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Abstract

The fluctuation-dissipation theorem unveils the importance of thermal molecular
motion which always exists, even in thermal equilibrium, as a fluctuation. However,
the underlying information of thermal fluctuation which appears to be random noise is
a huge question mark that had been overlooked for years. This thesis study focuses on
the discussion about the dynamics of molecular fluctuations in a specific condensed
matter- the ferroelectric liquid crystals (FLC) with and without doping of nanocrystal
ZnO0.

The dynamics of orientation director fluctuations is governed by the material
properties of the liquid crystal. In this thesis, we first derive the relation between the
scattered light intensity and fluctuations of the FLC director which, through some
reasonable assumption, could be described as a stochastic equation of motion. After
performing autocorrelation technique to the scattered light signals, we have come to
realize that the internal fluctuation is characterized by a correlation function of
relevant physical quantities of the FLC system fluctuating in thermal equilibrium. The
measurement results lead to the fact of improved molecular alignment and faster

response time in the SSFLC cell doped with ZnO nanocrystals.
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Chapter 1

Introduction to the Optical and

Fluctuation-Dissipation Properties of SSFLC

1.1 Motivation

Almost two centuries ago, the atomic nature of matter was elegantly revealed by
Brownian motion- as exemplified by the random motion of pollen particles in water
as they are bombarded by water molecules. In 1905, Albert Einstein pointed out a
subtle consequence of the fluctuations in classical Brownian motion- the “fluctuation-
dissipation theorem”, which is one of the deepest results of thermodynamics and
statistical physics. This important theorem indicates that the dynamics induced by
thermal energy is not just a function of temperature, but also of many parameters that
characterize the state of thermal equilibrium. To be precise, the thermodynamics is a
mirror of a physical system under measure. For example, the viscosity of the fluid and
the size of the suspending particles are crucial to Brownian motion; the anchoring
strength of a LC cell determines the relaxation time of the corresponding

autocorrelation function of thermal molecular motion. These will-established
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formulas strongly imply that the thermal fluctuations may seem chaotic, irregular, and

meaningless, but through a proper mathematical interpretation it would turn into some

useful information, in particular for material testing. The surprising facts are

something scientists have been overlooking for decades, because these fluctuations

are not easily detected, and they seem harmless in magnitude. In this thesis, we

attempt to probe the dynamical information out of a specific condensed matter-

ferroelectric liquid crystal. This kind of material is noted for the partial molecular

order that is commonly seen in some bio-tissue like RNA, protein, spindle fiber and

so on. From a different point of view, knowing the information behinds the

thermodynamics in liquid crystals may play an important role in exploring the human

body.

This thesis is organized as follows: in chapter 1, we give a brief introduction to

the fascinating material- liquid crystals; in chapter 2, we obtain a mathematical

derivation in terms of thermal excitation; in chapter 3, we show the comparison

between simulation and experiment results; in chapter 4, we probe how the thermal

motion comes into play with an external field driven. This should be a critical issue,

for the thermal energy is absolutely inevitable in a practical application; finally, we

summarize our main conclusion in chapter 5.



1.2 Experiment Setup

The apparatus used for a light scattering investigation is shown in Fig. 1-2-1. It
consists of a laser, the optics for polarizing and focusing the input beam, the optics for
analyzing and detecting the scattered photons and the autocorrelation electronics. The
laser is one of the critical modules of the set-up. First, it should provide about
5-20mW of stable power to assure that the scattered light intensity is considerable, but
not to such an extent as to melt liquid crystal. Here, we use a He-Ne laser with a
wavelength of 632.8 nm as an optical excitation source. The polarizers P, and P, must
be arranged in a cross-polarization geometry so that the electric field component of
the scattered light from the sample under study along the transmissive direction of P,
is permitted to pass, which flickers in response to the liquid crystal molecular
fluctuations. The sample is mounted into a temperature-controlled oven that is put on
a rotating stage, providing an easy way to adjust the angle between the polarization of
the incident light and the alignment direction of surface-stabilized ferroelectric liquid
crystals. The scattered light is detected with a photomultiplier tubes (PMT) and

analyzed by an autocorrelation electronics (Flex02-01E).
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Fig. 1-2-1 Experimental setup for measuring the autocorrelation of optical scattering

signal from a surface-stabilized ferroelectric liquid crystal. M: mirror; P1 and P2:

polarizers; L: Lens; D: diaphragm. Here the polarization of the incoming beam I is set
to be parallel to the ferroelectric liquid crystal director i, but perpendicular to both the
scattering plane and the polarization analyzing direction f for the output scattering

beam.

In this thesis study, four kinds of surface-stabilized ferroelectric liquid crystal
cells were made and measured: which are LC cells doped with 0 wt%, 0.5 wt%, 1
wt% and 5 wt% nc-ZnO, respectively. The LC used are chiral smectic C phase,
meaning that they have a layered structure with the molecules tilting away from the
layer normal at some angle called cone angle. This cone angle is sensitive to
temperature [1], therefore we used an accurate temperature-controlled oven with = 0.1
C precision to maintain the cone angle constant in order to get a pure fluctuating
conic motion.

To probe the dynamics of surface-stabilized ferroelectric liquid crystal, the thesis
is then divided into two subjects: thermal fluctuations and the dynamical response to

an electric field.



1.3 Optical Properties of Ferroelectric Liquid Crystal

1.3.1 The Overview of Liquid Crystal

The states of matters can be classified according to their degrees of spatial order.
Briefly speaking, there are gaseous, liquid, and solid phases. However, between liquid
and crystalline phases, there are mesophases and are called liquid crystals as
illustrated in Fig. 1-3-1. Liquid crystals preserve a combination of properties that are
associated with both liquids and crystals. Liquid crystals can be further categorized
into the following three major subphases by their molecular spatial arrangement:
nematic, smectic and cholesteric phases. Nematic molecules are positionally random
but orientationally correlated while smectic molecules possess both orientational and
positional order and tend to arrange themselves in layers. The schematic
representations are shown in Fig. 1-3-1. From Fig. 1-3-2, we can see that liquid
crystals molecules tend to point in the same average direction, thus yield orientational
order. This preferred average direction, by definition, is called the director of liquid
crystal, and is denoted by NA. Fig. 1-3-2 (b) and (c) are two types of smectic phase
liquid crystals. They differ in their orientation of the director. The director in the

smectic-A phase is parallel to the layer normal while the director in the smectic-C



phase is tilted at an angle smaller than 90° from the layer normal. As for cholesterics
phase as depicted in Fig. 1-3-2 (d), the structure undergoes a helical distortion,

leading to the director A not constant in space.

Crystal Phase (Solid) Smectic Phase Nematic Phase Isotropic Phase

Fig. 1-3-1 The pictures from left to right are arranged in a decreasing order of
spatial alignment. (a) As sketched, the molecular constituents in a solid material
not only occupy periodic spatial positions, but they also orient in a specific spatial
direction; (b) Smectic and (c) nematic phases belong to liquid crystalline phases
but are differ in their molecular orientations and degree of order; (d) Molecules in
isotropic phase are randomly distributed; A represents the director of liquid

crystals.

E- / |
| Uﬂﬁﬂﬂﬂﬂﬂﬂﬂ WW&W
WINNE Wi

Nematic Smectic A Smectic C Cholesterics

Fig. 1-3-2 The three major subphases of liquid crystal categorized by the
molecular alignment: (a) the molecules in the nematic phase tend to orient towards
some common axis and lead to an orientational order; (b) the molecular
arrangement in the smectic A phase form a layer structure and give rise to a small
degree of positional order; (c) the molecules in a smectic-C phase tilt an angle less
than 90° with respect to the layer normal and also form a layer structure; (d)

helical structure is the major characteristic of a cholesterics phase liquid crystal.



The terms “orientational order” as well as “positional order” that have mentioned

previously are physical properties in describing a spatially ordered structure. The

consequences of the orientational order in liquid crystals are most easily understood

by comparing it to the positional order in solid crystals, as shown in Fig. 1-3-3. In

solids, a given crystal belongs to one of the 230 space groups. These groups all show

distinct positional and translational order of constituent unit. On the other hand, liquid

crystals are positionaly and transitionally disordered (nematics) or transitionally

ordered (smectics), but are characterized by orientational order of their constituent

units. We therefore define their state by their molecular orientation, which in turn

results in the concept of orientational order.

[ [sotropic System J

(Symmetry)

thermally excited fluctuations thermally excited fluctuations
of of
orientational order positional order

(i(7.0) =7, (7)+ 67 (F.1))

overdamped collective underdamped collective
orientational motions positional motions
e, -5 @(g)
57 oc &% '

Fig. 1-3-3 The comparison of positional order in solids crystals and orientational

order in nematic liquid crystals [2].



One extremely useful concept in describing a given state of matter is the

collective excitations. This term relates to motions in a matter, where a large number

of constituents participate coherently and cooperatively. For example, in solid crystals

these collective excitations are phonons. They represent oscillations of a crystal lattice

as a whole. Each constituent of the lattice cooperates in this collective motion

coherently with its neighbors, which implies also the same frequency of oscillation of

all atoms in a crystal for a given phonon mode. The analogy to the phonons in solid

crystals is the orientational fluctuations in liquid crystals. Although liquid crystals are

generally positionally disordered, the orientation of the molecules fluctuates

coherently over extremely large distances. We have therefore time and space coherent

motion of the director of liquid crystal. In particular, the collective excitations are

usually underdamped and oscillatory in solid crystals while the collective modes in

liquid crystals are always overdamped. This indicates that in liquid crystals the

inertial forces are much smaller that the viscous forces, that originate from the

positional disorder of these phases [4]. The above concepts are of great importance for

they are the basis of this thesis.



1.3.2 The Physics of Surface-Stabilized Ferroelectric Liquid Crystal

As mentioned, ferroelectric liquid crystals are in chiral smectic-C phase. They

show a translational order as well as orientational order. In the smectic-C phase, the

periodic spacing of the mesogens along one axis, here we use the z axis, causes these

molecules to form layers in the x-y plane as seen in Fig. 1-3-4. The director of each

planar layer is tilted at an angle 0 from the normal. This angle is temperature

dependent and decreases with increasing temperature to become zero at a smectic-C

to smectic-A phase transition. When the molecule is chiral, successive smectic-C

layers show a gradual change in the direction of tilt, such that the director precesses

about the z axis from layer to layer, always lying on the surface of a hypothetical cone

of angle 20 as illustrated in the Fig. 1-3-4. The angle around the circle of precession is

known as the azimuthal angle ¢, which therefore creates a helical structure in the

chiral smectic C (SmC*) phase with the pitch being the distance along the z axis

needed to reach the same molecular orientation. In addition to producing this helical

structure, chirality also results in a spontaneous polarization, shown by the blue arrow

in Fig. 1-3-4. This polarization vector is perpendicular to the molecule and contained

in the layer plane. Therefore, a bulk SmC* sample, free to develop its helical structure,



will not show ferroelectric behavior since the spontaneous polarization will average to

zero over one pitch.

