國立交通大學

應用化學系應用化學研究所

碩士論文

研究生:洪文彬

指導教授:林明璋 院士

中華民國九十八年八月

摻雜硼、磷之二氧化鈦對太陽能電池的影響

The Effects of B-/P-doped TiO₂ on Solar Cells

研究生:洪文彬Student:Wen-Bin Hung指導教授:林明璋Advisor:M.C.Lin

A Thesis

Submitted to Department of Applied Chemistry

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of Master

in

Applied Chemistry August 2009 Hsinchu, Taiwan, Republic of China

掺雜硼、磷之二氧化鈦對太陽能電池的影響

研究生:洪文彬

指導教授:林明璋 院士

國立交通大學應用化學研究所碩士班

摘要

本研究主要目的為探討摻雜硼、磷之二氧化鈦奈米粒子薄膜,應用在 染料敏化以及量子點太陽能電池上,對其整體效率的影響。我們採用兩種 不同的二氧化鈦來源:市售(P25)與水熱法合成,以及硼酸和亞磷酸,利用 一簡單方法製備摻雜硼、磷之二氧化鈦奈米粒子,並藉由 XRD、XPS、SEM 1896 和 AM1.5 逐一分析。

總的來說,二氧化鈦在經過摻雜硼、磷前後,其晶相和粒子大小均無 明顯變化;但在光電轉換效率方面,無論是在染料敏化或是量子點太陽能 電池上,均顯示摻雜硼的二氧化鈦會使得轉換效率有一增強的效應,尤其 是在水熱法合成之二氧化鈦吸附染料(N3),效率從3.05%(未摻雜)上升至 4.65%(摻雜10%硼)。而摻雜磷則會讓整體效率大幅度的下降,磷的濃度上 升其效率下降的程度也越明顯。

The Effects of B-/P-doped TiO₂ on Solar Cells

Student : Wen-Bin Hung

Advisor : M. C. Lin

Department of Applied Chemistry National Chiao Tung University

ABSTRACT

This study investigates the effects of the B-/P-doped TiO₂ applied in thin film electrode on the performance of the dye-sensitized and quantum dot solar cells. The B-/P-doped TiO₂ nanoparticles were prepared by sol-gel method and by using commercial P25 with varying amounts of dopants. Boric acid and phosphorous acid were used as boron and phosphorous sources. All samples were characterized by XRD, XPS and SEM analyses, and by AM1.5 simulations.

Generally speaking, the TiO₂ after doping of boron or phosphorous, its crystalling phase and particle size do not change significantly. But the performance of B-doped TiO₂ on dye-sensitized and quantum dot solar cells shows that, addition of more boron dopants resulted in higher efficiencies. Particularly the efficiency was noted to increase from 3.1 % without doping to 4.7 % with 10 % B-doping for the N3 dye cell. On the other hand, addition of an increasing amount of phosphorous dopants results in a significant decrease in the overall efficiency.

致謝

時光飛逝,歲月如梭,碩士生涯終於告一段落。在這三年的研究所生 活中,首先要感謝的就是我的指導教授林明璋院士,院士在實驗上的創新 想法,訓練學生獨立思考的能力,以及對學生學問的要求以及生活上的幫 助,都讓我受益匪淺,還有您熱愛台灣的那股熱情,都深深的影響了我。 在此說一聲,老師,謝謝您。

打從進了這個實驗室開始,就一直受到許多人的照顧,有善良的秀琴 姊、總是奴役學弟的老王、溫柔對待大家的愛妃學姊、實驗技巧很厲害的 偉哥、逗趣的阿福學長,跟小哥不相上下的阿龍學長、很認真作實驗的政 凱以及夢想當老師的仕燁學長,還有AD、阿布、徐偉智等同儕間的幫忙與 鼓勵,以及本實驗室及王老師實驗室的學弟妹等,還有口試委員王念夏和 李積琛老師給了我寶貴的建議,讓我的論文更加的完整,謝謝你們在這段 日子裡給我的幫助,發自內心由衷的感謝。

最後感謝我的父母及親朋好友一路上的支持,以及女友的細心陪伴, 讓我的碩士生涯充滿了美好的回憶,在此將我所有的成果與你們分享。

iv

總目錄

中文摘要·i
英文摘要ii
誌谢 ······iv
總目錄 ····································
表目錄 ······ix
圖目錄 ····································
第一章 緒論
1-1 前言1
1-2 太陽能電池簡介
1-2-1 結晶矽太陽能電池
1-2-2 薄膜太陽能電池
1-2-3 有機太陽能電池
1-2-4 染料敏化太陽能電池9
1-3 研究動機
第二章 文獻回顧
2-1 染料敏化太陽能電池的基本架構17
2-1-1 染料敏化劑

2-1-2 多孔性奈米二氧化鈦薄膜
2-1-3 電解質溶液
2-2 染料敏化太陽能電池工作原理23
2-3 二氧化鈦簡介
第三章 實驗方法與設備
3-1 實驗藥品
3-2 實驗方法
3-2-1 製備摻雜硼之二氧化鈦奈米粒子
3-2-1-1 採用市售的二氧化鈦奈米粒子
3-2-1-2 採用水熱法合成之二氧化鈦奈米粒子膠體溶液32
3-2-2 製備摻雜磷之二氧化鈦奈米粒子(對照組)
3-2-3 二氧化鈦奈米粒子薄膜的製作
3-2-3-1 採用掺雜硼與磷之二氧化鈦粉末
3-2-3-2 採用掺雜硼之二氧化鈦奈米粒子膠體溶液34
3-2-4 電解液的配置
3-2-5 染料的配置與吸附34
3-2-6 夾層太陽能電池的製作35
3-3 實驗儀器與設備36
3-3-1 使用儀器與設備

3-3-2 分析儀器應用原理37
3-3-2-1 X光粉末繞射儀
3-3-2-2 X射線光電子能譜儀
3-3-2-3 太陽光模擬器
3-3-2-4 高解析度場射掃描電子顯微鏡
第四章 結果與討論41
4-1 XRD分析
4-1-1 市售的二氧化鈦奈米粒子42
4-1-2 水熱法合成之二氧化鈦奈米粒子44
4-1-3 對照組: 摻雜磷之市售的二氧化鈦奈米粒子45
4-1-4 單位晶格變化(Unit-cell refinement) ······46
4-2 XPS分析 ······49
4-2-1 市售的二氧化鈦奈米粒子49
4-2-2 水熱法合成之二氧化鈦奈米粒子53
4-3 SEM分析
4-3-1 市售的二氧化鈦奈米粒子58
4-3-2 水熱法合成之二氧化鈦奈米粒子60
4-4 AM1.5分析 ······63
4-4-1 摻雜硼之市售的二氧化鈦奈米粒子63

4-4-2 摻雜硼之水熱法合成二氧化鈦奈米粒子	64
4-4-3 對照組: 摻雜磷之市售的二氧化鈦奈米粒子	66
4-5 摻雜硼、磷之二氧化鈦應用在量子點太陽能電池:氮化銦/二	氧化鈦系
統	68
第五章 結論	•••••71
第六章 參考文獻	73

表目錄

表[3-1] 實驗藥品
表[3-2] 儀器與設備
表[4-1] 掺雜不同濃度的硼之 P25 其 XRD 圖譜半高寬整理43
表[4-2] 掺雜不同濃度的硼之水熱法合成二氧化鈦 XRD 圖譜半高寬整理
表[4-3] 摻雜不同濃度的磷之市售二氧化鈦其 XRD 圖譜半高寬整理
表[4-4] Chen 實驗組摻雜硼之二氧化鈦晶格參數47
表[4-5] 水熱法合成摻雜硼之二氧化鈦晶格參數48
表[4-6] 摻雜硼之市售二氧化鈦晶格參數48
表[4-7] P25 ESCA 尖峰束缚能 ************************************
表[4-8] 水熱法合成之 TiO2 ESCA 尖峰束縛能
表[4-9] B-P25/N3 dye 其光伏參數列表64
表[4-10] B-hydrothermal TiO ₂ /N3 其光伏參數列表65
表[4-11] B/P-P25/N3 其光伏參數列表
表[4-12] B-P25/InN 其光伏參數列表68
表[4-13] P-P25/InN 其光伏參數列表70

圖目錄

圖(1-1)	太陽能電池發電原理5
圖(1-2)	不同硼酸濃度下之轉換效率
圖(1-3)	不同亞磷酸濃度下之轉換效率
圖(1-4)	掺雜硼之二氧化鈦其紫外可見光吸收圖
圖(1-5)	NADH 的光再生反應
圖(2-1)	N3 染料的化學結構式18
圖(2-2)	Black dye染料的化學結構式 ······19
圖(2-3)	染料敏化太陽能電池工作原理圖
圖(2-4)	染料敏化太陽能電池之電子能階概要圖
圖(2-5)	染料敏化太陽能電池中產生電子再結合的機制26
圖(2-6)	半導體氧化物的能階示意圖
圖(2-7)	掺雜氟的二氧化鈦粉末與 P25 之紫外光吸收光譜圖29
圖(2-8)	有無摻雜氮的二氧化鈦奈米粒子其紫外-可見光區吸收光譜圖
•••••	
圖(3-1)	太陽能電池的組裝35
圖(4-1)	二氧化鈦晶體結構圖41
圖(4-2)	掺雜不同濃度的硼之市售二氧化鈦其XRD繞射圖譜43
圖(4-3)	掺雜不同濃度的硼之水熱法合成二氧化鈦其XRD繞射圖譜

•••••	
圖(4-4):	掺雜不同濃度的磷之市售二氧化鈦其XRD繞射圖譜46
圖(4-5)	市售之二氧化鈦奈米粒子低解析度XPS能譜49
圖(4-6)	高解析度B 1s的XPS能譜51
圖(4-7)	高解析度O 1s的XPS能譜52
圖(4-8)	水熱法合成之二氧化鈦奈米粒子低解析度XPS能譜54
圖(4-9)	高解析度B 1s的XPS能譜55
圖(4-10)	高解析度O 1s的XPS能譜57
圖(4-11)	掺雜不同濃度的硼之市售二氧化鈦斷面SEM圖
圖(4-12)	掺雜不同濃度的硼之市售二氧化鈦SEM圖
圖(4-13)	掺雜不同濃度的硼之水熱法合成二氧化鈦斷面SEM圖60
圖(4-14)	掺雜不同濃度的硼之水熱法合成二氧化鈦SEM圖62
圖(4-15)	摻雜不同濃度的硼之製備二氧化鈦薄膜吸附N3後其I-V曲線圖
圖(4-16)	掺雜不同濃度的硼之水熱製備二氧化鈦薄膜吸附N3後其I-V曲線
	圖
圖(4-17)	掺雜不同濃度的硼/磷之製備二氧化鈦薄膜吸附N3後其I-V曲線圖

圖(4-18) 摻雜不同濃度的硼之製備二氧化鈦薄膜覆蓋氮化銦後其I-V曲線圖

••••••	••••	•••••	•••••	• • • • • •	•••••	••••	•••••	•••••	•••••	•••••	•••••	••••	••••	•••••	•••••	•69
圖(4-19	9)	摻雜	不同	同濃」	度的み	磷之	製備	二氧	化鈦	薄膜	覆蓋	氮化	銦後	其I-V	/曲約	泉圖
•••••	••••	•••••			•••••		•••••		•••••	•••••	•••••	••••	• • • • • • •			·70

第一章 緒論

1-1 前言

根據經濟部能源委員會九十一年五月「台灣能源統計年報(九十年)」 資料顯示,在技術與成本的限制下,預估目前全球的石油蘊藏量只能維持 約40年、天然氣約60年,煤蘊藏量可使用不到230年,而核能發電的燃料源 自鈾礦,預估尚可開採70年,然而不幸地是隨者科技日新月異,人們對能 源的需求量正以前所未有的速度增加,導致解決能源危機問題具相當急迫 性,因此必須正視此問題。由於太陽能是取之不盡用之不竭的再生能源, 加上乾淨無污染,只要有陽光照射處,即可獲取能量,因此解決此一問題 的最好途徑之一是藉由太陽能電池將光能轉化成電能。

