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摘要 

    在統計力學中，擾動耗散定律揭開了分子熱擾動的存在及其重要

性。然而，這看似雜訊般的信號背後隱藏的資訊卻鮮為人知。本論文

的主旨著重在探討特定凝態材料- 鐵電相液晶分子及其摻雜氧化鋅

奈米微晶的動態行為(或稱表面穩定強誘電性液晶)。 

  液晶方向矢的擾動是由液晶材料特性所決定。因此本論文從液晶擾

動方程與其對應的動態散射光開始，在經由探測散射光訊號的自我相

關函式得到與鐵電相液晶的物理參數之相關性，並配合動態光散射實

驗確認摻雜氧化鋅奈米微晶之表面穩定強誘電性液晶，其整體液晶分

子排列較佳，此特徵可從熱擾動的表現改變而發覺，並可歸因於材料

特性的變動;此外，摻雜氧化鋅奈米微晶之表面穩定強誘電性液晶在

外加相同驅動電場下，擁有比未摻雜之強誘電性液晶元件快的反應速

度。 
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Abstract 

    The fluctuation-dissipation theorem unveils the importance of thermal molecular 

motion which always exists, even in thermal equilibrium, as a fluctuation. However, 

the underlying information of thermal fluctuation which appears to be random noise is 

a huge question mark that had been overlooked for years. This thesis study focuses on 

the discussion about the dynamics of molecular fluctuations in a specific condensed 

matter- the ferroelectric liquid crystals (FLC) with and without doping of nanocrystal 

ZnO. 

    The dynamics of orientation director fluctuations is governed by the material 

properties of the liquid crystal. In this thesis, we first derive the relation between the 

scattered light intensity and fluctuations of the FLC director which, through some 

reasonable assumption, could be described as a stochastic equation of motion. After 

performing autocorrelation technique to the scattered light signals, we have come to 

realize that the internal fluctuation is characterized by a correlation function of 

relevant physical quantities of the FLC system fluctuating in thermal equilibrium. The 

measurement results lead to the fact of improved molecular alignment and faster 

response time in the SSFLC cell doped with ZnO nanocrystals.   
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Chapter 1 

Introduction to the Optical and 

Fluctuation-Dissipation Properties of SSFLC 

 

1.1 Motivation 

Almost two centuries ago, the atomic nature of matter was elegantly revealed by 

Brownian motion- as exemplified by the random motion of pollen particles in water 

as they are bombarded by water molecules. In 1905, Albert Einstein pointed out a 

subtle consequence of the fluctuations in classical Brownian motion- the “fluctuation- 

dissipation theorem”, which is one of the deepest results of thermodynamics and 

statistical physics. This important theorem indicates that the dynamics induced by 

thermal energy is not just a function of temperature, but also of many parameters that 

characterize the state of thermal equilibrium. To be precise, the thermodynamics is a 

mirror of a physical system under measure. For example, the viscosity of the fluid and 

the size of the suspending particles are crucial to Brownian motion; the anchoring 

strength of a LC cell determines the relaxation time of the corresponding 

autocorrelation function of thermal molecular motion. These will-established 
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formulas strongly imply that the thermal fluctuations may seem chaotic, irregular, and 

meaningless, but through a proper mathematical interpretation it would turn into some 

useful information, in particular for material testing. The surprising facts are 

something scientists have been overlooking for decades, because these fluctuations 

are not easily detected, and they seem harmless in magnitude. In this thesis, we 

attempt to probe the dynamical information out of a specific condensed matter- 

ferroelectric liquid crystal. This kind of material is noted for the partial molecular 

order that is commonly seen in some bio-tissue like RNA, protein, spindle fiber and 

so on. From a different point of view, knowing the information behinds the 

thermodynamics in liquid crystals may play an important role in exploring the human 

body.     

 This thesis is organized as follows: in chapter 1, we give a brief introduction to 

the fascinating material- liquid crystals; in chapter 2, we obtain a mathematical 

derivation in terms of thermal excitation; in chapter 3, we show the comparison 

between simulation and experiment results; in chapter 4, we probe how the thermal 

motion comes into play with an external field driven. This should be a critical issue, 

for the thermal energy is absolutely inevitable in a practical application; finally, we 

summarize our main conclusion in chapter 5.  

    



3 
 

1.2 Experiment Setup 

The apparatus used for a light scattering investigation is shown in Fig. 1-2-1. It 

consists of a laser, the optics for polarizing and focusing the input beam, the optics for 

analyzing and detecting the scattered photons and the autocorrelation electronics. The 

laser is one of the critical modules of the set-up. First, it should provide about 

5-20mW of stable power to assure that the scattered light intensity is considerable, but 

not to such an extent as to melt liquid crystal. Here, we use a He-Ne laser with a 

wavelength of 632.8 nm as an optical excitation source. The polarizers P1 and P2 must 

be arranged in a cross-polarization geometry so that the electric field component of 

the scattered light from the sample under study along the transmissive direction of P2 

is permitted to pass, which flickers in response to the liquid crystal molecular 

fluctuations. The sample is mounted into a temperature-controlled oven that is put on 

a rotating stage, providing an easy way to adjust the angle between the polarization of 

the incident light and the alignment direction of surface-stabilized ferroelectric liquid 

crystals. The scattered light is detected with a photomultiplier tubes (PMT) and 

analyzed by an autocorrelation electronics (Flex02-01E). 
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Fig. 1-2-1 Experimental setup for measuring the autocorrelation of optical scattering 
signal from a surface-stabilized ferroelectric liquid crystal. M: mirror; P1 and P2: 
polarizers; L: Lens; D: diaphragm. Here the polarization of the incoming beam î  is set 
to be parallel to the ferroelectric liquid crystal director n̂ , but perpendicular to both the 
scattering plane and the polarization analyzing direction f̂  for the output scattering 
beam. 

 

In this thesis study, four kinds of surface-stabilized ferroelectric liquid crystal 

cells were made and measured: which are LC cells doped with 0 wt%, 0.5 wt%, 1 

wt% and 5 wt% nc-ZnO, respectively. The LC used are chiral smectic C phase, 

meaning that they have a layered structure with the molecules tilting away from the 

layer normal at some angle called cone angle. This cone angle is sensitive to 

temperature [1], therefore we used an accurate temperature-controlled oven with ± 0.1 

 precision to maintain the cone angle constant in order to get a pure fluctuating ℃

conic motion.  

To probe the dynamics of surface-stabilized ferroelectric liquid crystal, the thesis 

is then divided into two subjects: thermal fluctuations and the dynamical response to 

an electric field. 
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1.3 Optical Properties of Ferroelectric Liquid Crystal 

1.3.1 The Overview of Liquid Crystal 

The states of matters can be classified according to their degrees of spatial order. 

Briefly speaking, there are gaseous, liquid, and solid phases. However, between liquid 

and crystalline phases, there are mesophases and are called liquid crystals as 

illustrated in Fig. 1-3-1. Liquid crystals preserve a combination of properties that are 

associated with both liquids and crystals. Liquid crystals can be further categorized 

into the following three major subphases by their molecular spatial arrangement: 

nematic, smectic and cholesteric phases. Nematic molecules are positionally random 

but orientationally correlated while smectic molecules possess both orientational and 

positional order and tend to arrange themselves in layers. The schematic 

representations are shown in Fig. 1-3-1. From Fig. 1-3-2, we can see that liquid 

crystals molecules tend to point in the same average direction, thus yield orientational 

order. This preferred average direction, by definition, is called the director of liquid 

crystal, and is denoted by n̂ . Fig. 1-3-2 (b) and (c) are two types of smectic phase 

liquid crystals. They differ in their orientation of the director. The director in the 

smectic-A phase is parallel to the layer normal while the director in the smectic-C 
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phase is tilted at an angle smaller than 90° from the layer normal. As for cholesterics 

phase as depicted in Fig. 1-3-2 (d), the structure undergoes a helical distortion, 

leading to the director n̂  not constant in space. 

 
      

Fig. 1-3-1 The pictures from left to right are arranged in a decreasing order of 
spatial alignment. (a) As sketched, the molecular constituents in a solid material 
not only occupy periodic spatial positions, but they also orient in a specific spatial 
direction; (b) Smectic and (c) nematic phases belong to liquid crystalline phases 
but are differ in their molecular orientations and degree of order; (d) Molecules in 
isotropic phase are randomly distributed; n̂  represents the director of liquid 
crystals.  

 

 
Fig. 1-3-2 The three major subphases of liquid crystal categorized by the 
molecular alignment: (a) the molecules in the nematic phase tend to orient towards 
some common axis and lead to an orientational order; (b) the molecular 
arrangement in the smectic A phase form a layer structure and give rise to a small 
degree of positional order; (c) the molecules in a smectic-C phase tilt an angle less 
than 90° with respect to the layer normal and also form a layer structure; (d) 
helical structure is the major characteristic of a cholesterics phase liquid crystal. 
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The terms “orientational order” as well as “positional order” that have mentioned    

previously are physical properties in describing a spatially ordered structure. The 

consequences of the orientational order in liquid crystals are most easily understood 

by comparing it to the positional order in solid crystals, as shown in Fig. 1-3-3. In 

solids, a given crystal belongs to one of the 230 space groups. These groups all show 

distinct positional and translational order of constituent unit. On the other hand, liquid 

crystals are positionaly and transitionally disordered (nematics) or transitionally 

ordered (smectics), but are characterized by orientational order of their constituent 

units. We therefore define their state by their molecular orientation, which in turn 

results in the concept of orientational order.   

 
Fig. 1-3-3 The comparison of positional order in solids crystals and orientational 

order in nematic liquid crystals [2].  
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One extremely useful concept in describing a given state of matter is the 

collective excitations. This term relates to motions in a matter, where a large number 

of constituents participate coherently and cooperatively. For example, in solid crystals 

these collective excitations are phonons. They represent oscillations of a crystal lattice 

as a whole. Each constituent of the lattice cooperates in this collective motion 

coherently with its neighbors, which implies also the same frequency of oscillation of 

all atoms in a crystal for a given phonon mode. The analogy to the phonons in solid 

crystals is the orientational fluctuations in liquid crystals. Although liquid crystals are 

generally positionally disordered, the orientation of the molecules fluctuates 

coherently over extremely large distances. We have therefore time and space coherent 

motion of the director of liquid crystal. In particular, the collective excitations are 

usually underdamped and oscillatory in solid crystals while the collective modes in 

liquid crystals are always overdamped. This indicates that in liquid crystals the 

inertial forces are much smaller that the viscous forces, that originate from the 

positional disorder of these phases [4]. The above concepts are of great importance for 

they are the basis of this thesis. 
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1.3.2 The Physics of Surface-Stabilized Ferroelectric Liquid Crystal 

As mentioned, ferroelectric liquid crystals are in chiral smectic-C phase. They 

show a translational order as well as orientational order. In the smectic-C phase, the   

periodic spacing of the mesogens along one axis, here we use the z axis, causes these 

molecules to form layers in the x-y plane as seen in Fig. 1-3-4. The director of each   

planar layer is tilted at an angle θ from the normal. This angle is temperature 

dependent and decreases with increasing temperature to become zero at a smectic-C 

to smectic-A phase transition. When the molecule is chiral, successive smectic-C 

layers show a gradual change in the direction of tilt, such that the director precesses 

about the z axis from layer to layer, always lying on the surface of a hypothetical cone 

of angle 2θ as illustrated in the Fig. 1-3-4. The angle around the circle of precession is 

known as the azimuthal angle φ, which therefore creates a helical structure in the 

chiral smectic C (SmC*) phase with the pitch being the distance along the z axis 

needed to reach the same molecular orientation. In addition to producing this helical 

structure, chirality also results in a spontaneous polarization, shown by the blue arrow 

in Fig. 1-3-4. This polarization vector is perpendicular to the molecule and contained 

in the layer plane. Therefore, a bulk SmC* sample, free to develop its helical structure, 
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will not show ferroelectric behavior since the spontaneous polarization will average to 

zero over one pitch.  