Z axis

Fig. 1-3-4 The configuration of a helical
structure in the chiral smectic-C* phase. The
angle between the long axis of  molecules

and the layer normal are the same from layer to

layer. The blue arrow represents its spontaneous

polarization

The first ferroelectric liquid crystal molecule was synthesized with a structure

similar to molecules that forms the smectic-C* liquid crystal phase. Nevertheless, the

spontaneous polarization that a ferroelectric material should possess can be made up

with an asymmetric carbon atom existing near one end of the molecule. This carbon

atom is bound to four different atoms, thus it breaks inversion symmetry that a

smectic—C* phase originally possesses. The broken inversion symmetry is how the

chiral part of the whole molecule comes from. The temperature range corresponding

10



to different phases and the structure formula of this ferroelectric liquid crystal are

shown below.

salid | chual smeche © | smechs A 1 liguud

IErngeTaTye

Fig. 1-3-6 The first ferroelectric liquid crystal molecule DOBAMBC. The carbon

atom marked by an asterisk (*) is referred to as an asymmetric one. P represents the
spontaneous polarization of the molecule [3].

At the year 1980, Clark and Lagerwall proposed a way to suppress the helix and
developed the surface stabilized ferroelectric liquid crystal (SSFLC) arrangement
shown in Fig. 1-3-5. The helix is constrained by using a cell gap that is less than the
helical pitch. Interaction forces between the liquid crystal and the bounding plates
unwind the intrinsic helix. Symmetry arguments show that this boundary condition
also causes the molecular orientation for each layer to be the same and the material
exhibits ferroelectric behavior. The director is favored to lie in the plane of the
bounding plates. Because of this condition and the fact that the director is constrained
to be at a certain angle from the normal to the layer, there are two stable states. The

polarization vector, therefore, must be normal to the bounding plates and its two states
11



are in opposite directions. These two states are shown in the diagram Fig. 1-3-5. The
up state is shown by the yellow molecule, while the down state is shown by the dotted
line. Note how both states lie along the cone and are in the plane of the bounding

plate.

Bounding plate

Fig. 1-3-5 two bistable states of a bookshelf type surface-stabilized
ferroelectric liquid crystal device. When applying external electric field on
the bounding plates, the spontaneous polarization would couple to the

electric field and switches the state.

1.3.3 The electro-optic property of SSFLC

Liquid crystal electro-optic effects are important because they do not require the

emission of light; instead they modify the passage of light through the liquid crystal
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either by light scattering, modulation of optical density, or color changes. The salient
properties are low-voltage operation, very low power dissipation, size and format
flexibility, and washout immunity in high-brightness ambience.

As with all liquid crystals, the electro-optic effects in ferroelectric liquid crystals
are obtained by manipulation of the molecular orientation, given by M, with an
electric field. In this case, with a macroscopic polarization in the medium, a number
of new and interesting electro-optic effects are possible. First of all, the medium will
normally couple much more strongly to an applied electric field than nonferroelectric
liquid crystals. The ferroelectric torque density is of the order PsE and will, at least up
to reasonable fields, be larger than the dielectric torque density of the order AgE”. But
the more interesting thing is that we have to deal with a linear effect, which means
that the torque applied to the local polarization vector is sensitive to the direction of
the field, so that the polarization orientation will be able to follow sign reversals. This
means that, in contrast to the nematic case, one is able to switch both ON and OFF in
time much shorter that the viscous relaxation time of the material. The first
observation of a linear electro-optic effect in the bulk chiral smectic-C* was reported
by R. B. Meyer and co-workers in their article on the discovery of ferroelectricity in
liquid crystals in 1975. Although the reported effect seemed not to be of practical
interest, it was N. A. Clark and S. T. Lagerwall who noticed the technological
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importance of a large electro-optic effect, when a ferroelectric smectic-C* phase is

constrained in a thin layer between two glass plates.

The principle of the operation of the so-called “Surface Stabilized Ferroelectric

Liquid Crystal (SSFLC)” is shown in Fig. 4-1-1. When a bulk helical ferroelectric

smectic-C* is constrained between the closely spaced glass plates to form the

bookshelf geometry, the interaction forces between the liquid crystals molecules and

the surface plates are transmitted through the structure by elastic stress and result in

an unwinding of the smectic-C* helix. This unwinding structure takes place if the

plates are spaced close enough. Thus we get a homogeneously polarized ferroelectric

state which can be switched by an external electric field. The ferroelectric liquid

crystal is therefore a dielectric in a transparent capacitor. Voltages that are applied

across the capacitor plates produce linear electro-optical switching of the polarization.

We therefore get two distinct unwound states of uniform molecular orientation with

opposite signs of the spontaneous polarization pointing either left (i.e., +0) or right

(i.e., -0).
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Fig. 1-3-6 The principle of operation of the SSFLC, invented by N. A. Clark and S. T.

Lagerwall. The vectors z (layer normal) and n (molecular director) are in the plane of

=

|

the page and form a tilt angle 0; Ps denotes the macroscopic spontaneous polarization.

For the state with the polarization pointing outward, the director field points in the

“ left ” direction with respect to the smectic-C* layer normal. On the other hand, for

the inwards polarization, the director points in the “right” direction, making an angle

of 20 with respect to the left direction. Let us remind that the optical properties of

ferroelectric liquid crystals are determined by the director field A and the principal

optic axis which is parallel to this director. The optical axis therefore changes its

orientation by twice the tilt angle 6, when the direction of the spontaneous

polarization is reversed by the external electric field. The tilt angle is of the order of

27.5 deg, which means that the direction of the optical axis in SSFLC switches for =

55.1 deg when an alternating voltage is applied across the SSFLC cell. This switching

can be easily observed between crossed polarizers. If these polarizers are oriented so
15



that the input polarization is along one of the extreme direction of the director, a

switching between a ““ dark ” and a “ bright” state is observed. In the “dark” state, the

optical axis of the structure is aligned along the direction of the input polarizer,

whereas in the “ bright ™ state, it makes a double tilt angle with respect to the input

polarizer. Due to birefringence of a liquid crystal, the ordinary and extraordinary

waves travel with different speeds though the cell and interfere at the output. For a

proper thickness, the phase difference will result in an elliptically polarized output

light, which would transmit through the back polarizer. The SSFLC therefore

represents a birefringent plate, where the direction of the optical axis can be switched

over large angles with relatively small electric fields.

1.3.4 The Optical Properties of Surface-Stabilized Ferroelectric Liquid

Crystal

In the ferroelectric smectic-C* phase, each smectic layer can be considered as a

weakly biaxial smectic-C* phase, which could be described by dielectric tensor &

with the eigenvalues ¢,¢, and &

g 0 0
£=10 & 0 (1.1)
0 0 g



However, the difference between & and &, is usually small (i.e., their
physical properties in the two mutually orthogonal directions perpendicular to the
director are physically equivalent), so that each layer of the smectic-C* can be
considered as an optically uniaxial layer, with the optical axis, k, tilted at a tilt angle
6 with respect to the helical axis and the azimuthal angle ¢ defined as the angle
between x axis and the in-plane projection of molecular tilt 92 , as shown in Fig. 1-3-7.
As a result, the optical properties of ferroelectric liquid crystal with unwinding helix
(i.e., also called surface-stabilized ferroelectric liquid crystal) can be regarded as those
of nematic liquid crystals. In word, surface-stabilized ferroelectric liquid crystal is an
optical uniaxial medium with birefringence characterized by two principal refractive
indices. The refractive index, which is given by n = %, is inverse proportional to the

velocity of light v in the medium, where C denotes the speed of light in vacuum.
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Fig. 1-3-7 The local orientation of the dielectric tensor in the smectic-C* phase. The
spontaneous polarization, P, is in the direction of Kk x f by definition. fi and 92

denote the long axis of ferroelectric liquid crystal molecule and the in-plane projection

of molecular tilt, respectively.

Accordingly, we could express the director i of ferroelectric liquid crystals in

bookshelf geometry, the in-plane projection of N director, &, the spontaneous

polarization P and the layer normal k inthe xyz-coordinate system as follows:
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i = (sin @ cos @, sin @sin @, cos ),

_If (0,0,1) (1.2)
& =(cosg@,sing, 0),
P = (—sing, cos ¢, 0),

where 0 is the molecular tilt angle, and ¢ is the azimuthal angle of the &-director

measured from the x-axis.

When a polarized optical beam impinges on nematic liquid crystals with rod-like
shape, it would experience two distinct indices of refraction. The propagation of light
along the optic axis would be independent of its polarization; its electric field is

everywhere perpendicular to the optic axis and it is called the ordinary- or o-wave.
The light wave with electric field parallel to the optic axis is called the extraordinary-
or e-wave. An illustration of refractive index ellipsoid, which describes the dielectric
properties of a material when they are measured in all directions, is shown below. The

z axis in this figure is considered the optic axis in this model. A cross section is drawn

through the ellipse, which yields the refractive index ellipse for waves traveling

normal to that section. The major and minor axes of the ellipse denote the refractive

indices encountered by the slow and fast waves.
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Fig. 1-3-8 A diagrammatic illustration of refractive index ellipsoid. The radius of the
ellipsoid yields the refractive index Negr. A cross section through the center of the
ellipsoid produces a refractive index ellipse denotes the refractive indices encountered
by the slow and fast waves, which vibrate with their electric displacement vectors along

those two axes.

1.4 The Fluctuation Correlation of the LC director in a

surface-stabilized ferroelectric liquid crystal cell

In section 1.3, we have learned that liquid crystals are states between liquid and
crystals. Matters in these states are fluid, flexible substrate with a small amount of
order; thus they are extremely sensitive to weak external perturbations such as
temperature, electric field and so on. That is to say, in response to external
perturbations, the orientation of liquid crystal molecules fluctuates coherently over
extremely large distances as we have discussed in previous sections. This remarkable
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characteristic plus their optical properties make it possible to detect the dynamics of
liquid crystals under external perturbations by light scattering.

In order to realize the essence of fluctuation correlation in the physical system of
surface-stabilized ferroelectric liquid crystals, we must introduce the basic concept of

dynamic light scattering first.

1.4.1 Introduction to Elastic Light Scattering

In an elastic light scattering experiment, a monochromatic beam of laser
impinges on a sample and is scattered into a detector placed at an angle & with respect
to the  transmitted beam. The intersection between the incident beam and the
scattered beam defines a volume V, called the scattering volume or the illuminated
volume. A schematic representation of the light scattering experiment is shown in Fig.

1-4-1.
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SCATTERING

Fig. 1-4-1 An illustration of scattering volume and angledin a light scattering

experiment.

