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摘要 

 

傳統的統計製程管制(SPC)方法是直接監控有興趣的產品品質特性。由於現

在科技發達，我們可以很容易的隨著時間點的改變紀錄一些與產品品質特性有相

關的量測值，而這些量測值可以提供產品品質特性額外的資訊。舉例來說，我們

可以在產品完成前，在不同的時間點上記錄品質特性的反應變數值。若我們把這

些記錄值視為產品的剖面(profile)資料，則最終產品之品質特性即為剖面資料

的最後一點。我們可以預期這些輔助的資訊可以提供我們更有效的製程監控方

法。 

本篇論文只探討第二階段的製程監控。我們提出的方法是用有母數、無母數

迴歸的方法來配適產品的剖面資料，且利用配適出來之剖面的最後一點來對製程

進行監控。我們證明利用了輔助資訊來對製程進行監控會有較好的偵測力。 

 

 

關鍵字: 剖面、正交多項式、無母數迴歸、區域多項式迴歸、高斯隨機過程 
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Enhancing the Power of Process Control by Utilizing

Auxiliary Information in Profiles

Student: Hsiang-Ling Huang Advisor: Dr. Jyh-Jen Horng Shiau

Institute of Statistics

National Chiao Tung University

Abstract

Traditional control charting methods in statistical process control monitor the

quality characteristic of the product or process of interest directly. Now thanks

to well-developed technologies, we can easily record many other related data that

may provide additional information about the quality characteristic at different time

points. For example, we can record the quality response variable along the time

before the end product is finished. If we regard the record of these values as the

profile of a product item, then the quality characteristic of the end product is the

endpoint of the profile. It is natural to expect that this auxiliary information would

be able to help enhancing the control process.

In this study, we focus on Phase II monitoring. Our approach is to fit each

profile by parametric or nonparametric regression methods, and then monitor the

fitted endpoint value instead of the endpoint response. It can be shown that, with

the additional profiles information, the fitted endpoint response has smaller variance

than the endpoint response itself. Accordingly, when compared to the traditional

approach, better detecting power can be achieved with the proposed approach.

Key Words: Profiles, orthogonal polynomials, nonparametric regression, local poly-

nomial smoothing, Gaussian stochastic processes.
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1 Introduction

Control charts, a primary tool in statistical process control (SPC), is powerful in moni-

toring the quality of processes or products and has been widely applied in industries and

other fields since Shewhart introduced the technique in 1924. Standard control charting

usually consists of two distinct phases, namely, Phase I and Phase II. The major goal of

the Phase I is to quickly bring the process into a stable or in-control state and collect

some in-control data so that reliable control limits can be established for effective Phase

II on-line monitoring of future production.

In this study, we only focus on Phase II monitoring. The new approach we propose

for control charting is different from the traditional approach of monitoring the quality

characteristic of interest directly. Our approach is to record the quality characteristic

along the time before the end product is finished. The record as such for a product item,

considered as a function of time, is referred to as the profile of the product item hereafter.

Then, the quality characteristic of the end product is the endpoint of the profile. For

illustration, consider a bottle-filling example as follows. Suppose the quality characteristic

of interest is the total amount of soda in the bottle and the filling process takes 5 seconds

to fill the bottle with soda. Assume that the amount of soda inside the bottle can be

recorded every 250 milliseconds. Then, the response of the end product, i.e., the endpoint

of the profile, is the total amount of soda in the bottle.

While considering each of these records as a profile, we only focus on the endpoint of it.

This is quite different from the usual profile monitoring, in which the quality characteristic

monitored is the whole profile. The profile monitoring has been a popular research topic

in SPC since Kang and Albin (2000) first noted that the quality of some processes can be

better characterized by profiles.

Since our emphasis is on the endpoint of a profile, the rest of the profile can be consid-

ered as auxiliary information. Could we utilize this auxiliary information so as to monitor

the end product more effectively? Or would it assist us to screen out substandard products

more quickly?

Assume there are m profiles and each of them has n measurements. Denote yij as
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the response of the jth profile at the time point xi. Kang and Albin (2000) considered

the following linear fixed-effect model for profiles obtained from an etching process in

semiconductor manufacturing:

yij = A0 + A1xi + εij, i = 1, · · · , n, j = 1, · · · , m, (1)

where the intercept A0 and slope A1 are fixed parameters. The random variables εij are

independent and identically distributed (i.i.d.) as a normal distribution with mean zero

and variance σ2. Kim et al. (2003) also studied this same problem and proposed an

alternative method for linear profile monitoring. The model studied in Kang and Albin

(2000) and Kim et al. (2003) is a fixed-effect model. However, under this model, some

factors such as variations in temperature or pressure, characteristics of the measuring

equipments, and other hard-to-control factors that may affect the response variable are all

categorized as part of the random error εij. For many applications, this simplified model

may not be adequate because some of these hard-to-control factors may affect the values

of the intercept and/or the slope of the linear profile. Shiau et al. (2006) argued that these

hard-to-control factors should be considered as common causes of variation and proposed

a random-effect linear model in order to cope with these common-cause variations. More

specifically, now A0j and A1j are random variables instead of fixed parameters. With the

same reasoning, we consider random-effect models in this study.

To utilize the auxiliary information contained in the profile, we fit each linear profile

by a regression line and estimate the mean of the response at the endpoint by the fitted

value. We then monitor this estimate instead of the original endpoint response. The

reason behind this approach is simple: it is expected that this estimator would have

smaller variance than that of the endpoint response, because we borrow some “strength”

from the rest of the profile; and smaller variance may lead to better detecting power of

the control chart. Our study shows that, with the new approach, better detecting power

is indeed achieved for process monitoring.

We further extend this approach to nonlinear profiles. We believe the new approach

would outperform the traditional approach in practice as well. However, the distribution

of the parametric nonlinear regression estimator of the mean of the endpoint response

2



depends on the form of the parametric model, and is usually too complicated to compare

with the endpoint response analytically. Thus we study the nonparametric regression

approach. The nonparametric regression estimation method we started with was the

kernel smoothing due to its simplicity. Unfortunately, the ordinary kernel estimate has a

serious boundary-effect problem and the endpoint is a boundary point. We then decide to

use the local polynomial smoothing because it is boundary-effect free. By monitoring the

fitted endpoint value of the profile, we prove that better detecting power can be achieved.

The rest of paper is organized as follows. Section 2 reviews the linear profile with

fixed/random effects, orthogonal polynomial regression as described in Montgomery et al.

(2006), nonparametric regression estimation methods including kernel and local polyno-

mial smoothing, and Gaussian stochastic processes. Section 3 studies the proposed ap-

proach with an orthogonal polynomial regression model. Section 4 studies our approach

with a nonparametric regression model. Section 5 demonstrates the proposed methodol-

ogy with two illustrative examples. Section 6 concludes the thesis with a brief summary

and some remarks.

