’s [1].
However, its impact was not prominent until the 90’s when the technology was able to
fabricate the perfect structures of PCFs. The great flexibility in the design of PCFs led to

tremendous progress in various do

as optical frequency metrology, sensor
technology, medical scie

Photonic erystal. fi : sified VO categories: microstructured
fibers (MFs) and ph i 3 : . ows the MF in which its
solid core is surrg Fair its higher' refractive index of the

core than the cladc

o CRYSTAL FIBRE | Core

Fig. 1.1 The scheme of the microstructured fiber. d is the diameter of the air holes and 4 is

the pitch, the distance between the two air holes.
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The dispersion profile of MFs strongly depends on the air-filling fraction and core size.

For example, increasing the air-filling fraction and reducing the size of the core allows for a

drastic increase of the waveguide dispersion, thus enabling to shift the zero-dispersion

wavelength of MFs to below 800 nm [10]. The dispersion is then anomalous at visible

wavelength and soliton propagation becomes possible for this range of wavelength. A shift

of the zero-dispersion wavelength to any value from 500 nm to 1500 nm can be obtained in

MFs. Furthermore, by choesing the appropriate air-hole size and pitch, it is possible to

fabricate MFs that exhibit very low and.flat.dispersion over asrelatively broad wavelength

range [11-13].

PBFs are the fibers which guide light.in their hollow core.s Figure 1.2 shows the

scheme of PBFs... In PBFsjthe periodic arrangement of the air holes can be seen as the

photonic bandgap structure and+their hollow core is the -defect. inside the structure. The

photonic bandgap structure will result in a bandgap which allows only certain range of

wavelength exiting in it. Outside this range, PBFs is anti-guiding. Guiding light in a

hollow core holds many promising applications like high power delivery without the risk of

fiber damage, gas sensors or extreme low loss guidance in vacuum. Furthermore, they are

almost insensitive to bending (even at very small bending radii) and have extreme dispersion

properties, such as anomalous dispersion values in the thousands of ps/nm/km regime are

easily obtained. Due to a negligible contribution from the core material (air), the total

2



dispersion of PBFs is to a high degree dominated by waveguide dispersion.

COATING

Fig. 1.2 The scheme of photonic bandgap fibers (PBFs). Light is guided in the air-core of

PBFs.

—

1.2 Supercon.tinuum Generation ]

i o B u ol

Supercontinuum (SC) generation is thﬁefformation of broadﬁlcontinuous spectra by

i 5 |
propagation of high'power pulses through nonlinear:media [14]. Provided enough power,

SC generation canbe observed_in a drop of water [15].. However, the nonlinear effects

involved in the spectral b(paQening are highly depend on the dispersion of the media; and a
clever dispersion design can signifi.cantly reduce the power required. The widest spectra are
obtained when the pump pulses are launched close to the zero-dispersion wavelength of the
nonlinear media. Due to the technology which can fabricate the shiftable dispersion profile
and small core MFs, MFs become powerful tools to generate the SC and was first
demonstrated in 1999 [16]. The zero-dispersion wavelength of MFs can be shifted close to

the pumping wavelength on the visible region and the small core of MFs enhances the



nonlinear effects, mechanisms leading to the SC.

To generate the SC with MFs, femtosecond [17][18] and picosecond mode-locked laser
systems were generally used as the pumping sources [19]. For femtosecond pumping, it’s
easily to get higher peak power of the pumping pulse due to its short pulse duration and
therefore to induce strong nonlinear effects. These nonlinear effects include high-order
soliton breakup [20-21], soliton self-frequency shift (SSFS) [22] and four-wave mixing
(FWM) [23]. Usually abeut mini-watts of average pumping power are needed to generate

the supercontinuum fora femtosecond mode-locked laser system [18].

1.3 Third order optical nonlinear Effects

Nonlinear optical effects.are the major mechanisms leading, to the supercontinuum (SC).
With enough peak power;.a pulse propagating in the fiber will induce several nonlinear effects.
Under the pulse pumping:in the anomalous dispersion region, a pulse will experience the
self-phase modulation (SPM) [21], one of the nonlinear effects leading to the spectral
broadening of the pulse. The nonlinear phase induced by SPM will interact with the
anomalous dispersion and generate pairs of new frequencies at each side of pumping. This
phenomenon is what we call modulation instability (MI) [17],[21], which can be regarded as
degenerate four-wave mixing (DFWM). Once the new frequencies of the solitons located in

the Raman gain spectrum of the silica fiber, they will experience the stimulated Raman

4



scattering (SRS) and self-steepening (SS) which called the SSFS (soliton-self frequency shift)
effect. And that will shift the spectrum further into longer wavelength and distort the shape
of spectrum. Higher-order dispersion (HOD) (usually f5 and f4) should also be considered if
the spectrum extends from the anomalous dispersion region to the normal dispersion region
[24]. The new dispersive wave will be generated at the normal dispersion region. When
two optical fields with different wavelengths co-propagate in a nonlinear medium, the optical
field experiences a nonlinearsphase-shift induced by the co-propagating optical filed. This
nonlinear phase-shift.is commonly referred. to.as eross-phasesmodulation (XPM). Those

nonlinear effectsimentioned above-will be deseribed'more detail in the following.

1.3.1 Self-phase Modulation
SPM is a phenomenon that:leads to spectral broadening of optical pulses. It originates

from the intensity-dependence of the refractive index{25]:
n=n, + n2|A|2 ) (1.3.1)

where n is the linear part of the refractive index, n;is the nonlinear index coefficient and
|4["is the optical intensity. A typical value of n, for silica material is 3.2x10%° m%W. For
an optical pulse, SPM refers to the self-induced nonlinear phase shift as it propagates along

the fiber



27l
v (T) = %nz|A(T)|Z: (1.3.2)

where L is the length of the fiber. This nonlinear phase shift can induce a frequency chirp
which leads to the spectral broadening of the pulse. A useful quantity yP, interprets the
maximum nonlinear phase shift for a pulse propagating in fibers, where Py is the peak power

of the optical pulse and y is the nonlinear coefficient [21]

(1.3.3)

Here 4, is the effective area of the propagating mode inside the fiber and w is the center

frequency of the “optical field.——The “nonlinear coefficient, » represents the strength of

nonlinear effects and is inversely proportional to the area of fiber core.

1.3.2 Cross-phase Modulation
When two optical fields with different wavelengths:co-propagate in a nonlinear medium,
the refractive index seen by one of the fields notanly depends on its own intensity but also on
the intensity of the other field. Consequently, the optical field with a center wavelength 4 ;
experiences a nonlinear phase-shift induced by the co-propagating optical filed at wavelength
A jsuch that[21]
PALM =T ms 4], (1.3.4)
where |Aj| represents the intensity of the co-propagating field and L is the interaction length

between the two fields. This nonlinear phase-shift is commonly referred to as cross-phase
6



modulation (XPM) and requires the optical fields to overlap temporally. Equation (1.3.4)

shows that XPM is twice as effective as SPM.

1.3.3 Degenerate Four-Wave Mixing
Degenerate four wave mixing (DFWM) is a process where two pump photons generate a

Stokes photon and an anti-Stokes photon:

20, 0, + @, (1.3.5)

where wp, s and. @ correspond.-to the pump, Stokes, and anti-Stokes frequencies,
respectively.  Being a coherent ‘process, four-wave mixing is. efficient only if the

phase-matching condition is fulfilled [18],.i.e.,

A¢ = (@) +¥(o,,) = 24(@,) =L[2 %(@ —w ) ¥ Zpr} =0. (1.3.6)
S (Zn!

