
 

Chapter 1 Introduction 

1.1 Significance of this thesis 

The spectral broadening of a coherent or partially coherent light signal in optical fibers 

has captured much attention in recent years, fuelled by using photonic crystal fibers (PCFs) 

presenting very high nonlinear response [1].  The phenomenon is called supercontinuum 

(SC), which is a low-cost ultra-wideband light sources and has many practical applications in 

optical communications [2-3], optical frequency metrology [4], and sensor technology [5-6]. 

PCFs are not only used in supercontinuum generation but also made as optical 

components.  In recent years, fiber grating is a popular passively components, which have 

found a wide range of applications in optical fiber communications and sensing system, such 

as dispersion compensator [7], gain flattening of erbium-doped fiber amplifiers [8], sensor for 

temperature, strain, vibration, and chemical measurement [9], and band rejection filters [10], 

etc. 

 

1.2 Background 

1.2.1 What are photonic crystal fibers 

Photonic crystal fibers are novel optical waveguides that usually composed of a single 

material (typically silica) with multiple air-holes periodically arranged around the core that 

run along the length of the cladding.  The cross section of PCF consists of a two-dimensional 

periodic structure, where the periodicity is broken by the presence of a central defect.  
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Introducing a defect or a missing hole at the center of the fiber forms the core of PCF. 

The concept of photonic crystal fiber is due to photonic crystal dating back to 1987, 

when it was suggested by Eli Yablonovitch [11] and Sajeev John [12] that the electronic 

bandgaps of semiconductors had an optical analogy in periodic dielectric structures.  This 

suggestion initiated research activities in the following years and finally lead to the birth of a 

new class of optical fibers, in which the cladding structure consists of a periodic system of 

air-holes in a matrix of dielectric material – typically silica.  These new fibers have been 

given several names such as photonic crystal fibers, microstructured fibers, holey fibers, and 

photonic bandgap fibers [1, 4, 13-15].  The PCF was first proposed and fabricated in 1996.  

It consists of a pure silica core surrounded by a silica-air photonic crystal material with a 

hexagonal symmetry.  Actually, the first convincing PCF structure emerged from the fiber 

drawing tower in November 1995, and it had a hexagonal close-packed array of small air 

channels.  

In general, PCFs can be divided into two classes according to the light confinement 

mechanism: (1) the index guiding effect, also called modified total internal reflection (TIR) 

(microstructured fiber, MF), and (2) the photonic bandgap (PBG) effect (photonic bandgap 

fiber, PBF).  Fig. 1.1(a) shows the MF whose solid core is surrounded by an array of air 

holes, in which the confinement mechanism is similar to that of conventional fibers.  Due to 

its higher refractive index of the core than cladding, the optical field is trapped around a 
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high-index core and light is guided by the principle of total internal reflection. Conversely, the 

PBFs are fibers which guide light in their hollow core.  Fig. 1.1(b) shows the scheme of a 

PBF.  In PBFs, the periodic arrangement of the air holes can be considered as the photonic 

bandgap structure and their hollow core is the defect inside the structure.  The photonic 

bandgaps structure will result in bandgap which allows only certain range of wavelength 

existing in it.  Outside the range, PBFs is anti-guiding. 
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 (b) 

 
Fig. 1.1 Scanning electron microscope image of the end of photonic-crystal-fibers: (a) 

index-guiding PCF; (b) photonic bandgap fiber. 
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1.2.2 Applications of photonic crystal fibers 

Properties of PCFs have been shown strongly dependent on the geometry of the PCF 

cross section, in particular on the shape, dimension, pitch, and arrangement of the air holes 

[16].  In comparison with conventional optical fibers, PCFs provide extraordinary dispersion 

properties [17], endlessly single-mode guidance [16], light guidance in air [18], an order of 

magnitude higher birefringence [13], and enhanced nonlinear effects [1], etc. These special 

properties of PCFs have led to the development of several potential applications in a variety 

of fields, ranging from communication fiber to optoelectronic devices such as couplers [19], 

attenuators [20], polarization splitters [21], dispersion compensators [22], sensor technology 

[23], fiber gratings [24], and supercontinuum generation [25], etc. 

In this thesis, we study long-period fiber gratings and high pulse energy lasers for 

supercontinuum generation by using photonic crystal fibers. Because long-period grating can 

be used as band-rejection filter while supercontinuum is a high coherent white-light source, 

they can find various applications in optical communication technology. 

 

1.2.3 Supercontinuum generation using PCFs 

Supercontinuum (SC) generation is the formation of broad continuous spectra by 

propagation of high power optical pulses through nonlinear media [26].  Provided 

high-enough power, SC generation can be observed in a drop of water [27].  However, the 

nonlinear effects involved in the spectral broadening are highly dependent on the dispersion 
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of the media, and a clever dispersion design can significantly reduce the power required.  

The widest spectra are obtained when the pump pulses are launched close to the 

zero-dispersion wavelength of the nonlinear media.  Due to the technology in fabricating 

shiftable dispersion profile and small core, MF become powerful component in generating SC 

and was first demonstrated in 1999 [28].  The zero-dispersion wavelength of MFs can be 

shifted close to the pump wavelength and the small core of MFs enhances the nonlinear 

effects; these are mechanisms leading to the SC generation.  

To generate the SC with MFs, femtosecond [29] and picosecond mode-locked laser 

systems were generally used as the pump sources [30].  For femtosecond pumping, it is easy 

to get higher peak power for the pumping pulse due to its ultrashort pulse duration and thus 

inducing strong nonlinear effects.  These nonlinear effects include high-order soliton 

breakup [31], self-frequency shift [32] and four-wave mixing [33].  Usually about mini-watts 

of average pumping power are needed to generate the supercontinuum for a femtosecond 

mode-locked laser system [29].  However, a femtosecond mode-locked laser system is more 

expensive and complicated to build.  A picosecond mode-locked laser system is a better way.  

For picosecond pumping, the major nonlinear effects for spectrum broadening are modulation 

instability and stimulated Raman scattering if the PCF is pumped in the anomalous dispersion 

region, where the group-velocity dispersion β2 is negative.  In 2002, Mickael Seefeldt 

reported the SC from 700 nm to 1600 nm with an average input power of 5.0 W using 
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passively mode-locked Nd:YVO4 which generated a pulse width of 10 ps.  Compared with 

femtosecond pumping, an average power up to several watts would be needed to generate 

sufficient supercontinuum for picosecond pumping due to its longer duration of pulse width.  

Therefore, a higher average power is necessary to get enough pumping peak power. 

 

1.2.4 Fiber gratings 

When periodic index perturbation is generated in the core region of the fiber, light 

propagation in the fiber is coupled to a forward or backward direction depending on the 

grating periods.  Therefore, fiber gratings are roughly classified into two types: one is called 

fiber Bragg gratings (FBGs) (also called reflection or short-period gratings), and the other is 

called long-period gratings (LPGs) (also called transmission gratings).  Now, we will simply 

introduce the fiber Bragg grating and long-period fiber grating. 

 

1.2.4.1 Fiber Bragg grating 

The devices of fiber Bragg grating (FBG) play a very important role in fiber optic 

communication systems. The major applications are such as filtering, add/drop multiplexing, 

gain equalization, laser wavelength stabilization, and dispersion compensation for 

accumulated dispersion in the system. In this section, the operation principles of fiber Bragg 

grating will be briefly reviewed. 

A fiber grating is a periodic perturbation in the refractive index along the fiber by using 
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the photosensitivity of certain types of optical fibers. The formation of permanent gratings in 

an optical fiber was first demonstrated by Hill et. al, in 1987 [34]. They launched intense 

argon-ion laser radiation into a germanium-doped fiber and observed an increase in the 

reflected light intensity. Since then, grating-writing technologies such as phase masks have 

matured to produce gratings. When a phase mask is illuminated by an ultraviolet light beam 

(248 nm) shown in Figure 1.2, it splits the beams into different ±1 diffractive orders, which 

then interfere with one another to write the grating into the fiber.  The fiber gratings we will 

discuss in this section include uniform and chirped fiber Bragg gratings. 

For uniform and chirped FBG, the index perturbation ( )n zΔ in fiber gratings can be 

expressed as       

0
2( ) ( )[1 cos( )]n z n z m zπ
λ

Δ = Δ + ⋅                    (1.1.5-1) 

Where z is the position along the grating, is the maximum index modulation, 

and m is the contrast number (which is determined by the visibility of the UV fringe pattern).  