2 Literature Review

2.1 Linear profiles

2.1.1 Linear Profiles with Fixed Effects

Kang and Albin (2000) described the output quality characteristic of a process as a random

variable Y that is a linear function (or profile) of an independent variable X. They modeled

the linear profiles as in (1). For the jth profile, the least squares estimators α0j and α1j

of A0 and A1 respectively are as follows:

a0j = ȳj − a1jx̄ and a1j =
Sxy(j)

Sxx

, (2)

where ȳj =
∑n

i=1 yij/n , x̄ =
∑n

i=1 xi/n , Sxy(j) =
∑n

i=1(xi − x̄)yij , and Sxx =
∑n

i=1(xi−
x̄)2. In this model, the estimators a0j and a1j are not independent.

Kim et al. (2003) coded the x-values by centering so that the average coded-value is

3



zero. With the centered x-values, the least squares estimators of the intercept and slope

are independent random variables. Details can be seen in Myers (1990, p. 11-15).

2.1.2 Linear Profiles with Random Effects

Shiau et al. (2006) considered representing linear profiles with random effects by the

following model:

yij = A0j + A1jxi + εij i = 1, · · · , n, j = 1, · · · , m, (3)

where the response variable yij refers to the ith measurement of the jth profile, random

coefficients A0j’s and A1j’s are i.i.d. as N(α0, σ
2
0) and N(α1, σ

2
1) respectively, and error

variables εij’s are i.i.d. as N(0, σ2
e). Moreover, assume that A0j, A1j, and εij are mutually

independent.

Following Kim et al. (2003), Shiau et al. (2006) centered the x-values so that x̄ = 0

in model (3) for simplicity. To avoid introducing new notation, let the set points xi’s

represent the centered x-values. Shiau et al. (2006) first fitted each profile by linear

regression as follows. For the jth profile, by treating A0j and A1j as two fixed parameters,

the least squares estimators α̂0j and α̂1j of A0j and A1j respectively are

α̂0j = ȳj and α̂1j =
Sxy(j)

Sxx

,

where ȳj =
∑n

i=1 yij/n , Sxy(j) =
∑n

i=1 xi(yij − ȳj)/n =
∑n

i=1 xi yij , and Sxx =
∑n

i=1 x2
i /n.

With centered x-values, they also showed that

(i) α̂01, · · · , α̂0m are i.i.d. N(α0, σ
2
0 + 1

n
σ2

e),

(ii) α̂11, · · · , α̂1m are i.i.d. N(α1, σ
2
1 + 1

Sxx
σ2

e),

and these statistics are mutually independent.

2.2 Orthogonal Polynomial Regression

2.2.1 General Statistical Properties

Using orthogonal polynomials to fit data is a popular method to avoid the ill-conditioning

in computation. We review the orthogonal polynomials as described in Montgomery et
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al. (2006). For a set of data {(xi, yi), i = 1, · · · , n}, consider the orthogonal polynomial

model as follows:

yi = α0P0(xi) + α1P1(xi) + α2P2(xi) + · · · + αkPk(xi) + εi, i = 1, · · · , n,

where Pr(·) is an rth-degree orthogonal polynomial defined such that
n∑

i=1

Pr(xi)Ps(xi) = 0, r �= s, r, s = 0, 1, · · · , k, and P0(xi) = 1, for i = 1, · · · , n.

Rewrite this model in vector form:

y = Xα + εy = Xα + εy = Xα + ε,

where yyy = (y1, · · · , yn)T , ααα = (α0, · · · , αk)
T , εεε = (ε1, · · · , εn)T , and the design matrix

XXX =

⎡
⎢⎢⎢⎢⎢⎢⎣

P0(x1) P1(x1) · · · Pk(x1)

P0(x2) P1(x2) · · · Pk(x2)
...

...
. . .

...

P0(xn) P1(xn) · · · Pk(xn)

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Then XXX has mutually orthogonal columns and

XXXTXXX =

⎡
⎢⎢⎢⎢⎢⎢⎣

∑n
i=1 P 2

0 (xi) 0 · · · 0

0
∑n

i=1 P 2
1 (xi) · · · 0

...
...

. . .
...

0 0 · · · ∑n
i=1 P 2

k (xi)

⎤
⎥⎥⎥⎥⎥⎥⎦

.

The least squares estimator of ααα is α̂̂α̂α = (XXXTXXX)−1XXXTYYY ≡ (α̂0, · · · , α̂k)
T , where

α̂r =

∑n
i=1 Pr(xi)yi∑n
i=1 P 2

r (xi)
, r = 0, 1, · · · , k. (4)

2.2.2 Generating Orthogonal Polynomials with Equally-Spaced x-Values

When the levels of x are equally spaced, the orthogonal polynomials Pr(xi) can be easily

constructed by the following:

P0(xi) = 1,

P1(xi) = λ1(
xi−x̄

d
),

P2(xi) = λ2((
xi−x̄

d
)2 − (n2−1

12
)),

P3(xi) = λ3((
xi−x̄

d
)3 − (xi−x̄

d
)(3n2−7

20
)), and so on,

5



where d is the distance between the levels of x, n is the total number of levels, and {λr}
are constants such that the polynomials will have integer values. See Pearson (1996, Table

47) for more details. Orthogonal polynomials can be calculated directly by the following

method (Seber, 2003, Ch7): if x-values are equally spaced, by transforming them to

xi = i − 1

2
(n + 1),

the orthogonal polynomials of degrees 1-3 are

P0(xi) = 1,

P1(xi) = λ1xi,

P2(xi) = λ2(x
2
i −

1

12
(n2 − 1)),

P3(xi) = λ3(x
3
i − 1

20
(3n2 − 7)xi).

(5)

Again, the purpose of the multiples {λr} here is to make the orthogonal polynomials to

have integer values.

2.3 Fitting Data by Localized Least Squares

In general, the nonparametric regression model is defined as follows:

yi = m(xi) + εi,

where m(x) is the regression function and εi’s are i.i.d. random variables with E(εi) = 0

and V ar(εi) = σ2. In the following, we give a brief review on kernel smoothing and local

polynomial smoothing methods as described in Fan and Gijbels (1996), Schimek (2000),

Simonoff (1996), Ramsay and Silverman (2005), and others.

