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摘要 

半導體材料的熱電效應可以藉由熱力學方法中 : 一系統存在電場的情

況下，而詳加研究。併入 Clausis-Mossotti 方程式的這個新的方法被提出來計

算固態材料的介電常數，然後便可以計算出一個決定材料熱電轉換效率的重

要因子 : 熱電係數。 

    一般來說，在 Clausis-Mossotti 方程式中的極化率包含三個部份 : 電子極

化率、原子極化率與方向性極化率，然而對於半導體材料的主要貢獻來自於

電子極化率。從極化率得到的介電常數因為擁有粒子聚集的重要巨觀特性，

因此，從電子極化率衍生而來的介電常數便可以將此巨觀特性描述為一個固

態性質。Ab initio 量子化學的理論被運用在計算隨著電場變化的電子極化率

之上。   

    在目前的工作中，三種半導體的熱電材料被考慮 : 矽化鎂、二矽化鐵和

矽化鍺。第一步，APT 和Mulliken電荷經由密度泛涵理論的方法在一變化的

電場下而計算出來，變化的電場如下 : -0.01、-0.0075、-0.005、-0.0025、0.00、

0.0025、0.005、0.0075 和 0.01 原子單位。四種密度泛涵理論的方法被選用，

如下 : B3LYP、BLYP、M05 和M052X，再加上一系列的基底函數，如下 : Pople

形式的基底函數，例如 6-311G、6-311G(d)…等等 ﹔effective core potential形式



的基底函數，例如CEP-31G、CEP-121G和LANLDZ。第二步，APT和Mulliken

電荷被使用來計算在電場中的偶極矩，然後電子極化率可經由偶極矩對電場

求一階導數而計算出來。最後，介電常數便可以從Clausis-Mossotti方程式與電

子極化率而求得。經與實驗測量比較之下，對於矽化鎂、二矽化鐵和矽化鍺

而言，在B3LYP方法之下所模擬計算出來的介電常數顯示最正確的結果。介

電常數從目前的計算方法及他們相對應的實驗結果，分別如下 : 對於矽化鎂

而言，εr = 11.86 和 13.3 ﹔對於矽化鐵而言，εr = 27.806 和 27.6 ﹔對於矽化

鍺而言，εr = 13.571 和 13.95。 

    熱電係數可以從熱力學方法中的chemical potential計算求得，這種方法比

能帶結構理論還簡單的多。Helmholtz自由能在不同溫度下被計算，而且基於

溫度為一變量之下，可以得到某些分析性的函數。因此，熱電係數可經由

Helmholtz自由能對溫度求一階導數而計算出來。然而，這個熱電係數還要除

以先前計算的介電常數，最後才能真正表示固態材料的熱電係數。對於熱電

係數而言，目前計算矽化鎂、二矽化鐵和矽化鍺的結果與實驗測量的結果非

常相近。經由目前計算的熱電係數，分別如下 : 矽化鎂在溫度(300, 800)K下，

Se = (284,334) μV/K ﹔ 二矽化鐵在溫度(300,900)K下，Se = (118.8,140.4) 

μV/K ﹔矽化鍺在溫度(300, 900)K下，Se = (196.3,220.9)。與之相對應的實驗

結果，分別如下 : 矽化鎂在溫度(300, 800)K下，Se = (180,280) μV/K﹔二矽化

鐵在溫度(300, 900)K下，Se = (190, 170) μV/K﹔矽化鍺在溫度(300, 900)K下，

Se = (345,325) 。 

     總之，對於計算熱電係數而言，目前計算的方法明顯優於傳統能帶結構

理論的方法。 
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Abstract 

Thermoelectric effect of semiconducting materials is studied by the 

thermodynamic method for a system in the presence of an electric field. The new 

method incorporating with the Clausis-Mossotti equation is proposed to calculate 

dielectric constant for solid-state materials, and then to compute the Seebeck 

coefficient that is key factor to determine thermoelectric conversion efficiency of 

the materials. 

The polarizability in the Clausis-Mossotti equation in general includes three 

parts; electronic polariability, atomic polariability and orientation polariability. 

The dominant contribution for semiconducting materials comes from electronic 

polariability. A dielectric constant derived from the polarizability is an important 

bulk property of a collection of particles. Therefore, the dielectric constant derived 

from electronic polariability can describe bulk as a solid. Ab initio quantum 

chemistry theory is utilized to compute electronic polariability directly with 



varying strength of electric field.  

In the present work, three semiconductor thermoelectric materials are 

considered; Mg2Si, FeSi2 and SiGe. In the first step, APT and Mulliken charges 

are computed with density functional theory (DFT) method at various electric 

fields; -0.01, -0.0075, -0.005, -0.0025, 0.00, 0.0025, 0.005, 0.0075 and 0.01 in 

atomic unit. Four kinds of DFT functionals are chosen: B3LYP, BLYP, M05 and 

M05-2X, plus a bunch of basis sets; Pople style basis sets including of 6-311G, 

6-311G(d)…etc; effective core potential including of CEP-31G, CEP-121G and 

LANL2DZ. In the second step, APT and Mulliken charges are used to calculate 

dipole moments at given electric field above and then derivatives of dipole 

moments with respect to electric field lead to the electronic polarizability. In the 

final step, the dielectric constant is evaluated from the Clausis-Mossotti equation 

through the electronic polarizability. In comparison with experimental 

measurements, simulated dielectric constants with B3LYP method show the most 

accurate results for Mg2Si, FeSi2 and SiGe. The dielectric constants from the 

present calculations and their corresponding experiment results are εr = 11.86 and 

13.3 for Mg2Si, εr = 27.806 and 27.6 for FeSi2, and εr = 13.571 and 13.95 for SiGe, 

respectively.  

The Seebeck coefficient is calculated from the thermodynamic method with 

chemical potential. This method is much simpler than energy band structure 

theory. The Helmholtz free energies are computed at various temperatures, and 

then are fitted into the certain analytical function with respect temperatures as a 

variable. Thus, the Seebeck coefficient can be evaluated from partial derivative of 

Helmholtz free energy with respect to temperature. This Seebeck coefficient that 

must be divided by the dielectric constant evaluated previously can finally be 



considered as the Seebeck coefficient for a solid-state material. The present results 

show good agreements with experimental measurements for the Seebeck 

coefficients of Mg2Si, FeSi2 and SiGe. The Seebeck coefficients from the present 

calculations are Se = (284, 334)µV/K at the temperature (300, 800)K for Mg2Si, Se 

= (118.8, 140.4)µV/K at (300,900)K for FeSi2, and Se = (196.3,220.9)µV/K at 

(300,900)K for SiGe. Their corresponding experiment results are Se = (180, 

280)µV/K at (300, 800)K for Mg2Si, Se = (190, 170)µV/K at (300,900)K for FeSi2, 

and Se = (345,325)µV/K at (300,900)K for SiGe. 

In conclusion, the present method surprisingly woks better than conventional 

energy band structure theory for calculating the Seebeck coefficient.  
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Chapter 1 Introduction 

 

    Recently Greenhouse effect is more serious and it speeds up the research for 

the alternative sources of energy in place of traditional fossil fuels. Power 

generation   from the solar energy has attracted more attention, but it is still 

insufficient for the current huge energy consumption. Thermoelectric materials have 

the property for recovering the wasting heat to generate useful electric power and 

for reducing global warming effects. Since this energy conversion is done by 

electron moving in solid, we can make full use of solid. Firstly, the thermoelectric 

device has no moving part, and is operated almost without the maintenance. Besides, 

thermoelectric energy conversion has several advantages in comparison with the 

other energy sources. Secondly, it produces no waste matter through conversion 

process. Thirdly, it can be processed at a micro/nano size, and can be implemented 

into electronic devices1. 

   The efficiency of energy conversion for a thermoelectric material is measured 

by the dimensionless thermoelectric figure of merit, written as ZT, and it is defined 

by 

2

 e

phonon electro n

S TZ T
k k

σ
=

+                         (1.1) 

where Se is Seebeck coefficient, σ is the electrical conductivity, kphonon and kelectron 

are the thermal conductivity for the phonon and the electron respectively, and T is 

temperature. The ideal thermoelectric material would have a large Se, a large σ and 

a small k. For an insulator it usually has a large Se and a small k, but it has a small σ, 

while for a metal it has a large Se and σ, but it has a large k. Therefore, how to 

 1



enhance ZT for thermoelectric materials is a very challenging problem, because 

material with a large σ is usually companied with a small Se and a large k. The 

trade off between the electrical conductivity and Seebeck coefficient can be seen in 

Fig. 12 for bulk silicon crystals2.  

 

Fig. 1  Seebeck coefficient and ZT as a function of the electrical conductivity for 

bulk crystal Silicon at 373K2. 

 

     If ZT goes to zero, it means there is no energy conversion. But as ZT is 

increasing to infinity, it will reach the Carnot efficient limit, which applies to all 

heat engines3. The laws of thermodynamics tell us that a maximum efficiency, 

called the Carnot efficiency, cannot be exceeded. The Carnot efficiency can be 

written 

                       100%Hot Cold

Hot

T T
T

η −
= ×                         (1.2) 

where THot and TCold are the temperatures of the hot and cold sides of the materials. 

     The comparison of ZT values with different materials can be seen in Fig. 24, 

where the most of materials are located below ZT=1. Non-oxide materials have 
 2



large ZT values and oxide materials have small ZT values, and the ZT values of 

SiGe crystals approach to 1, and the ZT values of β-FeSi2 is between 0.1 and 1. 

β−FeSi2

Bi0.88Sb0.12

SiGe

Non-oxide

Oxide

β−FeSi2

Bi0.88Sb0.12

SiGe

Non-oxide

Oxide

 

       Fig. 2  The comparison of ZT values from different materials4. 

 

    The traditional thermocouple that is based on the two dissimilar metal wires is 

for the first time to apply for thermoelectrics. From the 1950s the semiconductors 

replaced the metals and especially in the 1990s the research of thermoelectric 

materials achieved the big progress3 and it can be demonstrated in Fig. 35. The 

research for thermoelectric silicide materials is grouped into two categories; one is 

alkaline-earth metal silicides and the other is transition metal disilicide. Magnesium 

silicide Mg2Si that is n-type semiconductor is widely used for the application to the 

thermoelectric devices, as it is abundant in the natural resources, besides it is 

non-toxic, inexpensive. Mg2Si is the well known promising thermoelectric material 

in temperature range from 500 to 800K6 and with narrow-band gap about 0.78 eV7. 

β-FeSi2 is another promising thermoelectric material according to its energy band 

gap, thermal stability and corrosion resistance6. It is mainly used for generating 

 3



power in the temperature range from 500 too 900K6.  

 

Fig. 3  Progress in thermoelectric materials figure of merit, ZT. 

 

   The Seebeck coefficient that is also called as thermopower is the important 

parameter to determine the thermoelectric conversion efficiency of thermoelectric 

materials and its magnitude depends on an induced thermoelectric voltage across 

the materials in response to a temperature difference. The Seebeck coefficient is 

usually calculated from the charge carrier motion of energy band gap, because an 

applied temperature difference will cause charge carriers (electrons or holes) in the 

materials to diffuse from the hot side to the cold side. As diffusions of charge 

carriers reach thermodynamic equilibrium, the net separation of carriers would 

create an electric potential. However, phonons are not always in local thermal 

equilibrium. They lose momentum by interacting with other carriers and tend to 

push electrons to one side of the materials. So the Seebeck coefficient is mainly 

affected by the following two reasons: charge carrier diffusion and phonon drag. 
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However, diffusing charge carriers would also be scattered by impurities, defects, 

phonons and other charge carriers, etc8. The above factors complicate the 

calculations of the Seebeck coefficient considerably in the conventional band 

structure theory. 

   We have found an alternative way to study the thermoelectric dynamics. It is 

based on the thermodynamic theory for the system in equilibrium with an electric 

field. As thermodynamics is considered as an exact theory in which all microscopic 

quantities can be averaged out systematically, it is possible to perform a more 

accurate calculation9.  

In the present work, three semiconductor thermoelectric materials, Mg2Si, 

FeSi2 and SiGe, were investigated. In the first step, APT and Mulliken charges are 

computed with density function theory (DFT) method at various electric fields. 

Four DFT functionals are chosen; B3LYP, BLYP, M05 and M05-2X. In the second 

step, APT and Mulliken charges are used to calculate dipole moments at a given 

electric field and then derivatives of dipole moments with respect to electric field 

lead to the electronic polarizability. In the final step, the dielectric constant is 

evaluated from the Clausis-Mossotti equation through the electronic polarizability. 

The Seebeck coefficient is calculated from the thermodynamic method with 

chemical potential. This method is much simpler than energy band structure theory. 

The Helmholtz free energies are computed as a function of the temperature, and 

then are fitted into an analytical function with respect temperatures as a variable. 

Seebeck coefficient can be evaluated from partial derivative of Helmholtz free 

energy with respect to temperature, which is divided by dielectric constant 

evaluated previously and finally be considered as the Seebeck coefficient for a 

solid-state material. Some experimental data are included in the present method, for 
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example, the density of the material9. 



Chapter 2 Theory 

 

2-1 The Electric Properties of Matter 

2-1-1 Basic relation of electric field, energy and            

polarizability 

     There exist both time-dependent and the time-independent electric fields. 

Time-dependent field is usually associated with electromagnetic radiation 

characterized by a frequency of implying dynamic properties, while 

time-independent field does not vary with accompanying frequency of implying 

static properties. The present work is focused on the static electric field that is also 

called the homogeneous electric field here10. 

      In the presence of a homogeneous external electric field, the Hamiltonian 

for the total system (nuclei and electrons) can be written as11 

(0) (1)ˆ ˆ ˆH H H= +                           (2.1) 

where H(0) is unperturbed term without the field for the system and H(1) has the form  

(1)ˆ ˆ ˆ ˆ ˆx x y y z zH F F Fµ µ µ µ= − − − = − ⋅F          (2.2) 

in which the dipole moment operator μ is given by 

ˆ i i
i

q rµ = ∑                                (2.3) 

with the vector ri indicating the particle i with charge qi 

     From eq. (2.1) and (2.2) it can be obtained the relation, 
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ˆ
ˆ       a x, y, za

a

H
F

µ∂
= − ∈

∂                       (2.4) 

     From eq. (2.4) it follows 

a

ˆ
ˆ=  - =  -

a

H
F aˆψ ψ ψ µ ψ∂

∂
µ              (2.5) 

 where μa is the expectation of the a-th component of the dipole moment 

      From the Hellmann-Feynman theorem it follows 

ˆ E=
a a

H
F F

ψ ψ∂ ∂
∂ ∂

                      (2.6) 

therefore 

a
E ˆ=  -  

aF
µ∂

∂                              (2.7) 

      Moreover, if it is in the case of a weak electric field F, it can be written as 

the Taylor expansion at F = 0. 