 

 

Z axis

layer

 

 

The first ferroelectric liquid crystal molecule was synthesized with a structure   

similar to molecules that forms the smectic-C* liquid crystal phase. Nevertheless, the 

spontaneous polarization that a ferroelectric material should possess can be made up 

with an asymmetric carbon atom existing near one end of the molecule. This carbon 

atom is bound to four different atoms, thus it breaks inversion symmetry that a    

smectic–C* phase originally possesses. The broken inversion symmetry is how the 

chiral part of the whole molecule comes from. The temperature range corresponding 

Fig. 1-3-4 The configuration of a helical 
structure in the chiral smectic-C* phase. The 
angle between the long axis of    molecules 

and the layer normal are the same from layer to 
layer. The blue arrow represents its spontaneous 

polarization 
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to different phases and the structure formula of this ferroelectric liquid crystal are 

shown below. 

 

 Fig. 1-3-6 The first ferroelectric liquid crystal molecule DOBAMBC. The carbon 
atom marked by an asterisk (*) is referred to as an asymmetric one. P  represents the 

spontaneous polarization of the molecule [3]. 

 

At the year 1980, Clark and Lagerwall proposed a way to suppress the helix and 

developed the surface stabilized ferroelectric liquid crystal (SSFLC) arrangement 

shown in Fig. 1-3-5. The helix is constrained by using a cell gap that is less than the 

helical pitch. Interaction forces between the liquid crystal and the bounding plates 

unwind the intrinsic helix. Symmetry arguments show that this boundary condition 

also causes the molecular orientation for each layer to be the same and the material 

exhibits ferroelectric behavior. The director is favored to lie in the plane of the 

bounding plates. Because of this condition and the fact that the director is constrained 

to be at a certain angle from the normal to the layer, there are two stable states. The 

polarization vector, therefore, must be normal to the bounding plates and its two states 
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are in opposite directions. These two states are shown in the diagram Fig. 1-3-5. The 

up state is shown by the yellow molecule, while the down state is shown by the dotted 

line. Note how both states lie along the cone and are in the plane of the bounding 

plate. 

layer

2 θ

Bounding plate

P

 

 

 

 

1.3.3 The electro-optic property of SSFLC 

Liquid crystal electro-optic effects are important because they do not require the 

emission of light; instead they modify the passage of light through the liquid crystal 

Fig. 1-3-5 two bistable states of a bookshelf type surface-stabilized   
ferroelectric liquid crystal device. When applying external electric field on 

the bounding plates, the spontaneous polarization would couple to the   
electric field and switches the state. 
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either by light scattering, modulation of optical density, or color changes. The salient 

properties are low-voltage operation, very low power dissipation, size and format 

flexibility, and washout immunity in high-brightness ambience. 

As with all liquid crystals, the electro-optic effects in ferroelectric liquid crystals 

are obtained by manipulation of the molecular orientation, given by n , with an 

electric field. In this case, with a macroscopic polarization in the medium, a number 

of new and interesting electro-optic effects are possible. First of all, the medium will 

normally couple much more strongly to an applied electric field than nonferroelectric 

liquid crystals. The ferroelectric torque density is of the order PsE and will, at least up 

to reasonable fields, be larger than the dielectric torque density of the order Δε0E2. But 

the more interesting thing is that we have to deal with a linear effect, which means 

that the torque applied to the local polarization vector is sensitive to the direction of 

the field, so that the polarization orientation will be able to follow sign reversals. This 

means that, in contrast to the nematic case, one is able to switch both ON and OFF in 

time much shorter that the viscous relaxation time of the material. The first 

observation of a linear electro-optic effect in the bulk chiral smectic-C* was reported 

by R. B. Meyer and co-workers in their article on the discovery of ferroelectricity in 

liquid crystals in 1975. Although the reported effect seemed not to be of practical 

interest, it was N. A. Clark and S. T. Lagerwall who noticed the technological 
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importance of a large electro-optic effect, when a ferroelectric smectic-C* phase is 

constrained in a thin layer between two glass plates.  

The principle of the operation of the so-called “Surface Stabilized Ferroelectric 

Liquid Crystal (SSFLC)” is shown in Fig. 4-1-1. When a bulk helical ferroelectric 

smectic-C* is constrained between the closely spaced glass plates to form the 

bookshelf geometry, the interaction forces between the liquid crystals molecules and 

the surface plates are transmitted through the structure by elastic stress and result in 

an unwinding of the smectic-C* helix. This unwinding structure takes place if the 

plates are spaced close enough. Thus we get a homogeneously polarized ferroelectric 

state which can be switched by an external electric field. The ferroelectric liquid 

crystal is therefore a dielectric in a transparent capacitor. Voltages that are applied 

across the capacitor plates produce linear electro-optical switching of the polarization. 

We therefore get two distinct unwound states of uniform molecular orientation with 

opposite signs of the spontaneous polarization pointing either left (i.e., +θ) or right 

(i.e., -θ). 
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Fig. 1-3-6 The principle of operation of the SSFLC, invented by N. A. Clark and S. T. 
Lagerwall. The vectors z (layer normal) and n (molecular director) are in the plane of 
the page and form a tilt angle θ; Ps denotes the macroscopic spontaneous polarization. 

 

For the state with the polarization pointing outward, the director field points in the 

“ left ” direction with respect to the smectic-C* layer normal. On the other hand, for 

the inwards polarization, the director points in the “right” direction, making an angle 

of 2θ with respect to the left direction. Let us remind that the optical properties of 

ferroelectric liquid crystals are determined by the director field n  and the principal 

optic axis which is parallel to this director. The optical axis therefore changes its 

orientation by twice the tilt angle θ, when the direction of the spontaneous 

polarization is reversed by the external electric field. The tilt angle is of the order of 

27.5 deg, which means that the direction of the optical axis in SSFLC switches for  ≒

55.1 deg when an alternating voltage is applied across the SSFLC cell. This switching 

can be easily observed between crossed polarizers. If these polarizers are oriented so 
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that the input polarization is along one of the extreme direction of the director, a 

switching between a “ dark ” and a “ bright” state is observed. In the “dark” state, the 

optical axis of the structure is aligned along the direction of the input polarizer, 

whereas in the “ bright ” state, it makes a double tilt angle with respect to the input 

polarizer. Due to birefringence of a liquid crystal, the ordinary and extraordinary 

waves travel with different speeds though the cell and interfere at the output. For a 

proper thickness, the phase difference will result in an elliptically polarized output 

light, which would transmit through the back polarizer. The SSFLC therefore 

represents a birefringent plate, where the direction of the optical axis can be switched 

over large angles with relatively small electric fields.  

 

1.3.4 The Optical Properties of Surface-Stabilized Ferroelectric Liquid 

Crystal  

In the ferroelectric smectic-C* phase, each smectic layer can be considered as a 

weakly biaxial smectic-C* phase, which could be described by dielectric tensor ε  

with the eigenvalues 1 2,ε ε  and 3ε   

                         
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

3

2

1

00
00
00

ε
ε

ε
ε                           (1.1) 
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    However, the difference between 1ε  and 2ε  is usually small (i.e., their 

physical properties in the two mutually orthogonal directions perpendicular to the 

director are physically equivalent), so that each layer of the smectic-C* can be 

considered as an optically uniaxial layer, with the optical axis, k , tilted at a tilt angle 

θ  with respect to the helical axis and the azimuthal angle φ defined as the angle 

between x axis and the in-plane projection of molecular tilt ξ , as shown in Fig. 1-3-7. 

As a result, the optical properties of ferroelectric liquid crystal with unwinding helix 

(i.e., also called surface-stabilized ferroelectric liquid crystal) can be regarded as those 

of nematic liquid crystals. In word, surface-stabilized ferroelectric liquid crystal is an 

optical uniaxial medium with birefringence characterized by two principal refractive 

indices. The refractive index, which is given by ,
υ
cn =  is inverse proportional to the 

velocity of light υ  in the medium, where c  denotes the speed of light in vacuum.  
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Fig. 1-3-7 The local orientation of the dielectric tensor in the smectic-C* phase. The 

spontaneous polarization, P , is in the direction of ξ×k
 
by definition. n  and ξ  

denote the long axis of ferroelectric liquid crystal molecule and the in-plane projection 
of molecular tilt, respectively.  

 

Accordingly, we could express the director n  of ferroelectric liquid crystals in 

bookshelf geometry, the in-plane projection of n  director, ,ξ  the spontaneous 

polarization P  and the layer normal k  in the xyz-coordinate system as follows: 
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where θ is the molecular tilt angle, and φ is the azimuthal angle of the ξ-director 

measured from the x-axis.       

When a polarized optical beam impinges on nematic liquid crystals with rod-like 

shape, it would experience two distinct indices of refraction. The propagation of light 

along the optic axis would be independent of its polarization; its electric field is    

everywhere perpendicular to the optic axis and it is called the ordinary- or o-wave. 

The light wave with electric field parallel to the optic axis is called the extraordinary- 

or e-wave. An illustration of refractive index ellipsoid, which describes the dielectric 

properties of a material when they are measured in all directions, is shown below. The 

z axis in this figure is considered the optic axis in this model. A cross section is drawn 

through the ellipse, which yields the refractive index ellipse for waves traveling 

normal to that section. The major and minor axes of the ellipse denote the refractive 

indices encountered by the slow and fast waves.  
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Fig. 1-3-8  A diagrammatic illustration of refractive index ellipsoid. The radius of the 

ellipsoid yields the refractive index neff. A cross section through the center of the 
ellipsoid produces a refractive index ellipse denotes the refractive indices encountered 
by the slow and fast waves, which vibrate with their electric displacement vectors along 

those two axes.   