2.3.1 Kernel Smoothing

The kernel estimator is the simplest and classic estimator obtained by locally averaging

data. In other words, the kernel estimator at a given point x is a linear combination of

local observations, i.e.,

m̂(x) =
n∑

i=1

wi(x)yi (6)
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for some suitably defined weights wi(x). The most popular kernel estimator, the Nadaraya-

Waston estimator, is constructed by using the weights

wi(x) =
Kh(xi − x)

n∑
k=1

Kh(xk − x)

, (7)

where Kh(·) = K(·/h)/h and K is a kernelfunction that is usually a symmetric probabil-

ity density, and parameter h in the weight function is called the bandwidth. Small values

of bandwidth imply that only observations close to x receive some weights, while large h

means that a wide range of observations that are at a considerable distance from x are

used for local averaging. Substituting (7) into (6), the Nadaraya-Waston estimator is

m̂(x) =

n∑
i=1

K
(

xi − x
h

)
yi

n∑
k=1

K
(

xk − x
h

) . (8)

2.3.2 Local Polynomial Smoothing

Suppose the regression function m(x) can be approximated by

m(x) ≈
p∑

v=0

m(v)(x0)

v!
(x − x0)

v ≡
p∑

v=0

βv(x − x0)
v

for x0 in a neighborhood of x, by using Taylor’s expansion. Then a pth degree local

polynomial regression estimator at x0 can be obtained by minimizing

min
βββ

n∑
i=1

{yi −
p∑

v=0

βv(xi − x0)
v}2Kh(xi − x0) , (9)

where βββ = (β0, · · · , βp)
T .

Let XXX be the design matrix

XXX =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 (x1 − x0) · · · (x1 − x0)
p

1 (x2 − x0) · · · (x2 − x0)
p

...
...

. . .
...

1 (xn − x0) · · · (xn − x0)
p

⎞
⎟⎟⎟⎟⎟⎟⎠

.

7



Further, let WWW be the n × n diagonal matrix of weights:

WWW = diag
(
Kh(xi − x0)

)
.

Denote yyy = (y1, · · · , yn)T . Then the weighted least squares problem (9) can be written as

min
βββ

(y − Xβy − Xβy − Xβ)TW (y − Xβ)W (y − Xβ)W (y − Xβ).

The solution vector is

β̂̂β̂β = (XXXTWXWXWX)−1XXXTWyWyWy.

Let SSSn = XXXTWXWXWX, we can write the local polynomial regression estimator β̂̂β̂β as

β̂̂β̂β = SSS−1
n XXXTWyWyWy,

where

SSSn =

⎛
⎜⎜⎜⎜⎜⎜⎝

Sn,0 Sn,1 · · · Sn,p

Sn,1 Sn,2 · · · Sn,p+1

...
...

. . .
...

Sn,p Sn,p+1 · · · Sn,2p

⎞
⎟⎟⎟⎟⎟⎟⎠

with

Sn,v =
n∑

i=1

Kh(xi − x0)(xi − x0)
v. (10)

2.3.3 Local Polynomial Smoothing with Equivalent Kernels

The estimator β̂v of m(v)(x0)/v! can be written as

β̂v = eeeT
v+1β̂̂β̂β = eeeT

v+1SSS
−1
n XXXTWyWyWy =

n∑
i=1

W n
v

(
xi − x0

h

)
yi, v = 0, · · · , p, (11)

where the unit vector eeev+1 = (0, · · · , 0, 1, 0, · · · , 0)T with 1 on the (v + 1)th, and W n
v (t) =

eeeT
v+1SSS

−1
n

(
1, th, · · · , (th)p

)T

K(t)/h. Then the estimator β̂v is a type of kernel estimator

except that the “kernel” W n
v depends on the design points and x0. This dependence

explains why the local polynomial regression estimators adapt automatically to various

designs and to the location x0 (either in the interior or at the boundaries of the support).

It is easy to show that the kernel weight function W n
v satisfies the following discrete

moment conditions: for 0 ≤ v, q ≤ p,

8



n∑
i=1

(xi − x0)
qW n

v

(
xi − x0

h

)

= eeeT
v+1SSS

−1
n

n∑
i=1

(xi − x0)
q

⎛
⎜⎜⎜⎜⎜⎜⎝

1

xi − x0

...

(xi − x0)
p

⎞
⎟⎟⎟⎟⎟⎟⎠

Kh(xi − x0)

= eeeT
v+1SSS

−1
n SSSneeeq+1 = δv,q.

Consequently, the finite-sample bias is zero when using local polynomial fitting of

degree p to estimate polynomials of degree up to p.

2.4 Gaussian Stochastic Processes

We introduce the covariance function G of the Gaussian stochastic process with mean zero

as described in Wahba (1990). Let T be an index set, say, [0,1].

Definition 1 A symmetric, real-valued function G(s, t) with s, t ∈ T is said to be

positive definite if, for any real a1, · · · , an and t1, · · · , tn ∈ T ,

n∑
i,j=1

aiajG(ti, tj) ≥ 0.

If G(·, ·) is positive definite, then we can define a family {Y (t) , t ∈ T } of zero-mean

Gaussian stochastic process with covariance function G, that is,

E Y (s)Y (t) = G(s, t), s, t ∈ T .

Given a positive-definite function G(·, ·), we can associate with it a reproducing kernel

Hilbert space (r.k.h.s.).

Definition 2 A (real) reproducing kernel Hilbert space is a Hilbert space of real-valued

functions on T with the property that, for each t ∈ T , the evaluation functional Lt, which

associates f with f(t), Ltf �→ f(t), is a bounded linear functional. The boundedness means

that there exists an M = Mt such that

| Ltf |=| f(t) |≤ M ‖ f ‖ for all f in the r.k.h.s.,

9



where ‖ · ‖ is the norm in the Hilbert space.

If H is an r.k.h.s., then for each t ∈ T there exists, by the Riesz representation theorem,

an element Rt in H with the property Ltf =< Rt, f >= f(t), f ∈ H, where Rt is called

the representer of evaluation at t and < ·, · > is the inner product in H.

Let Wm[0, 1] = {f : f, f
′
, · · · , fm−1 are absolutely continuous and f (m) ∈ L2[0, 1]},

Bm = {f : f ∈ Wm[0, 1], f (v)(0) = 0, v = 0, · · · , m − 1}, and W 0
m[0, 1] = {f : f ∈

Bm, f, f
′
, · · · , fm−1 are absolutely continuous and f (m) ∈ L2[0, 1]}.

Theorem (Taylor’s theorem) If f is a real-valued function on [0, 1] with m − 1

continuous derivatives and f (m) ∈ L2[0, 1], then we may write

f(t) =

{
m−1∑
v=0

tv

v!
f (v)(0)

}
+

{∫ 1

0

(t − u)
(m−1)
+

(m − 1)!
f (m)(u)du

}
,

where (x)+ = x for x ≥ 0 and (x)+ = 0 otherwise. If f ∈ Bm, then

f(t) =

∫ 1

0

(t − u)m−1
+

(m − 1)!
f (m)(u)du

=

∫ 1

0

Gm(t, u)f (m)(u)du,

where Gm(t, u) = (t − u)m−1
+ /(m − 1)!.

Wahba (1990) proved that W 0
m[0, 1] is an r.k.h.s. with r.k. G(s, t) =

∫ 1

0

Gm(t, u)Gm(s, u)du.

When m = 2, W 0
2 [0, 1] is an r.k.h.s. with r.k.