The strongest constructive interac , which is given by  

                         = 2neffΛ                               (1.1.5-2) 

Where n  is the effective core index of refraction over a spatial average of  and 

 is the uniform grating pitch. Since constructive interference occurs in the back-reflected 

wave, the grating will only reflect the spectral component that matches (1.1.5-2) but does 

nothing to the remaining components of the incident light, which provides the filter 

0( )n zΔ  

tion occurs at the Bragg wavelength λB

λB

eff ( )n zΔ

Λ
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characteristic shown in Figure 1.3. 

If the grating pitch Λ(z) is not a constant but a monotonically increasing or decreasing 

function, the grating is called a chirped grating that reflects different wavelengths at different 

positions along it. The Bragg condition in a chirped grating will then be modified as 

                     λB(z) = 2neff(z)Λ(z)                           (1.1.5-3) 

If   varies linearly as a function of position over the grating, such a grating is 

called a linearly chirped fiber Bragg grating. With this characteristic, different frequency 

components of an incident light are reflected at different points, depending on where the 

Bragg condition is satisfied locally. From Figure 1.4, it is easy to understand the operation of 

a chirped FBG. For conventional single-mode fiber with positive dispersion at the wavelength 

of 1.55 μm region, the short-wavelength (high- frequency) components of an optical pulse 

propagate faster than the long-wavelength (low-frequency) components. The 

short-wavelength needs to travel further into the grating before being reflected and thus 

experiences more time delay than long-wavelength components. As a result, the grating 

induced time delay should be opposite to the fiber dispersion. The grating- induced dispersion 

Dg (ps/nm) can be determined by 

( )B zλ

                     
2g eff g

g
n L

D
c

τ

λ λ
= =
Δ Δ                                           (1.1.5-4) 

where Lg is the length of the FBG, λΔ  is the Bragg wavelength differential at the two ends 

of the grating, c is the speed of light, and 
2 e ff

g
n L

c
τ = g  is the round-trip time inside the 

grating. 
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Fig. 1.2 Phase mask technique for writing fiber Bragg grating  

 

 

 Fig. 1.3 The reflection and transmission spectra of a uniform Bragg grating 
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Fig. 1.4 A schematic diagram of a chirped fiber Bragg grating 

 

1.2.4.2 Long period grating 

Long period fiber grating is a fiber device with typical grating periods ranging from 

several tens to several hundreds of micrometers. It is a kind of transmission grating based on 

the coupling between the fundamental core mode and the co-propagation cladding modes, and 

thus generates rejection bands in transmission spectrum.  The coupling is highly efficient at a 

wavelength given by the phase matching condition ( co cln nλ )= − Λ [32] where nco and ncl are 

the effective index of the core mode and cladding mode, respectively, and  is the grating 

period.  To accomplish this, several fabrication techniques have been proposed.  The first 

method used in germanium-doped fibers was the UV radiation [8-9].  However, since LPG 

require a large perturbation period in the range of 100 μm - 1000 μm and the spreading out of 

germanium-free photonic crystal fibers, other methods such as thermal and mechanical 
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pressure have been extensively explored in recent years [10]. 

Mechanically induced LPGs are of particular interest since they are versatile and can be 

implemented in almost any type of fiber.  In mechanically induced LPG the fiber is subject 

to periodical stress, which results in alternated region under compression and stretching that 

modulate the refractive index via the photo-elastic effect. The main advantages of 

mechanically induced LPGs are the wide tuning range and bandwidth control, and they are 

erasable and reconfigurable [35].  These characteristics make mechanically induced LPGs an 

attractive option when a broadly tunable nonreflecting band-rejection filter is required for 

applications such as the elimination of communication channels, or to remove Stoke orders in 

cascaded Raman-based lasers and modulators. Furthermore, they can be used as dynamic gain 

equalizers in fiber amplifiers or lasers [5], as well as key components in tunable and 

reconfigurable cascaded LPGs in multiwavelength Raman lasers, all-fiber Mach–Zehnder 

interferometers, and wide band polarization-dependent loss compensators [36-37]. In addition, 

mechanically induced tunable LPGs could find applications in the fiber sensor field. Recently, 

P. Steinvurzel et al. reported a novel wide thermal tuning method in a mechanically induced 

long-period fluid-filled photonic-bandgap fiber grating [38], and this method promises 

potential applications in all-fiber temperature sensors. For all these applications it would be 

useful to develop simple and inexpensive flexible mechanically induced tunable LPGs. 
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1.3 Why long period grating made of photonic crystal 

A key parameter in the LPG design is the type of optical fiber used.  In this matter, 

photonic crystal fibers can offer unique properties such as endlessly single mode behavior, 

engineering dispersion, and highly polarization-dependent broadband coupling compared with 

standard step-index fibers [16].  Moreover, photonic crystal fibers have been demonstrated to 

be an adequate medium to implement LPGs. Compared with LPGs written in standard 

step-index fibers, photonic crystal fibers offer more stable performance against changes in 

temperature, strain, and the refractive index of the medium that surrounds the cladding [38].  

All these features make photonic crystal fibers an excellent platform for the engineering of 

mechanically induced tunable LPGs. 

In recent years, the development of photonic crystal fibers (PCFs) and their large number 

of potential applications have attracted a lot of interests.  PCFs have several unique 

properties, but in this thesis we will focus on the supercontinuum generation and long period 

grating (LPG) by using photonic crystal fiber.  We want to generate the ultra-wideband 

white light source by using photonic crystal fiber, and the broadband coherent light can be 

used in optical communication or medical applications. 

LPGs can also be manufactured on PCFs.  Methods used in the fabrication of long 

period gratings include UV radiation [8-9] and electric arc [10] technology.  However, once 

LPG was fabricated onto the PCF, it is difficult to change the grating parameters such as 

central wavelength, rejection bandwidth, and transmission loss.  For practical applications, it 
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would be useful to develop simple and inexpensive LPG with versatile tunability.  The 

grating parameters will be varied by bending and tilting PCF under mechanical pressure. 

 

1.4 Why Q-switched mode-locked solid state laser 

High-peak power and short-pulse lasers are continuously interested in laser physicist 

because they have various practical applications.  Generally, continuous wave mode-locking 

(CWML) is widely used technique in generating ultra short optical pulses.  However, its 

repetition rate is restricted by the cavity length and is in tens of MHz.  Due to these 

characteristics, the CW-ML pulses have various advantages such as such as wavelength 

conversion, supercontinuum generation [39], optical communication, optical switching, 

optical clocking, and nonlinear optical measurement.  Nevertheless, high repletion rate 

pulses will accumulate heat in materials, leading to thermal lensing in optical nonlinearity 

measurements such as Z scan measurement.  On the contrary, the Q-switched can generate 

lower repletion rates and higher pulse energies output.  However, the generated Q-switched 

pulsewidth is comparative longer relative to the CW-ML pulses so that they have lower peak 

powers. 

Simultaneously Q-switched and mode-locked (QML) lasers possess the superior 

property of high peak power over the CW mode-locked lasers but retain almost the same 

pulsewidth.  The power of central ML peak pulse in the Q-switched envelope can be greatly 
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enhanced and the repletion rate of pulses is greatly reduced.  Especially for picosecond (ps) 

mode-locked laser, which may not have enough peak intensity for achieving efficient 

wavelength conversion and supercontinuum generation, the QML provides a solution for 

these problems.  Some methods like cavity dumping and regenerative amplifier have similar 

effect but their configurations are more complicated than the QML system. 

 

1.5 Organization of the thesis 

In Chapter 2, we will introduce the coupled-mode theory for LPGs and the theory of 

Q-switched mode-locking, as well as the methods of simulation for LPGs and Q-switched 

mode-locked lasers.  Then in Chapter 3, we will introduce our experiment, including the 

experimental setup of LPGs and supercontinuum generation.  The experimental setup of 

LPGs includes corrugated device, photonic crystal fiber, and unpolarized white light source.  

Experimental setup of SC generation includes pump laser system and setup of optics.  

