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摘       要 

 容忍區間經常被用來研究一批貨物中具有γ比例良品的信心是

否達到特定水準。此篇文章說明此信心實際上是一個未知的參數，並

且證明一般所使用的 Eisenhart et al.(1941)所提出之最短容忍區

間，其所宣稱之信心是不適切的。我們將會提出一個更適切的檢定方

法來檢定實際的信心水準。最後將會根據新方法建立或決定樣本數的

大小，以期當實際信心高於或是低於預期的時候，能夠平衡生產者的

風險及利益。 
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Statistical Inferences for Confidence of Percentage γ

Acceptable Products in Lot

Student:Su-Yin Hsiao Advisor:Dr. Lin-An Chen

Institute of Statistics

National Chiao Tung University

Abstract

The tolerance interval is often used to investigate if there is γ per-

centage of acceptable products in a lot at some desired confidence. This

paper shows that this confidence, with percentage γ fixed, is actually

an unknown parameter and shows the popularly used shortest version

of tolerance interval by Eisenhart et al. (1941) is not capable to serve

as a test statistic for hypothesis assuming the unknown confidence to be

a desired constant q0. A new test is shown to be more capable in this

purpose. The sample size determination based on this new test ensuring

to protect the manufacturer’s benefits and risks when the specification

limits indicate true confidence well, respectively, above and below q0 has

been studied.
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1. Introduction

The tolerance interval is popularly used by manufacturer and consumer

for judgement of production lots. In mass-production, the manufacturer is

interesting in an interval that contains a specified (usually large) percentage

of the product and he knows that unless a fixed proportion (say γ) of the

production is acceptable in the sense that the items’ characteristics conform to

specification limits LSL and USL, he will lose money in this production. On

the other hand, if this claim is not true, it will entail the consumer a loss of

money. With this interest, the manufacturer and consumer want to know the

following:

Whether there is percentage γ of acceptable measurements

in a production lot?
(1.1)

Statisticians seek solution to verify this problem through two steps. We start

with a random sample X = (X1, ..., Xn)′ from a distribution with probability

density function fθ(x) representing observations from the same production pro-

cess. For the first step, the pioneer article Wilks (1941) introduced a γ-content

tolerance interval with confidence 1− α which is defined as a random interval

(T1, T2) = (t1(X), t2(X)) satisfying

Pθ{Pθ[X0 ∈ (T1, T2)|X] ≥ γ} ≥ 1− α for θ ∈ Θ (1.2)

where X0 represents the future observation from the same production process.

Let (t1, t2) be the observed of this tolerance interval. The general rule for

verifying a manufacturer’s problem using the tolerance interval is as follows:

If (t1, t2) ⊂ (LSL,USL), the lot of product is acceptable,

because we have confidence 1− α

that at least 100γ% of the products

conform to specification limits.

(1.3)

Much attention has been paid for developing tolerance intervals, for examples

Wilks (1941), Wald (1943), Paulson (1943), Guttman (1970) and, for a review,
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Patel (1986). In general, a common effort been made in the literature is to

investigate the version with minimum width, for which Eisenhart et al. (1947)

constructed an approximate minimum width tolerance interval for normal ran-

dom variable. This normal tolerance interval is now popularly implemented in

manufacturing industries and is presented in text books of engineering statis-

tics. The interest of this paper is to study if the tolerance interval is appropriate

to deal with problem in (1.1) for the manufacturer and consumer.

To study the appropriateness of tolerance interval in this engineering prob-

lem, we need to clarify its role with classical hypothesis testing problem. The

classical hypothesis testing problem set a simple hypothesis and derive a test

with a specified significance level, usually a small value such as 0.05 or 0.01.

However, varied philosophies set null hypothesis in different ways that may

lead to completely different conclusions. The most commonly accepted rule for

setting null hypothesis through the following philosophy:

If one wishes to prove that a hypothesis A is true,

one first assumes that it isn’t true.
(1.4)

This philosophy favors right of the consumer (buyer). In a clinical trial, one

wish to see if a new drug has a different effect. In general, the null hypothesis

might be that the new drug is no better, on average, than the current drug.