G(s, t) =

∫ 1

0

G2(t, u)G2(s, u)du=

∫ 1

0

(t − u)+ (s − u)+ du=

∫ min(s,t)

0

(t − u)(s − u)du

=

⎧⎪⎪⎨
⎪⎪⎩

∫ s

0

(t − u)(s − u)du if s < t∫ t

0

(t − u)(s − u)du if s ≥ t
=

⎧⎨
⎩

ts2

2
− s3

6
, if s < t

st2
2

− t3
6
, if s ≥ t

. (12)

The general form of r.k. is

G(s, t) =

⎧⎪⎨
⎪⎩

m∑
i=1

(−1)i+1 1
(m+i−1)!(m−i)!

tm−ism+i−1 if s < t

m∑
i=1

(−1)i+1 1
(m+i−1)!(m−i)!

sm−itm+i−1 if s ≥ t
.

10



3 Methodologies: Parametric Regression Approach

3.1 Linear Profiles with Random Effects

Assume there are many profiles and each profile has n equally spaced measurements. Fit

these profiles with the linear random-effect regression model (3). For the jth profile, by

treating Aij and A1j as two fixed parameters, the least square estimators α̂0j and α̂1j of

Aij and A1j respectively are in (2).

Proposition 1 Under the linear random-effect model (3), we can show that

(i) α̂01, · · · , α̂0m are i.i.d. N
(
α0, σ

2
0 + ( 1

n
+ x̄2∑n

i=1(xi−x̄)2
)σ2

e

)
,

(ii) α̂11, · · · , α̂1m are i.i.d. N
(
α1, σ

2
1 + 1∑

(xi−x̄)2
σ2

e

)
,

(iii) Cov(α̂0j, α̂1j) = − x̄∑
(xi−x̄)2

σ2
e .

Then, the endpoint response Ynj is normally distributed with

E(Ynj) = E(A0j + A1jxn + εnj) = α0 + α1xn,

V ar(Ynj) = V ar(A0j + A1jxn + εnj) = σ2
0 + σ2

1x
2
n + σ2

e .
(13)

Let Ŷnj ≡ α̂0j + α̂1jxn be the fitted response value at the endpoint. By Proposition 1, Ŷnj

is normally distributed with

E(Ŷnj) = E(α̂0j + α̂1jxn) = α0 + α1xn

V ar(Ŷnj) = V ar(α̂0j + α̂1jxn) = σ2
0 + σ2

1x
2
n + ( 1

n
+ (xn−x̄)2∑n

i=1(xi−x̄)2
)σ2

e .
(14)

Comparing equations (13) and (14) above, we find that the variance of Ŷnj is smaller than

the variance of Ynj as long as (1/n+(xn−x̄)2/
∑n

i=1(xi−x̄)2) < 1, a condition that usually

holds for large n. It can be shown that smaller variance will lead to larger detecting power

for the control chart in process monitoring.

Alternatively, model (3) can be re-expressed as the following mixed-effect model:

yij = α0 + α1xi + (A0j − α0) + (A1j − α1)xi + εij, i = 1, · · · , n, j = 1, 2, · · · . (15)

For the jth profile, by expressing (15) as

yij = α0 + α1xi + ε∗ij, i = 1, · · · , n, j = 1, 2, · · · ,

11



where ε∗ij = (A0j −α0)+(A1j −α1)xi +εij, we can obtain another set of estimators α̂∗
0j and

α̂∗
1j for α0 and α1 by the weighted least squares estimation method. Let Ŷ ∗

nj = α̂∗
0j + α̂∗

1jxn.

It is found by simulation that using Ŷ ∗
nj from the mixed-effect model (15) does not gain

more detecting power than using Ŷnj. However, the form of V ar(Ŷ ∗
nj) is more complicated

than that of V ar(Ŷnj). Thus, we adopt monitoring Ŷnj hereafter.

In the next subsection, we consider the case of nonlinear profiles that can be adequately

fitted by polynomial regression models.

3.2 Polynomial Profiles with Random Effects

Assume there are many profiles and each profile has n equally spaced measurements. Fit

these profiles with the following random-effect orthogonal polynomial regression model:

yij = A0jP0(xi) + A1jP1(xi) + · · · + ApjPp(xi) + εij, i = 1, · · · , n, j = 1, 2, · · · (16)

where Pr(xi) is an rth-degree orthogonal polynomial defined such that
∑n

i=1 Pr(xi)Ps(xi) =

0 r �= s, r, s = 0, · · · , p , and P0(xi) = 1. We assume that Arj ∼ N(αr, σ
2
r), r = 0, · · · , p,

are independent normal random variables and εij’s are i.i.d. as N(0, σ2
e). Moreover, assume

that Arj and εij are mutually independent for r = 0, · · · , p.

For the jth profile, by treating A0j, A1j, · · · , Apj as fixed parameters, we estimate them

respectively by the least squares estimators α̂0j, α̂1j, · · · , α̂pj given in equation (5). Let

Ynj = A0j +A1jP1(xn)+ · · ·+ApjPp(xn)+εnj and Ŷnj = α̂0j + α̂1jP1(xn)+ · · ·+ α̂pjPp(xn).

Proposition 2 Under the random-effect model (16), for each r = 0, 1, · · · , p, α̂rj, j =

1, 2, · · · , are i.i.d. as N(αr, σ
2
r + σ2

e∑n
i=1 P 2

r (xi)
) and α̂rj, r = 0, 1, · · · , p, j = 1, 2, · · · , are

independent.

Proposition 3 Under the random-effect model (16), Ynj, j = 1, 2, · · · , are i.i.d. as

N(
∑p

r=0 αrPr(xn),
∑p

r=0 σ2
rP

2
r (xn) + σ2

e )

Proposition 4 Under the random-effect model (16), Ŷnj, j = 1, 2, · · · , are i.i.d. as

N
(∑p

r=0 αrPr(xn),
∑p

r=0[σ
2
rP

2
r (xn) + P 2

r (xn)∑n
i=1 P 2

r (xi]
σ2

e ]
)
.

12



The proofs of all the propositions in this thesis are given in Appendix A.

