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Gene Selection Methods

Student: Ho-Lan Peng Advisor: Dr. Hui-Nien Hung

Institute of Statistics

National Chiao Tung University

Abstract

It’s a trend to use statistical methods in medical science. If the genes which
cause the diseases could be found, it might be helpful to nowadays medical field.
In this article, we proposed several methods to find the probable influential genes
which are over- or down-expressed in some but not all samples in a disease group.
Those methods include WORT (weight outlier robust t-statistic), WOS (weight
outlier sum), PGM (the MLE of probability of Gaussian mixture model), TGM
(T-statistic of Gaussian mixture model), QGM(Quantile of Gaussian mixture
model), and Bayesian Rule P-value(BRP). Also we will compare those methods
with four methods (T-statistic, OS, ORT, COPA) which have been proposed
and published for detecting differentially expressed genes. Those new methods
include improvements of ORT and OS methods, four methods related to Gaus-

sian mixture model and Bayesian method.
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1 Introduction

In the past ten years, scientists discover the differentially expressed genes in human
beings using statistical methods instead of traditional medical approach. They try to
find some alternative schemes when there are more variables than observations. That
is, the number of genes in the human is much larger than the number of sample size we
observed. Then use those methods to classify people who would develop the disease.
However, in the large sample theory, if we use all the genes to classify people, both the
Fisher Rules and Independent Rules misclassify people with probability near 0.5, (Fan,
J. and Fan, Y. (2007)) which means that the rules are no better than random guessing.
So, these methods are not good for detecting disease. Therefore, when the number of
sample size is small comparing to the number of genes, we can only use parts of genes to
detect disease. We try to detect differentially expressed genes in stead of taking all genes
in the experiment. In this thesis, we consider ten statistical methods to approach our
target. For each method, we calculate an index for each gene. The index measures the
significant difference between the disease group and the normal group. If the difference
between the two group is significant; then the p-value of this index for disease gene
would be very small. Repeat the experiment sufficient many times then we obtain the
empirical distribution for the p-value of the disease gene. Therefore, by observing the
plot of empirical distributions of p-values of those indexes, we can determine which
method is better in different situations. Several indexes for detecting differential gene
expression had been proposed, such as the traditional analytical method ”t-statistic”,
”cancer profile outlier analysis(COPA)” introduced by Tomlins and others(2005), ”the
outlier sum(OS)” introduced by Tibshirani and Hastie(2006), and ”outlier robust t-
statistic(ORT)” advanced by Wu(2007). The OS and COPA both use scale estimates
and robust location of the gene expression values. The OS and ORT are similarly
defined except using different baseline groups. Above four methods will be described
in detail in the following section. In the thesis, we try to improve OS and ORT methods
by assigning the data with different weights. It works better than the primitive one
since it can avoid the abrupt augmentation of the p-value as just one data being added
in. In addition, we use some indexes relative to Gaussian mixture model and Bayesian
Rule to detect the differentially gene expression. Finally, we compare these methods

from different point of view.



2 Statistical Methods

In our work, we consider a two-classes microarray data with p genes. For each gene, let
x; be the expression values for samples ¢ = 1,...,n, and we separate the samples fall
into two groups, the normal group and the disease group. We assume n; samples in the
normal group (the first group) and ny samples in the disease group (the second group)
where ny+ny = n. That is x4, ..., x,, come from normal group, and z,, 1, ..., x, come
from disease group.

There are four methods for detecting differential genes are reviewed in section 2.1, and

in section 2.2, we propose six new methods.

2.1 methods review

2.1.1 T-statistic

The two sample t statistic for the gene j is defined as

T9 — T

T —
S

where T; is the mean in group j for the gene, j = 1,2, and S is the pooled within-group
standard deviation for the gene, i.e.

— \2 — \2
Y T .

flz , Lo =
nq N9 n—2

And we select genes with high value of t statistic. This t statistic is based on the
assumptions of normal distributed of genes and the disease samples are over expressed

in the important genes.