 

 

1.4 The Fluctuation Correlation of the LC director in a 

surface-stabilized ferroelectric liquid crystal cell  

In section 1.3, we have learned that liquid crystals are states between liquid and 

crystals. Matters in these states are fluid, flexible substrate with a small amount of 

order; thus they are extremely sensitive to weak external perturbations such as 

temperature, electric field and so on. That is to say, in response to external 

perturbations, the orientation of liquid crystal molecules fluctuates coherently over 

extremely large distances as we have discussed in previous sections. This remarkable 
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characteristic plus their optical properties make it possible to detect the dynamics of 

liquid crystals under external perturbations by light scattering.  

In order to realize the essence of fluctuation correlation in the physical system of 

surface-stabilized ferroelectric liquid crystals, we must introduce the basic concept of 

dynamic light scattering first.  

 

1.4.1 Introduction to Elastic Light Scattering 

In an elastic light scattering experiment, a monochromatic beam of laser 

impinges on a sample and is scattered into a detector placed at an angle δ with respect 

to the   transmitted beam. The intersection between the incident beam and the 

scattered beam defines a volume V, called the scattering volume or the illuminated 

volume. A schematic representation of the light scattering experiment is shown in Fig. 

1-4-1. 
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   Fig. 1-4-1 An illustration of scattering volume and angleδin a light scattering 

experiment.    

 

    In an idealized light-scattering experiment, the incident light is a plane       

electro-magnetic wave. When the molecules in the illuminated volume are subjected 

to this incident electric field, their constituent charges experience a force and are 

thereby accelerated. According to classical electromagnetic theory, an accelerating 

charge radiates light. When visible light is incident upon the medium, the atoms in a 

subregion of the illuminated volume, small compare to the cube of the incident light 

wavelength, see essentially the same incident electric field. If many subregions of 

equal size are considered, the scattered electric field is the superposition of the 

scattered fields from each of them. If the subregions are optically identical, that is, 

each has the same dielectric constant, there will be no scattered light in other than the 

forward direction. This is so because the wavelets scattered from each subregion are 



23 
 

identical except for a phase factor that depends on the relative positions of the 

subregions. If we ignore surface effects, it is clear that for a large medium, each 

subregion can always be paired with another subregion whose scattered field is 

identical in amplitude but opposite in phase and will thus cancel, leaving no net 

scattered light in other that the forward direction. On the contrary, if the regions are 

optically different, that is, have different dielectric constants, then the amplitudes of 

the light scattered from the different subregions are no longer identical. Complete 

cancellation will no longer take place, and there will be scattered light in other that the 

forward direction. Thus in this semi-macroscopic view, originally introduced by 

Einstein, light scattering is a result of local fluctuations in the dielectric constant of 

the medium.  

1.4.2 Orientational Fluctuations in Surface-Stabilized Ferroelectric Liquid 

Crystal Cells 

Combining the above concepts that has been discussed, we have come to a    

conclusion: it is the fluctuations of the optical axes of molecules in surface-stabilized 

ferroelectric liquid crystal that leads to different dielectric constants in the illuminated 

volume and give rise to light scattering. In short, the dynamics of the molecules is 

thus revealed in the light scattering. Having attained the basic concept of dynamic 
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light scattering, we can now proceed with the relation between fluctuations and light 

scattering from surface-stabilized ferroelectric liquid crystal through a mathematical 

description. 

Our experiment set up has already been discussed in section 1.2. Using Jones’   

calculus, one can describe an electric field that goes through the optical elements used 

in the experiment and is give by 
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Where E0 and
 

E ( , , )i i x y z=
 
represent incoming and outgoing electric field,        

respectively, and d is the cell gap of SSFLC. The output light is detected by a 

photomultiplier tube to yield an intensity with the following form 
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Where 
2

dnκΔ
=Γ

 
represent the phase retardation. Eqn. (1.4) reveals that the      

fluctuation of φ angle can affect the intensity of scattered light.
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Chapter 2 

Introduction to Stochastic Process in Liquid Crystal 

2.1 Introduction 

    The thermally excited dynamics in SSFLC is a complex process which is 

closely related to the microscopic theory. To begin with, we must introduce a simple 

and well known example of the thermal molecular motions- the Brownian motion. 

Observing colloidal particles floating in a liquid medium under an ultramicroscope, 

one would find the irregular motion of colloidal particles. Such a random behavior has 

been proved to be direct evidence of thermal molecular motion. To be more specific, 

the impacts exerted by the liquid molecules can be considered as a random force that 

drives the particles to act irregularly. This is a classical example of thermal molecular 

motion which always exists, even in thermal equilibrium, as a fluctuation. Similar to 

the motions of colloidal particles in a liquid (i.e., the Brownian motion), the thermal 

energy also excites ferroelectric liquid crystal molecules and induces collective 

excitation which, however, is quite different from the Brownian motion because of the 

structure of matter. Here, the term “collective excitation” means a large number of 

FLC molecules fluctuate coherently and cooperatively as introduced in chapter one. 
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From the point of view, it is reasonable to assume that inside the SSFLC cell, the FLC 

molecules would aggregate into groups, and each group fluctuates as a whole and 

collides with one another. The constant collisions coming from all direction act as a 

random driving force on the FLC molecular group to maintain the incessant irregular 

motion. With the random force in the system, the dynamics of SSFLC could no longer 

be exact determined by a given physical condition but it becomes a stochastic process. 

 

2.2 Stochastic Process 

In probability theory, a random variable is the counterpart to a deterministic 

variable. A random variable does not possess a deterministic value. A physical process 

with controlling parameters being random variables is called a “stochastic process” as 

illustrated in Fig. 2-1-1. Instead of dealing with an exact outcome of how the process 

might evolve under time, in a stochastic process there is some indeterminacy in its 

future evolution described by probability distributions.  
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Fig. 2-2-1 Two sample paths of a stochastic process ( , )X t ω with a controlling 
parameter ω being random variable. 

 

Let us consider a property A that depends on the positions and momenta of all 

the particles in the system. By virtue of their thermal motions the particles are 

constantly jostling around so that their positions and momenta are changing in time, 

and so too is the property A. Although the constituent particles are moving according 

to Newton’s equation, their very value makes their motions and property A appears to 

be somewhat random. This physical process with property A is a generalized example 

of stochastic process for granular matter. 

Stochastic processes of a particular type, Markov processes, play an important 

role in natural phenomena. The Markov process does not depend on any of its earlier 

values explicitly to advance itself from time t to time t + dt. In other words, 

knowledge of the present state of systems described by these processes determines the 

distribution of future states. In theory of statistics, a continuous Markov process 

guarantees that the increment )()( tXdttX −+  must have the analytical form of 

A(X( ), ) D(X( ), ) ( )t t dt t t N t dt+ . Here A(X( ), )t t dt  and D(X( ), )t t  can be any 

smooth function with D(X( ), )t t  non-negative, N(t) denotes an uncorrelated unit 

normal random variable, that is, N(t) is a random variable with its mean value equal to 

0 and variance equal to 1. N(t) is statistically independent of N(t') when 't t≠ '. 
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From the above, we obtain 

X( ) X( ) A(X( ), ) D(X( ), ) ( ) .t dt t t t dt t t N t dt+ = + +          (2.1.1) 

Rearranging Eq. (2.1.1) yields the differential form 

            .
)(t)D(X(t),

t)dtA(X(t),X(t)-dt)X(t
dt

tN
dt

+=
+              (2.1.2)

For Eq. (2.1.2) with  

c,t)D(X(t),

X(t)1-t)A(X(t),

=

=
τ                          (2.1.3) 

is called an Ornstein-Unlenbeck process with relaxation time τ and diffusion 

constant c. Thus, we can transform eqs. (2.1.1) into 

 
),(cX(t)dt1dX(t) t

dt
Γ+−=

τ
                     (2.1.4) 

where the Gaussian white noise process )(tΓ  was defined as ).1,0(lim)(
0 dt
Nt

dt→
≡Γ  

To solve such an equation of (2.1.4), one needs to draw support from the 

statistical mathematics [4] and derives                                                      

/ 2 /
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tex −

 
and )1(

2
/2 ττ tec −−  being the mean and variance of X(t), respectively.  

Moreover, we would need to derive the variance of 
dt

dX(t)
 
for the following sections. 

First, we start with  

2
2

2

( ) ( ) ( )( ) ( ) - ( ) .dX t d dX t d X tX t X t
dt dt dt dt

< >= < > < >       (2.1.6) 

Since the operations of taking a time derivative and taking an ensemble average  
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commute, eqn. (2.1.6) is then valid [5]. From eqn. (2.1.6), we realize that we need to 

solve >< 2

2 )()(
dt

tXdtX  and ><
dt

tdXtX )()(  in advance. 

Let us take a time derivative to eqn. (2.1.4) and multiply X(t) on both sides. 

After taking an ensemble average we then have 

2

2
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dt

dX t c X t t
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< > + < >= < >< Γ >        (2.1.7) 

Note that >
Γ
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Γ

<
dt
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tdtXc )(X(t))()(  because of the statistical 

independency of X(t) and )(tΓ , and it vanishes for )1,0()(lim
0 dt
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dt

=Γ
→

. Hence eqn. 

(2.1.6) can be reduced to 
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dt
d

dt τ   
           (2.1.8) 

Again, we multiply X(t) on both side of eqn. (2.1.4) and get 

         2dX(t) 1X(t) ( ) ( ) ( ) 0 .
dt

X t c t X t
τ

< > + < >= < Γ >=              (2.1.9) 

With the help of eqn. (2.1.5) we obtain 

-2t -2t- -2 2
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X t τ ττ
τ τ

< >= < >= +         (2.1.10)  

Finally, by substituting eqn. (2.1.10) into eqn. (2.1.8) we arrive    

        
    ,

2
}

dt
dX(t){lim

τ
cVar

t
=

∞→                        
(2.1.6) 

which is useful in a later chapter. 

. 

2.2.1 Introduction to Stochastic Differential Equation 

The Markov process is a mathematical model for a system with random 
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evolution in time, and thus it is defined as a stochastic differential equation. A 

stochastic differential equation (SDE) is a differential equation in which one or 

more of the terms are random variables. Through the equation, the time behavior of a 

physical property that shows fluctuations could be fully described in terms of 

probability [6]. To date, the stochastic differential equation (SDE) models play a 

relevant role in many application areas including biology, epidemiology and 

population dynamics, mostly because they can provide an additional degree of realism 

if compared to their deterministic counterparts.  

A well-known SDE example that has successfully described Brownian motion is 

the Langevin equation, which states the relation between spontaneous fluctuation and 

the energy dissipation. This idea is the spirit of the granular nature of matter which 

also stands in the system of SSFLC but probably with a different form. To derive the 

specific relation in SSFLC, let us begin a brief discussion about Brownian motion of 

colloidal particles suspending in a liquid medium. 

