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Abstract

The tolerance interval is often used to investigate if there is + per-
centage of acceptable products in a lot at some desired confidence. This
paper shows that this confidence, with percentage v fixed, is actually
an unknown parameter and shows the popularly used shortest version
of tolerance interval by Eisenhart et al. (1941) is not capable to serve
as a test statistic for hypothesis assuming the unknown confidence to be
a desired constant gg. A new test is shown to be more capable in this
purpose. The sample size determination based on this new test ensuring
to protect the manufacturer’s benefits and risks when the specification
limits indicate true confidence well, respectively, above and below ¢g has

been studied.
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1. Introduction

The tolerance interval is popularly used by manufacturer and consumer
for judgement of production lots. In mass-production, the manufacturer is
interesting in an interval that contains a specified (usually large) percentage
of the product and he knows that unless a fixed proportion (say 7) of the
production is acceptable in the sense that the items’ characteristics conform to
specification limits LSL and USL, he will lose money in this production. On
the other hand, if this claim is not true, it will entail the consumer a loss of
money. With this interest, the manufacturer and consumer want to know the

following;:

Whether there is percentage v of acceptable measurements

(1.1)

in a production lot?

Statisticians seek solution to verify this problem through two steps. We start
with a random sample X = (X1, ..., X,,)’ from a distribution with probability
density function fp(z) representing observations from the same production pro-
cess. For the first step, the pioneer article Wilks (1941) introduced a ~y-content
tolerance interval with confidence 1 — a which is defined as a random interval

(T1, Tz) = (t1(X), t2(X)) satisfying
P{PXoe (T, [1)|X] >y} >1—-aforf c© (1.2)

where X, represents the future observation from the same production process.
Let (t1,t2) be the observed of this tolerance interval. The general rule for

verifying a manufacturer’s problem using the tolerance interval is as follows:

If (t1,t) C (LSL,USL),the lot of product is acceptable,
because we have confidence 1 — « (1.3)
that at least 1007% of the products '

conform to specification limits.

Much attention has been paid for developing tolerance intervals, for examples

Wilks (1941), Wald (1943), Paulson (1943), Guttman (1970) and, for a review,
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Patel (1986). In general, a common effort been made in the literature is to
investigate the version with minimum width, for which Eisenhart et al. (1947)
constructed an approximate minimum width tolerance interval for normal ran-
dom variable. This normal tolerance interval is now popularly implemented in
manufacturing industries and is presented in text books of engineering statis-
tics. The interest of this paper is to study if the tolerance interval is appropriate
to deal with problem in (1.1) for the manufacturer and consumer.

To study the appropriateness of tolerance interval in this engineering prob-
lem, we need to clarify its role with classical hypothesis testing problem. The
classical hypothesis testing problem set a simple hypothesis and derive a test
with a specified significance level, usually a small value such as 0.05 or 0.01.
However, varied philosophies set null hypothesis in different ways that may
lead to completely different conclusions. The most commonly accepted rule for

setting null hypothesis through the following philosophy:

If one wishes to prove that a hypothesis A is true, (1.4)

one first assumes that it isn’t true.

This philosophy favors right of the consumer (buyer). In a clinical trial, one
wish to see if a new drug has a different effect. In general, the null hypothesis
might be that the new drug is no better, on average, than the current drug.
Why is this philosophy in these problems? Switching a new product (drug)
or technique usually requires large initial expenditures, and a decision maker
should not do so unless the new product is significantly better than the old
one.

There is an approach of philosophy considers a situation employed in some
engineering problems. The quality of product is distributed from background
noise and abnormal noise. If the process operator adjust the process based on
the tests performed periodically for hypothesis defined from rule of (1.4), it will
often overacted to the background noise and to deteriorate the performance of

the process. Hence, to prevent this unnecessary adjustment, a rule guiding the



null hypothesis is as follows:
Unless it is broken, we do not fix it. (1.5)

This rule follows based on the philosophy from the aspect of the manufacturer
(producer).