2.1.2 The Outlier Sum

The method is proposed by Robert Tibshirani and Trevor Hastie(2007). Before finding

the outlier-sum statistic, they standardize each gene

, ©; —med
mad

where med and mad are the median and the median absolute deviation of the expression

values, i.e.

med = median (1, -+ ,x,), mad = median (|z; — med|) .



The outlier-sum (OS) statistic is defined as

W= > all(z;>Q3+IQR)= Y aiI(x}>Q3+IQR)
1Egroup?2 i=ni1+1
where Q1 and Q3' are the values of 25% quantile and 75% quantile for the standard-
ized samples(i.e. z/,...,z)) and IQR' = Q3' — Q1’ is the interquartile range.

We compare W for each gene. When W is large, it means there are many outliers in

the second group and therefore this gene may cause disease.

2.1.3 The Outlier Robust T-statistic

The method is proposed by Baolin Wu (2007). Before finding the outlier robust t-

statistic, they standardize each gene

N med;
! mad

where med; is the sample median for the normal group, i.e.
med; = median (1, , Tp,) -
and mad is an estimate for the median absolute deviation.

mad = median [|:1cZ — med; | x; — meds|

i<ni? | i>n1] :

where meds is the sample median for the disease group, i.e.
medy = median (Tp, 41, ,Tn) -
The outlier robust t-statistic (ORT) is defined as

U= Y Iz} >Q3" +IQR").
i€group?
where Q1”7 and Q3" are the values of 25% quantile and 75% quantile for the stan-
dardized samples in group 1, and IQR" = Q3" — Q1" is the interquartile range. We
compare U for each gene.
The difference between OS and ORT are their chosen measured points which base on

all samples or samples in normal group.



2.1.4 Cancer Outlier Profile Analysis

The method is proposed by Tomlins and others (2005). Before finding the COPA

statistic, they standardize each gene

,  x; —med
mad

where med and mad are the median and median absolute deviation of the expression

values, i.e.
med = median (x1,- -+ ,x,), mad = median (|z; — med|) .

The COPA statistic is defined as @ = r% quantile of standardized disease group where
r could set 75,90, or 95. Then compare @) for each gene.



2.2 New methods

2.2.1 The Weighted OS

Similar to the OS method, we standardize each gene. We change the original method
(OS) from computing >_, .21 (2] > Q3 + IQR') to 3

weight function. In OS, w; take values either 0 or 1, i.e.

group2 x;wh where w; is a
< Q3 + IQR'
> Q3+ IQR

Therefore, it’s not a robust statistics. In our method, we will choose w; as a continuous

function as follows.

0 if 70 < Q3 + LIQR'
w={ @I o3 L LIQR < o < Q3 + SIQR'
1 if 7, > Q3"+ 2IQR

where Q1" and 3’ are the values of 25% quantile and 75% quantile for for the stan-
dardized samples and IQR' = Q3' — 1’ is the interquartile range.
The weighted outlier-sum statistic (WOS) is defined as

* !
W* = g TW;

1Egroup2

We compare W* for each gene.

2.2.2 The Weighted ORT

The first step is to standardize each gene as ORT method, and to choose weight as

0 if 1‘;’ < QSH + %IQR”
w; = xé’—(Q?;-;/%’IQR”) if Q3// + %]QR” < Ig/ < Q3” + %IQR”
| if 2 > Q3 + SIQR’

where Q1”7 and Q3" are the values of 25% quantile and 75% quantile for the samples
in group 1, and IQR" = Q3" — Q1" is the interquartile range.
The weighted outlier robust t-statistic is defined as

* Z
U = E T; W,

1Egroup?2



where z! is the data after standardization.

We compare U* for each gene.

2.2.3 Methods related Gaussian mixture model

In disease group, the gene expression of some patients is no difference with the normal
group. Under the normal assumption in the normal group and mixed normal assump-
tion on the disease group. We use the EM algorithm to find the MLE of the parameters.
Following three methods are related this MLE. Let

X17 v 7Xn1 ~ N(/“LMO-Q) and }/1 - X’rL1+17 s 7Yn2 - Xn ~ pN(M1702)+qN(M27J2)

~

Let /iy, fiz, 02, P, G denote the MLE of ju1, pio, 0%, p, ¢ obtain by EM algorithm.
Let ¢; be the probability that Y; comes from group N (ps, 0?) when we observe Y;, that

is ¢ = P(Y; € N(pg,0?)|Y;), then ¢; = 1#%, where f; and fo are ’Fhe p.d.f.
af2(ys)

of N(uy,0?) and N (u9,0?) respectively, and we can estimate ¢; by ¢; = TXTET X

PGM method(the MLE of probability of Gaussian mixture model):

Let index for each gene be ¢ = %ﬁ, where ¢ is the MLE for ¢.

