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摘要 

 

 

在分子生物學的領域上，利用統計方法分析基因晶片的資料已成為一種趨勢。若

能因此發掘出造成疾病的關鍵基因，對人類會有重要的貢獻。本篇文章中，基於

致病基因會在生病的群體中有異常的表現，我們提供一些統計方法能在眾多基因

中找出可能致病的關鍵基因。這些方法包含了 WORT、WOS、PGM、TGM、QGM，以

及 BRP。我們也將這些方法與過去曾經被發表的 T-statistic、OS、ORT 以及 COPA

等四個方法做比較。 

  

關鍵字：基因選取、OS、ORT、COPA。 

 

 

 



Gene Selection Methods

Student: Ho-Lan Peng Advisor: Dr. Hui-Nien Hung

Institute of Statistics

National Chiao Tung University

Abstract

It’s a trend to use statistical methods in medical science. If the genes which

cause the diseases could be found, it might be helpful to nowadays medical field.

In this article, we proposed several methods to find the probable influential genes

which are over- or down-expressed in some but not all samples in a disease group.

Those methods include WORT (weight outlier robust t-statistic), WOS (weight

outlier sum), PGM (the MLE of probability of Gaussian mixture model), TGM

(T-statistic of Gaussian mixture model), QGM(Quantile of Gaussian mixture

model), and Bayesian Rule P-value(BRP). Also we will compare those methods

with four methods (T-statistic, OS, ORT, COPA) which have been proposed

and published for detecting differentially expressed genes. Those new methods

include improvements of ORT and OS methods, four methods related to Gaus-

sian mixture model and Bayesian method.

Key words and phrases: gene selection, OS, ORT, COPA.
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1 Introduction

In the past ten years, scientists discover the differentially expressed genes in human

beings using statistical methods instead of traditional medical approach. They try to

find some alternative schemes when there are more variables than observations. That

is, the number of genes in the human is much larger than the number of sample size we

observed. Then use those methods to classify people who would develop the disease.

However, in the large sample theory, if we use all the genes to classify people, both the

Fisher Rules and Independent Rules misclassify people with probability near 0.5, (Fan,

J. and Fan, Y. (2007)) which means that the rules are no better than random guessing.

So, these methods are not good for detecting disease. Therefore, when the number of

sample size is small comparing to the number of genes, we can only use parts of genes to

detect disease. We try to detect differentially expressed genes in stead of taking all genes

in the experiment. In this thesis, we consider ten statistical methods to approach our

target. For each method, we calculate an index for each gene. The index measures the

significant difference between the disease group and the normal group. If the difference

between the two group is significant, then the p-value of this index for disease gene

would be very small. Repeat the experiment sufficient many times then we obtain the

empirical distribution for the p-value of the disease gene. Therefore, by observing the

plot of empirical distributions of p-values of those indexes, we can determine which

method is better in different situations. Several indexes for detecting differential gene

expression had been proposed, such as the traditional analytical method ”t-statistic”,

”cancer profile outlier analysis(COPA)” introduced by Tomlins and others(2005), ”the

outlier sum(OS)” introduced by Tibshirani and Hastie(2006), and ”outlier robust t-

statistic(ORT)” advanced by Wu(2007). The OS and COPA both use scale estimates

and robust location of the gene expression values. The OS and ORT are similarly

defined except using different baseline groups. Above four methods will be described

in detail in the following section. In the thesis, we try to improve OS and ORT methods

by assigning the data with different weights. It works better than the primitive one

since it can avoid the abrupt augmentation of the p-value as just one data being added

in. In addition, we use some indexes relative to Gaussian mixture model and Bayesian

Rule to detect the differentially gene expression. Finally, we compare these methods

from different point of view.
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2 Statistical Methods

In our work, we consider a two-classes microarray data with p genes. For each gene, let

xi be the expression values for samples i = 1, . . . , n, and we separate the samples fall

into two groups, the normal group and the disease group. We assume n1 samples in the

normal group (the first group) and n2 samples in the disease group (the second group)

where n1+n2 = n. That is x1, . . . , xn1 come from normal group, and xn1+1, . . . , xn come

from disease group.