In an idealized light-scattering experiment, the incident light is a plane

electro-magnetic wave. When the molecules in the illuminated volume are subjected

to this incident electric field, their constituent charges experience a force and are

thereby accelerated. According to classical electromagnetic theory, an accelerating

charge radiates light. When visible light is incident upon the medium, the atoms in a

subregion of the illuminated volume, small compare to the cube of the incident light

wavelength, see essentially the same incident electric field. If many subregions of

equal size are considered, the scattered electric field is the superposition of the

scattered fields from each of them. If the subregions are optically identical, that is,

each has the same dielectric constant, there will be no scattered light in other than the

forward direction. This is so because the wavelets scattered from each subregion are
22



identical except for a phase factor that depends on the relative positions of the

subregions. If we ignore surface effects, it is clear that for a large medium, each

subregion can always be paired with another subregion whose scattered field is

identical in amplitude but opposite in phase and will thus cancel, leaving no net

scattered light in other that the forward direction. On the contrary, if the regions are

optically different, that is, have different dielectric constants, then the amplitudes of

the light scattered from the different subregions are no longer identical. Complete

cancellation will no longer take place, and there will be scattered light in other that the

forward direction. Thus in this semi-macroscopic view, originally introduced by

Einstein, light scattering is a result of local fluctuations in the dielectric constant of

the medium.

1.4.2 Orientational Fluctuations in Surface-Stabilized Ferroelectric Liquid

Crystal Cells

Combining the above concepts that has been discussed, we have come to a

conclusion: it is the fluctuations of the optical axes of molecules in surface-stabilized

ferroelectric liquid crystal that leads to different dielectric constants in the illuminated

volume and give rise to light scattering. In short, the dynamics of the molecules is

thus revealed in the light scattering. Having attained the basic concept of dynamic
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light scattering, we can now proceed with the relation between fluctuations and light

scattering from surface-stabilized ferroelectric liquid crystal through a mathematical

description.

Our experiment set up has already been discussed in section 1.2. Using Jones’

calculus, one can describe an electric field that goes through the optical elements used

in the experiment and is give by

EX 0 0 0] [cosgsind cosgcos® —sing]| |e™* 0 0
~ . . . in, xd
]§y =0 1 O0]-|singsind singcosd cosg |-| 0O e _0
E,| [0 00 cosé —sin@ 0 0 0 e
cosgsind singsind cosf | |0
cosgcos@ singcosd —sinf |- 0 |-E,
—siné cos¢ 0 1
iE,e™ sin 26 cos #sin Anxd
= 0
0
An=n,-n,
1.3
k=% (1.3)

Where Eo and E, (i=Xx,y,z) represent incoming and outgoing electric field,
respectively, and d is the cell gap of SSFLC. The output light is detected by a

photomultiplier tube to yield an intensity with the following form

I =1,sin’ L cos? ¢
2 (1.4)
I, = E,’sin” 26
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Where T = And

represent the phase retardation. Eqn. (1.4) reveals that the

fluctuation of ¢ angle can affect the intensity of scattered light.
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Chapter 2

Introduction to Stochastic Process in Liquid Crystal

2.1 Introduction

The thermally excited dynamics in SSFLC is a complex process which is
closely related to the microscopic theory. To begin with, we must introduce a simple
and well known example of the thermal molecular motions- the Brownian motion.
Observing colloidal particles floating in a liquid medium under an ultramicroscope,
one would find the irregular motion of colloidal particles. Such a random behavior has
been proved to be direct evidence of thermal molecular motion. To be more specific,
the impacts exerted by the liquid molecules can be considered as a random force that
drives the particles to act irregularly. This is a classical example of thermal molecular
motion which always exists, even in thermal equilibrium, as a fluctuation. Similar to
the motions of colloidal particles in a liquid (i.e., the Brownian motion), the thermal
energy also excites ferroelectric liquid crystal molecules and induces collective
excitation which, however, is quite different from the Brownian motion because of the
structure of matter. Here, the term “collective excitation” means a large number of
FLC molecules fluctuate coherently and cooperatively as introduced in chapter one.
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From the point of view, it is reasonable to assume that inside the SSFLC cell, the FLC
molecules would aggregate into groups, and each group fluctuates as a whole and
collides with one another. The constant collisions coming from all direction act as a
random driving force on the FLC molecular group to maintain the incessant irregular
motion. With the random force in the system, the dynamics of SSFLC could no longer

be exact determined by a given physical condition but it becomes a stochastic process.

2.2 Stochastic Process

In probability theory, a random variable is the counterpart to a deterministic
variable. A random variable does not possess a deterministic value. A physical process
with controlling parameters being random variables is called a “stochastic process” as
illustrated in Fig. 2-1-1. Instead of dealing with an exact outcome of how the process
might evolve under time, in a stochastic process there is some indeterminacy in its

future evolution described by probability distributions.

— X(t,®
J-” N \ o)
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Fig. 2-2-1 Two sample paths of a stochastic process X(t, @) with a controlling

parameter ® being random variable.

Let us consider a property A that depends on the positions and momenta of all
the particles in the system. By virtue of their thermal motions the particles are
constantly jostling around so that their positions and momenta are changing in time,
and so too is the property A. Although the constituent particles are moving according
to Newton’s equation, their very value makes their motions and property A appears to
be somewhat random. This physical process with property A is a generalized example
of stochastic process for granular matter.

Stochastic processes of a particular type, Markov processes, play an important
role in natural phenomena. The Markov process does not depend on any of its earlier
values explicitly to advance itself from time t to time t + dt. In other words,
knowledge of the present state of systems described by these processes determines the
distribution of future states. In theory of statistics, a continuous Markev process

guarantees that the increment X (t+dt)— X(t) must have the analytical form of
A(X(1), dt + /D(X(t), t) N(t)v/dt . Here A(X(t),t)dt and D(X(t),t) can be any
smooth function with D(X(t),t) non-negative, N(t) denotes an uncorrelated unit
normal random variable, that is, N(t) is a random variable with its mean value equal to
0 and variance equal to 1. N(t) is statistically independent of N(t') when t'=t'.
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From the above, we obtain

X(t + dt) = X(t) + AX(t), )dt + /DX(t), t) N(t)x/dt. (2.1.1)

Rearranging Eq. (2.1.1) yields the differential form

X(t+dt)-X(t) VD(X(1), )N(t)
B A(X(t),t)dt + i : (2.1.2)

For Eq. (2.1.2) with

1
AX(t),t) = -;X(t) (2.1.3)

D(X(1),t) =c,

is called an Ornstein-Unlenbeck process with relaxation time 7 and diffusion

constant c. Thus, we can transform eqs. (2.1.1) into

dx(® 1

——X(t)dt +eI(t), (2.1.4)
dt T

where the Gaussian white noise process I'(t) was defined as I'(t) = gtm% N (0, é).
To solve such an equation of (2.1.4), one needs to draw support from the
statistical mathematics [4] and derives
-t/r CT 2t/r
X(t)=N(X0e ,?(l—e )j. (2.1.5)
with x,e”'* and C?T(l —e7?") being the mean and variance of X(t), respectively.

. . dX(t
Moreover, we would need to derive the variance of %
t

for the following sections.

First, we start with
dXx (t))2 >:i< X (t) dX(t)

X ()
dt dt dt

<( >_<X(t)T

(2.1.6)
Since the operations of taking a time derivative and taking an ensemble average
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commute, eqn. (2.1.6) is then valid [5]. From eqn. (2.1.6), we realize that we need to

dx (t) > 1in advance.

2
X
solve < X (t)d—z(t) > < X (1)
dt
Let us take a time derivative to eqn. (2.1.4) and multiply X(t) on both sides.

After taking an ensemble average we then have

2
x0Ty X0 dX(t) s JC <X (t) >< %F(t) > 2.1.7)
Note that \/_ dE ) >= \/E < X(t) >< dFEt) > because of the statistical

independency of X(t) and I'(t), and it vanishes for tlhln’(l) re=N (O,é). Hence eqn.

(2.1.6) can be reduced to

(dX(t) gt X (1) 320 dX(t) <X (02O dX(t) 2.1.8)
Again, we multiply X(t) on both side of eqn. (2.1.4) and get
dX(t) < X2(t)>=/c <TOX(t)>=0 . (2.1.9)
With the help of eqn. (2.1.5) we obtain
<xOBO 1 eyt C—7(1 <y rx e . (2.1.10)
dt T T
Finally, by substituting eqn. (2.1.10) into eqn. (2.1.8) we arrive
Var{dX(t)} < (2.1.6)
t—)oo 22-

which is useful in a later chapter.

2.2.1 Introduction to Stochastic Differential Equation

The Markov process is a mathematical model for a system with random
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evolution in time, and thus it is defined as a stochastic differential equation. A

stochastic differential equation (SDE) is a differential equation in which one or

more of the terms are random variables. Through the equation, the time behavior of a

physical property that shows fluctuations could be fully described in terms of

probability [6]. To date, the stochastic differential equation (SDE) models play a

relevant role in many application areas including biology, epidemiology and

population dynamics, mostly because they can provide an additional degree of realism

if compared to their deterministic counterparts.

A well-known SDE example that has successfully described Brownian motion is

the Langevin equation, which states the relation between spontaneous fluctuation and

the energy dissipation. This idea is the spirit of the granular nature of matter which

also stands in the system of SSFLC but probably with a different form. To derive the

specific relation in SSFLC, let us begin a brief discussion about Brownian motion of

colloidal particles suspending in a liquid medium.

2.2.2 Derivation of the Fluctuation-Dissipation Theorem (FDT) of Brownian

Motion

Consider a particle of mass m immersed in a liquid medium at temperature T, and
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the corresponding velocity v. The particle’s dynamic behavior governed by Newton’s

second law of motion is

av

m&Y Wi E 2.2.1
rani i (2.2.1)

where y is a positive constant called “friction constant” which is proportional to the
viscosity of the liquid according to Stokes’ law, and F denotes the random force
generated from random bombardment by the molecules. Accordingly, F is a white
noise process with zero mean value and does not depend on any of its earlier values
explicitly to advance itself from time t to time t + dt. In short, eqn. (2.2.1) can be
considered as a Morkov process and the solution has already been given from section
2.1[7]

v(t) = N(voe‘”’,%(l - e—z“f)], 2.2.2)
Here we define the magnitude of F as mJc and relaxation time 7 = r%/ for
simplicity.

According to equipartition theorem, the energy associated with fluctuations in

kgT
each degree of freedom is 52 , thatis,

%mVar{v(t S o)l = %T _KeT (2.2.3)

Combining Einstein’s relation < x’(t)>=2Dt, where D is defined as diffusion

constant, we have come to

D=-8_ (2.2.4)



The equation makes physical sense perfectly as we could imagine that particles
diffuse faster in a higher surrounding temperature as well as in a less viscous liquid
medium. By some further substitution we could obtain the fluctuation-dissipation
theorem as follows

ok Ty

m?2 ’

(2.2.5)

Eqn. (2.2.5) illustrates that whenever a physical system shows fluctuating dynamics in

some property, there exist an energy dissipation channel accompanying that physical

property. In the case of Brownian motion, the thermally induced random impacts of

surrounding molecules generally cause two kinds of effect: firstly, they act as a

random driving force on the Brownian particles, secondly, they give rise to the

frictional force y for a forced motion [8]. This in turn means that the frictional force

and the random force must be related, because both come from the same origin- the

random bombardment. In a way, fluctuation and dissipation are like two sides of one

coin.