Why is this philosophy in these problems? Switching a new product (drug)

or technique usually requires large initial expenditures, and a decision maker

should not do so unless the new product is significantly better than the old

one.

There is an approach of philosophy considers a situation employed in some

engineering problems. The quality of product is distributed from background

noise and abnormal noise. If the process operator adjust the process based on

the tests performed periodically for hypothesis defined from rule of (1.4), it will

often overacted to the background noise and to deteriorate the performance of

the process. Hence, to prevent this unnecessary adjustment, a rule guiding the
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null hypothesis is as follows:

Unless it is broken, we do not fix it. (1.5)

This rule follows based on the philosophy from the aspect of the manufacturer

(producer).

In the on line quality control, without evidence of existing assignable cause,

the manufacturing process is considered to be in control. For example, for

detecting if there is a mean shift, one construct the X̄ chart as

UCL = µ0 + 3 σ0√
n

LCL = µ0 − 3 σ0√
n

(1.6)

where µ0 and σ0 are, respectively, the mean and standard deviation for in con-

trol process. Probability 0.9973 of acceptable region does in favor of hypothesis

H0. Why use this philosophy for process control? Suppose that the process

operators adjust the manufacturing process based on tests obeying philosophy

one. Only strong evidence showing in data for supporting the hypothesis of

in control process will make the operators often overreacted to the random

cause for unnecessary process adjustments. These unnecessary process adjust-

ments can actually result in a deterioration of process performance. From the

above discussion, the process control using the control chart does follows the

philosophy of (1.5) assuming that the process is in control as the hypothesis.

Not all statistical hypotheses problems design a test with null hypothesis

following a philosophy only to protect the risk of either the manufacturer or the

consumer. Acceptance sampling, popularized by Dodge and Roming and was

originally applied by the U.S. military, provides a rule of decision of accepting or

rejecting a production lot. With a sample of size n for items selected at random

from a lot, a plan as denoted as {n, c} is conducted with lot accepted when

there are defectives of number less than or equal to c. By calling the percentage

defective as average quality level (AQL), this plan is generally designed to have

high probability of lot acceptance when there is low AQL value and to have

low probability of lot acceptance when there is large AQL value.
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On the other hand, a test based on tolerance interval expects to have high

probability of hypothesis acceptance when lots of production are with γ per-

centage of acceptable products at confidence remarkably larger than 1−α and

to have low probability of hypothesis acceptance when lots of production are

with γ percentage of acceptable products at confidence remarkably lower than

1−α. Hence, this kind of test should not accompany with hypothesis following

the philosophy only to protect the risk of either the manufacturer or the con-

sumer. We will see that for lots of production, the confidence for γ percentage

of acceptable products may be formulated as an unknown parameter. The test

presented in (1.3) in fact deals with a hypothesis on value of this unknown

confidence. Hence there are two problems we may concern that we want to

deal in this paper. (a) Is the test presented in (1.3) appropriate for protecting

both the risks of manufacturer and consumer? (b) Is there alternative test,

also formulated based on tolerance interval, that performs better to protect

the risks of manufacturer and consumer.

This paper formulate the unknown confidence in Section 2, for a γ percent-

age acceptable products, in an explicit expression. We then study in Section

3 the power of the γ content tolerance interval of Eisenhart et al. (1947) with

test of (1.3). We will propose in Section 4 a new test for the same purpose of

studying if there is γ percentage of acceptable products at confidence 1 − α.

A sample size determination problem will also be studied in Section 5 that

guarantees a low probability of acceptance of the hypothesis when the true

specification limits are moderately shorter than the desired ones and a large

probability of acceptance of the hypothesis when the true specification limits

are moderately wider than the desired ones.