3.3 Phase II Method

In Phase II monitoring, we assume that the parameters α0, α1, · · · , αp, σ2
0, σ

2
1, · · · , σ2

p,

and σ2
e are known. Set the overall false-alarm rate at α. Since the distributions of the

monitoring statistics Ynj and Ŷnj are known, their control limits can be easily shown to be

LCLYn = CL − Zα
2
η0, UCLYn = CL + Zα

2
η0,

LCLŶn
= CL − Zα

2
η, UCLŶn

= CL + Zα
2
η,

where

CL = α0 + α1P1(xn) + · · · + αpPp(xn) ,

η0 =
{

σ2
0 + σ2

1P
2
1 (xn) + · · · + σ2

pP
2
p (xn) + σ2

e

}1/2

,

η =

{
σ2

0 + σ2
1P

2
1 (xn) + · · · + σ2

pP
2
p (xn) +

[
1

n
+

P 2
1 (xn)∑n

i=1 P 2
1 (xi)

+ · · · + P 2
p (xn)∑n

i=1 P 2
p (xi)

]
σ2

e

}1/2

,

(17)

Zα
2

is the (1 − α/2)th quantile of the standard normal distribution. Yn and Ŷn charts

have the same center line, α0 + α1P1(xn) + · · ·+ αpPp(xn), but with different widths. The

difference is in the standard deviation term. Similar to the case of linear profiles, when n

is large, it is likely that the statistic Ŷnj has smaller variance than Ynj. We demonstrate

this theoretically for the case of p = 2. If x-values are equally spaced, without loss of

generality, we can transform them to xi = i − 1
2
(n + 1) and calculate the orthogonal

polynomials directly by (5). The results are as follows:

P 2
1 (xn) =

λ2
1(n − 1)2

4 ,
n∑

i=1

P 2
1 (xi) =

λ2
1n(n + 1)(n − 1)

12 ,

P 2
2 (xn) =

λ2
2(n − 2)2(n − 1)2

36 ,
n∑

i=1

P 2
2 (xi) =

λ2
2n(n2 − 1)(n2 − 4)

180 ,

⎡
⎢⎢⎣1

n
+

P 2
1 (xn)

n∑
i=1

P 2
1 (xi)

+
P 2

2 (xn)
n∑

i=1

P 2
2 (xi)

⎤
⎥⎥⎦ =

1

n
+

3(n − 1)

n(n + 1)
+

5(n − 2)(n − 1)

n(n + 1)(n + 2)
≡ Cn. (18)

13



It is apparent that Cn = O(1/n). We calculate Cn for various n and the result is shown

in Table 1. From Table 1, we have Cn ≤ 1 for all n and Cn < 1 for n > 3. From Figure

1, we can see the term Cn in (18) approaches zero for large n. Thus in the case of p = 2

and n > 3, we have η < η0. Therefore Ŷn chart has narrower control limits than Yn chart.

When n is larger, the variance of Ŷnj becomes smaller. Since the normal distribution of

Ŷnj has smaller variance, the detecting power of Ŷn chart is better than that of Yn chart.

The detecting power can be calculated by the following.

When the mean of Ynj shifts with a size of δη0, the probability for Ynj still falling

within the control limits is

β0(δ) = P
{

CL − Zα
2
η0 ≤ Ynj ≤ CL + Zα

2
η0

}
= P

{
−δ − Zα

2
≤ Ynj − (CL + δη0)

η0
≤ −δ + Zα

2

}
= Φ

(
−δ + Zα

2

)
− Φ

(
−δ − Zα

2

)
,

where Φ(·) is the c.d.f. of the standard normal distribution. If the mean of Ynj shifts with

a size of δη0, then the mean of Ŷnj will shifts with a size of δ
′
η, where δ

′
= δη0/η. Then

the probability that Ŷnj falls within the control limits is

β(δ) = P
{

CL − Zα
2
η ≤ Ŷnj ≤ CL + Zα

2
η
}

= P

{
−δ

′ − Zα
2
≤ Ŷnj − (CL + δ

′
η)

η ≤ −δ
′
+ Zα

2

}
= Φ

(
−δ

′
+ Zα

2

)
− Φ

(
−δ

′ − Zα
2

)
.

Because β0(δ) and β(δ) are type II errors, the detecting powers of Ynj and Ŷnj are 1−β0(δ)

and 1−β(δ), respectively. Since η0 > η, we have δ < δ
′
, which implies 1−β0(δ) < 1−β(δ).

Thus Ŷn chart has better detecting power than Yn chart.

The detecting power of Yn chart, 1− β0(δ), depends on δ only. However, the detecting

power of Ŷn chart, 1 − β(δ), depends on δ, η0, and η. Since there are many combinations

of η0 and η, it is impossible to list all the cases. For illustration, we consider the case of

p = 1, the linear case, and various ratios of the component σ2
0+σ2

1P
2
1 (xn) to the component

σ2
e . Because the advantage of the proposed method over the traditional method relies

on the condition that the coefficient of σ2
e is less than 1, the ratio of the component

σ2
0 + σ2

1P1(xn) to the component σ2
e is important. If the magnitude of σ2

0 + σ2
1P1(xn)
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dominates the variance term, then the enhancement of the detecting power is limited.

In Figures 2-3, we demonstrate the enhancement for n = 10, 20, 30, 40 and the ratio

R = 4, 3, 2, 1, 2/3, 1/2, 2/5. From Figures 2-3, we can see that the detecting power becomes

larger as the ratio R gets smaller and/or the number of the set points n gets larger.

4 Methodologies: Nonparametric Regression Approach

4.1 Model Assumptions

Without loss of generality, let T = [0, 1]. We assume that
{

Y (x), x ∈ T
}

is a Gaussian

stochastic process with mean function μ(x) and covariance function G(x, t), where x, t ∈ T .

For one profile, the nonparametric regression model is as follows:

yi = Y (xi) + εi, i = 1, · · · , n, (19)

where εi’s are i.i.d. as a normal distribution with mean zero and variance σ2
e . Moreover,

assume that Y (xi) and εi are mutually independent.

4.2 Monitoring Statistics and Their Distributions

If we use the Nadaraya-Waston estimator (8) to estimate Y (x), we can get

Ŷ (x) =
n∑

i=1

wi(x) yi, where wi(x) =
K

(
xi − x

h

)
n∑

k=1

K
(

xk − x
h

) .

It is well known that the Nadaraya-Waston estimator may estimate the boundaries badly,

especially when h is large relative to the sampling rate. Since we focus on the boundary

point, we must be cautious with the boundary effect. On the other hand, local polynomial

smoothing is superior in the region of the boundaries; see, for example, the detailed

discussions provided by Fan and Gijbels (1996). To avoid the boundary effect, we adopt

the local polynomial smoothing method. By equation (11) with p = 1, the local linear
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regression estimator Ŷ (x) is β̂0 and this estimator can be explicitly expressed as

Ŷ (x) =
n∑

i=1

wi(x) yi, where wi(x) =
K

(
xi − x

h

) [
Sn,2 − (xi − x)Sn,1

]
n∑

k=1

K
(

xk − x
h

) [
Sn,2 − (xk − x)Sn,1

] , (20)

with Sn,j as defined in (10). We use this estimator Ŷ (xn) with weight function wi(xn) in

(20) to obtain the fitted value Ŷn of the endpoint of the profile.

Proposition 5 Yn = Y (xn) + εn follows a normal distribution with mean μ(xn) and

variance G(xn, xn) + σ2
e .

Proposition 6 Ŷn = Ŷ (xn) =
∑n

i=1 wi(xn)yi follows a normal distribution with mean
n∑

i=1

wi(xn)μ(xi) and variance
n∑

j=1

n∑
i=1

wi(xn)wj(xn)G(xi, xj) +
n∑

i=1

w2
i (xn)σ2

e .