There are four methods for detecting differential genes are reviewed in section 2.1, and

in section 2.2, we propose six new methods.

2.1 methods review

2.1.1 T-statistic

The two sample t statistic for the gene j is defined as

T =
x2 − x1

S
.

where xj is the mean in group j for the gene, j = 1, 2, and S is the pooled within-group

standard deviation for the gene, i.e.

x1 =

∑n1

i=1 xi
n1

, x2 =

∑n
i=n1+1 xi

n2

, S2 =

∑n1

i=1 (xi − x1)2 +
∑n

i=n1+1 (xi − x2)2

n− 2
.

And we select genes with high value of t statistic. This t statistic is based on the

assumptions of normal distributed of genes and the disease samples are over expressed

in the important genes.

2.1.2 The Outlier Sum

The method is proposed by Robert Tibshirani and Trevor Hastie(2007). Before finding

the outlier-sum statistic, they standardize each gene

x′i =
xi −med
mad

.

wheremed andmad are the median and the median absolute deviation of the expression

values, i.e.

med = median (x1, · · · , xn) ,mad = median (|xi −med|) .

2



The outlier-sum (OS) statistic is defined as

W =
∑

i∈group2

x′iI (x′i > Q3′ + IQR′) =
n∑

i=n1+1

x′iI (x′i > Q3′ + IQR′)

where Q1′ and Q3′ are the values of 25% quantile and 75% quantile for the standard-

ized samples(i.e. x′1, ..., x
′
n) and IQR′ = Q3′ −Q1′ is the interquartile range.

We compare W for each gene. When W is large, it means there are many outliers in

the second group and therefore this gene may cause disease.

2.1.3 The Outlier Robust T-statistic

The method is proposed by Baolin Wu (2007). Before finding the outlier robust t-

statistic, they standardize each gene

x′′i =
xi −med1

mad

where med1 is the sample median for the normal group, i.e.

med1 = median (x1, · · · , xn1) .

and mad is an estimate for the median absolute deviation.

mad = median
[
|xi −med1|i≤n1

, |xi −med2|i>n1

]
.

where med2 is the sample median for the disease group, i.e.

med2 = median (xn1+1, · · · , xn) .

The outlier robust t-statistic (ORT) is defined as

U =
∑

i∈group2

x′′i I (x′′i > Q3′′ + IQR′′).

where Q1′′ and Q3′′ are the values of 25% quantile and 75% quantile for the stan-

dardized samples in group 1, and IQR′′ = Q3′′ − Q1′′ is the interquartile range. We

compare U for each gene.

The difference between OS and ORT are their chosen measured points which base on

all samples or samples in normal group.

3



2.1.4 Cancer Outlier Profile Analysis

The method is proposed by Tomlins and others (2005). Before finding the COPA

statistic, they standardize each gene

x′i =
xi −med
mad

.

where med and mad are the median and median absolute deviation of the expression

values, i.e.

med = median (x1, · · · , xn) ,mad = median (|xi −med|) .

The COPA statistic is defined as Q = r% quantile of standardized disease group where

r could set 75, 90, or 95. Then compare Q for each gene.

4



2.2 New methods

2.2.1 The Weighted OS

Similar to the OS method, we standardize each gene. We change the original method

(OS) from computing
∑

group2 x
′
iI (x′i > Q3′ + IQR′) to

∑
group2 x

′
iwi, where wi is a

weight function. In OS, wi take values either 0 or 1, i.e.

wi =

 0 if x′i < Q3′ + IQR′

1 if x′i > Q3′ + IQR′

Therefore, it’s not a robust statistics. In our method, we will choose wi as a continuous

function as follows.

wi =


0 if x′i < Q3′ + 1

2
IQR′

x′i−(Q3′+ 1
2
IQR′)

IQR′
if Q3′ + 1

2
IQR′ ≤ x′i ≤ Q3′ + 3

2
IQR′

1 if x′i > Q3′ + 3
2
IQR′

where Q1′ and Q3′ are the values of 25% quantile and 75% quantile for for the stan-

dardized samples and IQR′ = Q3′ −Q1′ is the interquartile range.