 

2.2.2 Derivation of the Fluctuation-Dissipation Theorem (FDT) of Brownian 

Motion 

   Consider a particle of mass m immersed in a liquid medium at temperature T, and 
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the corresponding velocity ν. The particle’s dynamic behavior governed by Newton’s 

second law of motion is  

Fv
dt
vdm +−= γ                        (2.2.1) 

where γ is a positive constant called “friction constant” which is proportional to the 

viscosity of the liquid according to Stokes’ law, and F  denotes the random force 

generated from random bombardment by the molecules. Accordingly, F  is a white 

noise process with zero mean value and does not depend on any of its earlier values 

explicitly to advance itself from time t to time t + dt. In short, eqn. (2.2.1) can be 

considered as a Morkov process and the solution has already been given from section 

2.1 [7]  

                 ,)1(
2

,)( /2/
0 ⎟

⎠
⎞

⎜
⎝
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Here we define the magnitude of F  as cm  and relaxation time γτ m=  for 

simplicity.    

    According to equipartition theorem, the energy associated with fluctuations in 

each degree of freedom is ,
2
TkB  that is, 

 ,
24

)}({
2
1 TkcmtmVar B==∞→

τν                    (2.2.3) 

Combining Einstein’s relation ,2(t)x2 Dt>=<  where D is defined as diffusion 

constant, we have come to 

    ,Bk TD
γ

=                              (2.2.4) 
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The equation makes physical sense perfectly as we could imagine that particles 

diffuse faster in a higher surrounding temperature as well as in a less viscous liquid 

medium. By some further substitution we could obtain the fluctuation-dissipation 

theorem as follows 

,6
2m
Tkc B γ

=                            (2.2.5) 

Eqn. (2.2.5) illustrates that whenever a physical system shows fluctuating dynamics in 

some property, there exist an energy dissipation channel accompanying that physical 

property. In the case of Brownian motion, the thermally induced random impacts of 

surrounding molecules generally cause two kinds of effect: firstly, they act as a 

random driving force on the Brownian particles, secondly, they give rise to the 

frictional force γ
 
for a forced motion [8]. This in turn means that the frictional force 

and the random force must be related, because both come from the same origin- the 

random bombardment. In a way, fluctuation and dissipation are like two sides of one 

coin. 

     

2.2.3 Stochastic Process in the Physical system of Surface-Stabilized 

Ferroelectric Liquid Crystal 

    To successfully construct an SDE model of surface-stabilized ferroelectric liquid 
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crystal, we begin with the free energy of liquid crystal. The thermodynamical 

potential per unit volume E, whose minima define the stable states of the system, can 

be written as [9, 10] 

coupledielectricelasticfree eee ++=Ε
                

(2.2.6) 

Let us first consider the elastic free energy which varies with deformations that a 

physical system suffers. When liquid crystals deform with external field, three types 

of deformation energy would occur. They are splay, twist and bend as sketched in Fig. 

2-2-1. Hence the elastic free energy density of the deformed liquid crystals can be 

expressed in terms of the three deformations and is given by [10]  
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1 nnKnnKnKeelastic ×∇×+×∇⋅+⋅∇=      (2.2.7) 

where )3,2,1( =iKi  introduced in eqn (2.2.6) are Frank elastic constants, and they 

are respectively associated with the three types of deformation displayed in Fig. 2-2-1. 

K1: conformations with div n≠0       (splay); 

K2: conformations with n․curl n≠0    (twist); 

K3: conformations with n × curl n≠0   (bend). 
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Fig. 2-2-1 The three types of deformation commonly occurring in liquid crystal.  

 

    However, the elastic free energy of a chiral smectic C liquid crystal would be 

better to start with the ξ  director. If the layer structure does not change, the elastic 

free energy density elastice  is given by [11] 
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Where the smectic elastic constants B1, B2, B3, B13 are relevant to the pure bend, splay, 

twist respectively of the tilt director ξ . In fact, pure distortion of ξ  can imply 

mixed distortions of the director n : for example both B1 and B3 comprise mixed 

symmetrical twist-bend deformations of n , whereas B2 implies only n -splay 

distortion. The new elastic constants read [12]: 

 

                                                         (2.2.9) 

 

We could now derive the elastic free energy density of surface-stabilized ferroelectric 
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liquid crystals with bookshelf geometry by substitution of eqn. (1.2) into eqn. (2.2.7) 

and get   
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With the help of one constant approximation suggested by de Gennes [10], eqn. 

(2.2.10) would deduce to the following given form   
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The second term on the right hand side of eqn. (2.2.6) is the energy density dielectrice
 

coupling to an electric field applied along the y-axis and is given by  

21 1 ,
2 2dielctic ye D E Eε= − ⋅ = −                   (2.2.12) 

where D
 
is the electric displacement governed by Maxwell’s equations of 

.0=⋅∇ D
 
Finally, the third term couplee  referring to the coupling energy between 

spontaneous polarization Ps and the external electric field
 
is given by 

.cosφEPEPe sscouple −=⋅−=                    (2.2.13) 

The total energy per unit area of the cell can then be expressed as 

                     coupledielectricelasticfree eee ++=Ε        (2.2.14)         

Introducing the rotational viscosity coefficient η, the equation of motion can be 

written in the form of a simple harmonic oscillator driven by thermal force thermalF  

and is given by [13] 
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Where ρ denotes the material constant having the dimensions of moment of inertia per 

unit volume, and η represents the rotational viscosity of FLC. The unit of eqn. (2.2.15) 

is Newton．m-2. Eqn. (2.2.15) tells us that the stable state is defined by the minima of 

the free energy freeE  but perturbed by thermally induced random force. However, 

with the fact that the inertial forces in liquid crystals are much smaller than the 

viscous forces as indicated in section 1.3.1, eqn. (2.2.15 ) could be reduce to a simpler 

form as follows 

.thermal
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δφ
δφη                    (2.2.16) 

The equation above is also known as Landau-Khalatonilov equation. To solve eqn. 

(2.2.16), we must use Eular-Lagrange equation to find the minima of the free energy. 

That is, for any function J that can be expressed in the following form 

dxxfJ
x

x
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2
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),,( αα                    (2.2.17) 

Its minima can be determined through the equation  
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Thus, the equation of motion in absence of external electric field becomes 

 .sin 2
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To simplify eqn. (2.2.17) and focus on the φ  angle fluctuations, we need to 
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extract φ  variance of time dependence by separation of variables. On top of that, the 

boundary condition for function φ  is given by 
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                         (2.2.20) 

for the rubbing direction along the z axis as denoted in section 1.2. With the boundary 

condition shown above, we then use sine function to expand eqn. (2.2.19) and derive    
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Here Ψ(t) is a time dependant function of φ  and 22 )(sin~
d

KK πθ= . Moreover, 

Fthermal can be expressed in terms of stochastic mathematics as 
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If we define τη
=

K~
, the solution of eqn. (2.2.20) becomes 
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As noted that the energy associated with fluctuations in each degree of freedom is 

,
2
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where ω
 
is the angular velocity and has already been defined in section 2.1. We 

therefore obtain the fluctuation-dissipation theorem in the physical system of defect 

free SSFLC 
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The above equation may look different from what we have deduced in Brownian 

motion, but it actually leads to the same result as eqn. (2.2.5). In our model, the 

random bombardment acts as a random force that pushes the FLC molecular group 

away from the stable state. At this point, the kinetic energy is partially dissipated 

though the random impact and the rest of the part would transfer to potential energy. 

When the FLC molecular recover itself to the stable state, it release its potential 

energy to kinetic energy, though which, the energy is again dissipated because of 

friction force caused by random impact. The only difference between eqn. (2.2.25) 

and eqn. (2.2.5) is just about energy transferring, but their relation between fluctuation 

and dissipation are basically the same. Both fluctuations are from the random 

bombardment which also results in friction force. The dynamics in the system of 

SSFLC must show some chaotic behavior due to the random impacts of FLC 

molecular groups. To deal with such a noise-like signal, the most efficient way is to 

analyze it through a correlation function. 

 

2.3 Correlation Analysis 

    Time-dependent correlation functions have been used for a long time in the 

theory of noise and stochastic processes and have become very useful in many areas 
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of statistical physics and spectroscopy. Correlation function provides a concise 

method for expressing the degree to which two dynamical properties are correlated 

over a period of time. In this section we discuss some of the basic properties of these 

functions that are relevant to facilitate our understanding of light scattering 

spectroscopy. 

    To begin with, let us consider a physical property A that can be described by a 

stochastic differential equation. Generally, the property A exhibits a noise-like profile 

due to its random behavior and possesses the following features: the property A 

usually takes on different values at different positions in time axis, that is, 

A(t))A(t ≠+ τ  in mathematics terms. However, when τ is small compared with the 

time scale characterizing the fluctuations in A, A(t+τ) would be very close to A(t). As 

τ increases, A(t+τ) and A(t) are likely getting less and less similar. With the notion in 

mind, we could say that A(t+τ) and A(t) are correlated when τ is small, whereas A(t) 

and A(t+τ) are getting less and less correlated as τ gets larger. To specify this 

phenomenon more quantitatively, we need a measure of this correlation. An efficient 

and viable method is the autocorrelation function of the property A which is defined 

as  

   ∫ +>≡<
∞→

T

T
dttAtA

T 0

.)()(1lim)A(0)A( ττ                  (2.3.1)  

Here, a fact must be reminded that >+>=<< )()()A(0)A( ττ tAtA for 
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time-invariance. Second, with the principle of Schwartz’s inequality we derive [14],  

2(0) ( ) A(0)A A τ< > ≤ < >                        (2.3.2) 

which implies that the delayed autocorrelation value (i.e., τ≠0) will never exceed 

initial autocorrelation value (i.e.. τ=0). To be more explicit, we can say that the 

autocorrelation function of a non-conserved, non-periodic property decays from its 

initial vale <A2> to <A>2 in the course of time [14]. 

    In light scattering experiments, photons impinging on the photon-detector 

produce amplified photon-electron current pulses as an input to the correlator 

electronics. Through which, the time-correlation function of the scattered field is 

computed in the discrete manner  

 ∑
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nn
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nn
1

1lim)()0( τ ,                 (2.3.3) 

where nj is the number of photocounts during the time interval j△t to (j+1)△t and τ =n

△t with △t being the sampling time. Furthermore, the autocorrelation function of 

photon-counting fluctuations is related to the autocorrelation function of the 

short-time-averaged intensity fluctuations by the relationship 

>+<Δ>=+< )I(t)I(t)()( 22 τατ ttntn .              (2.3.4) 

This relationship together with eqn. (1.4) allow us to get the correlation function of φ 

by simply measuring <n(t)n(t+τ)>.  