2.2.3 Stochastic Process in the Physical system of Surface-Stabilized

Ferroelectric Liquid Crystal

To successfully construct an SDE model of surface-stabilized ferroelectric liquid
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crystal, we begin with the free energy of liquid crystal. The thermodynamical
potential per unit volume E, whose minima define the stable states of the system, can

be written as [9, 10]

E = eelastic + edielectric + ecouple (226)

free
Let us first consider the elastic free energy which varies with deformations that a
physical system suffers. When liquid crystals deform with external field, three types
of deformation energy would occur. They are splay, twist and bend as sketched in Fig.
2-2-1. Hence the elastic free energy density of the deformed liquid crystals can be
expressed in terms of the three deformations and is given by [10]

€otactic =%K1(V-ﬁ)2 +%K2(ﬁ -V xA)? +%K3(ﬁxVx A)>, (2.2.7)
where K, (i =1,2,3) introduced in eqn (2.2.6) are Frank elastic constants, and they
are respectively associated with the three types of deformation displayed in Fig. 2-2-1.

Ki: conformations with div n#() (splay);

Ko2: conformations with n ¢ curl n#() (twist);

Ks: conformations withn x curl n#0  (bend).

34
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V-Ai#0 A-VxA#0 AxVxA#0

Fig. 2-2-1 The three types of deformation commonly occurring in liquid crystal.

However, the elastic free energy of a chiral smectic C liquid crystal would be
better to start with the & director. If the layer structure does not change, the elastic
free energy density e, 1s given by [11]

Cuse =5 BK- (VX)) 4 BL(V-5)* + 1 BE (V)
—Byy ik (VXOHE (VX&) (2.2.8)
Where the smectic elastic constants B, B,, B3, B3 are relevant to the pure bend, splay,
twist respectively of the tilt director &. In fact, pure distortion of & can imply
mixed distortions of the director fi: for example both B; and B; comprise mixed
symmetrical twist-bend deformations of N, whereas B, implies only 0 -splay

distortion. The new elastic constants read [12]:

B, =sin’ g[K, cos’ 8+ K, sin’ 0],
B, =K,sin’ 6,
B, =sin” g[K, cos’ 8+ K, sin” 9], (2.2.9)

B, :%(Kg_ —K,)sin’ @sin 26.

We could now derive the elastic free energy density of surface-stabilized ferroelectric
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liquid crystals with bookshelf geometry by substitution of eqn. (1.2) into eqn. (2.2.7)

and get

A _l . 421 .421 £ (VxEN?
eelastic_zBl{k (Vx&)} +2Bz(V $) +2B3{§ (Vx&)}

= %(B1 sin’ ¢+ B, cos’ ¢)(gy_¢)2 (2.2.10)

With the help of one constant approximation suggested by de Gennes [10], eqn.
(2.2.10) would deduce to the following given form

y ? 1 o
eelastic = éelasticdy == Kl Sil’lz ¢(_)2 dy (22 1 1)
R PR
The second term on the right hand side of eqn. (2.2.6) is the energy density € ecric

coupling to an electric field applied along the y-axis and is given by

B-E=-Leg® |
2 y

edielctic -

1
— 2.2.12
5 ( )

where D is the electric displacement governed by Maxwell’s equations of

V-D=0. Finally, the third term €.oupre Teferring to the coupling energy between

spontaneous polarization Ps and the external electric field is given by

€couple = _|35 E= —P,E cos ¢. (2.2.13)

The total energy per unit area of the cell can then be expressed as

E free — eelastic + edielectric + ecouple (22 14)

Introducing the rotational viscosity coefficient m, the equation of motion can be

written in the form of a simple harmonic oscillator driven by thermal force Fy,,.,,

and is given by [13]
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62 0 ok ree
? + 77_¢ = f + I:thermal .
ot ot S5p

P (2.2.15)

Where p denotes the material constant having the dimensions of moment of inertia per
unit volume, and m represents the rotational viscosity of FLC. The unit of eqn. (2.2.15)
is Newton - m™. Eqn. (2.2.15) tells us that the stable state is defined by the minima of

the free energy E,. but perturbed by thermally induced random force. However,

free

with the fact that the inertial forces in liquid crystals are much smaller than the
viscous forces as indicated in section 1.3.1, eqn. (2.2.15 ) could be reduce to a simpler

form as follows

a¢ dE free
— = +F . 2.2.16
77 at 5¢ thermal ( )

The equation above is also known as Landau-Khalatonilov equation. To solve eqn.
(2.2.16), we must use Eular-Lagrange equation to find the minima of the free energy.

That is, for any function J that can be expressed in the following form

J= j f(a,a,,X)dx (2.2.17)

X

Its minima can be determined through the equation

oA oot

=— =0 . (2.2.18)
oo 0OX oa,

Thus, the equation of motion in absence of external electric field becomes

2
77% =K Sinz ‘9%4_ I:thermal' (2219)

2

To simplify eqn. (2.2.17) and focus on the ¢ angle fluctuations, we need to
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extract ¢ variance of time dependence by separation of variables. On top of that, the

boundary condition for function ¢ is given by

{¢(O’t) =0 (2.2.20)

#(d,t) =0
for the rubbing direction along the z axis as denoted in section 1.2. With the boundary

condition shown above, we then use sine function to expand eqn. (2.2.19) and derive

Byt = iw(t)sin%,

du(t) - 4
77% +K W(t) = ; I:thermal (t)

(2.2.21)

Here W(t) is a time dependant function of ¢ and K = K sin? 0(%)2. Moreover,

Finermal can be expressed in terms of stochastic mathematics as
4 : 1
— Fiema (1) =7eL () = 7e m N (O, ). (2.2.22)
T —

If we define % = 7, the solution of eqn. (2.2.20) becomes

w(t)= N(%e—t/r’%(l_e—zt/r)} (2.2.23)

As noted that the energy associated with fluctuations in each degree of freedom is

kgT
2

, then

kg T
2

% pVar{w(t — o)} +%RVar{¢(t — )} = %(C—p +Ker)=—8—, (2.2.24)
T

where @ is the angular velocity and has already been defined in section 2.1. We

therefore obtain the fluctuation-dissipation theorem in the physical system of defect

free SSFLC
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c= LTTZ. (2.2.25)
p+Kr

The above equation may look different from what we have deduced in Brownian
motion, but it actually leads to the same result as eqn. (2.2.5). In our model, the
random bombardment acts as a random force that pushes the FLC molecular group
away from the stable state. At this point, the kinetic energy is partially dissipated
though the random impact and the rest of the part would transfer to potential energy.
When the FLC molecular recover itself to the stable state, it release its potential
energy to kinetic energy, though which, the energy is again dissipated because of
friction force caused by random impact. The only difference between eqn. (2.2.25)
and eqn. (2.2.5) is just about energy transferring, but their relation between fluctuation
and dissipation are basically the same. Both fluctuations are from the random
bombardment which also results in friction force. The dynamics in the system of
SSFLC must show some chaotic behavior due to the random impacts of FLC

molecular groups. To deal with such a noise-like signal, the most efficient way is to

analyze it through a correlation function.

2.3 Correlation Analysis

Time-dependent correlation functions have been used for a long time in the

theory of noise and stochastic processes and have become very useful in many areas
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of statistical physics and spectroscopy. Correlation function provides a concise
method for expressing the degree to which two dynamical properties are correlated
over a period of time. In this section we discuss some of the basic properties of these
functions that are relevant to facilitate our understanding of light scattering
spectroscopy.

To begin with, let us consider a physical property A that can be described by a
stochastic differential equation. Generally, the property A exhibits a noise-like profile
due to its random behavior and possesses the following features: the property A
usually takes on different values at different positions in time axis, that is,
A(t+7) # A(t) in mathematics terms. However, when 1 is small compared with the
time scale characterizing the fluctuations in A, A(t+t1) would be very close to A(t). As
T increases, A(t+1) and A(t) are likely getting less and less similar. With the notion in
mind, we could say that A(t+t) and A(t) are correlated when 7t is small, whereas A(t)
and A(tt+t) are getting less and less correlated as t gets larger. To specify this
phenomenon more quantitatively, we need a measure of this correlation. An efficient
and viable method is the autocorrelation function of the property A which is defined

as
< A(0)A(r) >= 11'22%-[ A A(t + 7)dt. (2.3.1)

Here, a fact must be reminded that < A(0)A(r)>=< A(t)A(t+7)> for
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time-invariance. Second, with the principle of Schwartz’s inequality we derive [14],

< A(0)A(r) > << A(0)* > (2.3.2)
which implies that the delayed autocorrelation value (i.e., t#0) will never exceed
initial autocorrelation value (i.e.. t=0). To be more explicit, we can say that the
autocorrelation function of a non-conserved, non-periodic property decays from its
initial vale <A”> to <A>?in the course of time [14].

In light scattering experiments, photons impinging on the photon-detector
produce amplified photon-electron current pulses as an input to the correlator
electronics. Through which, the time-correlation function of the scattered field is
computed in the discrete manner

1 N
<n(0)n(z) >= lim W,Z_; NN, s (2.3.3)
where n; is the number of photocounts during the time interval jAt to (J+1)At and t=n
At with At being the sampling time. Furthermore, the autocorrelation function of
photon-counting fluctuations is related to the autocorrelation function of the
short-time-averaged intensity fluctuations by the relationship
<nON(t+7) >= a’At> <IOI(t+7) >. (2.3.4)
This relationship together with eqn. (1.4) allow us to get the correlation function of ¢
by simply measuring <n(t)n(t+t)>.
From the above context, we realize the necessity of the correlation analysis
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applied in light scattering experiments. Now, we shall introduce its further improved

technique, multiple tau autocorrelation, used in our experiments [15, 16]. Flex02-01D,

which is made by Correlator.com, is a state-of-the-art commercial correlator. It has a

quasi-logarithmic time scale, which is also why it is named “multiple tau”, where

each channel has an individual sampling time (i.e., the bin width) and delay time (i.e.,

the delay from the measurement at time zero). With this quasi-logarithmic time-scale

structure which will be described in Fig. 2.3.1, the sampling time increases with the

delay time. This approach offers the advantage that a wide range of delay times can be

measured with a limited number of correlation channels. For example, delay times

between 0.2 ps and 50 ms can be obtained using only 128 channels. For the same

range of delay times, a linear correlator would require 250,000 channels. In the

presently used correlator which comprises 1152 channels, among which, channels

1-64 have a sampling time of 1.5625 ns. Each following group of 32 channels has an

individual sampling time of twice that of the preceding group (i.e., channels 65-96,

3.125 ns; channels 67-128, 6.25 ns; up to channels 1120-1152, 27s). Accordingly,

there are 35 groups categorized by their bin width. The delay time of each channel is

the accumulated sampling time of all preceding channels (channel 1, 0 ns; channel 2,

1.5625 ns; ... ; channel 1152, 429.4963 s). Additional to each channel there is a

delayed monitor My that accumulates all counts sampled in that channel. For every
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group of channels with equal sampling time, there exists a direct monitor My;, that

accumulates all counts without delay time at a particular sampling time.

