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Abstract

Thermoelectric effect of, semiconducting materials is studied by the
thermodynamic method for a systemrin the presence of an electric field. The new
method incorporating with the Clausis-Mossotti equation is proposed to calculate
dielectric constant for solid-state materials, and then to compute the Seebeck
coefficient that is key factor to determine thermoelectric conversion efficiency of

the materials.

The polarizability in the Clausis-Mossotti equation in general includes three
parts; electronic polariability, atomic polariability and orientation polariability.
The dominant contribution for semiconducting materials comes from electronic
polariability. A dielectric constant derived from the polarizability is an important
bulk property of a collection of particles. Therefore, the dielectric constant derived
from electronic polariability can describe bulk as a solid. Ab initio quantum

chemistry theory is utilized to compute electronic polariability directly with



varying strength of electric field.

In the present work, three semiconductor thermoelectric materials are
considered; Mg2Si, FeSi2 and SiGe. In the first step, APT and Mulliken charges
are computed with density functional theory (DFT) method at various electric
fields; -0.01, -0.0075, -0.005, -0.0025, 0.00, 0.0025, 0.005, 0.0075 and 0.01 in
atomic unit. Four kinds of DFT functionals are chosen: B3LYP, BLYP, M05 and
MO05-2X, plus a bunch of basis sets; Pople style basis sets including of 6-311G,
6-311G(d)...etc; effective core potential including of CEP-31G, CEP-121G and
LANL2DZ. In the second step, APT and Mulliken charges are used to calculate
dipole moments at given electric field above and then derivatives of dipole
moments with respect to electiic field lead to the electronic polarizability. In the
final step, the dielectric conistant is evaluated ffom the Clausis-Mossotti equation
through the electronic “polarizability. In ' Comparison with experimental
measurements, simulated dieleetric constants. with B3LYP method show the most
accurate results for Mg2Si, FeSi2 and SiGe. The dielectric constants from the
present calculations and their corresponding experiment results are .= 11.86 and
13.3 for Mg,Si, & = 27.806 and 27.6 for FeSi,, and & = 13.571 and 13.95 for SiGe,

respectively.

The Seebeck coefficient is calculated from the thermodynamic method with
chemical potential. This method is much simpler than energy band structure
theory. The Helmholtz free energies are computed at various temperatures, and
then are fitted into the certain analytical function with respect temperatures as a
variable. Thus, the Seebeck coefficient can be evaluated from partial derivative of
Helmbholtz free energy with respect to temperature. This Seebeck coefficient that

must be divided by the dielectric constant evaluated previously can finally be



considered as the Seebeck coefficient for a solid-state material. The present results
show good agreements with experimental measurements for the Seebeck
coefficients of Mg2Si, FeSi2 and SiGe. The Seebeck coefficients from the present
calculations are S, = (284, 334)uV/K at the temperature (300, 800)K for Mg,Si, S,
= (118.8, 140.4)uV/K at (300,900)K for FeSi,, and S, = (196.3,220.9)uV/K at
(300,900)K for SiGe. Their corresponding experiment results are S, = (180,
280)uV/K at (300, 800)K for Mg,Si, Se = (190, 170)uV/K at (300,900)K for FeSi,,

and S = (345,325)uV/K at (300,900)K for SiGe.

In conclusion, the present method surprisingly woks better than conventional

energy band structure theory for calculating the Seebeck coefficient.
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Chapter 1 Introduction

Recently Greenhouse effect is more serious and it speeds up the research for
the alternative sources of energy in place of traditional fossil fuels. Power
generation  from the solar energy has attracted more attention, but it is still
insufficient for the current huge energy consumption. Thermoelectric materials have
the property for recovering the wasting heat to generate useful electric power and
for reducing global warming effects. Since this energy conversion is done by
electron moving in solid, we can make full use of solid. Firstly, the thermoelectric
device has no moving part, and is operated almost without the maintenance. Besides,
thermoelectric energy conversion has several advantages in comparison with the
other energy sources. Secondly, it produces no.waste matter through conversion
process. Thirdly, it can be processed at a'micre/nano-size, and can be implemented

. . . 1
into electronic devices .

The efficiency of energy conversion for a thermoelectric material is measured
by the dimensionless thermoelectric figure of merit, written as ZT, and it is defined

by

S.’oT
T = + K (1.1)

phonon electron

where S. is Seebeck coefficient, o is the electrical conductivity, Kpnonon and Keiectron
are the thermal conductivity for the phonon and the electron respectively, and T is
temperature. The ideal thermoelectric material would have a large S., a large ¢ and
a small k. For an insulator it usually has a large Se and a small k, but it has a small o,

while for a metal it has a large S, and o, but it has a large k. Therefore, how to



enhance ZT for thermoelectric materials is a very challenging problem, because
material with a large ¢ is usually companied with a small S, and a large k. The
trade off between the electrical conductivity and Seebeck coefficient can be seen in

Fig. 1% for bulk silicon crystals’.
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Fig. 1 Seebeck coefficient and ZT|as a-function of the electrical conductivity for

bulk crystal Silicon at 373K>.

If ZT goes to zero, it means there is no energy conversion. But as ZT is
increasing to infinity, it will reach the Carnot efficient limit, which applies to all
heat engines’. The laws of thermodynamics tell us that a maximum efficiency,
called the Carnot efficiency, cannot be exceeded. The Carnot efficiency can be

written

n = THot _TC0|d %x100% (1.2)

Hot

where Ty and Teolg are the temperatures of the hot and cold sides of the materials.

The comparison of ZT values with different materials can be seen in Fig. 2%,

where the most of materials are located below ZT=1. Non-oxide materials have

2



large ZT values and oxide materials have small ZT values, and the ZT values of

SiGe crystals approach to 1, and the ZT values of B-FeSi2 is between 0.1 and 1.

Temperature (°C)
2 0 500 1000
10 : i " | " n | n i " i | L

i .-"kBiO.SSSbO.IZ )
5\;, o Non-oxide

Figure of merit, Z (K1)

n A" ZT =001
0 500 1000 1500

10

Temperature (K)

Fig.2 The comparison of ZT values fronr different materials®,

The traditional thermocouple that'is based on the two dissimilar metal wires is
for the first time to apply for thermoelectrics. From the 1950s the semiconductors
replaced the metals and especially in the 1990s the research of thermoelectric
materials achieved the big progress® and it can be demonstrated in Fig. 3°. The
research for thermoelectric silicide materials is grouped into two categories; one is
alkaline-earth metal silicides and the other is transition metal disilicide. Magnesium
silicide Mg,Si that is n-type semiconductor is widely used for the application to the
thermoelectric devices, as it is abundant in the natural resources, besides it is
non-toxic, inexpensive. Mg2Si is the well known promising thermoelectric material
in temperature range from 500 to 800K® and with narrow-band gap about 0.78 eV’.
B-FeSi, is another promising thermoelectric material according to its energy band

gap, thermal stability and corrosion resistance®. It is mainly used for generating



power in the temperature range from 500 too 900K°.
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Fig. 3 Progress in thermoelectric materials figlire of merit, ZT.

The Seebeck coefficient thaf is -also called as thermopower is the important
parameter to determine the thermoelectric converéion efficiency of thermoelectric
materials and its magnitude depends on an induced thermoelectric voltage across
the materials in response to a temperature difference. The Seebeck coefficient is
usually calculated from the charge carrier motion of energy band gap, because an
applied temperature difference will cause charge carriers (electrons or holes) in the
materials to diffuse from the hot side to the cold side. As diffusions of charge
carriers reach thermodynamic equilibrium, the net separation of carriers would
create an electric potential. However, phonons are not always in local thermal
equilibrium. They lose momentum by interacting with other carriers and tend to
push electrons to one side of the materials. So the Seebeck coefficient is mainly

affected by the following two reasons: charge carrier diffusion and phonon drag.



However, diffusing charge carriers would also be scattered by impurities, defects,
phonons and other charge carriers, etc®. The above factors complicate the
calculations of the Seebeck coefficient considerably in the conventional band

structure theory.

We have found an alternative way to study the thermoelectric dynamics. It is
based on the thermodynamic theory for the system in equilibrium with an electric
field. As thermodynamics is considered as an exact theory in which all microscopic
quantities can be averaged out systematically, it is possible to perform a more

accurate calculation’.

In the present work, three semiconductor thermoelectric materials, Mg2Si,
FeSi2 and SiGe, were investigated. In thefirst step, APT and Mulliken charges are
computed with density function: theory (DET) method at various electric fields.
Four DFT functionals are chosen; B3LYP, BLYP, M05 and M05-2X. In the second
step, APT and Mulliken charges.are used to calculate dipole moments at a given
electric field and then derivatives of dipole moments with respect to electric field
lead to the electronic polarizability. In the final step, the dielectric constant is

evaluated from the Clausis-Mossotti equation through the electronic polarizability.

The Seebeck coefficient is calculated from the thermodynamic method with
chemical potential. This method is much simpler than energy band structure theory.
The Helmholtz free energies are computed as a function of the temperature, and
then are fitted into an analytical function with respect temperatures as a variable.
Seebeck coefficient can be evaluated from partial derivative of Helmholtz free
energy with respect to temperature, which is divided by dielectric constant
evaluated previously and finally be considered as the Seebeck coefficient for a
solid-state material. Some experimental data are included in the present method, for

5



example, the density of the material’.




Chapter 2 Theory

2-1 The Electric Properties of Matter

2-1-1 Basic relation of electric field, energy and
polarizability

There exist both time-dependent and the time-independent electric fields.
Time-dependent field is wusually associated with electromagnetic radiation
characterized by a frequency of implying dynamic properties, while
time-independent field does not vary with accompanying frequency of implying
static properties. The present work is focused.on the static electric field that is also

called the homogeneous electrie field here'’.

In the presence of a homogeneous external electric field, the Hamiltonian

for the total system (nuclei and electrons) ¢an be written as''

H=H®+H® @.1)
where H” is unperturbed term without the field for the system and H" has the form

I:I(l) :_/:lex_l[lyFy_/:lez :_I&'F (2.2)

in which the dipole moment operator ( is given by

ao= z q;h; (2.3)

i

with the vector r; indicating the particle i with charge q;

From eq. (2.1) and (2.2) it can be obtained the relation,



—=—1 aex,y,z
oF, a Yy (2.4)
From eq. (2.4) it follows
oH —Vy <t//|ﬁ (//>—— -4 (2.5)
oF, ! !

where (1 .is the expectation of the a-th component of the dipole moment

From the Hellmann-Feynman theorem it follows

oH OE
= 2.6
<'// oF. 7 > oF. (2.6)
therefore
i =L
o F H o, (2.7)

Moreover, if it is in the case ‘of aweak electric field F, it can be written as
the Taylor expansion at F = 0.

OE 1 O’E
E(F)=EQ+y'| == | F+— EF,
( ) Za:(@F l:o ‘ 2'Z(aFaaFa, JH e

a .

OB (2.8)
— Z F Fa,Fa., +... a,aa" e x,y,z
OF OF,OF,,

aaa

where E is the energy of the unperturbed term for the system.

Combining eq. (2.7) with (2.8), we can have

E_ . (OB O°E
e 2 A
oF oF, ), S\ oFeF, ),

a

3
+l __0E F,Fa,.+...
oF,0F,0F,.
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In terms of the derivatives in eq. (2.9), the permanent dipole moment, the

polarizability and the (first) hyperpolarizability

1
/’la :/ua © —I—Z aa,a'Fa' + 5 Z ﬂa,a‘,a"Fa'Fa” +‘ e (2 10)

The meaning of the formula for 1 , is listed :

the total dipole moment (field-dependent) :

__OE @.11)
S

the permanent (field-independent) dipole moment :

L= LS?E] (2.12)

a_/F=0

the component aa' of the polarizability tensor :
S (y_E] ~ [GL] (2.13)
. OF,0F, )i ok, )i,
the component aa'a" of the (first) hyperpolarizability tensor :

5o- 0’E (2.14)

oF,0F,0F,. ),

In other words, an induced dipole moment, which consists of the linear
responses ( « polarizability ) and the nonlinear responses ( /S
hyperpolarizability) to a homogeneous electric field. The quantities (vector (o,

tensor o and tensor ) are very important quantities for characterizing the molecule.

A neutral atom is placed in a static external electric field F. If the field is not
too large, and the response ( « polarizability ) of the atom is isotropic , and

induced dipole moment will be proportional to the electric field, and can be written



g = akF (2.15)
with « is the constant of proportionality — scalar quantity.

For a molecule with spherical symmetry, the polarizability is
well-approximated by a single constant — scalar quantity, the polarizabilty is also
isotropic. However, for many molecules being not spherical symmetry, the
polarizability cannot be characterized by a single constant. For example, the charge
distribution along the internuclear axis is longer than perpendicular to this axis for
H, molecules, and thus it can be expected that the charge separation induced by
external electric field is be greater along the internuclear axis than along a
perpendicular axis'?. In such case, a single scalar quantity is not sufficient to
describe the polarizability. The mest general way to transform one vector F to

another g is defined by a second-rank Cartesian tensor as in matrix form

:ux axx axy axz I:x
’uy = ayx Clyy ayz Fy (2.16)
:uz azx azy azz |:z

For a static field, the polarizability tensor is symmetry.

2-1-2 Basic dielectric relations

In the vacuum, the electric field about a charge q at a distance r is defined by

F=_4

v 2.17
47g,r’ 17)

Now consider the electric field between two plates, the area of the plates is A,

and each one has a surface charge density o. If the medium between plates is a

10



vacuum, the electric field is derived as ( atomic units), see Fig. 4(a)"?