4.3 Phase II method

In Phase II monitoring, for simplicity, we assume that the mean function μ(x) and co-

variance function G(x, t) of the Gaussian stochastic process are known. Set the overall

false-alarm rate at α. We can derive the control limits of Yn chart and Ŷn chart as follows:

LCLYn = μ(xn) − Zα
2
η∗

0, UCLYn = μ(xn) + Zα
2
η∗

0,

LCLŶn
=

n∑
i=1

wi(xn)μ(xi) − Zα
2
η∗, UCLŶn

=
n∑

i=1

wi(xn)μ(xi) + Zα
2
η∗,

where

η∗
0 =

{
G(xn, xn) + σ2

e

}1/2

,

η∗ =

{
n∑

j=1

n∑
i=1

wi(xn)wj(xn)G(xi, xj) +
n∑

i=1

w2
i (xn)σ2

e

}1/2

.
(21)

In general, the center line
n∑

i=1

wi(xn)μ(xi) of Ŷn chart is different from the center line μ(xn)

of Yn chart because the nonparametric method diminishes variance at the cost of getting

some bias. However, we find that Yn and Ŷn charts have the same center line when the

mean function of the Gaussian stochastic process, μ(·), is a linear function and we use the

local linear regression to fit the line.
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Proposition 7 If μ(·) is a linear function and the local linear regression is used to smooth

data, then
n∑

i=1

wi(xn)μ(xi) = μ(xn).

Proposition 7 indicates that Yn and Ŷn charts have the same center line if μ(·) is linear.

If the mean function of the Gaussian stochastic process is not a linear function, then the

difference between
n∑

i=1

wi(xn)μ(xi) and μ(xn) is of size O(h).

Proposition 8 If μ(·) is differentiable and μ
′
(·) is bounded by some constant M , then

the mean of Ŷnj can be expressed as
n∑

i=1

wi(xn)μ(xi) = μ(xn) + O(h).

Unlike the mean of Ŷnj and Ynj, the variances of Ŷnj and Ynj are obviously different.

In order to see the difference clearly, we derive the following proposition.

Proposition 9 If h → 0, nh → ∞, K(·) is differentiable, and K
′
(·) is bounded by some

constant C, then the variance of Ŷn can be expressed as

V ar(Ŷn) = G(xn, xn) + O(h) +

⎧⎪⎨
⎪⎩

1

nh

∫ min(1, 1−xn
h )

−1 K2(u)du[∫ min(1, 1−xn
h )

−1 K(u)du

]2 + O

(
1

n2h2

)⎫⎪⎬
⎪⎭σ2

e .

The two conditions that K is differentiable and K
′
(x) is bounded by some constant

C hold for commonly used kernel functions. From the Proposition 9, we can clearly see

the difference between the variances of Ŷnj and Ynj. Recall that the variance of Ynj is

G(xn, xn) + σ2
e . The difference in the variances of Ŷnj and Ynj includes an O(h) term and

the coefficients of σ2
e . Note that the σ2

e term converges to zero as nh → ∞. If we add

an additional condition nh2 → 0, then O(h) converges to zero more quickly than 1/nh.

Then, by Proposition 9, the variance of Ŷnj is smaller than that of Ynj asymptotically.

When the mean function of the Gaussian stochastic process is a linear function, Ŷn and

Yn charts have the same center line but different widths of the control limits. The control

limits of Ŷn chart are narrower than that of Yn chart. Then, the detecting power of Ŷn
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chart is better than that of Yn chart. If the mean function of the Gaussian stochastic

process is not a linear function, then the center lines of Ŷn chart and Yn chart may be

slightly different. However, the bias of the center lines does not affect the result that Ŷn

has bigger detecting power than Yn has. The detecting powers of Ŷn and Yn charts can be

calculated as in the following.

When the mean of Ynj shifts with a size of δη∗
0, the probability for Ynj still falling

within the control limits is as follows:

β∗
0(δ) = P

(
μ(xn) − Zα

2
η∗

0 ≤ Ynj ≤ μ(xn) + Zα
2
η∗

0

)
= P

(
−δ − Zα

2
≤ Ynj − μ(xn) − δη∗

0

η∗
0

≤ −δ + Zα
2

)
= Φ(−δ + Zα

2
) − Φ(−δ − Zα

2
).

Since β∗
0(δ) is the type II error for Ynj, the detecting power of Ynj is 1 − β∗

0(δ).

If the mean of Ynj shifts with a size of δη∗
0, then the mean of Ŷnj shifts with a size of

δ
′
η∗, where δ

′
= δη∗

0/η
∗. Then the probability for Ŷnj falling within the control limits is

as follows:

β∗(δ) = P

(
n∑

i=1

wi(xn)μ(xi) − Zα
2
η∗ ≤ Ŷnj ≤

n∑
i=1

wi(xn)μ(xi) + Zα
2
η∗

)

= P

⎛
⎜⎜⎝−δ

′ − Zα
2
≤

Ŷnj −
n∑

i=1

wi(xn)μ(xi) − δ
′
η∗

η∗ ≤ −δ
′
+ Zα

2

⎞
⎟⎟⎠

= Φ(−δ
′
+ Zα

2
) − Φ(−δ

′ − Zα
2
).

Since β∗(δ) is the type II error for Ŷnj, the detecting power of Ŷnj is 1 − β∗(δ).

Similar to the polynomial regression case, δ
′
is bigger than δ since η∗ is smaller than η∗

0

for large n. Since Ŷnj shifts a larger size than Ynj does, the detecting power of Ŷn chart is

bigger than that of Yn chart. To describe the detecting power, we consider various ratios

of the component G(xn, xn) to the component σ2
e . In Figures 4-5, we demonstrate the

enhancement for n = 20, 30, 40, 50 and the ratio R = 4, 3, 2, 1, 2/3, 1/2, 2/5. Results are

similar to the polynomial regression case.
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5 Two Illustrative Examples

5.1 Linear Profile Example– Soda-Bottle Filling

In this subsection, we demonstrate the Soda-Bottle example. Assume the Soda-Bottle

filling process takes 5 seconds to fill a bottle with soda and we record the weight of a bottle

every 250 milliseconds. Then, we simulate 150 independent records of profiles and each

consists of 20 measurements measured at xi = i/4, i = 1, · · · , 20. If the jth bottle, without

soda, weights A0j and that the rate of filling a bottle in every time unit is A1j, we can

assume the output profiles conform to the random-effect model in equation (3), where α0 =

25, α1 = 25, σ2
0 = 1, σ2

1 = 1, and σ2
e = 4. The simulated profiles and their fitted profiles

are shown in Figure 6. The variance of Yn is σ2
0 +σ2

1x
2
n+σ2

e = 30, where σ2
0 +σ2

1x
2
n = 26 and

σ2
e = 4; and the variance of Ŷn is σ2

0+σ2
1x

2
n+[1/n+(xn−x̄)2/

∑n
i=1(xi−x̄)2]σ2

e = 26.7428571,

where [1/n+(xn − x̄)2/
∑n

i=1(xi − x̄)2]σ2
e = 0.7428571. When the mean of the response at

the endpoint shifts with a size of δ(σ2
0 +σ2

1x
2
n +σ2

e)
1/2, we simulate 150 profiles and Figure

7-9 demonstrate the Yn chart and Ŷn chart respectively for δ = 1, 2, 3. For δ = 1, 2, 3,, Yn

chart signals 4, 19, 82 times while Ŷn signals 6, 31, 92 times, respectively. Ŷn chart signals

more often than Yn chart does.