    From the above context, we realize the necessity of the correlation analysis 
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applied in light scattering experiments. Now, we shall introduce its further improved 

technique, multiple tau autocorrelation, used in our experiments [15, 16]. Flex02-01D, 

which is made by Correlator.com, is a state-of-the-art commercial correlator. It has a 

quasi-logarithmic time scale, which is also why it is named “multiple tau”, where 

each channel has an individual sampling time (i.e., the bin width) and delay time (i.e., 

the delay from the measurement at time zero). With this quasi-logarithmic time-scale 

structure which will be described in Fig. 2.3.1, the sampling time increases with the 

delay time. This approach offers the advantage that a wide range of delay times can be 

measured with a limited number of correlation channels. For example, delay times 

between 0.2 μs and 50 ms can be obtained using only 128 channels. For the same 

range of delay times, a linear correlator would require 250,000 channels. In the 

presently used correlator which comprises 1152 channels, among which, channels 

1-64 have a sampling time of 1.5625 ns. Each following group of 32 channels has an 

individual sampling time of twice that of the preceding group (i.e., channels 65-96, 

3.125 ns; channels 67-128, 6.25 ns; up to channels 1120-1152, 27s). Accordingly, 

there are 35 groups categorized by their bin width. The delay time of each channel is 

the accumulated sampling time of all preceding channels (channel 1, 0 ns; channel 2, 

1.5625 ns; … ; channel 1152, 429.4963 s). Additional to each channel there is a 

delayed monitor Mdel that accumulates all counts sampled in that channel. For every 
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group of channels with equal sampling time, there exists a direct monitor Mdir that 

accumulates all counts without delay time at a particular sampling time. 

 

channels   1-64
△τ1=1.5625 ns
delay time: 0-100 ns

. . . . . . . . . . .

*
*

G1=Σ

G2=Σ

G3=Σ
.
.
.

G64=Σ

*

*

(A)

. . . . . . . .

(B)

*G65=Σ

*G66=Σ

. .  .

G96=Σ *

(C)

(D)

channels   65-96
△τ2=3.125 ns
delay time: 0.103-0.2 μs

 

  Fig. 2-3-1 Channel architecture of the digital correlator (A) The light intensity form 
the confocal volume is registered with a channel width of 1.5625 ns. After every 
measurement, three tasks are executed: (1) all channels are shifted to the right, channel 
(n - 1) to channel n, channel (n - 2) to channel (n – 1), … , channel 1 to channel 2. The 
new measurement is always stored in channel 1. (2) The products, that is depicted as *, 
of channel 1 and 2, of channel 1 and 3, etc., are calculated and added (i.e., Σ) to the 
correlation function G( τ1), G(2 τ1), G(3 τ1), etc., respectively. The value of G(0) can 
be calculated by multiplying channel 1 with itself. (3) The delayed monitor is a register 
for every channel that sums up all counts that pass through a channel. Therefore, after 
each shift of channels the content of every channel is added to its delayed monitor. (B) 
Channels 63 and 64 are summed up and shifted to channel 65 which now acquires a 
width of 3.125ns. This happens at the end of every channel group. The last two 
channels with 3.125 ns (channel 95 and 96) are added to yield channel 97 with 6.25 
width and so on. (C) Those channels that have a width of larger than 1.5625 ns (i.e., all 
channels after channel 64) are now correlated with a channel at 0 delay time of equal 
length. To achieve this, several channels can be summed up. Channels 1 + 2 act as the 
0-delay-time channel for channels 65-96 (i.e., channel with 6.25ns width). The sum of 
channels 1-4 act as 0-delay-time channel for channels 97-128, and so on. Note that. For 
channels 1-64, the correlation is performed after every 1.5625 ns measurement, but, for 
channels with a width of 3.125 ns, the correlation will be done only every 3.125 ns, i.e., 
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after 2 measurements of 1.5625 ns and so on. (D) The 0-delay-time channel with 3.125 
ns width is shown. It is used for the correlations of channels with a width of 3.125 ns. 
The direct monitor is a register for every group of channels with equal length. In this 
register, the counts are stored that pass through the channel at 0 delay time. Therefore, 
the 0-delay-time channel will be added to the direct monitors after the correlation for a 
group of channels with equal width. For example, the 0-delay-time channel of 1.5625 
ns will be added to the direct monitor for channels 1-64 every 1.5625 ns. The 
0-delay-time channel of 3.125 ns will be added to the direct monitor for channels 65-96 
every 3.125 ns, etc. All correlation function and monitors are calculated according to 
eqn. (2.3.1)-(2.3.3).  

 

    For the calculation of the autocorrelation function, every channel is multiplied 

according to its delay time by a channel at zero delay time that possesses the same 

sampling time. For example, channels 1-64 (i.e., delay times 0-100 ns, sampling time 

1.5625 ns) are multiplied by the intensity signal that is presently measured during 

1.5625 ns (i.e., delay time zero, sampling time 1.5625 ns). By the same token, 

channels 65-96 are multiplied by the intensity signal that is presently measured during 

3.125 ns. The results of the multiplication are summed up over time for the 

calculation of the autocorrelation. The counts of the sample at delay time 0 with 

sampling times of 1.5625 ns, 3.125 ns, etc. are summed up in the direct monitor Mdir 

of each group of channels with equal sampling time. The autocorrelation is then 

calculated by  
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Here, m is an integer, △τi is the sampling time (i.e., channel width) of channel I, and 

m△τi  is the delay time. M is the number of measurements over a period of △τi, and 

is given by M = T/△τi, where T is the total measurement time. n(k△τi) is the number 

of photons at time k△τi, sampled with a channel width of △τi, and n(k△τi +m△τi) the 

number of photons at time m△τi later. M – m is the number of possible products n(k

△τi)n(k△τi +m△τi) over which the summation extend in eqn. (2.3.1)-(2.3.3). The 

autocorrelation function is symmetrically normalized with the direct and delayed 

monitors Mdir and Mdel of corresponding channel i, respectively.  

    According to Schwartz’s inequality in eqn. (2.3.4), one should find that the 

autocorrelation value G(0) time would become one when the signal is invariable.  
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Here, we use two simple examples to illustrate the main idea of autocorrelation 

function: Supposing we measure two different forms of signal that are   

)1,1,1,1,1,1,1,1,1,1(1 =n , and )2,1,7,0,8,3,2,7,4,1(2 −=n  respectively, then the 

autocorrelation value at zero delay time could be calculated as  
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These values we obtained from eqn. (2.3.5) imply that the autocorrelation value at 

small delay time is an indication of the variation of the signals, in other words, the 

autocorrelation function would not decay once the input signal stays constant. 

However, there are several factors that characterize the variation of the signals, such 

as the statistical distribution, the mean value and the varience of the signals, etc. It 

would hard to tell which factor dominates the autocorrelation value at zero delay time 

unless one derive the specific relation in the system.     

 

2.3.1 Statistical Accuracy of the Correlation Measurements of Scattered 

Light  

    The knowledge of the correct standard deviation is necessary for an accurate data 

evaluation, especially when fitting theoretical models to experimental data. However, 

the standard deviation in correlation spectroscopy has been mostly neglected in 

applications because of the difficulty in deriving its analytical calculation [15]. To 
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date, the standard deviation has been calculated mostly according to Koppel’s 

equation. Koppel’s equation was derived for the case of exponential autocorrelations. 

That is to say, it is not a universal solution. Despite all these, we could use the nature 

of statistics to obtain reliable data. Generally speaking, for each correlation value with 

different delay time it requires over 10,000 times of measurements for averaging in 

order to reach a statistical uncertainty lower than 1% [17]. Taking the response time of 

liquid crystals, laser stability, and the advantage of multiple tau technique into account, 

we set the whole measurement time to be 30 minutes in the following experiments.    

    Having attained the basic concepts of multiple tau correlation in section 2.3, we 

can now proceed with the estimation of statistical accuracy. The correlation value at 

different delay time, shown in Fig. 2.3.1, adds a new datum and takes an average 

every sampling time. Therefore, we can easily calculate the times for average at each 

delay time within 30 minutes by using the following equation:  

 

The results are tabulated below, which implies that for a measurement of an 

autocorrelation curve that takes 30 minutes only the correlation values at delay time 

shorter than 10 seconds are counted as reliable.  

1sec 10sec 100sec

Times averaged 68664 8564 1014
 

times to be averaged = (total measurement time T – delay time of each channel) 
/sampling time of each group △τi. 
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Table 2-3-1 times for average at delay time 1, 10, 100 sec, respectively 

2.4 Simulation Results 

   The stochastic differential equation that has been derived step by step in section 

2.2 is also used as the primary equation for simulation.  

     

)()(1)( tct
dt

td
Γ=+ ψ

τ
ψ

                      

(2.4.1) 

and 

22 )(sinK
~

d
K πθ

ηητ ==  .                       (2.4.2) 

In the following context, we would like to discuss how these two parameters, c and 

τ
1 affect the fluctuations of φ angle in a SSFLC cell.  

Let us begin by increasing the parameter c while setting K~  to be zero. In eqn. 

(2.4.1), K~  acts like an elastic constant. That is to say, the molecule with K~  been 

zero can be treated as a suspension particle in a liquid. The simulations of trajectory 

are shown bellow 
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－c = 100
－c = 1
－c = 0.01

 
Fig. 2-4-1 The simulation results with eqn. (2.4.1) by fixing K~  parameter at zero. The 

red, green, blue lines represent the resulting trajectories of φ. Here c denotes the 
strength of thermal excitation.  

 

The above results are consistent with our expectation. As the thermal excitation 

strength increases, the excitation force would push the particle further away from its 

original position. Because of the lack of elastic interaction ( K~ =0), the particle would 

never return to the places where it has once passed through.  

    Let us now fix the parameter c while increasing 
τ
1  gradually. Since K~  acts 

like a restoring force, we figure that the molecule would behave more and more like 

an oscillator as the parameter 
τ
1  becomes larger. Here, we have chosen the 

magnitude of thermal force c to be 1. The outcomes are depicted as follows 
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Fig. 2-4-2 The simulations of SSFLC cell with different 
τ
1 , while the thermal 

excitation strength c fixing at 1. Here τ  is understood as a relaxation time. The red, 
green, blue lines represent the corresponding trajectory of φ.  

 

Just as we have expected, the FLC molecules with higher values of 
τ
1  (i.e., the 

ratio of K~  to η) move forward and back across the equilibrium orientation with φ=0 

while those with lower ratio relax slowly towards the equilibrium orientation. A more 

detailed description along with experimental data will be presented in the next 

chapter. 
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Chapter 3 

Dynamic Light Scattering from Defect-Free SSFLC 

with Varing Doping Level of ZnO nanocrystals 

3.1 The motivation of doping nc-ZnO   

    One nanometer is a magical point on dimensional scale. Nano-composites are at 

the confluence of the smallest of human-made devices and the largest molecules of 

living systems. Nanoparticles at this dimension scale embedded in a liquid crystal do 

not significantly perturb the director field in the liquid crystal, and interaction 

between the nanoparticles is weak. However, the nanoparticles may share their 

intrinsic properties with the liquid crystal via alignment and anchoring with the liquid 

crystal. For instance, that dispersing low concentrations of submicron ferroelectric 

particles in a nematic liquid crystal enhances the dielectric response and induces a 

linear response to the electric vector E. In contrast to molecular additives, these 

particle dispersions substantially lower the operating voltage of liquid crystal displays 

and related devices [18]. 