In the on line quality control, without evidence of existing assignable cause,
the manufacturing process is considered to be in control. For example, for

detecting if there is a mean shift, one construct the X chart as

UCL = iy + 3%
Ho 2 (1.6)

LCL = jio — 3%

where 1o and o are, respectively, the mean and standard deviation for in con-
trol process. Probability 0.9973 of acceptable region does in favor of hypothesis
Hy. Why use this philosophy for process control? Suppose that the process
operators adjust the manufacturing process based on tests obeying philosophy
one. Only strong evidence showing in data for supporting the hypothesis of
in control process will make the operators often overreacted to the random
cause for unnecessary process adjustments. These unnecessary process adjust-
ments can actually result in a deterioration of process performance. From the
above discussion, the process control using the control chart does follows the
philosophy of (1.5) assuming that the process is in control as the hypothesis.
Not all statistical hypotheses problems design a test with null hypothesis
following a philosophy only to protect the risk of either the manufacturer or the
consumer. Acceptance sampling, popularized by Dodge and Roming and was
originally applied by the U.S. military, provides a rule of decision of accepting or
rejecting a production lot. With a sample of size n for items selected at random
from a lot, a plan as denoted as {n,c} is conducted with lot accepted when
there are defectives of number less than or equal to c¢. By calling the percentage
defective as average quality level (AQL), this plan is generally designed to have
high probability of lot acceptance when there is low AQL value and to have

low probability of lot acceptance when there is large AQL value.
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On the other hand, a test based on tolerance interval expects to have high
probability of hypothesis acceptance when lots of production are with v per-
centage of acceptable products at confidence remarkably larger than 1 — a and
to have low probability of hypothesis acceptance when lots of production are
with v percentage of acceptable products at confidence remarkably lower than
1 — . Hence, this kind of test should not accompany with hypothesis following
the philosophy only to protect the risk of either the manufacturer or the con-
sumer. We will see that for lots of production, the confidence for v percentage
of acceptable products may be formulated as an unknown parameter. The test
presented in (1.3) in fact deals with a hypothesis on value of this unknown
confidence. Hence there are two problems we may concern that we want to
deal in this paper. (a) Is the test presented in (1.3) appropriate for protecting
both the risks of manufacturer and consumer? (b) Is there alternative test,
also formulated based on tolerance interval, that performs better to protect
the risks of manufacturer and consumer.

This paper formulate the unknown confidence in Section 2, for a v percent-
age acceptable products, in an explicit expression. We then study in Section
3 the power of the v content tolerance interval of Eisenhart et al. (1947) with
test of (1.3). We will propose in Section 4 a new test for the same purpose of
studying if there is v percentage of acceptable products at confidence 1 — a.
A sample size determination problem will also be studied in Section 5 that
guarantees a low probability of acceptance of the hypothesis when the true
specification limits are moderately shorter than the desired ones and a large
probability of acceptance of the hypothesis when the true specification limits

are moderately wider than the desired ones.

2. Specification Settings for Achieving Percentage 7 Acceptable
Products at a Fixed Confidence
Let X be a random variable having distribution function Fy with probability

density function fy(x) and the specification limits for product characteristic X



is {LSL,USL}. We call the probability that a product to be acceptable

USL
Ditem(0) = /L _ hla)de = FyUSL) = R(LSL) (2.1)

the item reliability where Fj is the distribution function. Suppose that the lot
size is known as constant k (usually a large number). For this production lot,
the number of acceptable products is with binomial distribution b(k, pitem (6)).
Then the true confidence for having proportion ~ of production lot conforming

to specification limits is

k . .
0=y || Pitem(0)7(1 = pitem (6))*. (2.2)

1

This expression shows that the confidence of a v percentage of acceptable prod-
ucts in lots interesting for the manufacturer actually is an unknown parameter.

Hence, the interest for a manufacturer is to test the following hypothesis:
HAk %0 (2.3)

for some specified (large) value go. We wouldn’t call H* a null or alternative
hypothesis since it is not appropriate to consider a classical test for it.
The classical approach to test H* is rule (1.3) through a ~-content tolerance

interval (77, T») at confidence gy that may be re-written as
Accept H* if (t1,t2) C (LSL,USL) (2.4)

where (t1,t2) is the observation of (77, T5) (see Bowker and Goode (1952) and
Papp (1992) for this application). With this observation that there is an un-
known true confidence, it raises the question that what we may expect a test
for its power function representing the probability that H* is accepted.