Here B.n is the 2n™ derivative of the propagation-¢onstant' 3 with respect to the frequency.
Note that only the even terms of the series expansion of £ contribute to the phase-matching
condition and the odd terms will cancel one another. The nonlinear phase shift 2yP, due to
SPM should be also included in the phase-matching condition. For a pump wavelength
located in the anomalous dispersion region, the phase-matching condition is mainly governed
by the induced nonlinear phase shift. Usually the process of DFWM in the anomalous

region can be regarded as MI which we will discuss in next section.



1.3.4 Modulation Instability

For a pump wavelength located in the anomalous dispersion region, it is possible to
compensate the induced nonlinear phase shift 2yP, by the negative value of p,and generate
the corresponding Stokes and anti-Stokes components. The frequency difference between

the pump and the Stokes (anti-Stokes) component calculated by Eq. 1.3.6 is [21]

Q :i£2ypp]2, (13.7)

if considering only the'term of f,.  This frequency shift can also be calculated by solving the
standard nonlinear Schrodinger  equation (NLSE) -of .CW ‘light [21]. By using the
perturbation theory, the CW light solution of NLSE will become unstable in the anomalous
dispersion regionsand generate two _new:frequencies on either sidesof the pump frequency.
These two new frequencies calculated by perturbation of C\W solution are as the same as the
frequencies calculated by the. DFWM. The new- frequencies will break up the CW or
quasi-CW radiation into a train of ultra short pulses. We call this phenomenon modulation
instability (MI) which results from an interplay between the nonlinear and the dispersive
effects. In fact, MI can be interpreted in terms of DFWM in the frequency domain, whereas
in the time domain it results from an unstable growth of weak perturbation from the CW

steady state.



1.3.5 Stimulated Raman Scattering

Stimulated Raman scattering (SRS) is a photon-phonon interaction. It is described
quantum-mechanically as scattering of a photon by one of the molecules to a lower frequency
photon, while the molecule makes transition to a higher energy vibrational state. SRS can
yield gain for a probe wave co-propagating with a pump wave and whose wavelength is
located within the Raman gain bandwidth. The normalized Raman gain spectrum of silica is
shown in Fig. 1.3 as a function of frequency differencesbetween the pump and probe waves
[26]. The Raman gain of-the MFs is,comparablesto that of silica fibers [27]. The gain
bandwidth is 40, THz with a peak-located aty13.2"THz from the pump frequency. For an
ultra-short pulse, the spectral width of the pulse‘is large enough that the Raman gain can
amplify the low-frequency (red) spectral.components of the pulse, with high-frequency (blue)
components of thel'same-pulse” acting as a“pump. “This effect 1S called intrapulse Raman
scattering [21]. As a result, thespulse spectrum shifts toward the low-frequency (red) side as

the pulse propagates inside the fiber, a phenomenon referred to as the self-frequency shift.

0.8+

06

0.4+

Normalized Raman gain

|
I
I
I
I
I
I
I
I
I
I
02+ ]
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I
N
3

.
2020 30 40
Frequency [THz]

I
0 101

Fig. 1.3 Raman-gain spectrum for fused silica at a pump wavelength 4, = 1 zm.

9



1.3.6 Self-Steepening

Self-steepening (SS) results from the dispersion of the third-order susceptibility, i.e., the

red frequency components experience a lower nonlinearity than the blue frequency

components. In the time domain, SS can be thought as the intensity dependence of the group

velocity: The peak of the pulse moves at a slower velocity than the wings which induces the

trailing edge of the pulse to become steeper as the pulse propagates [21]. In combination

with SPM, SS results in a more pronounced broadening of the blue frequency components

compared to the red.ones. -The process.of, self-frequency-shift is substantially reduced by SS

since the nonlinearity decreases-as-the-center wavelength of the soliton shifts towards the red.

1.3.7 Higher-Order Dispersion

Higher-order dispersion (HOD) effect becomes important in‘optical fibers when the carrier

frequency is close to the zero dispersion point. Onee the spectrum extends beyond the zero

dispersion point to the normal dispersion region, the spectrum will be disturbed by the HOD

to generate a new dispersive wave [see Fig 1.4]. This is because when accounting the

higher-order dispersion, the wavenumber of the propagating pulse is the same as the

dispersive wave so that the energy can transfer from the pulse to the dispersive wave.

10
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Fig. 1.4 The dispersive wave generated at the normal dispersion due to the perturbation of

HOD [24].

1.4 Motivation

There are so many applications of supercontinuum generated.by microstructured fiber
like optical switching [28], wavelength conversion [29], tunable filters [30], etc., and a broad
spectrum from UV to NIR will be a-key-factor-to-suffice these applications. The spectrum
on the IR part can be easily generated by SSFS effect because ‘of the Raman gain of silica
fiber, and the spectrum on the UV part can-be'generated by the dispersive waves from soliton
fission and the XPM between the solitons and the dispersive waves. To obtain a dispersive
wave at a certain wavelength, phase-matching condition has to be fulfilled. And in contrast,
it has been shown theoretically and experimentally that the blue dispersive wave can be
further shifted by cross-phase modulation (XPM) initiated by the infrared soliton [31].
Additionally, a theoretical suggestion has been given to increase the bandwidth in the visible

by co-propagating the pump pulse with a pulse in the visible and thus, exploiting the XPM

11



between the two [32]. Although some experiments have been done using two spectrally
distinct ns, ps and fs pulses to achieve additional broadening [33], the XPM induced
frequency shifts in supercontinuum generation with dual pumped fundamental and
second-harmonic femtosecond pulses has not yet been reported experimentally. In this
thesis, we investigate the XPM induced shift in the case of supercontinuum generation

numerically.

1.5 Organization of this Thesis

In Chapter ;2, we will describe- how  te. simulate the coupled nonlinear Schrodinger
equation. Then, we will introduce our experiment in Chapter 3, including the pumping laser
system, the specification of our MFs,.:the experimental setup single and dual wavelength
pumping. Chapter 4 is-the ‘expérimental “results*and discussion. We will compare the
experimental results with.the numerical results insthis chapter. Finally, we will give a

conclusion and the future works in Chapter 5.

12



Chapter 2 Simulation of Nonlinear Schrédinger Equation

2.1 Coupled Nonlinear Schrédinger Equations
An electromagnetic field propagating in a medium induces a polarization of the electric
dipoles. The evolution of the electromagnetic field in the medium can be described by a
propagation equation derived from the general.wave equation [21]
1 0°E - @°P

VE-——" =y —, 2.1.1
2o M or ( )

where E is the electric field, P the induced polarization, uo the vacuum permeability and ¢ the
speed of light inwvacuum. For intense radiation.such'as ps or fs laser piilses, the response of the
medium becomes nonlinear and/the induced polarization consists of a linear and a nonlinear
parts. In the scalar.approximation, the linear and norlinear induced polarizations are related to

the electromagnetic field'as [21]
P =c"E, (2.1.2)

P =g,y yE, (2.1.3)

22
where & is the vacuum permittivity and »¥ is the jth order susceptibility of the medium. The
inversion symmetry of silica glass at the molecular level results in negligible even-order
susceptibilities. Moreover, susceptibilities of the order higher than three are not significant for

13



silica glass. Therefore, the relevant nonlinear effects in optical fibers are mainly induced by »**

[21].

Optical nonlinear processes can be divided into two categories. Elastic processes
correspond to photon-photon interaction with no energy exchange occurring between the
electric field and the medium. Such effects include SPM, DFWM, and generation of
dispersive wave. Inelastic processes correspond to photon-phonon interaction, which leads to
energy exchange between.the electric field and the nonlinear medium. Raman scattering is
one of the effects of'inelastic process. ' Treating the nonlinear part of the induced polarization

as a perturbation’in Eq. 2.1.1 and assuming that the electric field is of the form
E(z,T)= Az, T)exp(ifz-io,T), (2.1.4)

where A(z,T) is the slowly varying envelope of the electric field, § is the propagation constant
and wy is the center frequency. of the field, one can derive the well-known NLSE. The NLSE
models accurately the propagation of light along optical-fibers for pulses as short as 30 fs [35].