Our research was inspired by many previous publications that describe the 

peculiar behaviors of smaller particles embedded in liquid crystal matrices [19, 20], 
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calling for the need of a concerted research effort in nanostructured materials and 

liquid crystals. It has been employed to demonstrate the potential to yield an improved 

LC alignment and the electro-optical properties [21]. The developments has also 

revealed that the phase transition [22], ionic effect [23], and dielectric anisotropy [22] 

of liquid crystals are adjustable with doping of various nanomaterials, such as silica 

particles, LC-covered Pd particles [24], and ferroelectric nanoparticles, etc. The 

design parameters of the methodology include material, size and shape, doping 

concentration and surfactant properties of nanoparticles, which could provide an 

effective and flexible way to generate promising materials for the next generation 

liquid crystal application.  

     The material we choose to dope into FLC is Zinc oxide. It is a unique material 

that exhibits semiconducting and piezoelectric dual properties. With the special 

features, it has become a promising candidate for nanoelectronic and photonics. 

Compared with other semiconductor materials, ZnO having higher exciton binding 

energy (60 meV), is more resistant to radiation, and is multifunctional with uses in the 

areas as a piezoelectric, ferroelectric and ferromagnetic. So far, the various 

applications of ZnO nano materials such as biosensors, UV detectors and FED are 

under way. 

To date, the mutual interaction between nanocrystals and liquid crystals is still a 
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profound mystery. However, through the light scattering experiment, we wish to come 

up with a possible model from a semi-microscopic view to describe the doping effect 

within the SSFLC cells. Furthermore, we would discuss its possibility to enhance 

application properties of a FLC material. 

 

3.2 Material Properties of Ferroelectric Liquid Crystal Felix017/100 

    3.2.1 Material Properties of ferroelectric liquid crystal Felix017/100 

    The liquid crystal we used is a temperature-sensitive material that covers a 

variety of phases as listed in Table 3.2.1.  

Phase transition3
(state)

Critical temperature
(℃)

Isotropic          Nematic 87‐84℃

Nematic Smectic-A 77℃

Smectic-A Smectic-C* 73℃

Smectic-C* crystal ‐28℃

 
Table 3-2-1 The phase transition temperatures of the ferroelectric liquid 
crystal Felix017/100 used in this study. 
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Among them, the electro optical properties in a smectic-C* phase are especially 

temperature dependent and thus they make a great impact on thermal experiments. 

Table 3.2.2 shows some properties that are needed for simulation. 

     

Temperature 
(°K)

Rotational
viscosity 

(10-3Pas．s)

Effective
cone 

Angle θ
( ° )

Spontaneous  
Polarization

(nC/cm2)

308°K 105 14 47

318°K 60 13 39

328°K 35 11.5 32

338°K 20 10 25

 

Table 3-2-2 The material parameters needed for the study with 
respect to temperature. 

 

3.2.2 Sample preparation of Defect Free SSFLC with nc-ZnO doping 

    The defect-free surface-stabilized ferroelectric liquid crystal cells consist of two 

ITO-glass plates. The plates were coated with polyimide alignment layers (RN1182 

from Nissan Chemical), which were rubbed in anti-parallel to suppress the occurrence 

of zigzag defects [25], and then separated by 1.5 μm-thick spacer to maintain a cell 
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gap approximating to the half-wave thickness 2 2 1.9d n mλ λ μ= Δ  estimated with 

0.17nΔ and λ=0.633μm. 

Colloidal ZnO nanoparticles were prepared by the procedures that have been 

published in previous reports [26]. It is caped with 3-(trimethoxysily1) propy1 

methacrylate (TPM) during the synthesis process of nc-ZnO. The corresponding 

bandgap as well as the photoluminescence peak were found to be 3.54eV and 518 nm, 

indicating the average diameter of the ZnO nanoparticles to be about 3.2 nm.  

To prepare nc-ZnO doped SSFLC, we dispersed an appropriate amount of 

nc-ZnO nano powder into Felix 017/100 (purchased from Clariant incorporation in 

Germany) with ultrasonic at 85oC for 40 min and then cooled down to room 

temperature in vacuum. To achieve various doping level of nc-ZnO, a weight 

percentage must be calculated precisely. The desired FLC material was filled into the 

test cells while it is in isotropic phases and then cooled down slowly to 35℃ to form 

a stable smectic-C* phase. 

 

 

3.3 Experiment Results and Discussion 

    The measured results are shown below with an order of a SSFLC cell with 

different doping percentage of nc-ZnO from zero to five percent. In order to observe 



56 
 

the fluctuation caused by thermal, each of the cells was held at a series temperature 

from 35 to 65℃ and every other 10℃ in between, which falls on the smectic-C* 

phase temperature range of the liquid crystals we used. Let us first see the 

autocorrelation functions of pure SSFLC under different thermal excitation 
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Fig. 3-3-1. The measured autocorrelation function of dynamic light scattering intensity 

from pure SSFLC at different temperature. 

 

Let us first see the autocorrelation functions of pure SSFLC under different thermal 

excitation shown in Fig. 3.3.1. There are two distinct trends: for one thing, the 

autocorrelation function decays rapidly when temperature rises up. This phenomenon 

is reasonable and consistent with our previous analysis in chapter two, which also 

implies that we should gradually increase the parameter of random force c in 
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simulation as the temperature rises up. Therefore, the autocorrelation function drops 

faster to 1, reflecting the state of completely uncorrelated. To be more specific, the 

more random the system gets, the time duration from correlated to uncorrelated 

becomes shorter. The other characteristic we can easily observe is the autocorrelation 

value, which could be explained theoretically by using the eqn. (2.3.1) - (2.3.3) and is 

given by the following deduction. First, let us begin with eqn. (2.2.21) 
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=
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And the normalization factor 
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Eqn. (3.3.3) and eqn. (3.3.4) lead to  
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Intuitively, when a system gets more chaotic, the signals become noisier and result in 

a lower correlation value [27]. This is also in agreement with our deduction in eqn. 

(3.3.5), which shows that the correlation value is inverse proportional to chaos c. 

However, eqn. (3.3.5) involves with at least four parameters. Without the precise 

value of them, it would be hard to evaluate the autocorrelation value. Fortunately, we 

could obtain these values by simulation. The parameters we would need for 

simulation are random force c, K~  and η. Though we may not know the precise value 

of c, we do know its trends when temperature rises up. Besides that, the material 

properties η of Felix017/100 is extremely sensitive to temperature as indicated in 

Table 3-2-2. It almost drops to half of its original value every 10℃ increasing. By 

substitution the material property into eqn. (3.3.5) and supposing the elastic constant 
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K does not vary abruptly with temperature, we would obtain the simulated 

autocorrelation values listed in table 3-3-1, where one could see the autocorrelation 

values gradually increase just as those of experiment data with increasing temperature. 

Furthermore, we use eqn. (3.3.1) as a fitting model for dynamic light scattering from 

pure SSFLC. The simulation results and related parameters used are given below 
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Fig. 3-3-2 The autocorrelation functions at a series temperature. The red curves 

represent the experiment data and the black lines are simulated from eqn. (3.3.1). The 
related parameters used in simulation are listed in table 3-3-1. 
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Temperature 
(°K)

Rotational
viscosity 

(10-3Pas．s) (N/m2) (s-1)

C

(dimesionless)

G(0)

(dimesionless)

308°K 105 0.17 0.61 1.5 1.0699

318°K 60 0.15 0.4 2.1 1.46371

328°K 35 0.12 0.292 3.5 1.51

338°K 20 0.1 0.2 6 1.52

22 )
d
πθ(KsinK =

~ =
K
η
~ τ

 

Table 3-3-1 The fitting parameters used in simulation.  

 

The simulations in Fig. 3-3-2 do match the experiment results and the trend of 

parameter c that we expect to increase while temperature rises up is also in agreement 

with our experiment results.  

To yield a better understanding, we further compared the four different doping 

levels of nc-ZnO under the same temperature. The corresponding autocorrelation 

functions acquired by the digital correlator hardware Flex02-01D are shown in the 

following figure. 
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Fig. 3-3-2 The autocorrelation function of various doping level of nc-ZnO at 35, 45, 55, 
65℃. The comparison at temperature 45℃ does not show clearly the variation between 
SSFLC cells of doping level 0, 0.5, 5% because of the scaling problem, and its zooming 

figure will be shown later in Fig. 3.3.3. The black, red, blue and green lines are the 
measured data of pure SSFLC, 0.5% doped nc-ZnO, 1% doped nc-ZnO and 5% doped 

nc-ZnO, respectively. 

  

 

 

 

 

 

 

Fig. 3-3-3 The zooming picture of SSFLC cells with 0%, 0.5% and 5% doped nc-ZnO 
at 45℃. The black, red and green lines represent the measured raw data of 0%, 0.5% 

and 5% doped nc-ZnO, respectively. 
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The comparisons give some surprising results: (1) The autocorrelation functions of 

SSFLC with doping level 0%, 0.5%, 5% of nc-ZnO have two things in common－

when the temperature rises up (a) the time duration from correlated to uncorrelated 

shorten. (b) The correlation value at small delay time increases. These two features 

are attributed to the abruptly changes in viscosity η as is deduced previously. (2) The 

measured raw data of doping level of 1% nc-ZnO have showed a very unique 

behavior from the others. As one could easily tell that at temperature 45, 55, 65℃ 

this SSFLC cell exhibits an oscillation in the autocorrelation function while none of 

the other cells does. (3) Except for the data of SSFLC with doping level of 5% 

nc-ZnO (the green lines), the other data with doping nc-ZnO (i.e., the red and blue 

lines) have larger autocorrelation values at small delay time and longer time duration 

from correlated to uncorrelated than those of pure SSFLC’s (black lines) measured 

data. (4) The measured raw data of SSFLC with doping level of 5% nc-ZnO are very 

close to those of pure SSFLC. That is to say, the black lines at temperature 35, 45, 55 

and 65℃ are almost identical to the green ones in magnitude and trends. Combining 

the fact with eqn. (2.2.23) and eqn. (3.3.5), we would discover that doping 5% 

nc-ZnO into SSFLC probably does not affect much the macroscopic property of 

SSFLC such as viscosity η and the elastic constant K so that the autocorrelation 
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values and the duration time from correlated to uncorrelated stay unchanged. 