channels 1-64 (B) channels 65-96
AT=1.5625ns AT=3.125ns

delay time: 0-100 ns delay time: 0.103-0.2 ps
I I N | | [ ]

ot %]
G |k
()4 Gz *

| Ge | * |
 — )

Ggs=2 l *

Gge=2 l * (€)

Gop=3 | * J

Fig. 2-3-1 Channel architecture of the digital correlator (A) The light intensity form
the confocal volume is registered with a channel width of 1.5625 ns. After every
measurement, three tasks are executed: (1) all channels are shifted to the right, channel
(n - 1) to channel n, channel (n - 2) to channel (n— 1), ..., channel 1 to channel 2. The
new measurement is always stored in channel 1. (2) The products, that is depicted as *,
of channel 1 and 2, of channel 1 and 3, etc., are calculated and added (i.e., >) to the
correlation function G(at;), G(2a1:), G(34aT)), etc., respectively. The value of G(0) can
be calculated by multiplying channel 1 with itself. (3) The delayed monitor is a register
for every channel that sums up all counts that pass through a channel. Therefore, after
each shift of channels the content of every channel is added to its delayed monitor. (B)
Channels 63 and 64 are summed up and shifted to channel 65 which now acquires a
width of 3.125ns. This happens at the end of every channel group. The last two
channels with 3.125 ns (channel 95 and 96) are added to yield channel 97 with 6.25
width and so on. (C) Those channels that have a width of larger than 1.5625 ns (i.e., all
channels after channel 64) are now correlated with a channel at 0 delay time of equal
length. To achieve this, several channels can be summed up. Channels 1 + 2 act as the
0-delay-time channel for channels 65-96 (i.e., channel with 6.25ns width). The sum of
channels 1-4 act as 0-delay-time channel for channels 97-128, and so on. Note that. For
channels 1-64, the correlation is performed after every 1.5625 ns measurement, but, for

channels with a width of 3.125 ns, the correlation will be done only every 3.125 ns, i.e.,
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after 2 measurements of 1.5625 ns and so on. (D) The 0-delay-time channel with 3.125
ns width is shown. It is used for the correlations of channels with a width of 3.125 ns.
The direct monitor is a register for every group of channels with equal length. In this
register, the counts are stored that pass through the channel at 0 delay time. Therefore,
the 0-delay-time channel will be added to the direct monitors after the correlation for a
group of channels with equal width. For example, the 0-delay-time channel of 1.5625
ns will be added to the direct monitor for channels 1-64 every 1.5625 ns. The
0-delay-time channel of 3.125 ns will be added to the direct monitor for channels 65-96
every 3.125 ns, etc. All correlation function and monitors are calculated according to
eqn. (2.3.1)-(2.3.3).

For the calculation of the autocorrelation function, every channel is multiplied
according to its delay time by a channel at zero delay time that possesses the same
sampling time. For example, channels 1-64 (i.e., delay times 0-100 ns, sampling time
1.5625 ns) are multiplied by the intensity signal that is presently measured during
1.5625 ns (i.e., delay time zero, sampling time 1.5625 ns). By the same token,
channels 65-96 are multiplied by the intensity signal that is presently measured during
3.125 ns. The results of the multiplication are summed up over time for the
calculation of the autocorrelation. The counts of the sample at delay time 0 with
sampling times of 1.5625 ns, 3.125 ns, etc. are summed up in the direct monitor Mg;,
of each group of channels with equal sampling time. The autocorrelation is then
calculated by

1 ZN,_m n(kﬁ Ti)”(kAzi + |||Ali)
M-m k=1
Gi(“IAZi) =

, (2.3.1)
M dir,i M del,i

with
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1 M
Mgy = mzk:m n(kAz,) (2.3.2)

and

My, =L2Mf”n(kmi) . (2.3.3)

T M-me—

Here, m is an integer, AT; is the sampling time (i.e., channel width) of channel I, and
mAT; is the delay time. M is the number of measurements over a period of AT, and
is given by M = T/Am;, where T is the total measurement time. n(kAt;) is the number
of photons at time kAT;, sampled with a channel width of AT, and n(kATi +mAT;) the
number of photons at time mAT; later. M - m is the number of possible products n(k
ATn(kAt; +mAT) over which the summation extend in eqn. (2.3.1)-(2.3.3). The
autocorrelation function is symmetrically normalized with the direct and delayed
monitors Mg;; and Mge of corresponding channel i, respectively.

According to Schwartz’s inequality in eqn. (2.3.4), one should find that the

autocorrelation value G(0) time would become one when the signal is invariable.

N —o0

2 N I TR 1T
<[ lim— Y, | lim—>Y, |=|im—>Y, 23.4
[EC e

1Y

lim—>"Y,Y,
N 4=

Here, we use two simple examples to illustrate the main idea of autocorrelation

function: Supposing we measure two different forms of signal that are
n, =CLLLLLLLLY) , and n,=(1,4,7,2,3,8,0,7,-1,2) respectively, then the

autocorrelation value at zero delay time could be calculated as
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M i n(KA7)n(kA7)

G(0)], =—* =1
Q. n(kar))®
. (2.3.5)
M n(kA7)n(kAT)
G(O)|n2= =L ~1.8
(kzl:n(kAr))z

These values we obtained from eqn. (2.3.5) imply that the autocorrelation value at

small delay time is an indication of the variation of the signals, in other words, the

autocorrelation function would not decay once the input signal stays constant.

However, there are several factors that characterize the variation of the signals, such

as the statistical distribution, the mean value and the varience of the signals, etc. It

would hard to tell which factor dominates the autocorrelation value at zero delay time

unless one derive the specific relation in the system.

2.3.1 Statistical Accuracy of the Correlation Measurements of Scattered

Light

The knowledge of the correct standard deviation is necessary for an accurate data

evaluation, especially when fitting theoretical models to experimental data. However,

the standard deviation in correlation spectroscopy has been mostly neglected in

applications because of the difficulty in deriving its analytical calculation [15]. To
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date, the standard deviation has been calculated mostly according to Koppel’s
equation. Koppel’s equation was derived for the case of exponential autocorrelations.
That is to say, it is not a universal solution. Despite all these, we could use the nature
of statistics to obtain reliable data. Generally speaking, for each correlation value with
different delay time it requires over 10,000 times of measurements for averaging in
order to reach a statistical uncertainty lower than 1% [17]. Taking the response time of
liquid crystals, laser stability, and the advantage of multiple tau technique into account,
we set the whole measurement time to be 30 minutes in the following experiments.
Having attained the basic concepts of multiple tau correlation in section 2.3, we
can now proceed with the estimation of statistical accuracy. The correlation value at
different delay time, shown in Fig. 2.3.1, adds a new datum and takes an average
every sampling time. Therefore, we can easily calculate the times for average at each

delay time within 30 minutes by using the following equation:

times to be averaged = (total measurement time T — delay time of each channel)
/sampling time of each group AT

The results are tabulated below, which implies that for a measurement of an
autocorrelation curve that takes 30 minutes only the correlation values at delay time

shorter than 10 seconds are counted as reliable.

Times averaged 68664 8564 1014
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Table 2-3-1 times for average at delay time 1, 10, 100 sec, respectively

2.4 Simulation Results

The stochastic differential equation that has been derived step by step in section

2.2 is also used as the primary equation for simulation.

M+lw(t) =Jer'(t) (2.4.1)
dt T
and
r=1_ i _ (2.4.2)
K Ksin? 6?(%)2

In the following context, we would like to discuss how these two parameters, ¢ and

1 affect the fluctuations of ¢ angle in a SSFLC cell.
r

Let us begin by increasing the parameter ¢ while setting K to be zero. In eqn.
(2.4.1), K acts like an elastic constant. That is to say, the molecule with K been
zero can be treated as a suspension particle in a liquid. The simulations of trajectory

are shown bellow
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Fig. 2-4-1 The simulation results with eqn. (2.4.1) by fixing K parameter at zero. The
red, green, blue lines represent the resulting trajectories of ¢. Here ¢ denotes the
strength of thermal excitation.

The above results are consistent with our expectation. As the thermal excitation
strength increases, the excitation force would push the particle further away from its
original position. Because of the lack of elastic interaction ( K =0), the particle would
never return to the places where it has once passed through.

Let us now fix the parameter ¢ while increasing % gradually. Since K acts
like a restoring force, we figure that the molecule would behave more and more like

. 1
an oscillator as the parameter — becomes larger. Here, we have chosen the
T

magnitude of thermal force C to be 1. The outcomes are depicted as follows
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Fig. 2-4-2 The simulations of SSFLC cell with different 1 , while the thermal
T

excitation strength c fixing at 1. Here 7 is understood as a relaxation time. The red,

green, blue lines represent the corresponding trajectory of ¢.

Just as we have expected, the FLC molecules with higher values of 1 (i.e., the
T

ratio of K to ) move forward and back across the equilibrium orientation with ¢=0
while those with lower ratio relax slowly towards the equilibrium orientation. A more
detailed description along with experimental data will be presented in the next

chapter.
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Chapter 3

Dynamic Light Scattering from Defect-Free SSFLC

with Varing Doping Level of ZnO nanocrystals

3.1 The motivation of doping nc-ZnO

One nanometer is a magical point on dimensional scale. Nano-composites are at
the confluence of the smallest of human-made devices and the largest molecules of
living systems. Nanoparticles at this dimension scale embedded in a liquid crystal do
not significantly perturb the director field in the liquid crystal, and interaction
between the nanoparticles is weak. However, the nanoparticles may share their
intrinsic properties with the liquid crystal via alignment and anchoring with the liquid
crystal. For instance, that dispersing low concentrations of submicron ferroelectric
particles in a nematic liquid crystal enhances the dielectric response and induces a
linear response to the electric vector E. In contrast to molecular additives, these
particle dispersions substantially lower the operating voltage of liquid crystal displays
and related devices [18].

Our research was inspired by many previous publications that describe the

peculiar behaviors of smaller particles embedded in liquid crystal matrices [19, 20],
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calling for the need of a concerted research effort in nanostructured materials and

liquid crystals. It has been employed to demonstrate the potential to yield an improved

LC alignment and the electro-optical properties [21]. The developments has also

revealed that the phase transition [22], ionic effect [23], and dielectric anisotropy [22]

of liquid crystals are adjustable with doping of various nanomaterials, such as silica

particles, LC-covered Pd particles [24], and ferroelectric nanoparticles, etc. The

design parameters of the methodology include material, size and shape, doping

concentration and surfactant properties of nanoparticles, which could provide an

effective and flexible way to generate promising materials for the next generation

liquid crystal application.

The material we choose to dope into FLC is Zinc oxide. It is a unique material

that exhibits semiconducting and piezoelectric dual properties. With the special

features, it has become a promising candidate for nanoelectronic and photonics.

Compared with other semiconductor materials, ZnO having higher exciton binding

energy (60 meV), is more resistant to radiation, and is multifunctional with uses in the

areas as a piezoelectric, ferroelectric and ferromagnetic. So far, the various

applications of ZnO nano materials such as biosensors, UV detectors and FED are

under way.