In a frame of reference moving at the group velocity of the pulse, the NSE can be written as [21]

2
04 « i 0"A i 0. F , ,

L2 =iy(1+——)A | R(TH|A(z,T-T") dT’, 2.1.5
oz 2 5 n Z oT" Z8 @, aT) _J;O( )‘ (= )‘ ( )

where a is the fiber loss and S, are the coefficients of the Taylor-series expansion of the

propagation constant £ around wy, and R(7) is the response function describing the interaction
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between the photon and medium. The response function should include both the instantaneous
response (interaction between electron and photon) and the delayed Raman response

(interaction between photon and phonon) and is given by

R(T) = (1= fp)o(T) + frhe(T), (2.1.6)

where fzrepresents the fractional contribution of the delayed Raman response function /g(7).

The value of fz is typically 0.18 and Ax(7) can be presented as [21]

2.1.7)

ation of sg(7T) [36]. The
delayed Rama be the - pulse Raman scattering
referred to the self-fre shif he right-har .2.1.5 contains the nonlinear
effects such as SP N 3 ie differential term which accounts
for the dispersion of the nonlinear coefficient. _On eft side of the Eq. 2.1.5, it presents not

only the dispersion effect but also the fiber loss.
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Fig. 2.1 Temporal variation of delayed Raman response function /x(7) for silica fibers [35].

we change the NLSE into a coupled

(2.1.8)

(2.1.9)

frequency, nonlinear coefficient, loss and
dispersion of the fundamental pulse and Az, g2, v2, 02, B2n are the amplitude, angular frequency,
nonlinear coefficient, loss and dispersion of the second harmonic pulse, respectively. By
simulating the NLSE, we can get the evolution of an optical pulse propagating in fibers and

therefore realize the causes of the SC.
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2.2 Fourier Transform

The NLSE is an important tool to analyze the evolution of a pulse propagating in fibers. By

solving the NLSE, we can get the final spectrum of the pulse out of the fiber. In general, the

NLSE is a nonlinear partial differential equation and doesn’t have an analytic solution. A

numerical approach is therefore often necessary for understanding the nonlinear effects in

optical fibers. A large number of numerical methods can be used for this purpose. These can

be classified into two broad eategories known as: (1) the'finite-difference methods and (ii) the

pseudospecral methods. Generally speaking, pseudospecral methods are faster by up to an

order of magnitude to achieve-the-same accuracy [37]. . It has been.used extensively to solve

the pulse-propagation problem in nonlinear dispersive media is the split-step Fourier method

[38] [39].

In this thesis, welsolve the NLSE using thé split-steép Fourier method. Other concepts such

as the discrete Fourier transform«(DFT), fast Fouriemtransform (FFT) and convolution theory

should also be used in the simulation of NLSE. " In this chapter, we will introduce the DFT, FFT

and the convolution theory from 2.2.1 to 2.2.2. Then we will show how to use these tools to

solve NLSE by the split-step Fourier method in detail in 2.3.
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2.2.1 Discrete Fourier Transform

A physical process can be described in the time domain ¢ and the frequency domain f as
functions of 4(¢) and H(f) respectively. For many purposes it is useful to think 4(z) and H(f) as
being two different representations of a physical process. One goes back and forth between
these two representations by means of the Fourier transform. We can get H(f) by the Fourier

transform of 4(¢) or A(f) by the inverse Fourier transform of H(f) [40] .

H(f)= Th(t)e“"f’dt, (2.2.1)

h(t)= TH( L T i (2.2.2)

In the most computational work, the function we deal is usually a train of sampled data at
evenly spaced intervals in time.  If we'sample a continuous function /(f) to N consecutive
values, A(f) can be presented as

h, =h(ty, - t, =kA4, k=0,1,2,.s.,N -1, (2.2.3)
where A is the time interval. According to the sampling theory, a continuous function A(z),
sampled at an interval A, happens to be bandwidth limited to frequencies from - f. to f. where

fe=1/2A [47]. Let us sample the frequency to N consecutive values inside the bandwidth, 1.e.,

= g2 NN
" NA’ 2772, (2.2.4)

where N is usually taken as an even number. If we really count the number of f,, we will find

18



that there are N+ values of n. It turns out that the two extreme values of z are not independent
(in fact they are equal), but all the others are. This reduces the count to N.

We can approximate the integral in Eq. 2.2.1 by a discrete sum [40]:
< _ N-l ) N-1 _
H(f;,) — J.h(t)ehrlftdt ~ theZIrlfn tkA — AzhkeZHIkn/N ) (225)
—o0 k=0 k=0

The final summation in Eq. 2.2.5 is called the DFT of the N points of /;. Let us denote it as
function H,,,
N-1 3
H, =Y he M, (2.2.6)
k=0
The relation between the DET-and continuous Fourier transform with a continuous function
sampled at an interval A can be written as
H(f)~H, (2.2.7)
From Eq. 2.2.4, we have seen that the index » varies from —N/2't0 N/2. However, we find that
Eq. 2.2.6 is periodic ing with period N. Therefore, H-, = Hy—ywhere n =1, 2,.... With this
conversion, we let H, for n from 0 to -1 form one complete period. When this convention
is followed, we must remember that the zero frequency corresponds to n = 0, positive
frequencies 0 < f'< f. correspond to values 1 <n < N/2—1, while negative frequencies —f. < f <
0 correspond to N2+1 <n < N—1. The value n = N/2 corresponds to both f = f. and f = —f.

[40].

The formula for the discrete inverse Fourier transform, which recovers the set of 4;’s exactly
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from the H,’s is [40]:

1 N-1 )
h, = ~ H e (2.2.8)
n=0

Notice that there are only two differences between Eq. 2.2.6 and Eq. 2.2.8. One is changing

sign in the exponential and the other is further dividing by N. This means that a routine for

calculating the DFT can also be used, with slight modification, to calculate the inverse

transform.

et us introduce a new

(2.2.9)

(2.2.10)

The vector A is multiplied by a matrix W of the power nxk. This matrix multiplication finally
requires N* complex multiplications, plus a smaller number of operations to generate the
required powers of W. So, the DFT appears to be an order of N processes. However, the
computation work can be reduced to an order of N log, N by means of FFT. The difference

between N and N log, N is huge for large N. For a microsecond time computer, it takes 2
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weeks to finish N* computation whereas only 30 seconds for N log, N for N=10°.

The DFT of length N can be rewritten as the sum of two DFTs, each of length N/2. One of
the two is formed from the even-numbered points of original N, the other from the

odd-numbered points [40].

N2-1
_ ik N 2ni (2j+1) kN
=D 3 Sopn
=0

=0 (2.2.11)
N2-1 e k}WQ—I Y

- 2ri jk/(N /2 T ijik (N /2)

=2 fy+WE e Sy
Jj=0 Jj=0

_ rre k o

= F +WE

F? denotes the £ component.of the Fourier transform of length N2 formed from the even
components, while F” is'the corresponding transform of length N/2 formed from the odd
components. The dichotomy: of the-DET-can-be-used recursively. We can do the same
reduction of F; to the two DFTs; each of length N/4. In other words, we can define F, and
F to be the DFTs of the:points which-are respectively even-even and even-odd on the
successive subdivisions of the data. If we treat N as an integer power of 2, it is evident that we
can continue applying the dichotomy until we have subdivided the data all the way down to

transforms of length 1.

eroeeoeo.“ee — fk for some n. (22 12)

From Eq. 2.2.12, we can see that for every pattern of log,N e’s and o’s, there is a one-point
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transform that is just one of the input numbers f,. The final step is to figure out which value of
n corresponds to which pattern of e’s and 0’s in Eq. 2.2.12. By using this information, we can

calculate F;. This is what we call the FFT.