F=2 (2.18)

But if there existing dielectric medium between two plates, the electric field
will be reduced due to the polarization P of the material. The field distorts the atoms
and molecules, and orients existing dipoles to create a field opposing the applied
field. So the resultant field is reduced". Now P called as polarization is defined as
dipole moment per unit volume. Consider a plate of area A, length L. Its total dipole

moment due to polarization is
P x volume = PAL =PA x L =end charge x length  (2.19)

Therefore, the effective charge density'on the plates is (¢ — P ). The resultant

field is in eq. (2.20) ( see Fig. 4(b)13 )

o -P

€y

O
F= L=
n (2.20)

Rearrange eq. (2.20) and combine with eq. (2.18), the basic relation of polarization

and electric field is obtained.
&
P=0-Fg,=F(¢-¢,)=F¢g,( . -1)=F¢,(¢.-1)=F¢g, x. (2.21)
0

Electric susceptibility () is defined through eq. (2.21), and is related to the relative

permittivity (dielectric constant)

K=&~ 1=— (2.22)

11
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Fig. 4 (a)The field F, between plates in vacuum.(b) The field in the
dielectric medium is polarized, and it is reduced to F.(c) Relation between

F and F,

2-1-3 Lorentz local field and Clausius-Mossotti equation

Let us begin with considering all kinds of electric fields. Fy is applied external
field, and F; is the field of the surface induced charge density on the boundary, and
it is due to the uniform polarization of the surface charge density. F; is also called
depolarization field which is opposed to the applied field Fy within the body. F is

the addition of Fy and F,, and is called macroscopic electric field. ( see Fig. 5'*).

Fo

Fig. 5 The applied external field Fy. The depolarization field F, is opposite to P.

And the macroscopic electric field F, F=F+F,

12



Now an expression of local field Fioc at a general lattice site is discussed. The
local field that acts at the site of an atom is different from the macroscopic electric
field F. If it is in a sphere, the macroscopic electric field can be seen in eq. (2.21)
where the value of depolarization field is from depolarization factor of a sphere'*.

1
F=F +F=F- P (2.23)
0

The local field at an atom is the sum of the electric field Fy from external

sources and of the filed from the dipoles within the specimen. It is written as

Fl = Fo + Fl + F2 + F3 (2.24)

ocal

where Fy= applied external field. F; = depolarization field, from a charge density of
the outer surface. F, = Lorentz cavityifield; from polarization charges inside of a
spherical cavity cut out of the spécimeniwith the.reference atom as center. F; = field

inside cavity. More details in Fig, 6

FO F, from surface of
- spherical cavity
-—

- ~
-—

F; from dipoles inside

F, from outer boundary
sphere

Fig. 6 The internal electric field at an atom in a crystal is the sum of the applied field F and of the
field due to the other atoms in the crystal. The standard method is summation of the dipole fields of
the other atoms. First, it sums individually over a moderate number of neighboring atoms inside an
imaginary sphere concentric with the reference atom: this is defined by the field F;. The atoms

outside the sphere can be contributed to the field at a reference point is F; + F,.

13



If atomic arrangement is cubic symmetry in a crystal or the array of dipoles is
random in a liquid or a glass, the inside field Fs is zero. So the field F3 depends on

the crystal structure.

Now, let us start to discuss the Lorentz cavity field F,. An annulus on the

surface of a cavity is constructed. ( see Fig. 7" )

local field

++++++++++0
FH 4+ +++++++

- dielectric

Fig. 7 charge distributions in a spherical cavity within a dielectric.

From Fig. 7, the charge on the annulus is
—Pcosf 2zRsin@ Rdé (2.25)

At the center of the cavity it produces a coulomb field along the annulus. The

vertical components cancel off, and the horizontal ones are additive from Fig. 4.

! Pcosé ZﬂRsinHRdQchosﬁz L Pcos” @sin0d @ (2.26)
4re, R 2¢,

For the whole sphere, the net field F; is

14



F2=ircos2 @sin &d 6’=i (2.27)
2g, 70 3¢,

Finally, if atomic arrangement is cubic array or random (F; = 0) and the

cavity is spherical, the local field is

P
F,. =F, TF,+F,=F+ (2.28)
3¢,

eq. (2.28) is the Lorentz relation.
The polarizability « of an atom is defined in term of the local electric field
at the atom.

u=ak (2.29)

The polarization of a crystal can be expressed as the product of the

polarizability of the atoms multiplied by the local electric field.

P:IIILI:II(ZFIOC _I’ICZ[F'FLJ (2.30)
3¢,

where n called as number density is defined as total number of objects per unit
volume, and the unit of P is dipole moment per unit volume.

Form eq. (2.30) basic relation between P and F in dielectric is obtained as

P no

—— (2.31)
F 1-na/3g,
with which the dielectric constant in eq. (2.22) becomes
P no
X.=&-1= (2.32)

&F - &,-na/3

and
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3¢,

& t2=(&-1)H3=—— 2.33
(&:-1) &,-na/3 (233)
Finally, eq. (2.32) divided eq. (2.33) leads to
-1 na
T 2.34
e+2 3¢, 2:34)

This formula is known as the Clausius-Mossotti equation.

Moreover, a practical form is obtained by replacing the number density by the

mass density o .

* N, (m/M
ne N _ Nytmol N, (mM) _N,p (2.35)
v v v M

with Ny is the Avogadro constant, m i§ the mass:of the sample and M is the Molar

mass of the molecules.

Finally, the Clausius-Mossotti equation can be written as

3e,M{lg -1
a= (2.36)
NAIO ‘C"r—"—2

The polarizability which is one of atomic properties is related to many
important bulk properties of a collection of particles including the dielectric

constant ¢ ., the electric susceptibility y ., the refractive index 7, etc'?.

If there is the permanent electric dipole moment (o in the molecule, the

polarizability is related to the dielectric constant by the Debye equation.

: 3 M( g1
e B (‘% ] (2.37)

3kT N,pl\le&+2
where (¢ is the permanent dipole moment, k is Boltzmann’s constant and T is the

absolute temperature. ( more details in 2-1-4 Polarizability )
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The index of refraction is related to the polarizability by the Lorentz-Lorenz
formula.

36 M( n*-1
a:i['ﬁ—j (2.38)
N,p\n°+2

This formula is valid for non-polar molecules or at frequency high enough
that the permanent dipole moments cannot follow the electric field. The
Lorentz-Lorenz equation and Clausius-Mossotti equation are related by the

Maxwell relation &, = 772 12

2-1-4 Orientation and distortion polarization

As is seen from Fig. 4 (b), wheén a external’field in the dielectric medium, the
effective electric field between the plates must be reduced. The reduced field due to
polarization of the medium is - affected by two reasons. The first one is that the
molecule of the medium has a permanent dipele-moment, and this effect is known
as orientation polarization. The orientation polarization is temperature dependent
and its value decreases with an increase of temperature because the random thermal
collisions oppose the tendency of the permanent dipole moments to orient
themselves in the electric field". This magnitude of the effect can be calculated
from Boltzmann distribution. The energy of a dipole in a local field Fj,c. along the

z-axis 1S
E(0)=—u,Fo =—uF, cosd, with0<O<7x (2.39)

The probability dp( & ) that a dipole has an orientation in the range 6 to 6+d9 is

17



E(O)KT _:

e sin @dé

dp(0) = — FETE. (2.40)
IO e sin@d o

The average value of z component of the dipole moment is

Jw e***’ cos @sin Hd 4
(1) = chos@dp = ,ujcos@dp = =
j e**’sin6d o
0 (2.41)
_ HE.
" kT
Finally the average dipole moment along the z-axis is obtained.
e*+e™ 1
,)=uL(x) ,L(x)= -— 2.42
()=l (x) S L(x)= =7 (242)
The function L(x) is called Langevin function.
When pFj <<kT corresponding to x<<1, the Langevin function is
1 uF
L(X)m—x=""2% 2.43
(V53 5 (24)
From eq. (2.29) and (2.43), we will obtain
2
x,= £ (2.44)
3kT

Here a, is called orientation polarizability, and the eq. (2.44) exists only at
HFloc << kT.

The second version is that it always exists whether the molecule is polar or not.
For the electrons to shift relative to the positive charges, and this is called as
electronic polarization, while atoms are shifted relative to each other called as
atomic polarization. If the position of a molecule is disturbed by a collision, a new

dipole is immediately induced again in the direction of field. However, the

18



distortion polarization is independent on the temperature'. The sum of above two

polarization effects is called distortion polarization.

2-1-5 A summary of polarization

The electric field gives rise to a dipole moment by the following effects':
1. Translation (distortion) effects:
The electrons are shifted relative to the positive charge ( electronic polarization)
Atoms or atom groups are displaced relative to each other (atomic polarization)
2. Rotation (orientation) effect:

The electric field trends to direct the/péfmanent dipole moments.

Now let us consider frequencyeffect,toward polarizability. When the
frequency of the field is high, the" melecule dipole cannot change direction fast
enough to follow the field. Therefore permanent dipole moment doesn’t contribute
to the polarization at microwave region, orientation polarizability is lost. For higher
frequency, because the molecule is bent and stretched in the frequency of
Infrared-Ray region by the applied field, the molecule dipole moments change
accordingly. The time taken for a molecule to bend is approximately the inverse of
the molecular vibrational frequency, so it will lose the contribution of the atomic
polarization. At even higher frequency (about visible region), only the electrons are
mobile enough to follow the rapidly changing direction of the field, so it only

remains electronic polarizability'’. (See Fig. 8)
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Fig. 8 The general form of the variation of the pelarizability with the frequency.
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2-2 Charge population

2-2-1 Mullikan charge

Assuming the MO (¢ ) can be expanded in a set of basis functions ( y )

bi= 2 C.ik. (243)
The electron density ( o) which is equal to the square of the MO (¢ ) can be
written as

M basis

pi:¢i2: Z CoilCigd o X p (2.46)
ap

The total electrons (Ngec)- are equal to integrating and summing over all

occupied MOs.

Ny = Nz [g2dr

Noee M basis Nyee M basis (2'47)
= Z z caicﬂiJZaZﬂdr :z Z Caicﬂisaﬂ
i ap i af

The eq. (2.47) can be generalized by introducing an occupation number (n) for

each MO, see eq. (2.48)

M basis (NDCC M basis

NOCC
Nelec:znij-¢i2dr: Z Znicaicﬂi B Z D,;S.s (2.48)
i aff i ofp

The Mulliken population analysis uses the D » S matrix for separating the
electron density into atomic contributions. A diagonal element Dg,Sy, is the number

of electrons on the a AO, and off-diagonal element D.sS.s is the number of
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electrons shared equally by o AO and S AO. The Mulliken electron

population on atom A is defined as in eq. (2.49)

M basis M basis

pPr= D, D, D.S., (2.49)

acA p=1

The Mulliken net charge on atom A is the sum of the nuclear and electronic

contributions.

Q,=Z,-p, (2.50)

However, Mulliken population analysis doesn’t offer exact charges of the
individual atom, it only provides the trend, because partition of the charge
contribution is equal. Moreover, atomic_charges calculated from the Mulliken
analysis will not converge to a_constantyvalue when the size of the basis set is
increasing. Larger basis set is usually involving the-addition of more polarization
basis functions or diffuse basis function, it will give rise to unpredicted change in
the atomic charge. So Mulliken population analysis is affected largely by basis
functions, and it usually is most useful for comparing trends in charge distributions,

. . . 1
when small- or medium-size basis sets are used'’.

2-2-2 Atomic polar tensor charge

The atomic polar tensor VA"

of atom A is defined by the first derivatives of the
dipole moment with respect to the nuclear coordinates'® in eq. (2.52) and it can be

used to determine intensities of IR absorptions due to the intensity is given by eq.

2.51).
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. . ou ?
IR intensity oc | — 2.51
y ( aRj 2.51)

Here R is the nuclear coordinates.

Ou,  Op, Opy
ox oy 0z
yarr| O#y  Ony  Ony (2.52)
ox oy 0z
Om, Op, OM,
ox oy oz

The definition of atomic polar tensor charge on atom A is one-third of the trace

over the APT", see eq. (2.53)

ar_ 1[0 Ok, o, (2.53)
3iox oy, oz

Because dipole moment detivatives determine [R: absorptions, APT charges are
directly related to experimentally observablerquantities'’. Moreover, APT analysis
has the following properties: (1) the'atomie-charges should be invariant with respect
to rotations and translations of the molecule; (2) APT charges sum up to the total
electric charges of the molecule; (3) APT charge isn’t directly related to the choice
of a particular basis set , its basis set dependent stems only from the fact that the
basis set is not complete'®. So the basis-set dependence is modest, although
basis-set convergence isn’t reported®’. But APT charges are sensitive to the electron
correlation in the wave function, it can be seen in Table 1°!. A measure for the
sensitivity of a particular change definition toward electron correlation is provided
by the difference q (QCISD) — q (SCF). It is very obvious that APT charge exhibits
the largest correlation effect and Mulliken population analysis appears to be

relatively in sensitive to the electron correlation’’. So the observation that APT

23



appears to be much less sensitive to the basis set than to electron correlation.