   

( )
2

(0)
a a a'

a a,a'a a a'F=0 F=0

3

a a' a"
a,a',a" a a' a" F=0

E 1 EE F =E + F + F F
F 2! F F

1 E+ F F F +...                             a,a',a" x,y,z
3! F F F

⎛ ⎞ ⎛ ⎞∂ ∂
⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠

⎛ ⎞∂
∈⎜ ⎟∂ ∂ ∂⎝ ⎠

∑ ∑

∑
       (2.8) 

where E(0) is the energy of the unperturbed term for the system. 

     Combining eq. (2.7) with (2.8), we can have 

2

a '
a' 'F=0 F=0

3

' "
a' ' " F=0

E E Eˆ= - = +

1 E+ +
2

a
a a a a

a a
a a a

...

F
F F F F

F F
F F F

µ
⎛ ⎞ ⎛ ⎞∂ ∂ ∂
⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

⎛ ⎞∂
⎜ ⎟∂ ∂ ∂⎝ ⎠

∑

∑
                  (2.9) 
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In terms of the derivatives in eq. (2.9), the permanent dipole moment, the 

polarizability and the (first) hyperpolarizability 

              
(0)

a a a,a' a' a,a',a" a' a"
a' a',a"

1= + F + F F +.
2

µ µ α β∑ ∑ ..         (2.10) 

      The meaning of the formula forμa is listed :  

a

the total dipole moment (field-dependent) :
E                          =-

aF
µ ∂

∂
          (2.11) 

(0)
a

F=0

the permanent (field-independent) dipole moment :

E                            = - 
aF

µ
⎛ ⎞∂
⎜ ⎟∂⎝ ⎠

          (2.12) 

2
a

a,a'
' 'F=0 F=0

the component aa' of the polarizability tensor :

E       = -  = 
a a aF F F

µα
⎛ ⎞ ⎛ ⎞∂∂
⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠

            (2.13) 

3

a,a',a"
' " F=0

the component aa'a" of the (first) hyperpolarizability tensor :

E                      = - 
a a aF F F

β
⎛ ⎞∂
⎜ ⎟∂ ∂ ∂⎝ ⎠

    (2.14) 

     In other words, an induced dipole moment, which consists of the linear 

responses ( α  polarizability ) and the nonlinear responses ( β 

hyperpolarizability) to a homogeneous electric field. The quantities (vectorμ0, 

tensor α and tensorβ) are very important quantities for characterizing the molecule. 

    A neutral atom is placed in a static external electric field F. If the field is not 

too large, and the response ( α polarizability )  of the atom is isotropic , and 

induced dipole moment will be proportional to the electric field, and can be written  
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ˆˆ Fµ α=                         (2.15) 

with α is the constant of proportionality — scalar quantity. 

    For a molecule with spherical symmetry, the polarizability is 

well-approximated by a single constant — scalar quantity, the polarizabilty is also 

isotropic. However, for many molecules being not spherical symmetry, the 

polarizability cannot be characterized by a single constant. For example, the charge 

distribution along the internuclear axis is longer than perpendicular to this axis for 

H2 molecules, and thus it can be expected that the charge separation induced by 

external electric field is be greater along the internuclear axis than along a 

perpendicular axis12. In such case, a single scalar quantity is not sufficient to 

describe the polarizability. The most general way to transform one vector F to 

another μ is defined by a second-rank Cartesian tensor as in matrix form 

x xx xy xz x

y yx yy yz

z zx zy zz

F
F
F

µ α α α
µ α α α
µ α α α

⎛ ⎞⎛ ⎞ ⎛
⎜ ⎟⎜ ⎟ ⎜= ⎜⎜ ⎟ ⎜

⎜ ⎟ ⎜⎜ ⎟⎝ ⎠ ⎝⎝ ⎠

y

z

⎞
⎟

⎟ ⎟
⎟
⎠

                (2.16) 

    For a static field, the polarizability tensor is symmetry. 

2-1-2 Basic dielectric relations 

   In the vacuum, the electric field about a charge q at a distance r is defined by 

                          v 2
0

qF =
4 rπε                          (2.17)        

   Now consider the electric field between two plates, the area of the plates is A, 

and each one has a surface charge density σ. If the medium between plates is a 
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vacuum, the electric field is derived as ( atomic units), see Fig. 4(a)13 

                             v
0

F =  σ
ε

                         (2.18) 

     But if there existing dielectric medium between two plates, the electric field 

will be reduced due to the polarization P of the material. The field distorts the atoms 

and molecules, and orients existing dipoles to create a field opposing the applied 

field. So the resultant field is reduced13. Now P called as polarization is defined as 

dipole moment per unit volume. Consider a plate of area A, length L. Its total dipole 

moment due to polarization is 

P  volume = PAL =PA  L = end charge  length× × ×     (2.19) 

    Therefore, the effective charge density on the plates is (σ – P ). The resultant 

field is in eq. (2.20) ( see Fig. 4(b)13 ) 

                       
0

- PF = =σ σ
ε ε                       (2.20) 

Rearrange eq. (2.20) and combine with eq. (2.18), the basic relation of polarization 

and electric field is obtained. 

           0 0 0 0 r 0
0

P= -F =F( - )=F ( -1)=F ( -1)=F e
εσ ε ε ε ε ε ε ε
ε

χ        (2.21) 

Electric susceptibility (χe) is defined through eq. (2.21), and is related to the relative 

permittivity (dielectric constant) 

e r
0

P= -1=
F

χ ε
ε                     (2.22) 
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Fig. 4  (a)The field Fv between plates in vacuum.(b) The field in the 

dielectric medium is polarized, and it is reduced to F.(c) Relation between 

F and Fv

 

2-1-3 Lorentz local field and Clausius-Mossotti equation 

   Let us begin with considering all kinds of electric fields. F0 is applied external 

field, and F1 is the field of the surface induced charge density on the boundary, and 

it is due to the uniform polarization of the surface charge density. F1 is also called 

depolarization field which is opposed to the applied field F0 within the body. F is 

the addition of F0 and F1, and is called macroscopic electric field. ( see Fig. 514 ). 

 

Fig. 5  The applied external field F0. The depolarization field F1 is opposite to P. 

And the macroscopic electric field F, F=F0+F1
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    Now an expression of local field Flocal at a general lattice site is discussed. The 

local field that acts at the site of an atom is different from the macroscopic electric 

field F. If it is in a sphere, the macroscopic electric field can be seen in eq. (2.21) 

where the value of depolarization field is from depolarization factor of a sphere14. 

0 1 0
0

1F = F  + F  = F  - P
3ε

                         (2.23) 

    The local field at an atom is the sum of the electric field F0 from external 

sources and of the filed from the dipoles within the specimen. It is written as 

0 1 2local 3F F F F F= + + +                 (2.24) 

where F0 = applied external field. F1 = depolarization field, from a charge density of 

the outer surface. F2 = Lorentz cavity field, from polarization charges inside of a 

spherical cavity cut out of the specimen with the reference atom as center. F3 = field 

inside cavity. More details in Fig. 614 

 

Fig. 6  The internal electric field at an atom in a crystal is the sum of the applied field F0 and of the 

field due to the other atoms in the crystal. The standard method is summation of the dipole fields of 

the other atoms. First, it sums individually over a moderate number of neighboring atoms inside an 

imaginary sphere concentric with the reference atom: this is defined by the field F3. The atoms 

outside the sphere can be contributed to the field at a reference point is F1 + F2. 
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If atomic arrangement is cubic symmetry in a crystal or the array of dipoles is 

random in a liquid or a glass, the inside field F3 is zero. So the field F3 depends on 

the crystal structure.  

    Now, let us start to discuss the Lorentz cavity field F2. An annulus on the 

surface of a cavity is constructed. ( see Fig. 713 )    

 

Fig. 7  charge distributions in a spherical cavity within a dielectric. 

 

From Fig. 7, the charge on the annulus is  

cos  2 R sin  RdP θ π θ− θ                      (2.25) 

    At the center of the cavity it produces a coulomb field along the annulus. The 

vertical components cancel off, and the horizontal ones are additive from Fig. 4. 

2
2

0 0

1 1 1Pcos  2 R sin cos = Pcos sin d
4 R 2

Rdθ π θ θ θ θ θ
πε ε

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

θ     (2.26) 

     For the whole sphere, the net field F2 is  
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 2
2 0

0 0

P PF = cos sin =
2 3

d
π

θ θ θ
ε ε∫                (2.27) 

     Finally, if atomic arrangement is cubic array or random (F3 = 0) and the 

cavity is spherical, the local field is  

loc 0 1 2
0

PF =F +F +F =F+
3ε

                  (2.28) 

eq. (2.28) is the Lorentz relation. 

      The polarizability α of an atom is defined in term of the local electric field 

at the atom. 

loc= Fµ α                           (2.29) 

      The polarization of a crystal can be expressed as the product of the 

polarizability of the atoms multiplied by the local electric field. 

loc
0

PP=n =n F =n F+
3

µ α α
ε

⎛ ⎞
⎜
⎝ ⎠

⎟                 (2.30) 

where n called as number density is defined as total number of objects per unit 

volume, and the unit of P is dipole moment per unit volume. 

    Form eq. (2.30) basic relation between P and F in dielectric is obtained as  

0

P n=
F 1-n /3

α
α ε

                          (2.31) 

    with which the dielectric constant in eq. (2.22) becomes 

                    e r
0 0

P n= -1= =
F -n /3

αχ ε
ε ε α

                    (2.32) 

    and  
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( ) 0
r r

0

3+2= -1 +3=
-n /3
εε ε

ε α                   (2.33) 

     Finally, eq. (2.32) divided eq. (2.33) leads to  

            
r

r 0

-1 n=
+2 3

ε α
ε ε                         (2.34) 

     This formula is known as the Clausius-Mossotti equation.  

     Moreover, a practical form is obtained by replacing the number density by the 

mass density ρ. 

( )AA N m/MN *mol NNn =  =  =  =
V V V M

Aρ                 (2.35) 

with NA is the Avogadro constant, m is the mass of the sample and M is the Molar 

mass of the molecules. 

     Finally, the Clausius-Mossotti equation can be written as 

0 r

A r

3 M -1=
N +2
ε εα
ρ ε
⎛ ⎞
⎜
⎝ ⎠

 ⎟                             (2.36) 

     The polarizability which is one of atomic properties is related to many 

important bulk properties of a collection of particles including the dielectric 

constant εr, the electric susceptibility χe, the refractive index η, etc12. 

If there is the permanent electric dipole moment μ0 in the molecule, the 

polarizability is related to the dielectric constant by the Debye equation. 

2
0 0 r

A r

3 M -1 + =
3kT N +2
µ ε εα

ρ ε
⎛ ⎞
⎜
⎝ ⎠

⎟                        (2.37) 
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where μ0 is the permanent dipole moment, k is Boltzmann’s constant and T is the 

absolute temperature. ( more details in 2-1-4 Polarizability ) 



     The index of refraction is related to the polarizability by the Lorentz-Lorenz 

formula. 

            
2

0
2

A

3 M -1=
N +2
ε ηα
ρ η
⎛ ⎞
⎜
⎝ ⎠

 ⎟                           (2.38) 

This formula is valid for non-polar molecules or at frequency high enough 

that the permanent dipole moments cannot follow the electric field. The 

Lorentz-Lorenz equation and Clausius-Mossotti equation are related by the 

Maxwell relation εr = η2  12. 

2-1-4 Orientation and distortion polarization 

As is seen from Fig. 4 (b), when a external field in the dielectric medium, the 

effective electric field between the plates must be reduced. The reduced field due to 

polarization of the medium is affected by two reasons. The first one is that the 

molecule of the medium has a permanent dipole moment, and this effect is known 

as orientation polarization. The orientation polarization is temperature dependent 

and its value decreases with an increase of temperature because the random thermal 

collisions oppose the tendency of the permanent dipole moments to orient 

themselves in the electric field15. This magnitude of the effect can be calculated 

from Boltzmann distribution. The energy of a dipole in a local field Flocal along the 

z-axis is 

( ) cos , with 0   z loc locE F Fθ µ µ θ θ= − = − ≤ ≤π         (2.39) 

    The probability dp(θ) that a dipole has an orientation in the range θ to θ+dθ is 
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( )
( )

( )

-E /kT

-E /kT

0

e sin ddp  = 
e sin d

θ

π θ

θ θθ
θ θ∫

                (2.40) 

    The average value of z component of the dipole moment is 

xcos

0
z x cos

0

loc

e cos sin d
 = cos dp = cos dp =  

e sin d

F                                                                         , x=
kT

π θ

π θ

θ θ θ
µ µ θ µ θ µ

θ θ

µ

∫
∫ ∫

∫       (2.41) 

    Finally the average dipole moment along the z-axis is obtained. 

( ) ( )
x -x

z x -x

e + e 1= L x   , L x = -
e  - e x

µ µ               (2.42) 

 The function L(x) is called Langevin function.  

    When µFloc << kT corresponding to x<<1, the Langevin function is  

( ) locF1L x x=
3 3kT

µ
≈                        (2.43) 

    From eq. (2.29) and (2.43), we will obtain  

2

o =
3 k T
µα                                 (2.44) 

Here αo is called orientation polarizability, and the eq. (2.44) exists only at   

µFloc << kT. 

    The second version is that it always exists whether the molecule is polar or not. 

For the electrons to shift relative to the positive charges, and this is called as 

electronic polarization, while atoms are shifted relative to each other called as 

atomic polarization. If the position of a molecule is disturbed by a collision, a new 

dipole is immediately induced again in the direction of field. However, the 
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distortion polarization is independent on the temperature15. The sum of above two 

polarization effects is called distortion polarization. 

2-1-5 A summary of polarization 

   The electric field gives rise to a dipole moment by the following effects16: 

1. Translation (distortion) effects:  

 The electrons are shifted relative to the positive charge ( electronic polarization) 

 Atoms or atom groups are displaced relative to each other (atomic polarization) 

2.  Rotation (orientation) effect: 

    The electric field trends to direct the permanent dipole moments. 

 

    Now let us consider frequency effect toward polarizability. When the 

frequency of the field is high, the molecule dipole cannot change direction fast 

enough to follow the field. Therefore permanent dipole moment doesn’t contribute 

to the polarization at microwave region, orientation polarizability is lost. For higher 

frequency, because the molecule is bent and stretched in the frequency of 

Infrared-Ray region by the applied field, the molecule dipole moments change 

accordingly. The time taken for a molecule to bend is approximately the inverse of 

the molecular vibrational frequency, so it will lose the contribution of the atomic 

polarization. At even higher frequency (about visible region), only the electrons are 

mobile enough to follow the rapidly changing direction of the field, so it only 

remains electronic polarizability17. (See Fig. 8) 

 



 

Fig. 8  The general form of the variation of the polarizability with the frequency.    
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2-2 Charge population 

2-2-1 Mullikan charge 

Assuming the MO (φ) can be expanded in a set of basis functions (χ) 

                           

 b a s i s

ic
M

i α α
α

φ χ= ∑                   (2.45) 

   The electron density (ρ) which is equal to the square of the MO (φ) can be 

written as  

M basis
2

i i i i= = c cα β α β
αβ

ρ φ ∑ χ χ                      (2.46) 

   The total electrons (Nelec) are equal to integrating and summing over all 

occupied MOs. 