TGM method(T-statistic of Gaussian mixture model):

The index is defined as Y2221 where

ﬁlz 2?221 ﬁz’yi ,ZZ2 _ Z:Zl E]\z?/z
Z:L:Zl ﬁl +m 7 2?221 qu
o _ 2@ = )"+ 252 (Bilys — ) + Gillys — p2)°)
n
This index similar to the t-statistic. In the t-statistic, we only assume that the second

group is normally distributed, and this index is an extension of the t-statistic by as-

suming the second group is a mixture model.

QGM method(Quantile of Gaussian mixture model):
Let Y1), ..., Y(n,) be the order statistic of Y1,...,Y,,, and q(),...,qum,) be the corre-

sponding probability that Y{;y comes from group N (s, a?).
E%:l 10 ~
2146

Define the r-percent quantile of Y(yy, . .., Y{,) in group N (us, 0?) by y) such that
ng )
r and % >1—r, for r=0.75,0.90,0.95.. ..

i=19(3)

By the way, we get a theorem according to QGM.



Theorem.

The yqy in the QGM converges to the r-percent quantile of the group N (ps,0?).

Proof.

The data in disease group comes from the distribution of pf; + qfs where f; is the
distribution of N(u1,0?) and f, is the distribution of N(us, 0?).

Given data v,

g = a/2(y) - q/2(y)
Ay +afty)  pAily) + afa(y)

Let Y{(1),...,Y,) be the order statistic, and ¢(1),...,qm,) be the corresponding prob-
qf2(yy)
pf1(yey)+af2(ye))

as ng — 00

ability, where q;) =
We have

D R TP A 1))
L8 ) = [ )+ afalw)ld

= /_quz(y) =q

That is >\, ¢; ~ nag

So,
22:1 G T2g
Up) - N9 -
~ [ qf2(y) P ]
| i s apleli ey = [kt
That is r ~ [*© fo(y)dy. -

2.2.4 Bayesian Rule P-value

There are many statistican using Bayesian Rule to solve their problems in biology, P.
Baldi and A.D. Long. (2001) and E. Kristiansson and A. Sjogren (2006). Here, we will

try using Bayesian Rule in our problem. Let
X17 ce ,Xn1|/ﬁl, g r~ N(,LLl, 02)7Xn1+17 P ,Xn‘/,LQ, g r~ N(ILLQ, 0'2).

where p1; and pio comes from uniform distribution, and o2 comes from Inverse Gaussian
distribution with the mean one and the shape parameter one.

We know that
Xioo X i1, ~ i 1,0) = (e S
vy Xy Lo~ filxy, .. xplpr,0) = (——)Me 20
1 1M1 1(T1 H1 \/ﬂa

1 i 41 (@i—n2)?
)”26_ 202

Xn+17 Ce ,Xn‘,u?,(f ~ f2($n1+17 Ce ,.flfn|[1,270) = (



1 1
2 = —e o2
o ~ f3(0) i€

Then

ul,ug,UQ\xl, coy Ty ~efi(xy, o Ty, 0) fa(Xny 11,y - - T2, 0) f3(0)

where

o = / / / Fi( B, 0) Fo (B Tl i, 0) o (0)dpiadpaado?
0 —00 J —00

2 L yn2p(? r; —7p)° Ty — Tp)? -2
= m(ﬁ) F(Q)(;( i~ T) +¢:;+1( i~ T) +2)

Then, the distribution of p; — o is

1 U+ v v —

u
chl(xh s 7xn1|T,U>f2(xn1+17 B ,xn|T;0'>f3<U>

if we let u = p; — po and v = py + po.