Table 1: Correlation contribution to different charge definitions at QCISD/cc-pVDZ

level
¢(QCISD)-¢(SCF)
Mulliken CHELFG NPA APT

BH H 0.000 ~0.068 0.018 —0.048
B 0.000 0.068 ~0018 0.048
C3H H —0.005 —0.031 ~0.008 -0.021
¢ 0.005 0031 0.008 0.021
CHy H 0.005 —0.006 0.003 0.007
C -0.021 0,025 ~0011 ~0.028
co C —0.084 —0.055 -0.121 -0.151
0 0.084 0,055 0.121 0.151
COo, o 0.087 0.085 0.109 0.202
C -0.173 —-0.170 —0217 —0.406
H,CO 0 0.081 0.074 0.097 0.169
C —0.079 —-0.051 —0.100 —0.127
H —0.001 —0.011 0.002 -0.021
H.0 0 0.019 0.057 0.042 0.095
H —0.009 -0,028 -0.021 ~0.048
H:$8 3 0.016 0.029 0.010 0.030
H —0.008 —0.015 -0.005 -0.015
HCI H —~0.018 0017 -0.016 -0.037
Cl 0.018 0.017 0.016 0.037
HCN H —-0.016 ~0.034 -0010 -0.031
C —0.032 —0.002 —0.039 ~0.068
N 0.048 0.037 0.049 0.008
HF H —0012 -0.028 -0.026 —~0.053
F 0.012 0.028 0.026 0.053
NH; N 0.021 0.079 0.039 0.096
H —-0.007 -0,026 0013 -0.032
NNO N 0.008 0.024 0.003 0.107
N —-0.135 —0.123 —0.121 ~(.345
o 0.127 0,099 0.118 0.238
PH3 P —~0.018 0.033 -0032 -0.035
H 0.006 ~0.011 0010 0.012
SO, 8 —~0.203 —0.122 -0.293 -0.405
0 0.092 0.061 0.146 0.203
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2-3 Dipole moment'®

The dipole moment of a point charge q relative to a fixed point is defined as qr,
in which r is the radius vector from the fixed point to e. Hence, the dipole moment

of a system of charges qi, relative to a fixed origin is defined as:
f1=2a (2.54)

If the net charge of the system is zero, the dipole moment is independent of the
choice of the origin. The eq. (2.54) can be written in another way by introducing the

positive and negative charges in eq. (2.55)

A= D qt + > qf (2.55)

positive negative

For two atoms of a system (Fig. 9), the dipolé. moment can be written as

A ~ ~

A=qR, £(-q)R =q(ﬁ+— ﬁ) =qL (2.56)

R+ tq
L

R- -q

Fig. 9 The dipole moment in two atoms of a system

From eq. (2.56) it is very clear that we can choose one atom as the origin, and

dipole moment will be equal to charge multiplied by bond length directly.

It is the same for three or more atoms of a system. For example, in three
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atoms of a system, we choose the A atom as the origin for (x3, y2) = (0,0), and

dipole moment is as in Fig. 10.

(2.57)

o
9%}

H=0q -1, +0;-
It is also written as

My =0, X + Q5X;
“y, =0,y +0Q5Y;

When the B atom is identical to the C atom, (£ « is equal to zero. And ¢ y can be

calculated from
o
p=pu,=2qr COSE (2.58)

where q = q; = qs and r = 113 =T23.

A y
(X29y2)
G
2 o 23
qitq2tq3=0
B 1 43
(x1.y1) (5,3

Fig. 10 The dipole moment in tree atoms of a system.
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2-4 Density Functional Theory

2-4-1 Historical Background

Thomas (1926) and Fermi (1927) are the pioneering scientists to use the
electron density rather than wave function for expressing approximate energy for
the first time. They applied quantum statistical model (uniform electron gas) to the
kinetic energy but treated the electron-nuclear and electron-electron interactions in
classical way. The most important part is no exchange and correlation effect in this

model. The Thomas-Fermi total energy is expressed in terms of density as™ .
3 St s 1 e pE)p(E)
ETF—E(Sﬁ) [ p? (@Mr-2] et ”Tdrldrz (2.59)

Later on, Slater (1951) added the-Hartree-Fock exchange term and exchange

energy can be expressed approximately as

Ey[p]2Cy j p(7)’df (2.60)

To improve the quality of exchange energy, semiempirical parameter o was

introduced to Cx. It is called Xa method in one of density functional approaches.

Hohenberg and Kohn (1964) brought up two theorems that make big
contribution to the present DFT. The first one is that the ground state electronic
density is uniquely specified by the given external potential V¢, and it also means
electron density p(r) defines all terms in the Hamilton operator”. In other words,
the ground state electronic density and the ground state wave function can be used
alternatively as full descriptions of the ground state of the system''. The second one

is variational principle applied to density functionals. It could calculate ground state
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energy by inserting approximate density, see eq. (2.61). E¢ represents the minimum

value of the system.

E, <E[]=T[p]+E\.[5]E.[ ] 2o

Kohn and Sham (1964) considered a fictitious system of non-interacting
particles, and in order to ensure that the system has the same density and energy as

the real system, those particles are assumed moving in the external potential

Vesr (l‘)zz. In the other hand, the Kohn-Sham system of the electrons, that do not
interact with each other at all (as if their charges are equal zero) but interact with the

nuclei, they are subject to an external potential Ve (r)'!, as described in the

following™.
E=T,[ p ()] +[ V(@) (£) dr (2.62)
Ve (f)=g—2-g—£’+vext (B)HVe(T)+ 65;‘3 (2.63)

E’x is called as exchange correlation ‘energy in which exchange part is from
Hartree-Fock approximation, and correlation effect is obtained from extra
correlation contributions (beyond the Hartree-Fock approximation). Ve is the
interaction of nuclei and electrons. V. is the classical Coulomb operator, then there

1s a self-interaction of electron cloud with itself.
N ~
vV, = > 1. (%) (2.64)

Now the exact form of effective potential Vg is still unknown, so that the

exchange-correlation potential Vi, is to be determined.

o o, By %, =V, (7) (2.65)
op Op Op op
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Finally, the total DFT energy of Kohn-Sham theorem can be written

Eper=T, [ 2(F) |+ ][ Ve (F) +Ve(F) + Vxe(F) Jo(F) dF

S Eppr [P] =T, [p] +E . [p] —|—J[p] +E [,0] (2.66)

The most importance in eq. (2.66) is the exchange-correlation energy. A lot
of approximations have been carried out for getting the accurate
exchange-correlation energy. In the Local Density Approximation (LDA) it is
assumed that uniform electron gas is in the system, in order to ensure that the
electron density is constant in space, the exchange-correlation energy isn’t related
with variations of electron density. It means that we can calculate Vy, for the system
as a function of the constant density. In the Generalized Gradient Approximation
(GGA) it takes into account a non-uniform  electron gas and includes electron
density and the derivatives  of; the | density+ in the expression of the
exchange-correlation energy. On the other hand, Ey¢ depends not only on pat a
given point (local), but also at the* p neatby (non-local). Therefore, it is also
called non-local approximations. If it includes higher derivatives of the density, it
could be called meta-GGA approximation. At the beginning of the 1990s a new
method was called Hybrid method combined the Hartree-Fock theory with
Kohn-Sham theorem. Because the exchange energy is given exactly by
Hartree-Fock theory and correlation energy is treated only by Kohn-Sham theorem,
it will be more accurate to express the exchange-correlation energy. The most
popular and famous method B3LYP functional is widely used in computation and it

is defined in
EPYP = (1-a) ESP 4aB R AP +(1-C)ES™ + CEX" (2.67)
Three parameters a, b and ¢ are determined by fitting to experimental data and
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depend on the form of exchange and correlation energy. It is the classification of

density functional below. (see Table 2)

Table 2: Perdew classification of exchange-correlation functions'

LevelName Variables Examples
1|Local density |0 L(S)DA, X«
2IGGA 0, \Vp BLYP, OLYP, PWS86,PW91 , PBE
3Im-GGA 0, \Vp ,Vz © ormore B95, VSXC, PKZB, TPSS

0,V p,N?p ormore
Hybid H+H , B3LYP, O3LYP, PBEO, TPSSh
and HF exchange

N

2-4-2 MO0S and M05-2X

Now still there is one problem called as self-correlation error in some DFT
methods. It stemmed from electron interacting with itself. Table 3 is about
self-correlation error for one electron of Hydrogen atom. We can see the HF theory
is free of self-correlation error for one-electron system, but other DFT methods

clearly have self-correlation error.
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Table 3: Energy components [Ej] of various functionals for the hydrogen atom®.

Functional Eq I[p] Exlp] Eclp] J[p] + Exclp]
SVWN -0.49639 0.29975 25753 -0.03945 000277
BLYP 049789 0.30747 ={0.30607 0.0 0.00140
B3LYP -0.50243 0.30845 0.30370° -0.00756 <0.00281
BP86 =0.50030 0.30653 0.30479 -0.00248 -0.00074
BPWI1 -0.50422 0.30890 <0.30719 =0.00631 =0.00460
HF -.49999 0.31250 031250 0.0 0.0

* Includes 0.06169 E, from exact exchange.

MO05%* (for Minnesota 2005) and M05-2X>* (for Minnesota 2005 with double
the amount of nonlocal exchange) are the newly developed functionals. They both
can be called hybrid methods; ‘because ‘they‘ incofporate electron spin density,
density gradient, kinetic energy d‘ensity‘and Hartree-Féck exchange energy. The two
new functionals have three advaﬁtages; one isincorporating kinetic energy density
in a balanced way in the exchange and correlation functionals, the other is to satisfy
the uniform electron gas limit, the third is free of self-correlation”. The MO05
functional was parametrized by including both metals and nonmetals and is broadly
applicable to organometallic, inorganometallic and nonmetallic bonding,
thermochemistry, thermochemical kinetics, and noncovalent interaction**. So M05
performs well not only for main-group thermochemistry and radical reaction barrier
but also for transition-metal to transition-metal interaction. The M05-2X functional
was parametrized only for nonmetals and performed well for thermochemical
kinetics and noncovalent interactions (weak interaction like hydrogen bond ...etc),

excluding metals™.
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2-5 Thermoeletric Phenomena

2-5-1 Historical Background

In 1822, Thomas Johann Seebeck published a paper describing that a compass
needle was deflected when it was placed in a closed loop of two dissimilar metals
that had one junction heated*. That was the first observation of the phenomenon of
thermoelectricity. But he tried to relate this phenomenon to the earth’s magnetic
field. Of course, it didn’t work because the phenomenon wasn’t from the magnetic
effect at all. Although Seebeck didn’t understand it at that time, that effect was
known as the Seebeck effect. Later.yins1835, Jean Charles Athanase Peltier
discovered that the temperature of a junction between two dissimilar metals changes
when current flows between them?®. At that time, it 'was not realized that this was
related to the Seebeck effect. In 1838, Lenz discovered that heat is liberated or
absorbed depending on the direction of the ‘current flow across a junction of two
dissimilar conductors®®. That is the so—called Peltier effect is the absorption or
generation of heat at a junction between two materials when current is flowing
through them”. In 1851, William Thomson established a relationship between the
Seebeck and Peltier coefficients, and predicted a third thermoelectric effect®®. This
effect is known as Thomson effect, which occurs when currents are flowing through
a material placed in a temperature gradient’®. Thomson can observe this effect

experimentally corresponding to his predictions.

An electron in solids is an elementary particle, and can carry electric current.
Because immense magnitudes of electrons are at thermal equilibrium in solids, they
also carry heat and entropy'. In the presence of temperature gradient, electrons can
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flow from a hot side to a cold side to cause the electric current. It is obvious that a
coupling between thermal and electric phenomena, and is called as the

thermoelectric effect.

2-5 -2 Seebeck effect

When two dissimilar materials are jointed together and the junctions are held
at different temperatures ( T and T+ AT ), a voltage different ( AV ) would be
induced. The ratio of the voltage difference ( AV ) to temperature gradient ( AT)
is related to an intrinsic property of the materials called the Seebeck coefficient
( Se ). Seebeck coefficient is very low for métals ( only a few 1V /K ) and much
larger for semiconductors ( asfew hundred &V 7 K ). Using Seebeck effect,
thermal energy can be converted to electric energy. When left side of the sample is
heated in Fig. 11', the thermoelectric voltage is induced in proportion to the
temperature difference'. If a bulb is connected to the sample, the electric energy is
consumed at the bulb. Therefore, the thermoelectric materials can be used as a

kind of battery'.

Current

Fig. 11 Scheme of thermoelectric power generation.
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In Fig. 6°%, two dissimilar conductors, A and B, have junctions at X and Y. If a
temperature gradient exists between X and Y, a voltage difference ( V ) appears
between two B segments. Under the open circuit condition, the Seebeck

coefficient is defined as

S, - ‘;—V (2.68)

Fig. 12. The basic thermoelectric circuit.

In general, the energy conversion efficiency can be expressed as a function of
the temperature and the so-called “goodness factor’ or thermoelectric

figure-of-merit of the material (Z) is defined as.
ZT = ——T (2.69)

where S, is Seebeck coefficient, ¢ is the electrical conductivity, x is the total

thermal conductivity (£ phonon T £ electron )-

The electric power factor ( S0 T) is typically optimized in narrow-gap
semiconductors as a function of carrier concentration ( ~ 10" carriers / cm®)>’. If
through doping, it will give the larger ZT. High-mobility carriers are most desirable,
in order to have the higher electrical conductivity. However, the electronic
conductivity increases with carrier concentration, but Seebeck coefficient decreases

with carrier concentration in Fig. 13'. S* / p equal to S*¢ is the electric power
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factor. This factor goes to a maximum at an optimal carrier concentration n,, below
which the conductivity is too low, and above which the Seebeck coefficient is too

small in Fig. 13",
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Fig. 13 Thermoelectric parameters as a function of temperature.

for Fig. 11 the efficiency of the power generator is given by?’:

_ energy consumed for a bulb
heat energy absorbed at the hot side

_ T, (1+ZT,) - 1 (2.70)
T T
v J+ZT —<
L ( : M) i (TH]_

where Ty is hot-side temperature, T¢ is cold-side temperature, Ty is the average

temperature.