The weighted outlier-sum statistic (WOS) is defined as

W ∗ =
∑

i∈group2

x′iwi

We compare W ∗ for each gene.

2.2.2 The Weighted ORT

The first step is to standardize each gene as ORT method, and to choose weight as

wi =


0 if x′′i < Q3′′ + 1

2
IQR′′

x′′i −(Q3′′+ 1
2
IQR′′)

IQR′′
if Q3′′ + 1

2
IQR′′ ≤ x′′i ≤ Q3′′ + 3

2
IQR′′

1 if x′′i > Q3′′ + 3
2
IQR′′

where Q1′′ and Q3′′ are the values of 25% quantile and 75% quantile for the samples

in group 1, and IQR′′ = Q3′′ −Q1′′ is the interquartile range.

The weighted outlier robust t-statistic is defined as

U∗ =
∑

i∈group2

x′′iwi

5



where x′′i is the data after standardization.

We compare U∗ for each gene.

2.2.3 Methods related Gaussian mixture model

In disease group, the gene expression of some patients is no difference with the normal

group. Under the normal assumption in the normal group and mixed normal assump-

tion on the disease group. We use the EM algorithm to find the MLE of the parameters.

Following three methods are related this MLE. Let

X1, . . . , Xn1 ∼ N(µ1, σ
2) and Y1 = Xn1+1, . . . , Yn2 = Xn ∼ pN(µ1, σ

2)+qN(µ2, σ
2)

Let µ̂1, µ̂2, σ̂2, p̂, q̂ denote the MLE of µ1, µ2, σ
2, p, q obtain by EM algorithm.

Let qi be the probability that Yi comes from group N(µ2, σ
2) when we observe Yi, that

is qi = P (Yi ∈ N(µ2, σ
2)|Yi), then qi = qf2(yi)

pf1(yi)+qf2(yi)
, where f1 and f2 are the p.d.f.

of N(µ1, σ
2) and N(µ2, σ

2) respectively, and we can estimate qi by q̂i = q̂f̂2(yi)

p̂f̂1(yi)+q̂f̂2(yi)

PGM method(the MLE of probability of Gaussian mixture model):

Let index for each gene be q̂ =
∑n2
i=1 q̂i
n2

, where q̂ is the MLE for q.

TGM method(T-statistic of Gaussian mixture model):

The index is defined as µ̂2−µ̂1

σ̂
, where

µ̂1=

∑n2

i=1 p̂iyi∑n2

i=1 p̂i + n1

, µ̂2 =

∑n2

i=1 q̂iyi∑n2

i=1 q̂i

σ̂2 =

∑n1

i=1(xi − µ1)2 +
∑n2

i=1(p̂i(yi − µ1)2 + q̂i(yi − µ2)2)

n
This index similar to the t-statistic. In the t-statistic, we only assume that the second

group is normally distributed, and this index is an extension of the t-statistic by as-

suming the second group is a mixture model.

QGM method(Quantile of Gaussian mixture model):

Let Y(1), . . . , Y(n2) be the order statistic of Y1, . . . , Yn2 , and q(1), . . . , q(n2) be the corre-

sponding probability that Y(i) comes from group N(µ2, σ
2).

Define the r-percent quantile of Y(1), . . . , Y(n2) in groupN(µ2, σ
2) by y(l) such that

∑l
i=1 q(i)∑n2
i=1 q(i)

≥

r and
∑n2
i=l+1 q(i)∑n2
i=1 q(i)

≥ 1− r, for r = 0.75, 0.90, 0.95 . . ..