           

occ

occ occ

N
2

elec i
i

N NM basis M basis

i i i i
i i

N = dr  

= c c dr = c c Sα β α β α β α
αβ αβ

φ

χ χ

∑∫

∑ ∑ ∑ ∑∫ β

           (2.47) 

   The eq. (2.47) can be generalized by introducing an occupation number (n) for 

each MO, see eq. (2.48) 

                  
N NM basis M basis2

elec i i i i i
i i

N = n dr= n c c S = D S
occ occ

α β αβ αβ αβ
αβ αβ

φ
⎛ ⎞
⎜ ⎟
⎝ ⎠

∑ ∑ ∑ ∑∫       (2.48) 

   The Mulliken population analysis uses the D‧S matrix for separating the 

electron density into atomic contributions. A diagonal element DααSαα is the number 

of electrons on the α AO, and off-diagonal element DαβSαβ is the number of 
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electrons shared equally by  α  AO and β  AO. The Mulliken electron 

population on atom A is defined as in eq. (2.49) 
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S          
M  basis M basis

A
A 1

= Dαβ αβ
α β

ρ
∈ =
∑ ∑                      (2.49) 

  The Mulliken net charge on atom A is the sum of the nuclear and electronic 

contributions. 

         A AQ =Z - Aρ                             (2.50) 

   However, Mulliken population analysis doesn’t offer exact charges of the 

individual atom, it only provides the trend, because partition of the charge 

contribution is equal. Moreover, atomic charges calculated from the Mulliken 

analysis will not converge to a constant value when the size of the basis set is 

increasing. Larger basis set is usually involving the addition of more polarization 

basis functions or diffuse basis function, it will give rise to unpredicted change in 

the atomic charge. So Mulliken population analysis is affected largely by basis 

functions, and it usually is most useful for comparing trends in charge distributions, 

when small- or medium-size basis sets are used10.  

 

2-2-2 Atomic polar tensor charge 

   The atomic polar tensor VAPT of atom A is defined by the first derivatives of the 

dipole moment with respect to the nuclear coordinates18 in eq. (2.52) and it can be 

used to determine intensities of IR absorptions due to the intensity is given by eq. 

(2.51). 



2

 int ensity  
R

IR µ∂⎛ ⎞∝ ⎜ ⎟∂⎝ ⎠
                     (2.51) 

Here R is the nuclear coordinates.  

x x x

y y yAPT

z z z

x y z

V =
x y z

x y z

µ µ µ

µ µ µ

µ µ µ

∂ ∂ ∂⎛ ⎞
⎜ ⎟∂ ∂ ∂⎜ ⎟
∂ ∂ ∂⎜

⎜
⎟
⎟∂ ∂ ∂⎜ ⎟

⎜ ⎟∂ ∂ ∂
⎜ ⎟∂ ∂ ∂⎝ ⎠

                      (2.52) 

   The definition of atomic polar tensor charge on atom A is one-third of the trace 

over the APT18, see eq. (2.53) 

yAPT x
A

1Q = + +
3 x y z

µ
zµ µ∂⎛ ⎞∂ ∂

⎜ ⎟∂ ∂ ∂⎝ ⎠
                     (2.53) 

   Because dipole moment derivatives determine IR absorptions, APT charges are 

directly related to experimentally observable quantities19. Moreover, APT analysis 

has the following properties: (1) the atomic charges should be invariant with respect 

to rotations and translations of the molecule; (2) APT charges sum up to the total 

electric charges of the molecule; (3) APT charge isn’t directly related to the choice 

of a particular basis set , its basis set dependent stems only from the fact that the 

basis set is not complete18. So the basis-set dependence is modest, although 

basis-set convergence isn’t reported20. But APT charges are sensitive to the electron 

correlation in the wave function, it can be seen in Table 121. A measure for the 

sensitivity of a particular change definition toward electron correlation is provided 

by the difference q (QCISD) – q (SCF). It is very obvious that APT charge exhibits 

the largest correlation effect and Mulliken population analysis appears to be 

relatively in sensitive to the electron correlation21. So the observation that APT 
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appears to be much less sensitive to the basis set than to electron correlation. 

 

 

Table 1: Correlation contribution to different charge definitions at QCISD/cc-pVDZ 

level 
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2-3  Dipole moment16 

    The dipole moment of a point charge q relative to a fixed point is defined as qr, 

in which r is the radius vector from the fixed point to e. Hence, the dipole moment 

of a system of charges qi, relative to a fixed origin is defined as: 

i i
i

ˆˆ  = q rµ ∑                                    (2.54) 

    If the net charge of the system is zero, the dipole moment is independent of the 

choice of the origin. The eq. (2.54) can be written in another way by introducing the 

positive and negative charges in eq. (2.55) 

i i i i
positive negative

ˆˆ  = q r  + q r  µ ˆ∑ ∑                        (2.55) 

   For two atoms of a system (Fig. 9), the dipole moment can be written as 

( ) ( )+ - + -
ˆ ˆ ˆ ˆˆ = qR  + -q R  = q R - R  = qLµ ˆ                   (2.56) 

 

Fig. 9  The dipole moment in two atoms of a system 

 

    From eq. (2.56) it is very clear that we can choose one atom as the origin, and 

dipole moment will be equal to charge multiplied by bond length directly.  

     It is the same for three or more atoms of a system. For example, in three 
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atoms of a system, we choose the Ａ atom as the origin for (x2, y2) = (0,0), and 

dipole moment is as in Fig. 10. 
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ˆ1 12 3 23ˆq r q rµ = ⋅ + ⋅                        (2.57) 

    It is also written as 

1 1 3 3

1 1 3 3

x

y

q x q x
q y q y

µ
µ

= +

= +  

    When the B atom is identical to the C atom,μx is equal to zero. Andμy can be 

calculated from 

2 cos
2y qr αµ µ= =                           (2.58) 

where q = q1 = q3 and r = r12 =r23. 

 

 

 

Fig. 10  The dipole moment in tree atoms of a system. 

 



2-4 Density Functional Theory 

2-4-1 Historical Background 

         Thomas (1926) and Fermi (1927) are the pioneering scientists to use the 

electron density rather than wave function for expressing approximate energy for 

the first time. They applied quantum statistical model (uniform electron gas) to the 

kinetic energy but treated the electron-nuclear and electron-electron interactions in 

classical way. The most important part is no exchange and correlation effect in this 

model. The Thomas-Fermi total energy is expressed in terms of density as22 . 

( ) ( )
52

2 1 233
TF 1 2

12

(r ) (r )3 (r) 1E = 3 r dr-Z dr+ drdr
10 r 2 r

ρ ρρπ ρ∫ ∫ ∫∫      (2.59) 

        Later on, Slater (1951) added the Hartree-Fock exchange term and exchange 

energy can be expressed approximately as 

 [ ] ( )
4
3

X XE C rρ ρ≅ dr∫                         (2.60) 

         To improve the quality of exchange energy, semiempirical parameter α was 

introduced to CX. It is called Xα method in one of density functional approaches. 

         Hohenberg and Kohn (1964) brought up two theorems that make big 

contribution to the present DFT. The first one is that the ground state electronic 

density is uniquely specified by the given external potential Vext, and it also means 

electron density ρ(r) defines all terms in the Hamilton operator23. In other words, 

the ground state electronic density and the ground state wave function can be used 

alternatively as full descriptions of the ground state of the system11. The second one 

is variational principle applied to density functionals. It could calculate ground state 
 27



energy by inserting approximate density, see eq. (2.61). E0 represents the minimum 

value of the system. 

                  [ ] [ ] [ ] [ ]0 NeE E =T +E +Eeeρ ρ ρ≤ ρ               (2.61) 

     Kohn and Sham (1964) considered a fictitious system of non-interacting            

particles, and in order to ensure that the system has the same density and energy as 

the real system, those particles are assumed moving in the external potential 

Veff (r)22. In the other hand, the Kohn-Sham system of the electrons, that do not 

interact with each other at all (as if their charges are equal zero) but interact with the 

nuclei, they are subject to an external potential Veff (r)11, as described in the 

following22. 

                   ( ) ( ) ( )e 0 effE =T r + V r r drρ⎡ ⎤⎣ ⎦ ρ∫                  (2.62) 

( ) ( ) ( )
'

0
eff ext C

TTV r = - +V r +V r + xcE
ρ ρ ρ

∂∂
∂ ∂ ∂

∂                   (2.63)  

E’xc is called as exchange correlation energy in which exchange part is from 

Hartree-Fock approximation, and correlation effect is obtained from extra 

correlation contributions (beyond the Hartree-Fock approximation). Vext is the 

interaction of nuclei and electrons. Vc is the classical Coulomb operator, then there 

is a self-interaction of electron cloud with itself. 

( )
N

j
j = 1

ˆ ˆ =  J  r  cV ∑                       (2.64) 

     Now the exact form of effective potential Veff is still unknown, so that the 

exchange-correlation potential Vxc is to be determined. 

                   ( )
'

0 xc xc
xc

T E ET - + V r
ρ ρ ρ ρ

∂ ∂ ∂∂
≡ ≡

∂ ∂ ∂ ∂
                 (2.65) 
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      Finally, the total DFT energy of Kohn-Sham theorem can be written  

            
( ) ( ) ( ) ( ) ( )

[ ] [ ] [ ] [ ] [ ]
DFT 0 ext C

DFT 0 ne XC

E =T r + V r  +V r  + Vxc r r dr

E =T +E +J +E

ρ ρ

ρ ρ ρ ρ ρ

⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦
⇔

∫
    (2.66) 

      The most importance in eq. (2.66) is the exchange-correlation energy. A lot 

of approximations have been carried out for getting the accurate 

exchange-correlation energy. In the Local Density Approximation (LDA) it is 

assumed that uniform electron gas is in the system, in order to ensure that the 

electron density is constant in space, the exchange-correlation energy isn’t related 

with variations of electron density. It means that we can calculate Vxc for the system 

as a function of the constant density. In the Generalized Gradient Approximation 

(GGA) it takes into account a non-uniform electron gas and includes electron 

density and the derivatives of the density in the expression of the 

exchange-correlation energy. On the other hand, Exc depends not only on ρat a 

given point (local), but also at the ρ nearby (non-local). Therefore, it is also 

called non-local approximations. If it includes higher derivatives of the density, it 

could be called meta-GGA approximation. At the beginning of the 1990s a new 

method was called Hybrid method combined the Hartree-Fock theory with 

Kohn-Sham theorem. Because the exchange energy is given exactly by 

Hartree-Fock theory and correlation energy is treated only by Kohn-Sham theorem, 

it will be more accurate to express the exchange-correlation energy. The most 

popular and famous method B3LYP functional is widely used in computation and it 

is defined in  

( ) ( )B3LYP LSDA B88 LSDA
xc x x xE = 1-a E +aE +b E + 1 E EHF LYP

cc c∆ − + c     (2.67) 

    Three parameters a, b and c are determined by fitting to experimental data and 
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depend on the form of exchange and correlation energy. It is the classification of 

density functional below. (see Table 2) 

Table 2:  Perdew classification of exchange-correlation functions10 

Level Name Variables Examples 

1 Local density ρ L(S)DA , Xα  

2 GGA ρ, ▽ρ BLYP , OLYP , PW86 , PW91 , PBE 

3 m-GGA ρ, ▽ρ,▽2ρ or more B95 , VSXC , PKZB , TPSS 

4 Hybid 

ρ, ▽ρ,▽2ρ or more 

and HF exchange 

H+H , B3LYP , O3LYP , PBE0 , TPSSh

 

2-4-2 M05 and M05-2X  

    Now still there is one problem called as self-correlation error in some DFT 

methods. It stemmed from electron interacting with itself. Table 3 is about 

self-correlation error for one electron of Hydrogen atom. We can see the HF theory 

is free of self-correlation error for one-electron system, but other DFT methods 

clearly have self-correlation error.   

 

 

 

 



Table 3:  Energy components [Eh] of various functionals for the hydrogen atom23. 

 

    

     M0524 (for Minnesota 2005) and M05-2X25 (for Minnesota 2005 with double 

the amount of nonlocal exchange) are the newly developed functionals. They both 

can be called hybrid methods, because they incorporate electron spin density, 

density gradient, kinetic energy density and Hartree-Fock exchange energy. The two 

new functionals have three advantages; one is incorporating kinetic energy density 

in a balanced way in the exchange and correlation functionals, the other is to satisfy 

the uniform electron gas limit, the third is free of self-correlation25. The M05 

functional was parametrized by including both metals and nonmetals and is broadly 

applicable to organometallic, inorganometallic and nonmetallic bonding, 

thermochemistry, thermochemical kinetics, and noncovalent interaction24. So M05 

performs well not only for main-group thermochemistry and radical reaction barrier 

but also for transition-metal to transition-metal interaction. The M05-2X functional 

was parametrized only for nonmetals and performed well for thermochemical 

kinetics and noncovalent interactions (weak interaction like hydrogen bond …etc), 

excluding metals25. 
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2-5 Thermoeletric Phenomena 

2-5-1 Historical Background 

    In 1822, Thomas Johann Seebeck published a paper describing that a compass 

needle was deflected when it was placed in a closed loop of two dissimilar metals 

that had one junction heated*. That was the first observation of the phenomenon of 

thermoelectricity. But he tried to relate this phenomenon to the earth’s magnetic 

field. Of course, it didn’t work because the phenomenon wasn’t from the magnetic 

effect at all. Although Seebeck didn’t understand it at that time, that effect was 

known as the Seebeck effect. Later in 1835, Jean Charles Athanase Peltier 

discovered that the temperature of a junction between two dissimilar metals changes 

when current flows between them26. At that time, it was not realized that this was 

related to the Seebeck effect. In 1838, Lenz discovered that heat is liberated or 

absorbed depending on the direction of the current flow across a junction of two 

dissimilar conductors26. That is the so–called Peltier effect is the absorption or 

generation of heat at a junction between two materials when current is flowing 

through them26. In 1851, William Thomson established a relationship between the 

Seebeck and Peltier coefficients, and predicted a third thermoelectric effect26. This 

effect is known as Thomson effect, which occurs when currents are flowing through 

a material placed in a temperature gradient26. Thomson can observe this effect 

experimentally corresponding to his predictions. 

     An electron in solids is an elementary particle, and can carry electric current. 