近年,有相當多的研究關於如何降低太陽能電池的生產成本,並且利 用相關經驗、數值分析和理論預測模式,研究高效率光電池之性質。科學 家與工程師們積極地研究,並製備高效能與低成本的太陽能源系統,主要 是為了將太陽能電池推向普及化的目標邁進。目前太陽能電池大致上可分 為幾種不同的材料,單晶矽、多晶矽、非晶矽及有機太陽能電池。其中, 單晶矽太陽能電池的轉換效率可高達20%以上,且操作穩定性極佳,然價 格太高仍無法大量普及。為了使製作方式簡單及降低生產成本,發展出來 的一種新穎的太陽能電池—染料敏化太陽能電池,此電池總成本較矽晶太

1

陽能電池成本低,使得其逐漸受到重視。近幾年來在此領域擁有幾項突破 性的研究,使其轉換效率已達10~12%,但由於使用以液態電解質為主之染 料敏化太陽能電池,在長期使用下會存在電解質洩漏的問題、染料會因UV 光的照射而劣化,而造成穩定性不佳,因此,解決這些問題為目前染料敏 化太陽能電池之主要之研究方向之一。

1-2 太陽能電池簡介

太陽能電池的發電原理,一般是以掺雜少量硼原子的p型半導體當做基 板,然後再用高溫熱擴散的方法,把濃度略高於硼的磷掺入p型基板內,如 此即可形成一p-n接面,而p-n接面是由帶正電的施體離子與帶負電的受體離 子所組成。在該正、負離子所在的區域內,存在著一個內建電位,可驅趕 在此區域中的可移動載子,故此區域稱之為空乏區。當太陽光照射到一p-n 結構的半導體時,光子所提供的能量可能會把半導體中的電子激發出來, 產生電子—電洞對,電子與電洞均會受到內建電位的影響,電洞往電場的 方向移動,而電子則往相反的方向移動。如果我們用導線將此太陽能電池 與一負載連接起來,形成一個迴路,就會有電流流過負載,這就是太陽能 電池發電的原理,如圖(1-1)所示。1896

1-2-1 結晶矽太陽能電池[1]

至於多晶矽是指材料由許多不同的小單晶所構成,它的製作方法是把熔融的矽鑄造固化而形成。而非晶矽則是指整個材料中,只在幾個原子或

分子的範圍內,原子的排列具有週期性,甚至在有些材料中,根本沒有週 期性的原子排列結構。它的製作方法通常是用電漿式化學氣相沈積法,在 基板上長成非晶矽的薄膜。由於材料的晶體結構不同,因此,用不同的材 料設計出太陽能電池時,它們的光電特性也會有所不同。大致上可分為以 下三類的應用方向:

(1)單結晶矽太陽電池

一般來說,單晶矽太陽能電池的光電轉換效率最高,使用年限也比較 長,比較適合於發電廠或交通照明號誌等場所的使用。世界上,生產太陽 能電池的主要大廠,例如日本的夏普公司,都以生產這類型的單晶矽太陽 能電池為主。市場佔有率約五成,單晶矽電池效率從11~24%,蒸鍍式晶片 從16~24%,當然效率愈高其價格也就愈貴。

(2)多結晶矽太陽電池

至於多晶矽太陽能電池,因為它的多晶特性,在切割和再加工的手續 上,比單晶和非晶矽更困難,效率方面也比單晶矽太陽能電池的低。不過, 簡單的製程和低廉的成本是它的最重要特色且較單晶矽電池便宜20%。所 以,在部分低功率的電力應用系統上,便採用這類型的太陽能電池。

(3)非結晶矽太陽電池

對於非晶矽的太陽能電池來說,由於價格最便宜,生產速度也最快,所以非晶矽太陽能電池也比較常應用在消費性電子產品上,其中以砷化鉀電

池是最高效率的電池,但成本也最高。而新的應用也在不斷地研發中。

製圖:查丁壬

圖(1-1) 太陽能電池發電原理^[2]

1-2-2 薄膜太陽能電池

薄膜太陽電池為太陽能電池產業重要的一環,雖然薄膜電池的效率較低,但相較於矽晶片製作而成的太陽能電池具有低成本之優勢。因此,其

具有一定比例上的佔有率大約是 10%。主要大致上可分為兩大類: 矽薄膜 太陽能電池、碲化鎘(CdTe)薄膜太陽能電池^{[3]。}

(1) 矽薄膜太陽能電池

在前述的主題中稍有介紹過結晶矽太陽能電池,而三者其中唯一商品 化量產的是非晶矽的太陽能電池。最早開發此薄膜太陽能電池有大的突破 是在於其矽結晶層的厚度僅5~50毫米,可用次級矽材料、玻璃、陶瓷或石 墨為基材。除了矽材料使用量可大幅降低外,此類型的太陽能電池由於電 子與電洞傳導距離短,因此矽材料的純度要求,不如矽晶圓型太陽能電池 高,在材料成本上可進一步降低。由於矽材料不像其他發展中的太陽能電 池之半導體材料,具有高的吸光效率,且此型電池的矽層膜厚度不須像矽 晶圓太陽能電池矽層厚度要求約達300 微米,但為提高光吸收率,設計上 需導入光線流滯的概念,此點是與其他薄膜型太陽能電池不同之處。

其製備方法有:液相磊晶(Liquid Phase Epitaxy,LPE)、許多型式的化 學蒸鍍(CVD),包括低壓與常壓化學蒸鍍(LP-CVD、AP-CVD)、電漿強化化 學蒸鍍(PE-CVD)、離子輔助化學蒸鍍(IA-CVD),以及熱線化學蒸鍍 (HW-CVD)。因為非晶矽薄膜具有較高能隙,所以現今大多的研究轉為非晶 矽薄膜與微晶矽太陽能電池組成之堆疊電池為主。日本的三菱公司已成功 製備100 cm²,光電轉換效率達16%的元件。

(2)碲化鎘(CdTe)薄膜太陽能電池^[3]

此類型的電池在薄膜太陽能電池中歷史最久,也是被密集探討的一種 之一。在1982年時Kodak^[4]首先做出光電轉換效率超過10%的碲化鎘薄膜太 陽能電池,目前實驗室最高的光電轉換效率可達16.5%。

典型的CdTe光電池結構的主體是由約2μm層的p-type CdTe層與厚僅 0.1μm的n-type CdS形成,光子吸收層主要發生於CdTe層,其吸光效率係數 大約為105 cm-1,因此僅數微米厚即可吸收大於90%的光子。CdS層的上部 先接合TCO,再連接基材,CdTe上部則接合背板,以形成一個光電池架構。 目前已知製備高光電轉換效率CdTe薄膜太陽能電池,不論電池結構如何, 均需要使用氯化鎘活化半導體層,方法上可採濕式或乾式蒸氣法。

關於CdTe薄膜太陽能電池,目前已有多種的方法可採用,其中不乏具 量產可行性的方法。已知的方法有濺鍍法(Sputtering)、化學蒸鍍(CVD)、網 印(Screen-Printing)、電流沉積法(Galvanic Deposition)、化學噴射法(Chemical Spraying)、密集堆積昇華法(Close-Packed Sublimation)。

1-2-3 有機太陽能電池

有機太陽能電池具有成本低廉、製程簡便、易於大面積化以及可具撓 曲性。由於具備可撓曲性的特點,使其在未來可將此有機太陽能電池材料 直接塗佈於可撓式基材表面,如此簡易的製程將可大幅降低製備成本。然 而此系列的太陽能電池至今尚未量產之主因是在於其轉換效率太低以及穩 定性的問題,因此,提高轉換效率則成為目前研究的首要目標。有機太陽 能電池大致可分為以下四大類:有機高分子太陽能電池、有機/無機奈米 複合材料太陽能電池、有機/C₆₀奈米複合材料太陽能電池、染料敏化太陽 能電池。

(1)有機高分子太陽能電池

一般無機半導體材料(Si)是利用p-n junction的形式製成太陽能電池,所 以理論上若能合成出具不同電子親和力的導電高分子,且能隙(Band gap)在 可見光的範圍內,即可組成類似p-n junction形式的太陽能電池。在1977年 MacDiarmid與A. J. Heeger et al.^[5]利用電化學和化學法摻雜聚乙炔 (Polyacetylene)而使其導電度提升109倍。因而開啟了各種不同共軛導電高分 子的研究,如:Poly p-Phenylene Vinylene(PPV)、Polythiophene(PT)、 Polypyrrole(PPy)、Polyaniline(PAn)等。6

若單純只利用有機高分子所製得之太陽能電池,其發電效率低。主要 是因為有機高分子由於到處有電子的捕捉點(Electron Trap),導致其電子遷 移率太低^[6],無法有效貢獻光電流,而導致效率遠低於無機半導體。因此, 整體的發電效率要提高需著重在電洞傳導層(Donor)與電子傳導層(Acceptor) 需在可見光區能吸收光子,並能有效的將所激發出之電子-電洞對在其衰 退至基態前快速導出,如此才能對光電流有所提升。

(2)有機/無機奈米複合材料太陽能電池

奈米二氧化鈦是良好的n型半導體,具有良好的電子傳導能力,能階約

為3.2 eV, 在更高能量的紫外光下會激發出電子 - 電洞對。因此, 有學者以 MEH-PPV做為吸收光子的電洞傳導層, 二氧化鈦為吸收光子的電子傳導 層,利用此概念提出MEH-PPV與二氧化鈦奈米顆粒混合製成有機/無機奈 米複合材料太陽能電池^[7-9]。然而, 此複合材料若要得到均匀的混合效果, 需經改質。於是Hide et al.^[10]提出利用Silation將(CH3)₃SiCl與二氧化鈦上的 -OH基鍵結,使得二氧化鈦與MEH-PPV有較佳的相容性,使其易懸浮於 MEH-PPV溶液中, 而達到改質效果。Savenije et al.^[11]所製得之二氧化鈦/ -MEH-PPV變層結構太陽能電池在於AM1.5下僅有0.15%的光電轉換效率。 (3)有機/C₆₀奈米複合材料太陽能電池

除了上述的材料外,另外有一較新且高電子傳輸效率的材料C₆₀衍生物 亦被應用於太陽能電池上。其主要為電子傳輸層(Acceptor)的角色,若與 MEH-PPV及其衍生物或其他p型導電高分子混合即可製成D-A Type的太陽 能電池。其中,在C₆₀衍生物和PPV衍生物應用於太陽能電池上的研究以A.J. Heeger^[12]為主;仍可發現到C₆₀衍生物和PPV衍生物在本質上是不相容,易 有相分離的情況出現,故需先將C₆₀導入可溶於一般有機溶劑的側鏈,以提 高其與PPV衍生物的相容性^[13],之後再與MEH-PPV混合組成有機/C₆₀奈米 複合材料太陽能電池,而其轉換效率約為3%。

1-2-4 染料敏化太陽能電池

染料敏化的功能在1910年開始就有學者投入研究,但多半著重於尋找 可能的光敏化氧化-還原反應^[14]。1950年後開始有較多的研究在應用於染敏 聚合以及染料於催化物質表面修飾敏化後的氧化反應研究^[15-17]。1960~70年 代開始有研究把染料敏化應用在光電轉換之太陽能電池上^[18],但最初使用 的是平滑電極,因而產生兩個問題:(一)平滑電極的表面積太小,對於吸 收太陽光能力不足;(二)電極上所能吸附的染料僅限於表面單層,造成光 電轉換效率不佳。若染料多層吸附則會造成電子轉移不易,整體效率在0.1% 以下。

1976年日本 Tsubomura¹¹⁹等人發表利用多孔性 ZnO 作為染料敏化太陽 能電池的工作電極,可得 2.5%的光電轉換效率,此後染料敏化太陽能電池 成為新型太陽能電池的研究方向之一,但整體效率始終難以突破。1991年 瑞士 M. Grätzel^[20]實驗室發展出一種高效率、低成本的太陽能電池,是利用 奈米結晶顆粒的二氧化鈦多孔性薄膜當作工作電極,再經吸附釘(Ru)的多吡 啶錯合物之敏化處理後,再使用碘離子/碘三根離子(Iodide / Triodide, Γ/ I₃⁻)的氧化還原電解液溶液作為電解質,對電極為鍍上鉑(Platinum)金屬的導 電玻璃。其光電轉換效率可達 7.1~7.9%,近期的研究中光電轉換效率已可 超過 10~11%^[21,22],未來在於商業上的應用將成為可能。 1-3 研究動機

自1991年, M. Grätzel等人發展出染料敏化太陽能電池後,由於奈米晶 體TiO₂薄膜具有很高的比表面積和較高的光電轉換率而具有價格低廉、工 藝簡單、穩定的性能和壽命長等優點,因而成為世界各國研究機構爭相開 發的研究重點。