So, we get

_ b [ NG o =202+ Y, (3 — T)? + 2]
n  I'(3) [(u—(fl—f

LTl 4 ST (= T )2 4 i, (0 — B2)? + 25

is a p.d.f. of u|zq,..., z,.
The index is defined to be P(u > 0|xy,...,x,).



3 Simulation Study

Now, we try to compare above methods. Theoretically, we could derive the distribution
functions of the p-value of the indexes for a gene. Let the distribution of the index of
normal group and disease group be F} and F, respectively. Suppose for some gene, the
distribution of the index follows the distribution of F,, F;, = F} if the gene comes from
the normal group. If we observe the index value v, then 1 — Fj(v) is the proportion
of the normal genes with the index statistics greater than this index value, that is
1 — Fy(%) is the p-value of this gene. Therefore, 1 — Fy(F; (1 — *))! is the cumulative
distribution function of the p-value for the gene. And we could obtain the mean, me-
dian, @1, @3 and the plot of the distribution of this p-value(i.e. the true/false-positive
rates plot) and then use these statistics to compare all methods. The distribution of T
and Q in the t-statistic method and COPA method could be obtained by analytically,
which will be seen in Appendix in detail. Else, we use simulation to find mean, me-
dian, standard deviation, Q1, ()3, and the empirical cumulative distribution function
plot. In the simulation study, we let ny = ny = 25 samples in normal and disease
group. Set one disease gene which contains k = 1,5, 10, 15, 20, 25 outlier disease sam-
ples from the normal distribution with -u =1,2,3 and 02 = 1, and the other ny, — k
genes and the 999 normal genes coming from the standard normal distribution. That is
Xiyoo s Xy, Xogakaty oo X w N(0,1) 5 X1y -+ o5 Xy ok ~ N(p, 1) where p=1,2,3
and k = 1,5,10, 15, 20, 25.

3.1 Comparison by mean, median, Q1, and Q3

We use simulation to compare these methods by checking mean, median, Q1, and Q3
of the p-value for the disease gene (See the tables in Appendix. The blue marked
numbers are the smallest one of each row, and the light blue numbers are a little bit
bigger than the red ones. There are no big differences between them.) We compare all
methods by two ways, by fixing k£ and p.

First, we fix k to see the behavior of the p-value when p increases. When k is small,
such as k = 1,5, from table 2 and table 3, we can see that no matter what p is, QGM is
the best choice for finding the over-expressed gene. Subsequently, when £ is a little bit
larger (k = 10), from table 4, it’s shown that QGM and BRP are good choices. Besides,

'We want to find the distribution of 1 — F(v):

F()=P(1—-Fi(v)<()=P(1-(<Fw)=PF (1-() <v)=1-FKF'(1-C)



as p increases, ORT and WORT could be considered to be good indexs. When £ is
large, from table 5, 6, and 7, T-statistics and BRP are acceptable. And as u increases,
similarly as £ = 10 , ORT and WORT could be taken into consideration. By the way,
when £ equals to the number of patients in disease group, i.e. k = 25 , T-statistics,
ORT, WORT, PGM, BRP can be considered.

Second, we fix u to observe the behavior of the p-value when k increases. When p is
small, that is, the difference between normal persons’ and patients’ genes is small, we
can change our choice from QGM to T-statistics and BRP if %k is increasing. When p is
bigger (1 = 2,3), QGM may be good as k is small, but we have more choices such like
T-statistics, ORT, WORT, PGM, and BRP if k increases.

3.2 Comparison by the true/false-positive rates plots

We have checked the empirical cumulative distribution function of the p-value for the
disease gene to compare all methods. In a word, we could obtain an index for each gene
in every method, and we then sort and rank the index for all genes. By finding out
the ranking of the testing gene, we could get the p-value for the disease gene and plot
its empirical cumulative distribution function after repeating 1000 times. Following
are the empirical cumulative distribution function plots for the disease gene, i.e. the
true/false-positive rates plots

In Figure 1, when p = 1 and & = 1, no methods perform significant results. As k
increases, the performances of t-statistic, PGM, and BRP become better than other
methods. T-statistic is based on the assumption that all disease samples are over-
expressed. That is, t-statistic would be a good choice as k=25. BRP performs perfect
as k is not too small, and OS, COPA, WOS are suitable when k is small. When p is
larger, from Figure 2 and 3, we can see that OS, WOS, and COPA are not good choices.
And PGM could be used only when k is large. All methods could be used in different

situations, depending on someone’s need.