In our simulation, we use Compaq Visual Fortran 6.6. In the library of Compaq Visual
Fortran 6.6, the instructions of the FFT and the inverse FFT are DFFTCF and DFFTCB.
The output of DFFTCF is H,. That means we need to multiply the output by the interval A
to get the Fourier transform H(f;). For DFFTCB, the output should be divided the sampled
number N to get i as Eq. 2.2.8.  We should also notice that the sampled number N, the input

in DFFTCF and DFETCB, should be an integer of the power of 2.

2.2.3 Convolution Theory

A system is said toibe linear if it satisfies the principle of superposition, i.e., if its response to
the sum of any two inputs is the sum of-itssrésponses to each of the inputs separately. The
output at time ¢ is, in general, a weighted superposition of the input contributions at difference

time 7 [41],
()= Th(t;r)fl(r)dr, (2.2.13)

where fi(¢), f2(f) and A(t;7) are the input, the output of the linear system and a weighting

function representing the contribution of the input at time 7 to the output at time ¢z, respectively.
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A linear system is said to be time-invariant or shift-invariant, if when the input of a linear

system is shifted in time, its output shifts by an equal time, but otherwise remains the same.

Then /4(t;7) can be written as 4(f —7) and Eq. 2.2.13 becomes [41]
50y = [ht-0)fi(0)dz . (2.2.14)

The Fourier transform of f3(£) is the product of the Fourier transform of 4( —7) and f;(f). This
is known as the convolution theory presented.as {41]

E,() = HWEW), (2.2.15)
where F (V) , F, (v)and H (v) are-thé Fourier transform of /;(2), f5(f) and /(t;7). In the NSE,
the response funiction R(7) can be treated as /i(f —¢) and thus we ¢an calculated the integral

part in NSE by the inyerse Fourier transtorm.of Eq. 3.1.14.

2.3 Split-step Fourier Method
One of the pseudospecrali methods that have 'been used extensively to solve the
pulse-propagation problem in nonlinear dispersive media is the split-step Fourier method. The
main reason for the faster speed of the split-step method compared with the most
finite-difference schemes is the use of the FFT.
To understand the philosophy behind the split-step Fourier method, it is useful to rewrite

Eq. 2.1.5 in the form [21]
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g_j:(bm)A, 2.3.1)

where D is a differential operator that accounts for the dispersion and absorption in a media and
N is a nonlinear operator that presents the effect of fiber nonlinearities on pulse propagation.

These operators are given by [21]

. a in+1
D=—"- , 232
5 > P (2.3.2)

n>2

A

N = %{i;{l + WLOJ%AI R(TA(zT-T' )|2dT'} : (2.3.3)
In general, the dispersion and nonlinearity effects-act together along the length of the fiber.
The split-step Fourier method-assumes- that the dispersive’ and nonlinear effects can be
pretended to actindependently inside a small distance / and therefore obtains an approximation
solution. More specifically, propagation along the fiber from the position z to z + 4 is carried
out in two steps...In the first.step,sthe nonlmearity acts alone, andD =0 in Eq. 2.3.1. In the
second step, dispersiom actsalone, and N =0. Mathematically [21],
A(z+h ) ~exp(hD)exp(hN) A(zT). (2.3.4)
The first step can be evaluated in the time domain while the second step should be calculated in
the frequency domain. The process is shown as the following prescription
A(z+nT)~ F;' (exp[ hD (ic)]* F, [exp(hN) A(z T)] ) (2.3.5)
where F, , F,', D(iw) are the FFT operation, the inverse FFT operation and the Fourier

transform of Din Eq. 2.3.5. Notice that the differential operatord/0Tin D can be replaced
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byiw, just a number in the frequency domain. That’s the reason why the dispersion effect
should be calculated in the frequency space. After finishing the dispersion effect on A(z,T),
we should change the calculation from the frequency domain to the time domain by the inverse
FFT. The use of the FFT makes numerical evaluation of Eq. 2.3.5 relatively fast. It is for this
reason that the split-step Fourier method is faster up to two orders of magnitude compared with
most of the finite-difference schemes.

To estimate the accuracy of the split-step Fourier method, we note that a formally exact
solution of Eq. 2.3.1,is given by

Alz+hT) = explh(D+ N) 4(z T, (2.3.6)
if N is assumed_to be z independent. At this:point, it is useful to recall the Baker -Hausdorff
formula [35] for'two noncommutating operatorsa and b s
exp(a) exp(b)=exp(a +b +%[a,13] +%[& —by[a,b]]+.... (2.3.7)

where[d,b] = ab-ba. A comparison of Eq. 2.3.4.and Eq. 2.3.6 shows that the split-step
Fourier method ignores the noncommutating feature of the operators D and N . By using Eq.

2.3.7 with 4 =hDandb =hN , the dominant error term is found resulting from the single

1 A . . .
commutator Ehz[D,N ]. Thus, the split-step Fourier method is accurate to the second order
in the step size A.

The accuracy of the split-step method can be improved by adopting a different procedure to
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propagate the optical pulse over one segment from z to z+A. In this procedure Eq. 2.3.4 is

replaced by

z+h

A(z+h,T) = exp(gb)exp( j N(z)dz) exp(%D)A(z, T) (2.3.8)

The procedure divides into 3 parts [See Fig. 2.2]. At first, the dispersion effect acts alone in
the first half of distance 4. Then the effect of nonlinearity acts alone in the middle of segment.
Finally the dispersion effect acts again in:the rest of length 4#/2. Similar to Eq. 2.3.5, the
dispersion effects at the both sides of the segment is-calculated in the frequency domain by the

FFT whereas the nonlinear effect at the middle part is calculated in time domain.

Dispersion Only - Niyjinear effect Only

\\ :\\ &
4

&
&

Z=0 f—h—

Fig. 2.2 Schematic illustration of the symmetrized split-step Fourier method. Fiber length is

divided into a large number of segments of width 2. Within the segment, the effect

of nonlinearity acts at the midplane shown by a dashed line and the effect of

dispersion acts at the edge of the segment shown by a solid line.
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Because of the symmetric form of Eq. 2.3.8, this scheme is known as the symmetrized
split-step Fourier method [43]. The integral in the middle exponential considers the z
dependent of the nonlinear operatorN . If the step size 4 is small enough, the integral can be
approximated by exp(hN ). The most important advantage of using the symmetrized form of
Eq. 2.3.8 is that the leading error term comes from the double commutator in Eq. 2.3.7 is of the
third order in the step size 4. This can be proved by applying Eq. 2.3.8 twice in Eq. 2.3.7.

The accuracy of the symmetrized split-step Fourier-method can be further improved by
evaluating the integral in Eq. 2.3.8 more.accurately than approximating it by hN (z). Asimple

approach is to employ the trapezoidal rule andsapproximate.the integral by [44]

z+h

[N(z)dz ~ %[]\7(2) + Nz +7)] (2.3.9)

However, the implementation of Eql 2:3:9 1S not simple because N(z + /) is unknown at the
mid-segment located atz+/4/2. It is necessary to use an‘iterative procedure that is initiated
by replacing N(z + &) by N(z). i Equation is than used to estimate A(z + /,T) which in turn is
used to calculate the new value of N(z+#4) . Although the iteration procedure is
time-consuming, it can still reduce the overall computing time if the step size / can be increased
because of the improved accuracy of the numerical algorithm. Two iterations are generally

enough in practice.