Recall that the manufacturer expects to have proportion v or more accept-
able products at confidence qy. Let’s define the minimum item reliability that

guarantees proportion 7 acceptable products at confidence gy as p,, satisfying

k k ( k—i _
Yicp) || (Pao) (1= pge)™ ™" = qo. (2.5)

]



With product’s characteristic variable having a distribution function Fjy, the

manufacturer is desired to have item reliability p;ien, (6) with
pitem<9> = F@(USL) — F@(LSL) > Pyqo - (26)

From (2.5), the manufacturer will loss money most of the times when pjen, () is
moderately smaller than p,,. For a given pairs (v, qo), we list the item reliabil-
ities that achieve exactly proportion « of acceptable products with confidence
qo in the following table.

Table 1. Minimum item reliability pg,

@ =08 0.85 0.9 0.95 0.99
(k = 1,000)
0.8 0.8099 | 0.8587 | 0.9071 | 0.9549 | 0.9918
0.85 0.8123 | 0.8608 | 0.9089 | 0.9562 | 0.9923
0.9 0.8152 | 0.8635 | 09111 | 0.9577 | 0.9929
0.95 0.8196 | 0.8673 | 09142 | 0.9599 | 0.9938
0.99 0.8277 | 08744 | 09200 | 0.9638 | 0.9952
k = (10,000)
0.8 0.8033 | 0.8529 | 0.9025 | 0.9518 | 0.9907
0.85 0.8040 | 0.8536 | 0.9030 | 0.9522 | 0.9909
0.9 0.8050 | 0.8545 | 0.9038 | 0.9527 | 0.9912
0.95 0.8064 | 0.8557 | 0.9048 | 0.9534 | 0.9915
0.99 0.8091 | 0.8581 | 0.9068 | 0.9549 | 0.9921
k = (100,000)
0.8 0.8010 | 0.8509 | 0.9008 | 0.9505 | 0.9902
0.85 0.8013 | 0.8512 | 0.9010 | 0.9507 | 0.9903
0.9 0.8016 | 0.8514 | 0.9012 | 0.9509 | 0.9904
0.95 0.8021 | 0.8518 | 0.9016 | 0.9511 | 0.9905
0.99 0.8029 | 0.8526 | 0.9022 | 0.9516 | 0.9907

We will derive the specification limits that achieve the minimum item reli-

ability for advanced study later in this paper . Suppose that the characteristic
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variable of interest obeys a normal distribution N(, 0?). Then item reliability,
the probability that an item conforming to specifications, is
USL 4

pitem(,u70-) = /
LSL V2mo

and then the true confidence to have proportion v acceptable products is

_(e=p)?
e 202 dx

k k i k—
q = Zi:[k’y] . pitem(ﬂa U) (]- - pitem(ﬂ'a U))
7

7

=3 f (@ (W) —@ (BT (1 (@ (B — @ ()"

A production lot to have proportion v acceptable products with confidence ¢q
requires that

USL — LSL —
Y e B ] =) Yy

o o

where p,, may be found in Table 1.

One interesting question is that how short the specification limits should
be to achieve the minimum item reliability. Let the specification limits be
{LSL,USL} = {u — lo,un+ lo} and we denote [,, as the [ so that the item
reliability is

Pao = P —lgyo < X < pui+1g,0).

We list [y, in this design in the following table.



Table 2. Specification limits (LSL,USL) = (4 — 140, p+140) to achieve item

reliability exactly equal to pg,

q v =0.8 0.85 0.9 0.95 0.99
(k = 1,000)
0.8 1.3102 1.4711 1.6807 | 2.0043 | 2.6456
0.85 1.3174 | 1.4790 1.6898 | 2.0161 2.6682
0.9 1.3265 1.4890 1.7013 | 2.0310 | 2.6947
0.95 1.3397 | 1.5037 | 1.7184 | 2.0532 | 2.7372
0.99 1.3650 15317 | 1.7508 | 2.0955 | 2.8210
(k = 10,000)
0.8 1.2910 1.4499 1.6569 1.9752 | 2.6020
0.85 1.2931 1.4525 1.6597 | 1.9787 | 2.6096
0.9 1.2961 1.4556 1.6633 1.9833 | 2.6187
0.95 1.3001 1.4601 1.6686 1.9901 2.6324
0.99 1.3080 1.4689 1.6786 | 2.0033 | 2.6561
k = (100, 000)
0.8 1.2845 1.4428 1.6488 1.9647 | 2.5841
0.85 1.2853 1.4436 1.6497 | 1.9662 | 2.5879
0.9 1.2861 1.4446 1.6509 1.9647 | 2.5906
0.95 1.2875 1.4460 1.6525 1.9698 | 2.5928
0.99 1.2900 1.4489 1.6554 | 1.9737 | 2.6007