Chapter 4 is the experimental results and discussions of LPGs.  We will describe the 

stress-induced versatile tunable long-period grating in photonic crystal fibers.  Chapter 5 is 

the experiment results and discussions of supercontinuum generation.  We will describe 

Q-switched mode-locking of Nd:GdVO4 laser with different initial transmittance, and the 

laser pulses are coupled into photonic crystal fiber to generate supercontinuum white-light 

source. Finally, we will give a brief conclusion and future works in Chapter 6. 
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Chapter 2 Theory 

2.1 Dispersion relation of PCF -- beam propagation method [1] 

BPM is the most widely used propagation technique for modeling integrated and fiber optic 

photonic devices, and most commercial software for such modeling is based on it.  There are 

several reasons for the popularity of BPM; perhaps the most significant being that it is 

conceptually straightforward, allowing rapid implementation of the basic technique, and it is also 

easy to used for anybody, even if he is not a specialist in BMP.  Finally, the BPM technique is 

very flexible and extensible, allowing inclusion of most effects of interest (e.g. polarization, 

nonlinearities) by extensions of the basic method that fit within the same overall framework. 

In this following section the basic approach is illustrated by formulating the problem 

under the restrictions of a scalar field (i.e. neglecting polarization effects) and paraxiality (i.e. 

propagation restricted to a narrow range of angles).  

The scalar field assumption allows the wave equation to be written in the form of the 

well-known Helmholtz equation for monochromatic waves: 

                  

2 2 2
2

2 2 2 ( , , ) 0k x y z
z x y

φ φ φ φ∂ ∂ ∂
+ + + =

∂ ∂ ∂ ,
                     (2.1-1) 

where  0( , , ) ( , , )k x y z k n x y z= 0
2k π
λ

=    

refractive index distribution in space. 

 

is wavenumber in free space, ( , , )n x y z is the 
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Considering that in typical guided-wave problems the most rapid variation in the field is the 

phase variation due to propagation along the guiding axis, and assuming that axis is 

predominantly along the z direction, it is beneficial to factor this rapid variation out of the 

problem by introducing a so-called slowly varying field u(x, y, z) via the ansatz. 

( , , ) ( , , ) ikzx y z u x y z eφ = ,                     (2.1-2) 

where k  is a constant number to be chosen to represent the average phase variation of the 

field and is referred to as the reference wavenumber.  The reference wavenumber is frequently 

expressed in terms of a reference refractive index, n
−

, via 0k k n
−

= .  Introduction the above 

expression into the Helmholtz equation yields the following equation for the slowly varying 

field: 

2 2 2 22
2 2 22 (u u u uik k k u

zz x y

∂ ∂ ∂ ∂ ) 0+ + + + − =
∂∂ ∂ ∂ ,

              (2.1-3) 

  It is now assumed that the variation of u with z is sufficiently slow so that the first term 

above can be neglected with respect to the second; this is the familiar slowly varying envelope 

approximation and in this context it is also referred to as the paraxial or parabolic approximation. 

With this assumption and after slight rearrangement, the above equation reduces to: 

2 2 22
2 2{ (

2
u i u u k k u
z k x y

∂ ∂ ∂
= + + −

∂ ∂ ∂ ,
) }                 (2.1-4) 

This is the basic BPM equation in three dimensions (3D); simplification to two dimensions 
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(2D) is obtained by omitting any dependence on y.  Given an input field, u(x,y,z=0), the above 

equation determines the evolution of the field in the space z>0.  The factoring of the rapid phase 

variation allows the slowly varying field to be represented numerically on a longitudinal grid (i.e. 

along z) that can be much coarser than the wavelength for many problems, contributing in part to 

the efficiency of the technique. 

In the finite-difference approach, the approach is illustrated for a scalar field in 2D (xz); 

extension to 3D is then briefly summarized. 

1 12 22
12
2

{ ( ( , ) )}
22

n n n n
i i i i

i n

u u u ui k x z k
z k x

δ+ +

+

− +
= + −

Δ Δ
 ,          (2.1-5) 

where  represents the standard second order difference operator, 

 , and 2
1 1 2i i iu u uδ + −= + − iu 1

2
2nn

nz z
+

Δ
= + .  The above equation can be rearranged 

into the form of a standard tridiagonal matrix equation for the unknown field  in terms 

of known quantities, resulting in: 

1n
iu +

1 1
1 1

n n
i i i i ia u b u d+ +

− ++ =
,                     (2.1-6) 

Expressions for the coefficients in the above are readily derived and can be found in (2.1-5).  

The tridiagonal nature of Eq. (2.1-6) allows rapid solution in order O(N) operations, where N is 

the number of grid points in x. 

The above numerical solution can be readily extended to 3D, however the direct extension 

of the Crank-Nicholson approach leads to a system of equations that is not tridiagonal, and 
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requires 2 2( )x yO N N⋅   operations to solve directly which is non-optimal.  Fortunately there is 

a standard numerical approach referred to as the alternating direction implicit which allows the 

3D problem to be solved with optimal ( )x yO N N⋅  efficiency. 

In this and the previous section the concept and implementation details of the basic BPM 

method have been reviewed. In the following sections various methods for extending BPM are 

summarized, and details of numerical implementation can be found in the corresponding 

references 

 

2.2 Coupled mode theory of long period grating [2] 

The coupled mode theory is often used in waveguide optics.  In the section, we will 

describe a coupled-wave analysis in which the periodic variation of dielectric tensor is 

considered as a perturbation that couples the unperturbed normal modes of propagation of the 

structure.  The dielectric tensor as a function of space is written as 

( , , ) ( , ) ( , , )ax y z x y x y zε ε ε= +Δ
,                     (2.2-1) 

where is the unperturbed part of the dielectric tensor, and ( , , )x y zεΔ( , )a x yε  , representing 

the dielectric perturbation, is periodic in z direction and is the only small periodically varying 

part of the dielectric tensor. 

  If an arbitrary field of frequency ω is excited at z = 0, the propagation of the field in 
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perturbed medium can always be expressed in terms of a linear combination of the normal 

modes: 
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( )
m m

m
E= A ( ) E ( , ) mj t zz x y e ω β−∑

,
                 (2.2-2)                         

where the expansion coefficients evidently depend on z, since for ( , , ) 0x y zεΔ ≠  the waves 

(E= E ( , ) m )
m

j t zx y e ω β−  are no longer the eigenmodes.  The z dependence of the amplitude 

Am(z) is more reflection of the coupling of the normal modes.  

Since the dielectric perturbation ( , , )x y zεΔ  is periodic in z, we can expand it as a 

Fourier series 

2

( , , ) ( , )
jm z

m
m o

x y z x y e
π

ε ε
−

Λ

≠

Δ =∑
,

tegers m, except for m

                 (2.2-3)   

where the summation is over all in  = 0, because of the definition of 

( , , )x y zεΔ  in equation (2.2-1).   

We now substitute Equations (2.2-2) and (2.2-3) into the wave equation 

                    { }2 2 [ ( , ) (x,y,z)] E=0a x yω μ ε ε∇ + + Δ
,
             (2.2-4)  

and, we further assume that the dielectric perturbation is weak, so that the variation of the mode 

amplitudes is slow and satisfies the condition, slowly varying amplitude (SVA) approximation. 

         

2
m m

2

A A
mz z

β∂ ∂
∂ ∂ ,

                                                    (2.2-5) 

Therefore, we can obtained 



 

2(( ) ( ) k nj mk mk
kn n

m nk

dA j C A z e
dz

πβ ββ
β

− −
Λ= − ∑∑

) z

,
                                        (2.2-6) 

where the coupling coefficients  are defined as    ( )m
knC

( ) *( , ) ( , ) ( , ) ( , )
4 4

m
kn m k m nC k x y n E x y x y E x y dxdyω ωε ε

∞

−∞
= = ∫ ,

               (2.2-7) 

The coefficient  reflects the magnitude of the coupling between the k-th and n-th modes 

due to the m-th Fourier component of the dielectric perturbation. 

( )m
knC

Equation (2.2-6) describes the most general case of mode coupling due to a periodic 

dielectric perturbation. In practice, often only the coupling between two modes is involved.  

We consider coupling between  and  neglecting interaction 

with any other modes, the coupled equations become 

1(
1 ( , ) j t zE x y e ω β− ) )2(

2 ( , ) j t zE x y e ω β−

( )1 1
12 2

1

( )2 2
21 1

2

( ) ,

( ) ,

m j z

m j

dA j C A z e
dz
dA j C A z e
dz

β

zβ

β
β
β
β

Δ

− −

= −

= − Δ

                       (2.2-8) 

where  

1 2
2πβ β βΔ = − −
Λ

 ,                              

(2.2-9)  and are the coupling coefficients given by equation (2.2-7), and ( )
12

mC ( )
21

mC −  Λ  is the 

period of grating. It can be easily proved that . 