2. Specification Settings for Achieving Percentage γ Acceptable

Products at a Fixed Confidence

Let X be a random variable having distribution function Fθ with probability

density function fθ(x) and the specification limits for product characteristic X
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is {LSL,USL}. We call the probability that a product to be acceptable

pitem(θ) =

∫ USL

LSL

fθ(x) dx = Fθ(USL)− Fθ(LSL) (2.1)

the item reliability where Fθ is the distribution function. Suppose that the lot

size is known as constant k (usually a large number). For this production lot,

the number of acceptable products is with binomial distribution b(k, pitem(θ)).

Then the true confidence for having proportion γ of production lot conforming

to specification limits is

q =
∑k

i=[kγ]

k
i

 pitem(θ)i(1− pitem(θ))k−i. (2.2)

This expression shows that the confidence of a γ percentage of acceptable prod-

ucts in lots interesting for the manufacturer actually is an unknown parameter.

Hence, the interest for a manufacturer is to test the following hypothesis:

H∗ : q ≥ q0 (2.3)

for some specified (large) value q0. We wouldn’t call H∗ a null or alternative

hypothesis since it is not appropriate to consider a classical test for it.

The classical approach to test H∗ is rule (1.3) through a γ-content tolerance

interval (T1, T2) at confidence q0 that may be re-written as

Accept H∗ if (t1, t2) ⊂ (LSL,USL) (2.4)

where (t1, t2) is the observation of (T1, T2) (see Bowker and Goode (1952) and

Papp (1992) for this application). With this observation that there is an un-

known true confidence, it raises the question that what we may expect a test

for its power function representing the probability that H∗ is accepted.

Recall that the manufacturer expects to have proportion γ or more accept-

able products at confidence q0. Let’s define the minimum item reliability that

guarantees proportion γ acceptable products at confidence q0 as pq0 satisfying

∑k
i=[kγ]

k
i

 (pq0)
i(1− pq0)k−i = q0. (2.5)
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With product’s characteristic variable having a distribution function Fθ, the

manufacturer is desired to have item reliability pitem(θ) with

pitem(θ) = Fθ(USL)− Fθ(LSL) ≥ pq0 . (2.6)

From (2.5), the manufacturer will loss money most of the times when pitem(θ) is

moderately smaller than pq0 . For a given pairs (γ, q0), we list the item reliabil-

ities that achieve exactly proportion γ of acceptable products with confidence

q0 in the following table.

Table 1. Minimum item reliability pq0

q0 γ = 0.8 0.85 0.9 0.95 0.99

(k = 1, 000)

0.8 0.8099 0.8587 0.9071 0.9549 0.9918

0.85 0.8123 0.8608 0.9089 0.9562 0.9923

0.9 0.8152 0.8635 0.9111 0.9577 0.9929

0.95 0.8196 0.8673 0.9142 0.9599 0.9938

0.99 0.8277 0.8744 0.9200 0.9638 0.9952

k = (10, 000)

0.8 0.8033 0.8529 0.9025 0.9518 0.9907

0.85 0.8040 0.8536 0.9030 0.9522 0.9909

0.9 0.8050 0.8545 0.9038 0.9527 0.9912

0.95 0.8064 0.8557 0.9048 0.9534 0.9915

0.99 0.8091 0.8581 0.9068 0.9549 0.9921

k = (100, 000)

0.8 0.8010 0.8509 0.9008 0.9505 0.9902

0.85 0.8013 0.8512 0.9010 0.9507 0.9903

0.9 0.8016 0.8514 0.9012 0.9509 0.9904

0.95 0.8021 0.8518 0.9016 0.9511 0.9905

0.99 0.8029 0.8526 0.9022 0.9516 0.9907

We will derive the specification limits that achieve the minimum item reli-

ability for advanced study later in this paper . Suppose that the characteristic
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variable of interest obeys a normal distribution N(µ, σ2). Then item reliability,

the probability that an item conforming to specifications, is

pitem(µ, σ) =

∫ USL

LSL

1√
2πσ

e−
(x−µ)2

2σ2 dx

and then the true confidence to have proportion γ acceptable products is

q =
∑k

i=[kγ]

k
i

 pitem(µ, σ)i(1− pitem(µ, σ))k−i

=
∑k

i=[kγ]

k
i

(Φ (USL−µ
σ

)
− Φ

(
LSL−µ

σ

))i (
1−

(
Φ
(
USL−µ

σ

)
− Φ

(
LSL−µ

σ

)))k−i
.