This table will be used in next section to study the power of the classical tol-

erance interval in detection of manufacturer’s confidence.

3. Power of the Classical Tolerance Interval

Suppose that we have Xi,..., X, a random sample for the characteris-
tic variable of interest and the specification limits for the characteristic are
{LSL,USL}. Let (T1,T3) be a tolerance interval of Wilks (1941) constructed

from the random sample. One of the popular applications of tolerance interval



is to test hypothesis H* based on rule of (2.4). With the fact that the true
confidence is a parameter, it is interesting to evaluate power function of this

tolerance interval, in terms of specification limits, is
m(LSL,USL) = Py((T\,T3) C (LSL,USL)). (3.1)

It provides the probability that we should conclude that there is proportion y
or more acceptable products in a lot at confidence 1 —«a. The optimal tolerance
interval, if there is, should have power value 1 for ¢ > ¢9 and value zero for
q < qo- This is generally not attainable. Hence, there are two properties that
we expect a tolerance interval to be satisfies:
(a) The power function is nondecreasing in terms of item reliability piiem.
(b) For a balance of the manufacturer’s benefits and risks, the power when true
confidence ¢ is equal to qq is close to 0.5.

We want to simulate the powers for the Eisenhart et al.’s tolerance interval
for several combinations of specification limits. Let’s set replication number
m and specification limits (LSL,USL) = (—b,b). The simulated power of a

tolerance interval (77, 7T3) is defined as

m

;= %ZI((t{,té) C (=b,b)) (3.2)

where (t],1}) is the observation of (T1,Ty) from the jth sample. The power
of (3.2) simulates the chance of (3.1) that the tolerance interval (7%, 7,) may
conclude that the production lot includes a proportion « of acceptable products
with confidence 1 — a.

To study (3.2), suppose that the random sample X7, ..., X, is drawn from
normal distribution N(p,0?) where both p and o are unknown. The general

form of a prediction interval for a future normal random variable is of the form
(X —m*s, X +m*s) (3.3)

where the 100(1 — )% confidence interval (prediction interval) is the form

with m* = t;_a(n — 1),/1 + 1 and where ti—a(n — 1) represents the 1 —

9



5th quantile of the central t-distribution with degrees of freedom. For the
Wilks’ tolerance interval, Eisenhart et al. (1947) developed the shortest one
which is now the most popular version of tolerance interval to deal with the
manufacturer’s problem when the characteristic variable does obey a normal
distribution. We select values m* corresponding with v = 0.9,1 — a = 0.95
from the table developed in Eisenhart et al. (1947).

With replication m = 100, 000, we generate random sample of size n from
distribution N(0,1). Let X ; and S]2 be the sample mean and sample variance
for jth sample. We compute this tolerance interval and study its powers of
(3.2) with several sample size n = 20, 30,50 and various values b where b =
1.7184,1.6686 and 1.6525 corresponds, respectively, to specification limits such
that their true confidences are identical to 1 —a = 0.95. The simulated results
are listed in Table 3,4,5.

We have several comments drawn from the these tables:

(a) As expected, the power of the tolerance interval is increasing when the
specification limits are wider indicating increasing in pje,,. For b > 1.7184
with k£ = 1,000, the corresponding confidence ¢ > ¢y = 0.95, we see that the
larger the sample size the more the chance (probability) to accept H*.

(b) When b = 1.7184 for k£ = 1,000, the process does guarantee confidence 0.95
with percentage 0.9 of acceptable products. However, the simulated power
values are 0.0257,0.0289, 0.0466, respectively, for sample sizes n = 20, 30, 50.
These revealed little chance to observe that the lots are already v = 0.9 per-
centage of acceptable products at confidence 0.95. Hence, the test of (2.3) is

not satisfactory in losing benefits for the manufacturer.