Because immense magnitudes of electrons are at thermal equilibrium in solids, they 

also carry heat and entropy1. In the presence of temperature gradient, electrons can 



flow from a hot side to a cold side to cause the electric current. It is obvious that a 

coupling between thermal and electric phenomena, and is called as the 

thermoelectric effect. 

 

2-5 -2 Seebeck effect 

    When two dissimilar materials are jointed together and the junctions are held 

at different temperatures ( T and T+ΔT ), a voltage different ( ΔV ) would be 

induced. The ratio of the voltage difference ( ΔV ) to temperature gradient ( ΔT ) 

is related to an intrinsic property of the materials called the Seebeck coefficient 

( Se ). Seebeck coefficient is very low for metals ( only a few μV / K ) and much 

larger for semiconductors ( a few hundred μV / K )27. Using Seebeck effect, 

thermal energy can be converted to electric energy. When left side of the sample is 

heated in Fig. 111, the thermoelectric voltage is induced in proportion to the 

temperature difference1. If a bulb is connected to the sample, the electric energy is 

consumed at the bulb. Therefore, the thermoelectric materials can be used as a 

kind of battery1. 

 

Fig. 11  Scheme of thermoelectric power generation. 
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In Fig. 628, two dissimilar conductors, A and B, have junctions at X and Y. If a 

temperature gradient exists between X and Y, a voltage difference ( V ) appears 

between two B segments. Under the open circuit condition, the Seebeck 

coefficient is defined as 

e
VdS

d T
=                                   (2.68) 

 

Fig. 12.  The basic thermoelectric circuit. 

 

     In general, the energy conversion efficiency can be expressed as a function of 

the temperature and the so-called ‘goodness factor’ or thermoelectric 

figure-of-merit of the material (Z) is defined as. 

2
eSZ T  =  Tσ
κ

                       (2.69) 

where Se is Seebeck coefficient, σ is the electrical conductivity, κ is the total 

thermal conductivity (κphonon + κelectron ).  

The electric power factor ( Se
2σT) is typically optimized in narrow-gap 

semiconductors as a function of carrier concentration ( ~ 1019 carriers / cm3 )27. If 

through doping, it will give the larger ZT. High-mobility carriers are most desirable, 

in order to have the higher electrical conductivity. However, the electronic 

conductivity increases with carrier concentration, but Seebeck coefficient decreases 

with carrier concentration in Fig. 131. S2 / ρ equal to S2σ is the electric power 
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factor. This factor goes to a maximum at an optimal carrier concentration no, below 

which the conductivity is too low, and above which the Seebeck coefficient is too 

small in Fig. 131. 

  

Fig. 13   Thermoelectric parameters as a function of temperature. 

 

for Fig. 11 the efficiency of the power generator is given by27: 

( )

( )

MH C

H C
M

H

energy consumed for a bulb = 
heat energy absorbed at the hot side

1+ZT  - 1T -T   =  
T T1+ZT  + 

T

η

⎡ ⎤
⎢
⎢ ⎥
⎢ ⎥⎛ ⎞
⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

⎥                    (2.70) 

where TH is hot-side temperature, TC is cold-side temperature, TM is the average 

temperature.  

If ZT goes into infinity in eq. (2.70), the efficiency would approach the 

Carnot efficient limit that is equal to (TH –TC) / TH.  
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The energy conversion efficiency as a function of the temperature difference 

and the figure-of-merit of different materials is Fig. 1429. It is very clear that an 

increase in temperature differences gives a increase in the heat conversion29. 

 

 

Fig. 14  Carnot efficiency and corresponding efficiency as the function of 

temperature and figure-of-merit (Z). 
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Chapter 3 Calculation 

 

3-1 Determination of the structure 

   The electronic configuration of the Mg atom is [Ne] 3s2. From 3s2, we know the 

ground electronic configuration is 1S, while the electronic configuration of the Si 

atom is [Ne] 3s2 3p2, we also obtain the ground electronic configuration of Si is 3P. 

The Mg2Si molecule composed of 1S + 1S + 3P might have 1-, 3- or 5-multiple 

states30. 

   The electronic configuration of the Fe atom is [Ar] 4s2 3d6. From 3d6, we know 

the ground electronic configuration of Fe is 5D. The following, the electronic 

configuration of the Si atom is [Ne] 3s2 3p2, we also obtain the ground electronic 

configuration of Si is 3P. The FeSi2 molecule composed of 5D + 3P + 3P might have 

1-, 3-, 5-, 7- or 9-multiple states30. 

The Gaussian 03 program is used to calculate the minimum energy in order to 

find out the ground state of Mg2Si and FeSi2 molecules respectively. Since 

transition metal and its’ respective open-shell compounds usually have several 

low-lying states that are close to each other31. Therefore, when we optimize the 

FeSi2 molecule, we don’t know whether the obtained structure with minimum 

energy is correct or not. In order to ensure it is a global minimum, we use 

“stable=opt” keyword in Gaussian input file. This keyword is used to test and adjust 

the stability of wave function. 

     Here, B3LYP and CCSD levels are applied to optimize the Mg2Si molecule 

with the basis set of 6-311G. According to the accurate calculations, the ground state 
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of Mg2Si molecule is 3-multiple state with the parallel spin of 2 electrons (see Table 

4 and Table 5), and the optimized structure of Mg2Si is C2v symmetry (see Fig. 15 ). 

 

 

Table 4:  B3LYP/6-311G for optimum results of Mg2Si molecule. R (Si-1Mg) is 

the distance between the Si atom and the first Mg atom and its’ unit is Angstrom. 

A(1Mg-Si-2Mg) is the angle ( ∠1Mg,Si,2Mg ). 

B3LYP/6-311G      

multiplicity energy Frequency R(Si-1Mg) R(Si-2Mg) A(1Mg-Si-2Mg)

   1 -689.618387 134.7702 2.531922362.53192236 78.34844144

   3 -689.6270395 99.926 2.6781793 2.6781793 72.94756733

5 -689.5836993 69.6101 2.947646842.94764684 59.7243576

 

Table 5:  CCSD/6-311G for optimum results of Mg2Si molecule. 

CCSD/6-311G      

multiplicity energy Frequency R(Fe-1Si) R(Fe-2Si) A(1Si-Fe-2Si)

1 -688.1614055 131.8995 2.59287117 2.59287117 78.1343544

    3 -688.1716205 83.4749 2.76324017 2.76324017 75.26280165

    5 -688.15725 29.2628 2.61830706 2.61830708 179.0189632



 

Fig. 15  Optimized structure of Mg2Si  

 

Here, we apply B3LYP and CCSD methods and the Pople style basis set 

(6-311G) and effective core potential (LANL2DZ) to optimize all structures. 

According to the accurate calculations, the ground state of FeSi2 molecule is 

5-multiple state with the parallel spin of 4 electrons (see Table 6, 7, 8 and 9), and 

optimized structure of FeSi2 is C2v symmetry (see Fig. 16). 

 

Table 6:  B3LYP/6-311G for optimum results of FeSi2 molecule. 

B3LYP/6-311G      

multiplicity energy Frequency R(Fe-1Si) R(Fe-2Si) A(1Si-Fe-2Si)

    1 -1842.357879 279.5418 2.142721 2.142721 67.34959956

    3 -1842.417107 267.2064 2.2837303 2.2837303 61.49664695

    5 -1842.433828 193.9053 2.3514793 2.3514793 58.961721

    7 -1842.390517 59.8337 2.64606 2.91649 46.09917

    9 -1842.331071 113.8058 2.6500867 2.6500867 70.62778204
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Table7:  B3LYP/LANL2DZ for optimum results of FeSi2 molecule. 

B3LYP/LANL2DZ      

multiplicity energy Frequency R(Fe-1Si) R(Fe-2Si) A(1Si-Fe-2Si)

  1 -131.0389824 273.1597 2.1799708 2.1799717 65.03016334

   3 -131.0907101 235.5565 2.3692525 2.3692523 60.51349789

    5 -131.0964158 232.3818 2.3952707 2.3952707 57.35626941

    7 -131.0379262 176.4525 2.4838927 2.4838927 58.2822207

9 -130.9867085 120.4974 2.4471927 2.4471927 81.15815227

 

Table 8:  CCSD/6-311G for optimum results of FeSi2 molecule. 

CCSD/6-311G      

multiplicity energy Frequency R(Fe-1Si) R(Fe-2Si) A(1Si-Fe-2Si) 

1       -1840.239849 237.8881 2.15013 2.15013 73.94434 

     3 -1840.27555 212.2495 2.40335 2.40335 63.86867 

     5 -1840.295423 207.4955 2.47692 2.47692 55.895 

     7 -1840.1896181 101.6277 2.270505 2.2705135 180.00000 

     9 -1840.2157592 60.7004 2.56777 2.73008 180.00000 

 



Table 9:  CCSD/LANL2DZ for optimum results of FeSi2 molecule. 

CCSD/lanl2dz      

multiplicity energy Frequency R(Fe-1Si) R(Fe-2Si) A(1Si-Fe-2Si) 

   1 -130.1843289 205.3564 2.20301 2.20301 70.79336

   3 -130.2126973 232.8149 2.38794 2.38794 62.46974

   5 -130.2329031 234.5013 2.42909 2.42909 56.28117

    7 -130.1517204 65.8466 2.279 2.27899 175.29658

    9 -130.144619 53.2995 2.640 2.64004 179.93606

 

 

Fig. 16  Optimized structure of FeSi2  
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3-2 Calculation of dielectric constant 

From section 3-1, the ground state electronic configurations of Mg2Si and FeSi2 

are proved to be 3-multiple and 5-multiple states, respectively. Then more precise 

methods and basis sets are applied to calculate. The all calculations of Mg2Si are 

based on B3LYP, BLYP, M05 and M052X levels by the Pople style basis sets 

[ 6-311G, 6-311G(d), 6-311+G, 6-311+G(d)…etc ] and effective core potential 

[ LANL2DZ, CEP-31G and CEP-121G ]. And for FeSi2, the levels and basis sets 

used in calculations are the same as for Mg2Si. 

First of all, optimized structure is taken to calculate dipole moment, Helmholtz 

free energy, Mulliken charge and APT charge with electric field variant. Following 

the paper, the applied electric fields are 0.00, 0.01, 0.02, 0.03, 0.04, 0.05 and 0.06 

atomic unit originally9. Finally, it shows that electric fields can be only applied from 

-0.01 to 0.01 a.u. in order to obtain the meaningful resulr. Energy, dipole moment, 

Mulliken charge and APT charge are fitted with electric field, and then the quadratic 

equations are obtained. The polarizability is obtained from the derivative of the 

quadratic equation. Finally, dielectric constant could be obtained from 

Clausis-Mossotti equation. 
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3-3 Calculation of Seebeck coefficient 

The optimized Mg2Si molecule is applied to calculate Helmholtz free energy 

with temperature variant. The range of temperature is varying from 300K to 800K9. 

The optimized FeSi2 molecule is applied to calculate Helmholtz free energy with 

temperature variant. The range of temperature is varying from 300K to 900K.The 

obtained Helmholtz free energy above is converted to electron volt through unit 

conversion, due to the focus of being at unit charge now9. So the volts are fitted 

with temperature, and the quadratic equation is got directly. By the derivatives of 

quadratic equation with respect to temperature and combination with obtained 

dielectric constants previously9, Seebeck coefficient is obtained. 
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Chapter 4 Result and Discussion 

 

4-1 Magnesium Silicide (Mg2Si) 

4-1-1 Paper work 

   Following the procedures in Ref. 9 for Mg2Si in which B3LYP method and 

6-311G basis set are used. We have now added the other another three basis sets 

( 6-311G (d), 6-311+G and 6-311+G (d) ) in comparison with 6-311G, respectively. 

The total electronic energy is obtained at various electric fields: 0.00, 0.01, 0.02, 

0.03, 0.04, 0.05 and 0.06 atomic unit ( a.u. ). Then energies are fit with respect to 

electric fields for each method and each basis set. (See Table 10) 

 

Table 10:  Energies (E) are fit with electric fields (F) and polarizability volumes 

are obtained from deriving the fitting equations at the B3LYP level. 

Mg2Si (B3LYP) Fitting equation αtot (Hartree/a.u.2) αtot(cm3) 

6-311G E = -88.245F2 - 1.1318F - 689.63 177.6218 2.63E-23

6-311G(d) E = -87.955F2 - 1.0027F - 689.64 176.9127 2.62E-23

6-311+G E = -177.52F2 + 0.2477F - 689.63 354.7923 5.26E-23

6-311+G(d) E = -176.01F2 + 0.2143F - 689.64 351.8057 5.21E-23

    



Firstly, the fitting equation (E = -88.245F2 - 1.1318F - 689.63) is taken as an 

illustration in the Table 10, due to the definition of dipole moment E
F

µ ∂⎛= −⎜ ∂⎝ ⎠
⎞
⎟ , the 

equation can be written as 176.49 1.1318Fµ = + . When F=1 (a.u.), µ=177.6218 

(Hartree/a.u.). Then the polarizability α is assumed as being in the unit electric field, 

α=177.6218 (Hartree/a.u.2). Finally we must convert unit (Hartree/a.u.2) of the 

polarizability to polarizability volume (cm3), See Table 10. Because the 

polarizability is from total energy, the polarizability volume is called total 

polarizability volume (αtot ).  

   Secondly, dipole moments are obtained at various electric fields (0 ~0.06 a.u.), 

and are fitted with fields, see Table 11. Because of 
F
µα ∂

=
∂

 and the base of a unit 

electric field, distortion polarizability (αd) is obtained easily.  

 

Table 11:  Dipole moments (μ) are fit with fields (F) and distortion polarizability 

volumes are obtained from deriving fitting equations at the B3LYP level. 

Mg2Si(B3LYP) Fitting equation αd
 (debye/a.u.) αd

 (cm3) 

6-311G μ =- 102.46F2 +453.33F + 2.8494 248.41 1.45E-23

6-311G(d) μ = 15.238F2 + 445.17F + 2.5882 475.646 2.77E-23

6-311+G μ = 1887.5F2 + 758.3F + 1.5688 4533.3 2.64E-22

6-311+G(d) μ = 1371.2F2 + 782.54F + 1.28 3524.94 2.06E-22
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4-1-2 Correction for electric field and polarizability 

   From Table 11, it can be clearly seen that the distortion polarizability is 

sensitive to the choice of the basis sets. In order to find out why distortion 

polarizability is so sensitive to the basis sets, we compare total electronic energy at 

a varying field with ionization energy from a minus of electronic HOMO energy 

without electric field in Table 12. 

 

Table 12:  In B3LYP/6-311+G (d), total electronic energy with a varying electric 

field and the absolute value of the energy difference between electric fields: one 

exists the field and the other dose not. It also shows the HOMO, LUMO energy and 

ionization energy without electric field. 