10
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Figure 1: The true/false-positive rates plot as p = 1.
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Figure 2: The true/false-positive rates plot as p = 2.
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Figure 3: The true/false-positive rates plot as p = 3.
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4 Real Data

The data is for breast cancer in microarray data, which gotten by Department of
Interdisciplinary Oncology Moffitt Cancer Center and Research Institute, University
of South Florida. There are 54675 genes in the data, 143 healthy persons and 42
patients are included in the normal group and disease group dividedly. They found
1554 genes among all genes. We also choose 1554 significant genes by every methods
and check how many of them are included in their choices. The number of the same
choices of every methods could be seen in Table 1. By the way, before finding the
index, data for each gene would be checked if the median for disease group is larger

than the median for normal group. If not, we would change the sign for each data.

Table 7: The number of the same choices for the ten methods

t OS ORT COPA WOS WORT PGM TGM QGM BRP

152 528 724 382 529 715 382 7 152 714
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5 Appendix

5.1 T-statistics

First, we consider the gene that is not over-expressed,
Xi, oo, Xy, Xty oo X~ N, 0°)

So, we get

2

—_— g
X1~ N(p1,—)
m

2

— g
Xy ~ N(p1, —)
Ny

The t-statistic is
X, — X,

T:
S

Now, we try to find the distribution of X, — X; and S for the gene.

L o2 o2
Xo— X1 ~NO,(—+ —
2= X~ N(0, (S + %)
1 ni o n
§? = [Z(Xz - X124 Z (X; = X5)?]
(n—-2) i=1 i=n1+1
We know that
S (X = Xy)? D iy 1 (X — Xo)?
! o2 Xn—1 and +102 Xiz 1
So,
n—2)52
( 2) ~ X?L—2
o
Therefore,

X, - X, V”Q At /
T: _— = —_— TL
S ( (n— 25’2/0'2 TLl + 2

and the c.d.f. of T is

> dx

o[ e,

)

:‘H
+
w S
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Second, in disease group, there are k patients’ genes over-expressed. So, we get

Xla"'7Xn1 ~ N(M1,0'2)

an-‘,-la SR 7Xn1+k: ~ N(MQ: 02)
Xy tkaty - Xn ~ N(pa, 02)

Now, we try to find the distribution of X, — X; and S for the gene.

X ~N —
1 (:ula nl)
— k —k 2
%) Mo
So, we get
. k 1 1
o 1 o
1 ni o n
S = D X=X+ D (X - X))
(TL - 2) i=1 1=n1+1
where
S (X=X,
~ an—l
o
Now, we want to find the distribution of Y7 . (X; — X5)%.

We separate D (X, — X5)? into two parts:

2?1:1111()( X5)? and Zi:njkﬂ(xi ~X,)?
and the distribution of (X; — X3)* for i =ny +1,...,n1 + k is found as:

ni1+k
Xi+2'—+ j X +Z] n1+k+1X

X, - X=X, — ot Lz

(A (A n2

1 ni1+k
= (1 - — X;

2D I T SIS
Jj=n1+1,j#i j=ni+k+1
where

(1= )X~ N((1 = )y, (1= )02
No 7 ns Ha2, N o

1 1
—X; ~ N2 (5)20%) for j>mi i

Lo N (L2 -

—X; ~ N(—,(—)%?) for j=n+k+1,...,n

(n3—mny+1) ,

_ k .
_._Xi_XQNN((l__)(/,Ll—"_Mz) TU) for i=ni+1,...