5.2 Nonparametric Example

Assume the profiles are from a Gaussian stochastic process
{

Y (x), x ∈ T
}

with mean

function μ(x) = 5e3x and covariance function G(x, t) defined in (12), where T = [0, 1].

Take n measurements at xi = (i − 0.5)/n. The ith simulated profile with measurement

error is yi = Y (xi) + εi, where εi ∼ N(0, 1), i = 1, · · · , n. Fit each simulated profile by

the local linear regression estimator given in (20) with bandwidth h = 0.2. For n = 20,

150 simulated profiles and their fitted profiles are shown in Figure 10. The variance of

Yn is G(xn, xn) + σ2
e , where G(xn, xn) = 0.3333333 and σ2

e = 1; and the variance of Ŷn

is
∑n

i=1

∑n
j=1 wi(xn)wj(xn)G(xi, xj) +

∑n
i=1 w2

i (xn)σ2
e = 0.3332085 + 0.7122667. We can

clearly see that Ŷn and Yn have about the same mean, but Ŷn has smaller variance than

Yn does.
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When the mean function of
{

Y (x), x ∈ T
}

shifts with a size of δ(G(xn, xn) + σ2
e)

1/2,

the Yn chart and Ŷn chart are illustrated in Figures 11-13 for δ = 1, 2, 3 respectively. For

δ = 1, 2, 3, Yn chart signals 4, 22, 67 times while Ŷn signals 7, 34, 93 times, respectively. Ŷn

chart signals more often than Yn chart does.

The results are for the case of n = 20. If n = 30,
∑n

i=1

∑n
j=1 wi(xn)wj(xn)G(xi, xj) =

0.3331576 and
∑n

i=1 w2
i (xn)σ2

e = 0.543526. We find that when n is larger, the variance of

Ŷn chart becomes smaller. This indicates that the larger the n is, the larger the detecting

power Ŷn chart has.

6 Conclusions

In this study, we focus on Phase II monitoring. Assuming the whole profile data of

a product are available, we propose a monitoring scheme different from the traditional

method that directly monitors the endpoint of the profile. Our method is to take advantage

of the auxiliary information contained in the profile by fitting each profile with a regression

function, and estimating the mean response at the endpoint by the fitted value. Take

this estimator as the monitoring statistic instead of the original endpoint response. This

approach is better than the traditional method since this estimator has smaller variance

than the endpoint response when n is not too small. For the profile fitting, both parametric

and nonparametric regression methods are considered. We show that better detecting

power can be obtained by the new approach. If the profiles can be fitted adequately

by polynomials, we will choose the orthogonal polynomial regression to fit these profiles;

otherwise, we adopt the nonparametric regression method. How do we determine that the

fitting is adequate? We can consider some goodness-of-fit tests. See Seber (2003, Ch4)

for more details. In this study, we only consider the Phase II monitoring. Developing Ŷn

chart for Phase I analysis is a potential future research topic.
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A Appendix: Proofs

Proof of Proposition 1:

(ii) Since
∑n

i=1(xi − x̄) = 0 and
∑n

i=1(xi − x̄)xi =
∑n

i=1(xi − x̄)2, we have

α̂1j =
Sxy(j)

Sxx

=
1

Sxx

n∑
i=1

(xi − x̄)yij

=
1

Sxx

n∑
i=1

(xi − x̄)(A0j + A1jxi + εij)

=
1

n∑
i=1

(xi − x̄)2

[A0j

n∑
i=1

(xi − x̄) + A1j

n∑
i=1

(xi − x̄)xi +
n∑

i=1

(xi − x)εij]

= A1j +

∑n
i=1(xi − x̄)εij∑n
i=1(xi − x̄)2

.

Thus,

E(α̂1j) = α1 and

V ar(α̂1j) = σ2
1 + σ2

e∑n
i=1(xi−x̄)2

Therefore, α̂1j ∼ N(α1, σ
2
1 + σ2

e∑n
i=1(xi−x̄)2

).

(i) Since
∑n

i=1(xi − x̄) = 0 and
∑n

i=1(xi − x̄)xi =
∑n

i=1(xi − x̄)2, we have

α̂0j = ȳj − α̂1jx̄

=
1

n

n∑
i=1

yij − (A1j +

∑n
i=1(xi − x̄)εij∑n
i=1(xi − x̄)2

)x̄

=
1

n

n∑
i=1

(A0j + A1jxi + εij) − (A1j +

∑n
i=1(xi − x̄)εij∑n
i=1(xi − x̄)2

)x̄

= A0j +
1

n

n∑
i=1

εij −
∑n

i=1(xi − x̄)εij∑n
i=1(xi − x̄)2

x̄.
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Since Cov

(
1

n

n∑
i=1

εij,

∑n
i=1(xi − x̄)εij∑n
i=1(xi − x̄)2

)
= 0, we have

E(α̂0j) = α0 and

V ar(α̂0j) = σ2
0 +

σ2
e

n
+

x̄2σ2
e

n∑
i=1

(xi − x̄)2

− 2x̄ Cov

(
1

n

n∑
i=1

εij,

∑n
i=1(xi − x̄)εij∑n
i=1(xi − x̄)2

)

= σ2
0 +

σ2
e

n
+

x̄2σ2
e

n∑
i=1

(xi − x̄)2

.

Therefore, α̂0j ∼ N
(
α0, σ

2
0 + ( 1

n
+ x̄2∑n

i=1(xi−x̄)2
)σ2

e

)
.

(iii)

Cov(α̂0j, α̂1j) = Cov(A0j +
1

n

n∑
i=1

εij −
∑n

i=1(xi − x̄)εij∑n
i=1(xi − x̄)2

x̄, A1j +

∑n
i=1(xi − x̄)εij∑n
i=1(xi − x̄)2

)

= Cov(
1

n

n∑
i=1

εij,

∑n
i=1(xi − x̄)εij∑n
i=1(xi − x̄)2

) − Cov(

∑n
i=1(xi − x̄)εij∑n
i=1(xi − x̄)2

x̄,

∑n
i=1(xi − x̄)εij∑n
i=1(xi − x̄)2

)

= −x̄ V ar(

∑n
i=1(xi − x̄)εij∑n
i=1(xi − x̄)2

)

= − x̄σ2
e∑n

i=1(xi − x̄)2
.

