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A/D output from both channels. Assuming a Gaussian 
input, we derived the relationship between U of the 
input of the AD converter and E(lx1 + Iyl) and 
E(max(lx1, Iyl) + ~ m i n ( ~ x ~ , ~ y ~ ) )  for the quantized 
inphase and quadrature output x and y. Numerical 
results obtained using the derived expression and the 
statistical data obtained through simulation show an 
excellent agreement. Because of its simplicity, the 
cubic equation obtained by fitting the numerical results 
should be useful in practical purposes. 
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On The Rotation Vector Differential Equation 

A direct and simple derivation of the differential equation 
of the rotation vector is provided. The property that the time 
derivative of the rotation vector and the angular velocity have 

equal component along the direction of the rotation vector is also 
derived. 

I. INTRODUCTION 

The computation of vehicle attitude is a vital 
problem in strapdown inertial navigation systems. 
The rotation/orientation vector concept is one way 
for improving the accuracy of attitude determination. 
Bortz [l] has shown that the time derivative of the 
rotation vector includes two components: the angular 
velocity vector and the noncommutativity rate vector. 
In a strapdown inertial system, gyroscopes are used to 
measure the angular velocity of the body frame with 
respect to inertial frame. The gyro outputs are fed 
into the navigation computer to calculate the attitude 
parameters which can be ideally determined from a 
simple rotation vector information. Therefore the main 
difficulty in describing rigid body motions lies in the 
noncommutativity of finite rotations. Hence, one way 
to design an efficient attitude updating algorithm is 
based on the kinematics of the rotation vector. This 
motivates us to study the properties of the rotation 
vector. 

Bortz’s derivation of the rotation vector differential 
equation is straightforward but rather lengthy. Nazaroff 
[2] presented the result with a much simpler approach 
via the Euler-Rodgriues parameters which are 
directly related to the rotation vector. Based upon the 
quaternion updating equation and transferring from 
discrete to continuous form, Savage [3] offered another 
derivation. 
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We Fist show that both the time rate of change of 
the rotation vector and the angular velocity have equal 
component along the direction of the rotation vector. 
This enables us to provide an alternative approach 
for obtaining the differential equation of the rotation 
vector readily. No more parameter is needed. 

I I .  PRELIM I NARl ES 

As a consequence of the Euler theorem [4], the 
rotation vector is the eigenvector of the direction 
cosine transformation matrix associated with eigenvalue 
+1, i.e., 

( C - I ) 4 = 0  (1) 

where 4 = [$x,$y,$Z]T denotes the rotation vector, 
C represents the direction cosine matrix, and Z is the 
identity matrix. 

The rotation vector is defined by Bortz [l] as a 
vector whose orientation and magnitude corresponds, 
respectively, to the axis and angle of the rotation. In 
terms of the rotation vector, the direction cosine matrix 
which transforms body frame vectors into the reference 
frame can be written as [l, 41 

[ 4 X l 2  (2) 
sin $ (1 -cos$) 

$2 
c = I +  -[+XI+ 

6 

(3) 

represents the skew symmetric matrix equivalent to the 
vector cross-product operation and 

$ = (4T4)1'2 (4) 

denotes the magnitude (angle) of the rotation. It is 
noticed, from (2), that the matrix (C - I )  is singular. 

Let w = [ w ~ , w ~ , w ~ ] ~  denote the angular velocity 
of the body frame with respect to the reference 
frame. Then the time rate of change of the direction 
cosine matrix is related to the angular velocity via the 
well-known equation 

c = C [ W X ]  (5 )  

where [wx ]  is defined in similar manner to (3). From 
(2) it is seen that the trace of the matrix is 

tr(C) = 1 + 2cos$. (6) 

tr(c) = -2sin$$. (7) 

Differentiating (6) gives 

Substitution of (2) into (5) ,  it can be found that 

. 2sin$ tr(C) = --q5 W. 
$ 

Combine (7) and (8) to yield 

Next, differentiating (4) gives 

(9) 

Obviously, from (9) and (lo), we get the important 
relations hip 

which shows that both 4 and w have equal magnitude 
along the direction of 4. 

Three basic properties of the matrix [+XI which 
should be used for the derivation are given below. 
Using the matrix identity 

CpTd = +TW (11) 

[4x]2 = +qbT - $ 2 1  (12) 

[ 4 X i 3  = -$2[4x1 (13) 

[+XI4  = -$2[4x]2. (14) 

and making use of the fact [4x ]4  = 0, we have 

and 

I l l .  ROTATION VECTOR DIFFERENTIAL EQUATION 

Differentiate (1) with respect to time and use (5 )  to 
yield 

(C - Z)$ = -C[W X I 4  = C[q5 X I W  (15) 

where the last equality follows from the vector product 
4 x w = -w x 4. It is evident that one cannot obtain 
4 by taking matrix inversion in (15) since (C - I )  is 
singular. However, from (2) and (12), (C - I )  can be 
written as 

sin $ c - I = -(1- cos$)I + - 
$ 4x1 

Substitution of (16) into (15) gives 

sin $ 
-(1- cos$)I + $4x] 

+ (1-cos')4q5T4 = C[q5x ]w .  (17) 
$2 

Define 

Now, introducing (11) and (18) into (17) and dividing 
both sides by -(1- cos$), we have 
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Using (2), (12), and (13) in (19) gives In fact, it is easier to obtain w from (22) directly as 

The matrix D is equal to the identity matrix minus a 
skew symmetric matrix. Hence it is always invertible. 

(21) 

Finally, premultiplying (20) by (21) and using (13) and 
(14) yield the desired result: 

c $ =  I + - [ 4 x ] + 3  1 -  @sin@ ) [4x]2}LJ. { :  @ l (  2( 1 - cos @) 

IV. AN EXAMPLE 

The classical coning motion is chosen as example 
of the application of the rotation vector differential 
equation. Let the coning rotation vector be 

4 =  i".:"] (23) 

where 0 denotes the cone half-apex angle and R 
denotes the coning angular frequency. Then (4) shows 
that 

@ = e .  (24) 

Substituting (23) and (24) into (22) yields 

w = ( I - -  1-cos@ @2 [ & X I  + $ (1 - Y )  [+x]2} & 

!a sine cos Rt 
= -RsinesinRt . [ !a(l-Cos8) 1 

V. CONCLUSION 

The kinematics of the rotation vector is useful in 
establishing vehicle attitude computational algorithms. 
We also show that the time derivative of the rotation 
vector and the angular velocity have equal magnitude 
along the direction of the rotation vector. The 
derivation of the rotation vector differential equation 
is simple and direct. 
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