現今染料敏化太陽能電池多以二氧化鈦薄膜作為電極,所以對於二氧 化鈦奈米材料的改質一直是提升電池轉換效率的努力方向之一。而本實驗 團隊已有使用過硼酸(B(OH)3)和亞磷酸(P(OH)3)作為連結分子,修飾量子點 太陽能電池氮化銦/二氧化鈦的介面^[23],試圖讓氮化銦層照光後產生的光電 子,能藉著連結分子順利傳遞到二氧化鈦層上,增加短路電流進而提高轉 換效率。而其實驗方法簡單來說則是將二氧化鈦電極分別浸泡在不同濃度 的硼酸或是亞磷酸溶液中,經過一段時間的靜置後,硼酸或是亞磷酸分子 便會被吸附在二氧化鈦層上,接下來將此電極利用PECVD的方式覆蓋上氣 化銦薄膜,觀察吸附上不同濃度的硼酸或是亞磷酸對整體轉換效率的影 響。實驗結果如圖(1-2)、圖(1-3)所示,浸泡過硼酸的樣品其光電轉換效率 相對於浸泡前,都有一增強的效應,尤其當硼酸溶液濃度為0.1M時,效率 提升最為明顯;而浸泡在亞磷酸的樣品則和硼酸呈現一完全不同的趨勢, 隨者亞磷酸溶液的濃度上升整體轉換效率大幅度的隨之降低。

11

圖(1-2) 不同硼酸濃度下之轉換效率。(a)85°C氮化銦、(b)150°C氮化銦^[23]

圖(1-3) 不同亞磷酸濃度下之轉換效率。(a)85°C氮化銦、(b)150°C氮化銦^[23]

而由於二氧化鈦本身可以吸收紫外光,在光觸媒的實驗中也有許多其 摻雜了硼以後增加其光催化的文獻。例如:Chen^[24]等人利用四異丁醇鈦 (TTB)和硼酸在溶膠法下製備掺雜硼之二氧化鈦奈米粒子,並發現經過硼的 掺雜後,其在紫外-可見光吸收光譜中出現一藍位移的現象,對於紫外光的 吸收度提升,如圖(1-4)所示。

圖(1-4) 摻雜硼之二氧化鈦其紫外可見光吸收圖,左下角數字代表摻雜硼的 濃度[B_{atomic}/Ti_{atomoc}](%),右上角為360nm~410nm的放大圖^[24]

而為了測試其光催化的效果,則將上述掺雜硼之二氧化鈦作為催化劑,應用在NADH(Nicotinamide adenine dinucleotide)的光再生反應中,NADH 即還原型輔酶一,是存在於所有細胞內自然產生的輔酶,而且是細胞發育 和制造能量必須的物質,有傳遞質子的作用(NADH + H⁺ + Coenzyme + 4H⁺_{in} → NAD⁺ + Coenzyme-H₂ + 4H⁺_{out})。實驗結果如圖(1-5)所示。經過UV光的照 射後,所有摻雜硼的樣品其光催化能力都比原來的二氧化鈦提升許多,尤 其是在摻雜濃度為5% 硼的樣品最為明顯。作者認為造成此影響的原因有 以下三點:

圖(1-5) NADH的光再生反應。[Cp*Rh(bpy)(H₂O)]²⁺作為電子傳遞者,H₂O 作為電子提供者,摻雜硼之二氧化鈦作為催化劑,照射光源為UV 光,左上角數字代表摻雜硼的濃度[B_{atomic}/Ti_{atomoc}](%)^[24]

 掺雜硼後的二氧化鈦其在UV光區的吸收變強,使得更多的光電子和 電洞參與光催化的反應,造成催化效率提高。

- (2) 由於charge-compensation的關係,硼的掺雜使得Ti⁴⁺被部分還原成Ti³⁺ (3Ti⁴⁺ ↔ 3Ti³⁺ + B³⁺)^[25-26],而Ti³⁺在二氧化鈦奈米粒子表面可以作為 active-site協助反應物的吸附並有捕捉光電子並降低電子電洞再結合 的效果。換句話說,Ti³⁺也是光電子和電洞的一個recombinationcenter,隨者Ti³⁺的數量增加,再結合作用發生的機率會逐漸上升,這 也說明了摻雜濃度為5% 硼的樣品,其催化效果最好,但摻雜的濃度 上升到10% 硼後光催化效率則開始下降。
- (3) 由於NADH的光再生反應中,水分子為一electron donor,所以提高分 解水的速度能夠增進NADH的再生速度,而當摻雜濃度從10% 硼提高 到20% 硼時,會在二氧化鈦表面形成三氧化二硼層。Moon^[27]等人發 現Pt-loaded Ti/B binary oxide對於分解水有很好的效果,因此推測是表 面的三氧化二硼讓分解水的速度提高,進而增加了NADH的再生。

上述的一些實驗結果顯示,二氧化鈦本身在吸附了硼酸分子後,應用 在量子點太陽能電池:氮化銦/二氧化鈦中,使得轉換效率有一提高的趨勢 ;而將摻雜硼之二氧化鈦,作為一個光催化劑應用在NADH的光再生反應 中,發現摻雜後的確讓光催化的效果變好,這些例子都說明了二氧化鈦的 摻雜屬於一種很有潛力的材料。

因此本研究主要是將摻雜硼的二氧化鈦奈米粒子,應用在太陽能電池上,期望能夠利用摻雜硼來降低二氧化鈦層上的電子電洞再結合機率,進

15

而增加光電流的傳遞使電池效率提高。將會使用兩種不同的二氧化鈦來源 : 市售的二氧化鈦(P25)、與水熱法合成之二氧化鈦,將其經摻雜硼的改質 後,製備成薄膜應用在染料敏化太陽能電池中,以觀察硼的摻雜程度對電 池光電流及光電轉換效率的影響,並用同樣方法摻雜磷以作為對照組,也 將此法所製得摻雜硼、磷之二氧化鈦應用在量子點太陽能電池氮化銦/二氧 化鈦上,試圖了解其中的差異性。

第二章 文獻回顧

2-1 染料敏化太陽能電池的基本架構

染料敏化太陽能電池主要是由多孔性奈米晶體二氧化鈦薄膜、染料敏 化劑、電解質溶液以及白金對電極所構成,以下則針對各組成部份加以討 論。

2-1-1 染料敏化劑

染料是染料敏化太陽能電池中的重要組成部分。在近20年的研究中, 已嘗試合成了900多種的染料並應用於染料敏化太陽能電池上,但其中只有 一小部分具有良好的光敏化性能,其中主要是釘的多吡啶錯合物。染料性 能的優劣將直接影響到染料敏化太陽能電池之光電轉換效率,因此電池對 染料的要求非常嚴格,一般的染料須符合以下條件^[28]:

(1)緊密吸附在二氧化鈦表面。也就是說能夠快速的達到吸附平衡且不易脫落,所以染料分子母體中,一般應該要含有易與奈米半導體表面結合的基團,如-COOH、-SO₃H、-PO₃H₂。如染料上之-COOH官能基會與二氧化鈦膜上的-OH官能基形成成酯類,而增強了二氧化鈦導帶3d軌域和色素染料π軌帶電子的耦合,使電子轉移更為容易。

(2)對可見光具有很好的吸收特性,即是能吸收大部份的入射光。

(3)敏化劑其氧化態(S⁺)和激發態(S^{*})要具有較高的穩定性和活性。

(4) 激發態壽命足夠長,並具有很高的電荷(電子、電洞)傳輸效率。

- (5)具有足夠的激發態氧化還原電位,以保證染料激發態電子注入二氧化鈦 導帶。
- (6)在氧化還原過程(包括基態和激發態)中要有相對低的勢位,以便在初級

和次級電子轉移過程中的自由能損失最小。

目前已知效果最好的是以釘的多吡啶錯合物為主的染料,其結構最早 是由Grätzel的團隊所研發出來,此類形的染料因其具有較強的可見光吸收 能力、良好的光電化學性質、激發態穩定性高及與二氧化鈦表面具有強的 作用力,且可接受約5x10⁷次的氧化還原反應,因此成為廣泛使用的染料敏 化劑,如圖(2-1)~(2-2)的結構。

RuL₂(NCS)₂

(N3 Dye)

圖(2-1) N3染料的化學結構式

RuL'(NCS)3

(Black Dye) 圖(2-2) Black dye染料的化學結構式

【cis-bis(4,4'-dicarboxy-2,2'-bipyridine)dithiocyanatoruthenium(II)】 (RuL₂(NCS)₂ Complex)的染料又稱為N3 dye(或red dye),其吸收光的範圍可 達可見光區,從400nm~800 nm,全質子化的N3 dye在538 nm、398 nm有最 大的吸收峰^[29],其激發態的生命週期為60 ns,而且經由紅外光光譜的檢測 也已證實此染料分子是以羧基和二氧化鈦形成配位鍵結^[30]。

【thithiocycanato4,4'4"-tricarboxy31-2,2':6'2"-terpyridine ruthenium(II)】 (RuL'(NCS)₃ Complex)稱為black dye,其吸收光的範圍含蓋了可見光且可達 近紅外光區(900 nm),單一質子化的Black Dye在 610 nm、413 nm有最大的 吸收峰,在拉曼振動光譜的研究中也指出,單一質子化的Black Dye與二氧 化鈦的表面鍵結與N3 Dye相同是由Bidentate Chelate或Bridging的型式與二 氧化鈦配位鍵結,其差別在於Black Dye是以一個COO⁻與TBA⁺和二氧化鈦 產生配位鍵結^[31]。然而,以上這些染料可在可見光及近紅外光區有吸收主 要可歸因於Metal-to-LigandCharge Transfer(MLCT)的性質,由金屬(Ru)的電 子傳遞到位於外圍的羧基化吡啶配位鍵的π反鍵結軌域,之後在少於 100 fs 的時間內將電子傳入二氧化鈦的導帶^[32-36]。因此,理論上光子轉換為電子 的比例可達到 100%。

2-1-2 多孔性奈米二氧化鈦薄膜

奈米二氧化鈦薄膜電極是太陽能電池的關鍵,其性能直接影響到太陽 能電池的光電轉換率^[37]。首先,太陽能電池所產生的電流與二氧化鈦電極 所吸附的染料分子數有直接的相關性。一般來說,表面積越大所吸附的染 料分子越多,因而光生的電流也就越強。另一方面,二氧化鈦粒徑越小, 它的比表面積越大,此時電極的孔徑隨之變小。在低光強度的照射下,質 傳動力學速度能夠滿足染料分子的再生,在此條件下孔徑大小對光電性質 的影響不大;而在強光照射下,質傳動力學速度一般不能夠再滿足染料分 子的再生,此時孔徑大小對光電性質的影響較大。造成這些結構的主要原 因是:小孔徑吸附染料分子後,剩餘的空間很小,電解質在其中擴散的速 度將大大降低,因此電流產生的效率也將下降^[38~40]。

制約染料敏化太陽能電池光電轉換效率的一個因素就是光電壓(Photo

20

Voltage)過低。這主要是由電極表面存在的電荷複合所造成的。因為奈米晶 體的半導體中缺少空間電荷層,同時存在大量的表面態,導帶中的電子很 容易被表面陷阱俘獲,大大增加了與氧化態電解質複合的機率。因此,如 何降低電荷複合就成為改善光電轉換效率的關鍵。在目前研究中,使用某 些有機物質對電極表面修飾後,光電壓明顯提高,但有機物在使用過程中 存在著穩定性的問題。而無機物具有有機物所沒有的一些優點,如穩定性 高、操作便利及成本低。

多孔性的二氧化鈦薄膜塗佈在導電玻璃表面時,膜的厚度通常是數微 米到數十微米,而將來商業化的應用要求是期望二氧化鈦薄膜能夠達到五 個需求,分別為:(1)高比表面積;(2)多孔性;(3)高導電性;(4)透明化;(5) 高穩定性等。而目前常用的製備二氧化鈦多孔膜方法有:溶膠凝膠法、水熱 反應法、熱分解噴鍍法、網印法、濕式化學沉積法等。

2-1-3 電解質溶液

染料敏化太陽能電池的電解質(Electrolyte)目前一般採用液態電解質, 而其中最為廣泛採用的是I₃/I'體系,其作用是還原被氧化的染料分子。電解 質在電池內,碘三根離子(I₃)會與由二氧化鈦傳導帶上傳出的電子在對電極 發生還原反應,而染料會被碘離子(I⁻)氧化,故好的電解質能增加元件之氧 化還原性。