If ZT goes into infinity in eq. (2.70), the efficiency would approach the

Carnot efficient limit that is equal to (Ty —T¢) / Th.
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The energy conversion efficiency as a function of the temperature difference
and the figure-of-merit of different materials is Fig. 14%°. It is very clear that an

increase in temperature differences gives a increase in the heat conversion®.

Conversion efficiency %

-3
Cold junction at 300K Zx 10

/,g

30 — = 4

/I.

20 — 1
10 —

0 e T . T T

| 4
00 450 600 780  o00 1080 1100 1380 1500 Temperature (K)
0

3% 0% ©60% B6% T1% % 7% 80% Carnol Efficiency

Fig. 14 Carnot efficiency and corresponding efficiency as the function of

temperature and figure-of-merit (Z). N
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Chapter 3 Calculation

3-1 Determination of the structure

The electronic configuration of the Mg atom is [Ne] 3s>. From 3s”, we know the
ground electronic configuration is 'S, while the electronic configuration of the Si
atom is [Ne] 3s”3p’, we also obtain the ground electronic configuration of Si is *P.
The Mg,Si molecule composed of 'S + 'S + *P might have 1-, 3- or 5-multiple

30
states™ .

The electronic configuration of the Fe atom is [Ar] 4s® 3d®. From 3d°, we know
the ground electronic configuration ofgFesis D The following, the electronic
configuration of the Si atom is-[N€] 3s* 3p’; we also obtain the ground electronic
configuration of Si is *P. The FeSi, molecule composed of °D + °P + °P might have

1-, 3-, 5-, 7- or 9-multiple states”".

The Gaussian 03 program is used to calculate the minimum energy in order to
find out the ground state of Mg,Si and FeSi; molecules respectively. Since
transition metal and its’ respective open-shell compounds usually have several
low-lying states that are close to each other’'. Therefore, when we optimize the
FeSi, molecule, we don’t know whether the obtained structure with minimum
energy is correct or not. In order to ensure it is a global minimum, we use
“stable=opt” keyword in Gaussian input file. This keyword is used to test and adjust

the stability of wave function.

Here, B3LYP and CCSD levels are applied to optimize the Mg,Si molecule

with the basis set of 6-311G. According to the accurate calculations, the ground state
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of Mg,Si molecule is 3-multiple state with the parallel spin of 2 electrons (see Table

4 and Table 5), and the optimized structure of Mg2Si is C,, symmetry (see Fig. 15).

Table 4: B3LYP/6-311G for optimum results of Mg,Si molecule. R (Si-1Mg) is

the distance between the Si atom and the first Mg atom and its’ unit is Angstrom.

A(1Mg-Si-2Mg) is the angle ( £ 1Mg,S1,2Mg ).

B3LYP/6-311G

multiplicity energy Frequency |R(Si-1Mg) [R(Si-2Mg) [A(1Mg-Si-2Mg)
1 -689.618387 134.7702{ 2.53192236/2.53192236 78.34844144
3 -689.6270395 99.926| 2.6781793| 2.6781793 72.94756733
5 -689.5836993 69.6101(2.9476468412.94764684 59.7243576
Table 5: CCSD/6-311G for optimum results of Mg,Si molecule.

CCSD/6-311G

multiplicity energy Frequency [R(Fe-1Si) |R(Fe-2Si) A (1Si-Fe-2Si)
1 -688.1614055|  131.8995( 2.59287117]  2.59287117| 78.1343544
3 -688.1716205 83.4749| 2.76324017|  2.76324017 75.26280165
5 -688.15725 29.2628( 2.61830706] 2.61830708| 179.0189632
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Fig. 15 Optimized structure of Mg,Si

Here, we apply B3LYP and CCSD methods and the Pople style basis set

(6-311G) and effective core potential (LANL2DZ) to optimize all structures.

According to the accurate calculations, the ground state of FeSi» molecule is

S5-multiple state with the parallel spin of 4 electrons (see Table 6, 7, 8 and 9), and

optimized structure of FeSi, is C,, symmetry (see Fig. 16).

Table 6: B3LYP/6-311G for optimum resultsof FeSi, molecule.

B3LYP/6-311G

multiplicity energy Frequency R(Fe-1Si) |[R(Fe-2Si) A (1Si-Fe-2Si)
1 -1842.357879 279.5418| 2.142721 2.142721| 67.34959956
3 -1842.417107 267.2064(2.2837303  2.2837303| 61.49664695
5 -1842.433828 193.9053|2.3514793|  2.3514793 58.961721
7 -1842.390517 59.8337 2.64606 2.91649 46.09917
9 -1842.331071 113.8058]2.6500867|  2.6500867 70.62778204
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Table7:

B3LYP/LANL2DZ for optimum results of FeSi, molecule.

B3LYP/LANL2DZ
multiplicity energy Frequency [R(Fe-1Si) [R(Fe-2Si) |A(1Si-Fe-2Si)
1 -131.0389824] 273.1597| 2.1799708(2.1799717| 65.03016334
3 -131.0907101] 235.5565 2.3692525|2.3692523| 60.51349789
5 -131.0964158] 232.3818| 2.3952707(2.3952707| 57.35626941
7 -131.0379262] 176.4525| 2.4838927(2.4838927| 58.2822207
9 -130.9867085| 120.4974( 2.4471927|2.4471927| 81.15815227
Table 8: CCSD/6-311G for optimum resultsiof FeSi, molecule.
CCSD/6-311G
multiplicity energy Frequency [R(Fe-1Si) R(Fe-2Si) |A(1Si-Fe-2Si)
1 -1840.239849,  237.8881| 2.15013] 2.15013 73.94434
3 -1840.27555|  212.2495] 2.40335| 2.40335 63.86867
5 -1840.295423]  207.4955| 2.47692| 2.47692 55.895
7 -1840.1896181 101.6277| 2.270505(2.2705135 180.00000
9 -1840.2157592)  60.7004 | 2.56777| 2.73008 180.00000
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Table 9:

CCSD/LANL2DZ for optimum results of FeSi, molecule.

CCSD/lanl2dz
multiplicity energy Frequency [R(Fe-1Si) R(Fe-2Si) [A(1Si-Fe-2Si)
1 -130.1843289|  205.3564 2.20301] 2.20301 70.79336
3 -130.2126973|  232.8149| 2.38794| 2.38794 62.46974
5 -130.2329031)  234.5013| 2.42909| 2.42909 56.28117
7 -130.1517204 65.8466 2279 2.27899 175.29658
9 -130.144619 53:2995 2.640] 2.64004 179.93606
Fe
r r
0
Si, Si,
charge q charge q

Fig. 16 Optimized structure of FeSi,
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3-2 Calculation of dielectric constant

From section 3-1, the ground state electronic configurations of Mg,Si and FeSi,
are proved to be 3-multiple and 5-multiple states, respectively. Then more precise
methods and basis sets are applied to calculate. The all calculations of Mg,Si are
based on B3LYP, BLYP, M05 and M052X levels by the Pople style basis sets
[ 6-311G, 6-311G(d), 6-311+G, 6-311+G(d)...etc ] and effective core potential
[ LANL2DZ, CEP-31G and CEP-121G ]. And for FeSi,, the levels and basis sets

used in calculations are the same as for Mg,Si.

First of all, optimized structure is taken to calculate dipole moment, Helmholtz
free energy, Mulliken charge and APTcharge with electric field variant. Following
the paper, the applied electric fieldsjare-0.00; 0.01,20.02, 0.03, 0.04, 0.05 and 0.06
atomic unit originally’. Finally, it shows that electric fields can be only applied from
-0.01 to 0.01 a.u. in order to obtain the meaningful resulr. Energy, dipole moment,
Mulliken charge and APT charge are fitted with electric field, and then the quadratic
equations are obtained. The polarizability is obtained from the derivative of the
quadratic equation. Finally, dielectric constant could be obtained from

Clausis-Mossotti equation.
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3-3 Calculation of Seebeck coefficient

The optimized Mg,Si molecule is applied to calculate Helmholtz free energy
with temperature variant. The range of temperature is varying from 300K to 800K”’.
The optimized FeSi, molecule is applied to calculate Helmholtz free energy with
temperature variant. The range of temperature is varying from 300K to 900K.The
obtained Helmholtz free energy above is converted to electron volt through unit
conversion, due to the focus of being at unit charge now’. So the volts are fitted
with temperature, and the quadratic equation is got directly. By the derivatives of
quadratic equation with respect to temperature and combination with obtained

dielectric constants previously’, Seebeck coefficient is obtained.
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Chapter 4 Result and Discussion

4-1 Magnesium Silicide (Mg;Si)

4-1-1 Paper work

Following the procedures in Ref. 9 for Mg,Si in which B3LYP method and

6-311G basis set are used. We have now added the other another three basis sets

(6-311G (d), 6-311+G and 6-311+G (d) ) in comparison with 6-311G, respectively.

The total electronic energy is obtained at various electric fields: 0.00, 0.01, 0.02,

0.03, 0.04, 0.05 and 0.06 atomicsunit ( asw).<I'hén energies are fit with respect to

electric fields for each method and each basis set. (See Table 10)

Table 10: Energies (E) are fit with electric fields (F) and polarizability volumes

are obtained from deriving the fitting equations at the B3LYP level.

Mg,Si (B3LYP) [Fitting equation a ot (Hartree/a.u.”) | @ wi(cm3)

6-311G E = -88.245F* - 1.1318F - 689.63 177.6218|  2.63E-23
6-311G(d) E =-87.955F - 1.0027F - 689.64 176.9127|  2.62E-23
6-311+G E =-177.52F* + 0.2477F - 689.63 354.7923|  5.26E-23
6-311+G(d) =-176.01F* + 0.2143F - 689.64 351.8057] 5.21E-23
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Firstly, the fitting equation (E = -88.245F> - 1.1318F - 689.63) is taken as an

illustration in the Table 10, due to the definition of dipole moment x = —(S—Ej , the

equation can be written as u=176.49F +1.1318. When F=1 (a.u.), u=177.6218
(Hartree/a.u.). Then the polarizability a is assumed as being in the unit electric field,
@ =177.6218 (Hartree/a.u.?). Finally we must convert unit (Hartree/a.u.?) of the
polarizability to polarizability volume (cm’), See Table 10. Because the
polarizability is from total energy, the polarizability volume is called total

polarizability volume ( & ot ).

Secondly, dipole moments are obtained at various electric fields (0 ~0.06 a.u.),

and are fitted with fields, see Table 11. Because of « :Z_/Fl and the base of a unit

electric field, distortion polarizability (¢ 4) 1s obtained easily.

Table 11: Dipole moments ( 1) are-fit with-fields (F) and distortion polarizability

volumes are obtained from deriving fitting'equations at the B3LYP level.

Mg,Si(B3LYP)|Fitting equation a 4 (debye/a.u.) @ 4 (cm3)

6-311G (« =- 102.46F* +453.33F + 2.8494 248.41 1.45E-23
6-311G(d) @ =15.238F*+445.17F +2.5882 475.646 2.77E-23
6-311+G (= 1887.5F% + 758.3F + 1.5688 4533.3 2.64E-22
6-311+G(d) | =1371.2F” +782.54F + 1.28 3524.94 2.06E-22

45




4-1-2 Correction for electric field and polarizability

From Table 11, it can be clearly seen that the distortion polarizability is

sensitive to the choice of the basis sets. In order to find out why distortion

polarizability is so sensitive to the basis sets, we compare total electronic energy at

a varying field with ionization energy from a minus of electronic HOMO energy

without electric field in Table 12.

Table 12: In B3LYP/6-311+G (d), total electronic energy with a varying electric

field and the absolute value of the energy difference between electric fields: one

exists the field and the other dose not.!It also shows the HOMO, LUMO energy and

ionization energy without electric field.

B3LYP/6-311+G(d)

electric field

-0.06 -0.05 -0.04 -0.03 -0.02 -0.01 0
(z-axis, a.u.)
E. -690.2525]-690.0270[-689.8504/-689.7385(-689.6616{-689.6376|-689.6385
| Ec-E<(F=0) | 0.6140 0.3885] (0.2118| 0.1000 0.0230[ 0.0009] 0.0000
HOMO -0.1537
LUMO -0.0982
ionization energy 0.1537
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B3LYP/6-311+G(d)

electric field (z-axis, a.u.) 0.01 0.02 0.03 0.04 0.05 0.06
E. -689.6586[-689.7014]-689.7887]-689.9164{-690.0692|-690.2588
| E-E<(F=0) | 0.0200] 0.0629( 0.1502( (0.2778| 0.4306] 0.6203
HOMO
LUMO

ionization energy

In Table 12, it shows that*when the electric field is outside [-0.04, 0.04] a.u.,

the absolute value of energy differerice between electric fields: one exists the field

and the other does not is larger than ionization energy (0.1537 hartree). It also

means that the field strength outside of [-0.04, 0.04] a.u. is too large, and then leads

the electrons to ionize and electronic structure is changed severely. But in the

present work, we focus on the variation of energy and dipole moment in the smaller

electric field. So we must choose smaller electric fields. Moreover, we make a plot

of dipole moments against fields from -0.06 to 0.06 a.u. in Fig.15 with four basis

sets.
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Fig. 17 Fitting plot of dipole moment versus electric field by four basis sets in

B3LYP level

In Fig. 17, all four fitting lines coincide when electric field is in between -0.01
and 0.01 a.u. and are dispersive when field is outside of [-0.01, 0.01] a.u.. This is
due to effect of the stronger field, and results in obtaining dispersive fitting lines
and different distortion polarizability by four basis sets in Table 11. When the field
strength is larger, the convergence of the computation is out of control by the
perturbation method, and also the molecule is going to undergo multiple ionizations
at that strong field. Energy calculation is meaningless at [F| > 0.01 a.u.. On the other
hand, we want to obtain the convergent polarizability with different basis sets, so
the range of the field from -0.01 to 0.01 au. is chosen in the following

investigations. The results of the renewed fitting are listed in Table 13.
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Table 13: Dipole moments (p) are fit with electric field (F) and distortion

polarizability volume. Fitting field is from -0.01 to 0.01 a.u..