B3LYP/6-311+G(d)               

electric field  

(z-axis, a.u.) 
-0.06 -0.05 -0.04 -0.03 -0.02 -0.01 0

Ee -690.2525 -690.0270 -689.8504 -689.7385 -689.6616 -689.6376 -689.6385 

| Ee-Ee(F=0) | 0.6140 0.3885 0.2118 0.1000 0.0230 0.0009 0.0000 

HOMO       -0.1537

LUMO       -0.0982 

ionization energy       0.1537
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B3LYP/6-311+G(d)             

electric field (z-axis, a.u.) 0.01 0.02 0.03 0.04 0.05 0.06

Ee -689.6586 -689.7014 -689.7887 -689.9164 -690.0692 -690.2588 

| Ee-Ee(F=0) | 0.0200 0.0629 0.1502 0.2778 0.4306 0.6203 

HOMO        

LUMO       

ionization energy        

 

In Table 12, it shows that when the electric field is outside [-0.04, 0.04] a.u., 

the absolute value of energy difference between electric fields: one exists the field 

and the other does not is larger than ionization energy (0.1537 hartree). It also 

means that the field strength outside of [-0.04, 0.04] a.u. is too large, and then leads 

the electrons to ionize and electronic structure is changed severely. But in the 

present work, we focus on the variation of energy and dipole moment in the smaller 

electric field. So we must choose smaller electric fields. Moreover, we make a plot 

of dipole moments against fields from -0.06 to 0.06 a.u. in Fig.15 with four basis 

sets.  
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Fig. 17  Fitting plot of dipole moment versus electric field by four basis sets in 

B3LYP level 

 

In Fig. 17, all four fitting lines coincide when electric field is in between -0.01 

and 0.01 a.u. and are dispersive when field is outside of [-0.01, 0.01] a.u.. This is 

due to effect of the stronger field, and results in obtaining dispersive fitting lines 

and different distortion polarizability by four basis sets in Table 11. When the field 

strength is larger, the convergence of the computation is out of control by the 

perturbation method, and also the molecule is going to undergo multiple ionizations 

at that strong field. Energy calculation is meaningless at |F| > 0.01 a.u.. On the other 

hand, we want to obtain the convergent polarizability with different basis sets, so 

the range of the field from -0.01 to 0.01 a.u. is chosen in the following 

investigations. The results of the renewed fitting are listed in Table 13. 
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Table 13:  Dipole moments (µ) are fit with electric field (F) and distortion 

polarizability volume. Fitting field is from -0.01 to 0.01 a.u..  

Mg2Si (B3LYP) Fitting equation αd (debye/a.u.) αd(cm3)

6-311G μ = 595.77F2 - 454.13F - 2.8765 737.41 4.30E-23

6-311G(d) μ = 628.68F2 - 449.92F - 2.6034 807.44 4.71E-23

6-311+G μ = 456.99F2 - 489.37F - 2.9321 424.61 2.48E-23

6-311+G(d) μ = 454.91F2 - 491.02F - 2.6724 418.8 2.44E-23

 

In Table 13, it is quite obvious that distortion polarizability volume is still 

sensitive for using different basis set, especially for additional diffuse functions. In 

order to decrease the inconsistency in polarizability, we check that previously 

mentioned about the base of one a.u. of the electric field again. It is found that total 

energy from the Taylor expansion at F = 0 is more reasonable than at F=1 following 

the published paper to evaluate. (See eq. (4.1) and (4.2) ) 

2 3
2

2 3
F=0 F=0 F=0

E 1 E 1 EE(F)=E(0)+ F+ F + F ...
F 2 F 6 F
∂ ∂ ∂
∂ ∂ ∂

3
            (4.1) 

                       
2

2
0F

E
F

α
=

∂
−

∂
=                             (4.2) 

    Dipole moment is the same as total energy from the Taylor expansion. It can be 

written as  
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     Now, total polarizability from the fitting of total energy and electric field and 

distortion polarizability from the fitting of dipole moment and field are evaluated in 

Table 14 and 15 again.  

 

 

 

 

Table 14:  Energy (E) is fit with fields (F) and derives polarizability. Fitting field is 

from -0.01 to 0.01 a.u. and polarizability is evaluated from Taylor expansion at F=0. 

Mg2Si (B3LYP) Fitting equation αtot (Hartree/a.u.2) αtot(cm3) 

6-311G E = -89.259F2 - 1.1259F - 689.63 178.518 2.65E-23

6-311G(d) E = -88.426F2 - 1.0182F - 689.64 176.852 2.62E-23

6-311+G E = -95.367F2 - 1.1492F - 689.63 190.734 2.83E-23

6-311+G(d) E = -95.613F2 - 1.047F - 689.64 191.226 2.83E-23
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Table 15:  Dipole moments ( μ ) are fit with fields and derive distortion 

polarizability. Fitting field is from -0.01 to 0.01 a.u. and polarizability is evaluated 

from Taylor expansion at F=0. 

Mg2Si (B3LYP) Fitting equation αd(debye/a.u.) αd(cm3) 

6-311G μ = 595.77F2 - 454.13F - 2.8765 454.13 2.65E-23

6-311G(d) μ = 628.68F2 - 449.92F - 2.6034 449.92 2.62E-23

6-311+G μ = 456.99F2 - 489.37F - 2.9321 489.37 2.85E-23

6-311+G(d) μ = 454.91F2 - 491.02F - 2.6724 491.02 2.86E-23

    

The total polarizability αtot is the sum of the distortion polarizability αd and 

orientation polarizability αo, but by comparing Table 14 with Table 15 it shows 

that the polarizabilities from the fitting of energy or dipole moment is the same. 

Fitting results of dipole moment cannot be taken as distortion polarizability directly, 

because dipole moment in the calculation is derived from the quantum mechanical 

dipole operator. 

                            ˆ i A
i A

r Zµ = − + AR∑ ∑                        (4.5) 

ri and RA are the vectors of the electrons and nucleus respectively, ZA represents 

nuclear charges. 

The mean value of dipole moment is evaluated in eq. (4.6) directly. 
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   It shows clearly that the dipole moment as the function of electric field should 

represent total dipole moment including electron part and nucleus part. From Table 

14 and 15 we can see that polarizability from the fitting results of the dipole 

moment and the electric field should be assumed as total polarizability, is the same 

as the result of the fitting from the total energy and the electric field. 

 

4-1-3 Dielectric constant for solid Mg2Si 

   For solid Mg2Si, there are no translational and rotational motions in degrees of 

the freedom, so orientation polarizability has no contribution to total polarizability 

(αo = 0). Now, we must remove orientation polarizability from total polarizability. 

Because of the effect from Boltzmann distribution, the orientation polarizability can 

be written as  

2

o =
3 k T
µα                                  (4.7) 

But it should be at µFloc << kT in eq. (4.7). 

Applied electric field is 0.01 a.u. and temperature is 300K in our case. When 

B3LYP, with 6-311G basis set are used, the permanent dipole moment is 2.8765 

Debye. But µFloc ( = 4.93E-20 J ) is greater than kT ( = 4.14E-21 J ) in fact, so 

Boltzmann distribution isn’t used in obtaining distortion polarizability. 

   We would like to understand is how to calculate the distortion polarizability 

directly. Because distortion polarizability is the sum of the electronic polarizability 
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and atomic polarizability, we can obtain electronic part from charge population 

directly. Moreover, for atomic polarizability, because it is about 5 % ～ 10 % of 

the electronic polarizability, it can be almost neglected.  

   Starting from charge population, we adopt the Mulliken partial charge and APT 

partial charge to derive the Mulliken and APT dipole moment. Firstly, there is an 

optimized structure of Mg2Si at F = 0 in Fig. 18.  

 

 

            Fig. 18  The optimized structure has two bond length “r1” and “r2”, 

angle “θ” and the partial charge of Mg “q1” and “q2”. Here are r1 = r2 

= r and q1 = q2 = q. 

 

    From Fig. 18 the dipole moment is derived in eq. (4.8) 

              ( )1 1 2 2 1 2 2 cos
2i i

i

q r q r q r q r r q r θµ ⎛ ⎞= = + = + = ⎜
⎝ ⎠

∑ ⎟        (4.8)  

Here r1, r2 and θ is calculated at electric field equal to zero and q is APT 

charge or Mulliken charge calculated with varying electric field. Because when 

perturbation of electric field is added, the output of the Mg2Si geometry from G03 

calculation isn’t changed, only partial charges are changed. Therefore, we think that 
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the APT dipole and Mulliken dipole is only from electronic part. So we call the 

polarizability from APT and Mulliken dipole as electronic polarizability. 

    Mulliken and APT charge are chosen respectively and we can obtain two kinds 

of dipole moment, Mulliken dipole and APT dipole. Now, we compare all dipoles : 

dipole moment (direct output from G03), APT dipole, Mulliken dipole without 

electric field in Table 16. It is very clear that APT dipole is contributed to electronic 

polarizability very well, because the APT dipole is much smaller than dipole 

moment. But Mulliken dipole is larger than dipole moment at 6-311G, 6-311+G(2d), 

6-311+G(3df), 6-311+G(3d2f) and LANL2DZ, it cannot represent electronic part 

well at those basis sets. 
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Table 16:  The comparison of dipole moment, APT dipole and Mulliken dipole 

without electric field at the B3LYP level. 

no electric field (B3LYP) Dipole moment APT dipole Mulliken dipole

6-311G 2.8765 0.159514 3.373304 

6-311G(d) 2.6034 0.185058 1.660079 

6-311+G 2.9311 0.182463 2.419225 

6-311+G(d) 2.6716 0.243587 0.93931 

6-311+G(2d) 2.5595 0.185182 3.0296904

6-311+G(2df) 2.5452 0.247732 1.1804818

6-311+G(3df) 2.5357 0.209746 3.1015206

6-311+G(3d2f) 2.5376 0.194249 3.1624394

LANL2DZ 2.9674 0.044939 3.7838176

CEP-31G 2.8633 0.524192 1.348365 

CEP-121G 2.9241 0.56176 1.900735 

 

Then it is as the same as the previous fitting of dipole moment and electric 

field, polarizability can be obtained easily. Because two kinds of dipole contribute 

to electronic part only, the obtained polarizability is called as the electronic 

polarizability. (See Table 17 and 18) 
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Table 17:  Mulliken dipole is fit with electric field (from -0.01 to 0.01 a.u.) and 

derives electronic polarizability at the B3LYP level.   

Mulliken dipole Fitting equation αe(debye/a.u.) αe (cm3)

6-311G μ =  797.56F2 + 215.77F + 3.3734 215.77 1.26E-23

6-311G(d) μ =  709.74F2 + 222.06F + 1.6602 222.06 1.29E-23

6-311+G μ =  801.95F2 + 168.16F + 2.4304 168.16 9.80E-24

6-311+G(d) μ =  336.26F2 + 170.61F + 0.9527 170.61 9.95E-24

6-311+G(2d) μ =  639.61F2 + 190.57F + 3.0422 190.57 1.11E-23

6-311+G(2df) μ =  555.59F2 + 196.23F + 1.1929 196.23 1.14E-23

6-311+G(3df) μ =  -1606.9F2 + 167.54F + 3.123 167.54 9.77E-24

6-311+G(3d2f) μ =  -1404.5F2 + 172.79F + 3.1857 172.79 1.01E-23

LANL2DZ μ =  357.76F2 + 164.93F+ 3.7838 164.93 9.62E-24

CEP-31G μ =  7.4405F2 + 185.44F + 1.3484 185.44 1.08E-23

CEP-121G μ =  23.877F2 + 204.23F + 1.9008 204.23 1.19E-23
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Table 18:  APT dipole is fit with electric field (from -0.01 to 0.01 a.u.) and derives 

electronic polarizability at the B3LYP level. 

APT dipole Fitting equation αe (debye/a.u.) αe (cm3)

6-311G μ =  245.14F2 + 189.49F + 0.1592 189.49 1.10E-23

6-311G(d) μ =  389.28F2 + 177.78F + 0.1849    177.78 1.04E-23

6-311+G μ =  1017.8F2 + 205.41F + 0.1774    205.41 1.20E-23

6-311+G(d) μ =  1580.7F2 + 193.93F + 0.2377    193.93 1.13E-23

6-311+G(2d) μ =  1766F2 + 189.15F + 0.1798    189.15 1.10E-23

6-311+G(2df) μ =  1747.2F2 + 187.65F + 0.2423    187.65 1.09E-23

6-311+G(3df) μ =  2012.7F2 + 185.85F + 0.2041     185.85 1.08E-23

6-311+G(3d2f) μ =  1998.7F2 + 185.94F + 0.1885     185.94 1.08E-23

LANL2DZ μ =  -1132.8F2 + 148.82F - 0.0451     148.82 8.68E-24

CEP-31G μ =  -454.06F2 + 171.9F - 0.5254     171.9 1.00E-23

CEP-121G μ =  -643.99F2 + 200.23F - 0.563     200.23 1.17E-23

  

 

 

 



   Compare Table 17 to Table 18, it shows that the spread of electronic 

polarizability from Mulliken dipole is more dispersive than APT dipole by Pople’s 

basis sets and effective core potential, because Mulliken charge is sensitive to the 

choice of basis sets and it usually is reasonable as small- or moderate-basis sets are 

used. So if we adopt the polarizability from APT dipole to calculate the dielectric 

constant, the larger basis sets should be used. And if we adopt the polarizability 

from Mulliken dipole to calculate the dielectric constant, the smaller basis sets 

should be used.  

   By applying Clausius-Mossotti equation we can combine the macroscopic 

amounts of dielectric constant with the microscopic amounts of polarizability.  

r

r 0

-1 n=
+2 3

 ε α
ε ε

                                  (4.9) 

   Dielectric constant is obtained in eq. (4.10) by rearranging eq. (4.9). ρ is the 

density and M is the molecular weight. 

r

A

0

1+2A=
1-A

Nn NA=  , n= =
3 V

ε

M
ρα

ε

                       (4.10) 

 

    Dielectric constants with respect to different basis sets are calculated and 

summarized in Table 19 and 20. The density is 1.99 g/cm3 and Molecular weight is 

76.6955 g/mol for Mg2Si which are taken from experiment results. 
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Table 19:  Use APT charges to obtain electronic polarizability and dielectric 

constant at the B3LYP level. 

APT αe (debye/a.u.) αe(cm3) dielectric constant 

6-311G 189.49 1.10E-23    8.82  

6-311G(d)    177.78 1.04E-23    7.32  

6-311+G    205.41 1.20E-23     11.86  

6-311+G(d)    193.93 1.13E-23    9.53  

6-311+G(2d)    189.15 1.10E-23    8.77  

6-311+G(2df)    187.65 1.09E-23    8.56  

6-311+G(3df)    185.85 1.08E-23    8.31  

6-311+G(3d2f)    185.94 1.08E-23    8.32  

LANL2DZ    148.82 8.68E-24    4.94  

CEP-31G    171.9 1.00E-23    6.71  

CEP-121G    200.23 1.17E-23     10.70  
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Table 20:  Use Mulliken charges to obtain electronic polarizability and dielectric 

constant at the B3LYP level. 