液態電解質的高離子導電度,是其擁有高效率的原因,但其還是有元 件密封不易,而使得電解質揮發或乾涸之缺點,因此有了固態電解質的發 展和研究^[31],例如:改用P型半導體(CuSCN、Cul)^[41-44]或電洞傳輸材料 (triphenyl-diamide OMeTDA(2,2',7,7'-tetrakis(N,N-di-p-methoxyphenylanime)-9,9'-spirobifluorene)^[45、46]等,以取代液態電解質,但高的製備成本或 低光電轉換效率都是其缺點;而另一型的膠態高分子電解質,其目的是希 望能夠達到在常溫狀態下提供較高的導電度,故能兼顧耐用性和效率。因 此,近期研究中,為了有效改善液態電解質漏液及穩定性的問題,於是將 含有碘離子的離子性液體(Ionic Liquid)添加入液態電解質中,例如: 1-ethyl-3-methylimidazolium iodide(EMImI) 1-methyl-3-propylimidazolium iodide(MPII)、1,2-dimethyl-3-propyl imidazolium iodide(DMPII)^[47~49]。離子 896 性液體具備無毒、低熔點、揮發性很低、不易燃、熱穩定性佳、寬廣的液 態工作範圍、高介電常數,因此必然成為未來的使用趨勢。
2-2 染料敏化太陽能電池工作原理

染料敏化太陽能電池的基本原理如圖(2-3)所示。其機制主要為:染料吸 收光子後產生電子-電洞對的分離,由於只有單層染料分子吸附在半導體電 極材料表面,幾乎所有染料分子激發態上的電子可以有效地注入到半導體 導帶中,而空穴則留在染料分子中。電子隨後擴散至導電基底,經外電路 轉移至對電極。氧化態的染料分子被還原態的電解質進行還原,氧化態的 電解質則接受對電極的電子被還原,進而完成了整個電子傳輸過程。在染 料敏化太陽電池內部將光能轉換成電能的每一個步驟屬於單一反應,因此 電池元件不僅穩定且電流能持續產生。染料敏化太陽能電池產生的最大電 壓(Voc)是根據二氧化鈦的費米能階(Fermi Energy Level)和電解質氧化還原 電位之間的差值所產生,如圖(2-4)所示;電流則是依據染料本身對光能的 應答速度及氧化還原性質來決定。除此之外,電子注入的效率和半導體本 身的結構特性也是影響染料敏化太陽能電池的關鍵因素之一。

電池的化學反應機制簡述如下[50~52]:

(1)照光後,染料分子吸收光子能量,由基態(S°)轉變為激發態(S*)。

 $S^{o} + hv \rightarrow S^{*}$

(2) 激發態的染料注入半導體顆粒中, 而染料分子自身被氧化。

 $S^* \rightarrow S^+ + e^-$

(3)氧化態S⁺與還原劑(Red)反應,變回基態,還原劑則被氧化(O_x)。

 $S^+ + Red \rightarrow S + O_X$

(4)被氧化的還原劑(O_X)又被對電極上的電子再次還原(Red)。

 $O_X + e^- \rightarrow \text{Red}$

圖(2-3) 染料敏化太陽能電池工作原理圖^[53]

在整個迴路中,其中有四個路徑會降低染料敏化太陽能電池的整體效率,即為圖(2-4)中的四個路徑^[54-58]:

(1)為暗電流(Dark Current), TiO2 接受染料激發態的電子後,電子往反方向

於電解質注入,即在電解質上發生電子-電洞對的再結合,除了能量的 損失外,此所產生的反方向電流會降低光電流值,也會對整體效率造成 影響。

(2)為注入TiO2 的電子與表面染料基態之電洞表面發生再結合效應,同樣

會造成能量損失以及對整體電子的迴路不利。

(3) 為染料自身的電子 - 電洞對再結合, 會釋放出熱能。

(4)為電解質中的離子擴散(Ionic Diffusion),造成逆方向的電流產生。

圖(2-4) 染料敏化太陽能電池之電子能階概要圖^[59]。其中qU_{photo}即為太陽能電池的開路電壓。

圖(2-5) 染料敏化太陽能電池中產生電子再結合的機制^[58-60]

2-3 二氧化鈦簡介

二氧化鈦由於具有好的化學穩定性、不溶於酸鹼與溶劑、耐高熱性且 不具毒性、價格低廉等特性,所以為目前光催化研究的主要對象。而其主 要能行光催化作用,是因為二氧化鈦間的價帶與傳導帶間的能量差較大, 經由紫外光光線的照射使得電子躍遷,形成電子電洞對,再與表面之H₂O 或O₂反應,產生強的氧化基或還原基與污染物反應,行光催化作用。

圖(2-6) 半導體氧化物的能階示意圖[49]

二氧化鈦中之Anatase晶相之催化活性優於Rutile晶相,是因為兩者band

gap^[61-62]以及比表面積不同的關係。Anatase之band gap為3.2 eV; Rutile之band gap為3.0 eV,當經UV光照射後會產生電子電洞對,此時由於Rutile之band gap較小,電子容易掉回價帶,行再結合作用(Recombination)。而Anatase之 band gap和比表面積較大,電子不易掉回價帶且其反應面積較廣,故其催化 效果優於Rutile。但也由於二氧化鈦本身band gap的關係,造成其只能吸收 太陽光中的紫外光區段,限制了二氧化鈦光催化的效能。所以,近十幾年 來有許多研究團隊試圖將二氧化鈦與其他元素作摻雜,希望能將其光催化 效果提升並將其吸收波段往可見光區移動。

典型的掺雜主要分成兩大類, 金屬與非金屬元素。例如將二氧化鈦與 鉻、鐵或是鎳等過渡金屬作掺雜^[63-71],取代其晶格中原本鈦原子的位置, 然而此類過渡金屬的掺雜反而降低了其本身熱穩定性,連帶使再結合作用 提高,造成光催化效果降低。於是,開始有人嘗試非金屬元素的掺雜,如: 氟^[72-74]、碘^[75]、或是氯和溴的共掺雜^[76],此類摻雜提高了二氧化鈦在紫外 光區的吸收,使其光催化效果變好。接者,開始有其他的實驗團隊將氮 ^[77-79]、碳^[80-81]、或硫^[82-84]等元素與二氧化鈦作摻雜,並且有效的縮小其band gap,使得吸收波段往可見光區移動,提高了光催化的效率。

圖(2-8) 有無摻雜氮的二氧化鈦奈米粒子其紫外-可見光區

吸收光譜圖[78]。

最近幾年來,二氧化鈦摻雜硼的效應也開始備受關注。例如Zhao^[85]等 人將二氧化鈦摻雜硼與三氧化二鎳,有效的提升可見光和紫外光的吸收, 使其光催化特性上升。而Jung^[86]小組則是發現在二氧化鈦-二氧化矽-三氧 化二硼此三種氧化物混合情況下,當硼原子的濃度為鈦原子的5%時,其光 催化效果為0%的7倍。而Grey^[87]等人的研究則指出硼原子在Rutile晶相的二 氧化鈦中,容易造成一種charge-compensating substitution的效應,使得原本 不穩定的Ti³⁺離子變的穩定,且Ti³⁺離子本身有trap光電子的特性,有利於降 低再結合作用(Recombination),增加光電流的傳遞。

charge-compensating substitution : $3Ti^{4+} \leftrightarrow 3Ti^{3+} + B^{3+}$ (interstitial)

由於本實驗團隊先前已採用硼酸和亞磷酸作為連接分子,修飾量子點 太陽能電池氮化銦/二氧化鈦介面,並發現隨者硼酸濃度增加,整體轉換效 率有逐漸上升的趨勢;但隨者亞磷酸濃度增加,整體效率卻明顯且快速的 下降。因此本研究主要使用硼酸並將其摻雜入二氧化鈦奈米粒子,利用 XRD、XPS、SEM、AM1.5等儀器分析,希望可以利用硼的摻雜,降低再結 合作用,並觀察硼的濃度對染料敏化電池整體效能的影響,此外再以同樣 方式使用亞磷酸摻雜磷作為對照組,期望能找出兩者之差異性。

第三章 實驗方法與設備

3-1 實驗藥品

表[3-1]:實驗藥品

藥品名稱	英文藥名	純度/濃度	廠商
異丙醇鈦	Titanium isopropoxide/TTIP	97.00%	Aldrich
異丙醇	Isopropanol/IPL	99.90%	Aldrich
乙醇	Ethanol/EtOH	99.80%	Aldrich
碘化鋰	Lithium iodide/Lil	99.00%	Acros
碘	Iodine/I ₂	99.80%	Acros
4-特-丁基毗啶	4-tert-butylpyridine/TBP	99.00%	Aldrich
碳酸丙烯	Propylene carbonate/PC	99.70%	Aldrich
3-丁基-3-甲基咪唑啉 碘	1-Butyl-3-methylimidazolium iodide	98.0%	Aldrich
硼酸	Boric acid		J.T.Baker
Ruthenium 535	N3	>99%, Mw=741.7	Riedel-de Haen
TX-100	Octyl Phenol Ethoxylate	99.00%	J.T.Baker
FTO	Floride tin oxide		Acros

3-2 實驗方法

3-2-1 製備摻雜硼之二氧化鈦奈米粒子

3-2-1-1 採用市售商業化的二氧化鈦奈米粒子(Commercial TiO₂

powder, P25)

將2克的市售二氧化鈦粉末與15毫升的去離子水放入100毫升的燒杯 中均勻混和,再加入若干量的硼酸固體,之後將此溶液以超音波震盪機震 盪10分鐘,接者加入攪拌子以800rpm的速度劇烈攪拌1小時,將此燒杯 密封靜置20小時。

靜置結束後,將此杯溶液置於加熱板上以100℃持續加熱24小時,把 所有的水分蒸發後得到一聚集的白色固體,之後用瑪瑙研缽研磨成白色粉 末,再將此白色粉末置於坩鍋中放入高溫爐,以每分鐘7.5℃升溫至450℃ 1896 後持溫2小時燒結即得摻雜硼之二氧化鈦奈米粒子粉末(B-P25)。 3-2-1-2 採用水熱法合成之二氧化鈦奈米粒子膠體溶液

取若干克的硼酸固體和50毫升的去離子水混和放入500毫升的圆底瓶 中攪拌,接者將30毫升的異丙醇鈦和9毫升的異丙醇混和後裝入等壓分液漏 斗並在30分鐘內將其滴入硼酸水溶液中,之後將圓底瓶加熱至80°C維持8 小時;再將此溶液放入水熱罐以每分鐘3.8°C升溫至230°C後持溫12小時, 反應後將其取出即為摻雜硼之二氧化鈦奈米粒子膠體溶液(Sol-gel B-TiO₂ Nps)。 3-2-2 製備摻雜磷之二氧化鈦奈米粒子(對照組)

掺雜磷之二氧化鈦奈米粒子主要作為對照組,因此選擇市售的 P25 作 為二氧化鈦的來源:將2克的市售二氧化鈦粉末與 15 毫升的去離子水放入 100 毫升的燒杯中均勻混和,再加入若干量的亞磷酸固體,之後將此溶液以 超音波震盪機震盪 10 分鐘,接者加入攪拌子以 800 rpm 的速度劇烈攪拌 1 小時,將此燒杯密封靜置 20 小時。

靜置結束後,將此杯溶液置於加熱板上以100°C 持續加熱24小時,把 所有的水分蒸發後得到一聚集的白色固體,之後用瑪瑙研缽研磨成白色粉 末,再將此白色粉末置於坩鍋中放入高溫爐,以每分鐘7.5°C 升溫至450°C 後持溫2小時燒結即得摻雜磷之二氧化鈦奈米粒子粉末(P-P25)。

3-2-3 二氧化鈦奈米粒子薄膜的製作

3-2-3-1 採用摻雜硼與磷之二氧化鈦粉末(B-P25 and P-P25)

取1克的掺雜硼或磷之二氧化鈦粉末和4毫升的無水乙醇混和置入樣品 瓶中,再加入0.32毫升的異丙醇鈦以及0.4毫升的TX-100,之後使用THINKY 攪拌機攪拌12分鐘後,置入超音波震盪機震盪10分鐘,最後再用THINKY 攪拌機攪拌4分鐘,如此即得二氧化鈦溶液。以3M膠帶作為塗膜的間隙將二 氧化鈦以玻璃棒緩緩塗佈於導電玻璃FTO上,再將其放至通風處風乾後,置 入高溫爐以每分鐘14°C升溫至450°C後持溫30分鐘,即為二氧化鈦薄膜電 極。 3-2-3-2 採用摻雜硼之二氧化鈦奈米粒子膠體溶液