Let us see Eq. 2.3.3 again, the nonlinear operator]\7 contains an integral part and the
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differential part which corresponds to the Raman effect and the SS. It is more complicated to

deal with them. We rewrite N by using Eq. 2.1.6 and Eq. 2.3.3 as the following form:

N= i}/((l — fAGT| + £ [ (D) A, T)|2dT'J
- (2.3.10)

1 v 1 ’ 1
——wl—{A ((1 — fAED + f [ (T AT - T )|2dTJ }
0 —0
The integral part can be solved by the convolution theory by inversely FFT the product of

h,(£2) (the FFT ofh,(T) ) and the FFT of |A(z, 1 )|2 [45]. The differential part can be solved in

the frequency domain by.replacing 0/ 0T withiew. Therefore, N can be written as

N = ixXi— %(%F;l[ia} F[Al+ F,'[iw FT[X]]j, (2.3.11)

0

where X = { (1 <4 )z Dl + oy Vo (@) Fy [ AT ] f - Finally, we can compute the
nonlinear 0perator]\7 in use of the convolution theory and the FFT algotithm. In many papers,
it is usually solved the SS term using the Runge-Kutta method with treating the differential term
as a perturbation [40][45][46]. However, we use the FET algorithm, which is simpler and
more straightforward than the Runge-Kutta method. "We therefore simulate the evolution of
the pulse spectrum using the split-step Fourier method. We also combine the plug-in program

Matfor 4.0 with Compaq Visual Fortran 6.6. Matfor is a very powerful tool which can draft the

evolution of spectrum synchronously.
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2.4 \Verification of the simulations

In order to verify accuracy of our simulation, we do some comparisons between the

simulation on the paper [18] and ourselves with the same parameters. The first simulated

result on Ref [18] is shown in figure 2.3 and the input average power is 16 mW and the

pumping wavelength is 800 nm. With the same pumping wavelength, we set the input peak

power as 1.6 kW and the pulse width as 100 fs. Then we got the very similar simulated result

with the paper in figure 2.4.

P,.,=16mW, i, = 800 nm on paper

Q

Intensity (dBm)
AN
© ©O

i

Fig. 2.3 The simulated result -on Ref[18]. The input average power is 16 mW and the

600 800 1000 1200

pumping wavelength is 800 nm.
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Simulated 800nm in PCF (Pp=1.6KW,T_ = =100fs)
-20

E 0

o0
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= -40

‘@

S -s0

= |
-60 Aﬂ‘

600 800 1000 1200
Wavelength (nm)

Fig. 2.4 The simulated result by ourselves. The input peak power is 1.6 kW, pulse width is

100 fs and the pumping wavelength:is, 800 nm.

We also compare our simulated result with the reporting result on Ref [18] as shown in

figure 2.5. In their simulation,-the input-average powet. is 120 mW, Trwim is 130fs, and the

pumping wavelength is 860 nm. We use the samerpumping wavelength, pulse width and set

the input peak power as 5 kW in our simulation. Our simulated result is;shown in figure 2.6 and

it is similar to the_chart shown in Fig.2.5 (b).

Intensity [dBm]

1 1 |
800 1000 1200 1400

Wavelength [nm]

Fig 2.5 SC in Im of MF: a) measured and b) simulated on Ref[18]. Pp=860nm, P,,=120mW,

TFWHM: 130fs.
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Intensity (dBm)

Simulated 860 nm in PCF ( Pp=5 kW, T_,  =130fs)

=20 -

=30

800 1000 1200 1400

Wavelength (nm)

Fig 2.6 The simulated result by ourselves. The input peak power is 5 kW, pulse width is 130

fs and the pumping wavelength is 86
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Chapter 3 Experiments

3.1 Pumping Source
The tunable mode-locked Ti:Sapphire laser (from 700 nm to 900 nm, Tsunami,
Spectra-Physics inc.) with about 60 fs (FWHM) pulsewidth and 82 MHz repetition rate is used

as the exciting source. The experimental setup is shown in Figure 3.1.

2 /2 plate

| Ti-Sapphire
| Oscillator

E
—

:

]

E

I
—1
Spectrometer

—>
Time Delay

£
g

Fig. 3.1 The'setup ofimode-locked Ti:Sapphire laser

3.2 The Specification of the Used Microstructured Fibers
3.2.1 NL-PM 760
The core diameter of the used microstructured fiber is about 1.7 pm and the pitch A (spacing

between adjacent holes) is about 1.4 pm. It is polarization maintaining because of its
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asymmetric arrangement of the holes near the core. The diameter of holes is about 0.6pum
except for the two holes near the core whose diameter is about 0.7um. The cross sectional
scanning electron microscope image (SEM) of our MF is shown in Fig. 3.2. This fiber has
quite high nonlinearity with nonlinear coefficient y being 102 km™-W™" around 800 nm due to
its small core diameter. It also has two zero dispersion points which are located at 790 nm and
1190 nm. The used pump wavelength is in the anomalous dispersion region. The dispersion

curve can be simulated by Mode Solutions, software by importing the structures (SEM) of MFs.

00/26/2005

Fig. 3.2  The cross sectional scanning electron microscope image (SEM) of the

microstructured fiber.

3.2.2 NL-1.5670

The core diameter of the used microstructured fiber is about 1.5 um and the pitch A (spacing
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between adjacent holes) is about 2.0 um. The diameter of holes is about 2 um and the air filling
fraction in the holey region is bigger than 90%. The cross sectional scanning electron
microscope image (SEM) of our MF from internet is shown in Fig. 3.3. This fiber has quite
high nonlinearity with nonlinear coefficient y being 168 km™-W™' at the zero dispersion

wavelength due to its small core diameter. It has only one zero dispersion points at 670 nm.

Fig. 3.3 The cross sectional scanning . eleetron 'microscope image (SEM) of the

microstructured fiber.

3.2.3 Dispersion Curves of the Microstructured Fibers

With a software named Mode Solution, and the relation between the dispersion and the

group delay shown as equation (3.1) below,
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dpy
D=— 3.2.1
— (3.2.1)
where D is dispersion, and B; is the group delay of this fiber, respectively. We obtained the
dispersion curve, group delay and the mode pattern of the photonic crystal fiber NL-PM 760
and NL-PM 670 which are shown in Fig. 3.4 and Fig. 3.5. From Fig. 3.4, two zero dispersion

wavelengths can be seen at 790 nm and 1190 nm, but only one zero dispersion wavelength exist

at 670 nm as shown in Fig.3.5.

Fiber NL-PM 760
T T T T T T T 0
—— Dispersion
100 - [——Betal |
= 20 @
$ o 3
: .
g r-40 &
Z =100 2
i) ™
" -
- --60 =
8 .200- @
n 3
o -
--80
-300

400 600 800 1000 1200 1400
Wavelength (nm)

Fig. 3.4 The dispersion curve (black) and the group delay (blue) of the PCF NL-PM 760. The
two zero dispersion wavelengths are located at 790 nm and 1190 nm. The inset of

this figure is the mode pattern of this fiber.
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Fiber NL-PM 670
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Fig. 3.5 The dispersion curve (black) and the group delay (blue) of the PCF NL-PM 670. The

Then, we caleulate ase matching diagr ; he PCF NL-PM 760. In

er anti-Stokes photon:

(3.2.2)
where w,, s and s frequencies, respectively
Being a coherent process, fi the phase-matching condition is
fulfilled [18], i.e.,

A9 =¢(o,) + #@,) - 24(w,) = L{2 (fﬁ,)(ws ~®,)" + 2pr} =0. (3.2.3)
— (2n!

Here, S, is the 2n™ derivative of the propagation constant 8 with respect to the frequency.
Base on equation (3.2.3), the FWM diagram of PCF NL-PM 760 and PCF NL-PM 670 are

shown below in Fig 3.6 and Fig 3.7.
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FWM diagram of Fiber NL-PM 760

680 720 760 800 840 880
Ap (nm)

Fig. 3.6 Calculated phase-matched wavelengths of PCF NLE=PM 760 as a function of pump
wavelength through-degencrate FMW. The, black line, red line and blue line

correspond to a pump peak power of 0, 0:5; and 3 kW, respectively.