When the coupled modes are propagating in the same direction, the +z direction, the sign 

factors 

( ) ( ) *
12 21[ ]m mC C −=

1

1

β
β

  and  2

2

β
β

  are both equal to 1.  The coupled equations (2.2-8) become 
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1
2

*2
1

( )

( )

j z

j z

dA j A z e
dz
dA j A z e
dz

β

β

κ

κ

Δ

− Δ

= −

= −
                            (2.2-10) 

where the coupling constant is written as , 
( )

12
mCκ =

By taking derivative of Equation (2.2-10) with respect to z to remove the coupled terms, 

Equation (2.2-10) becomes second-order ordinary differential equations.  The general 

solutions for A1 and A2 can easily be obtained.  After a few steps of algebra, the general 

solutions can be written 

2
1 1

*2
2 1

sin sin( ) [(cos ) (0) (0)]
2

sin sin( ) [ (0) (cos ) (0)]
2

j z

j z

sz szA z e sz j A j A
s s

sz szA z e j A sz j A
s s

β

β

β κ

βκ

Δ

Δ
−

Δ
= ⋅ − ⋅ −

Δ
= ⋅ − + + ⋅

2

2
,

 ,                 (2.2-11) 

where  

2
2 *s

2
βκ κ Δ⎛ ⎞= ⋅ + ⎜ ⎟

⎝ ⎠
                                                  (2.2-12) 

and A1(0) and A2(0) are the mode amplitudes at z = 0. 

We assume that single-beam incidence at z = 0, so A2(0) = 0, the solutions become 

2
1 1

*2
2 1

sinA ( ) (cos ) (0)
2

sin( ) ( ) (0)---(13)

j z

j z

szz e sz j A
s

szA z e j A
s

β

β

β

κ

Δ

Δ
−

Δ
= ⋅ − ⋅

= ⋅ −
,

 ,                       (2.2-13) 

where 
2

2 *s
2
βκ κ Δ⎛ ⎞= ⋅ + ⎜ ⎟

⎝ ⎠
 

 

28 

 



 

We can define the coupling efficiency as  

2

2

1

( )=
A (0)
A Lη

,
                              (2.2-14) 

where L is the interaction length.  Using equations (2.2-12) and (2.2-13), we obtain 

22
2

2
2

= sin ( 1
2

2

L
κ βη κ

κβκ

⎛ ⎞Δ
⋅ ⋅ + ⎜ ⎟⎜ ⎟Δ⎛ ⎞ ⎝ ⎠+ ⎜ ⎟

⎝ ⎠

)                       (2.2-15) 

so we know the transmission spectrum obtained from (2.2-15) 

22
2

2
2

10 [1 sin ( 1 )]
2

2

T Log L
κ βκ

κβκ

⎛ ⎞Δ
= × − ⋅ ⋅ + ⎜ ⎟⎜ ⎟Δ⎛ ⎞ ⎝ ⎠+ ⎜ ⎟

⎝ ⎠

                        (2.2-16) 

Finally, we use the dispersion of PCF and set proper coupling coefficient, the transmission 

of LPGs can be obtained from this formula.  Results of the constant period long period grating 

of transmission spectrum will be shown in chapter 5.   

 

2.3 Model for passively Q-switched laser with simultaneous mode-locking 

In the section, we will show the temporal change of photon density derived by many 

pioneers such as John J. Degnan [3], Michael Bass [4], YF Chen [5]. The case we discussed is 

the laser with an intra-cavity saturable absorber.  The following coupled rate equations 

describe the laser operation including laser rod, saturable absorber and resonator mirrors:          
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1{2 2 2 [ln( ) ]}gs gs s es es s
r

d nl n l n l L
dt t R

σ σ σΦ Φ
= − − − +

,
                                        (2.3-1) 

dn c n
dt

γ σ= − Φ  
,
                                                 (2.3-2) 

gs
gs gs

s

dn A c n
dt A

σ= − Φ
,
                                                                                         (2.3-3) 

For Q-switching mode-locking state, the temporal profile of photon density can be expressed as 

0

( ) ( )m
m

t f t
=

Φ = Φ − mt∑   ,                                                        (2.3-4) 

where tm=m tr, with tr being the round trip time, m the number of round trip, mΦ the relative 

amplitude of the mode locked pulses at m-th roundtrip, and f(t) assumed to be a sharp pulse 

centered at t=0 which falls off rapidly in a time short compared to the resonator round trip 

transit time. 

Consider the excited state absorption (ESA) effect in a four-level saturable absorber, the 

relative amplitude of the mode-locked pulses at time tm=m tr after an additional roundtrip 

through the cavity is given by 

1
1exp{2 ( ) 2 ( ) 2 ( ) [ln( ) ]}m m m gs gs m s es es m sn t l n t l n t l L
R

σ σ σ−Φ =Φ − − − + ,                (2.3-5) 

whereσ is the simulated emission cross section of the gain medium, n(tm) is the population 

density of the gain medium at the m-th roundtrip, l is the length of the gain medium, gsσ is 

ground-state absorption (GSA) cross section in the saturable absorber, esσ is ESA cross 
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section in the saturable absorber, ( )gs mn t is the absorber ground-state population density at the 

m-th roundtrip,  is absorber excited-state population density in the m-th roundtrip, R 

is reflectivity of the output mirror, and L is unsaturated intracavity roundtrip dissipative optical 

loss, respectively. 

( )es mn t

es

gs

σ
β

σ
= and using the condition ( ) ( )gs m es m son t n t n+ =Introduction the variable , Eq. 

(2.3-5) can be rewritten as 

1 2
0

1 1exp{2 ( )n t [2(1 ) ( ) ln( )] [ln( ) ]}m m m gs gs m sl n t l L
RT

σ β σ β−Φ =Φ − − + − +

,
          (2.3-6)

 

where son 0 exp( )gs so sT nσ= −is th nsity of the absorber and e total de l
 is the initial 

transm .  Note that the condition is an assumption introduced by 

Hercher [6] and adopted by Xia and Bass [4] to simplify the analysis of passive saturable 

absorbers. es: 

1. the upper terminal level of the GSA relaxes infinitely fast (relative to the temporal duration 

of the optica e lower level of the ESA. 

2. the upper terminal level of the ESA behaves similarly.  Namely, it is assumed that the 

saturable absorber atomic populations are totally contained in either the ground or excited 

states during ction with the optical pulse. 

These approximations may not be valid for very short mode-locked pulse-widths. 

ission of the saturable absorber

This condition assum

l pulse) to th

 the intera
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Since the Q-switched laser output pulses are much shorter than both the spontaneous 

lifetime and the pump period (time between output pulses), spontaneous relaxation and 

pumping can be safely neglected during the development of the output pulse. Therefore, the 

equation for the time rate of change of the population inversion density can be expressed as Eq. 

(2.3-2) where c is the speed of light and γ is the inversion reduction factor. 

Dividing Eq. (2.3-2) by n, using (2.3-4) and normalized function 

( ) 1c f t dtσ
∞

∞
=∫                               (2.3-7)      

and integration over time from zero to tm, n(tm) is given by 

1

0

( ) (0) exp( )
m

m
k

n t n γ
−

=

= −∏ kΦ

,
                         (2.3-8)       

where n(0) is the initial population inversion density in the gain medium.  It can be 

determined from the condition that the round–trip gain is exactly equal to the round-trip losses 

just before the Q-switch opens, thus 

2
0

1 1ln( ) ln( )

(0)
2

L
RT

n
lσ

+ +

=  ,                         (2.3-9) 

The equation for the time rate of change of the absorber ground state population density is 

given by Eq. (2.3-3), where A/As is the ratio of the effective area in the gain medium and in the 

saturable absorber.  Divide Eq. (2.3-2) by (2.3-3) and integrate to give 
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( )[
(0)

m
gs so

n tn n
n

]α=
,
                           (2.3-10) 

where 
1 gs

s

A
A

σ
α

γ σ
=   ,                                                                                                (2.3-11) 

The parameter α indicates how fast the saturable absorber is bleached.  The larger the α 

parameter, the faster the saturable absorber is bleached. Substituting Eqs. (2.3-8)-(2.3-10) into 

Eq. (2.3-6), the recurrence relation for Φm is given by: 

1

1
0

1 1

2
0 0 0

1exp{[ exp( ) 1][ln( ) ]

1       [ exp( ) [ (1 ) exp( ) ]]ln( )}

m

m m k
k

m m

k k
k k

L
R

T

α

γ

γ β β γ

−

−
=

− −

= =

Φ = Φ − Φ − +

+ − Φ − − − − Φ

∏

∏ ∏
                     (2.3-12) 

in terms of Φ(t) , and the instantaneous power coupled from the output mirror is given by 

Degnan [3]: 

' 1( ) ln( ) ( )
r

h AlP t t
t R
ν

= Φ
,
                              (2.3-13) 

where hυ is the laser photon energy and Al’ is the cavity volume occupied by photons. 