A production lot to have proportion γ acceptable products with confidence q0

requires that

pitem(µ, σ) = Φ

(
USL− µ

σ

)
− Φ

(
LSL− µ

σ

)
≥ pq0 (2.7)

where pq0 may be found in Table 1.

One interesting question is that how short the specification limits should

be to achieve the minimum item reliability. Let the specification limits be

{LSL,USL} = {µ − lσ, µ + lσ} and we denote lq0 as the l so that the item

reliability is

pq0 = P (µ− lq0σ ≤ X ≤ µ+ lq0σ).

We list lq0 in this design in the following table.
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Table 2. Specification limits (LSL,USL) = (µ− lq0σ, µ+ lq0σ) to achieve item

reliability exactly equal to pq0

q γ = 0.8 0.85 0.9 0.95 0.99

(k = 1, 000)

0.8 1.3102 1.4711 1.6807 2.0043 2.6456

0.85 1.3174 1.4790 1.6898 2.0161 2.6682

0.9 1.3265 1.4890 1.7013 2.0310 2.6947

0.95 1.3397 1.5037 1.7184 2.0532 2.7372

0.99 1.3650 1.5317 1.7508 2.0955 2.8210

(k = 10, 000)

0.8 1.2910 1.4499 1.6569 1.9752 2.6020

0.85 1.2931 1.4525 1.6597 1.9787 2.6096

0.9 1.2961 1.4556 1.6633 1.9833 2.6187

0.95 1.3001 1.4601 1.6686 1.9901 2.6324

0.99 1.3080 1.4689 1.6786 2.0033 2.6561

k = (100, 000)

0.8 1.2845 1.4428 1.6488 1.9647 2.5841

0.85 1.2853 1.4436 1.6497 1.9662 2.5879

0.9 1.2861 1.4446 1.6509 1.9647 2.5906

0.95 1.2875 1.4460 1.6525 1.9698 2.5928

0.99 1.2900 1.4489 1.6554 1.9737 2.6007

This table will be used in next section to study the power of the classical tol-

erance interval in detection of manufacturer’s confidence.

3. Power of the Classical Tolerance Interval

Suppose that we have X1, ..., Xn a random sample for the characteris-

tic variable of interest and the specification limits for the characteristic are

{LSL,USL}. Let (T1, T2) be a tolerance interval of Wilks (1941) constructed

from the random sample. One of the popular applications of tolerance interval

8



is to test hypothesis H∗ based on rule of (2.4). With the fact that the true

confidence is a parameter, it is interesting to evaluate power function of this

tolerance interval, in terms of specification limits, is

π(LSL,USL) = Pθ((T1, T2) ⊂ (LSL,USL)). (3.1)

It provides the probability that we should conclude that there is proportion γ

or more acceptable products in a lot at confidence 1−α. The optimal tolerance

interval, if there is, should have power value 1 for q ≥ q0 and value zero for

q < q0. This is generally not attainable. Hence, there are two properties that

we expect a tolerance interval to be satisfies:

(a) The power function is nondecreasing in terms of item reliability pitem.

(b) For a balance of the manufacturer’s benefits and risks, the power when true

confidence q is equal to q0 is close to 0.5.

We want to simulate the powers for the Eisenhart et al.’s tolerance interval

for several combinations of specification limits. Let’s set replication number

m and specification limits (LSL,USL) = (−b, b). The simulated power of a

tolerance interval (T1, T2) is defined as

π̂ =
1

m

m∑
j=1

I((tj1, t
j
2) ⊂ (−b, b)) (3.2)

where (tj1, t
j
2) is the observation of (T1, T2) from the jth sample. The power

of (3.2) simulates the chance of (3.1) that the tolerance interval (T1, T2) may

conclude that the production lot includes a proportion γ of acceptable products

with confidence 1− α.