FWM diagram of Fiber NL-PM 670
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Fig. 3.7 Calculated phase-matched wavelengths of PCF NL-PM 670 as a function of pump
wavelength through degenerate FMW. The black line, red line and blue line

correspond to a pump peak power of 0, 0.5, and 3 kW, respectively.
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3.3 Experiment Setup of Single and Dual Wavelength Pumping

The experiment setup in dual wavelength pumping for SCG is shown in Fig. 3.8. The
mode locked Ti:sapphire laser and its second harmonic wave (generated from Model 3980, SP
inc.) are simultaneously focused into a 1-m-long MF by a 40X microscope objective lens. In
this experimental, with about 10% coupling efficiency can be reached. We use a A/2 plate to
change the polarization state of the laser to get the widest spectral broadening, and a polarizer
to make sure the same polarization of the fundamental and the second harmonic pulse.
Finally, the output spectrum from the PCE is.detected and displayed by an optical spectrum

analyzer (OSA, Ando).

A /2 plate
& ' | Ti-Sapphire
| Oscillator
3=
¢
NL-PM 670 PCE o
k1 PM'J’GO PCFd [ g
S
polanzer 40X Sg
J 17
Time Delay fovot

Fig. 3.8 The setup of our experiment of single and dual wavelength pumping.

38



Chapter 4 Results and Discussion

4.1 Simulated SCG from PCF
4.1.1 Single Wavelength Pumping
41.1.1 Fiber NL-PM 760
41.1.1.1 Simulation @ 810 nm Pumping

Here, we numerically simulate, a SCG. from the photonic crystal fiber by using a
femtosecond pulse at 8 H0.nm with pulse width about 60 fs. = The result is shown in Fig. 4.1.
From this figure, the spectrum-becomes-more and more broadened as the input peak power

increases.

Simulated Result pumping at 810 nm

-20{(10 W) Pav=0.05 mW (1.5 kW) Pav=7.38 mW|
o | AN
-20{(100W)  Pav=0.5mW J(6kW)  Pav=29.5mW]

-40 Iu"\
20/(300 kW)  Pav=1.48 =] (9.5kW)  Pav=46.7 'mw:
40 r,,u\ M
-20{(1 kW) Pav=4.92 mW{(10 kW) Pav=49.6 mW|

A

600 800 1000 1200 1400 600 800 1000 1200 1400
Wavelength (nm) Wavelength (nm)

Intensity (dBm)

Fig. 4.1  The figure shows the simulated evolution of SCG pumped at 810 nm with pulse
width equal to 60 fs and different input peak power into the PCF NL-PM 760.
The red words show the input peak power, and the green words shows the input

average power.
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4.1.1.1.2 Simulation with Different Step Lengths

The choosing step length in our numerical simulation may slightly result in different
broadening spectra. Therefore, the properly choosing step length in our numerical
simulation is also important. To make sure the step length in our simulation is acceptable,
we simulated the supercontinuum generation with single wavelength pumping at 810 nm into
PCF NL-PM 760 in use of different step lengths. The experimental observation of the
generated supercontinuum_using .the pumping wavelength at 810 nm with input average
power about 200 mW is shown in Fig«4:2...It shows the obwiously spectrum dip around
1380 nm due to the OH™ bond absorptions

Exp NL-PM 760 Pumped @ 810 nm, 200 mW

-20
=30
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Q40
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2 50
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K /\\\
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600 800 1000 1200 1400 1600
Wavelength (nm)

Fig. 4.2 The SCG pumping at 810 nm with input average power equals to 200 mW

The numerical simulation by using the same pumping wavelength with pulse width

equals to 60 fs and input peak power equals to 10 kW is shown in Fig. 4.3. In the use of the
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step lengths of 1 um, 5 um, 10 pm, 50 pm, 100 pum, and 500 um, the generated SC were
shown in Figs. 4.3(a)-(f), respectively. From these figures, the simulated SC does not
change the shape until the step length less than 10 pum. Therefore, we use step length of 10
pm in the following simulation. There are few differences between the experimental and the
simulated results in comparing with Fig. 4.2 and Fig. 4.3. The spectrum dip around 1380 nm
could not be seen in our simulation because we do not consider the loss due to the OH™ bond
absorption.

Simulation with different step length

_20_ L | I | 1 1um_
40:hW/\W (a)
.20- y T T T T T T T T T '5 um% (b)
-40-h -

Ay T T ""1'0um%

Intensity (dBm)

| I |
1000 1200 1400 1600

Wavelength (nm)

| |
600 800

Fig. 4.3 The simulated result of SCG pumped at 810 nm with different step length series.
From (a) to (f), the step length are 1 um, 5 pm, 10 um, 50 pm, 100um, and 500 pm,
respectively.
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4.1.1.2 Fiber NL-1.5670

In this simulation, the center wavelength and pulse width are 810 nm and 60 fs
respectively. In addition, we do not consider the loss term and the high order dispersion (>
B3) into our simulation. The results were shown in Fig. 4.4. As the input peak power

increases, more Raman solitons are generated and shift toward the longer wavelength.

Simulated Fiber NL-PM 670 Pumped @ 810 nm with t0=60 fs
[(Pp = 0.5 kW) (Pav = 2.5 mW) (Pp = 2.5 kW) (Pav = 12.3 mW)

-

|(Pp =1 kW) (Pav =49 mW) (Pp = 3.5 kW) (Pav = 17.2 mW

U’l
l=l

Intensity (dBm)

-40-

Sl— ) M N
|(Pp = 2 kW) (Pav = 9.8 Pp 4KW) (Pav=19.6mW)

40/
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400 600 800 1000 1200 1400 400 1000 1200 1400
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Fig. 44  The figure shows the simulated evolution of SCG pumped at 810 nm with

different input peak power into the PCF NL-PM 760. The pulse width is 60 fs.

The red words show the input peak power and the green words show the input

average power.
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4.1.2 Dual Wavelength Pumping with Fiber NL-PM 760
4.1.2.1 Pumping at Different Wavelength Series

Here, we numerically investigate that dual wavelength femtosecond pulses are
simultaneously launched into the PCF NL-PM 760 to generate the SC. Four sets of
wavelengths are used. They are 760 / 380 nm, 790 / 395 nm, 800 / 400 nm, and 840 / 420
nm, in which they have the same input peak powers and pulse widths. The input peak
powers of the fundamental and the second harmonic pulses are both 5 kW. The pulse width
i1s 60 fs for the fundamental pulse and-100.fs for the second harmonic pulse, respectively.
The simulated nesults were shown in Fig. 4.5. "We, can see that with dual wavelength
pumping, the spectrum become more broadened on the UV side. The flattest and most
continuous spectrum near the UV side.is generated at.790 nm and 395 nm dual wavelength

pumping. The broadened spectrum on the UV side’is resulted from the XPM effect.
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Fig. 4.5 These two figures are-the same but with different wavelength range. The figure on
the léft hand side shows the spectrum on the UV side and the figure on the right
hand side shows the whole spectrum. (a)~(d) shows the wavelengths sets of 760 /
380 nm, 790/ 395:nm, 800 / 400 nm, and 840 / 420'nm. -, The input peak power of
the fundamental pulse and the second harmoni¢ pulse are both 5 kW. The pulse
width is 60 fs for the fundamental pulse and-100 fs for the second harmonic pulse,

respectively.