       Let us now try to explain these observations presented above. Recall that in 

section 1.3, we described the smectic phase to have more spatial order than nematic 

phase does, which is revealed by a fact that the smectic phases has somewhat 

positional order while the nematic does not. This fact strongly suggests that the 

dynamical behavior in the smectic phase structure is supposed to be closer to that in 

the solid crystal structure than that in the nematic phase structure. But unlike the 

underdamped dynamics of the phonons in the solid crystal, molecular fluctuations in 

the ferroelectric liquid crystals are still overdamped as proved in the autocorrelation 

function measured with the undoped SSFLC cell shown in Fig. 3.3.1. However, 

something interesting happened right after we doped 1% nc-ZnO into the pure SSFLC 

cell which then exhibit oscillation in its autocorrelation. With the knowledge in mind, 

we turn ourselves back to eqn. (2.2.13) and analyze it with 

thermalF
y

K
tt

=
∂
∂

+
∂
∂

+
∂
∂

2

2
2

2

2

sin φθφηφρ ,             (3.3.6) 

Again, we employed the separation of variables to extract the dynamical part of the 

equation 

  )()()(sin)((t) 22
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∂ ψπθψηψρ          (3.3.7) 

Defining the angular velocity ω and 
2 2

2
sin ( )K

d
πθ

α
ρ

= , we derive [28] 
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The characteristic equation of the matrix 
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By using the theory of the harmonic oscillator, we distinguish three cases [28, 29]: 

1. overdamped          
2(sin )
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2. critically damped      
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= ,                          (3.3.11) 

3. underdamped         
2(sin )
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d

η
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From eqn. (3.3.11), we now understand that the dynamics of SSFLC from 

overdamped to underdamped can occur with the changes of the material properties. 

Furthermore, with the help of eqn. (3.3.5) and eqn. (2.2.25) we can recover the 

following three characteristic features that correspond to the experimental 

observations (2) and (3) by gradually increasing the parameters K:  
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(1) the smaller c parameter resulting in the longer time duration from correlated to 

uncorrelated;  

(2) higher value of autocorrelation at small delay time; and 

(3) the dynamical transition from overdamped to underdamped.  
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Fig. 3-3-4 A simulation result for underdamped dynamics. Note that the oscillation 

behavior begins at delay time 0.02 seconds, which equals to the experiment result of 
SSFLC doped with 1% ZnO at 45℃. 

 

An underdamped simulation based on eqn. (3.3.7) is given above. Overall speaking, 

the doping with nc-ZnO somehow changes the material properties such as K and η 

especially the former one which, on the other hand, is related to the order parameter 

[30]. To construct a possible mechanism of the doping effect, it might be better to 

begin with the interaction between the liquid crystals and ZnO crystals. Experimental 

and theoretical studies on ZnO crystals have all revealed a presence of a giant 
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permanent dipole moment that is about 4800 nC/cm2 [31], which serves as a local 

electric field that would force the surrounding ferroelectric liquid crystals to align 

along its electric lines of force. As a consequence, the SSFLC doped with nc-ZnO 

have better spatial order [21, 30]. However, if the liquid crystals surrounded by a 

moderate amount of nc-ZnO (i.e., a higher doping level of nc-ZnO) would not know 

how to align but to follow its nature’s lead since the dipolar fields generated from 

each nc-ZnO are very likely to cancel one another. In short, it is because of the 

unchanged alignment that results in the unchanged material property and lead to 

similar results as those of pure SSFLC.   
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Chapter 4 

Probing into the Influence of the Stochastic Processes 

on the Field-Driven Motion in SSFLC 

 

4.1 Introduction  

Many of the physical properties of mesomorphic materials, such as birefringence, 

optical activity, viscosity and thermal conductivity could be affected by varying 

external stimulations. Electric fields, magnetic fields, thermal and acoustical 

excitation can be invoked to induce material responses [32]. As illustrating in Figure 

4.1 for the case of liquid crystal, efforts are focused on the electro-optic effect because 

of the ease and efficiency of LC excitation with an applied voltage as compared with 

other means of stimulation. However, many more possibilities can be explored 

further.  

 

Figure 4-1-1 Responsivity of LC that can be coupled via LC orientational order. 
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Among these responsivities of mesomorphic materials, not many of them have 

been explored about how the spontaneous fluctuation interferes with a deterministic 

motion of the constituent molecules. Based on the kinetic theory, such a stochastic 

motion should always exist and accompany all kinds of activities within the 

substances at temperature above the absolute zero. It is also inevitable in a practical 

application, which may cause an unexpected result or error. 

In this chapter, we shall first discuss how a random force perturbs deterministic 

excitation modes of FLC molecules excited by an external electric field. We will show 

the simulation results and compare them with the experimental investigation. Finally, 

we will examine how the coupling of the field-driven motion in SSFLC with the 

random fluctuation affected by doping of nc-ZnO.     

 

4.2 Basic Equations 

Let us go back to section 2.2, where we have derived a form of free energy suited 

for FLC in eqn. (2.2.12). The free energy is comprised of an elastic free energy and a 

coupling energy to an electric field, a dielectric free energy and a spontaneous 

polarization free energy.                    

 
coupledielectricelasticfree eee ++=Ε                (2.2.14) 
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When an electric field is applied on a FLC cell, a dielectric torque occurs on the 

director and leading to a free energy 2 2yEε− . In addition, FLC possesses a 

nonvanishing spontaneous polarization, which can couple to the electric field and 

causes a free energy sinsP E φ−  and determines the response time of electro-optic 

effect according to [33] 

~r
sP E
ητ
⋅

 ,                         (4.2.1) 

where, η  is rotational viscosity for the director motion on the cone of the tilt angle. 

If the principal dielectric constants along ,n  P  and P n×  are ε3, ε2 and ε1, 

respectively, the y-component (i.e., the cell normal) of the dielectric tensor in 

xyz-coordinates can be expressed in the following form [30] 

   2 2 2 2
1 3 2( cos sin )sin cos .yε ε θ ε θ ϕ ε ϕ= + +              (4.2.2) 

In response to an external electric field applied along the y-direction, the equation of 

motion in eqn. (2.2.14) becomes 

2
2 2

2

1 ( )sin sin
2 s thermalK E P E F

t y
φ φ ε φη θ φ

φ
∂ ∂ ∂

= − + + +
∂ ∂ ∂

 

2
2 2 2

3 12

1sin sin 2 sin ( ) sin
2 s thermalK E P E F

y
φθ φ θ ε ε φ∂

= − + − + +
∂  

, (4.2.3) 

where the dielectric free energy was further simplified by assuming ε2 ≈  ε1. This is 

an equation of both time and space dependence. However, the first term in the right 

hand side of the equation can be neglected due to the bookshelf geometry. The second 
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term compared with the third term is also negligible at low fields. Thus the equation 

can be reduced to 

1sin ( )s
thermal

d P E F t
dt
φ φ

η η
= +                    (4.2.3) 

Fthermal can be expressed in terms of stochastic mathematics as 

0

1( ) ( ) lim (0, )thermal dt
F t c t c N

dt
η η

→
= Γ =  .          (4.2.4) 

Therefore, eqn. (4.2.3) becomes  

     sin ( )sd P E c t
dt
φ φ

η
= + Γ  .                    (4.2.5) 

Here, the term sP E
η

 not only determines the response time of the FLC, but also has a 

great impact on the molecular motion; as one can see from eqn. (4.2.3) that the 

stronger this coupling energy is, the more easily the FLC director be driven and 

results in a greater variation in φ . The second term on the right hand side of equality 

is the random force caused by thermal energy as introduced in Chapters two and three. 

We have two driving forces- one is a deterministic form, and the other one is 

characterized with a probability density. One must be curious about how the FLC 

molecules behave under the two forces. We will probe the dynamics through the 

simulation, and further verify it by comparing the simulation with experimental 

observations. 

The parameters used in the simulation are as follows. The spontaneous 

polarization Ps = 47 nC/cm2, cone angle 2θ = 55.1o, cell thickness d=2μm, rotational 



71 
 

viscosity η = 105 mPas．S, dielectric constant ε = 5.65 and, above all, the magnitude 

of random force 0.5, for we hold the SSFLC at a temperature around 25℃.   

 

4.3 Simulation Result 

In order to reveal the influences of random force on the deterministic motions of 

FLC molecules, it is necessary to analyze first the dynamical behavior of the FLC 

molecules in absence of the random force. This can be achieved by turning off the 

random force and applying an electric field with a sinusoidal driving voltage (Vpp=1V) 

of 10Hz in eqn. (4.2.5). For a clear revelation, three different presentations are shown 

below: first, the simulation result of azimuthal angle φ based on the equation of 

motion derived in previous section (i.e., eq. (4.2.2)) is presented; second, the zoom-in 

picture of the angle φ dynamics is shown for the dynamical detail; third, the 

corresponding light intensity autocorrelation function is given.  
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Figure 4-3-1(a) The simulated trajectory of angle φ with parameters c =0, Vpp=1V and 
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frequency at 10Hz. 
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Figure 4-3-1(b) The zoom-in picture of figure 4-3-1(a) 
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Figure 4-3-1(c) The corresponding autocorrelation  

 

    The first simulation shown above is the dynamics of SSFLC driven by a 

sinusoidal electric waveform of frequency 10Hz, which implies that the director of 

FLC molecules should oscillate with the electric field at the same frequency. That is, 

the director would vibrate 10 times in one second as seen in Fig. 4-3-1(b). In Fig. 

4-3-1(a), we have also observed that the driving voltage, whose peak to peak equal to 

one volt, may not have the power to fully switch the director from 0 to π. But, the 

motion of the FLC molecules is correctly modulated with the external driving field as 

shown in Fig. 4-3-1(b). The frequency of the optic axis coming back and forth could 
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not only be determined from Fig. 4-3-1(b), but also be seen in its corresponding 

autocorrelation function (ACF), where the adjacent two peaks of the oscillation in Fig. 

4-3-1(c) is about 0.1 seconds which is just the time the FLC molecules take to come 

back and forth to its original place. Moreover, the ACF shows everlasting amplitude 

of oscillation, which is beyond question for there is no other random force that could 

disrupt the deterministic path of FLC molecules so that the corresponding ACF 

remains the same throughout the process. 

    We now that know how the FLC molecules behave without the thermal 

disturbance, we would gradually increase the random force to see what might happen. 

The following simulation results are presented by increasing the random force from 

0.1, 0.5, 1.2, and 2.5. Note that the value of 0.5 corresponds to a temperature of 

around 25℃. 
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Figure 4-3-2(a): The φ trajectory and its corresponding ACF at parameters c=0.1, Vpp= 

1V, and frequency 10Hz. 
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Figure 4-3-2(b): The φ trajectory and its corresponding ACF at parameters c=0.5, Vpp= 

1V, and frequency 10Hz. 
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Figure 4-3-2(c): The φ trajectory and its corresponding ACF at parameters c=1.2, Vpp= 

1V, and frequency 10Hz. 
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Figure 4-3-2(d): The φ trajectory and its corresponding ACF at parameters c=2.5, Vpp= 

1V, and frequency 10Hz. 