Substituting Eq. (2.3-12) into Eq. (2.3-13), the output power can be expressed as 

0

1( ) ln( ) ( )
2 m m

m

h AcP t f t t
R

ν ϕ
∞

=

= −∑
,
                 (2.3-14) 

In this simulation, we use hyperbolic secant as our pulse shape φ(t) ~ sech2(t/τp), where the 

parameter τp is related to the FWHM mode-locked pulse-width by τ (FWHM) = 1.76τp [7].  

Thus, we can simulate the temporal profile of Q-switching mode-locking pulse by (2.3-14) and 
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we will present the results later in Chapter 6. 
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Chapter 3 Experimental 

3.1 Experimental setup of LPG 

3.1.1 Corrugated devices 

The novel corrugated devices for making LPGs are constructed by two methods.  The 

first is to construct the device by wrapping a long copper wire on a cylindrical metallic post as 

shown in Fig. 3-1 (a).  The diameter of copper wire is 400 μm, and consequently the 

periodicity of the corrugated device is also 400 μm.  The second is to construct the device by 

engraving periodic parallel V-grooves on a metallic plate.  The periodically grooved plate, as 

shown in Fig. 3-1 (b), has V-grooves of about 200 μm in depth and period of 400 μm on a 6 

cm × 1 cm metal surface.  

    

(b) (a) 

 Fig. 3-1 novel corrugated devices: wrapping a long copper wire on a cylindrical metallic post (left), 

and V-grooved plate (right) 
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3.1.2 Photonic crystal fiber 

In LPGs experiment, we used an endlessly-single-mode photonic crystal fiber 

ESM-12-01 from Blaze Photonics.  The arrangement of the air holes are hexagonal, and the 

cross sectional scanning electron microscope image (SEM) of the fiber is shown in Fig. 3-2.  

The core diameter of the photonic crystal fiber is about 12 μm, surrounded by four rings of 

holes and the diameter of holes is about 4 μm.  The pitch (spacing between adjacent holes) is 

about 8 μm, and its outside diameter and coating diameter are 125 μm and 225 μm, 

respectively. The attenuation spectrum of this fiber shows an attenuation peak near 1400 nm.   

 

        

 
Fig. 3-2 Scanning electron microscope image of photonic crystal fiber cladding (left) and core region 

(right).  
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3.1.3   Un-polarized white light source 

In order to measure the transmission spectrum as LPG induced in PCF, we use a light 

bulb as the light source. The light bulb is an un-polarized white-light source and is launched 

into the fiber link as shown in Fig. 3-3. 

 

 
Fig. 3-3 Structure of un-polarized white-light source. 

 

3.1.4 Measurement of transmission spectra of LPG 

In our experiment, when mechanical stress is applied and increased gradually, we record 

the transmission spectra of the induced PCF-LPG by launching an unpolarized white-light 

source (WLS) into one end of the PCF, while the other end is connected to an optical spectral 

analyzer (OSA) (Ando AQ-6315). 
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Fig. 3-4. (a) Schematic of the experimental setup and generation of LPGs in PCFs by mechanical 

stress onto corrugated device.  WLS: unpolarized white light source, OSA: optical spectrum 

analyzer, CD: corrugated device, FP: flat plate.  (b) Constant period LPG made by using 

corrugated device, (c) Single-LPGs can be induced by pressing one part of the bended PCF, (d) 

Dual-LPGs can be induced simultaneously by pressing two separate parts of the bended PCF, (e) 

Chirped single-LPG, (f) Chirped single-LPG by rotating 90 degrees of the V-grooved metallic plate. 
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As shown in Fig. 3-4, LPGs are induced in PCF when mechanical stress is applied.  A 

constant-period LPG can be obtained if the PCF is straight [Fig. 3-4(b)].  However, LPGs 

become chirped (i.e., with continuously changed periodicity) when PCF is bended [Fig. 

3-4(c)-(f)] with properly translating or rotating the corrugated device (V-grooved plate or 

wrapping a long copper wire on a cylindrical metallic post).  Either single-LPG [Fig. 3-4(c)] 

or dual-LPG [Fig. 3-4(d)] can be generated in the bended PCF.  The amount of chirping is 

controlled by the curvature of bended PCF as well as the angle of the corrugated device 

against the fiber axis, and the LPGs are chirped with varying effective grating periods along 

the PCF.  For the single-LPG in Fig. 3-4(c), the LPG is chirped and the effective period is 

varying along the grating.  The grating has different chirping level between the two ends of 

the LPG.  For dual-LPG in Fig. 3-4(d), the two constituent gratings have opposite chirping, 

one with decreasing periodicity and the other with increasing periodicity. These two 

constituent gratings can have different magnitude of chirping if (1) an asymmetrically bended 

PCF is pressed by the corrugated device, or (2) a symmetrically bended PCF is pressed by a 

rotated corrugated device. 

3.2 Experimental setup of Supercontinuum 

3.2.1 Q-switched mode-locked laser 

The schematic setup of our laser with z-configuration is shown in Fig. 3-5.  A 

fiber-coupled diode array laser (FAP-81-16C-800-I, Coherence Inc.) with center wavelength 
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of 808 nm was used as the pump source. 

 

 

 

 

 

 

l1Diode array
808 nm

GM

OIAS
1:1.8

FAP-81-16C-800-I,
Coherent Inc.

S1 S2

M1

M2 OC
Cr:YAG

l2

l3

Fig. 3-5 Schematic diagram of diode-pumped Q-switched mode-locked Nd:GdVO4 laser.  GM is 

gain medium (Nd:GdVO4), M1 and M2 are folding mirrors and OC is the output coupler.  

The output beam from the fiber was imaged on the laser crystal, which is a 4x4x8 mm3 

a-cut Nd:GdVO4 crystal (with 0.5% Nd3+ concentration) through an 1:1.8 optical imaging 

accessory (OIA’s, Coherent Inc.).  In order to reduce the thermal loading in the laser crystal 

and hence prevent it from possible thermal fracture, the Nd:GdVO4 crystal was wrapped with 

indium foil and held in a copper block which was cooled by using thermoelectric cooler.  

The surface temperature of the Nd:GdVO4 crystal was controlled, being held at 150C.  One 

side of the laser crystal (S1) is high reflection (HR) coated at 1064 nm and anti-reflection (AR) 

coated at 808 nm as an end mirror of the resonator; while the other side (S2) with 2 degree 

wedge is AR coated at 1064 nm. Two curved mirrors M1 and M2, with radii of curvatures of 

500 mm and 200 mm, were used as folding mirror to conduct cavity beam through a 
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Cr4+:YAG to output coupler (OC). We choose different combinations of OC with reflectivity 

of 60% and 80% at 1064 nm, and Cr4+:YAG saturable absorber with initial transmittance T0 of 

80%, 55% and 40% to optimize the generated QML pulses. 

The output of the Nd:GdVO4 laser from either OC or the wedged facet of the laser 

crystal was measured by a power meter (Ophir Inc.) or detected by a high speed InGaAs 

detector (Electro-Physics Technology, ET 3000) that was connected to the oscilloscope 

(LeCroy LT372, bandwidth 500 MHz) or an optical spectrum analyzer (Ando AQ-6315) with 

resolution of 0.01 nm.  A noncollinear autocorrelator containing a 2-mm thick type-I BBO 

was used to measure the pulsewidth as shown in Fig. 3-6. 

 

 

 

 

 

 

Fig. 3-6 Schematic diagram of noncollinear autocorrelator. 
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3.2.2   Supercontinuum generation 

In our experiment, the pumping source, passively mode-locked Nd:GdVO4 laser, is 

focused into a 1 m-long PCF with about 35% coupling efficiency by a 40X microscope 

objective lens.  The core diameter of the used PCF is about 1.7 μm and the pitch Λ (spacing 

between adjacent holes) is about 1.4 μm.  The diameter of holes is about 0.6 μm except for 

the two holes near the core whose diameter is about 0.7 μm.  The fiber has quite high 

nonlinearity with nonlinear coefficient γ being 74 km-1 ∙W-1 due to its small core diameter.  