4.1.2.2 Pumping at the Same Wavelength Series but Different Input Peak
Powers
In simultaneously use of the wavelength set of 790 / 395 nm as the pump wavelengths,

we numerically simulated the spectrum evolution by changing the input peak power that is
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shown in Fig. 4.6. From Figs. 4.6 (a) to (c), the input peak powers are equal to 5/ 5 kW, 7/
5 kW, and 8 / 8 kW for the fundamental and the second harmonic pulses, respectively. The
pulse widths of fundamental and the second harmonic pulses are 60 fs and 100 fs, respectively.
From Fig. 4.6, the spectra become more broadened and smoother not only on the IR side but

also on the UV side as the input peak power increases.

The Focus View on UV Side The Whole Spectrum
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c c ]
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Fig. 4.6 These two figures are the same but with different wavelength range. The figure on
the left hand side shows the spectrum on the UV side and the figure on the right
hand side shows the whole spectrum. From (a) to (c), the input peak power are
equal to 5/ 5 kW, 7/5 kW, and 8 / 8 kW for the fundamental pulse and the second
harmonic pulse, respectively. The pulse width of fundamental pulse and the
second harmonic pulse are 60 fs and 100 fs, respectively.
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4.1.3 Comparison of Single and Dual Wavelength Pumping at 790 nm and
395 nm with Fiber NL-PM 760

In Fig. 4.7, we compared the generated spectra in use of the single and dual

wavelength pumping at 790 nm and 395 nm. The spectrum on the UV side generated in the

use of dual wavelength pumping (black curve) is more broadened than that of using the single

wavelength pumping at the second harmonic pulse (blue curve), and that is due to the XPM

effect between the fundamental and the second harmoni¢ipulses.

1(53) The Focus View on UV Side 15 (b) The Whole Spectrum
_ ::;ual = ::::ﬂ'
£ —uw £ uv
g -30] 3 -30-
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5 -45- S -45
£ =
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300 400 500 600 300 600 900 1200 1500
Wavelength (nm) Wavelength (nm)

Fig 4.7 The simulated result of single and dual wavelength pumping at 790 nm and 395 nm

on PCF NL-PM 760. (a) shows the spectrum on the UV side and (b) shows the

whole spectrum. The black curve is dual wavelength pumping, red curve is single

wavelength pumping at 790 nm and blue curve is single wavelength pumping at 395

nm. The input peak power and pulse width of 790 nm are 7 kW and 60 fs. The

input peak power and pulse width of 395 nm are 5 kW and 100 fs.
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4.2 The Supercontinuum Spectra
4.2.1 Comparison of the simulated and experimental results of single
wavelength pumping

4.2.1.1 Fiber NL-PM 760

In use of the PCF NL-PM 760, the experimental and simulated evolutions of SC
generation are shown in Figs. 4.8(a) and (b).  In the experimental observation, the onset of
the supercontinuum formation.can be explained as follows : The input pulse corresponding to
an the N™ order soliton is compressed-in-the first few centimeters of the fiber due to SPM.
The perturbation.ef this N order-soliton by SRS and the high'order dispersion leads to the
breaking up of the N™ order soliton into multiple fundamental solitons whose amplitudes and

pulse widths are'given by Eq..4.2.1 and.Eq.4.2.2 [21] below,

2
IN-Zk 1
HF—( Vz ) 0 (4.2.1)
__ Ty
Ti= 2N-2k+1 > (4.2.2)

where the integer N refers to as the soliton order and k refers to the k™ index of the constituent;
Px and Ty are the peak power and pulse width of the N™ order soliton; P, and Ty are the peak
power and pulse width of the input pulse. The red part of the spectra of the multiple solitons
overlaps with the Raman gain spectrum while their blue part overlaps with the resonant linear
waves. As a consequence, the resonant waves are amplified and emerged as anti-Stokes
components while the red components get amplified by SRS, which shifts the center
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frequency of the solitons further to the red. As the wavelength extend to the zero dispersion
wavelength at 1190 nm, the dispersive wave will be generated to make the spectrum shift to
the longer wavelength end. The obviously spectral dip can be seen at 1380 nm which might
be due to the seriously OH bond absorption. In the numerically simulation, we do not
consider the loss term and coupling efficiency about 10%. Therefore, the input power of the
simulations is less than the experiments. Generally, the evolution of the simulated results is
similar to the experimental results.and they are matched'quite well. The differences between
the experimental and simulated results.are resulted from the loss. from the absorption of OH

bond around 1380.nm in the numerical analysis.

(a) Exp Fiber NL-PM 760 Pumped @ 810 nm
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Fig. 4.8
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4.2.1.2 Fiber NL-1.5 670

The experimental and simulated evolution of SC generation from NL 1.5-670 in the use

of the femtosecond pulses are shown in Figs. 4.9 (a) and (b).

input average power is increased from 5 mW to 70 mW.

peak powers are lower than that we use in the experimental as shown in Fig. 4.9(a).

evolution of the simulated results is similar to the experimental results, but it still has slightly

difference.

It might be due to the reason that we do not consider the high order dispersion
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The figure on the left hand sided shows the experimental evolution of SCG by

different input average power, and the figure on the right hand side shows the

simulated evolution of SCG with different input peak power pumped at 810 nm

with pulse width equals.to 60 fs into the PCF NL-PM 760.

In the experimental results, the

In the simulated results, the input



term (> PB3) and the loss term, such as the absorption of OH bond around 1380 nm, in our
simulation.

However, in the comparisons (PCF NL-PM 760 and PCF NL-1.5 670) between the
simulated and the experimental results with single wavelength pumping, the evolution of SCG
in experimental observation can be predicted from nonlinear Schrodinger equation.
Therefore, we will use the coupled nonlinear Schrodinger equations to predict the evolution of

SC generation in dual wavelength pumping.

(a) Exp Fiber NL-PM 670 Pumped @ 810 nm
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(b) Simulated Result Pumping @ 810 with Tp\wym = 60 fs
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Fig. 49 Figure (a) and (b)-shows the experimental and simulated evolution of SCG
pumping at:810 nm into PCF NL-1.5670, respectively. (a) shows the spectrum
with different input average power and (b) shows the spectrum with different

input peak power." "'The pulse width'in 6ur simulation is set to be 60 fs.

4.2.2 Comparison of Single and Dual Wavelength Pumping
4.2.2.1 Fiber NL-PM 760

The experimental observation of SCG from PCF (NL-PM 760) with dual wavelength
femtosecond Ti:sapphire pulses (810 nm and 405 nm) are shown in Fig. 4.10. The input
average powers of the fundamental and the second harmonic pulses were about 200 mW and
130 mW, respectively. In Figs. 4.10(a) and (b), the spectra were obtained from two pulses
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(FW and SHW) having different time delay. In Fig. 4.10 (a), the obtained spectrum in use of
single wavelength pumping at 810 nm was more broadened than that in use of dual
wavelength pumping. But the spectrum on the UV side shows little difference using single
wavelength pumping (405 nm) and dual wavelength pumping (810 nm and 405 nm). From
Fig 4.10(b), the spectrum in use of dual wavelength pumping reveal broadened bandwidth

than that using the single wavelength pumping at 810 nm. But there is still little difference

on the spectrum on the UVysi relength pumping at 405 nm and dual

wavelength pumping
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Fig. 4.10 Experimental SCG of dual wavelength pumping at 810 nm and 405 nm with input

average power 2000 mW and 130 mW into the PCF NE#PM 760, respectively.
The black curve showsithe dual wavelength pumping;.the red curve shows the
single wavelength. pumping at 810 nm and.the blue curve shows the single

wavelength pumping at 405 nm. We got these two spectrums in different time

delay.