    From the simulations shown in Figures 4-3-1 and 4-3-2, we can draw some 
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conclusions: when the random force increases (1) the trajectory of the director 

becomes more and more irregular. This is because the random force is a random 

variable and brings in the irregularity in the φ route even under a deterministic field; 

(2) there is a decrease in the autocorrelation value at delay time zero. This 

phenomenon is consistent with our intuition that the system should become less 

similar as it gets more and more chaotic; (3) the ACFs with the disturbing of a random 

force show decaying amplitudes at longer delay time. The reason of a decrease of 

amplitude is no other than the random force existing in the system, which makes the 

trajectory of motion more and more irregular and thus results in a less similarity with 

time in the ACF. To sum up, the dynamics under measure actually manifests itself in 

the corresponding ACF which, for a periodic motion, implies us the precise period 

and the degree of random force involved.  

 

4.4 Experimental Study of the Dynamic Light Scattering from Pure 

SSFLC and Nanocrystalline-ZnO doped SSFLC 

4.4.1 Experiment Results of Pure SSFLC 

Having connected the electrodes attached on the ITO of the cell to a function 

generator, we apply one volt of sinusoidal driving voltages with a series of 
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frequencies from 10Hz to 10 kHz. The experimental results shown below are 

presented with different frequencies, and each of them would be compare with the 

simulation result under the same condition.  
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Figure 4-4-1(a): The simulated trajectory of angle φ with parameters c =0.5, Vpp=1V 

and frequency at 10Hz. 
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Figure 4-4-1(b): The comparison of the experimental and simulated ACFs by applying 
a sinusoidal driving voltage of 10 Hz. The picture on the left is the simulated result 

while the experimental curve is presented on the right hand side. 
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Figure 4-4-2(a): The simulated trajectory of angle φ with parameters c=0.5, Vpp=1V 
and frequency 100 Hz. 
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Figure 4-4-2(b) The comparison of experiment and simulated results by applying a 
sinusoidal driving voltage with 100Hz. Note that the frequency of the oscillation in 

ACF corresponds to the driving frequency. This is also the sign of the FLC molecules 
being modulated by the external field. 
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Figure 4-4-3(a): The simulated trajectory of angle φ with parameters c =0.5, Vpp=1V 
and frequency 1 kHz. 
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Figure 4-4-3(b): The comparison of the experimental and simulated ACFs by applying 
a sinusoidal driving voltage of 1kHz. The picture on the left is the simulated result 

while the experimental curve is presented on the right hand side. One can observe that 
the amplitude of oscillation in ACF is getting smaller as the driving frequency 

increases. 

 

The three experiments share two things in common: (1) the FLC molecules 

driving by the electric field with 10 Hz to 1 KHz seem to catch up the field quite well; 

the temporal separation of two neighboring peaks in the ACFs indicates that the FLC 
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molecules truly move back and forth in response to the driving field. (2) According to 

our conclusion drawn in section 4.3, we are certain that the decay of amplitudes 

shown in the ACFs is due to the random force. However, there are also some distinct 

differences among them. First, the oscillating amplitude of the conic motion (i.e., φ) 

of FLC decreases with the increasing frequency of the applied field. This is a 

reasonable outcome as the travelling distance of a forced motion is proportional to the 

lasting time of the applied field. Secondly, if we take a closer look at the ACFS, we 

can find that the more greatly the FLC director oscillates the bigger correlation value 

the ACF would become.  

Let us increase the driving frequency to 10 kHz and study the resulting dynamics. 

The driving voltage is set to be Vpp=1V. According to eqn. (4.2.1), the FLC molecules 

may not be able to catch up anymore since the response time is longer than 100 μsec. 

The failure of FLC molecules to switch coercively with the external field could be 

revealed in the simulated trajectory of motion shown in fig. 4-4-4(a). In other words, 

instead of being modulated by the external driving field with such a high frequency 

and low driving voltage, the FLC molecules in a highly viscous environment 

practically remain at their original orientation. The little variation in the orientation of 

FLC director causes a nearly constant scattered light which in turn results in a flat 

autocorrelation function.    
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Figure 4-4-4(a): The simulated trajectory of angle φ with parameters c=0.5, Vpp=1V 
and frequency at 10 kHz. 
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Figure 4-4-4(b): The comparison of experimental and simulated ACF curves by 
applying a sinusoidal driving voltage of 10 kHz. Both results show a weak orientational 

variation in the ACFs. 

       

    Based on the investigation, we can conclude: (1) the autocorrelation indeed 

reflects the dynamics under measure. For a periodic oscillating behavior, the temporal 

separation of the first two peaks in the autocorrelation function represents the time it 

takes to come back to the place closest to where it started and it is at this moment, the 

ACF reaches a maximum similarity. Therefore, the delay time between any of two 
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neighboring peaks in ACF corresponds to the oscillation period; (2) from both 

simulation and experimental results, the random force has proved to be nonnegligible; 

(3) the term sP E η  is an important electro-optic parameter, which governs the 

response time of FLC molecules as indicated by eqn. (4.2.1). The parameter can also 

serve as an indication of the molecular motion revealing in the ACF; the stronger the 

coupling energy is, the more intensive the molecules motion becomes and results in 

greater amplitude of oscillation in the corresponding ACF. These conclusions will 

help us understand the following results of doped SSFLC with nc-ZnO. 

 

4.4.2 Experiment Results of SSFLC with various doping level of nz-ZnO 

    For a better understanding, we will show the experimental results with an 

increasing doping level from 0 to 5%, and each of them would contain data sets 

measured at four different driving frequencies 10Hz, 100Hz, 1 kHz, and 10 kHz. The 

corresponding autocorrelation functions are presented in fig. 4.4.2. 

The dynamics of the four cells with different nc-ZnO doping levels exhibit one 

thing in common: the amplitudes of oscillation in ACFs gradually decay as the 

applied frequency increases. We believe that it is because the molecules do not have 

enough time to fully switch their states with such a low driving field but high 

frequency. This also implies that as the applied frequency increases, the director n̂  
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rotates less and less around the cone axis and therefore leads to a smaller ACF in 

amplitudes. This observation once again confirms our simulation in section 4.3.  
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Figure 4-4-5(a): The corresponding autocorrelation function of SSFLC cells doped 
with 0 (left panel) and 0.5% (right panel), respectively. 
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Figure 4-4-6(b): The corresponding autocorrelation function of SSFLC cells doped 
with 1 (left panel) and 5% (right panel), respectively.   

 

    The first thing one might notice is the oscillation behavior in the autocorrelation 

functions of SSFLC doped with 0.5%, and 5% nc-ZnO driven by an electric field with 



83 
 

frequency at 10 kHz. This oscillation that doesn’t exist in pure SSFLC cell strongly 

implies that the doping effect truly enhances the dynamic electro-optic response. We 

attribute this enhancement to a faster response time, which is very likely to come from 

(1) zinc oxide nanoparticle itself has a giant permanent dipole moment, which is about 

100 times larger than one FLC molecule [31]. There is no doubt that the coupling 

energy to the electric field would therefore increase and result in a faster response 

time of FLC according to eqn. (4.2.1); (2) in section 1.3.2, we knew that each of the 

FLC molecules possesses a spontaneous polarization due to the molecular chirality. 

However, for a bulk SmC* sample, free to develop its helical structure, will not show 

ferroelectric behavior since the spontaneous polarization will average to zero over one 

pitch. In brief, the macroscopic spontaneous polarization has everything to do with the 

alignment within the FLC cell; the better the alignment is, the stronger the 

macroscopic spontaneous polarization becomes. This conclusion indirectly confirms 

our deduction in chapter three which, through a mathematical description, tells us that 

the alignment of the FLC molecules is indeed improved by simply doping ZnO 

nanocrystals into the cell.  

    Another interesting observation from Fig. 4.4.2 is the amplitudes of oscillation in 

the ACFs of the four different SSFLC cell. The amplitude, according to conclusion (2), 

is an essential index that relates to the term sP E η , which governs the electro-optic 
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property. The quantitative relationship of amplitude among all the cells under study is 

listed in table 4.4.1.  

Driving freq Comparison of amplitude

10Hz FLC+1%nz‐ZnO > pure FLC≒FLC+0.5%nz‐ZnO>FLC+5%nz‐ZnO

100Hz FLC+1%nz‐ZnO > FLC+0.5%nz‐ZnO>FLC+5%nz‐ZnO>pure FLC

1 KHz FLC+1%nz‐ZnO > FLC+0.5%nz‐ZnO>FLC+5%nz‐ZnO>pure FLC

10 KHz FLC+0.5%nz‐ZnO>FLC+5%nz‐ZnO>>pure FLC

 

Table 4-4-1: The quantitative relationship of amplitude. 

 

From this comparison, we found that the amplitude in ACF is related to the alignment 

within the cell, for one can easily tell that the SSFLC cells doped with 0.5% and 1% 

nc-ZnO show greater amplitudes of oscillation than the pure one does at all 

frequencies. This observation corresponds to our conclusion in Chapter 3 that these 

two cells do have better alignment comparing to pure SSFLC, especially the one 

doped with 1% nc-ZnO, which also shows the best electro-optic property at field with 

frequency 10Hz, 100Hz, and 1 kHz. Another possible cause may come from a 

decrease in the thermal fluctuation within the SSFCL cells doped with 0.5% and 1% 

nc-ZnO. The simulation done in section 4.3 supports our theory that the more lightly 

the thermal force disturbs the deterministic field, the greater the autocorrelation value 
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will be reached. With these dynamic light scattering experiments, we are convinced 

that doping ferroelectric liquid crystals (FLC) with nanomaterials actually yields some 

degrees of freedom for tailoring FLC properties from various aspects. To be more 

specific, instead of synthesizing new mesogenic molecules to produce new LC 

materials with high application potentials, our approach of simply blending seems like 

a good way to go.    
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Chapter 5  

Conclusion and Future Prospect    

    In this thesis, we attempt to discuss the dynamics of SSFLC. First, we start with 

the scattered light coming from the collective excitation induced by thermal energy 

inside the FLC molecules. This thermal fluctuation converted into autocorrelation 

function is then proved to be an indication of some material parameters that 

characterize the SSFLC system such as viscosity, elastic constant and temperature. 

The mathematical relation between thermodynamics and material properties enable us 

to examine the influence brought by doping nanocrystal ZnO into SSFLC from a 

macroscopic viewpoint and further confirm the fact that SSFLC shows better 

alignment with doping nc-ZnO. The experiment has once again proved that the 

thermodynamic is not just some random noise, but is full of useful information. 

However, the unpredictable dynamics become unwanted when controlling the 

material by applying external fields. It disturbs the deterministic path given by the 

field and lead to an unexpected output. This part of thermodynamics should be 

handled well or it would result in an unexpected error.  

    In addition to the industrial importance, liquid crystalline materials are 

interesting also as model systems for studying a broad spectrum of fundamental 

phenomena in physics due to the richness of different phases and the structures 
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analogous to many of the bio-system. For example, it may serve as a starting point for 

analysis of protein structure and evolution. The prospect of the bio-application of 

liquid crystal should be brightening.  
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