4. A New Test Based on Tolerance Interval

A test for hypothesis H* is expected to have power not too far from 0.5
when ¢ = qqg is true. The classical test based on tolerance interval does not
meet this requirement. We then introduce a new test.

Suppose that we have an appropriate estimate, denoted by 0 of parameter

f and then we have estimated probability density function of characteristic

10



variable X as f;(x). The rule of the new test for hypothesis H* of (2.3) is

Accepting H™ if / fo(x)dz > py,. (4.1)
(t1,t2)N(LSLUSL)

We have two comments for setting the above rule to test hypothesis H*:

(a) For given a 7-content tolerance interval (77,75) at confidence 1 — «, if

its observation (t1,t2) does contain percentage of products conforming with

specification limits p,, or more, we conclude with confidence 1 — « that there

is percentage v acceptable products in a lot.

(b) This test sets test statistic [ T dx. However, the critical

T2)N(LSL,USL) fo(@)
point p,, is not the cut off point based on distribution of the test statistic.
Hence, this test does not follows the classical hypothesis testing to ensures a
specified significance level.

With this test, the power function is

Bo{ fo(w)de = pg,}- (4.2)
(Tl,TQ)ﬁ(LSL,USL)

Consider that we have a random sample X1, ..., X, drawn from the distri-
bution N(u,0?). Let i =z and 6% = == 3" | (x; — f1)®. The rule for testing
hypothesis H is:

Accepting H, if bpe(x)dr > py, (4.3)
(t1,t2)N(LSL,USL)

and the empirical power of tolerance interval (17, 75) is

m

s = D1 Opo (@) > pyy). (1.4)

=1 (# 2)N(LSL,USL)

We conduct a simulation with the same design set in Section 3 to study
the power function of this new test. The simulated results for lot sizes, k =
1,000, 10,000, 100, 000 are listed in Tables 7,8,9 (see these tables in the end of
this paper). However, the tolerance intervals considered including the shortest
version (STL) and the version (CITL) developed by Huang, Chen and Welsh
(2007).

We have several comments drawn from Tables 7,8 and 9:

11



(a) Monotone power values are as our expectation. However, the power values
are relatively higher than them based on test of (2.4). Hence, there are larger
probabilities in all settings of specification limits and sample sizes for accepting
H*.

(b) There is no significant differences in the performance between the shortest
tolerance interval and the version of Huang, Chen and Welsh.

(c) When b is the value (1.7184 for £ = 1,000, 1.6686 for k£ = 10,000 and 1.6525
for k£ = 100,000) that the true confidence is identical to 0.95 the simulated
power values are all close to 0.48. This is interesting indicating that this new

test is more capable in our purpose.

5. Sample Size Determination for Tolerance Interval

The most popular technique to judge if a production lot is accepted is the
acceptance sampling plan which specifies a sample size n and an acceptance
number ¢ and the lot is accepted if the number of defective items in this sample
is less than or equal to ¢. An important question in acceptance sampling plan
approach is to determine the sample size that the probabilities of acceptance
when fraction of defectives are p; and py with p; < po, respectively, achieve two
specified values. This is to protect the manufacturer having large probability
of acceptance when fraction defective is as low as p; and protect the consumer
having small probability of acceptance when fraction defective is as large as
p2. This idea may be extended to the acceptance of lots at some confidence by
tolerance intervals.

Suppose that we have a random sample X4, ..., X,, drawn from a distribution
with distribution function Fy. The probability that a product to be acceptable
expressed in (2.1) and the confidence for having proportion 7 of products in a
lot conforming to specification limits expressed in (2.2) are both dependent on
parameter 6, specification limits LSL, USL and lot size k. However, its power
of (4.2) actually relies on the efficiency of the estimator of unknown parameter
0. Generally, efficiency may be improved when sample size n is increased.

Hence, the sample size n should be set to satisfy the consumer with a small

12



power of (4.2) when the interval of specification limits is shorter and to satisfy
the manufacturer with a large power when the interval is wilder.