Mg,Si (B3LYP) [Fitting equation @ q (debye/a.u.) |a a(cm3)
6-311G n = 595.77F* - 454.13F - 2.8765 737.41{4.30E-23
6-311G(d) [ = 628.68F - 449.92F - 2.6034 807.44|4.71E-23
6-311+G u = 456.99F* - 489.37F - 2.9321 424.61(2.48E-23
6-311+G(d) ( =454.91F - 491.02F - 2.6724 418.8]2.44E-23

In Table 13, it is quite obvious that distortion polarizability volume is still
sensitive for using different basis.set, especially for additional diffuse functions. In
order to decrease the inconsistency in"polarizability, we check that previously
mentioned about the base of one a.u. of the electric field again. It is found that total
energy from the Taylor expansion at F = 0 is more reasonable than at F=1 following

the published paper to evaluate. (See eq. (4.1) and (4.2) )

2 3
E(F)ZE(O)+6—E F+l‘31§ F2+la—]§ F.. (4.1)
oFl, 20F |, 60F|
o*E
- = «a 4.2)
oF |, _,

Dipole moment is the same as total energy from the Taylor expansion. It can be

written as
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Now, total polarizability from the fitting of total energy and electric field and

distortion polarizability from the fitting of dipole moment and field are evaluated in

Table 14 and 15 again.

Table 14: Energy (E) is fit with fields (E)-and derives polarizability. Fitting field is

from -0.01 to 0.01 a.u. and polarizability is evaluated from Taylor expansion at F=0.

Mg,Si (B3LYP) Fitting equation @ o (Hartree/a.u.”) |a ii(cm3)

6-311G E = -89.259F" - 1.1259F - 689.63 178.518  2.65E-23
6-311G(d) E = -88.426F> - 1.0182F - 689.64 176.852|  2.62E-23
6-311+G E =-95.367F” - 1.1492F - 689.63 190.734| 2.83E-23
6-311+G(d) E =-95.613F” - 1.047F - 689.64 191.226]  2.83E-23
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Table 15: Dipole moments ( ¢ ) are fit with fields and derive distortion

polarizability. Fitting field is from -0.01 to 0.01 a.u. and polarizability is evaluated

from Taylor expansion at F=0.

Mg,Si (B3LYP)|Fitting equation a a(debye/a.u.)[ @ a4(cm3)

6-311G ( =595.77F - 454.13F - 2.8765 454.13|  2.65E-23
6-311G(d) (= 628.68F - 449.92F - 2.6034 449.92|  2.62E-23
6-311+G (. =456.99F* - 489.37F - 2.9321 489.37|  2.85E-23
6-311+G(d) |« =454.91F” - 491.02F - 2.6724 491.02| 2.86E-23

The total polarizability a8 the sum of the distortion polarizability « 4 and

orientation polarizability «,, but by comparing Table 14 with Table 15 it shows

that the polarizabilities from the fitting of energy or dipole moment is the same.

Fitting results of dipole moment cannot be taken as distortion polarizability directly,

because dipole moment in the calculation is derived from the quantum mechanical

dipole operator.

,[l:_zri +ZZARA
i A

(4.5)

r; and Ry are the vectors of the electrons and nucleus respectively, Z represents

nuclear charges.

The mean value of dipole moment is evaluated in eq. (4.6) directly.
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U= <‘PO|—Z g +§ RaZA|Y,)
:(‘P0|—Z ri|LPO>+<lPO|ZA: RaZA|¥,) (4.6)
= Heie T Hnyel
It shows clearly that the dipole moment as the function of electric field should
represent total dipole moment including electron part and nucleus part. From Table
14 and 15 we can see that polarizability from the fitting results of the dipole
moment and the electric field should be assumed as total polarizability, is the same

as the result of the fitting from the total energy and the electric field.

4-1-3 Dielectric constant for solid Mg,Si

For solid Mg,Si, there are n¢ translational and fotational motions in degrees of
the freedom, so orientation polarizability-has no contribution to total polarizability
(a = 0). Now, we must remove-orientation polarizability from total polarizability.
Because of the effect from Boltzmann distribution, the orientation polarizability can

be written as

- 4.7)
° 3kT

But it should be at pFj,c <<kT in eq. (4.7).

Applied electric field is 0.01 a.u. and temperature is 300K in our case. When
B3LYP, with 6-311G basis set are used, the permanent dipole moment is 2.8765
Debye. But pFj ( = 4.93E-20 J ) is greater than kT ( = 4.14E-21 J ) in fact, so

Boltzmann distribution isn’t used in obtaining distortion polarizability.

We would like to understand is how to calculate the distortion polarizability

directly. Because distortion polarizability is the sum of the electronic polarizability
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and atomic polarizability, we can obtain electronic part from charge population
directly. Moreover, for atomic polarizability, because it is about 5 % ~ 10 % of

the electronic polarizability, it can be almost neglected.

Starting from charge population, we adopt the Mulliken partial charge and APT
partial charge to derive the Mulliken and APT dipole moment. Firstly, there is an

optimized structure of Mg2Si at F = 0 in Fig. 18.

Si

9 Iz

Mg, Mg,
charge q; charge q,

Fig. 18 The optimized structure has two bond length “r;” and “r;”,
angle “0” and the partial charge of Mg “q,” and “q,”. Here are 1 = 1,

=randq; = =q.

From Fig. 18 the dipole moment is derived in eq. (4.8)
_ _ o 0
p=Y qr=qn+0q,h=q(F+r)=q 2rcos5 (4.8)
i

Here 11, 12 and € is calculated at electric field equal to zero and q is APT
charge or Mulliken charge calculated with varying electric field. Because when
perturbation of electric field is added, the output of the Mg,Si geometry from G03

calculation isn’t changed, only partial charges are changed. Therefore, we think that
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the APT dipole and Mulliken dipole is only from electronic part. So we call the

polarizability from APT and Mulliken dipole as electronic polarizability.

Mulliken and APT charge are chosen respectively and we can obtain two kinds
of dipole moment, Mulliken dipole and APT dipole. Now, we compare all dipoles :
dipole moment (direct output from G03), APT dipole, Mulliken dipole without
electric field in Table 16. It is very clear that APT dipole is contributed to electronic
polarizability very well, because the APT dipole is much smaller than dipole
moment. But Mulliken dipole is larger than dipole moment at 6-311G, 6-311+G(2d),
6-311+G(3df), 6-311+G(3d2f) and LANL2DZ, it cannot represent electronic part

well at those basis sets.
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Table 16: The comparison of dipole moment, APT dipole and Mulliken dipole

without electric field at the B3LYP level.

no electric field (B3LYP) Dipole moment APT dipole Mulliken dipole

6-311G 2.8765 0.159514 3.373304
6-311G(d) 2.6034 0.185058 1.660079
6-311+G 29311 0.182463 2.419225
6-311+G(d) 2.6716 0.243587 0.93931
6-311+G(2d) 2.5595 0.185182 3.0296904
6-311+G(2df) 2.5452 0.247732 1.1804818
6-311+G(3df) 2.5357 0.209746 3.1015206
6-311+G(3d2f) 2.5376 0.194249 3.1624394
LANL2DZ 2.9674 0.044939 3.7838176
CEP-31G 2.8633 0.524192 1.348365
CEP-121G 2.9241 0.56176 1.900735

Then it is as the same as the previous fitting of dipole moment and electric
field, polarizability can be obtained easily. Because two kinds of dipole contribute
to electronic part only, the obtained polarizability is called as the electronic

polarizability. (See Table 17 and 18)
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Table 17: Mulliken dipole is fit with electric field (from -0.01 to 0.01 a.u.) and

derives electronic polarizability at the B3LYP level.

Mulliken dipole

Fitting equation

a (debye/a.u.) a.(cm3)

6-311G

6-311G(d)

6-311+G

6-311+G(d)

6-311+G(2d)

6-311+G(2df)

6-311+G(3df)

6-311+G(3d2f)

797.56F* + 215.77F + 3.3734

709.74F% + 222.06F + 1.6602

801.95F* + 168.16F + 2.4304

336.26F* + 170.61F + 0.9527

639.61F* + 190.57F + 3.0422

555.59F% + 196.23F + 1.1929

-1606.9F + 167.54F + 3.123

-1404.5F% + 172.79F + 3.1857

215.77

222.06

168.16

170.61

190.57

196.23

167.54

172.79

1.26E-23

1.29E-23

9.80E-24

9.95E-24

1.11E-23

1.14E-23

9.77E-24

1.01E-23

LANL2DZ

CEP-31G

CEP-121G

357.76F> + 164.93F+ 3.7838

7.4405F% + 185.44F + 1.3484

23.877F* + 204.23F + 1.9008

164.93

185.44

204.23

9.62E-24

1.08E-23

1.19E-23
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Table 18: APT dipole is fit with electric field (from -0.01 to 0.01 a.u.) and derives

electronic polarizability at the B3LYP level.

APT dipole Fitting equation @ .(debye/a.u.) «a.(cm3)
6-311G @ = 245.14F*+ 189.49F + 0.1592 189.49 1.10E-23
6-311G(d) @ = 389.28F>+177.78F + 0.1849 177.78 1.04E-23
6-311+G « = 1017.8F>+205.41F +0.1774 205.41 1.20E-23

6-311+G(d) @ = 1580.7F% + 193.93F + 0.2377 193.93 1.13E-23

6-311+G(2d) ¢« = 1766F” +189.15F +0.1798 189.15 1.10E-23
6-311+GQ2df) ¢ = 17472F+ 187.65F +0.2423 187.65 1.09E-23
6-311+G(3df) ¢« = 2012.7F+.185.85F +0:2041 185.85 1.08E-23
6-311+G(3d2f) 1 = 1998.7F* + 185.94F + 0.1885 185.94 1.08E-23
LANL2DZ ¢ = -1132.8F*+ 148.82F - 0.0451 148.82 8.68E-24
CEP-31G (@ = -454.06F*+ 171.9F - 0.5254 171.9 1.00E-23

CEP-121G [ = -643.99F” +200.23F - 0.563 200.23 1.17E-23
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Compare Table 17 to Table 18, it shows that the spread of electronic
polarizability from Mulliken dipole is more dispersive than APT dipole by Pople’s
basis sets and effective core potential, because Mulliken charge is sensitive to the
choice of basis sets and it usually is reasonable as small- or moderate-basis sets are
used. So if we adopt the polarizability from APT dipole to calculate the dielectric
constant, the larger basis sets should be used. And if we adopt the polarizability
from Mulliken dipole to calculate the dielectric constant, the smaller basis sets

should be used.

By applying Clausius-Mossotti equation we can combine the macroscopic

amounts of dielectric constant with the microscopic amounts of polarizability.

-1 . nu
S (4.9)
&F2 3g;

Dielectric constant is obtained in eqg: (4.10) by rearranging eq. (4.9). p is the

density and M is the molecular weight.

142A

“TA

e N N (4.10)
3¢, V. M

Dielectric constants with respect to different basis sets are calculated and
summarized in Table 19 and 20. The density is 1.99 g/cm’ and Molecular weight is

76.6955 g/mol for Mg,Si which are taken from experiment results.
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Table 19: Use APT charges to obtain electronic polarizability and dielectric

constant at the B3LYP level.

APT a . (debye/a.u.) a (cm3) dielectric constant
6-311G 189.49 1.10E-23 8.82
6-311G(d) 177.78 1.04E-23 7.32
6-311+G 205.41 1.20E-23 11.86
6-311+G(d) 193.93 1.13E-23 9.53
6-311+G(2d) 189.15 1.10E-23 8.77
6-311+G(2df) 18765 1.09E-23 8.56
6-311+G(3df) 185.85 1.08E-23 8.31
6-311+G(3d2f) 185.94 1.08E-23 8.32
LANL2DZ 148.82 8.68E-24 4.94
CEP-31G 171.9 1.00E-23 6.71
CEP-121G 200.23 1.17E-23 10.70
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Table 20:  Use Mulliken charges to obtain electronic polarizability and dielectric

constant at the B3LYP level.

Mulliken ae (debye/a.u.) ae(cm3) dielectric constant
6-311G 215.77 1.26E-23 14.95
6-311G(d) 222.06 1.29E-23 17.61
6-311+G 168.16 9.80E-24 6.37

6-311+G(d) 170.61 9.95E-24 6.59

6-311+G(2d) 190.57 1.11E-23 8.99

6-311+G(2df) 196.23 1.14E-23 9.93

6-311+G(3df) 167.54 9.77E-24 6.31

6-311+G(3d2f) 172.79 1.01E-23 6.80

LANL2DZ 164.93 9.62E-24 6.09

CEP-31G 185.44 1.08E-23 8.25

CEP-121G 204.23 1.19E-23 11.58
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The high frequency dielectric constant &, is 13.3* by experiment. The
contribution of the high frequency dielectric constant is totally from electronic
polarizability. From Table 19 no matter how to choose Pople’s basis sets, the
obtained dielectric constants are close to the experimental value when the larger
basis sets are used ( 6-311+G, 6-311+G(d)...etc ), and for effective core potential it
shows the good result only at a larger basis set ( CEP-121G ), but LANL2DZ is

unavailable here.