將水熱合成後的二氧化鈦奈米粒子膠體溶液(Sol-gel B-TiO₂ Nps)以超 音波震盪機震盪10分鐘後,使用減壓迴旋濃縮機將體積濃縮為原來的13% 。取此濃縮後的溶液0.5克和0.5毫升的無水乙醇混和置入樣品瓶中,再加入 0.1克的PEG 35000,之後使用THINKY攪拌機攪拌12分鐘後,置入超音波震 盪機震盪10分鐘,再用THINKY攪拌機攪拌4分鐘,如此即得二氧化鈦溶液。 以3M膠帶作為塗膜的間隙將二氧化鈦以玻璃棒緩緩塗佈於導電玻璃FTO 上,再將其放至通風處風乾後,置入高溫爐以每分鐘14°C升溫至450°C後 持溫30分鐘,即完成二氧化鈦薄膜電極。

3-2-4 電解液的配置

取若干克的LiI、I₂、3-丁基-3-甲基咪唑啉碘、4-特-丁基毗啶(TBP)溶於5毫升的碳酸丙烯中,使用超音波震盪機震盪後得到此電解液:

89F

0.1M LiI + 0.05M I₂ + 0.5M TBP + 0.6M 3-丁基-3-甲基咪唑啉碘 in propylene carbonate

3-2-5 染料的配置與吸附

取適量的Ruthenium 535(N3 dye)溶於無水乙醇中,配置成濃度1×10⁻³ M 的染料溶液。製作完成之摻雜硼的二氧化鈦薄膜燒結後,待溫度降至80~ 90°C時,快速將其浸泡在染料溶液中,浸泡12小時。如不立即浸泡在染料 溶液中,則下次使用前先以150°C烘烤30分鐘,確保其表面吸附之水分完全 烘乾,待溫度降至80~90°C時,亦快速將其浸泡在染料溶液中,以進行染料 之吸附。二氧化鈦電極浸泡在染料溶液中12小時後取出,以乙醇反覆沖洗 二氧化鈦電極表面數次,於100°C下烘乾即完成工作電極的製備。

3-2-6 夾層太陽能電池的製作

將上述製作完成的工作電極貼在鉑電極上,間隙部分須空出不接觸鉑 電極上,並且利用兩側紅色的3M膠帶作為間隔,再用長尾夾固定後於兩電 極間注入適量的電解液即可進行測量,流程如下圖(3-1)所示:

圖(3-1) 太陽能電池的組裝

3-3 實驗儀器與設備

3-3-1 使用儀器與設備

儀器與設備	型號/出廠公司
高溫爐	BLUEM/LINDBERG
攪拌機(Thinky Mixer)	ARE250/THINKY
超音波震盪器	DC400/DELTA
X 光繞射儀(X-ray Diffraction) E S	
掃描式電子顯微鏡(SEM)	JSM-7401F/JEOL
太陽光模擬器(AM 1.5) 189	5 YSS50/山下電裝株式會社
電源供應器	KEITHLEY 2440
1000 瓦高能氙燈系統	SCIENCETECH
化學分析電子能譜儀(ESCA)	Ulvac-PHI PHI 1600
旋轉塗佈機	詠欣有限公司/TA-01

表[3-2]:儀器與設備

3-3-2 分析儀器應用原理

3-3-2-1 X 光粉末繞射儀(X-ray powder diffraction, XRD)

粉末繞射儀型號為(Bruker AXS D8 Advance, Leipzig Germany),其繞 射光源是以銅靶Kα (λ=1.5406Å)作為繞射光源的粉末繞射儀,操作電壓為40 KV,電流為40 mA,得到的繞射圖譜以brucker,EVA軟體處理在比對Joint Committee on Powder Diffraction Standards (JCPDS)資料庫來鑑定產物。

其原理乃利用X射線是一種波長很短的電磁輻射,範圍介於0.1~100Å 之間。當X射線被晶體內有規則的環境散射時,散射的光線間會發生干涉現 象(同時發生建設干涉與破壞性干涉),因此產生了繞射。我們可以利用布 拉格方程式(Bragg's law),計算其晶格間的距離,同時也可以由繞射峰的半 高寬計算出結晶區塊的大小。 1896 布拉格方程式(Bragg's law): 2dsinθ= nλ

其中,n:為整數值

θ: 繞射波峰的布拉格角(Bragg Angle)

λ:X 光的波長(1.5405 Å)

d : 結晶面間的距離

此外,XRD亦可用來量測樣品結晶顆粒的大小,依據Debye-Scherrer's Equation求出平均之二氧化鈦的結晶粒子大小,其計算公式如下: D=0.9\/B cosθ 其中,D:晶粒大小

- λ:X 光的波長(1.5405 Å)
- B:繞射峰的半高寬
- θ: 繞射波峰的布拉格角(Bragg angle)

3-3-2-2 X射線光電子能譜儀(X-ray Photoelectron Spectroscopy, XPS)

其原理為一束X光射線打到樣品上,藉由光電效應將某一能階的電子激發出來成為光電子,然後再分析這些光電子的能量,可以獲得關於表面元 素組成以及元素的化學環境。當數個原子鍵結成一化合物時,其在化合物 中的結合能明顯與純原子時不同,其內核層電子的束縛能也會有不同的變 化,即一般的化學位移(Chemical Shift),分析束縛能的變化,便可獲得材 料中的電子結構與化學鍵結的訊息。其所造成的能譜位移可用來區分不同 氧化態之元素。偵測深度約為5 nm(除氫元素外皆可偵測)。 3-3-2-3 太陽光模擬器(Solar Simulator AM 1.5)

利用氙燈(Xenon lamp)為燈源,光經四面鏡聚焦後,透過一連串的透 鏡組以模擬出和真實太陽光頻譜相仿的光源,且其入射光的日照強度為100 mW/cm²。在進行太陽能電池之I-V量測時,先以矽太陽能電池作為每次測 量校正,而光源是置於電池上方約12公分處,將待測之電池元件置於模擬 光源下且將兩電極利用外部線路外接至電位電流控制儀(Keithley 2440),經 由儀器自動化量測後再經電腦軟體讀取(Lab VieW),即可得到電池元件之 操作表現,包含開環電壓、短路電流、填充因子(Fill Factor)、光電轉換效率 等數值。

3-3-2-4 高解析度場射掃描電子顯微鏡 (High Resolution Scanning Electron Microscope) 1896

日本 JEOL 製造,型號 JSM-7401F,電子槍為冷陰極電子槍,可放大倍 率為萬倍,並附有能量散射分析光譜儀可提供全能譜定性分析原子序 5-92 的元素。

主要利用加熱燈絲所射出的電子束經過電磁透鏡的聚焦後,匯聚成一 直徑約5~10 nm的細小電子射束,而聚集在樣品表面,當高能電子束與物 質之間產生相互作用(即電子彈性碰撞與非彈性碰撞之效果)。就產生了 各種訊號,這些訊號經由適當的偵測器接收後,經放大器放大,然後送到 顯像管上成像,樣品的表面型態會一一的與螢光屏上對應點的亮度對應, 所以可藉由SEM的照片而得知樣品的表面型態。

第四章 結果與討論

4-1 XRD 分析

在自然界中,二氧化鈦以銳鈦礦(Anatase)、金紅石(Rutile)、及板鈦礦 (Brookite)三種結晶礦組態存在。其中以 Anatase、Rutile 兩種組態最常見及 廣泛使用。當處於高溫時, Anatase 晶相與 Brookite 晶相會進行相變化轉變 為 Rutile 晶相,而以 Rutile 晶相最為穩定,因為在其晶格內有較密的原子堆 積。Anatase 晶相的產生較有利於高效能太陽能電池效能製備,因為相較於 Rutile 晶相, Anatase 晶相的二氧化鈦薄膜擁有較大的比表面積,因而有助 於較多染料分子的吸附,所以有利於在製造多孔性薄膜時,表現出高光電 轉換效率的特性。Anatase 為低溫相具有吸收太陽光的優點,用於光觸媒及 太陽能電池; Rutile 晶相金紅石則為高溫穩定相,具有阻絕紫外光之功用。

(a)Anatase a=3.7867, b=3.7867, c=9.5149, space group=**I4**₁

(b)Rutile a=4.6021(4),b=4.6021(4),c=2.9563(4) space group=**P4₂/mnm**

(c)Brookite a=9.172(2), b=5.449(2), c=5.138(2) space group=**Pbca**

圖(4-1) 二氧化鈦晶體結構圖(a)Anatase (b)Rutile (c)Brookite

4-1-1 市售商業化的二氧化鈦奈米粒子(P25)

圖(4-2)為摻雜不同濃度的硼之市售二氧化鈦粉末,其 XRD 粉末繞射圖 譜。對照 JCPDS 資料庫,我們可以發現商業化的二氧化鈦奈米粒子(P25) 屬於 Anatase 與 Rutile 為 70 %比 30 %之混相的結構。而經過添加硼酸處理 後,隨者摻雜硼的比例升高,其晶相仍舊維持不變。但當摻雜的硼原子莫 耳濃度達到鈦原子的 15 %時,可以明顯的發現在 2Θ=27.8°多了一根繞射峰 ,對照文獻我們推測它是三氧化二棚的訊號。其生成的原因可能是所摻雜 的大量棚離子從二氧化鈦的晶格孔隙中被擠壓出,因此在二氧化鈦奈米粒 子結構表面上形成了一層三氧化二棚。

另外再觀察 2Θ=25.3°時的半高寬,根據 Scherrer equation 的計算, 如表[4-1]所示。我們可以發現隨者摻雜硼的比例上升,半高寬並無明顯的 變化,也間接說明了市售二氧化鈦奈米粒子的大小並無受到硼的摻雜程度

所影響。

圖(4-2) 摻雜不同濃度的硼之市售二氧化鈦其 XRD 繞射圖譜。

B_{mole}/Ti_{mole}(%)分別為(a)0、(b)1、(c)3、(d)10、(e)15。

表[4-1]: 摻雜不同濃度的硼之市售二氧化鈦(B-P25)其 XRD 圖譜半

B_{mol}/Ti_{mol} (%)	0	1	3	10	15
FWHM	0.417	0.439	0.427	0.410	0.423
Crystallite size(nm)	19.5	18.5	19.1	19.9	19.3

高寬整理

4-1-2 採用水熱法合成之二氧化鈦奈米粒子

下圖(4-3)為摻雜不同濃度的硼之水熱法合成二氧化鈦,其 XRD 粉末繞 射圖譜。對照 JCPDS 資料庫後,發現本實驗水熱法合成之二氧化鈦奈米粒 子主要的晶相為 Anatase 和少部分的 Brookite 相。而隨者摻雜硼的濃度上 升,其晶相仍舊維持不變且 Brookite 相的強度並無明顯的變化,表示硼離 子並不像氟離子那樣^[80],可以抑制 Bookite 相的生成或是加速 Brookite 相轉 變成 Anatase 相。

圖(4-3) 摻雜不同濃度的硼之水熱法合成二氧化鈦其 XRD 繞射圖譜。

B_{mole}/Ti_{mole}(%)分別為(a)0、(b)5、(c)10。

另外再觀察 2Θ=25.3°時的半高寬,同樣根據 Scherrer equation 的計算, 如表[4-2]所示。我們可以發現隨者摻雜硼的比例上升,半高寬並無明顯的 變化,也間接說明了水熱法合成之二氧化鈦奈米粒子的大小並無受到硼的 摻雜程度所影響。

表[4-2]: 摻雜不同濃度的硼之水熱法合成二氧化鈦 XRD 圖譜半高

寬整理

B_{mol}/Ti_{mol} (%)	0	5	10	
FWHM	0.514	0.513	0.512	
Crystallite size(nm)	15.9	15.9	15.9	
				D 25)

4-1-3 對照組: 摻雜磷之二氧化鈦奈米粒子(P-P25)