We conduct a simulation to generate the power function (4.4) for normal
distribution and display the simulated power functions for several sample sizes.

The resulted power functions are shown in Figure 1.

Confidence Curves Varying Sampling Size

o _| n=50
- n=20
n=10
[ee]
g
2
=
I
o
o ©
a o |
(]
[8)
c
Il
a
8 =
[5)
<O
N
g
o
S
I I I I
1.0 15 2.0 2.5

Spec

The graph that plots the confidence g(Spec) versus the specification limits
may be called the OC graph. It is interesting to design a tolerance interval
requiring that the confidence is a desired large value when the interval of spec-
ification limits is wilder and it is a desired small value when the interval is

shorter. That is, with (LSLy,USL,) C (LSL,USL) C (LSLy, USL,) and
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q1 < @3, find sample size n such that the followings
Fof fo(@)dz = pe} < @1
(Tl,Tg)ﬂ(LSLl,USLl)

(5.1)

Pof fo(x)dz > pe} > go.
(Tl,TQ)ﬂ(LSLQ,USLQ)

We consider an empirical solution of sample size n as minimum n satisfying

the following equations

m

S On(@)dz > po) < a1
=1 (3 t5)N(LSLy1,USLy)

1
m

(5.2)

m

S / B bao (@)dT > ) > do.
j=1 (t{,t%)ﬂ(LSLQ,USLQ)

1
m

For the purpose of sample size determination, we further make the following
assumptions:
(a) The lot size k and percentage value « are both fixed.
(b) The parameter(s) is assumed to be known as 6y. For case that € is not
known, we assume that there is a training sample for us to estimate it.

Let’s use the normal distribution as an example for explaining the technique
of sample size determination. The sample size is determined from (5.2) with
item reliability

pitem(spec) — Q) (M> _ @ <M> .

0o 00

Without lose of generality, we let py = 0 and 09 = 1 and for our convenience,

we let specification limits {LSL,USL} = {—¢,¢}. The item reliability then is

Pitem(£) = ®(£) — B(0).

14



We choose k = 1,000. From Table 2, the specification limits (LSL,USL) =
(—1.7184,1.7184) guarantees to meet percentage 0.9 acceptable products at
confidence 0.95. However, suppose that the manufacturer asks for probability
0.3 or lesser of accepting the lots most of the time when the specification limits
are {LSL;,USL;} = {—1.5,1.5} and probability 0.7 or more of accepting
the lots most of the time when the specification limits are {LSLy,USLy} =
{—1.9,1.9}. These conditions require sample size n = 12. There are other two

cases of conditions that the sample sizes are also listed in Table 10.

Table 10. Desired sample sizes meet the probabilities of acceptance of lots

when the interval of specification limits is wilder or shorter.

Specy ¢ Specy 02 n
(—1.5,1.5) 0.3 (—=1.9,1.9) 0.7 12
(—=1.5,1.5) 0.2 (—=1.9,1.9) 0.8 32
(—=1.5,1.5) 0.1 (=1.9,1.9) 0.9 78

This explanation of sample size determination involves a simpler design of
specification limits. For purpose of general applications, further studies are

needed.
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Table 3. Powers of the minimum-width tolerance interval ((v,1 — «)

(0.9,0.95)) k = 1000

Tables

Limits n =20 n =30 n = 50
) (2.310) (2.140) (1.969)

= 11).3:7ié4— 08 0.0019 0008 nou
= 0,000 0.0043 00053 o
o= 117899 00101 00096 ro
b 3‘.8 0.1213 0.1888 0.3777

b 3(2) 0.9611 0.4224 0.7313

2 ?g 0.5528 0.7829 0.9730

b ?:8 0.9111 0.9898 1.0000

b ?{g 0.9934 0.9999 1.0000
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Table 4. Powers of the minimum-width tolerance interval ((v,1 — «)

(0.9,0.95)) k = 10000

Limits n = 20 n = 30 n = 50

(m) (2.310) (2.140) (1.969)

g = 9.b71:7i7t _71 0.0015 0-0009 o0
g = 2.5:6;é5— 25 00045 008 v
b i.‘g 0.0416 0.0571 0.1002

b ?8 0.1227 0.1890 0.3758

b ?:g 0.2622 0.4231 0.7274

Z ?:g 0.5528 0.7832 0.9719

b ?1)'.8 0.9112 0.9898 1.0000

b ?8 0.9932 1.0000 1.0000
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Table 5. Powers of the minimum-width tolerance interval ((v,1 — «a) =