By the way, we get a theorem according to QGM.

6



Theorem.

The y(l) in the QGM converges to the r-percent quantile of the group N(µ2, σ
2).

Proof.

The data in disease group comes from the distribution of pf1 + qf2 where f1 is the

distribution of N(µ1, σ
2) and f2 is the distribution of N(µ2, σ

2).

Given data y,

qi =
q̂f2(y)

p̂f1(y) + q̂f2(y)
→ qf2(y)

pf1(y) + qf2(y)
as n2 →∞

Let Y(1), . . . , Y(n2) be the order statistic, and q(1), . . . , q(n2) be the corresponding prob-

ability, where q(i) =
qf2(y(i))

pf1(y(i))+qf2(y(i))

We have∑n2

i=1 qi
n2

→ E(qi) =

∫ ∞
−∞

qf2(y)

pf1(y) + qf2(y)
[pf1(y) + qf2(y)]dy

=

∫ ∞
−∞

qf2(y) = q

That is
∑n2

i=1 qi ≈ n2q

So, ∑l
i=1 qi
n2

≈ rn2q

n2

= rq

≈
∫ y(l)

−∞

qf2(y)

pf1(y) + qf2(y)
[pf1(y) + qf2(y)]dy =

∫ y(l)

−∞
qf2(y)dy

That is r ≈
∫ y(l)
−∞ f2(y)dy.

2.2.4 Bayesian Rule P-value

There are many statistican using Bayesian Rule to solve their problems in biology, P.

Baldi and A.D. Long. (2001) and E. Kristiansson and A. Sjogren (2006). Here, we will

try using Bayesian Rule in our problem. Let

X1, . . . , Xn1|µ1, σ ∼ N(µ1, σ
2), Xn1+1, . . . , Xn|µ2, σ ∼ N(µ2, σ

2).

where µ1 and µ2 comes from uniform distribution, and σ2 comes from Inverse Gaussian

distribution with the mean one and the shape parameter one.

We know that

X1, . . . , Xn1|µ1, σ ∼ f1(x1, . . . , xn|µ1, σ) = (
1√
2πσ

)n1e−
∑n
i=1(xi−µ1)2

2σ2

Xn+1, . . . , Xn|µ2, σ ∼ f2(xn1+1, . . . , xn|µ2, σ) = (
1√
2πσ

)n2e−
∑n
i=n1+1(xi−µ2)2

2σ2

7



σ2 ∼ f3(σ) =
1

σ4
e−

1
σ2

Then

µ1, µ2, σ
2|x1, . . . , xn ∼ cf1(x1, . . . , xn1|µ1, σ)f2(xn1+1, . . . , xn|µ2, σ)f3(σ)

where

c−1 =

∫ ∞
0

∫ ∞
−∞

∫ ∞
−∞

f1(x1, . . . , xn1 |µ1, σ)f2(xn1+1, . . . , xn|µ2, σ)f3(σ)dµ1dµ2dσ
2

=
2

√
n1n2

(
1√
π

)n−2Γ(
n

2
)(

n1∑
i=1

(xi − x1)2 +
n∑

i=n1+1

(xi − x2)2 + 2)−
n
2

Then, the distribution of µ1 − µ2 is

1

2
cf1(x1, . . . , xn1 |

u+ v

2
, σ)f2(xn1+1, . . . , xn|

v − u
2

, σ)f3(σ)

if we let u = µ1 − µ2 and v = µ1 + µ2.

So, we get

f4(u|x1, . . . , xn)

= π−
1
2

√
n1n2

n

Γ(n+1
2

)

Γ(n
2
)

[
∑n1

i=1(xi − x1)2 +
∑n

i=n1+1(xi − x2)2 + 2]
n
2

[ (u−(x1−x2))2
n

n1n2

+
∑n1

i=1(xi − x1)2 +
∑n

i=n1+1(xi − x2)2 + 2]
n+1

2

is a p.d.f. of u|x1, . . . , xn.