將硼酸替換成亞磷酸,採用市售 P25 所作的掺雜磷之二氧化鈦,其 XRD 繞射圖譜如圖(4-4)所示。隨者磷酸的添加,市售二氧化鈦晶相仍然維持不 變,屬於 Anatase 與 Rutile 的混相且其強度也沒有明顯變化,說明了磷離子 在此實驗中並無驅使二氧化鈦轉變成 Anatase 或 Rutile 相的能力。另外在比 較 20=25.3°時的半高寬,根據 Scherrer equation 的計算,結果如表[4-3]所示。 隨者摻雜磷的程度上升,推算出的粒子大小都十分接近,因此在選用市售 二氧化鈦粉末摻雜硼或磷時,對其粒子大小是無明顯影響的。

表[4-3]: 摻雜不同濃度的磷之市售二氧化鈦(P-P25)其 XRD 圖譜半

高	寬	整	理
	<u> </u>		-

P_{mol}/Ti_{mol} (%)	0	1	3	10	
FWHM	0.417	0.433	0.466	0.427	
Crystallite size(nm)	19.5	18.8	17.5	19.1	

4-1-4 單位晶格變化(Unit-cell refinement)

此節為一補充之章節,為了能夠更深入研究摻雜硼後對二氧化鈦晶體

結構的影響,我們利用 XRD 圖譜的結果來計算其晶格參數,期望能夠從單位晶格的變化而對硼摻雜有更深的了解。

下表[4-4]為 Chen^[24]等人利用四異丁醇鈦和硼酸所製備之掺雜硼二氧化 鈦的單位晶格參數。可以發現隨者掺雜硼的濃度增加,a-axis 的參數幾乎沒 有變化,但 c-axis 的參數則逐漸上升,代表二氧化鈦單位晶格在掺雜硼後有 變大的趨勢,且 B³⁺離子(0.023nm)比 Ti⁴⁺離子(0.064nm)小很多,一般來說 B³⁺離子不太可能置換 Ti⁴⁺離子的位置,因此作者推測掺雜到二氧化鈦中的 硼離子大多是位在二氧化鈦晶格空隙中,造成單位晶格體積變大;而當掺 雜濃度到達 20% 硼時,單位晶格中 c-axis 的參數卻大幅度下降,作者推斷 主要是由於一部分的硼離子被擠到表面形成三氧化二硼層,抑制了二氧化 鈦晶體的成長所造成。

表[4-4] Chen 實驗組摻雜硼之二氧化鈦晶格參數, R_B為摻雜濃度 [B_{atomic}/Ti_{atomoc}](%)^[24]

R _B	0	1	3	5	10	20
а	3.7995	3.7918	3.7934	3.7904	3.7910	3.7951
с	9.5958	9.6082	9.6263	9.6946	9.7220	9.4958

而表[4-5]則為本實驗組利用水熱法自行合成摻雜硼之二氧化鈦的單位 晶格參數。可以看到隨者摻雜硼的程度上升, a-axis 的參數幾乎不變,但

47

c-axis 的參數則有一上升趨勢,表示單位晶格體積逐漸變大,此結果與 Chen 實驗組十分類似,因此推斷在水熱法下合成摻雜硼之二氧化鈦奈米粒子, 摻雜的硼離子進入二氧化鈦晶隔空隙中,造成單位晶格體積變大。

$B_{mole}/Ti_{mole}(\%)$	0	5	10
a	3.775(7)	3.779(7)	3.778(4)
с	9.466(2)	9.474(3)	9.482(2)

表[4-5] 水熱法合成摻雜硼之二氧化鈦晶格參數

表[4-6]則為本實驗中掺雜硼之市售二氧化鈦(P25)anatase 相單位晶格參 數。當硼的濃度增加, a-axis 的參數維持一定,但 c-axis 的參數卻有一下降 趨勢,代表單位晶格體積逐漸變小。推測可能是由於市售的二氧化鈦本身 已經是奈米粒子,而掺雜的硼離子大多是吸附在二氧化鈦晶格表面,只有 少部分可以進入其晶格孔隙中,因此樣品在經過研磨緞燒後,使得原本的 二氧化鈦晶格受到擠壓而變小,當摻雜濃度為 15% 硼時,在二氧化鈦表面 形成三氧化二硼層,對其晶格擠壓尤其明顯。

表[4-6] 摻雜硼之市售二氧化鈦晶格參數

$B_{mole}/Ti_{mole}(\%)$	0	5	10	15
a	3.779(6)	3.774(3)	3.773(9)	3.773(4)
с	9.492(1)	9.481(1)	9.473(2)	9.423(1)

4-2 XPS 分析

利用XPS可判定材料表面元素成分之外,亦能夠由表面的束縛能所造成 的化學位移來判定化合物中是否有官能基或是其他的鍵結情況產生。以下 我們將分成二氧化鈦的來源及低解析度和高解析度的XPS能譜來分開討論。 4-2-1 市售的二氧化鈦奈米粒子(P25)

在圖(4-5)中,我們比較商業化二氧化鈦奈米粒子(P25)及其掺雜了10 %(B_{mole}/Ti_{mole})硼的情況下,低解析度 XPS 能譜的差異。由圖(4-5a)顯示的 Ti 2s、Ti 2p_{3/2}、Ti 2p_{1/2}、O1s 尖峰;對比圖(4-5b)中顯示的 Ti 2s、Ti 2p_{3/2}、 Ti 2p_{1/2}、O1s、B1s 尖峰,其各尖峰束縛能位置如表[4-7]所示。有添加硼 酸的樣品明顯多了B1s 的訊號。

而圖(4-6)則是比較二氧化鈦奈米粒子(P25)掺雜不同濃度的硼之高解析 度 XPS 能譜中 B 1s 的尖峰變化。可明顯發現有添加硼酸的樣品,均有 B 1s 的訊號出現。而濃度為 3 %(B_{mole}/Ti_{mole})的樣品其 B 1s 的尖峰束縛能為 191.8 eV,10 %(B_{mole}/Ti_{mole})的樣品則出現在 192.2 eV 且其尖峰面積與訊號更大, 至於沒有摻雜硼的二氧化鈦樣品則無上述的尖峰出現。對比參考文獻中,B 1s 的尖峰束縛能在三氧化二硼(B₂O₃)或是硼酸(H₃BO₃)中均為 193.0 eV(B-O 鍵結);而在二硼化鈦(TiB₂)中的 B 1s 尖峰束縛能出現在 187.5 eV(B-Ti 鍵 結)。可推測我們觀察到的這個 B 1s 的訊號是來自於 B-O-Ti 的鍵結,當中 的硼離子與二氧化鈦有一定程度的交互作用且摻雜的硼離子周圍之化學環 境應該是類似於三氧化二硼。當摻雜更多的硼時,其 B 1s 尖峰束縛能的位 置可能會往高能處偏移。

圖(4-6) 高解析度 B 1s 的 XPS 能譜。B_{mole}/Ti_{mole}(%)分別為(a)0、(b)3、(c)10。

圖(4-7)則是二氧化鈦奈米粒子及其掺雜了10%(B_{mole}/Ti_{mole})硼之高解析 度XPS能譜中O1s的尖峰變化。根據Sastry^[88]與Guangming^[89]研究指出,當 二氧化鈦表面的鈦原子與氧鍵結時,若所形成的鍵結為Ti⁴⁺-O,其位於O1s 區域的束縛能為530.1 eV;Ti³⁺-O其位於O1s 區域的束縛能為531.1eV。此 外,OH官能基也會發生化學吸附於配位不完全的鈦原子上的情況,如: Ti^{3+} ;因而在二氧化鈦表面形成Ti³⁺-OH,其在於O1s 區域有更高的束縛能 為532.3eV。在圖(4-7a)中可以發現沒有摻雜硼的二氧化鈦奈米粒子,其O1s 區域僅出現一較為明顯的尖峰,但其中包含了三種不同的鍵結情況,分別 為Ti⁴⁺-O、Ti³⁺-O、Ti³⁺-OH。而圖(4-7b)則為摻雜硼後的二氧化鈦奈米粒子, 其O1s區域也僅出現了一較為明顯尖峰,然而卻包含了四種不同的鍵結情 況,分別為Ti⁴⁺-O、Ti³⁺-O、Ti³⁺-OH、B-O。在進一步分析比較可以發現, 在未摻雜硼的二氧化鈦樣品中,Ti⁴⁺與Ti³⁺的含量比大約是1比0.78;而在摻 雜了10%(B_{mole}/Ti_{mole})硼的樣品中,Ti⁴⁺與Ti³⁺的含量比大約是1比0.94。

接者我們改變二氧化鈦的來源,改用水熱法合成掺雜硼之二氧化鈦奈 米粒子,以下為其 XPS 的研究分析。圖(4-8)為水熱法自行合成之二氧化鈦 奈米粒子及其掺雜了 10 %(B_{mole}/Ti_{mole})硼的情況下,低解析度 XPS 能譜的變 化。在圖(4-8a)中顯示了 Ti 2s、Ti 2p_{3/2}、Ti 2p_{1/2}、O 1s 尖峰;而在圖(4-8b) 中則出現了 Ti 2s、Ti 2p_{3/2}、Ti 2p_{1/2}、O 1s 與 B 1s 尖峰,其各尖峰束縛能 位置如表[4-8]所示,與市售商業化的二氧化鈦樣品相比較,兩者的低解析 度 XPS 能譜十分一致。

圖(4-8) 水熱法合成之二氧化鈦奈米粒子低解析度 XPS 能譜。

B_{mole}/Ti_{mole}(%)分別為(a)0、(b)10。

樣品	Ti 2s	Ti 2p _{3/2}	Ti 2p _{1/2}	O 1s	B 1s	
TiO ₂	563.5	458.6	464.2	530.3	none	
TiO ₂ /10%B	564.0	458.6	464.1	530.5	192.0	

表[4-8]:水熱法合成之 TiO₂ ESCA 尖峰束縛能 (eV)

圖(4-9) 高解析度 B 1s 的 XPS 能譜。Bmole/Timole(%)分別為(a)0、(b)5、(c)10。

而圖(4-9)則是比較水熱法合成二氧化鈦奈米粒子掺雜不同濃度的硼之 高解析度 XPS 能譜中 B 1s 的尖峰變化。可明顯發現有添加硼酸的樣品,均 有 B 1s 的訊號出現。而濃度為 5%(B_{mole}/Ti_{mole})的樣品其 B 1s 的尖峰束縛能 為 191.9 eV, 10%(B_{mole}/Ti_{mole})的樣品則出現在 192.1 eV 且其尖峰面積與訊 號更大, 至於沒有摻雜硼的二氧化鈦樣品則無上述的尖峰出現。參考文獻 並與市售商業化的二氧化鈦樣品 XPS 能譜相比較,可推測我們觀察到的這 個 B 1s 的訊號是來自於 B-O-Ti 的鍵結,但在同樣的解析度下其訊號強度明 顯比市售二氧化鈦的樣品弱,推測是由於水熱法讓硼離子與二氧化鈦粒子 間維持在一同相的環境下,而有較佳的均勻混合,造成硼離子摻雜進二氧 化鈦晶格內的機會提高,造成表面上硼離子濃度較為稀少,因此其訊號強 度不佳。但與硼酸的 B 1s(193.0 eV, B-O 鍵結)訊號相比仍然可看出有一 binding energy 的偏移,表示摻雜的硼離子與二氧化鈦有一定程度的交互作 用且其周圍之化學環境應該是類似於三氧化二硼。當摻雜更多的硼時,其 B 1s 尖峰束縛能的位置可能會往高能處偏移。

圖(4-10)則是水熱法合成二氧化鈦奈米粒子及其掺10%(B_{mole}/Ti_{mole})硼 之高解析度XPS能譜中O1s的尖峰變化。一樣對其在O1s區域的明顯尖峰作 分峰後,在圖(4-10a)中可以發現沒有摻雜硼的二氧化鈦奈米粒子,其O1s 尖峰其中包含了三種不同的鍵結情況,分別為Ti⁴⁺-O、Ti³⁺-O、Ti³⁺-OH。 而圖(4-10b)則為摻雜硼後的二氧化鈦奈米粒子,其O1s尖峰卻包含了四種不 同的鍵結情況,分別為Ti⁴⁺-O、Ti³⁺-O、Ti³⁺-OH、B-O。在進一步分析比較 可以發現,在未摻雜硼的二氧化鈦樣品中,Ti⁴⁺與Ti³⁺的含量比大約是1比 0.68;而在摻雜了10%(B_{mole}/Ti_{mole})硼的樣品中,Ti⁴⁺與Ti³⁺的含量比大約是1 比0.84。