To date, the mutual interaction between nanocrystals and liquid crystals is still a
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profound mystery. However, through the light scattering experiment, we wish to come
up with a possible model from a semi-microscopic view to describe the doping effect
within the SSFLC cells. Furthermore, we would discuss its possibility to enhance

application properties of a FLC material.

3.2 Material Properties of Ferroelectric Liquid Crystal Felix017/100

3.2.1 Material Properties of ferroelectric liquid crystal Felix017/100

The liquid crystal we used is a temperature-sensitive material that covers a

variety of phases as listed in Table 3.2.1.

Phase transition Critical temperature
(state) ©)
Isotropic <— Nematic 87-84°C
Nematic<—> Smectic-A 77°C
Smectic-A<—>Smectic-C* 73C
Smectic-C*<—> crystal -28C

Table 3-2-1 The phase transition temperatures of the ferroelectric liquid
crystal Felix017/100 used in this study.
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Among them, the electro optical properties in a smectic-C* phase are especially

temperature dependent and thus they make a great impact on thermal experiments.

Table 3.2.2 shows some properties that are needed for simulation.

Temperature | Rotational Effective Spontaneous

(K) viscosity cone Polarization
(10-3Pas - s) Angle0 (nC/cm?)
)

308°K 105 14 47
318°K 60 13 39
328°K 35 11.5 32
338°K 20 10 25

Table 3-2-2 The material parameters needed for the study with

respect to temperature.

3.2.2 Sample preparation of Defect Free SSFLC with nc-ZnO doping

The defect-free surface-stabilized ferroelectric liquid crystal cells consist of two

ITO-glass plates. The plates were coated with polyimide alignment layers (RN1182

from Nissan Chemical), which were rubbed in anti-parallel to suppress the occurrence

of zigzag defects [25], and then separated by 1.5 um-thick spacer to maintain a cell
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gap approximating to the half-wave thickness d,, = A/2An~1.9um estimated with
An >~ 0.17 and A=0.633um.

Colloidal ZnO nanoparticles were prepared by the procedures that have been
published in previous reports [26]. It is caped with 3-(trimethoxysilyl) propyl
methacrylate (TPM) during the synthesis process of nc-ZnO. The corresponding
bandgap as well as the photoluminescence peak were found to be 3.54eV and 518 nm,
indicating the average diameter of the ZnO nanoparticles to be about 3.2 nm.

To prepare nc-ZnO doped SSFLC, we dispersed an appropriate amount of
nc-ZnO nano powder into Felix 017/100 (purchased from Clariant incorporation in
Germany) with ultrasonic at 85°C for 40 min and then cooled down to room
temperature in vacuum. To achieve various doping level of nc-ZnO, a weight
percentage must be calculated precisely. The desired FLC material was filled into the
test cells while it is in isotropic phases and then cooled down slowly to 35°C to form

a stable smectic-C* phase.

3.3 Experiment Results and Discussion

The measured results are shown below with an order of a SSFLC cell with

different doping percentage of nc-ZnO from zero to five percent. In order to observe
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the fluctuation caused by thermal, each of the cells was held at a series temperature

from 35 to 65°C and every other 10°C in between, which falls on the smectic-C*

phase temperature range of the liquid crystals we used. Let us first see the

autocorrelation functions of pure SSFLC under different thermal excitation

1.005 -

pure FLC_35°C
pure FLC_45°C
pure FLC_55°C
pure FLC_65°C

1.004

Autocorrelation

1E-3 0.01 0.1 1 10
delay time (sec)

Fig. 3-3-1. The measured autocorrelation function of dynamic light scattering intensity

from pure SSFLC at different temperature.

Let us first see the autocorrelation functions of pure SSFLC under different thermal
excitation shown in Fig. 3.3.1. There are two distinct trends: for one thing, the
autocorrelation function decays rapidly when temperature rises up. This phenomenon
is reasonable and consistent with our previous analysis in chapter two, which also

implies that we should gradually increase the parameter of random force c in
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simulation as the temperature rises up. Therefore, the autocorrelation function drops
faster to 1, reflecting the state of completely uncorrelated. To be more specific, the
more random the system gets, the time duration from correlated to uncorrelated
becomes shorter. The other characteristic we can easily observe is the autocorrelation
value, which could be explained theoretically by using the eqn. (2.3.1) - (2.3.3) and is

given by the following deduction. First, let us begin with eqn. (2.2.21)
%Jm) =/cr(t). (3.3.1)
T

Where % =7 and K =K sin® 49(%)2 . The solution to eqn. (3.3.1) is
wr CT -2t/
w()= N(%e ,7(1-6 )) (3.3.2)
We could therefore calculate the correlation value at delay time zero ACF(z =0)by
calculating first

< cos” y(t)cos’ w(t) >=<cos* w(t) >

2
00
1 y

= J.cos4t//- 'e_;dl// (3.3.3)
i cr
2r—
1 2 8EY
= (3+4e 2 +e 2 j
27ZC—T
2

And the normalization factor
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<cos’y(t)>*=

1 7
= J.COSzl//-—-e dy (3.3.4)

1 -2
=—(+e
8(

Eqn. (3.3.3) and eqn. (3.3.4) lead to

<cos’y(t)cos’ w(t+7)| _,>

ACF(r'=0)=
( ) <cos’ T(t) >
1 257 sy
7(:2_ (34—49 +e ] (3.3.5)
B 27[7 . 1 p+ Kz?
= — —=
f1;(14_(9 25) 2 cr 2kgTr

Intuitively, when a system gets more chaotic, the signals become noisier and result in
a lower correlation value [27]. This is also in agreement with our deduction in eqn.
(3.3.5), which shows that the correlation value is inverse proportional to chaos c.
However, eqn. (3.3.5) involves with at least four parameters. Without the precise
value of them, it would be hard to evaluate the autocorrelation value. Fortunately, we
could obtain these values by simulation. The parameters we would need for
simulation are random force ¢, K and 1. Though we may not know the precise value
of ¢, we do know its trends when temperature rises up. Besides that, the material
properties n of Felix017/100 is extremely sensitive to temperature as indicated in
Table 3-2-2. It almost drops to half of its original value every 10°C increasing. By

substitution the material property into eqn. (3.3.5) and supposing the elastic constant
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K does not vary abruptly with temperature, we would obtain the simulated

autocorrelation values listed in table 3-3-1, where one could see the autocorrelation

values gradually increase just as those of experiment data with increasing temperature.

Furthermore, we use eqn. (3.3.1) as a fitting model for dynamic light scattering from

pure SSFLC. The simulation results and related parameters used are given below

35C 45 C

1.0015 1.0032 4

m—sim ulation

em—simulation experiment

experiment

1.0024
1.0010

1.0016

Autocorrelation
Autocorrelation

1.0005
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— oy | Py proveey
T T T
1E-3 0.01 0.1 1 10 100
Delay time(s) Delay time (5)

55°C 65C
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m—simulation

simulation experiment

experiment
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Autocorrelation
Autocorrelation
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Fig. 3-3-2 The autocorrelation functions at a series temperature. The red curves
represent the experiment data and the black lines are simulated from eqn. (3.3.1). The

related parameters used in simulation are listed in table 3-3-1.
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Temperature | Rotational | K= Ksinze(E)2 L, C G(0)
(K) viscosity d K
(10-3Pas - s) (N/m?) (C) (dimesionless) | (dimesionless)
308°K 105 0.17 0.61 1.5 1.0699
318°K 60 0.15 0.4 2.1 1.46371
328°K 35 0.12 0.292 3.5 1.51
338°K 20 0.1 0.2 6 1.52

Table 3-3-1 The fitting parameters used in simulation.

The simulations in Fig. 3-3-2 do match the experiment results and the trend of

parameter ¢ that we expect to increase while temperature rises up is also in agreement

with our experiment results.

To yield a better understanding, we further compared the four different doping

levels of nc-ZnO under the same temperature. The corresponding autocorrelation

functions acquired by the digital correlator hardware Flex02-01D are shown in the

following figure.
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Fig. 3-3-2 The autocorrelation function of various doping level of nc-ZnO at 35, 45, 55,
65°C . The comparison at temperature 45°C does not show clearly the variation between
SSFLC cells of doping level 0, 0.5, 5% because of the scaling problem, and its zooming
figure will be shown later in Fig. 3.3.3. The black, red, blue and green lines are the
measured data of pure SSFLC, 0.5% doped nc-ZnO, 1% doped nc-ZnO and 5% doped

nc-ZnO, respectively.
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Fig. 3-3-3 The zooming picture of SSFLC cells with 0%, 0.5% and 5% doped nc-ZnO
at 45°C. The black, red and green lines represent the measured raw data of 0%, 0.5%

and 5% doped nc-ZnO, respectively.
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The comparisons give some surprising results: (1) The autocorrelation functions of

SSFLC with doping level 0%, 0.5%, 5% of nc-ZnO have two things in common —

when the temperature rises up (a) the time duration from correlated to uncorrelated

shorten. (b) The correlation value at small delay time increases. These two features

are attributed to the abruptly changes in viscosity 1 as is deduced previously. (2) The

measured raw data of doping level of 1% nc-ZnO have showed a very unique

behavior from the others. As one could easily tell that at temperature 45, 55, 65°C

this SSFLC cell exhibits an oscillation in the autocorrelation function while none of

the other cells does. (3) Except for the data of SSFLC with doping level of 5%

nc-ZnO (the green lines), the other data with doping nc-ZnO (i.e., the red and blue

lines) have larger autocorrelation values at small delay time and longer time duration

from correlated to uncorrelated than those of pure SSFLC’s (black lines) measured

data. (4) The measured raw data of SSFLC with doping level of 5% nc-ZnO are very

close to those of pure SSFLC. That is to say, the black lines at temperature 35, 45, 55

and 65°C are almost identical to the green ones in magnitude and trends. Combining

the fact with eqn. (2.2.23) and eqn. (3.3.5), we would discover that doping 5%

nc-ZnO into SSFLC probably does not affect much the macroscopic property of

SSFLC such as viscosity n and the elastic constant K so that the autocorrelation
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values and the duration time from correlated to uncorrelated stay unchanged.