The index is defined to be P (u > 0|x1, . . . , xn).
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3 Simulation Study

Now, we try to compare above methods. Theoretically, we could derive the distribution

functions of the p-value of the indexes for a gene. Let the distribution of the index of

normal group and disease group be F1 and F2 respectively. Suppose for some gene, the

distribution of the index follows the distribution of F2, F2 = F1 if the gene comes from

the normal group. If we observe the index value v, then 1 − F1(v) is the proportion

of the normal genes with the index statistics greater than this index value, that is

1− F1(∗) is the p-value of this gene. Therefore, 1− F2(F−1
1 (1− ∗))1 is the cumulative

distribution function of the p-value for the gene. And we could obtain the mean, me-

dian, Q1, Q3 and the plot of the distribution of this p-value(i.e. the true/false-positive

rates plot) and then use these statistics to compare all methods. The distribution of T

and Q in the t-statistic method and COPA method could be obtained by analytically,

which will be seen in Appendix in detail. Else, we use simulation to find mean, me-

dian, standard deviation, Q1, Q3, and the empirical cumulative distribution function

plot. In the simulation study, we let n1 = n2 = 25 samples in normal and disease

group. Set one disease gene which contains k = 1, 5, 10, 15, 20, 25 outlier disease sam-

ples from the normal distribution with µ = 1, 2, 3 and σ2 = 1, and the other n2 − k
genes and the 999 normal genes coming from the standard normal distribution. That is

X1, . . . , Xn1 , Xn1+k+1, . . . , Xn ∼ N(0, 1) , Xn1+1, . . . , Xn1+k ∼ N(µ, 1) where µ = 1, 2, 3

and k = 1, 5, 10, 15, 20, 25.

3.1 Comparison by mean, median, Q1, and Q3

We use simulation to compare these methods by checking mean, median, Q1, and Q3

of the p-value for the disease gene (See the tables in Appendix. The blue marked

numbers are the smallest one of each row, and the light blue numbers are a little bit

bigger than the red ones. There are no big differences between them.) We compare all

methods by two ways, by fixing k and µ.

First, we fix k to see the behavior of the p-value when µ increases. When k is small,

such as k = 1, 5 , from table 2 and table 3, we can see that no matter what µ is, QGM is

the best choice for finding the over-expressed gene. Subsequently, when k is a little bit

larger (k = 10), from table 4, it’s shown that QGM and BRP are good choices. Besides,

1We want to find the distribution of 1− F1(v):

F (ζ) = P (1− F1(v) ≤ ζ) = P (1− ζ ≤ F(v)) = P (F−1
1 (1− ζ) ≤ v) = 1− F2(F−1

1 (1− ζ))

9



as µ increases, ORT and WORT could be considered to be good indexs. When k is

large, from table 5, 6, and 7, T-statistics and BRP are acceptable. And as µ increases,

similarly as k = 10 , ORT and WORT could be taken into consideration. By the way,

when k equals to the number of patients in disease group, i.e. k = 25 , T-statistics,

ORT, WORT, PGM, BRP can be considered.

Second, we fix µ to observe the behavior of the p-value when k increases. When µ is

small, that is, the difference between normal persons’ and patients’ genes is small, we

can change our choice from QGM to T-statistics and BRP if k is increasing. When µ is

bigger (µ = 2, 3), QGM may be good as k is small, but we have more choices such like

T-statistics, ORT, WORT, PGM, and BRP if k increases.