Mulliken αe (debye/a.u.) αe(cm3) dielectric constant 

6-311G    215.77 1.26E-23 14.95  

6-311G(d)    222.06 1.29E-23 17.61  

6-311+G    168.16 9.80E-24        6.37  

6-311+G(d)     170.61 9.95E-24        6.59  

6-311+G(2d)      190.57 1.11E-23        8.99  

6-311+G(2df)      196.23 1.14E-23 9.93  

6-311+G(3df)       167.54 9.77E-24 6.31  

6-311+G(3d2f)       172.79 1.01E-23         6.80  

LANL2DZ       164.93 9.62E-24         6.09  

CEP-31G 185.44 1.08E-23 8.25  

CEP-121G        204.23 1.19E-23 11.58  
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   The high frequency dielectric constant ε∞ is 13.3* by experiment. The 

contribution of the high frequency dielectric constant is totally from electronic 

polarizability. From Table 19 no matter how to choose Pople’s basis sets, the 

obtained dielectric constants are close to the experimental value when the larger 

basis sets are used ( 6-311+G, 6-311+G(d)…etc ), and for effective core potential it 

shows the good result only at a larger basis set ( CEP-121G ), but LANL2DZ is 

unavailable here.  

However, in Table 20 for Pople basis sets it shows good results corresponding to 

experimental value only when the smaller basis sets ( 6-311G, 6-311G(d) ) are used. 

For ECP, it also shows that the available values are from CEP-series basis sets, but 

for LANL2DZ it shows a bad result. The results of Table 19 and 20 are vey 

correspondent to the theory mentioned earlier (in 2-2 charge population). The 

theory shows below: 

1. Mulliken population analysis is affected largely by basis functions, and it 

usually is most useful for comparing trends in charge distributions, when small- 

or medium-size basis sets are used. 

2. APT charge isn’t directly related to the choice of a particular basis set, its basis 

set dependence stems only from the fact that the basis set can be incomplete. So 

the basis-set dependence is modest 
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4-1-4   Other methods (BLYP, M05 and M05-2X) 

    Now, we try other methods: BLYP, M05 and M05-2X. The process is the same 

as the previous B3LYP level.  

In Table 21, for the Pople’s basis set, we show that the dielectric constant 

obtained from APT charge is in good agreement with experimental value (ε∞ = 

13.3 ) as the basis set is large enough ( see larger bold-faced words ) at the BLYP 

level. And for effective core potential it also shows that the dielectric constant is in 

good agreement with experimental value at a larger basis set (CEP-121G).  

Table 21:  Use APT charges to obtain electronic polarizability and dielectric 

constant at BLYP level. 

APT (BLYP) αe (Debye / a.u. ) αe (cm3 ) dielectric constant 

6-311G 189.97  1.11E-23 8.89  

6-311G(d) 181.66  1.06E-23 7.77  

6-311+G 209.81  1.22E-23 13.03  

6-311+G(2df)  197.76  1.15E-23 10.21  

6-311+G(3d2f)   196.33  1.14E-23 9.95  

LANL2DZ   138.64  8.08E-24 4.37  

CEP-31G    163.09  9.51E-24 5.94  

CEP-121G    184.83  1.08E-23 8.17  
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In Table 22 for Pople basis sets, the dielectric constant is fit well for a small 

basis set. However, for 6-311+G (2df) the dielectric constant is a good fit ( see 

asterisk ), it is contradictory to the unexpected results of Mulliken charge at a larger 

basis set. So we try the largest basis set ( 6-311+G (3d2f) ) in order to check this 

contradiction. However, the dielectric constant at 6-311+G (3d2f) isn’t a good fit. 

So we consider that it is a coincidence for the good result of 6-311+G (2df). And for 

ECP, it corresponds to the experimental value only at a larger basis set (CEP-121G). 

 

 

Table 22:   Use Mulliken charges to obtain electronic polarizability and dielectric 

constant at the BLYP level. 

Mulliken (BLYP) αe (Debye / a.u. ) αe (cm3 ) dielectric constant 

6-311G 217.72 1.27E-23 15.70  

6-311G(d) 222.99 1.30E-23 18.08  

6-311+G 176.44 1.03E-23 7.17  

6-311+G(2df) 202.41 1.18E-23 11.16*  

6-311+G(3d2f) 184.22 1.07E-23 8.09  

LANL2DZ 162.86 9.49E-24 5.92  

CEP-31G 185.26 1.08E-23 8.23  

CEP-121G 203.11 1.18E-23 11.32  
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 In Table 23, for Pople basis sets it shows a good fit only at 6-311G and 

6-311+G, but at a larger basis set the dielectric constant is much far from the 

experimental value. So Pople basis sets in the M05 level are unavailable for the 

APT derivation. There is no similar trend like B3LYP or BLYP in the M05 level. 

For the new M05 method it doesn’t include enough parameters, so it isn’t suited to 

use in our case. But for ECP, the dielectric constant is correspondent to the 

experimental value at larger basis sets ( CEP-31G and CEP-121G ). 

 

 

Table 23:  Use APT charges to obtain electronic polarizability and dielectric 

constant at the M05 level. 

APT (M05) αd (Debye / a.u. ) αd (cm3 ) dielectric constant 

6-311G 191.1129  1.1142E-23 9.0701*  

6-311G(d) 174.7550  1.0188E-23 6.9982  

6-311+G 192.6017  1.1229E-23 9.3070*  

6-311+G(2df) 56.7148  3.3065E-24 1.8282  

6-311+G(3d2f) 125.7389  7.3306E-24 3.7651  

LANL2DZ 1274.8705  7.4325E-23 4.7766  

CEP-31G 208.4698  1.2154E-23 12.6489  

CEP-121G 200.1852  1.1671E-23 10.6906  
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In Table 24 for Pople basis sets, the dielectric constant is still not 

correspondent to experimental value, so those results are not also suited to analyses 

in our case. For ECP, it shows a good results only at CEP-31G.. 

 

 

Table 24:  Use Mulliken charges to obtain electronic polarizability and dielectric 

constant at the M05 level. 

Mulliken (M05) αe (Debye / a.u. ) αe (cm3 ) dielectric constant 

6-311G 235.0190 1.3702E-23 26.9794  

6-311G(d) 238.2464 1.3890E-23 30.8908  

6-311+G 171.2971 9.9866E-24 6.6558  

6-311+G(2df) 250.8102 1.4622E-23 67.3060  

6-311+G(3d2f) 143.2398 8.3509E-24 4.6136  

LANL2DZ 185.2729 1.0801E-23 8.2292  

CEP-31G 208.2056 1.2138E-23 12.5772  

CEP-121G 233.1315 1.3592E-23 25.0950  
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    In Table 25 and 26 based on the M052X level, no matter APT charge or 

Mulliken charge both show bad results by Pople basis sets and ECP, although for 

APT charge the dielectric constant is similar at each basis set. Those bad results of 

M052X are very reasonable, because the new method – M052X is parameterized 

only for non-metals. But Mg atom is metal. 

 

 

Table 25:  Use APT charges to obtain electronic polarizability and dielectric 

constant at the M052X level. 

APT (M052X) αe (Debye / a.u. ) αe (cm3 ) dielectric constant 

6-311G 163.5600 9.5355E-24 5.9766 

6-311G(d) 175.3025 1.0220E-23 7.0550 

6-311+G 171.4508 9.9956E-24 6.6705 

6-311+G(2df) 181.7957 1.0599E-23 7.7866 

6-311+G(3d2f) 178.4675 1.0405E-23 7.3974 

LANL2DZ 250.5412 1.4607E-23 65.7015 

CEP-31G 129.6915 7.5610E-24 3.9372 

CEP-121G 7.4667 4.3531E-25 1.0880 
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Table 26:   Use Mulliken charges to obtain electronic polarizability and dielectric 

constant at the M052X level. 

Mulliken (M052X) αe (Debye / a.u. ) αe (cm3 ) dielectric constant

6-311G 224.2322  1.3073E-23 18.7371 

6-311G(d) 229.1981  1.3362E-23 21.8616 

6-311+G 178.5347  1.0409E-23 7.4050 

6-311+G(2df) 194.3835  1.1333E-23 9.6043 

6-311+G(3d2f) 150.9721  8.8017E-24 5.0735 

LANL2DZ 166.0045  9.6781E-24 6.1794 

CEP-31G 195.0367  1.1371E-23 9.7172 

CEP-121G 219.9386  1.2822E-23 16.6282 

    

Briefly, For Pople basis sets, there are good results from APT dipole by larger 

basis sets in the B3LYP and BLYP levels, and there are good results from Mulliken 

dipole by small basis sets in the B3LYP and BLYP levels. For ECP, no matter APT 

or Mulliken partial charge, there are good results by CEP-series basis sets at the 

B3LYP, BLYP and M05 levels .But for M052X it isn’t suited to calculate in our 

case ,due to the fact that M052X is parameterized only for non-metals. 

We conclude that in the present calculation for dielectric constant that M05 and 

M05-2X are not really better functionals than their original forms of B3LYP and 

BLYP. 



4-1-5 Seebeck coefficient 

  Because the definition of Seebeck coefficient is 

e T 0

dV
S = lim =

T dT
pV

∆ →

p∆

∆
                             (4.11) 

Se is Seebeck coefficient, Vp is potential and T is absolute temperature.  

   From thermodynamic relation 

                  

   If we consider electric work, Helmholtz free energy can be written as 

                                   (4.12) dF = - PdV -SdT + V dq p

P is pressure, Vp is potential, V is volume, S is entropy, and q is charge. 

   From eq. (4.12), the below relations are obtained. 
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           (4.13) 

 In order to obtain the Seebeck coefficient, we combine the relation of the eq. (4.13) 

with the definition of the eq. (4.11). Then it leads to 

V ,T
e

Fd
qd V

S = =
d T d T

p

⎛ ⎞∂
⎜ ⎟∂⎝ ⎠                      (4.14) 

   Now the dielectric constant (εr = 11.86) is taken from the APT dipole of 

6-311+G basis set at the B3LYP level to calculate Seebeck coefficient. In first step, 

Helmholtz free energy at zero electric field is taken, and its unit is changed from 
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atomic unit to electron volt. Because we want to obtain the relation of the potential 

and the temperature, the electron charge would be based on one atomic unit. 

Therefore Helmholtz free energy with unit of electron volt is divided by unit 

electron charge (See Table 27). Then the obtained result is fit with the temperature 

from 300K to 800K. (See eq. 4.15) 

 

Table 27:  Helmholtz free energy from B3LYP/6-311+G and the potential at one 

unit electron charge (V). 

B3LYP/6-311+G  300K 400K 500K 600K 700K 800K

Helmholtz energy (Hartree) -689.656798 -689.669068 -689.681888 -689.695150 -689.7087777 -689.7227217

Helmholtz energy (eV) -18766.7160 -18767.0499 -18767.3988 -18767.7596 -18768.13048 -18768.50992

potential (at unit charge,V)  -18766.7160 -18767.0499 -18767.3988 -18767.7596 -18768.13048 -18768.50992

 

   The fitting equation via potential and temperature from Table 27 is listed below. 

                                 (4.15) -07 2V  = 6 10 T  + 0.003T + 18766p ×

    Then the Seebeck coefficient is  

                  -06
e

dV
S  =  = 1.2 10 T + 0.003

dT
p ×                 (4.16) 

    However, eq. (4.16) is due to molecule Mg2Si is at zero electric field and it is 

represented as gas phase. But the Mg2Si material is a polar solid so that the electric 

potential inside this dielectric should be divided by the calculated dielectric constant 

of 11.86 from gas phase9, and then actually the Seebeck coefficient of Solid state is 
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given as 

 70

×                                 (4.17) -7 -4
eS  = 1 10  T + 2.52 10×

In Fig. 19 it shows the fitting profiles from solid-state, gas-phase and 

Material studio 4.0 of Mg2Si and in Fig. 1832 it shows the experimental results. 

Compare Fig. 19 to Fig. 20, we find that our solid-state case agrees with 

experimental results of non-BN coated, and also find our fitting result is linear even 

at higher temperature. But in Fig. 20 the Seebeck coefficient of the BN coated 

fitting decreases as temperature increasing, which may originate in the effect 

thermal excitation of carriers across the gap from the conduction band33. However, 

in our case because we don’t consider energy band structure theory but directly 

based on thermodynamic method, it doesn’t show that Seebeck coefficient decrease 

at high temperature. 

300 400 500 600 700 800
200

300

400

3000

4000

5000

6000

7000

S
ee

be
ck

 c
oe

ffi
ci

en
t (

10
-6
 V

/K
)

temperature (K)

 solid-state
 gas phase
 Material studio 4.0

 

Fig. 19  The fitting profiles from solid-state, gas phase and Material studio 4.0 



 

 

Fig. 20.  Seebeck coefficient of the grown ingot over the range is from 345K to 

840 K32. BN coated means encapsulated sample with a boron nitride (BN)-based 

anti-adhesion coating. 

 

A summary of Seebeck coefficient is listed in Table 28. 

Table 28:  Seebeck coefficients are obtained from gas phase, solid state and 

Material studio 4.09 respectively, and compare to experiment value. 

B3LYP/6-311+G fitting equation Se (µV/K) 300K Se (µV/K) 800K 

gas phase Se = 1.2*E-06 T + 0.003 3360 3960

solid state Se = 1*E-07 T +2.52*E-04 284 334

material studio 4.09 Se = 6*E-06 T + 0.0018 3600 6600

experimental value32  180 280
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   In Table 28 it shows clearly that Seebeck coefficient agrees with experiment 

value by our treatment of solid state very well. But for Material studio 4.0 based on 

the energy band structure theory, the Seebeck coefficient that is similar to our gas 

phase case isn’t fitted to experimental value. So we can conveniently obtain more 

accurate Seebeck coefficient from the thermodynamic method with the present new 

scheme. 
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4-2 Iron Disilicide (FeSi2) 

4-2-1 Polarizability and dielectric constant 

   Because Fe atom is a transition metal which belongs to the system of the heavy 

atoms, we would consider the relativistic effect for FeSi2 molecule, and then we 

adopt the effective core potential (ECP). Here, LANL2DZ, CEP-31G and 

CEP-121G basis sets and 6-311+G(2d), 6-311+G(2df), 6-311+G(3df) and 

6-311+G(3d2f) are used, besides 6-311G, 6-311G(d), 6-311+G and 6-311+G(d) 

basis sets. Furthermore, we try other methods such as BLYP, M05 and M05-2X, in 

order to compare with B3LYP mentioned previously.  