However, in Table 20 for Pople basis sets it shows good results corresponding to
experimental value only when the smaller basis sets ( 6-311G, 6-311G(d) ) are used.
For ECP, it also shows that the available values are from CEP-series basis sets, but
for LANL2DZ it shows a bad result. The results of Table 19 and 20 are vey
correspondent to the theory mentioned-earlier (in 2-2 charge population). The

theory shows below:

1. Mulliken population analysis: is affected largely by basis functions, and it
usually is most useful for comparing trends in charge distributions, when small-

or medium-size basis sets are used.

2. APT charge isn’t directly related to the choice of a particular basis set, its basis
set dependence stems only from the fact that the basis set can be incomplete. So

the basis-set dependence is modest
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4-1-4  Other methods (BLYP, M0S and M05-2X)

Now, we try other methods: BLYP, M05 and M05-2X. The process is the same

as the previous B3LYP level.

In Table 21, for the Pople’s basis set, we show that the dielectric constant
obtained from APT charge is in good agreement with experimental value (€ -~ =
13.3 ) as the basis set is large enough ( see larger bold-faced words ) at the BLYP
level. And for effective core potential it also shows that the dielectric constant is in

good agreement with experimental value at a larger basis set (CEP-121G).

Table 21: Use APT charges to obtain electronic polarizability and dielectric

constant at BLYP level.

APT (BLYP) a . (Debye /a.ux) de(cm3 ). dielectric constant
6-311G 189.97 1.11E=23 8.89
6-311G(d) 181.66 1.06E-23 7.77
6-311+G 209.81 1.22E-23 13.03
6-311+G(2df) 197.76 1.15E-23 10.21
6-311+G(3d2f) 196.33 1.14E-23 9.95
LANL2DZ 138.64 8.08E-24 437
CEP-31G 163.09 9.51E-24 5.94
CEP-121G 184.83 1.08E-23 8.17
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In Table 22 for Pople basis sets, the dielectric constant is fit well for a small
basis set. However, for 6-311+G (2df) the dielectric constant is a good fit ( see
asterisk ), it is contradictory to the unexpected results of Mulliken charge at a larger
basis set. So we try the largest basis set ( 6-311+G (3d2f) ) in order to check this
contradiction. However, the dielectric constant at 6-311+G (3d2f) isn’t a good fit.
So we consider that it is a coincidence for the good result of 6-311+G (2df). And for

ECP, it corresponds to the experimental value only at a larger basis set (CEP-121G).

Table 22:  Use Mulliken charges to obtain electronic polarizability and dielectric

constant at the BLYP level.

Mulliken (BLYP) & . (Debye/a.u.) de(cm3) dielectric constant
6-311G 217.72 1.27E-23 15.70
6-311G(d) 222.99 1.30E-23 18.08
6-311+G 176.44 1.03E-23 7.17
6-311+G(2df) 202.41 1.18E-23 11.16*
6-311+G(3d2f) 184.22 1.07E-23 8.09
LANL2DZ 162.86 9.49E-24 5.92
CEP-31G 185.26 1.08E-23 8.23
CEP-121G 203.11 1.18E-23 11.32

63



In Table 23, for Pople basis sets it shows a good fit only at 6-311G and
6-311+G, but at a larger basis set the dielectric constant is much far from the
experimental value. So Pople basis sets in the M05 level are unavailable for the
APT derivation. There is no similar trend like B3LYP or BLYP in the M05 level.
For the new M0S5 method it doesn’t include enough parameters, so it isn’t suited to
use in our case. But for ECP, the dielectric constant is correspondent to the

experimental value at larger basis sets ( CEP-31G and CEP-121G).

Table 23: Use APT charges to obtain electronic polarizability and dielectric

constant at the MO05 level.

APT (M05) a d (Debye Fau.) ad(cm3) dielectric constant
6-311G 191.1129 1.1142E-23 9.0701*
6-311G(d) 174.7550 1.0188E-23 6.9982
6-311+G 192.6017 1.1229E-23 9.3070*
6-311+G(2df) 56.7148 3.3065E-24 1.8282
6-311+G(3d2f) 125.7389 7.3306E-24 3.7651
LANL2DZ 1274.8705 7.4325E-23 4.7766
CEP-31G 208.4698 1.2154E-23 12.6489
CEP-121G 200.1852 1.1671E-23 10.6906
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In Table 24 for Pople basis sets, the dielectric constant is still not
correspondent to experimental value, so those results are not also suited to analyses

in our case. For ECP, it shows a good results only at CEP-31G..

Table 24: Use Mulliken charges to obtain electronic polarizability and dielectric

constant at the MO05 level.

Mulliken (M05) a.(Debye/a.u.) ae(cm3)  dielectric constant
6-311G 235.0190 1.3702E-23 26.9794
6-311G(d) 238.2464 1.3890E-23 30.8908
6-311+G 171.2971 9.9866E-24 6.6558
6-311+G(2df) 250.8102 1.4622E-23 67.3060
6-311+G(3d2f) 143.2398 8.3509E-24 4.6136
LANL2DZ 185.2729 1.0801E-23 8.2292
CEP-31G 208.2056 1.2138E-23 12.5772
CEP-121G 233.1315 1.3592E-23 25.0950
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In Table 25 and 26 based on the M052X level, no matter APT charge or

Mulliken charge both show bad results by Pople basis sets and ECP, although for

APT charge the dielectric constant is similar at each basis set. Those bad results of

MO052X are very reasonable, because the new method — M052X is parameterized

only for non-metals. But Mg atom is metal.

Table 25: Use APT charges to obtain electronic polarizability and dielectric

constant at the M052X level.

APT (M052X) «a.(Debye/au.) a.(cm3) dielectric constant

6-311G 163.5600- -9.5355E-24 5.9766
6-311G(d) 175.3025-+1-0220E-23 7.0550
6-311+G 171.4508 " "9.9956E-24 6.6705
6-311+G(2df) 181.7957 1.0599E-23 7.7866
6-311+G(3d2f) 178.4675 1.0405E-23 7.3974
LANL2DZ 250.5412 1.4607E-23 65.7015
CEP-31G 129.6915 7.5610E-24 3.9372
CEP-121G 7.4667 4.3531E-25 1.0880
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Table 26:  Use Mulliken charges to obtain electronic polarizability and dielectric

constant at the M052X level.

Mulliken (M052X) @ ¢ (Debye / a.u.) Ae(cm3) dielectric constant
6-311G 224.2322 1.3073E-23 18.7371
6-311G(d) 229.1981 1.3362E-23 21.8616
6-311+G 178.5347 1.0409E-23 7.4050
6-311+G(2df) 194.3835 1.1333E-23 9.6043
6-311+G(3d2f) 150.9721 8.8017E-24 5.0735
LANL2DZ 166.0045 9.6781E-24 6.1794
CEP-31G 195.0367 1:1371E-23 9.7172
CEP-121G 219.9386 1.2822E-23 16.6282

Briefly, For Pople basis sets, there are good results from APT dipole by larger

basis sets in the B3LYP and BLYP levels, and there are good results from Mulliken

dipole by small basis sets in the B3LYP and BLYP levels. For ECP, no matter APT

or Mulliken partial charge, there are good results by CEP-series basis sets at the

B3LYP, BLYP and MOS5 levels .But for M052X it isn’t suited to calculate in our

case ,due to the fact that M052X is parameterized only for non-metals.

We conclude that in the present calculation for dielectric constant that M0S5 and

MO05-2X are not really better functionals than their original forms of B3LYP and

BLYP.
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4-1-5 Seebeck coefficient

Because the definition of Seebeck coefficient is

AV, AV
S.= lim —-=—2=" (4.11)

© AT>0 AT dT

Se is Seebeck coefficient, V, is potential and T is absolute temperature.
From thermodynamic relation

Internal
energy

Energy you can get from
Helmholtz the system’ s
free energy environment by heating

If we consider electric work, Helmholtz free ehergy can be written as

dF = - PdV.-SdT + V dq (4.12)

P is pressure, V, is potential, V is volume, S is entropy, and q is charge.

From eq. (4.12), the below relations are obtained.

s:_(ﬁj , p:_(ﬁj ,Vp:(a_Fj (4.13)
oT V. oV T aq Ty

In order to obtain the Seebeck coefficient, we combine the relation of the eq. (4.13)

with the definition of the eq. (4.11). Then it leads to

(&)
s -4Ve __10d)v, (4.14)
¢ dT dT

Now the dielectric constant (¢, = 11.86) is taken from the APT dipole of
6-311+G basis set at the B3LYP level to calculate Seebeck coefficient. In first step,

Helmholtz free energy at zero electric field is taken, and its unit is changed from
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atomic unit to electron volt. Because we want to obtain the relation of the potential
and the temperature, the electron charge would be based on one atomic unit.
Therefore Helmholtz free energy with unit of electron volt is divided by unit
electron charge (See Table 27). Then the obtained result is fit with the temperature

from 300K to 800K. (See eq. 4.15)

Table 27: Helmholtz free energy from B3LYP/6-311+G and the potential at one

unit electron charge (V).
B3LYP/6-311+G 300K] 400K] 500K 600K 700K 800K
Helmholtz energy (Hartree) |[-689.656798|-689.669068(-689.681888|-689.695150| -689.7087777| -689.7227217
Helmbholtz energy (eV) -18766.7160|-18767.0499}-18767:3988(=18767.7596| -18768.13048| -18768.50992
potential (at unit charge,V) |-18766.7160|(-18767.0499|=18767.3988|-18767.7596| -18768.13048| -18768.50992

The fitting equation via potential and temperature from Table 27 is listed below.

V, =6x10"T* +0.003T + 18766 (4.15)
Then the Seebeck coefficient is
dv
S, = dT" =1.2x10"T + 0.003 (4.16)

However, eq. (4.16) is due to molecule Mg,Si is at zero electric field and it is
represented as gas phase. But the Mg,Si material is a polar solid so that the electric
potential inside this dielectric should be divided by the calculated dielectric constant

of 11.86 from gas phase’, and then actually the Seebeck coefficient of Solid state is
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given as
S, =1x107 T +2.52x10" (4.17)

In Fig. 19 it shows the fitting profiles from solid-state, gas-phase and
Material studio 4.0 of Mg,Si and in Fig. 18* it shows the experimental results.
Compare Fig. 19 to Fig. 20, we find that our solid-state case agrees with
experimental results of non-BN coated, and also find our fitting result is linear even
at higher temperature. But in Fig. 20 the Seebeck coefficient of the BN coated
fitting decreases as temperature increasing, which may originate in the effect
thermal excitation of carriers across the gap from the conduction band”. However,
in our case because we don’t consider energy band structure theory but directly
based on thermodynamic method, it\doesn’t show. that Seebeck coefficient decrease

at high temperature.
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Fig. 19 The fitting profiles from solid-state, gas phase and Material studio 4.0
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Fig. 20. Seebeck coefficient of the grown ingot over the range is from 345K to
840 K*2. BN coated means encapsulated sample with a boron nitride (BN)-based

anti-adhesion coating.

A summary of Seebeck coefficient 15 listed-in Table 28.

Table 28: Seebeck coefficients are.obtained from gas phase, solid state and

Material studio 4.0 respectively, and compare to experiment value.

B3LYP/6-311+G fitting equation Se (0V/K) 300K [Se (nV/K) 800K

gas phase S.=1.2*E-06 T + 0.003 3360 3960
solid state S.=1*E-07 T +2.52*E-04 284 334
material studio 4.0° [S.=6*E-06 T +0.0018 3600 6600
experimental value® 180 280
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In Table 28 it shows clearly that Seebeck coefficient agrees with experiment
value by our treatment of solid state very well. But for Material studio 4.0 based on
the energy band structure theory, the Seebeck coefficient that is similar to our gas
phase case isn’t fitted to experimental value. So we can conveniently obtain more
accurate Seebeck coefficient from the thermodynamic method with the present new

scheme.

72



4-2 Iron Disilicide (FeSi,)

4-2-1 Polarizability and dielectric constant

Because Fe atom is a transition metal which belongs to the system of the heavy
atoms, we would consider the relativistic effect for FeSi, molecule, and then we
adopt the effective core potential (ECP). Here, LANL2DZ, CEP-31G and
CEP-121G basis sets and 6-311+G(2d), 6-311+G(2df), 6-311+G(3df) and
6-311+G(3d2f) are used, besides 6-311G, 6-311G(d), 6-311+G and 6-311+G(d)
basis sets. Furthermore, we try other methods such as BLYP, M05 and M05-2X, in

order to compare with B3LYP mentioned previously.

There are polarizabilities ‘and |dielectric. constants calculated with different
basis sets from APT charge at B3LYP level in Table 29. The experimental value of
high-frequency dielectric constant is. 27.6°'. We eompare this experimental value
with Table 29. Basis sets are in two parts: one is Pople style basis set, and the other
is effective core potential (ECP). The dielectric constants from Pople style basis sets
are in good agreement with experimental value, when basis sets are larger
( 6-311+G ~ 6-311+G (3d2f) ). But when basis sets aren’t enough large, the
dielectric constants aren’t good fits ( 6-311G and 6-311G(d) ). Those results of the
derivation of APT charge match the phenomenon that the basis-set dependence is
modest for these APT charges, and those APT charges usually converge at the larger
basis set. Expectably, for Pople basis sets of APT part, the dielectric constants of
FeSi, show the same trend as of Mg,Si at the B3LYP level. The second part of
Table 29: effective core potential, CEP-31G is Stevens/Basch/Krauss ECP split
valance, CEP-121G is Stevens/Basch/Krauss ECP triple-split basis, LANL2DZ is
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Los Alamos ECP plus DZ on Na-La. The dielectric constant is in good agreement

with experimental value only at CEP-31G and CEP-121G, and it is unreasonable for

LANL2DZ.