3.2 Comparison by the true/false-positive rates plots

We have checked the empirical cumulative distribution function of the p-value for the

disease gene to compare all methods. In a word, we could obtain an index for each gene

in every method, and we then sort and rank the index for all genes. By finding out

the ranking of the testing gene, we could get the p-value for the disease gene and plot

its empirical cumulative distribution function after repeating 1000 times. Following

are the empirical cumulative distribution function plots for the disease gene, i.e. the

true/false-positive rates plots

In Figure 1, when µ = 1 and k = 1, no methods perform significant results. As k

increases, the performances of t-statistic, PGM, and BRP become better than other

methods. T-statistic is based on the assumption that all disease samples are over-

expressed. That is, t-statistic would be a good choice as k=25. BRP performs perfect

as k is not too small, and OS, COPA, WOS are suitable when k is small. When µ is

larger, from Figure 2 and 3, we can see that OS, WOS, and COPA are not good choices.

And PGM could be used only when k is large. All methods could be used in different

situations, depending on someone’s need.

10
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Figure 1: The true/false-positive rates plot as µ = 1.
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Figure 2: The true/false-positive rates plot as µ = 2.
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Figure 3: The true/false-positive rates plot as µ = 3.
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4 Real Data

The data is for breast cancer in microarray data, which gotten by Department of

Interdisciplinary Oncology Moffitt Cancer Center and Research Institute, University

of South Florida. There are 54675 genes in the data, 143 healthy persons and 42

patients are included in the normal group and disease group dividedly. They found

1554 genes among all genes. We also choose 1554 significant genes by every methods

and check how many of them are included in their choices. The number of the same

choices of every methods could be seen in Table 1. By the way, before finding the

index, data for each gene would be checked if the median for disease group is larger

than the median for normal group. If not, we would change the sign for each data.

Table 7: The number of the same choices for the ten methods

t OS ORT COPA WOS WORT PGM TGM QGM BRP

152 528 724 382 529 715 382 77 152 714
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5 Appendix

5.1 T-statistics

First, we consider the gene that is not over-expressed,

X1, . . . , Xn1 , Xn1+1, . . . , Xn ∼ N(µ1, σ
2)

So, we get

X1 ∼ N(µ1,
σ2

n1

)

X2 ∼ N(µ1,
σ2

n2

)

The t-statistic is

T =
X2 −X1

S

Now, we try to find the distribution of X2 −X1 and S for the gene.

X2 −X1 ∼ N(0, (
σ2

n1

+
σ2

n2

))

S2 =
1

(n− 2)
[

n1∑
i=1

(Xi −X1)2 +
n∑

i=n1+1

(Xi −X2)2]

We know that∑n1

i=1(Xi −X1)2

σ2
∼ χ2

n1−1 and

∑n
i=n1+1(Xi −X2)2

σ2
∼ χ2

n2−1

So,

(n− 2)S2

σ2
∼ χ2

n−2

Therefore,

T =
X2 −X1

S
=

√
(

1

n1

+
1

n2

)[

X2−X1√
σ2( 1

n1
+ 1
n2

)√
(n−2)S2/σ2

n−2

] ∼
√

(
1

n1

+
1

n2

)Tn−2

and the c.d.f. of T is

G(t) =

∫ t

−∞

1√
( 1
n1

+ 1
n2

)

Γ(n−1
2

)

Γ(n−2
2

)

1√
(n− 2)π

1

(1 + (

x2

( 1
n1

+ 1
n2

)

n−2
))

n−1
2

dx
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Second, in disease group, there are k patients’ genes over-expressed. So, we get

X1, . . . , Xn1 ∼ N(µ1, σ
2)

Xn1+1, . . . , Xn1+k ∼ N(µ2, σ
2)

Xn1+k+1, . . . , Xn ∼ N(µ1, σ
2)

Now, we try to find the distribution of X2 −X1 and S for the gene.

X1 ∼ N(µ1,
σ2

n1

)

X2 ∼ N(
kµ2 + (n2 − k)µ1

n2

,
σ2

n2

)

So, we get

X2 −X1 ∼ N(
k(µ2 − µ1)

n2

, (
1

n1

+
1

n2

)σ2)

S2 =
1

(n− 2)
[

n1∑
i=1

(Xi −X1)2 +
n∑

i=n1+1

(Xi −X2)2]

where∑n1

i=1(Xi −X1)2

σ
∼ χ2

n1−1

Now, we want to find the distribution of
∑n

i=n1+1(Xi −X2)2.