Let us now try to explain these observations presented above. Recall that in
section 1.3, we described the smectic phase to have more spatial order than nematic
phase does, which is revealed by a fact that the smectic phases has somewhat
positional order while the nematic does not. This fact strongly suggests that the
dynamical behavior in the smectic phase structure is supposed to be closer to that in
the solid crystal structure than that in the nematic phase structure. But unlike the
underdamped dynamics of the phonons in the solid crystal, molecular fluctuations in
the ferroelectric liquid crystals are still overdamped as proved in the autocorrelation
function measured with the undoped SSFLC cell shown in Fig. 3.3.1. However,
something interesting happened right after we doped 1% nc-ZnO into the pure SSFLC
cell which then exhibit oscillation in its autocorrelation. With the knowledge in mind,

we turn ourselves back to eqn. (2.2.13) and analyze it with

(3.3.6)

2 thermal »

2
p—+na—+ K sin’ QM: F
ot oy

Again, we employed the separation of variables to extract the dynamical part of the

equation
O'w(t) Ot ‘ .
P 8’/:2( ) +7 l’gt( ) + K sin? 9(5)21//('[) = Fyerma () (3.3.7)
K sin’ 6(™)
Defining the angular velocity o and a?=———09 e derive [28]
o,
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dy = w(t)dt

K sin2 0(%) 2w (1)
dw = - d

77 ~
dt — L o(t)dt + F,,,,., (H)dt
B » (t) thermat (1) (3.3.8)

0 1
:d(wj: _gr N (l//jdtJr[N 0 ]
w Yo w l:thermal (t)dt

0 1
A= 2 .1 (3.3.9)
yo,

is u’+ n u+a’ =0, with the eigenvalues

n f 7.2 2 n , 7 \2 2
=—— + (D) -a”, =——— ()" —-a”. 3.3.10
Hy 2p (2,0) H 2p (2/0) ( )

By using the theory of the harmonic oscillator, we distinguish three cases [28, 29]:

1. overdamped T Sk ,
(sin .9%)2
2. critically damped T _K , (3.3.11)
. VAN
sin@ —
( d )
3. underdamped T k.
(sin 9%)2

From eqn. (3.3.11), we now understand that the dynamics of SSFLC from

overdamped to underdamped can occur with the changes of the material properties.

Furthermore, with the help of eqn. (3.3.5) and eqn. (2.2.25) we can recover the

following three characteristic features that correspond to the experimental

observations (2) and (3) by gradually increasing the parameters K:
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(1) the smaller ¢ parameter resulting in the longer time duration from correlated to

uncorrelated;

(2) higher value of autocorrelation at small delay time; and

(3) the dynamical transition from overdamped to underdamped.

autocorrelation

0\\\\\ L Lol L Lol L Lol L Lol L [NV .
10 10 10" 10° 10" 10°

delay time(s)

Fig. 3-3-4 A simulation result for underdamped dynamics. Note that the oscillation

behavior begins at delay time 0.02 seconds, which equals to the experiment result of
SSFLC doped with 1% ZnO at 45°C.

An underdamped simulation based on eqn. (3.3.7) is given above. Overall speaking,
the doping with nc-ZnO somehow changes the material properties such as K and n
especially the former one which, on the other hand, is related to the order parameter
[30]. To construct a possible mechanism of the doping effect, it might be better to
begin with the interaction between the liquid crystals and ZnO crystals. Experimental

and theoretical studies on ZnO crystals have all revealed a presence of a giant
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permanent dipole moment that is about 4800 nC/cm” [31], which serves as a local
electric field that would force the surrounding ferroelectric liquid crystals to align
along its electric lines of force. As a consequence, the SSFLC doped with nc-ZnO
have better spatial order [21, 30]. However, if the liquid crystals surrounded by a
moderate amount of nc-ZnO (i.e., a higher doping level of nc-ZnO) would not know
how to align but to follow its nature’s lead since the dipolar fields generated from
each nc-ZnO are very likely to cancel one another. In short, it is because of the
unchanged alignment that results in the unchanged material property and lead to

similar results as those of pure SSFLC.
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Chapter 4

Probing into the Influence of the Stochastic Processes

on the Field-Driven Motion in SSFLC

4.1 Introduction

Many of the physical properties of mesomorphic materials, such as birefringence,
optical activity, viscosity and thermal conductivity could be affected by varying
external stimulations. Electric fields, magnetic fields, thermal and acoustical
excitation can be invoked to induce material responses [32]. As illustrating in Figure
4.1 for the case of liquid crystal, efforts are focused on the electro-optic effect because
of the ease and efficiency of LC excitation with an applied voltage as compared with
other means of stimulation. However, many more possibilities can be explored

further.

responsivity: result of coupling via orientational order

stimulus response: change in
chemical compressibility
electric field conductivity
light orientational electric susceptibility
magnetic field order magnetic susceptibility
temperature / refractive index
mechanical stress modulus
viscosity

Figure 4-1-1 Responsivity of LC that can be coupled via LC orientational order.
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Among these responsivities of mesomorphic materials, not many of them have
been explored about how the spontaneous fluctuation interferes with a deterministic
motion of the constituent molecules. Based on the kinetic theory, such a stochastic
motion should always exist and accompany all kinds of activities within the
substances at temperature above the absolute zero. It is also inevitable in a practical
application, which may cause an unexpected result or error.

In this chapter, we shall first discuss how a random force perturbs deterministic
excitation modes of FLC molecules excited by an external electric field. We will show
the simulation results and compare them with the experimental investigation. Finally,
we will examine how the coupling of the field-driven motion in SSFLC with the

random fluctuation affected by doping of nc-ZnO.

4.2 Basic Equations

Let us go back to section 2.2, where we have derived a form of free energy suited
for FLC in eqn. (2.2.12). The free energy is comprised of an elastic free energy and a
coupling energy to an electric field, a dielectric free energy and a spontaneous

polarization free energy.

Eq.=¢ + oouple (2.2.14)

elastic + edielectric
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When an electric field is applied on a FLC cell, a dielectric torque occurs on the

director and leading to a free energy —gyE2 /2. In addition, FLC possesses a

nonvanishing spontaneous polarization, which can couple to the electric field and

causes a free energy—P.Esing and determines the response time of electro-optic

effect according to [33]

) (4.2.1)
where, 77 is rotational viscosity for the director motion on the cone of the tilt angle.
If the principal dielectric constants along fi, P and PxfA are €, & and &,
respectively, the y-component (i.e., the cell normal) of the dielectric tensor in
xyz-coordinates can be expressed in the following form [30]

g, = (g cos’ O+ &,sin’ )sin’ ¢ + &, cos” . (4.2.2)
In response to an external electric field applied along the y-direction, the equation of

motion in eqn. (2.2.14) becomes

hermal

2
n%:—K sin? 98—f+le2 +PEsing+F
ot oy 2 0¢

(4.2.3)

hermal >

2
= —Ksin® (98—?+lsin2¢sin2 O(e, —&)E’> + PEsing +F,
oy- 2

where the dielectric free energy was further simplified by assuming €; ~ ¢;. This is
an equation of both time and space dependence. However, the first term in the right
hand side of the equation can be neglected due to the bookshelf geometry. The second
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term compared with the third term is also negligible at low fields. Thus the equation

can be reduced to

d_¢_ PE
dad 7

1
sin ¢ +— Fthermal (t) (423)
n
Fihermal can be expressed in terms of stochastic mathematics as
) 1
Foemat (0 = 1ET () = Ve Hm N0 —) (4.2.4)
Therefore, eqn. (4.2.3) becomes

d¢ PE

dt:n

sing +~/cI(t) . (4.2.5)

S

n

Here, the term not only determines the response time of the FLC, but also has a

great impact on the molecular motion; as one can see from eqn. (4.2.3) that the
stronger this coupling energy is, the more easily the FLC director be driven and
results in a greater variation in ¢ . The second term on the right hand side of equality
is the random force caused by thermal energy as introduced in Chapters two and three.
We have two driving forces- one is a deterministic form, and the other one is
characterized with a probability density. One must be curious about how the FLC
molecules behave under the two forces. We will probe the dynamics through the
simulation, and further verify it by comparing the simulation with experimental
observations.

The parameters used in the simulation are as follows. The spontaneous
polarization Py= 47 nC/cmz, cone angle 20 = 55.1°, cell thickness d=2um, rotational
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viscosity n = 105 mPas - S, dielectric constant € = 5.65 and, above all, the magnitude

of random force 0.5, for we hold the SSFLC at a temperature around 25°C.

4.3 Simulation Result

In order to reveal the influences of random force on the deterministic motions of

FLC molecules, it is necessary to analyze first the dynamical behavior of the FLC

molecules in absence of the random force. This can be achieved by turning off the

random force and applying an electric field with a sinusoidal driving voltage (V,,=1V)

of 10Hz in eqn. (4.2.5). For a clear revelation, three different presentations are shown

below: first, the simulation result of azimuthal angle ¢ based on the equation of

motion derived in previous section (i.e., eq. (4.2.2)) is presented; second, the zoom-in

picture of the angle ¢ dynamics is shown for the dynamical detail; third, the

corresponding light intensity autocorrelation function is given.

Simulation

1204

80 +

o()

40

1E-3 0.01 0.1 1 10
Time (s)

Figure 4-3-1(a) The simulated trajectory of angle ¢ with parameters ¢ =0, Vpp=1V and
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frequency at 10Hz.

Simulation

1204

80 +

o()

40

0.2 0.4 0.6 08 1.0
Time (s)

Figure 4-3-1(b) The zoom-in picture of figure 4-3-1(a)

1.6 -

Simulation of noise0

1.2

0.8

Autocorrelation

0.4

1E-3 0.01 0.1 1 10
Delay time (s)

Figure 4-3-1(c) The corresponding autocorrelation

The first simulation shown above is the dynamics of SSFLC driven by a
sinusoidal electric waveform of frequency 10Hz, which implies that the director of
FLC molecules should oscillate with the electric field at the same frequency. That is,
the director would vibrate 10 times in one second as seen in Fig. 4-3-1(b). In Fig.
4-3-1(a), we have also observed that the driving voltage, whose peak to peak equal to
one volt, may not have the power to fully switch the director from 0 to w. But, the
motion of the FLC molecules is correctly modulated with the external driving field as

shown in Fig. 4-3-1(b). The frequency of the optic axis coming back and forth could
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not only be determined from Fig. 4-3-1(b), but also be seen in its corresponding

autocorrelation function (ACF), where the adjacent two peaks of the oscillation in Fig.

4-3-1(c) is about 0.1 seconds which is just the time the FLC molecules take to come

back and forth to its original place. Moreover, the ACF shows everlasting amplitude

of oscillation, which is beyond question for there is no other random force that could

disrupt the deterministic path of FLC molecules so that the corresponding ACF

remains the same throughout the process.

We now that know how the FLC molecules behave without the thermal

disturbance, we would gradually increase the random force to see what might happen.

The following simulation results are presented by increasing the random force from

0.1, 0.5, 1.2, and 2.5. Note that the value of 0.5 corresponds to a temperature of

around 25°C.
120 —— sirmulation with noise 0.1 154 — simulation ACF with noise 0.1
80 g 12
e
_ =
< £
091
» §
N
2
061
O.
01 1 10 E3 001 0l 1 10
Tine 5) Delay Time (s)

Figure 4-3-2(a): The ¢ trajectory and its corresponding ACF at parameters ¢=0.1, V,=
1V, and frequency 10Hz.
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Figure 4-3-2(b): The ¢ trajectory and its corresponding ACF at parameters ¢=0.5, V,=
1V, and frequency 10Hz.
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Figure 4-3-2(c): The ¢ trajectory and its corresponding ACF at parameters c=1.2, V,=
1V, and frequency 10Hz.

150- 14
—— Simuilation with noise 2.5 — Simulation ACF with noise 2.5

100 g

1 g 12
=
— )
< =
3

e

504 9

S 101
=
<

0.
. , 0.8 : : T ,
0.1 1 10 1E-3 0.01 0.1 1 10
Time (s) Delay Time (s)

Figure 4-3-2(d): The ¢ trajectory and its corresponding ACF at parameters ¢=2.5, V,=
1V, and frequency 10Hz.