(0.9,0.95)) k = 100000

Limits n =20 n =30 n = 50
) (2.310) (2.140) (1.969)
quzl(-)‘l 0.0017 0.0009 0.0003
b=15 0.0043 0.0031 0.0029

g = 7.83579¢ — 232
g= 3.1870297226 — 23 00106 0-0097 DO
q 1;2().5562512592 T, 00161 N
b 112 0.0430 0.0558 0.1016
b ?8 0.1215 0.1889 0.3762
b ?3 0.2616 0.4222 0.7272
2 ?g 0.5512 0.7803 0.9719
b ?1>8 0.9114 0.9904 1.0000
b i)g 0.9941 1.0000 1.0000
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Table 7. Powers of the minimum-width tolerance interval and coverage in-
terval based tolerance interval ((y,1 —a) = (0.9,0.95), k = 1000)

Limits ”S:TEO CITL ”STFE’O CITL ”S:TEO CITL
b=14 0.1067 0.1074 0.0651 0.0659 0.0258 0.0269
b=15 0.1954 0.1966 0.1496 0.1511 0.0892 0.0923
b=16 0.3140 0.3154 0.2799 0.2826 0.2273 0.2339
b= 1.645 0.3746 0.3763 0.3529 0.3560 0.3132 0.3206

b=1.7184 0.4781 0.4800 0.4813 0.4850 0.4773 0.4875

b=138 0.5950 0.5969 0.6420 0.6273 0.6565 0.6661
b=2 0.8245 0.8257 0.8781 0.8799 0.9357 0.9401
b=22 0.9458 0.9465 0.9780 0.9786 0.9953 0.9959
b=2.5 0.9956 0.9957 0.9993 0.9993 1 1
b=3 1 : 1 1 1 1
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Table 8. Powers of the minimum-width tolerance interval and coverage
interval based tolerance interval ((y,1 — «a) = (0.9,0.95), k = 10000)

Limits ”S:TEO CITL ”STFE’O CITL ”S:TEO CITL
b=14 0.1413 0.1419 0.0942 0.0949 0.0459 0.0468
b=15 0.2465 0.2475 0.2022 0.2035 0.1415 0.1411
b=16 0.3814 0.3824 0.3586 0.3604 0.3251 0.3297
b=1.645 0.4434 0.4448 0.4387 0.4408 0.4258 0.4308
b = 1.6686 0.4781 0.4793 0.4836 0.4856 0.4788 4841
b=1.8 0.6675 0.6686 0.7096 0.7116 0.7673 0.7719
b=2 0.8739 0.8747 0.9232 0.9243 0.9688 0.9701
b=2.2 0.9665 0.9668 0.9887 0.9889 0.9986 0.9986
b=25 0.9978 0.9978 0.9998 0.9998 1 1
b=3 1 1 1 1 1 1
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Table 9. Powers of the minimum-width tolerance interval and coverage
interval based tolerance interval ((y,1 — «a) = (0.9,0.95), k = 100000)

Limits ”S:TEO CITL ”STFE’O CITL ”S:TEO CITL
b=14 0.1528 0.1534 0.1067 0.1074 0.0539 0.0548
b=15 0.2642 0.2650 0.2227 0.2242 0.1671 0.1695
b=16 0.3995 0.4003 0.3858 0.3876 0.3603 0.3639
b=1.645 0.4688 0.4699 0.4695 0.4713 0.4626 0.4668
b= 1.6525 0.4786 0.4797 0.4813 0.4831 4835 0.4877
b=1.8 0.6898 0.6909 0.7368 0.7385 0.7965 0.8003
b=2 0.8875 0.8880 0.9348 0.9357 0.9757 0.9765
b=22 0.9724 0.9726 0.9916 0.9918 0.9991 0.9992
b=25 0.9983 0.9983 0.9999 0.9999 1 1
b=3 1 1 1 1 1 1
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