It is also polarization maintaining because of its asymmetric arrangement of the holes near the 

core.  It is also has two zero dispersion points which are located at 760 nm and 1160 nm.  

The used pump wavelength is in the anomalous dispersion region.  The experiment setup is 

shown in Fig. 3-7.  A λ/2 plate is used to change the polarization state of the laser to get the 

widest spectral broadening.  Finally we measured the output spectrum using an optical 

spectrum analyzer (Ando AQ-6315). 

 

 

 Fig. 3-7  The experimental setup of supercontinuum generation. 

 



 

Chapter 4 Stress-Induced Versatile Tunable Long-Period Grating 

in Photonic Crystal Fibers 

4.1 Transmission spectra of LPGs made by V-grooved plate 

4.1.1 Constant LPG 

Constant period LPGs can be obtained if the PCF is straight, and we can vary the fiber 

grating period by tilting the angle of the V-grooved plate against the axes of straight PCFs as 

shown in Fig. 3-4 (b).  In this configuration (as shown in Fig. 4-1), the effective periodicity 

is given as 

0

coseff θ
Λ

Λ =
  ,                                                        (4.1-1) 

where Λ0  is the periodicity of V-grooves and θ is the angle between PCF and the normal of 

V-grooves.  The effective periodicity Λeff of the grating increases with the tilting angle θ. 

For a LPG fabricated with a conventional fiber, the transmission spectrum has dip at the 

wavelength corresponding to resonance with various cladding modes, and the resonance 

wavelength increases with increasing grating periodicity  [1].    However, the resonance 

wavelength of PCF-LPG decreases with increasing grating periodicity, as shown in Fig. 4-2.   

The center wavelength of LPG can be tuned from 790 nm to 1590 nm as the effective period 

is reduced from 805 μm to 470 μm. 
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Fig. 4-1 Schematic of the mechanism for tuning the grating periodicity. 
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Fig. 4-3. Resonant wavelengths measured 

at different grating periods, as well as the 

calculated effective indices differences 

with respect to resonance wavelengths. 

Fig. 4-2. Measured transmission spectra 

of constant-period gratings obtained by 

adjusting the angle between the straight 

PCF and the V-grooves.   

 

 

 
 

 

By measuring the resonant wavelengths of the LPGs, the differences in the effective 

indices of the core mode and the cladding modes are obtained.  According to the 

coupled-mode theory, the resonance wavelength λres and the effective grating pitch Λeff are 

related by the phase-matching condition: 

 



 

46 

 ,                (4.1-2)  

where the effective indices of the core mode and the cladding modes  can 

be obtained as functions of the resonant wavelength.  As shown in Fig. 4-3, the difference of 

effective index, δn, of the core mode and cladding modes is in the order of 10-3, and increases 

with the central rejection wavelength.  Fig. 4-3 also shows that the central wavelength 

increases as the grating period decreases.  Transmission loss of the constant-period LPG can 

be increased to 18 dB, however, the PCF will be broken if the applied mechanical stress is too 

large. 

 

4.1.2 Chirped LPGs 

By properly translating the grooved plate,  chirped LPGs can also be generated in a 

symmetrically bended PCF by pressing the PCF with a constant period V-grooved plate as in 

the configurations of Fig. 3-4(e) and Fig. 3-4(f).  The amount of chirping is controlled by the 

curvature of PCF, as well as the angle of the grooved plate against the fiber sections. 

Fig. 4-4(a) shows the transmission spectra of various chirped single-LPGs.  The 

transmission spectra in Fig. 4-4(a) are obtained from the bended PCFs as in Fig. 3-4(e) for 

different curvatures with curve (1) < curve (2) < curve (3).  Due to the bending of PCF, the 

periodicity of LPG along PCF decreases first, and then increases.  As the curvature of PCF 

increases, the amount of chirping and effective periodicity will increase, leading to the 

)](n)(n[ clad
eff

co
effeffres λ−λΛ=λ

)(n co
eff λ  )(n clad

eff λ

 



 

broadening of spectral dip in the transmission spectrum [Fig. 4-4(a)] and the resonant 

wavelength is shifted from 1447 nm to 1137 nm.  The 3-dB rejection bandwidth is changed 

from 131 nm to 250 nm.  Figure 4-4(b) shows the transmission spectra for the chirped 

single-LPG when the V-grooved metallic plate is rotated by 90 degrees as in Fig. 3-4(f).  In 

this case, the periodicity of LPG along PCF increases first, and then decreases, which is 

contrary to Fig. 3-4 (e).  The results in Fig. 4-4 (b) are obtained for bended PCF of different 

curvatures: curve (4) < curve (5) < curve (6).  The center wavelength of this PCF-LPG is 

shifted from 1363 nm to 1549 nm, and the 3-dB rejection bandwidth is changed from 147 nm 

to 195 nm. 
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 Fig. 4-4. Transmission spectra for (a) Chirped single-LPG, (b) Chirped single-LPG by rotating 90 degrees of 

the V-grooved metallic plate.  

 

4.1.3 Polarization dependence of LPG 



 

The setup of measurement is similar with that Fig. 3-4 (a) except that a polarizer and a 

polarization controller are added and connected with the unpolarized white light source.  The 

input signal was firstly launched through the polarizer and then followed by the polarization 

controller.  The length of LPG used for polarization measurements was about 2 cm and its 

effective period, Λeff, was equal to 573 μm. 

Fig. 4-5 shows the transmission loss spectra around the 1190 nm peak of the LPG in the 

ESM-12-01 fiber, taken with polarized light and corresponding to the maximum [curve (1)] 

and minimum [curve (2)] amplitude of the transmitted signal. The input angles for the 

maximum and minimum amplitude spectra differ by 90 degree, thus corresponding well to 

LPGs mechanically induced in photonic crystal fiber [1]. 

 

 Fig. 4-5 Transmission spectra for LPG in PCF taken with polarized light and corresponding to maximum 

and minimum amplitudes of transmitted power 
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4.1.4 Generation and elimination of spectrum fringes 

The single-LPG can be generated in a bended PCF by pressing the PCF as in Fig. 3-4(c).  

Transmission spectra for the chirped single-LPGs are shown in Fig. 4-6, and the modulation 

depth increases with increasing pressure as shown in Fig. 4-7.  The ultra-broad transmission 

bandwidths should be attributed to the varying periodicity along the chirped PCF-LPGs. We 

find that chirped single LPG would show spectral fringes [curve (i)] and the fringe spacing 

could be uneven, depending on the interaction length and chirping level between the two ends 

of the LPG. For curve (i), the wavelength spacing between adjacent fringe peaks is uneven, 

ranging from 43 nm to 110 nm. With chirped single-LPG configuration of increased chirping 

level, we find that the spectral fringes will disappear in the rejection band [curve (ii)]. 

Therefore, chirped single-LPG can be fabricated by the configuration of Fig. 3-4(c) to 

generate or eliminate the modulation peaks.  

Two chirped LPGs can be induced simultaneously by pressing two separate parts of the 

bended PCF, as by using the configuration of Fig. 3-4(d).  Transmission spectra for the 

chirped dual-LPGs are shown in Fig. 4-8. For the dual-LPG in symmetrically bended PCF, 

the rejection bandwidth is about 250 nm.  As long as the separation between the two induced 

LPGs is small enough, spectral fringes appear in the rejection band [curve (iii)]. The 

wavelength spacing between adjacent peaks is about 12.5 nm.  On the contrary, when the 

separation between the two induced LPGs is large enough, spectral fringes are not obvious in 

50 
 



 

the rejection band [curve (iv)]. 
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Fig. 4-6. Transmission spectra for spectral fringes can be obtained from chirped single-LPGs, and the fringes 

can be eliminated with proper configuration. 
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Fig. 4-7. Transmission spectra for spectral fringes with different pressures. 
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Fig. 4-8. Transmission spectra for spectral fringes can be obtained from chirped 

dual-LPGs, and the fringes can be eliminated with proper configuration 

 

 

4.2 Transmission spectra of LPGs made by metallic post 

4.2.1 Chirped LPGs 

Another method to induce two chirped LPGs simultaneously is using a wired post.  The 

chirped LPGs are pressed by a corrugated device made by wrapping a long copper wire on a 

cylindrical metallic post as shown in Fig. 4-9.  Transmission spectra for the chirped 

dual-LPG are shown in Fig. 4-10.  The results in Fig. 4-10 are obtained for bended PCF of 

different curvatures: curve (1) < curve (2) < curve (3).  The ultra-broad transmission 

bandwidth should be attributed to the varying periodicity along the chirped PCF-LPG.  We 

have observed that when the curvature of PCF bending increases, the amount of chirping will 

increase, leading to the broadening of stop band in the transmission spectra.  As shown in 



 

Fig 4-10, spectral modulation fringes are observed in the rejection band, and the modulation 

depth increases with the amount of chirping. The spectrum fringes should be MZ interference.  