2
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Take (1 — —)(,u1 + p2) = p* and (ng_n++1)a2 = o*2.
Then, the p.d.f of S (X, — X,)% i

i=ni+1
fw) ST e ()
1z :Z " ,
pas il 2§+la*2F(§+i)

where §* = k()2
Then, we find the distribution of (X; — Xy)2 fori=n; +k+1,...,n

+k
Xi+ Zzi—&-l XJ’ + Z?:n1+k+l,#i Xj

Xl—YQIXZ—
U]
1 1 ni1+k n
(1—n—)X——ZX+ X))
2 i Jj=ni1+1 Jj=n1+k+1,j#1
1 1 1
11— —)X; ~N((1—-— 1— —)%?
(1= )X, ~ N((1 = ), (1= )
1

1
— X, ~ N(MQ( 2o?) for j=n;+1,...,n1 +k
N9 Ng Ny

1 1

(ng — 1)o?

) for i=ni+k+1,...,n
12

— k
SXi—Xo o~ N(n_(ﬂl — [12),

Take (1 — —)(,ul + p12) = p** and (ng—n++1)02 2.

2

Then, the p.d.fof 7" ., (Xi— X5)%is

00 75** 5**\4 oz n27k+2i71
l e 25 **2 (ﬁ) 2

Z 2"2%—!—@' w12 ( n2=k ;

i=0 T ol (M 1)

ook

where 0** = (ny — k)(&=)2

g

Since 37 (Xi — Xo)2 ~ fi(z) and 307, 1 (X — X2)2 ~ fola),

n

S (= Xa) ~ fy(w)

1=n1+1

where
x 1 S S 1 atw oo (ﬁ)’b (m+*w)k+2z 1 %) 5** . ( _

- - ( + o * ) 2 20 2

f3($> a /x 26 2 T (zz; 2! 22+Z *2F ;
B 02(_12 n

Since Y (Xi — X1)? ~ fa(x) = = e oMy L

so, the p.d.f of S = \/(nQ) "I(Xi X2+ 300, (X — Xo)? s

fs(z) = /Oz 4av f3(2* — v?) fo(v?)dv
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The p.d.f. of Xy — X is

(o= Elr2=p1) 2
-— 2
e (”11 Jr7112 )o?

) 1
xTr) =
\/27T(—n11 + 5o)o?

So, the p.d.f. of T" = @ is

fie) = [ " wfo(tw) fo(w)duw

The cumulative distribution function of the p-value of the disease gene is 1 — G(t*)

where t* ~ f;

5.2 COPA
For non-over-expressed gene,
Xn1+17 e >Xn ~ N(:ulv 02)

So, the c.d.f. and p.d.f of X; for i =mnq,...,n are

_ = m? 1 - M1)
dt =="1+er
/ 27r0 2( f V20

_(@—pp)?

fa) = ——e

B 2ro

The c.d.f. of 90% quantile of X, 11, ..., X,is

v Ny!
G(z) :/0 10.975] (115 — [0.975 + 1])!
For disease group which includes k patients with overexpressed genes.
Xoyats ooy Xoygk ~ N(p2,0%)
Xoyabits s Xp ~ N(ug,o?)
So, the c.d.f. and p.d.fof X; fori=n;+1,...,n are

(t 1 T — o
dt 1+
/ 27r0 2 ( et V20 )

(z—p2)?

filz) = e 2

B 2ro

F(t) [0.9n2 | (1 . F(t))”r"‘w‘%*”f(t)dt

And the c.d.f. and p.d.fof X; fori=mn;y+1,...,n are

(t 1 T — ,U1)
dt 1+4er
/ 27r0 2 ( / V20

(z—py)?

fo(x) = e 2’

2ro
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Then, the p.d.f. of 90% quantile of X,,,41,..., X, is

falx) = na! |
[0.975)1(nz — (095 + 1!
min(k,[0.9n2])
[fl(x) Z FQ((L’)i(l _ Fg(x))k_iFl(x)LO‘ng(l - K (x))ng—m.gng—i-lj—k-pi
=0
min(k—1,10.9n2])
+ fa(x) Z Fy(x)'(1 - Fz(w))k_l_iF1($)Lo'gnﬂ_l(l — Fl(x))"rk“—m-%ﬂ]

=0

The cumulative distribution function of the p-value of the disease gene is 1 — G(¢*)

where ¢* ~ f3
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