To study (3.2), suppose that the random sample X1, ..., Xn is drawn from

normal distribution N(µ, σ2) where both µ and σ are unknown. The general

form of a prediction interval for a future normal random variable is of the form

(X̄ −m∗s, X̄ +m∗s) (3.3)

where the 100(1 − α)% confidence interval (prediction interval) is the form

with m∗ = t1−α
2
(n − 1)

√
1 + 1

n
and where t1−α

2
(n − 1) represents the 1 −

9



α
2
th quantile of the central t-distribution with degrees of freedom. For the

Wilks’ tolerance interval, Eisenhart et al. (1947) developed the shortest one

which is now the most popular version of tolerance interval to deal with the

manufacturer’s problem when the characteristic variable does obey a normal

distribution. We select values m∗ corresponding with γ = 0.9, 1 − α = 0.95

from the table developed in Eisenhart et al. (1947).

With replication m = 100, 000, we generate random sample of size n from

distribution N(0, 1). Let X̄j and S2
j be the sample mean and sample variance

for jth sample. We compute this tolerance interval and study its powers of

(3.2) with several sample size n = 20, 30, 50 and various values b where b =

1.7184, 1.6686 and 1.6525 corresponds, respectively, to specification limits such

that their true confidences are identical to 1−α = 0.95. The simulated results

are listed in Table 3,4,5.

We have several comments drawn from the these tables:

(a) As expected, the power of the tolerance interval is increasing when the

specification limits are wider indicating increasing in pitem. For b ≥ 1.7184

with k = 1, 000, the corresponding confidence q ≥ q0 = 0.95, we see that the

larger the sample size the more the chance (probability) to accept H∗.

(b) When b = 1.7184 for k = 1, 000, the process does guarantee confidence 0.95

with percentage 0.9 of acceptable products. However, the simulated power

values are 0.0257, 0.0289, 0.0466, respectively, for sample sizes n = 20, 30, 50.

These revealed little chance to observe that the lots are already γ = 0.9 per-

centage of acceptable products at confidence 0.95. Hence, the test of (2.3) is

not satisfactory in losing benefits for the manufacturer.

4. A New Test Based on Tolerance Interval

A test for hypothesis H∗ is expected to have power not too far from 0.5

when q = q0 is true. The classical test based on tolerance interval does not

meet this requirement. We then introduce a new test.

Suppose that we have an appropriate estimate, denoted by θ̂ of parameter

θ and then we have estimated probability density function of characteristic

10



variable X as fθ̂(x). The rule of the new test for hypothesis H∗ of (2.3) is:

Accepting H∗ if

∫
(t1,t2)∩(LSL,USL)

fθ̂(x)dx ≥ pq0 . (4.1)

We have two comments for setting the above rule to test hypothesis H∗:

(a) For given a γ-content tolerance interval (T1, T2) at confidence 1 − α, if

its observation (t1, t2) does contain percentage of products conforming with

specification limits pq0 or more, we conclude with confidence 1 − α that there

is percentage γ acceptable products in a lot.

(b) This test sets test statistic
∫

(T1,T2)∩(LSL,USL)
fθ̂(x)dx. However, the critical

point pq0 is not the cut off point based on distribution of the test statistic.

Hence, this test does not follows the classical hypothesis testing to ensures a

specified significance level.

With this test, the power function is

Pθ{
∫

(T1,T2)∩(LSL,USL)

fθ̂(x)dx ≥ pq0}. (4.2)

Consider that we have a random sample X1, ..., Xn drawn from the distri-

bution N(µ, σ2). Let µ̂ = x̄ and σ̂2 = 1
n−1

∑n
i=1(xi − µ̂)2. The rule for testing

hypothesis H0 is:

Accepting H0 if

∫
(t1,t2)∩(LSL,USL)

φµ̂,σ̂(x)dx ≥ pq0 , (4.3)

and the empirical power of tolerance interval (T1, T2) is

π̂Spe =
1

m

m∑
j=1

I(

∫
(tj1,t

j
2)∩(LSL,USL)

φµ̂,σ̂(x)dx ≥ pq0). (4.4)

We conduct a simulation with the same design set in Section 3 to study

the power function of this new test. The simulated results for lot sizes, k =

1, 000, 10, 000, 100, 000 are listed in Tables 7,8,9 (see these tables in the end of

this paper). However, the tolerance intervals considered including the shortest

version (STL) and the version (CITL) developed by Huang, Chen and Welsh

(2007).