The different results in Figs. 4.10(a) and (b) with the same pumping condition may be

due to the

from heati

numerical

XPM effect. Besides, the coupling work didn’t do well or the expansion effect
ng of the second harmonic pulse to change the size of the core and the value of

aperture may also make the different spectra. We can see the explanation of
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thermal expansion from Fig. 4.11. If dual wavelength pulses were well coupled first, single

wavelength of the fundamental pulse would not be coupled well, and vice versa.

Microscope

C—

V/

A

P——

Fig4.11 We do the.coupling work-of dual wavelength pumping first'in figure (a), and do the

coupling work of $ingle ‘wavelength pumping at the fundamental pulse first in

figure (b). The red line shows the fundamental pulse and the blue line shows the

second harmonic pulse.

4.2.2.2 Fiber NL-1.5670

By coupling the dual wavelengths (810 nm and 405 nm) into the PCF NL-1.5 670, the

generated spectra are shown in Fig. 4.12. The input average powers of the fundamental

pulse and the second harmonic pulses are about 200 mW and 130 mW, respectively. The
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spectra in Figs. 4-12(a), (b), and (c) are the focus view on the UV side of the whole spectra in

the Figs. 4-12(d), (e) and (f) that are obtained from dual wavelength pumping with different

time delay.

The spectrum in use of single wavelength pumping (810 nm, Figs. 4.12(a) and (d))

reveal more broadened bandwidth than dual wavelength pumping. But there is little

difference on the spectrum on the UV side between single wavelength pumping at 405 nm and

dual wavelength pumping. That might because the XPM effect does not take place to extend

the spectrum towardithe shorter wavelength..In Figs. 4.12(b) and (e), the generated spectra

by dual wavelength pumping are-almost the same with single wayelength pumping at 810 nm.

However, in Figs. 4.12(c) and (f), the generated spectra reveal widen bandwidth and intensity

in both UV and near IR end by dualiwavelength pumping than that in use of the single

wavelength pumping (810 nm):

Therefore, we also ean guess,that the different results of these three spectra might be due

to the reasons mentioned in 4.2.2.1.

55



Dual

E —IR
oM —Uv
E -
2
»
c -
e
=
390 420 450 480 390 420 450 480 450 480
Wavelength (nm) Wavelength (nm) Wavelength (nm)

-20 =20 -20

(d) () (f)

-30 =30 -30
-40 =40 -40
-50 -50 -50-
-60 -60- Ni s -60-
ld A jl .

400 600 800 1000 1200 400 600 800 1000 1200 400 600 800 1000 1200
Wavelength (nm) Wavelength (nm) Wavelength (nm)

Intensity (dBm)

Fig. 4.12 Experimental SCG of dual wavelength pumping at 810 nm and 405 nm with input
average power 200 mW.and.130 mW into the PCF NL-1.5670, respectively. The
black curve shows'the dual waveélength pumping, the red curve shows the single
wavelength pumpingrat 810 nm and the blue curve shows the single wavelength
pumping at 405 nm. The spectrum of figure (a), (b) and (c¢) are the focus view on
the UV side of the whole spectrum on the bottom figure (d), (e) and (%),

respectively. The difference between figure (a), (b) and (c) is time delay.
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4.2.3 Comparison of the Simulated and Experiment Results of Dual
Wavelength Pumping in PCF NL-PM 760

4.2.3.1 Fiber NL-PM 760

Using PCF NL-PM 760, the experimental measured and the simulated SC spectra in use
of single and dual wavelength pumping are shown in Fig. 4.10 and Fig. 4.13. In simulation,
we have chosen 810 and 405 nm as the center wavelengths of the fundamental and the second
harmonic pulses, respectively:: "The input peak powersswere 5 / 5 kW, and the pulse widths
were 60 / 100 fs for the fundamental ;and,the second harmonie.pulses, respectively. From
Fig. 4.13 (a), the simulated -spectra-inuthe UV side was broadened by dual wavelength
pumping that is_quite different as the experimental observation in Fig. 4.10. From Fig.
4.13(b), we can'see that there.is little'difference on the.IR side of the spectrum between single
and dual wavelength pumping,-and‘it'is also different from the expetrimental result in Fig. 4.10.
The difference in use ‘"of the single wavelength pumping and dual wavelength are not
obviously in Fig. 4.13. We think that’s because we did not consider the loss term in our
simulation, and the loss around 1380 nm and in the UV side is extremely large that we should

consider it into our simulation.
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Fig 4.13 Simulated result of singlesand;dual swavelength pumping into PCF NL-PM 760.
Figure (a) shows the focus view of the whele spectrum of figure (b) on the UV
side. Black ‘curve shows the dual wavelength pumping, red curve shows the
single” wavelength pumping at 810 mm, and blue curve shows the single
wavelength pumping at 405 nin, +* The input peak power isi5 / 5 kW, and the pulse

width.is 60. / 100 fs«for the fundamental and’ the :second harmonic pulse,

respectively.

4.2.3.2 Fiber NL-1.5670

Using PCF (NL-1.5 670), the experimental and the simulated results by single and dual
wavelength pumping are shown in Fig. 4.12 and Fig. 4.14. In our simulation, the
wavelengths of the fundamental and the second harmonic pulses are 810 and 405 nm,
respectively. The input peak powers for FW and SHW are the same (5 kW), and pulse

widths are 60 and 100 fs, respectively. From Fig. 4.14(a), the spectrum on the UV side was
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broadened at dual wavelength pumping that are different from the experimental results in Fig.

4.12(a), (b), and (c¢). From Fig. 4.14(b), the spectrum of single wavelength pumping at 8§10

nm was broader than dual wavelength pumping that is different to the experimental result in

Figs. 4.12(d), (e), and (f). We think that’s because we did not consider the high order

dispersion term and the loss term in our simulation. The loss around 1380 nm and in the UV

side is extremely large that we should consider it into our simulation.
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Fig 4.14 Simulated result of single and dual wavelength pumping into PCF NL-1.5 670.

Figure (a) shows the focus view of thelwhole spectrum of figure (b) on the UV side.

Black curve shows the dual wavelength pumping, red curve shows the single

wavelength pumping at 810 nm, and blue curve shows the single wavelength

pumping at 405 nm. The input peak power is 5 / 5 kW, and the pulse width is 60 /

100 fs for the fundamental and the second harmonic pulse, respectively
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Chapter 5 Conclusions and Future Works

We numerically and experimentally investigated the UV enhancement in the nonlinear
PCF with dual wavelength femtosecond Ti:sapphire laser. The cross phase modulation
(XPM) effect will be generated as the second harmonic pulse temporally and spatially cross
the fundamental pulse and therefare result in the broadening of spectrum near the UV part.
In use of the coupled. nonlinear Schrodinger equations amd properly tuning the center
wavelengths of the fundamental wave and the second harmonic wave (FW and SHW), the
flattened spectra.extend from the UV to near AR _part can be obtained. Using the center
wavelengths of FW.and SHW, 790 nm and 395 nm, as the exciting sources with moderate
peak powers intothe fiber NL-PM 760, the extending spectra from 300 nm to 1500 nm can be
predicted numerically.

The broadened spectra can be experimentally“demonstrated in use of dual wavelength
pumping, in which we used the difference time delays between the FW and the SHW. That
might due to the XPM effect between these two pulses, coupling work didn’t do well, or the
expansion effect from heating of the second harmonic pulse to change the size of the core and
the value of numerical aperture. Comparing the generated spectra from the experiment and

the simulation by dual wavelength pumping in two difference PCFs, the experimental results
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reveal some deviation from the numerical results. That might be because these two pulses

did not walk together temporally, so the XPM effect did not affect on the spectrum.

Furthermore, we did not consider the loss term into our simulation. The loss of PCF around

1380 nm and in the UV side are extremely large that we should consider it into our simulation,

and that will be our future work.

In the future works, the dual wavelength pumping on fiber tapper can be used to

een these two waves.
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