The rejection bandwidth is changed from 79 nm to 300 nm, and the fringe spacing is about 18 

nm. 

 

 

 

 
Fig. 4-9 Schematic of the chirped dual-LPG by periodic metallic post 
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Fig. 4-10. Transmission spectra for chirped dual-LPG with different curvatures pressed by a corrugated device 

made by wrapping a long copper wire on a cylindrical metallic post. 

 

4.3 Simulation of constant LPGs 

In the section, I will simulate transmission spectrum of constant-period LPGs.  The 

effective index of different modes can be obtained by using R-soft software (Rsoft Design 

Group, Inc.).  The cross section of PCF layout through R-soft software as shown in Fig. 4-11, 

and the parameter of ESM-12-01 is pitch ~ 8 μm, filling factor ~ 0.46, core diameter ~ 12 μm, 

cladding diameter ~ 128 μm. 

 

 



 

 

 

Fig. 4-11.  The cross section of PCF appear in the CAD windows. 
 

Because cladding parts of the PCF is highly pure fused-silica, so we use Sellmeier 

equation to calculate material dispersion as in Eq. (4.3-1), and the coefficients of Sellmeier 

equation used for highly pure fused-silica fiber are shown in table 4-1.  The material 

dispersion is shown in Fig. 4-12. 
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Table 4-1. The coefficient of Sellmeier equation used in highly pure fused-silica fiber. 

 

G1 0.6965325 

G2 0.4083099 

G3 0.8968766 

λ1 0.066 μm 

λ2 0.118 μm 

λ3 9.896 μm 
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Fig. 4-12. Material dispersion of the highly pure fused-silica fiber. 
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After calculating the material dispersion, we substitute it into R-soft software. We 

launched a Gaussian pulse which has different incident position to excite the guiding mode 

and different cladding mode by correlation method of beam propagation method in PCF.  

The step size of BMP is 0.3 μm, and length of simulation is 217 multiplied by 0.3.  The 

dispersion relation of PCF is shown in Fig. 4-13, where m0 is fundamental core mode and 

m1~m3 is the higher order cladding modes. 

Finally, we got transmission spectrum of constant period LPGs by using coupled-mode 

theory [Eq. (2.2-16)] and dispersion relation of PCF. 

The transmission spectrum for simulation and experiment is shown in Fig. 4-14, where 

the resonant wavelength is 1286 nm.  The grating number is assumed to be 50, and 3
4

L πκ = .  

It is in good agreement of theoretical with experimental results. 

 

57 
 



 

0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6
1.434
1.436
1.438
1.440
1.442
1.444
1.446
1.448
1.450
1.452
1.454

Guiding mode  

58 

 m0
 m1
 m2
 m3

ef
fe

ct
iv

e 
in

de
x

wavelength (mm)

Cladding mode 

 
Fig. 4-13.  The effective index of core mode and high order cladding mode are found in 

PCF; m0: fundamental core mode, m1~m3: high order cladding modes. 
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Fig. 4-14. Transmission spectrum for simulation and experiment, and resonant wavelength is 1286 nm.  

 

 



 

4.4 Application 

4.4.1 Gain flattening of Erbium-Doped Fiber Amplifier 

As an application, we have used the stress-induced LPG in the gain flattening of 

erbium-doped fiber amplifier.  Insets of Fig. 4-15 show the original EDFA output spectrum 

and the flattening result, with EDFA pump current of 28 mA.  The amplified spontaneous 

emission (ASE) spectrum of EDFA shows a peak around 1532 nm.  By cascading a 

PCF-LPG and carefully adjusting the direction of V-grooved plate, the PCF bending, and the 

mechanical pressure, EDFA spectrum has been flattened within ± 1 dB for spectral range 

between 1528 nm and 1562 nm.  Because the central wavelength, the rejection bandwidth, 

and the transmission loss of the stress-induced LPG can be tuned over a broad range, a 

versatile gain-flattening filter is generated according to the power level and spectral range of 

the EDFA. 
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Fig. 4-15 The gain flattened EDFA spectrum between 1528 nm and 1562 nm by using the chirped LPGs.  

Insets are original EDFA spectrum and gain flattening result, the pump current of the EDFA is 28mA. 
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4.5 Summary 

In the section, we investigate a method for generating versatile tunable long-period 

gratings (LPGs) in photonic crystal fibers (PCFs) by using two kinds of corrugated devices.  

As the chirping increases, the rejection bandwidth in the transmission spectra of long-period 

fiber gratings increases.  However, the effective periodicity increases with increased chirping, 

and the center wavelength of rejection band decreases. On the contrary, the effective 

periodicity decreases as the chirping increases, and thus the center wavelength of rejection 

band increases with increased bending. The 3-dB bandwidth of chirped dual-LPG and 

single-LPG can be tuned from 70 nm to 300 nm.  For constant period LPG, the resonant 

wavelength can be tuned over 800 nm spectral range, and the 3-dB bandwidth is changed 

from 10 nm to 50 nm. Spectral fringes with uneven spacing are observed in chirped LPGs, 

 



 

depending on the interaction length and the amount of chirping between the two ends of the 

LPG, and can be removed by reducing interaction length and chirping.  By using proper 

configurations, we can fabricated PCF-LPGs to either generate or eliminate the modulation 

peaks.  By utilizing a stress-induced LPG, gain flattening of an erbium-doped fiber amplifier 

has also been demonstrated. 
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Chapter 5 Supercontinuum generation using Q-switched 

mode-locking Nd3+:GdVO4 laser with Cr4+:YAG saturable 

absorber 

5.1 Q-switched mode-locked Nd3+:GdVO4 laser with Cr4+:YAG saturable 

absorber 

The output power versus the wavelength at the CW states (black squares) as well as the 

QML states generated by the Cr4+:YAG, with various initial transmissions of the saturable 

absorber T0= 80% (red diamonds), 55% (green triangles) and 40% (blue circles) are shown in 

Fig. 5-1.  By comparing the threshold of T0=80%, T0=55%, and T0=40%, we found that the 

laser threshold pump powers increase with increased initial transmittance of Cr4+:YAG.  The 

laser threshold pump power is 3.5 W for T0=80%, 7 W for T0=55%, and 10.5 W for T0=40%. 

The oscilloscope traces of pulse trains of QML are shown in Fig. 5-2.  There are vivid 

differences below: irregular pulse train with large fluctuation is observed for 80% Cr4+:YAG 

but rather stable with small fluctuation for 40% Cr4+:YAG.. 
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Fig, 5-1 The average power versus pump power at CW state (black squares), as well as 

QML states with T0 = 80% (red diamonds), 55% (green triangles), and 40% (blue triangles). 

 

 

 
Fig, 5-2 Pulse train of QML with T0 = 40% (Left), and T0 = 80% (Right)  

 

The expanded Q-switching envelopes containing multiple mode-locked (ML) pulses 

were shown in Fig. 5-3~5-5, where the laser was pumped at 12 W with the OC reflectivity of, 
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R=60%, and the transmittance of Cr4+:YAG is T0 = 80% ( Fig.5-3 ), 55% ( Fig.5-4 ), and 40% 

( Fig.5-5 ).  The discrete ML pulses with time interval of ~ 8 ns can be obviously seen inside 

the Q-switched envelope.  By fitting the envelope with the formula: 

             
{ }

exp[( . * / ] exp[ . * / ]
=

+ −
2

11 76 1 76
aIntensity

t t t t2             (5.1-1) 

where t1 is the rising time and t2 is the falling time, the width and symmetric factor of the 

Q-switched envelope can be estimated by (t1+t2)/2 and t1/t2. The width of the Q-switched 

envelope increases as T0 increases. For instance, the width of the Q-switched envelope is 

about 56 ns for T0 = 40% and 74 ns for T0 = 55%, whereas the width becomes 169 ns for T0 = 

80%. 

The shape of envelope will become more symmetric as the ratio of initial population 

inversion (ni) before the Q-switch open to the population inversion at threshold (nt) increases. 