We have several comments drawn from Tables 7,8 and 9:
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(a) Monotone power values are as our expectation. However, the power values

are relatively higher than them based on test of (2.4). Hence, there are larger

probabilities in all settings of specification limits and sample sizes for accepting

H∗.

(b) There is no significant differences in the performance between the shortest

tolerance interval and the version of Huang, Chen and Welsh.

(c) When b is the value (1.7184 for k = 1, 000, 1.6686 for k = 10, 000 and 1.6525

for k = 100, 000) that the true confidence is identical to 0.95 the simulated

power values are all close to 0.48. This is interesting indicating that this new

test is more capable in our purpose.

5. Sample Size Determination for Tolerance Interval

The most popular technique to judge if a production lot is accepted is the

acceptance sampling plan which specifies a sample size n and an acceptance

number c and the lot is accepted if the number of defective items in this sample

is less than or equal to c. An important question in acceptance sampling plan

approach is to determine the sample size that the probabilities of acceptance

when fraction of defectives are p1 and p2 with p1 < p2, respectively, achieve two

specified values. This is to protect the manufacturer having large probability

of acceptance when fraction defective is as low as p1 and protect the consumer

having small probability of acceptance when fraction defective is as large as

p2. This idea may be extended to the acceptance of lots at some confidence by

tolerance intervals.

Suppose that we have a random sample X1, ..., Xn drawn from a distribution

with distribution function Fθ. The probability that a product to be acceptable

expressed in (2.1) and the confidence for having proportion γ of products in a

lot conforming to specification limits expressed in (2.2) are both dependent on

parameter θ, specification limits LSL,USL and lot size k. However, its power

of (4.2) actually relies on the efficiency of the estimator of unknown parameter

θ. Generally, efficiency may be improved when sample size n is increased.

Hence, the sample size n should be set to satisfy the consumer with a small

12



power of (4.2) when the interval of specification limits is shorter and to satisfy

the manufacturer with a large power when the interval is wilder.

We conduct a simulation to generate the power function (4.4) for normal

distribution and display the simulated power functions for several sample sizes.

The resulted power functions are shown in Figure 1.
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The graph that plots the confidence q(Spec) versus the specification limits

may be called the OC graph. It is interesting to design a tolerance interval

requiring that the confidence is a desired large value when the interval of spec-

ification limits is wilder and it is a desired small value when the interval is

shorter. That is, with (LSL1, USL1) ⊂ (LSL,USL) ⊂ (LSL2, USL2) and
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q1 < q2, find sample size n such that the followings

Pθ{
∫

(T1,T2)∩(LSL1,USL1)

fθ̂(x)dx ≥ pq0} ≤ q1

(5.1)

Pθ{
∫

(T1,T2)∩(LSL2,USL2)

fθ̂(x)dx ≥ pq0} ≥ q2.

We consider an empirical solution of sample size n as minimum n satisfying

the following equations

1

m

m∑
j=1

I(

∫
(tj1,t

j
2)∩(LSL1,USL1)

φµ̂,σ̂(x)dx ≥ pq0) ≤ q1

(5.2)

1

m

m∑
j=1

I(

∫
(tj1,t

j
2)∩(LSL2,USL2)

φµ̂,σ̂(x)dx ≥ pq0) ≥ q2.

For the purpose of sample size determination, we further make the following

assumptions:

(a) The lot size k and percentage value γ are both fixed.

(b) The parameter(s) is assumed to be known as θ0. For case that θ is not

known, we assume that there is a training sample for us to estimate it.