    There are polarizabilities and dielectric constants calculated with different 

basis sets from APT charge at B3LYP level in Table 29. The experimental value of 

high-frequency dielectric constant is 27.634. We compare this experimental value 

with Table 29. Basis sets are in two parts: one is Pople style basis set, and the other 

is effective core potential (ECP). The dielectric constants from Pople style basis sets 

are in good agreement with experimental value, when basis sets are larger 

( 6-311+G ~ 6-311+G (3d2f) ). But when basis sets aren’t enough large, the 

dielectric constants aren’t good fits ( 6-311G and 6-311G(d) ). Those results of the 

derivation of APT charge match the phenomenon that the basis-set dependence is 

modest for these APT charges, and those APT charges usually converge at the larger 

basis set. Expectably, for Pople basis sets of APT part, the dielectric constants of 

FeSi2 show the same trend as of Mg2Si at the B3LYP level. The second part of 

Table 29: effective core potential, CEP-31G is Stevens/Basch/Krauss ECP split 

valance, CEP-121G is Stevens/Basch/Krauss ECP triple-split basis, LANL2DZ is 
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Los Alamos ECP plus DZ on Na-La. The dielectric constant is in good agreement 

with experimental value only at CEP-31G and CEP-121G, and it is unreasonable for 

LANL2DZ.  

 

Table 29:  Electronic polarizability and dielectric constants are obtained from APT 

partial charge by Pople style basis sets and ECP (effective core potential) at the 

B3LYP level. 

APT (B3LYP) αe (debye/a.u.) αe(cm3) dielectric constant 

6-311G 438.8397669 2.5584E-23   5.601 

6-311G(d) 101.3604885 5.9093E-24   6.923 

6-311+G 170.101198 9.9169E-24   30.323 

6-311+G(d) 174.98552 1.0202E-23   24.554 

6-311+G(2d) 175.4081556 1.0226E-23   24.171 

6-311+G(2df) 171.9406231 1.0024E-23   27.806 

6-311+G(3df) 170.7639673 9.9555E-24   29.357 

6-311+G(3d2f) 171.5035795 9.9987E-24   28.360 

LANL2DZ 151.3419434 8.8232E-24   335.790 

CEP-31G 170.3221211 9.9298E-24   29.993 

CEP-121G 174.8990718 1.0197E-23   24.634 
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In Table 30, dielectric constants are derived from Mulliken partial charge by 

Pople basis sets and ECP at B3LYP level. It is found that dielectric constants with 

Pople basis sets are almost incorrect, even with smaller basis sets (ex. 6-311G ), 

those results are very different from Mg2Si, because in Mg2Si the dielectric 

constant is fit well with Mulliken part when the basis set is smaller. Although the 

dielectric constant of 6-311+G (3df) is a good fit, don’t forget that Mulliken charges 

show incorrect results when basis sets become larger and larger. 

   The second part of Table 30 shows the ECP. For APT part, no matter CEP-series 

basis sets or LANL2DZ, the dielectric constants from Mulliken partial charge aren’t 

correspondent to the experimental value. 
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Table 30:  Electronic polarizability and dielectric constants are obtained from 

Mulliken partial charge by Polpe style basis sets and ECP at B3LYP level. 

Mulliken(B3LYP) αe (debye/a.u.) αe(cm3) dielectric constant 

6-311G 218.7619168 1.2754E-23 10.9341 

6-311G(d) 211.2409253 1.2315E-23 11.8249 

6-311+G 192.654567 1.1232E-23 15.4648 

6-311+G(d) 194.4171493 1.1335E-23 14.9805 

6-311+G(2d) 188.1928805 1.0972E-23 16.906 

6-311+G(2df) 194.2154369 1.1323E-23 15.0338 

6-311+G(3df) 172.9539878 1.0083E-23 26.6154*

6-311+G(3d2f) 185.9308199 1.0840E-23 17.7844 

LANL2DZ 164.6645681 9.5999E-24 42.2815 

CEP-31G 179.8362233 1.0484E-23 20.8801

CEP-121G 209.1469583 1.2193E-23 12.1152 
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   We would like to compare B3LYP with BYLP. Unfortunately, APT part is in 

Table 31, no matter Pople basis sets or ECP aren’t correspondent to the 

experimental value. It is very different from Mg2Si at the BLYP level. For APT part 

of Mg2Si at the BLYP level it shows the similar result with the B3LYP level, 

however, for FeSi2 it can’t perform very well at the BLYP level. So we think that 

the BLYP level isn’t good for transition metals (Fe) and the B3LYP level is good for 

all metals. Although the results aren’t good, we still can discover that the APT 

charges would converge at larger basis sets (see the dielectric constants of 

6-311+G(2df), 6-311+G(3df) and 6-311+G(3d2f) ).  
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Table 31:  Electronic polarizability and dielectric constants are obtained from APT 

partial charge by Pople style basis sets and ECP at BLYP level. 

APT(BLYP) αe (debye/a.u.) αe(cm3) dielectric constant 

6-311G 164.3716048 9.5829E-24 43.242 

6-311G(d) 123.8514228 7.2205E-24 13.880 

6-311+G 120.2782315 7.0122E-24 12.130 

6-311+G(d) 98.75743785 5.7576E-24 6.493 

6-311+G(2d) 122.1128539 7.1192E-24 12.978 

6-311+G(2df) 115.0096953 6.7051E-24 10.155 

6-311+G(3df) 116.5465518 6.7947E-24 10.672 

6-311+G(3d2f) 115.9894413 6.7622E-24 10.479 

Lanl2DZ 104.7655862 6.1078E-24 7.557 

CEP-31G 200.6077994 1.1695E-23 13.562 

CEP-121G 202.4520272 1.1803E-23 13.207 
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    In Table 32, it is Mulliken part at the BLYP level. For Pople basis sets and ECP 

all the dielectric constants aren’t in agreement with the experimental value. It is 

proven again that the BLYP level isn’t good for transition metal. 

 

Table 32:  Electronic polarizability and dielectric constants are obtained from 

Mulliken partial charge by Polpe style basis sets and ECP at BLYP level. 

Mulliken(BLYP) αe (debye/a.u.) αe(cm3) dielectric constant 

6-311G 206.0252185 1.2011E-23 12.5903

6-311G(d) 200.8239198 1.1708E-23 13.5187

6-311+G 201.9861676 1.1776E-23 13.2942

6-311+G(d) 200.0602943 1.1664E-23 13.6721

6-311+G(2d) 192.327985 1.1213E-23 15.5593

6-311+G(2df) 198.1872504 1.1554E-23 14.0704

6-311+G(3df) 175.9940821 1.0260E-23 23.6641*

6-311+G(3d2f) 190.1571752 1.1086E-23 16.2292

LANL2DZ 180.3981365 1.0517E-23 20.5377

CEP-31G 209.6128179 1.2220E-23 12.0488

CEP-121G 215.952351 1.2590E-23 11.2421
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APT part is in Table 33. For Pople basis sets, the dielectric constants isn’t 

correspondent to experimental value at larger basis sets, and results of 6-311G(d) 

and 6-311+G are available. But remember that it is available for APT charges at 

larger basis sets, and the APT charge would converge at so larger basis sets. For 

ECP, the dielectric constant is suited by CEP-121G, but still isn’t fit by LANL2DZ. 

In summary, a new M05 method isn’t parameterized including the perturbation of 

electric field for APT partial charge by Pople basis sets, so it can’t show good 

results for dielectric constants. 
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Table 33:  Electronic polarizability and dielectric constants are obtained from APT 

partial charge by Pople style basis sets and ECP at M05 level. 

APT (M05) αe (debye/a.u.) αe(cm3) dielectric constant

6-311G 185.3881174 1.0808E-23 18.013 

6-311G(d) 170.0339605 9.9130E-24 30.425*

6-311+G 171.3739073 9.9911E-24 28.529*

6-311+G(d) 158.1809548 9.2219E-24 87.550 

6-311+G(2d) 159.1270821 9.2771E-24 75.255 

6-311+G(2df) 158.2241789 9.2245E-24 86.897 

6-311+G(3df) 158.757276 9.2555E-24 79.603 

6-311+G(3d2f) 159.2135302 9.2821E-24 74.309 

LANL2DZ 187.5445192 1.0934E-23 17.146 

CEP-31G 198.8308091 1.1592E-23 13.930 

CEP-121G 174.0778142 1.0149E-23 25.427 
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    Mulliken part is in Table 34. For Pople basis sets the dielectric constants aren’t 

good fits, although the results of 6-311+G (3df) and 6-311+G (3d2f) are good. 

Remember again that for Mulliken charge it is available only at a small basis set, so 

the results of 6-311+G (3df) and 6-311+G (3d2f) are coincidences. It is proven 

again that M05 isn’t parameterized including the perturbation of electric field for 

Mulliken partial charge by Pople basis sets. For ECP the dielectric constant is 

correspondent to the experimental value in LANL2DZ, but is unavailable in 

CEP-series basis sets. 
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Table 34:  Electronic polarizability and dielectric constants are obtained from 

Mulliken partial charge by Polpe style basis sets and ECP at M05 level. 

Mulliken (M05) αe (debye/a.u.) αe(cm3) dielectric constant 

6-311G 206.6927906 1.2050E-23 12.4841

6-311G(d) 197.005792 1.1485E-23 14.3389

6-311+G 191.1609346 1.1145E-23 15.91

6-311+G(d) 188.260118 1.0976E-23 16.8816

6-311+G(2d) 165.6299061 9.6562E-24 39.4238

6-311+G(2df) 161.8357916 9.4350E-24 54.1323

6-311+G(3df) 136.4056193 7.9524E-24 26.1169*

6-311+G(3d2f) 136.3527899 7.9494E-24 26.026*

LANL2DZ 174.0730115 1.0148E-23 25.4314

CEP-31G 197.1738857 1.1495E-23 14.2999

CEP-121G 204.8341548 1.1942E-23 12.7865
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    In Table 35 and 36, all information is based on the M052X level. No matter 

APT part or Mulliken part shows bad results of dielectric constants, the simple 

interpretation for that is M052X is parameterized only including nonmetals. But we 

still find that APT charge would converge at a larger and larger basis set. 

 

Table 35:  Electronic polarizability and dielectric constants are obtained from APT 

partial charge by Pople style basis sets and ECP at the M05-2X level. 

APT (M05-2X) αe (debye/a.u.) αe(cm3) dielectric constant

6-311G 300.4698529 1.7517E-23 7.100 

6-311G(d) 208.9740619 1.2183E-23 12.140 

6-311+G 190.7575098 1.1121E-23 16.036 

6-311+G(d) 189.8690146 1.1069E-23 16.324 

6-311+G(2d) 189.8738173 1.1070E-23 16.322 

6-311+G(2df) 190.7623125 1.1121E-23 16.035 

6-311+G(3df) 190.6854697 1.1117E-23 16.059 

6-311+G(3d2f) 191.4010685 1.1159E-23 15.836 

LANL2DZ 192.6209483 1.1230E-23 15.474 

CEP-31G 83.17755513 4.8493E-24 4.589 

CEP-121G 126.1855236 7.3566E-24 15.278 
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Table 36:  Electronic polarizability and dielectric constants are obtained from 

Mulliken partial charge by Polpe style basis sets and ECP at the M05-2X level. 

Mulliken (M05-2X) αe (debye/a.u.) αe(cm3) dielectric constant

6-311G 256.621416 1.4961E-23 8.408

6-311G(d) 247.7364644 1.4443E-23 8.82

6-311+G 230.6773573 1.3448E-23 9.875

6-311+G(d) 109.8660287 6.4052E-24 8.695

6-311+G(2d) 156.9322589 9.1492E-24 112.19

6-311+G(2df) 208.4649782 1.2154E-23 12.214

6-311+G(3df) 68.81755225 4.0121E-24 3.461

6-311+G(3d2f) 64.26941756 3.7469E-24 3.18

LANL2DZ 190.8343526 1.1126E-23 16.012

CEP-31G 196.5687484 1.1460E-23 14.442

CEP-121G 211.5819153 1.2335E-23 11.78
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   In summary, for Pople basis sets in FeSi2 the dielectric constants from APT 

partial charge are in good agreement with the experimental value only at the B3LYP 

level and from Mulliken partial charge are unavailable at all levels ( B3LYP, BLYP, 

M05 and M052X ). For ECP based on APT partial charge, it is also performs well 

only by CEP-series basis sets at the B3LYP, M05 levels. For the BLYP level, it is 

due to the fact that BLYP level isn’t suited to calculation of transition metals, the 

dielectric constants don’t agree with the experimental value. For the M052X level, 

because it is parameterized only including non-metals, the results are all 

unavailable. 

4-2-2 Seebeck coefficient 

   Here B3LYP/6-311+G(2df) in Table 29 is adopted because the dielectric 

constant (εr = 27.806 ) is much closer to experimental value (ε∞ = 27.6 ). In Table 

37, Helmholtz energy and potential with unit charge in different temperatures are 

listed. Then we fit potentials with temperatures in Fig. 21. which shows a line of 

gas phase which is from the fitting of potentials and temperatures directly and a line 

of solid state which is from the fitting of gas phase divided by the calculated 

dielectric constant (εr = 27.806 ), because the FeSi2 material is a polar solid so that 

the electric potential inside that.  

In Fig. 2235, it shows the experimental results, and from the undoped fitting by 

squares, it is in good agreement with the line of solid state in our case. Moreover, 

Ref. 35 also indicates calculated results based on the energy band structure with the 

local density approximation using Slater’s Xα potential, and it shows the worse 

result than solid state by our method in Table 38. 

We make a small summary in Table 38. Seebeck coefficients in 300K or in 
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900K are more correspondent to the experimental value than calculation results 

from Ref. 35. However, in our solid state case the fitting equation is linear, and the 

Seebeck coefficient increases at the higher temperature. In experimental values and 

calculation results from Ref. 35, Seebeck coefficient decreases at the high 

temperature. That is due to consideration of the thermal excitation of carriers in Ref. 

35, but in our case it is based on the thermodynamic method. 

 

Table 37:  The Helmholtz free energy from B3LYP/6-311+G and the potential at 

one unit electron charge (V). 

B3LYP/ 

6-311+G(2df)  
300K 400K 500K 600K 700K 800K 900K

Helmholtz  

energy 

(Hartree) 

-1842.6875 -1842.6996 -1842.7122 -1842.7252 -1842.7386 -1842.7523 -1842.7663

Helmholtz  

energy 

(eV) 

-50142.6124 -50142.9407 -50143.2835 -50143.6380 -50144.0024 -50144.3752 -50144.7555

potential  

(at unit charge , 

V) 

-50142.6124 -50142.9407 -50143.2835 -50143.6380 -50144.0024 -50144.3752 -50144.7555
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Fig. 21  The fitting profiles from solid-state, gas phase. 