We separate
∑n

i=n1+1(Xi −X2)2 into two parts:∑n1+k
i=n1+1(Xi −X2)2 and

∑n
i=n1+k+1(Xi −X2)2

and the distribution of (Xi −X2)2 for i = n1 + 1, . . . , n1 + k is found as:

Xi −X2 = Xi −
Xi +

∑n1+k
j=n1+1,j 6=iXj +

∑n2

j=n1+k+1Xj

n2

= (1− 1

n2

)Xi −
1

n2

(

n1+k∑
j=n1+1,j 6=i

Xj +
n∑

j=n1+k+1

Xj)

where

(1− 1

n2

)Xi ∼ N((1− 1

n2

)µ2, (1−
1

n2

)2σ2)

1

n2

Xj ∼ N(
µ2

n2

, (
1

n2

)2σ2) for j > n1, j 6= i

1

n2

Xj ∼ N(
µ1

n2

, (
1

n2

)2σ2) for j = n1 + k + 1, . . . , n

∴ Xi −X2 ∼ N((1− k

n2

)(µ1 + µ2),
(n2

2 − n2 + 1)

n2
2

σ2) for i = n1 + 1, . . . , n1 + k
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Take (1− k
n2

)(µ1 + µ2) = µ∗ and
(n2

2−n2+1)

n2
2

σ2 = σ∗2.

Then, the p.d.f of
∑n1+k

i=n1+1(Xi −X2)2 is

f1(x) =
∞∑
i=0

e−
δ∗
2 ( δ

∗

2
)i

i!

e−
x

2σ∗2 ( x
σ∗2

)
k+2i

2
−1

2
k
2

+iσ∗2Γ(k
2

+ i)

where δ∗ = k(µ
∗

σ∗
)2.

Then, we find the distribution of (Xi −X2)2 for i = n1 + k + 1, . . . , n:

Xi −X2 = Xi −
Xi +

∑n1+k
n1+1 Xj +

∑n
j=n1+k+1,j 6=iXj

n2

= (1− 1

n2

)Xi −
1

n2

(

n1+k∑
j=n1+1

Xj +
n∑

j=n1+k+1,j 6=i

Xj)

(1− 1

n2

)Xi ∼ N((1− 1

n2

)µ1, (1−
1

n2

)2σ2)

1

n2

Xj ∼ N(
µ2

n2

, (
1

n2

)2σ2) for j = n1 + 1, . . . , n1 + k

1

n2

Xj ∼ N(
µ1

n2

, (
1

n2

)2σ2) for j = n1 + k + 1, . . . , n, j 6= i

∴ Xi −X2 ∼ N(
k

n2

(µ1 − µ2),
(n2 − 1)σ2

n2

) for i = n1 + k + 1, . . . , n

Take (1− k
n2

)(µ1 + µ2) = µ∗∗ and
(n2

2−n2+1)

n2
2

σ2 = σ∗∗2.

Then, the p.d.f of
∑n

i=n1+k+1(Xi −X2)2 is

f2(x) =
∞∑
i=0

e−
δ∗∗
2 ( δ

∗∗

2
)i

i!

e−
x

2σ∗∗2 ( x
σ∗∗2

)
n2−k+2i

2
−1

2
n2−k

2
+iσ∗∗2Γ(n2−k

2
+ i)

where δ∗∗ = (n2 − k)(µ
∗∗

σ∗∗
)2.

Since
∑n1+k

i=n1+1(Xi −X2)2 ∼ f1(x) and
∑n

i=n1+k+1(Xi −X2)2 ∼ f2(x),

n∑
i=n1+1

(Xi −X2)2 ∼ f3(x)

where

f3(x) =

∫ x

−x

1

2
e−

δ∗+δ∗∗
2
− 1

4
(x+w
σ∗2

+ x−w
σ∗∗2

)(
∞∑
i=0

( δ
∗

2
)i

i!