Let’s use the normal distribution as an example for explaining the technique

of sample size determination. The sample size is determined from (5.2) with

item reliability

pitem(Spec) = Φ

(
USL− µ0

σ0

)
− Φ

(
LSL− µ0

σ0

)
.

Without lose of generality, we let µ0 = 0 and σ0 = 1 and for our convenience,

we let specification limits {LSL,USL} = {−`, `}. The item reliability then is

pitem(`) = Φ(`)− Φ(`).

14



We choose k = 1, 000. From Table 2, the specification limits (LSL,USL) =

(−1.7184, 1.7184) guarantees to meet percentage 0.9 acceptable products at

confidence 0.95. However, suppose that the manufacturer asks for probability

0.3 or lesser of accepting the lots most of the time when the specification limits

are {LSL1, USL1} = {−1.5, 1.5} and probability 0.7 or more of accepting

the lots most of the time when the specification limits are {LSL2, USL2} =

{−1.9, 1.9}. These conditions require sample size n = 12. There are other two

cases of conditions that the sample sizes are also listed in Table 10.

Table 10. Desired sample sizes meet the probabilities of acceptance of lots

when the interval of specification limits is wilder or shorter.

Spec1 q1 Spec2 q2 n

(−1.5, 1.5) 0.3 (−1.9, 1.9) 0.7 12

(−1.5, 1.5) 0.2 (−1.9, 1.9) 0.8 32

(−1.5, 1.5) 0.1 (−1.9, 1.9) 0.9 78

This explanation of sample size determination involves a simpler design of

specification limits. For purpose of general applications, further studies are

needed.
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Tables

Table 3. Powers of the minimum-width tolerance interval ((γ, 1 − α) =

(0.9, 0.95)) k = 1000

Limits n = 20 n = 30 n = 50
(m∗) (2.310) (2.140) (1.969)

b = 1.4
q = 1.371e− 08

0.0019 0.0008 0.0004

b = 1.5
q = 0.00071

0.0043 0.0033 0.0025

b = 1.6
q = 0.17899

0.0104 0.0096 0.0111

b = 1.645
q = 0.52786

0.0157 0.0153 0.0204

b = 1.7184
q = 0.949878

0.0257 0.0289 0.0466

b = 1.8
q = 0.9995

0.0436 0.0556 0.1001

b = 2.0
q = 1.0

0.1213 0.1888 0.3777

b = 2.2
q = 1.0

0.2611 0.4224 0.7313

b = 2.5
q = 1.0

0.5528 0.7829 0.9730

b = 3.0
q = 1.0

0.9111 0.9898 1.0000

b = 3.5
q = 1.0

0.9934 0.9999 1.0000
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Table 4. Powers of the minimum-width tolerance interval ((γ, 1 − α) =

(0.9, 0.95)) k = 10000
Limits n = 20 n = 30 n = 50

(m∗) (2.310) (2.140) (1.969)

b = 1.4
q = 9.71747e− 71

0.0015 0.0009 0.0005

b = 1.5
q = 5.569e− 25

0.0045 0.0028 0.0022

b = 1.6
q = 0.00099

0.0109 0.0093 0.0108

b = 1.645
q = 0.5124351

0.0155 0.0150 0.0205

b = 1.6686
q = 0.9501104

0.0181 0.0186 0.0270

b = 1.8
q = 1.0

0.0416 0.0571 0.1002

b = 2.0
q = 1.0

0.1227 0.1890 0.3758

b = 2.2
q = 1.0

0.2622 0.4231 0.7274

b = 2.5
q = 1.0

0.5528 0.7832 0.9719

b = 3.0
q = 1.0

0.9112 0.9898 1.0000

b = 3.5
q = 1.0

0.9932 1.0000 1.0000
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Table 5. Powers of the minimum-width tolerance interval ((γ, 1 − α) =