 

 

 

Fig. 22  Seebeck coefficient of FeSi2 and Electrical resistivity of the undoped and 

doped Yb2O3. 
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Table 38:  Seebeck coefficients are obtained from gas phase, solid state, and 

compare to experimental values35 and calculated results35. 

B3LYP/6-311+G fitting equation 
Se (µV/K) 

300K 

Se (µV/K) 

900K 

gas phase Se = 1E-06T+0.003 3300.00 3900.00 

solid state Se= 3.6E-08T+1.08E-04 118.80 140.40 

experimental value35   190.00 170.000 

calculated results35   1000.00 380.000 
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4-3 Silicon Germanium ( SiGe ) 

    Bulk SiGe crystals have the application to photo-detectors, X-ray and neutron 

monochromators, etc. and SiGe crystals are also well-known materials for 

thermoelectric applications, especially perform well at higher temperature. Now, 

SiGe has attracted more interests in environmental compatibility. 

4-3-1 Dielectric Constant 

Here, we follow the previous procedure as we have done for Mg2Si and FeSi2. 

Three levels are used respectively: B3LYP, BLYP and M05. Basis sets are classified 

as two parts: Pople basis sets (series of 6-311G, 6-311G(d)…,etc ) and effective core 

potential ( LANL2DZ, CEP-31G and CEP-121G ).  

     It is based on APT partial charge and the B3LYP level in Table 39. The 

dielectric constant by experiment is 13.9536. It performs well at larger Pople basis 

sets, and corresponds to theory of APT charge. For ECP, CEP-31G and CEP-121G 

shows good fits, especially for LANL2DZ it also performs very well. Those results 

are similar to Mg2Si and FeSi2. 
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Table 39:  Electronic polarizability and dielectric constants are obtained from APT 

partial charge by Polpe style basis sets and ECP at the B3LYP level. 

APT (B3LYP) αe (Debye / a.u. ) αe (cm3 ) dielectric constant 

6-311G 423.8073893 2.47E-23 6.193  

6-311G(d) 459.6833831 2.68E-23 5.913  

6-311+G 1401.661151 8.17E-23 4.439  

6-311+G(d) 262.3221931 1.53E-23 10.442  

6-311+G(2df) 243.7502428 1.42E-23 12.289  

6-311+G(3d2f) 235.076609 1.37E-23 13.571  

LANL2DZ 222.4695831 1.30E-23 16.345  

CEP-31G 280.0824909 1.63E-23 9.311  

CEP-121G 278.8289923 1.63E-23 9.377  
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    It is based on Mulliken partial charge and B3LYP level in Table 40. It shows 

good results at small Pople basis sets ( 6-311G and 6-311G(d) ) which corresponds 

to the theory of Mulliken charge. And for all ECP it shows very good results. 

 

 

Table 40:  Electronic polarizability and dielectric constants are obtained from 

Mulliken partial charge by Polpe style basis sets and ECP at the B3LYP level. 

Mulliken(B3LYP) αe (Debye / a.u. ) αe (cm3 ) dielectric constant 

6-311G 234.0008094 1.36E-23 13.758  

6-311G(d) 226.2636975 1.32E-23 15.355  

6-311+G 207.3027305 1.21E-23 22.956  

6-311+G(d) 228.8955643 1.33E-23 14.756*  

6-311+G(2df) 208.4361622 1.22E-23 22.226  

6-311+G(3d2f) 192.6017376 1.12E-23 43.409  

LANL2DZ 246.0747383 1.43E-23 12.002  

CEP-31G 249.7295751 1.46E-23 11.589  

CEP-121G 265.6984747 1.55E-23 10.191  
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    It is based on APT partial charge and BLYP level in Table 41. No matter Pople 

basis sets or ECP, dielectric constants are in good agreement with the experimental 

value. Those results are similar to in Mg2Si where the results of the B3LYP and 

BLYP level are almost the good. 

 

 

Table 41:  Electronic polarizability and dielectric constants are obtained from APT 

partial charge by Polpe style basis sets and ECP at the BLYP level. 

APT (BLYP) αe (Debye / a.u. ) αe (cm3 ) dielectric constant 

6-311G 244.9461093 1.43E-23 12.139 

6-311G(d) 259.6086808 1.51E-23 10.659 

6-311+G 240.599687 1.40E-23 12.713 

6-311+G(d) 253.1538835 1.48E-23 11.239 

6-311+G(2df) 232.2334245 1.35E-23 14.082 

6-311+G(3d2f) 224.8565133 1.31E-23 15.703 

LANL2DZ 219.1653416 1.28E-23 17.360 

CEP-31G 275.6784365 1.61E-23 9.552 

CEP-121G 272.7488038 1.59E-23 9.726 
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    It is based on Mulliken partial charge and BLYP level in Table 42. It shows 

good results at small Pople basis sets, and it also performs well at CEP-31G, 

CEP-121G and LANL2DZ.  

 

 

Table 42:  Electronic polarizability and dielectric constants are obtained from 

Mulliken partial charge by Polpe style basis sets and ECP at the BLYP level. 

Mulliken(BLYP) αe (Debye / a.u. ) αe (cm3 ) dielectric constant 

6-311G 275.6208044 1.61E-23 9.556  

6-311G(d) 259.2244667 1.51E-23 10.691  

6-311+G 251.3384718 1.47E-23 11.420  

6-311+G(d) 230.7638055 1.35E-23 14.368  

6-311+G(2df) 209.9634133 1.22E-23 21.328  

6-311+G(3d2f) 193.0291758 1.13E-23 42.211  

LANL2DZ 245.3975609 1.43E-23 12.084  

CEP-31G 253.4324388 1.48E-23 11.211  

CEP-121G 267.9461273 1.56E-23 10.035  
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    It is based on APT partial charge and the M05 level in Table 43. Dielectric 

constants are fit to larger Pople basis sets, but for CEP-31G, CEp-121G and 

LANL2DZ they show unavailable results. 

 

 

 

Table 43:  Electronic polarizability and dielectric constants are obtained from APT 

partial charge by Polpe style basis sets and ECP at the M05 level. 

APT (M05) αe (Debye / a.u. ) αe (cm3 ) dielectric constant 

6-311G 131.1418858 7.65E-24 9.225 

6-311G(d) 246.2476346 1.44E-23 11.982 

6-311+G 226.4077778 1.32E-23 15.320 

6-311+G(d) 248.7306184 1.45E-23 11.698 

6-311+G(2df) 227.118574 1.32E-23 15.153 

6-311+G(3d2f) 225.9131021 1.32E-23 15.440 

LANL2DZ 334.9050437 1.95E-23 7.443 

CEP-31G 1378.272116 8.04E-23 4.448 

CEP-121G 786.0060438 4.58E-23 4.885 
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    It is based on Mulliken partial charge and M05 level in Table 44. It performs 

well at small Pople basis sets. And dielectric constants are correspondent to the 

experimental value at CEP-31G, CEP-121G and LANL2DZ. It is unlike effective 

core potential in Table 43 that dielectric constants are unavailable with CEP-31G, 

CEP-121G and LANL2DZ. 

 

 

Table 44:  Electronic polarizability and dielectric constants are obtained from 

Mulliken partial charge by Polpe style basis sets and ECP at the M05 level. 

Mulliken(M05) αe (Debye / a.u. ) αe (cm3 ) dielectric constant 

6-311G 270.6452315 1.58E-23 9.857 

6-311G(d) 264.6947153 1.54E-23 10.264 

6-311+G 252.5391409 1.47E-23 11.299 

6-311+G(d) 240.7773861 1.40E-23 12.688 

6-311+G(2df) 225.543296 1.31E-23 15.531 

6-311+G(3d2f) 224.2801921 1.31E-23 15.852 

LANL2DZ 246.583822 1.44E-23 11.942 

CEP-31G 242.5015469 1.41E-23 12.452 

CEP-121G 263.0329892 1.53E-23 10.388 
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 In summary, for Pople basis sets and effective core potential in the SiGe case, 

they both show expectable, better results no matter at the B3LYP or BLYP or M05 

level. It is also proven that our method can applied to calculate dielectric constant. 

4-3-2   Seebeck Coefficient 

     Here B3LYP/6-311+G(3d2f) in Table 39 is adopted because the dielectric 

constant (εr = 13.571 ) is much closer to experimental value (ε∞ = 13.95 ). In 

Table 45, Helmholtz energy and potential with a unit charge in different 

temperatures are listed. Then we fit potentials with temperatures in Fig. 23 which 

shows a line of gas phase which is from the fitting of potentials and temperatures 

directly and a line of solid state which is from the fitting of gas phase divided by the 

calculated dielectric constant (εr = 13.571), because the SiGe material is a polar 

solid so that the electric potential inside that.  

      Fig. 24 shows the Seebeck coefficient of SiGe single crystals with different 

directs as a function of temperature33. Although the Seebeck coefficient in our 

solid-state case has little different from the experimental value of Fig. 24, our 

results locate at same order of magnitude with the experimental value. The results 

of solid-state case are acceptable. But Fig. 24 shows that Seebeck coefficient 

decreases at higher temperature, it is very different from our calculations which 

increase at higher temperature. The reason is the same as the previous discussion 

that Seebeck coefficient is observed to decrease at high temperature which may 

originate in the effect of thermal excitation of carriers across the gap from the 

conduction band33. However, our case is based on thermodynamic method than 

consideration about carrier motion of the energy band. So Fig. 23 shows linear lines 

than curves down. 
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Table 45:  The Helmholtz free energy from B3LYP/6-311+G(3d2f) and the 

potential at one unit electron charge (V). 

B3LYP/6-311+G(3d2f)  300 400 500 600 

 Helmholtz energy(Hartree) -2366.4619 -2366.4719 -2366.4822 -2366.4928

 Helmholtz energy(eV) -64394.768 -64395.039 -64395.32 -64395.608

potential (at unit charge , V) -64394.768 -64395.039 -64395.32 -64395.608

 

B3LYP/6-311+G(3d2f)  700 800 900 

 Helmholtz energy(Hartree) -2366.5036 -2366.5147 -2366.5259

 Helmholtz energy(eV) -64395.903 -64396.203 -64396.508

potential (at unit charge , V) -64395.903 -64396.203 -64396.508
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Fig. 23  The fitting profiles from solid-state, gas phase.  

 

 

 
Fig. 24  The Seebeck coefficient of SiGe single crystals with different direct is 
plotted against the temperature33. 
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 100

We make a small summary in Table 46 Seebeck coefficients in 300K or in 

900K are correspondent to the experimental value for the solid-state case. However, 

in our solid state case the fitting equation is linear, and the Seebeck coefficient 

increases at the higher temperature. In experimental values, Seebeck coefficient 

decreases at the high temperature. That is due to consideration of the thermal 

excitation of carriers, but in our case it is based on the thermodynamic method. 

 

 

 

 

Table 46:  Seebeck coefficients are obtained from gas phase, solid state, and 

compare to experimental values with different direct 33. 

B3LYP/6-311+G(3d2f) fitting equation Se (µV/K) 300K Se (µV/K) 900K 

gas phase Se = 6*E-7T +0.0025 2680.0  3040.0 

solid state Se = 4.1E*-8T+1.84*E-4 196.3  220.9 

experimental value <100>   445.0  430.0 

experimental value <111>  345.0  325.0 
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Chapter 5  Conclusion 

    We have developed the new method to study the thermoelectric effect based on 

thermodynamic theory for the system in the presence of an electric field. Three 

semiconductor thermoelectric materials, Mg2Si, FeSi2 and SiGe, are investigated as 

a demonstration of the present new method. Since thermodynamics can be 

considered as an exact theory in which all microscopic quantities are systematically 

averaged out so that it is possible to perform a more accurate calculation than the 

conventional energy band structure theory. 

We have proposed the way to calculate electric polarizability directly by 

varying electric field. We start with calculating net charge change against electric 

field, but use equilibrium geometry at zero electric field to compute dipole 

momentum change only due to electronic polarization. In such way, we have 

obtained the electronic polarizability, and then inserting it into the Clausis-Mossotti 

equation leads to dielectric constant for bulk matter as it is required. We have 

employed two kinds of charges, APT and Mulliken types of charge. It is found that 

APT charge which converges to the reasonable and stable value as basis sets 

becoming large, so that the electronic polarizability calculated from APT charge 

converges systematically with increase basis sets. However, the electronic 

polarizability calculated from Mulliken charge does not show systematically 

converges, and it shows some good results in the certain extent only for a small or 

medium basis set. We have tried four functionals in DFT method: B3LYP, BLYP, 

M05 and M052X, and two types of basis sets: Pople basis sets including of 6-311G, 

6-311G(d), 6-311+G…etc, and effective core potential including of CEP-31G, 

CEP-121G and LANL2DZ. Simulation results are summarized as follows: 
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1. B3LYP can simulate APT or Mulliken partial charges which can lead to good 

results for the calculation of dielectric constants, no matter by Pople basis sets 

or by Effective core potential. 

2. BLYP is not good only for transition metals, and but it is good for the other 

metals.  

3. M05 is the new method which may not is parameterized including enough 

information of the perturbation of electric fields in partial charges, so the results 

are unfavorable for computing electric polarizability. 

4. M052X is parameterized only good for non-metals, so it is not good for the 

present case. 

Thermodynamic theory is a good tool for discussing thermoelectric effects, 

especially for Seebeck coefficient. The importance of evaluating Seebeck 

coefficient is the relation of electric potential and temperature, and the 

considerations for dielectric properties of solid-state material. The present method 

presents an alternative way to compute the Seeback coefficient, and it seems a 

better method in accuracy as well as in simplicity than the carrier motion of the 

conventional energy band structure theory. This can be easily seen from three 

examples that can for Mg2Si Seebeck coefficient at 300K is 284 µV/K is in good 

agreement with experimental value 180 µV/K, but the result of material studio 4.0 

shows 3600 µV/K. Equally, in 800K it is 334 µV/K is well suited with experimental 

value 280 µV/K, but the result of material studio 4.0 shows 6600 µV/K. The same 

situation occurs in the case of FeSi2 and SiGe. Simulated Seebeck coefficients all 

are proven that our method provides a convenient and accurate calculation for 

Seebeck coefficient. Moreover, Seebeck coefficient from our case increases at high 
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temperature, but it decreases at high temperature by experiment. The difference is 

due to the fact that our method is based on thermodynamic theory than carrier 

motion of the energy band, but the experimental phenomenon originates in the 

effect of thermal excitation of carriers across the band gap. 

Although we succeed in simulating dielectric constants and Seebeck 

coefficients for FeSi2, Mg2Si and SiGe, there are still many thermoelectric materials 

in the world to be investigated in the future. For example, by far Bi2Te3 is the most 

important thermoelectric material, and we also can try many atoms of the molecule 

by our method in the future. Now, the most promising approach for the increase of 

the thermoelectric efficiency is to create highly doped, we will definitely study 

those doped materials in the future. 
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