圖(4-10) 高解析度 O 1s 的 XPS 能譜。B_{mole}/Ti_{mole}(%)分別為(a)0、(b)10。

4-3 SEM 分析

4-3-1 市售商業化的二氧化鈦奈米粒子(P25)

使用掺雜不同濃度的硼之市售二氧化鈦粉末,將其塗佈在 FTO 上所形成的二氧化鈦薄膜,利用鑽石刀取其新斷面並用掃描式電子顯微鏡觀察膜厚和粒子大小。

下圖(4-11)為摻雜不同程度的硼之二氧化鈦電極截面 SEM 圖。薄膜厚 度主要受到二氧化鈦凝膠的濃稠度和所添加的聚合物種類所影響。在同樣 的凝膠配置條件下,僅改變硼的摻雜程度,發現隨者硼的濃度上升,凝膠 的濃稠度卻有漸漸下降的趨勢,進而造成薄膜厚度逐漸變小。

圖(4-11) 摻雜不同濃度的硼之市售二氧化鈦斷面 SEM 圖。Bmole/Timole(%)

分別為(a)0、(b)3、(c)10,放大倍率 x9000。

但二氧化鈦粒子大小均保持在 30-35 nm 間,隨者硼掺雜程度的上升, 並無明顯改變。此趨勢和 XRD 的半高寬預測結果一致,但與市售所標榜的 20 nm 或是 Scherrer equation 計算的結果有些出入,推測是二氧化鈦粉末會 微溶於溶劑中,且其本身顆粒有聚集的現象所造成,如圖(4-12)所示。

圖(4-12) 掺雜不同濃度的硼之市售二氧化鈦 SEM 圖。B_{mole}/Ti_{mole}(%)分別 為(a)0、(b)3、(c)10,放大倍率 x150K。

4-3-2 水熱法合成之二氧化鈦奈米粒子 接者採用水熱法合成掺雜硼之二氧化鈦奈米粒子,一樣將其塗佈在 FTO玻璃上,用鑽石刀取其新斷面並用 SEM 觀察之。圖(4-13)為二氧化鈦 電極截面 SEM 圖。發現隨者掺雜硼的濃度增加,膜厚並無明顯改變,平均 都在 3.5~4.5 μm 間,推斷是由於水熱法合成之二氧化鈦凝膠在相同的濃縮 比例下,僅改變硼的濃度對其濃稠度並無造成變化,使得膜厚十分接近。

圖(4-13) 掺雜不同濃度的硼之水熱法合成二氧化鈦斷面 SEM 圖。B_{mole}/Ti_{mole} (%)分別為(a)0、(b)3、(c)10,放大倍率 x9000。

而從圖(4-14)可以發現水熱法合成二氧化鈦粒子大小平均在 25-30 nm 間,並無隨者摻雜硼的濃度上升而改變。且與市售二氧化鈦樣品相比下, 其表面顆粒顆顆分明。總的來說水熱法合成之粒子大小變化趨勢和 XRD 半 高寬推算結果一致,但與 Scherrer equation 估算出的大小有些出入,推測也 是由於本身粒子有少部分聚集的現象所造成。

圖(4-14) 摻雜不同濃度的硼之水熱法合成二氧化鈦 SEM 圖。B_{mole}/Ti_{mole}(%)

分别為(a)0、(b)3、(c)10,放大倍率 x150K。

4-4 AM1.5 分析

根據前述兩種二氧化鈦的來源,分別摻雜不同程度的硼,以及選用市 售二氧化鈦(P25)摻雜磷作為對照組,所製備的二氧化鈦薄膜電極材料。對 於它們和染料(N3)吸附後的光電轉換效率測量,觀察其對於染料敏化太陽能 電池的影響,發現摻雜硼和磷兩者在轉換效率上完全展現出不同的趨勢。

4-4-1 摻雜硼之市售商業化的二氧化鈦奈米粒子(B-P25)

圖(4-15)為摻雜不同濃度的硼之市售二氧化鈦粉末,所製備組裝成的電 池元件,吸附染料後其 I-V 特性曲線。可以發現隨者摻雜硼的濃度增加,其 短路電流呈現一緩慢上升,但開路電壓則是在摻雜濃度為 10 %(B_{mole}/Ti_{mole}) 時才有一較為明顯上升;但由於二氧化鈦層的粒子大小與其結晶相在摻雜 前後並無明顯改變且膜厚是漸漸變薄,導致吸附的染料分子變少,因此推 斷使光電轉換效率提升的主要原因是硼離子的存在造成一 chargecompensating substitution 效應,使得原本不穩定的 Ti³⁺離子變的安定,進而 抑制了電子在二氧化鈦層的再結合作用,這個推測也與 XPS 的結果互相驗 證。但隨者硼離子的濃度增加到 15 %(B_{mole}/Ti_{mole})後,在表面形成了一層三 氧化二硼,阻隔了電子的傳遞,使得轉換效率比未摻雜前更低。而當摻雜 硼濃度為 10 %(B_{mole}/Ti_{mole})時,轉換效率有一最高值,其詳細光伏參數如表 [4-9]所示。

B_{mol}/Ti_{mol} (%)	0	1	3	10	15
$Jsc (mA/cm^2)$	6.24	6.16	6.35	6.58	6.25
Voc (volt)	0.716	0.716	0.720	0.733	0.706
η (%)	2.81	2.76	2.91	3.05	2.63

表[4-9]:B-P25/N3 dye 其光伏參數列表

圖(4-15) 摻雜不同濃度的硼之製備二氧化鈦薄膜吸附 N3 後其 I-V 曲線圖。

B_{mole}/Ti_{mole}(%)分別為(a)0、(b)1、(c)3、(d)10、(e)15。

4-4-2 掺雜硼之水熱法合成二氧化鈦奈米粒子

接者將水熱法合成之摻雜硼的二氧化鈦電極薄膜,所組裝成的電池元件,一樣吸附染料後測量其 I-V 特性曲線,如圖(4-16)所示。隨者摻雜硼的

程度增加,其短路電流也隨之明顯上升,且開路電壓也逐漸增強,整體而 言光電轉換效率有提高的趨勢;當掺雜硼濃度為10%(B_{mole}/Ti_{mole})時,其效 率相較於無掺雜硼之水熱法合成二氧化鈦而言,約提高了1.5倍。而從市售 P25的實驗結果來看,只要掺雜硼的濃度增加到15%(B_{mole}/Ti_{mole})以上,便 會在表面生成三氧化二硼層,因此本實驗組在水熱法合成掺雜硼之二氧化 鈦上,掺雜濃度最高只到10%(B_{mole}/Ti_{mole})。由於此法合成之二氧化鈦層的 粒子大小與膜厚甚至是其結晶相並無隨者掺雜硼的多寡而有明顯變化,因 此推測使光電轉換效率上升的原因同樣為掺雜在二氧化鈦中的硼離子,引 發一 charge-compensating substitution 的效應,進而安定原本不穩定的Ti³⁺ 離子,而Ti³⁺離子本身有 trap 光電子的特性,降低了二氧化鈦層的再結合作 用(Recombination),增加光電流的傳遞。詳細的光伏參數在下表[4-10]。

B_{mol}/Ti_{mol} (%)	0	1	3	5	10
$Jsc (mA/cm^2)$	5.54	5.60	6.23	6.65	7.95
Voc (volt)	0.753	0.756	0.773	0.800	0.783
η (%)	3.05	3.10	3.65	4.01	4.65

表[4-10]: B-hydrothermal TiO₂/N3 其光伏參數列表

4-4-3 對照組: 摻雜磷之市售商業化的二氧化鈦奈米粒子(P-P25)

參考製備掺雜硼的方法,選用市售二氧化鈦粉末作為起始物並將硼酸 換成磷酸。圖(4-17)為 P25 掺雜硼和磷的二氧化鈦薄膜其經過 N3 吸附後的 I-V 特性取線,這裡使用的電解液是 0.1M LiI + 0.01M I₂,屬於早期最簡單 配置的電解液,因此整體效率會比圖(4-15)以及(4-16)低。但仍然可以發現, 掺雜硼後的二氧化鈦薄膜,其光電轉換效率相比於單純的 P25,有一隨者硼 的掺雜程度增加而明顯上升的趨勢;相反的,掺雜磷的二氧化鈦薄膜其光 電轉換效率則隨者磷的增加而呈現大幅度下降。詳細的光伏參數如表[4-11]

(B/P) _{mol} /Ti _{mol} (%)	P25	3%B	10%B	3%P	10%P
Jsc (mA/cm ²)	2.57	2.66	2.94	1.23	0.511
Voc (volt)	0.706	0.710	0.736	0.589	0.452
η (%)	0.904	0.934	1.07	0.407	0.125

表[4-11]: B/P-P25/N3 其光伏參數列表

圖(4-17) 掺雜不同濃度的硼/磷之製備二氧化鈦薄膜吸附 N3 後其 I-V 曲線 圖。(a)P25、(b)3% B、(c)10% B、(d)3% P、(e)10% P。

4-5 摻雜硼、磷之二氧化鈦應用在量子點太陽能電池:氮化

銦/二氧化鈦

此節為一補充實驗之結果,主要乃將上述摻雜硼、磷之市售二氧化鈦 粉末(B-P25、P-P25)應用在氮化銦/二氧化鈦系統中,觀察硼、磷摻雜程度 對量子點太陽能電池轉換效率之影響。這裡採用 PECVD 的方式在二氧化鈦 上生成一層氮化銦的薄膜,而其生長溫度控制在 80℃,測量光電轉換效率 時使用的電解液為:0.1M LiI+0.01M I₂。

圖(4-18)即為掺雜不同濃度的硼之 P25 粉末所製成二氧化鈦/氮化銦電 池元件,其I-V 特性取線圖。可以看出隨者掺雜硼的濃度提高,短路電流有 隨之增強的效果,而在硼離子濃度達到3%(Bmole/Timole)時,電流有一最高 值,而當硼離子濃度超過3%(Bmole/Timole)後,其增強幅度有一逐漸下降的 趨勢;但開路電壓則沒有明顯變化,幾乎都維持在0.53V,詳細的光伏參 數如表[4-12]所示。所以摻雜硼之二氧化鈦對於量子點太陽能電池:氮化銦/ 二氧化鈦系統,在光電轉換效率上呈現增強的效應。

B_{mol}/Ti_{mol} (%)	0	1	3	10	15
$Jsc (mA/cm^2)$	0.422	0.49	0.55	0.518	0.496
Voc (volt)	0.539	0.539	0.53	0.526	0.529
η (%)	0.124	0.143	0.161	0.147	0.131

表[4-12]: B-P25/InN 其光伏參數列表

接著將摻雜硼的二氧化鈦薄膜置換成摻雜磷的二氧化鈦薄膜,其餘實 驗條件皆保持不變,將製作好的電池元件封裝好後,測量其 I-V 特性曲線, 如圖(4-19)所示。當摻雜磷的濃度逐漸上升時,短路電流和開路電壓都有一 明顯下降的趨勢,詳細的光伏參數如表[4-13]所示。所以摻雜磷之二氧化鈦 對於量子點太陽能電池:氮化銦/二氧化鈦系統,在光電轉換效率上有逐步下 降的效果。

P_{mol}/Ti_{mol} (%)	0	1	3	10	15
Jsc (mA/cm ²)	0.422	0.373	0.381	0.305	0.199
Voc (volt)	0.539	0.536	0.48	0.336	0.326
η (%)	0.124	0.104	0.091	0.045	0.023

表[4-13]: P-P25/InN 其光伏參數列表

第五章 結論

本實驗利用兩種不同的二氧化鈦來源,採用簡單的實驗方法製作摻雜 硼的二氧化鈦電極薄膜,並以同樣方式摻雜磷作為對照組,之後浸泡在染 料或是覆蓋一層氮化銦。藉由 XRD、XPS、SEM 和太陽光模擬器,分析表 面元素型態及其形貌;結晶相和光電轉換效率,做出了以下幾點結論:

- (1) XPS的結果顯示,B1s的訊號強度隨者硼酸(dopant)添加的量而變強, 且其束縛能尖峰位置明顯與H3BO3或是B2O3不同,有一binding energy shift,證明此方法可成功將硼摻雜到二氧化鈦結構中,形成 Ti-O-B 鍵結。
- (2) 掺雜硼/磷對於二氧化鈦本身的粒子大小或是結晶相並無明顯影響。
- (3) 將摻雜硼的二氧化鈦電極薄膜應用在染料敏化太陽能電池中,由於硼 離子使得 Ti³⁺離子變的穩定,進而降低了二氧化鈦層上的再結合作 用,使得光電轉換效率從 2.81%上升到 3.05%(P25); 3.05%上升到 4.65%(H.T TiO2)。
- (4) 當摻雜的硼濃度到達 15%(B_{mole}/Ti_{mole})時,會在二氧化鈦表面生成三氧 化二硼,阻隔了電子的傳遞,使得光電轉換效率明顯下降。
- (5) 將摻雜磷的二氧化鈦電極薄膜應用在染料敏化或是量子點太陽能電 池中,均會降低電池的轉換效率,且摻雜磷的程度越高效率會越低。
- (6) III 價的硼和 V 價的磷摻雜到二氧化鈦中,應用在染料敏化或量子點

太陽能電池上,造成其轉換效率呈現兩種截然不同的趨勢,這個結果 和利用硼酸/亞磷酸作為修飾氮化銦/二氧化鈦界面的結果十分類 似,因此本實驗團隊準備投入理論計算以做進一步的探討。

第六章 参考文獻

- 〔1〕 黃建昇,結晶矽太陽電池發展近況,工業材料雜誌,2003,203期,150。
- [2] <u>http://www.solar-i.com/know.html#12</u>
- [3] S. Guha et al, Appl. Phys. Lett, 1999, 74, 1860.
- [4] Antonio Luaue and Steven Hegedus, Handbook of photovoltaicScience and Enginnering, 2004

- [5] H. Shirakawa, et al. Phys. Rev. Lett. 1977, 39, 1098.
- [6] L Bozano; S. A. Carter; J. C. Scott; G. G. Malliaras; P.J.Brock, Appl. Phys. Lett. 1999, 74, 1132.
- [7] D. Braun; A. J. Heeger and H. Koremer, J. Electronic Materials1991, 20, 945.
- [8] D. Braun; A. J. Heeger, Appl. Phys. Lett. 1991, 58, 1982.
- [9] K. S. Narayan and Th. B. Singh, Appl. Phys. Lett. 1999, 74, 3456.
- [10] F. Hide; B. J. Schwartz; M. A. Diaz-Gracia and A. J. Heeger, Chem.Phys. Lett. 1996, 256, 424.
- [11] T. J. Savenije; J. M. Warman and A. Goossens, Chem. Phys.137,Lett. 1998, 287, 148.
- [12] G.Yu; J. Gao; J. C. Hummelen; F. Wudl and A. J. Heeger,

Science 1995, 270, 1789.

- [13] T. Fromherz; F. Padinger; D. Gebeyehu; C. Brabec; J. C.
 Hummelen; N. S. Sariciftci, Sol. Energy Mater. Sol. Cells 2000, 63, 61.
- [14] Frank Hurd and Robert Livingston, J. Phys. Chem. 1940, 44, 865.
- [15] S. Chaberek, A. Shepp and R. J. Allen, J. Phys. Chem. 1965, 69, 641.
- [16] S. Chaberek, A. Shepp and R. J. Allen, J. Phys. Chem. 1965, 69, 647.
- [17] S. Chaberek, A. Shepp and R. J. Allen, J. Phys. Chem. 1965, 69, 2834.
- [18] Kearns et al., J. Am. Chem. Soc. 1967, 89, 5456.
- [19] H. Tsubomura; M. Matsumura; Y. Nomura and T. Amamiya, Nature 1976, 261, 402. 1896

- [20] B. O'Regan and M. Grätzel, Nature 1991, 353, 737.
- [21] M. Grätzel, Inorg. Chem. 2005, 44, 6841.138
- [22] Zhong-Sheng Wang; Masatoshi Yanagida; Kazuhiro Sayama and Hideki Sugihara, Chem. Mater. 2006, 18, 2912-2916
- 〔23〕王政凱,「氮化銦/二氧化鈦太陽能電池:利用硼酸和亞磷酸修飾二 氧化鈦表面之效應」,國立交通大學,碩士論文,2007。
- [24] Daimei Chen, et al. Ind. Eng. Chem. Res. 2006, 45, 4110-4116.
- [25] Grey, I. E.; Li, C.; Macrae, C. J. Solid State Chem. 1996, 127, 240.

- [26] Kyeong Youl Jung, et al. Applied Catalysis B:Enviroment, 2004, 51, 239.
- [27] Moon, S. C, et al, Catal. Today. 1998, 45, 79.
- 〔28〕劉茂煌, 奈米光電池, 工業材料雜誌, 2003, 203 期, 93。
- [29] Md.K, Nazeeruddin, et al. Inog. Chem. 1999, 38, 6298–6305.
- [30] Kim. S. Finnie, John R. Bartlett, James L. Woolfrey, Langmuir. 1998, 14, 2744–2749.
- [31] C. Bauer, et al. J. Phys. Chem. B. 2002, 106, 12693–12704.
- [32] Argazzi R, et al. Inorg. Chem. 1994, 33, 5741–5749.
- [33] Finnie K, Bartlett J, Woolfrey J, Langmuir 1998, 14, 2744–2749.

- [34] Nazeeruddin Md. et al. Langmuir. 2000, 16, 8525–8528.
- [35] Murakoshi K, et al. J.Electroanal. Chem. 1995, 396, 27–34.
- [36] Sayama K, Sugihara H, Arakawa H, Chem. Mater. 1998, 10, 3825–3832.

- [37] Ana F. Nogueira, Marco-A. De Paoli, Solar Energy Materials. & Solar Cells. 2000, 61, 135-141.
- [38] Takurou N, Murakami Y.K, Norimichi K, Tsutomu M, J. Photochem. and Photobio. A:Chem. 2003,164, 187–191.
- [39]Hongwei Han, Xingzhong Zhao, Jian Liu, J. Electrochem. Soc. 2005, 152, 164–166.
- [40] M. Zukalova, et al. Nano Letters. 2005, 5, 1789–1792.
- (41) U. Bach, et al. Nature 1998, 395, 583.

- [42] B. O'Regan and D. T. Schwartz, Chem. Mater. 1998, 10, 143, 1501-1509.
- [43] B. O'Regan and D. T. Schwartz, J. Appl. Phys. 1996, 80, 4749–4754.
- [44] B. O'Regan, et al. Adv. Mater. 2000, 12, 1263–1267.
- [45] M. Grätzel, Nature. 2001, 414, 338.
- [46] U. Bach, D. Lupo, J.E. Moser, F. Weissortel, J. Salbexk, H.Spreitzer and M. Grätzel, Nature 1998, 395, 583-584.
- [47] Hiroki Usui, Hiroshi Matsui, Nobuo Tanabe, Shozo Yanagida, J.Photochem. Photobio.A: Chem. 2004, 164, 97-101.

- [48] Dong-Won Kima, et al. Chem. Commun. 2002, 2972.
- [49] Ryoichi Komiya, et al. J. Photochem. Photobio. A: Chem. 2004, 164, 123-127.

- [50] B. O'Regan and M Grätzel, Nature 1991, 353, 737–740.
- [51] M. Grätzel, Nature. 2001, 414, 338–344.
- [52] M. Grätzel, J. Photochem. and Photobio. A: Chem. 2004, 164, 3–14.
- [53] P. D. Cozzoli, et al. J. Am. Chem. Soc. 2004, 126, 3868–3879.
- [54] A. Hagfeldt and M. Grätzel, Chem. Rev. 1995, 95, 49–68.
- [55] K. Kalyanasundaram and M. Grätzel, Coord. Chem. Rev. 1998, 177, 347–414.
- [56] M. Grätzel, Current Opinion in Colloid and Interface Science. 1999, 4, 314–321.
- [57] Cahen et al. J.Phys.Chem. B. 2000, 104, 2053–2059.
- [58] A. Fujishima et al., Sol. Energy Mater. Sol. Cells 2004, 81, 197–203.

[59] Laurence M. Peter, Phys. Chem. Chem. Phys. 2007, 9, 2630–2642.

- [60] Shogo Nakade; Yohei Makimoto; Wataru Kubo; Takayuki
 Kitamur; Yuji Wada; and Shozo Yanagida, J. Phys. Chem.B.2005, 109, 3480–3487.
- [61] K. M. Reddy; S. V. Manorama; A. R. Reddy, Mater. Chem. and Phy. 2002, 78, 239–245.
- [62] K. Nagaveni; M. S. Hegde; N. Ravishankar; G. N. Subbanna; G. Madras, Langmuir 2004, 20, 2900–2907.
- [63] Li, D.; Haneda, H.; Ohashi, N.; Hishita, S.; Yoshikawa, Y. Catal. Today2004, 93, 895.
- [64] Kwon, Y. T.; Song, K. Y.; Lee, W. I.; Choi, G. J.; Do, Y. R. J. Catal.2000, 191, 192.
- [65] Choi, W.; Termin, A.; Hoffmann, M. R. J. Phys. Chem. 1994, 98, 13669.
- Yamashita, H.; Honda, M.; Harada, M.; Harada, M.; Ichihashi, Y.; Anpo,
 M.; Hirao, T.; Itoh, N.; Itoh, N.; Iwamoto, N. J. Phys. Chem. B1998, 102, 10707.
- [67] Anpo. M, Takeuchi. M, J. Catal. 2003, 216, 505.
- [68] Chen, C, et al. J. Phys. Chem. B. 2002, 106, 318.
- [69] Einaga, H.; Harada, M.; Futamura, S.; Ibusuki, T. J. Phys. Chem. B2003, 107, 9290.
- [70] Xie, Y, Yuan, C. Appl. Catal., B: Environ. 2003, 46, 251.
- [71] Thaminimulla, C. T. K.; Takata, T.; Hara, M.; Kondo, J. N.;

Domen, K. J. Catal. 2000, 196, 362.

- [72] Yu, J. C.; Yu, J.; Ho, W.; Jiang, Z.; Zhang, L. Chem. Mater. 2002, 14, 3808.
- [73] Hattori, A.; Tada, H. J. Sol-Gel Sci. Technol.2001, 22, 47.
- [74] Hattori, A.; Schimoda, K.; Tada, H.; Ito, S. Langmuir1999, 15, 5422.
- [75] Hong, X. T.; Wang, Z. P.; Cai, W. M.; Lu, F.; Zhang, J.; Yang, Y. Z.; Ma, N.; Liu, Y. J. Chem. Mater.2005, 17, 1548.
- [76] Luo, H.; Takata, T.; Lee, Y.; Zhao, J.; Domen, K.; Yan, Y. Chem. Mater.2004, 16, 846.
- [77] Asashi, R.; Morikawa, T.; Ohwakl, T.; Aoki, K.; Taga, Y. Science2001, 293, 269.
- [78] M. Sathish, B.; Viswanathan, R.P. Viswanath . Applied Catalysis B: Environmental 74 (2007) 307–312.
- [79] Irie, H.; Watanabe, Y.; Hashimoto, K. J. Phys. Chem. B2003, 107, 5483.
- [80]Lettmann, C.; Hildenbrand, K.; Kisch, H.; Macyk, W.; Maier, W. F. Appl. Catal., B: Environ.2001, 32, 215.
- [81] Sakthivel, S.; Kisch, H. Angew. Chem., Int. Ed.2003, 42, 4908.
- [82]Ohno, T.; Akiyoshi, M.; Umebayashi, T.; Asai, K.; Mitsui, T.; Matsumura,M. Appl. Catal., A: Gen.2004, 265, 115.
- [83] Umebayashi, T.; Yamaki, T.; Itoh, H.; Asai, K. Appl. Phys. Lett.2002, 81, 454.
- [84] Yu, J. C.; Ho, W. K.; Yu, J. G.; Yip, H. Y.; Wong, P. K.; Zhao, J. C. Environ. Sci. Technol.2005, 39, 1175.
- [85] Zhao, W.; Ma, W.; Chen, C.; Zhao, J.; Shuai, Z. J. Am. Chem. Soc.2004,

126, 4782.

- [86] Jung, K. Y.; Park, S. B.; Ihm, S.-K. Appl. Catal., B: Environ.2004, 51, 239.
- [87] Grey, I. E.; Li, C.; Macrae, C. J. Solid State Chem. 1996, 127, 240.
- [88] P. Madhu Kumar; S. Badrinarayanan; Murali Sastry, Thin Solid Films 2000, 358 122.
- [89] Guangming Liu; A.Klein, A.Thissen and W. Jaegermann Surface Science 2003, 539, 37.