Table 29: Electronic polarizability and dielectric constants are obtained from APT

partial charge by Pople style basis sets and ECP (effective core potential) at the

B3LYP level.

APT (B3LYP) d. (debye/a.u.) ae(cm3) dielectric constant

6-311G 438.8397669  2.5584E-23 5.601
6-311G(d) 101.3604885  5.9093E-24 6.923
6-311+G 170.101198  9.9169E-24 30.323
6-311+G(d) 17498552  1.0202E-23 24.554
6-311+G(2d) 175.4081556  1.0226E-23 24.171
6-311+G(2df) 171.9406231  1.0024E-23 27.806
6-311+G(3df) 170.7639673  9.9555E-24 29.357
6-311+G(3d2f) 171.5035795  9.9987E-24 28.360
LANL2DZ 151.3419434  8.8232E-24 335.790
CEP-31G 170.3221211  9.9298E-24 29.993
CEP-121G 174.8990718  1.0197E-23 24.634
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In Table 30, dielectric constants are derived from Mulliken partial charge by
Pople basis sets and ECP at B3LYP level. It is found that dielectric constants with
Pople basis sets are almost incorrect, even with smaller basis sets (ex. 6-311G ),
those results are very different from Mg,Si, because in Mg2Si the dielectric
constant is fit well with Mulliken part when the basis set is smaller. Although the
dielectric constant of 6-311+G (3df) is a good fit, don’t forget that Mulliken charges

show incorrect results when basis sets become larger and larger.

The second part of Table 30 shows the ECP. For APT part, no matter CEP-series
basis sets or LANL2DZ, the dielectric constants from Mulliken partial charge aren’t

correspondent to the experimental value.
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Table 30: Electronic polarizability and dielectric constants are obtained from

Mulliken partial charge by Polpe style basis sets and ECP at B3LYP level.

Mulliken(B3LYP) a . (debye/a.u.) a e(cm3) dielectric constant
6-311G 218.7619168  1.2754E-23 10.9341
6-311G(d) 211.2409253  1.2315E-23 11.8249
6-311+G 192.654567  1.1232E-23 15.4648
6-311+G(d) 194.4171493  1.1335E-23 14.9805
6-311+G(2d) 188:1928805 " 1.0972E-23 16.906
6-311+G(2df) 194.2154369  1.1323E-23 15.0338
6-311+G(3df) 1729539878 .1.0083E-23 26.6154*
6-311+G(3d2f) 185.9308199  1.0840E-23 17.7844
LANL2DZ 164.6645681  9.5999E-24 42.2815
CEP-31G 179.8362233  1.0484E-23 20.8801
CEP-121G 209.1469583  1.2193E-23 12.1152
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We would like to compare B3LYP with BYLP. Unfortunately, APT part is in
Table 31, no matter Pople basis sets or ECP aren’t correspondent to the
experimental value. It is very different from Mg,Si at the BLYP level. For APT part
of Mg,Si at the BLYP level it shows the similar result with the B3LYP level,
however, for FeSi, it can’t perform very well at the BLYP level. So we think that
the BLYP level isn’t good for transition metals (Fe) and the B3LYP level is good for
all metals. Although the results aren’t good, we still can discover that the APT
charges would converge at larger basis sets (see the dielectric constants of

6-311+G(2df), 6-311+G(3df) and 6-311+G(3d21) ).
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Table 31: Electronic polarizability and dielectric constants are obtained from APT

partial charge by Pople style basis sets and ECP at BLYP level.

APT(BLYP) a . (debye/a.u.) a «(cm3) dielectric constant

6-311G 164.3716048  9.5829E-24 43.242
6-311G(d) 123.8514228  7.2205E-24 13.880
6-311+G 120.2782315  7.0122E-24 12.130
6-311+G(d) 98.75743785  5.7576E-24 6.493
6-311+G(2d) 1221128539 7.1192E-24 12.978
6-311+G(2df) 115.0096953 6.7051E-24 10.155
6-311+G(3df) 116.5465518 6:7947E-24 10.672
6-311+G(3d2f) 115.9894413  6.7622E-24 10.479
Lanl2DZ 104.7655862  6.1078E-24 7.557
CEP-31G 200.6077994  1.1695E-23 13.562
CEP-121G 202.4520272  1.1803E-23 13.207
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In Table 32, it is Mulliken part at the BLYP level. For Pople basis sets and ECP
all the dielectric constants aren’t in agreement with the experimental value. It is

proven again that the BLYP level isn’t good for transition metal.

Table 32: Electronic polarizability and dielectric constants are obtained from

Mulliken partial charge by Polpe style basis sets and ECP at BLYP level.

Mulliken(BLYP) a@ ¢« (debye/a.u.) a@ ¢(cm3) dielectric constant

6-311G 206.0252185 1.2011E-23 12.5903
6-311G(d) 200.8239198  1.1708E-23 13.5187
6-311+G 201.9861676:.41.1776E-23 13.2942
6-311+G(d) 200.0602943  1.1664E-23 13.6721
6-311+G(2d) 192:327985 " 1:1213E-23 15.5593
6-311+G(2df) 198.1872504  1.1554E-23 14.0704
6-311+G(3df) 175.9940821  1.0260E-23 23.6641%*
6-311+G(3d2f) 190.1571752  1.1086E-23 16.2292
LANL2DZ 180.3981365 1.0517E-23 20.5377
CEP-31G 209.6128179  1.2220E-23 12.0488
CEP-121G 215.952351  1.2590E-23 11.2421
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APT part is in Table 33. For Pople basis sets, the dielectric constants isn’t
correspondent to experimental value at larger basis sets, and results of 6-311G(d)
and 6-311+G are available. But remember that it is available for APT charges at
larger basis sets, and the APT charge would converge at so larger basis sets. For
ECP, the dielectric constant is suited by CEP-121G, but still isn’t fit by LANL2DZ.
In summary, a new MO05 method isn’t parameterized including the perturbation of
electric field for APT partial charge by Pople basis sets, so it can’t show good

results for dielectric constants.
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Table 33: Electronic polarizability and dielectric constants are obtained from APT

partial charge by Pople style basis sets and ECP at M05 level.

APT (M05) a . (debye/a.u.) @ «(cm3) dielectric constant

6-311G 185.3881174  1.0808E-23 18.013
6-311G(d) 170.0339605  9.9130E-24 30.425%
6-311+G 171.3739073  9.9911E-24 28.529*
6-311+G(d) 158.1809548  9.2219E-24 87.550
6-311+G(2d) 1591270821 9:2771E-24 75.255
6-311+G(2df) 158.2241789 9.2245E-24 86.897
6-311+G(3df) 158:757276 .-9.2555E-24 79.603
6-311+G(3d2f) 159.2135302  9.2821E-24 74.309
LANL2DZ 187.5445192  1.0934E-23 17.146
CEP-31G 198.8308091  1.1592E-23 13.930
CEP-121G 174.0778142  1.0149E-23 25.427
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Mulliken part is in Table 34. For Pople basis sets the dielectric constants aren’t
good fits, although the results of 6-311+G (3df) and 6-311+G (3d2f) are good.
Remember again that for Mulliken charge it is available only at a small basis set, so
the results of 6-311+G (3df) and 6-311+G (3d2f) are coincidences. It is proven
again that MOS5 isn’t parameterized including the perturbation of electric field for
Mulliken partial charge by Pople basis sets. For ECP the dielectric constant is
correspondent to the experimental value in LANL2DZ, but is unavailable in

CEP-series basis sets.
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Table 34:

Electronic polarizability and dielectric constants are obtained from

Mulliken partial charge by Polpe style basis sets and ECP at M05 level.

Mulliken (M05) a . (debye/a.u.) a(cm3) dielectric constant

6-311G 206.6927906 1.2050E-23 12.4841
6-311G(d) 197.005792 1.1485E-23 14.3389
6-311+G 191.1609346 1.1145E-23 15.91
6-311+G(d) 188.260118 1.0976E-23 16.8816
6-311+G(2d) 165.6299061 9:6562E-24 39.4238
6-311+G(2df) 161.8357916 9.4350E-24 54.1323
6-311+G(3df) 1364056193 71.9524E-24 26.1169*
6-311+G(3d2f) 136.3527899 7.9494E-24 26.026*
LANL2DZ 174.0730115 1.0148E-23 25.4314
CEP-31G 197.1738857 1.1495E-23 14.2999
CEP-121G 204.8341548 1.1942E-23 12.7865
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In Table 35 and 36, all information is based on the M052X level. No matter

APT part or Mulliken part shows bad results of dielectric constants, the simple

interpretation for that is M052X is parameterized only including nonmetals. But we

still find that APT charge would converge at a larger and larger basis set.

Table 35: Electronic polarizability and dielectric constants are obtained from APT

partial charge by Pople style basis sets and ECP at the M05-2X level.

APT (M05-2X) a . (debye/a.u.) a (cm3) dielectric constant

6-311G 300.4698529  1.7517E-23 7.100
6-311G(d) 208.9740619 - ».1.2183E-23 12.140
6-311+G 190.7575098 1.1121E-23 16.036
6-311+G(d) 189.8690146 .+ F.1069E-23 16.324
6-311+G(2d) 189.8738173 1.1070E-23 16.322
6-311+G(2df) 190.7623125 1.1121E-23 16.035
6-311+G(3df) 190.6854697 1.1117E-23 16.059
6-311+G(3d2f) 191.4010685 1.1159E-23 15.836
LANL2DZ 192.6209483 1.1230E-23 15.474
CEP-31G 83.17755513  4.8493E-24 4.589
CEP-121G 126.1855236  7.3566E-24 15.278
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Table 36: Electronic polarizability and dielectric constants are obtained from

Mulliken partial charge by Polpe style basis sets and ECP at the M05-2X level.

Mulliken (M05-2X) a . (debye/a.u.) @ (cm3) dielectric constant

6-311G 256.621416  1.4961E-23 8.408
6-311G(d) 247.7364644  1.4443E-23 8.82
6-311+G 230.6773573  1.3448E-23 9.875
6-311+G(d) 109.8660287  6.4052E-24 8.695
6-311+G(2d) 156.9322589 +9.1492E-24 112.19
6-311+G(2df) 208.4649782 - 1.2154E-23 12.214
6-311+G(3df) 68.81755225- +4.0121E-24 3.461
6-311+G(3d2f) 64.26941756  3.7469E-24 3.18
LANL2DZ 190.8343526  1.1126E-23 16.012
CEP-31G 196.5687484  1.1460E-23 14.442
CEP-121G 211.5819153  1.2335E-23 11.78
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In summary, for Pople basis sets in FeSi, the dielectric constants from APT
partial charge are in good agreement with the experimental value only at the B3LYP
level and from Mulliken partial charge are unavailable at all levels ( B3LYP, BLYP,
MOS5 and M052X ). For ECP based on APT partial charge, it is also performs well
only by CEP-series basis sets at the B3LYP, MO0S5 levels. For the BLYP level, it is
due to the fact that BLYP level isn’t suited to calculation of transition metals, the
dielectric constants don’t agree with the experimental value. For the M052X level,
because it is parameterized only including non-metals, the results are all

unavailable.

4-2-2 Seebeck coefficient

Here B3LYP/6-311+G(2df)=in ;Table 29 iis adopted because the dielectric
constant ( € .= 27.806 ) is much closer to experimental value ( € - =27.6 ). In Table
37, Helmholtz energy and potential with unit charge in different temperatures are
listed. Then we fit potentials with temperatures in Fig. 21. which shows a line of
gas phase which is from the fitting of potentials and temperatures directly and a line
of solid state which is from the fitting of gas phase divided by the calculated
dielectric constant ( € .= 27.806 ), because the FeSi, material is a polar solid so that

the electric potential inside that.

In Fig. 22%°, it shows the experimental results, and from the undoped fitting by
squares, it is in good agreement with the line of solid state in our case. Moreover,
Ref. 35 also indicates calculated results based on the energy band structure with the
local density approximation using Slater’s X o potential, and it shows the worse
result than solid state by our method in Table 38.

We make a small summary in Table 38. Seebeck coefficients in 300K or in
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900K are more correspondent to the experimental value than calculation results

from Ref. 35. However, in our solid state case the fitting equation is linear, and the

Seebeck coefficient increases at the higher temperature. In experimental values and

calculation results from Ref. 35, Seebeck coefficient decreases at the high

temperature. That is due to consideration of the thermal excitation of carriers in Ref.

35, but in our case it is based on the thermodynamic method.

Table 37:

one unit electron charge (V).

The Helmholtz free energy from B3LYP/6-311+G and the potential at

B3LYP/

6-311+G(2df)

300K

400K

500K

600K

700K

800K

900K

Helmholtz

energy

(Hartree)

-1842.6875

-1842:6996

-1842.7122

-1842.7252

-1842.7386

-1842.7523

-1842.7663

Helmholtz

energy

(eV)

-50142.6124

-50142.9407

-50143.2835

-50143.6380

-50144.0024

-50144.3752

-50144.7555

potential

(at unit charge ,

V)

-50142.6124

-50142.9407

-50143.2835

-50143.6380

-50144.0024

-50144.3752

-50144.7555
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Table 38: Seebeck coefficients are obtained from gas phase, solid state, and

compare to experimental values” and calculated results™.