The initial inversion ni can be obtain by the formula: 

                 

2
0ln(1 / ) ln(1 / )

2i
T Rn

lσ
L+ +

=
                          (5.1-2) 

where L is nonsaturable intracavity round-trip dissipative optical loss, and σ  is stimulated 

emission cross section of the gain medium.  From the formula, the shape of envelope will 

become more symmetric at higher T0 for the same output coupler, which can be observed in 

Fig.5-3~5-5.  In the Fig. 5-3~5-5., the ratio is the modulation depth of Q-switched 

mode-locking.  We define the ratio as the highest trough value to the modulation value. For 

the same output coupler, the ratio increases when T0 increases, as shown in Fig. 5-3~5-5. 
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Fig, 5-3 Temporal expansion of Q-switching envelope of 80% Cr4+:YAG with fitting in red 

line and blue line 
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Fig, 5-4 Temporal expansion of Q-switching envelope of 55% Cr4+:YAG with fitting in red line and 

blue line. 
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Fig, 5-5 Temporal expansion of Q-switching envelope of 40% Cr4+:YAG with fitting in red 

line and blue line 

 

 

The measured repetition rates (Rep) in Fig. 5-6 show the increase tendency as the pump 

powers increase.  For T0=80%, Rep reveals obviously and linearly increases as Pp increase.  

However, the slope efficiency of the repetition rate Rep for T0 =55% and 40% is smaller.  The 

highest repetition rate is about 87 kHz for T0 = 80% that is relatively higher than the 18 kHz 

and 9 kHz for T0 = 55% and 40%, respectively. 

 

 

 

 

 

 

 

 

 



 

 
 

Fig, 5-6 Repetition rates versus the pump power at the QML states with the T0=80% 

(black squares), 55% (red diamonds), and 40% (green triangles). 

 

 

 

 

Our central goal is to produce a high peak power and high pulse energy laser, which will 

be launched into photonic crystal fiber to generate supercontinuum spectrum.  Fig. 5-7 

shows the estimated pulse energy versus the pump power for the QML states at different T0 

values by using the formula: 

                                                   

av
p

P
E

R
=

                                                            (5.1-2) 

The pulse energy increases as T0 decreases due to apparently decrease of the repetition 

rate, and the highest pulse energies can obtained at 15 W pumped power about 96 μJ for R = 

60% and T0 = 40%.  Our Q-switched mode-locking Nd:GdVO4 laser has achieved a 

repetition rate of 9 kHz, highest output power of 1 W, and pulse energy of 96 μJ.  Thus, 

efficient white light supercontinuum generation will become possible. 
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 Fig, 5-7 The estimated pulse energy versus the pump power at the QML states with T0=80% 

(black squares), 55% (red diamonds), and 40% (green triangles) 
 

 

5.2 Simulation of Q-switched mode-locking 

We use the rate equations containing the cavity photon density in the gain medium and 

absorber population to simulate the QML envelope.  The output power of the laser can be 

expressed in term of the photon density using equation (2.2-14).  By simulating equation 

(2.2-12), we get the similar result seen on the oscilloscope as shown in Fig. 5-8~5-10. 

The key point is that 40% has fewer mode-locked pulses in Q-switch envelope than 55% 

and 80%. By using the simulation, we can predict the result of various kinds of reflections 

versus transmission of Cr:YAG.  However, too high reflection will not provide enough 

modulation depth for mode-locking pulses and therefore it’s just like that the mode-locked 

pulses are added on an AC value shown in Fig 5.3 where it wipes out the bottom part of 

Q-switching envelope. 
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In the following simulations we only alter the transmission of Cr:YAG and fix the output 

coupler at R = 60%.  The time expansion of one QML envelope for T0 varying from 40% to 

80% is shown in Fig. 5-8~5-10. 
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Fig. 5-8  Calculated result for the temporal shape of a single Q-switched envelope for 

saturable absorbers of T=40% with R=60% 
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  Fig. 5-9  Calculated result for the temporal shape of a single Q-switched envelope for 

saturable absorbers of T=55% with R=60%. 
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Fig. 5-10  Calculated result for the temporal shape of a single Q-switched envelope 

for saturable absorbers of T=80% with R=60%. 

 

 

 

 

As can be observed in Fig. 5-8~5-10, more pulses is produced inside the envelope with 

higher transmission of Cr:YAG.  The strong evidence of Fig 5.8~5-10 also convinces us that 

lower transmission could perform a better result for the QML, however, the higher threshold 

has to pay for penalty. 

5.3 Supercontinuum generation by QML laser using PCFs 

Effective supercontinuum (SC) generation is demonstrated by injecting picosecond 

Q-switched mode-locked Nd:GdVO4 laser pulses into a 1-m long microstructured fiber. The 

laser is operated at wavelength 100-nm away from the longer zero-dispersion of this dual 

zero-dispersion wavelength microstructured fiber. The phenomena of modulation instability, 

stimulated Raman effect, and dispersive wave can be sequentially observed from 

experimental results, leading to spectral broadening as pumping increases. 
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Fig. 5-11 The evolutions of spectral broadening for the experimental observation as pumping power increases. 
 

5.4 Summary 

We have demonstrated the Q-switched and mode-locked operation of the Nd:GdVO4 

laser in use of the Cr4+:YAG as the saturable absorber.  The obtained shape of Q-switched 

envelope, repetition rate and pulse energy are demonstrated to depend on the initial 

transmittance of the Cr4+:YAG.  Using R = 60% and T0 = 40%, the highest pulse energy of 96 

μJ of each Q-switched envelope can be obtained at 15 W pump power. We use the rate 

equations containing the cavity photon density in the gain medium and absorber population to 

simulate the QML envelope.  Picosecond Q-switched mode-locked pulses can be produced 

at lower pump power from Nd:GdVO4 laser.  Due to lower repetition rate and higher peak 

power of Q-switched mode-locked pulses than CW mode-locked pulses at the same average 

power, the QML pulses can be used to effectively generate supercontinuum in 

microstructured fiber as short as only 1 m. 



 

Chapter 6 Conclusions and future works 

In the thesis, we have investigated two topics: (1) generation of versatile tunable 

long-period gratings in photonic crystal fibers, and (2) study of Q-switched and mode-locked 

operation in a diode-pumped Nd:GdVO4 laser by using different initial transmittance of 

Cr4+:YAG crystal. 

First, we report a method for generating versatile tunable long-period gratings (LPGs) in 

photonic crystal fibers (PCFs) by using two kind of corrugated devices.  As the chirping 

increases, the rejection bandwidth in the transmission spectra of long period fiber gratings 

increases.  However, the effective periodicity increases with increased chirping, and the 

center wavelength of rejection band decreases. On the contrary, the effective periodicity 

decreases as the chirping increases, and thus the center wavelength of rejection band increases 

with increased bending. The 3-dB bandwidth of chirped dual-LPG and single-LPG can be 

tuned from 70 nm to 300 nm.  For constant period LPG, the resonant wavelength can be 

tuned over 800 nm spectral range, and the 3-dB bandwidth is changed from 10 nm to 50 nm.  

Spectral fringes with uneven spacing are observed in chirped LPGs, depending on the 

interaction length and the amount of chirping between the two ends of the LPG, and can be 

removed by reducing interaction length and chirping.  We also used beam propagation 

method and coupled-mode theory to simulate the transmission spectrum of constant period 

LPG, and it is in good agreement with experimental results.  By utilizing a stress-induced 
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LPG, gain flattening of an erbium-doped fiber amplifier has also been demonstrated. 

Second, We investigate the Q-switched and mode-locked operation in a diode-pumped 

Nd:GdVO4 laser by using different initial transmittance T0 of Cr4+:YAG crystal. The highest 

pulse energy of Q-switched envelope about 96 μJ can be obtained at 15 W pump power.  

Finally, supercontinuum is generated by using a Q-switched mode-locked laser coupling to a 

nonlinear photonic crystal fiber. 

There are still many works need to be accomplished in the future.    I will continue to 

investigate chirped PCF-LPGs and other PCF-related devices both experimentally and 

theoretically, in which the chirped LPG will be simulated by coupled mode theory and finite 

element method. In addition, supercontinuum can be easily generated by using our last case.  

Furthermore, the high peak power excitation is convenient for stimulating the carriers in 

photonic materials and low repetition rate is also essential for preventing thermal heating 

effect. Therefore, the light source built here is quite suitable for material characterizations 

such as Z-scan and pump-probe spectroscopy. 
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