(0.9, 0.95)) k = 100000

Limits n = 20 n = 30 n = 50
(m∗) (2.310) (2.140) (1.969)

b = 1.4
q = 0

0.0017 0.0009 0.0003

b = 1.5
q = 7.83579e− 232

0.0043 0.0031 0.0029

b = 1.6
q = 3.809744e− 23

0.0106 0.0097 0.0108

b = 1.645
q = 0.5153559

0.0154 0.0147 0.0206

b = 1.6525
q = 0.9521992

0.0160 0.0161 0.0223

b = 1.8
q = 1.0

0.0430 0.0558 0.1016

b = 2.0
q = 1.0

0.1215 0.1889 0.3762

b = 2.2
q = 1.0

0.2616 0.4222 0.7272

b = 2.5
q = 1.0

0.5512 0.7803 0.9719

b = 3.0
q = 1.0

0.9114 0.9904 1.0000

b = 3.5
q = 1.0

0.9941 1.0000 1.0000
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Table 7. Powers of the minimum-width tolerance interval and coverage in-
terval based tolerance interval ((γ, 1− α) = (0.9, 0.95), k = 1000)

Limits
n = 20
STL

CITL
n = 30
STL

CITL
n = 50
STL

CITL

b = 1.4 0.1067 0.1074 0.0651 0.0659 0.0258 0.0269

b = 1.5 0.1954 0.1966 0.1496 0.1511 0.0892 0.0923

b = 1.6 0.3140 0.3154 0.2799 0.2826 0.2273 0.2339

b = 1.645 0.3746 0.3763 0.3529 0.3560 0.3132 0.3206

b = 1.7184 0.4781 0.4800 0.4813 0.4850 0.4773 0.4875

b = 1.8 0.5950 0.5969 0.6420 0.6273 0.6565 0.6661

b = 2 0.8245 0.8257 0.8781 0.8799 0.9357 0.9401

b = 2.2 0.9458 0.9465 0.9780 0.9786 0.9953 0.9959

b = 2.5 0.9956 0.9957 0.9993 0.9993 1 1

b = 3 1 1 1 1 1 1
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Table 8. Powers of the minimum-width tolerance interval and coverage
interval based tolerance interval ((γ, 1− α) = (0.9, 0.95), k = 10000)

Limits
n = 20
STL

CITL
n = 30
STL

CITL
n = 50
STL

CITL

b = 1.4 0.1413 0.1419 0.0942 0.0949 0.0459 0.0468

b = 1.5 0.2465 0.2475 0.2022 0.2035 0.1415 0.1411

b = 1.6 0.3814 0.3824 0.3586 0.3604 0.3251 0.3297

b = 1.645 0.4434 0.4448 0.4387 0.4408 0.4258 0.4308

b = 1.6686 0.4781 0.4793 0.4836 0.4856 0.4788 4841

b = 1.8 0.6675 0.6686 0.7096 0.7116 0.7673 0.7719

b = 2 0.8739 0.8747 0.9232 0.9243 0.9688 0.9701

b = 2.2 0.9665 0.9668 0.9887 0.9889 0.9986 0.9986

b = 2.5 0.9978 0.9978 0.9998 0.9998 1 1

b = 3 1 1 1 1 1 1
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Table 9. Powers of the minimum-width tolerance interval and coverage
interval based tolerance interval ((γ, 1− α) = (0.9, 0.95), k = 100000)

Limits
n = 20
STL

CITL
n = 30
STL

CITL
n = 50
STL

CITL

b = 1.4 0.1528 0.1534 0.1067 0.1074 0.0539 0.0548

b = 1.5 0.2642 0.2650 0.2227 0.2242 0.1671 0.1695

b = 1.6 0.3995 0.4003 0.3858 0.3876 0.3603 0.3639

b = 1.645 0.4688 0.4699 0.4695 0.4713 0.4626 0.4668

b = 1.6525 0.4786 0.4797 0.4813 0.4831 4835 0.4877

b = 1.8 0.6898 0.6909 0.7368 0.7385 0.7965 0.8003

b = 2 0.8875 0.8880 0.9348 0.9357 0.9757 0.9765

b = 2.2 0.9724 0.9726 0.9916 0.9918 0.9991 0.9992

b = 2.5 0.9983 0.9983 0.9999 0.9999 1 1

b = 3 1 1 1 1 1 1
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