Se (nV/K) Se (WV/K)
B3LYP/6-311+G fitting equation
300K 900K
gas phase Se = 1E-06T+0.003 3300.00 3900.00
solid state Se= 3.6E-08T+1.08E-04 118.80 140.40
experimental value® 190.00 170.000
calculated results® 1000.00 380.000
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4-3 Silicon Germanium ( SiGe )

Bulk SiGe crystals have the application to photo-detectors, X-ray and neutron
monochromators, etc. and SiGe crystals are also well-known materials for
thermoelectric applications, especially perform well at higher temperature. Now,

SiGe has attracted more interests in environmental compatibility.

4-3-1 Dielectric Constant

Here, we follow the previous procedure as we have done for Mg,Si and FeSis.
Three levels are used respectively: B3LYP, BLYP and MO05. Basis sets are classified
as two parts: Pople basis sets (series,0of 6-311G;6-311G(d)...,etc ) and effective core

potential ( LANL2DZ, CEP-31G and CEP-121G.).

It is based on APT partial charge and-the B3LYP level in Table 39. The
dielectric constant by experiment is 13.95°°. It performs well at larger Pople basis
sets, and corresponds to theory of APT charge. For ECP, CEP-31G and CEP-121G
shows good fits, especially for LANL2DZ it also performs very well. Those results

are similar to Mg,Si and FeSis,.
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Table 39: Electronic polarizability and dielectric constants are obtained from APT

partial charge by Polpe style basis sets and ECP at the B3LYP level.

APT (B3LYP) @ ¢ (Debye / a.u.) ae(cm3) dielectric constant
6-311G 423.8073893 2.47E-23 6.193
6-311G(d) 459.6833831 2.68E-23 5913
6-311+G 1401.661151 8.17E-23 4.439
6-311+G(d) 262.3221931 1:53E-23 10.442
6-311+G(2df) 243.7502428 1.42E-23 12.289
6-311+G(3d2f) 235.076609 1.37E-23 13.571
LANL2DZ 222.4695831 1.30E-23 16.345
CEP-31G 280.0824909 1.63E-23 9.311
CEP-121G 278.8289923 1.63E-23 9.377
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It is based on Mulliken partial charge and B3LYP level in Table 40. It shows
good results at small Pople basis sets ( 6-311G and 6-311G(d) ) which corresponds

to the theory of Mulliken charge. And for all ECP it shows very good results.

Table 40: Electronic polarizability and dielectric constants are obtained from

Mulliken partial charge by Polpe style basis sets and ECP at the B3LYP level.

Mulliken(B3LYP) ¢ .(Debye/a.u.) a.(cm3) dielectric constant
6-311G 234.0008094 1.36E-23 13.758
6-311G(d) 226.2636975 1.32E-23 15.355
6-311+G 207.3027305 1.21E-23 22.956
6-311+G(d) 228.8955643 1.33E-23 14.756*
6-311+G(2df) 208.4361622 1.22E-23 22.226
6-311+G(3d2f) 192.6017376 1.12E-23 43.409
LANL2DZ 246.0747383 1.43E-23 12.002
CEP-31G 249.7295751 1.46E-23 11.589
CEP-121G 265.6984747 1.55E-23 10.191
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It is based on APT partial charge and BLYP level in Table 41. No matter Pople
basis sets or ECP, dielectric constants are in good agreement with the experimental
value. Those results are similar to in Mg,Si where the results of the B3LYP and

BLYP level are almost the good.

Table 41: Electronic polarizability and dielectric constants are obtained from APT

partial charge by Polpe style basis sets and ECP at the BLYP level.

APT (BLYP) e (Debye/au.) a.(cm3) dielectric constant
6-311G 244.9461093 1.43E-23 12.139
6-311G(d) 259.6086808 1.51E=23 10.659
6-311+G 240.599687 1.40E-23 12.713
6-311+G(d) 253.1538835 1.48E-23 11.239
6-311+G(2df) 232.2334245 1.35E-23 14.082
6-311+G(3d2f) 224.8565133 1.31E-23 15.703
LANL2DZ 219.1653416 1.28E-23 17.360
CEP-31G 275.6784365 1.61E-23 9.552
CEP-121G 272.7488038 1.59E-23 9.726
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It is based on Mulliken partial charge and BLYP level in Table 42. It shows
good results at small Pople basis sets, and it also performs well at CEP-31G,

CEP-121G and LANL2DZ.

Table 42: Electronic polarizability and dielectric constants are obtained from

Mulliken partial charge by Polpe style basis sets and ECP at the BLYP level.

Mulliken(BLYP) a.(Debye/au.) a.(cm3) dielectric constant
6-311G 275.6208044 1.61E-23 9.556
6-311G(d) 259.2244667 1.51E-23 10.691
6-311+G 251.3384718 1.47E-23 11.420
6-311+G(d) 230.7638055 1.35E-23 14.368
6-311+G(2df) 209.9634133 1.22E-23 21.328
6-311+G(3d2f) 193.0291758 1.13E-23 42.211
LANL2DZ 245.3975609 1.43E-23 12.084
CEP-31G 253.4324388 1.48E-23 11.211
CEP-121G 267.9461273 1.56E-23 10.035
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It is based on APT partial charge and the MOS5 level in Table 43. Dielectric
constants are fit to larger Pople basis sets, but for CEP-31G, CEp-121G and

LANL2DZ they show unavailable results.

Table 43: Electronic polarizability and dielectric constants are obtained from APT

partial charge by Polpe style basis sets and ECP at the MO05 level.

APT (M05) ae.(Debye/au.) a.(cm3) dielectric constant

6-311G 131.1418858 T1.65E-24 9.225
6-311G(d) 246.2476346 1.44E-23 11.982
6-311+G 226.4077778 1.32E-23 15.320
6-311+G(d) 248.7306184 1.45E-23 11.698
6-311+G(2df) 227.118574 1.32E-23 15.153
6-311+G(3d2f) 2259131021 1.32E-23 15.440
LANL2DZ 334.9050437 1.95E-23 7.443
CEP-31G 1378.272116 8.04E-23 4.448
CEP-121G 786.0060438 4.58E-23 4.885
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It is based on Mulliken partial charge and MO5 level in Table 44. It performs
well at small Pople basis sets. And dielectric constants are correspondent to the
experimental value at CEP-31G, CEP-121G and LANL2DZ. It is unlike effective
core potential in Table 43 that dielectric constants are unavailable with CEP-31G,

CEP-121G and LANL2DZ.

Table 44: Electronic polarizability and dielectric constants are obtained from

Mulliken partial charge by Polpe style basis sets and ECP at the M05 level.

Mulliken(MO05) a . (Debye / a.u.) . (cm3) dielectric constant

6-311G 270.6452315 1.58E-23 9.857
6-311G(d) 264.6947153 1.54E-23 10.264
6-311+G 252.5391409 1.47E-23 11.299
6-311+G(d) 240.7773861 1.40E-23 12.688
6-311+G(2df) 225.543296 1.31E-23 15.531
6-311+G(3d2f) 224.2801921 1.31E-23 15.852
LANL2DZ 246.583822 1.44E-23 11.942
CEP-31G 242.5015469 1.41E-23 12.452
CEP-121G 263.0329892 1.53E-23 10.388
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In summary, for Pople basis sets and effective core potential in the SiGe case,
they both show expectable, better results no matter at the B3LYP or BLYP or M05

level. It is also proven that our method can applied to calculate dielectric constant.

4-3-2 Seebeck Coefficient

Here B3LYP/6-311+G(3d2f) in Table 39 is adopted because the dielectric
constant (&= 13.571 ) is much closer to experimental value (&= 13.95). In
Table 45, Helmholtz energy and potential with a unit charge in different
temperatures are listed. Then we fit potentials with temperatures in Fig. 23 which
shows a line of gas phase which is from the fitting of potentials and temperatures
directly and a line of solid state which is:friom,the fitting of gas phase divided by the
calculated dielectric constant ( gy=;13:571), because the SiGe material is a polar

solid so that the electric potential inside that.

Fig. 24 shows the Seebeck coefficient of S1Ge single crystals with different
directs as a function of temperature®. Although the Seebeck coefficient in our
solid-state case has little different from the experimental value of Fig. 24, our
results locate at same order of magnitude with the experimental value. The results
of solid-state case are acceptable. But Fig. 24 shows that Seebeck coefficient
decreases at higher temperature, it is very different from our calculations which
increase at higher temperature. The reason is the same as the previous discussion
that Seebeck coefficient is observed to decrease at high temperature which may
originate in the effect of thermal excitation of carriers across the gap from the
conduction band®®. However, our case is based on thermodynamic method than
consideration about carrier motion of the energy band. So Fig. 23 shows linear lines

than curves down.
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Table 45:

potential at one unit electron charge (V).

The Helmholtz free energy from B3LYP/6-311+G(3d2f) and the

B3LYP/6-311+G(3d2f) 300 400 500 600
Helmholtz energy(Hartree) -2366.4619 -2366.4719 -2366.4822 -2366.4928
Helmbholtz energy(eV) -64394.768 -64395.039 -64395.32] -64395.608

potential (at unit charge , V)| -64394.768 -64395.039| -64395.32] -64395.608

B3LYP/6-311+G(3d2f) 700 800 900
Helmholtz energy(Hartree) :-2366.5036/ -2366.5147 -2366.5259
Helmholtz energy(eV) -64395.903| -64396.203| -64396.508

potential (at unit charge , V)| -64395.903| -64396.203| -64396.508
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Seebeck coefficient (10° V *K™)

Fig. 23
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We make a small summary in Table 46 Seebeck coefficients in 300K or in

900K are correspondent to the experimental value for the solid-state case. However,

in our solid state case the fitting equation is linear, and the Seebeck coefficient

increases at the higher temperature. In experimental values, Seebeck coefficient

decreases at the high temperature. That is due to consideration of the thermal

excitation of carriers, but in our case it is based on the thermodynamic method.

Table 46: Seebeck coefficients are obtained fromrgas phase, solid state, and

compare to experimental values:with different'direct *.

B3LYP/6-311+G(3d2f) fitting equation Se (uV/K) 300K |S. (nV/K) 900K
gas phase Se =6*E-7T +0.0025 2680.0 3040.0
solid state Sc=4.1E*-8T+1.84*E-4 196.3 220.9
experimental value <100> 445.0 430.0
experimental value <111> 345.0 325.0
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Chapter 5 Conclusion

We have developed the new method to study the thermoelectric effect based on
thermodynamic theory for the system in the presence of an electric field. Three
semiconductor thermoelectric materials, Mg,Si, FeSi, and SiGe, are investigated as
a demonstration of the present new method. Since thermodynamics can be
considered as an exact theory in which all microscopic quantities are systematically
averaged out so that it is possible to perform a more accurate calculation than the

conventional energy band structure theory.

We have proposed the way to calculate electric polarizability directly by
varying electric field. We start with calculating net charge change against electric
field, but use equilibrium geometry at zero electric field to compute dipole
momentum change only due to ,electronic .polarization. In such way, we have
obtained the electronic polarizability;.and-then-inserting it into the Clausis-Mossotti
equation leads to dielectric constant for bulk matter as it is required. We have
employed two kinds of charges, APT and Mulliken types of charge. It is found that
APT charge which converges to the reasonable and stable value as basis sets
becoming large, so that the electronic polarizability calculated from APT charge
converges systematically with increase basis sets. However, the electronic
polarizability calculated from Mulliken charge does not show systematically
converges, and it shows some good results in the certain extent only for a small or
medium basis set. We have tried four functionals in DFT method: B3LYP, BLYP,
MO05 and M052X, and two types of basis sets: Pople basis sets including of 6-311G,
6-311G(d), 6-311+G...etc, and effective core potential including of CEP-31G,

CEP-121G and LANL2DZ. Simulation results are summarized as follows:
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1. B3LYP can simulate APT or Mulliken partial charges which can lead to good
results for the calculation of dielectric constants, no matter by Pople basis sets

or by Effective core potential.

2. BLYP is not good only for transition metals, and but it is good for the other

metals.

3. MO5 is the new method which may not is parameterized including enough
information of the perturbation of electric fields in partial charges, so the results

are unfavorable for computing electric polarizability.

4. MO052X is parameterized only good for non-metals, so it is not good for the

present case.

Thermodynamic theory is a good. tool for discussing thermoelectric effects,
especially for Seebeck coefficient. The ‘importance of evaluating Seebeck
coefficient is the relation of electric’=potential and temperature, and the
considerations for dielectric properties of 'solid-state material. The present method
presents an alternative way to compute the Seeback coefficient, and it seems a
better method in accuracy as well as in simplicity than the carrier motion of the
conventional energy band structure theory. This can be easily seen from three
examples that can for Mg,Si Seebeck coefficient at 300K is 284 pV/K is in good
agreement with experimental value 180 pV/K, but the result of material studio 4.0
shows 3600 uV/K. Equally, in 800K it is 334 uV/K is well suited with experimental
value 280 pV/K, but the result of material studio 4.0 shows 6600 uV/K. The same
situation occurs in the case of FeSi, and SiGe. Simulated Seebeck coefficients all
are proven that our method provides a convenient and accurate calculation for

Seebeck coefficient. Moreover, Seebeck coefficient from our case increases at high
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temperature, but it decreases at high temperature by experiment. The difference is
due to the fact that our method is based on thermodynamic theory than carrier
motion of the energy band, but the experimental phenomenon originates in the

effect of thermal excitation of carriers across the band gap.

Although we succeed in simulating dielectric constants and Seebeck
coefficients for FeSi,, Mg,Si and SiGe, there are still many thermoelectric materials
in the world to be investigated in the future. For example, by far Bi,Te; is the most
important thermoelectric material, and we also can try many atoms of the molecule
by our method in the future. Now, the most promising approach for the increase of
the thermoelectric efficiency is to create highly doped, we will definitely study

those doped materials in the future.
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