(x+w
2σ∗2

)
k+2i

2
−1

2
k
2

+iσ∗2Γ(k
2

+ i)
)(
∞∑
i=0

( δ
∗∗

2
)i

i!

( x−w
2σ∗∗2

)
n2−k+2i

2
−1

2
n2−k

2
+iσ∗∗2Γ(n2−k

2
+ i)

)dw

Since
∑n1

i=1(Xi −X1)2 ∼ f4(x) = 1

2
n1
2 Γ(n

2
)
e−

σ2x
2 σn1x

n1
2
−1,

so, the p.d.f of S =
√

1
(n−2)

[
∑n1

i=1(Xi −X1)2 +
∑n

i=n1+1(Xi −X2)2] is

f5(x) =

∫ x

0

4xvf3(x2 − v2)f4(v2)dv
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The p.d.f. of X2 −X1 is

f6(x) =
1√

2π( 1
n1

+ 1
n2

)σ2
e
−

(x− k(µ2−µ1)
n2

)2

2( 1
n1

+ 1
n2

)σ2

So, the p.d.f. of T ∗ = X2−X1

S
is

f7(t∗) =

∫ ∞
−∞

wf6(t∗w)f5(w)dw

The cumulative distribution function of the p-value of the disease gene is 1 − G(t∗)

where t∗ ∼ f7

5.2 COPA

For non-over-expressed gene,

Xn1+1, . . . , Xn ∼ N(µ1, σ
2)

So, the c.d.f. and p.d.f of Xi for i = n1, . . . , n are

F (x) =

∫ x

−∞

1√
2πσ

e−
(t−µ1)2

2σ2 dt =
1

2

(
1 + erf

x− µ1√
2σ

)

f(x) =
1√
2πσ

e−
(x−µ1)2

2σ2

The c.d.f. of 90% quantile of Xn1+1, . . . , Xnis

G(x) =

∫ x

0

n2!

b0.9n2c!(n2 − b0.9n2 + 1c)!
F (t)b0.9n2c(1− F (t))n2−b0.9n2+1cf(t)dt

For disease group which includes k patients with overexpressed genes.

Xn1+1, . . . , Xn1+k ∼ N(µ2, σ
2)

Xn1+k+1, . . . , Xn ∼ N(µ1, σ
2)

So, the c.d.f. and p.d.f of Xi for i = n1 + 1, . . . , n are

F1 (x) =

∫ x

−∞

1√
2πσ

e−
(t−µ2)2

2σ2 dt =
1

2

(
1 + erf

x− µ2√
2σ

)

f1(x) =
1√
2πσ

e−
(x−µ2)2

2σ2

And the c.d.f. and p.d.f of Xi for i = n1 + 1, . . . , n are

F2 (x) =

∫ x

−∞

1√
2πσ

e−
(t−µ1)2

2σ2 dt =
1

2

(
1 + erf

x− µ1√
2σ

)

f2(x) =
1√
2πσ

e−
(x−µ1)2

2σ2
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Then, the p.d.f. of 90% quantile of Xn1+1, . . . , Xn is

f3(x) =
n2!

b0.9n2c!(n2 − b0.9n2 + 1c)!
·

[f1(x)

min(k,b0.9n2c)∑
i=0

F2(x)i(1− F2(x))k−iF1(x)b0.9n2c(1− F1(x))n2−b0.9n2+1c−k+i

+ f2(x)

min(k−1,b0.9n2c)∑
i=0

F2(x)i(1− F2(x))k−1−iF1(x)b0.9n2c−1(1− F1(x))n2−k+i−b0.9n2c]

The cumulative distribution function of the p-value of the disease gene is 1 − G(q∗)

where q∗ ∼ f3
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