From the simulations shown in Figures 4-3-1 and 4-3-2, we can draw some
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conclusions: when the random force increases (1) the trajectory of the director
becomes more and more irregular. This is because the random force is a random
variable and brings in the irregularity in the ¢ route even under a deterministic field,
(2) there is a decrease in the autocorrelation value at delay time zero. This
phenomenon is consistent with our intuition that the system should become less
similar as it gets more and more chaotic; (3) the ACFs with the disturbing of a random
force show decaying amplitudes at longer delay time. The reason of a decrease of
amplitude is no other than the random force existing in the system, which makes the
trajectory of motion more and more irregular and thus results in a less similarity with
time in the ACF. To sum up, the dynamics under measure actually manifests itself in
the corresponding ACF which, for a periodic motion, implies us the precise period

and the degree of random force involved.

4.4 Experimental Study of the Dynamic Light Scattering from Pure

SSFLC and Nanocrystalline-ZnO doped SSFLC

4.4.1 Experiment Results of Pure SSFL.C

Having connected the electrodes attached on the ITO of the cell to a function

generator, we apply one volt of sinusoidal driving voltages with a series of
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frequencies from 10Hz to 10 kHz. The experimental results shown below are
presented with different frequencies, and each of them would be compare with the

simulation result under the same condition.

1201 o 120

— Simulation with noise0.5 — simulation with noise0.5
80- 80-
< <
g N’
=4 =4
40 404
0 T 1 0 T T T T T
0.1 1 10 02 04 0.6 0.8 1.0
Tins (5) Tins (5)

Figure 4-4-1(a): The simulated trajectory of angle ¢ with parameters ¢ =0.5, Vpp=1V
and frequency at 10Hz.
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Figure 4-4-1(b): The comparison of the experimental and simulated ACFs by applying
a sinusoidal driving voltage of 10 Hz. The picture on the left is the simulated result

while the experimental curve is presented on the right hand side.
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Figure 4-4-2(a): The simulated trajectory of angle ¢ with parameters ¢=0.5, V,,=1V

and frequency 100 Hz.
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Figure 4-4-2(b) The comparison of experiment and simulated results by applying a

sinusoidal driving voltage with 100Hz. Note that the frequency of the oscillation in

ACEF corresponds to the driving frequency. This is also the sign of the FLC molecules

being modulated by the external field.
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Figure 4-4-3(a): The simulated trajectory of angle ¢ with parameters ¢ =0.5, Vpp=1V
and frequency 1 kHz.
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Figure 4-4-3(b): The comparison of the experimental and simulated ACFs by applying
a sinusoidal driving voltage of 1kHz. The picture on the left is the simulated result
while the experimental curve is presented on the right hand side. One can observe that
the amplitude of oscillation in ACF is getting smaller as the driving frequency

increases.

The three experiments share two things in common: (1) the FLC molecules
driving by the electric field with 10 Hz to 1 KHz seem to catch up the field quite well;

the temporal separation of two neighboring peaks in the ACFs indicates that the FLC
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molecules truly move back and forth in response to the driving field. (2) According to

our conclusion drawn in section 4.3, we are certain that the decay of amplitudes

shown in the ACFs is due to the random force. However, there are also some distinct

differences among them. First, the oscillating amplitude of the conic motion (i.€., @)

of FLC decreases with the increasing frequency of the applied field. This is a

reasonable outcome as the travelling distance of a forced motion is proportional to the

lasting time of the applied field. Secondly, if we take a closer look at the ACFS, we

can find that the more greatly the FLC director oscillates the bigger correlation value

the ACF would become.

Let us increase the driving frequency to 10 kHz and study the resulting dynamics.

The driving voltage is set to be V,,=1V. According to eqn. (4.2.1), the FLC molecules

may not be able to catch up anymore since the response time is longer than 100 psec.

The failure of FLC molecules to switch coercively with the external field could be

revealed in the simulated trajectory of motion shown in fig. 4-4-4(a). In other words,

instead of being modulated by the external driving field with such a high frequency

and low driving voltage, the FLC molecules in a highly viscous environment

practically remain at their original orientation. The little variation in the orientation of

FLC director causes a nearly constant scattered light which in turn results in a flat

autocorrelation function.
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Figure 4-4-4(a): The simulated trajectory of angle ¢ with parameters ¢=0.5, V,,=1V
and frequency at 10 kHz.
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Figure 4-4-4(b): The comparison of experimental and simulated ACF curves by
applying a sinusoidal driving voltage of 10 kHz. Both results show a weak orientational

variation in the ACFs.

Based on the investigation, we can conclude: (1) the autocorrelation indeed
reflects the dynamics under measure. For a periodic oscillating behavior, the temporal
separation of the first two peaks in the autocorrelation function represents the time it
takes to come back to the place closest to where it started and it is at this moment, the

ACF reaches a maximum similarity. Therefore, the delay time between any of two
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neighboring peaks in ACF corresponds to the oscillation period; (2) from both
simulation and experimental results, the random force has proved to be nonnegligible;
(3) the term PE/n is an important electro-optic parameter, which governs the
response time of FLC molecules as indicated by eqn. (4.2.1). The parameter can also
serve as an indication of the molecular motion revealing in the ACF; the stronger the
coupling energy is, the more intensive the molecules motion becomes and results in
greater amplitude of oscillation in the corresponding ACF. These conclusions will

help us understand the following results of doped SSFLC with nc-ZnO.

4.4.2 Experiment Results of SSFLC with various doping level of nz-ZnO

For a better understanding, we will show the experimental results with an
increasing doping level from 0 to 5%, and each of them would contain data sets
measured at four different driving frequencies 10Hz, 100Hz, 1 kHz, and 10 kHz. The
corresponding autocorrelation functions are presented in fig. 4.4.2.

The dynamics of the four cells with different nc-ZnO doping levels exhibit one
thing in common: the amplitudes of oscillation in ACFs gradually decay as the
applied frequency increases. We believe that it is because the molecules do not have
enough time to fully switch their states with such a low driving field but high

frequency. This also implies that as the applied frequency increases, the director f
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rotates less and less around the cone axis and therefore leads to a smaller ACF in

amplitudes. This observation once again confirms our simulation in section 4.3.
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Figure 4-4-5(a): The corresponding autocorrelation function of SSFLC cells doped
with 0 (left panel) and 0.5% (right panel), respectively.
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Figure 4-4-6(b): The corresponding autocorrelation function of SSFLC cells doped
with 1 (left panel) and 5% (right panel), respectively.

The first thing one might notice is the oscillation behavior in the autocorrelation

functions of SSFLC doped with 0.5%, and 5% nc-ZnO driven by an electric field with
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frequency at 10 kHz. This oscillation that doesn’t exist in pure SSFLC cell strongly
implies that the doping effect truly enhances the dynamic electro-optic response. We
attribute this enhancement to a faster response time, which is very likely to come from
(1) zinc oxide nanoparticle itself has a giant permanent dipole moment, which is about
100 times larger than one FLC molecule [31]. There is no doubt that the coupling
energy to the electric field would therefore increase and result in a faster response
time of FLC according to eqn. (4.2.1); (2) in section 1.3.2, we knew that each of the
FLC molecules possesses a spontaneous polarization due to the molecular chirality.
However, for a bulk SmC* sample, free to develop its helical structure, will not show
ferroelectric behavior since the spontaneous polarization will average to zero over one
pitch. In brief, the macroscopic spontaneous polarization has everything to do with the
alignment within the FLC cell; the better the alignment is, the stronger the
macroscopic spontaneous polarization becomes. This conclusion indirectly confirms
our deduction in chapter three which, through a mathematical description, tells us that
the alignment of the FLC molecules is indeed improved by simply doping ZnO
nanocrystals into the cell.

Another interesting observation from Fig. 4.4.2 is the amplitudes of oscillation in
the ACFs of the four different SSFLC cell. The amplitude, according to conclusion (2),

is an essential index that relates to the term P,E/n, which governs the electro-optic

&3



property. The quantitative relationship of amplitude among all the cells under study is

listed in table 4.4.1.

Drivingfreq Comparison of amplitude
10Hz FLC+1%nz-ZnO > pure FLC= FLC+0.5%nz-ZnO>FLC+5%nz-ZnO
100Hz FLC+1%nz-ZnO > FLC+0.5%nz-ZnO>FLC+5%nz-ZnO>pure FLC
1 KHz FLC+1%nz-ZnO > FLC+0.5%nz-ZnO>FLC+5%nz-ZnO>pure FLC
10 KHz FLC+0.5%nz-ZnO>FLC+5%nz-ZnO>>pure FLC

Table 4-4-1: The quantitative relationship of amplitude.

From this comparison, we found that the amplitude in ACF is related to the alignment

within the cell, for one can easily tell that the SSFLC cells doped with 0.5% and 1%

nc-ZnO show greater amplitudes of oscillation than the pure one does at all

frequencies. This observation corresponds to our conclusion in Chapter 3 that these

two cells do have better alignment comparing to pure SSFLC, especially the one

doped with 1% nc-ZnO, which also shows the best electro-optic property at field with

frequency 10Hz, 100Hz, and 1 kHz. Another possible cause may come from a

decrease in the thermal fluctuation within the SSFCL cells doped with 0.5% and 1%

nc-ZnO. The simulation done in section 4.3 supports our theory that the more lightly

the thermal force disturbs the deterministic field, the greater the autocorrelation value
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will be reached. With these dynamic light scattering experiments, we are convinced

that doping ferroelectric liquid crystals (FLC) with nanomaterials actually yields some

degrees of freedom for tailoring FLC properties from various aspects. To be more

specific, instead of synthesizing new mesogenic molecules to produce new LC

materials with high application potentials, our approach of simply blending seems like

a good way to go.
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Chapter 5

Conclusion and Future Prospect

In this thesis, we attempt to discuss the dynamics of SSFLC. First, we start with
the scattered light coming from the collective excitation induced by thermal energy
inside the FLC molecules. This thermal fluctuation converted into autocorrelation
function is then proved to be an indication of some material parameters that
characterize the SSFLC system such as viscosity, elastic constant and temperature.
The mathematical relation between thermodynamics and material properties enable us
to examine the influence brought by doping nanocrystal ZnO into SSFLC from a
macroscopic viewpoint and further confirm the fact that SSFLC shows better
alignment with doping nc-ZnO. The experiment has once again proved that the
thermodynamic is not just some random noise, but is full of useful information.
However, the unpredictable dynamics become unwanted when controlling the
material by applying external fields. It disturbs the deterministic path given by the
field and lead to an unexpected output. This part of thermodynamics should be
handled well or it would result in an unexpected error.

In addition to the industrial importance, liquid crystalline materials are
interesting also as model systems for studying a broad spectrum of fundamental

phenomena in physics due to the richness of different phases and the structures
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analogous to many of the bio-system. For example, it may serve as a starting point for

analysis of protein structure and evolution. The prospect of the bio-application of

liquid crystal should be brightening.
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