Proof of Proposition 2:

(1) Since
n∑

i=1

Pr(xi) = 0, r = 1, · · · , p, we have

α̂0j =

n∑
i=1

P0(xi)yij

n∑
i=1

P 2
0 (xi)

=
1

n

n∑
i=1

[A0j + A1jP1(xi) + · · · + ApjPp(xi) + εij]

=
1

n

[
nA0j + A1j

n∑
i=1

P1(xi) + · · · + Apj

n∑
i=1

Pp(xi) +
n∑

i=1

εij

]

= A0j +
1

n

n∑
i=1

εij .

Thus,

E(α̂0j) = E

(
A0j + 1

n

n∑
i=1

εij

)
= α0 and

V ar(α̂0j) = V ar

(
A0j + 1

n

n∑
i=1

εij

)
= σ2

0 +
σ2

e
n .
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Therefore, α̂0j ∼ N(α0, σ
2
0 +

σ2
e

n ).

(2) Since
n∑

i=1

Pr(xi) = 0 and
n∑

i=1

Pr(xi)Ps(xi) = 0, for r �= s, r, s = 1, · · · , p, we have

α̂rj =

n∑
i=1

Pr(xi)yij

n∑
i=1

P 2
r (xi)

=
1

n∑
i=1

P 2
r (xi)

n∑
i=1

Pr(xi)
[
A0j + A1jP1(xi) + · · · + ArjPr(xi) + · · · + ApjPp(xi) + εij

]

=
1

n∑
i=1

P 2
r (xi)

(
A0j

n∑
i=1

Pr(xi) + A1j

n∑
i=1

Pr(xi)P1(xi) + · · ·+

Arj

n∑
i=1

P 2
r (xi) + · · · + Apj

n∑
i=1

Pr(xi)Pp(xi) +
n∑

i=1

Pr(xi)εij

)

= Arj +

n∑
i=1

Pr(xi)εij

n∑
i=1

P 2
r (xi)

.

Thus, E(α̂rj) = E

⎛
⎜⎜⎜⎜⎝Arj +

n∑
i=1

Pr(xi)εij

n∑
i=1

P 2
r (xi)

⎞
⎟⎟⎟⎟⎠ = αr and

V ar(α̂rj) = V ar

⎛
⎜⎜⎜⎜⎝Arj +

n∑
i=1

Pr(xi)εij

n∑
i=1

P 2
r (xi)

⎞
⎟⎟⎟⎟⎠ = σ2

r +

σ2
e

n∑
i=1

P 2
r (xi)[

n∑
i=1

P 2
r (xi)

]2 = σ2
r +

σ2
e

n∑
i=1

P 2
r (xi)

Therefore, α̂rj ∼ N(αr, σ
2
r +

σ2
e

n∑
i=1

P 2
r (xi)

).

To show that α̂r and α̂s are independent, for r �= s, r, s = 0, · · · , p,
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Cov( α̂rj, α̂sj ) = Cov( Arj +

n∑
i=1

Pr(xi)εij

n∑
i=1

P 2
r (xi)

, Asj +

n∑
i=1

Ps(xi)εij

n∑
i=1

P 2
s (xi)

)

= Cov( Arj, Asj ) + Cov( Arj,

n∑
i=1

Ps(xi)εij

n∑
i=1

P 2
s (xi)

)

+Cov(

n∑
i=1

Pr(xi)εij

n∑
1

P 2
r (xi)

, Asj) + Cov(

n∑
i=1

Pr(xi)εij

n∑
i=1

P 2
r (xi)

,

n∑
i=1

Ps(xi)εij

n∑
i=1

P 2
s (xi)

)

= Cov(

n∑
i=1

Pr(xi)εij

n∑
i=1

P 2
r (xi)

,

n∑
i=1

Ps(xi)εij

n∑
i=1

P 2
s (xi)

)

= Cov(
Pr(x1)ε1j
n∑

i=1

P 2
r (xi)

,

n∑
i=1

Ps(xi)εij

n∑
i=1

P 2
s (xi)

) + · · · + Cov(
Pr(xn)εnj
n∑

i=1

P 2
r (xi)

,

n∑
i=1

Ps(xi)εij

n∑
i=1

P 2
s (xi)

)

=
Pr(x1)Ps(x1)V ar(ε1j)

n∑
i=1

P 2
r (xi)

n∑
i=1

P 2
s (xi)

+ · · · + Pr(xn)Ps(xn)V ar(εnj)
n∑

i=1

P 2
r (xi)

n∑
i=1

P 2
s (xi)

=

n∑
i=1

Pr(xi)Ps(xi)σ
2
e

n∑
i=1

P 2
r (xi)

n∑
i=1

P 2
s (xi)

= 0.

Proof of Proposition 3:

Trivial.

24



Proof of Proposition 4:

E(Ŷnj) = E( α̂0j + α̂1jP1(xn) + · · · + α̂pjPp(xn) )

= E(α̂0j) + E(α̂1jP1(xn)) + · · · + E(α̂pjPp(xn))

= α0 + α1P1(xn) + · · · + αpPp(xn).

V ar(Ŷnj) = V ar( α̂0j + α̂1jP1(xn) + · · · + α̂pjPp(xn) )

= (σ2
0 + σ2

e

n
) + (σ2

1 + σ2
e

n∑
i=1

P 2
1 (xi)

)P 2
1 (xn) + · · · + (σ2

p + σ2
e

n∑
i=1

P 2
p (xi)

)P 2
p (xn)

= σ2
0 + σ2

1P
2
1 (xn) + · · · + σ2

pP
2
p (xn) +

⎡
⎣ 1

n
+

P 2
1 (xn)

n∑
i=1

P 2
1 (xi)

+ · · · + P 2
p (xn)

n∑
i=1

P 2
p (xi)

⎤
⎦σ2

e ≡ η2.

Thus, Ŷnj are i.i.d. as N( α0 + α1P1(xn) + · · · + αpPp(xn), η2 ).

Proof of Proposition 5:

E( Yn ) = E( Y (xn) + εn ) = μ(xn) and V ar( Yn ) = V ar( Y (xn) + εn ) = G(xn, xn) + σ2
e .

Thus, Yn ∼ N
(
μ(xn) , G(xn, xn) + σ2

e

)
.

Proof of Proposition 6:

E(Ŷn) = E

(
n∑

i=1

wi(xn)yi

)
=

n∑
i=1

wi(xn)E
(
Y (xi) + εi

)
=

n∑
i=1

wi(xn)μ(xi).

V ar(Ŷn) = V ar

(
n∑

i=1

wi(xn)yi

)
= V ar

(
n∑

i=1

wi(xn)Y (xi) +
n∑

i=1

wi(xn)εi

)
=

n∑
j=1

n∑
i=1

wi(xn)wj(xn)G(xi, xj) +
n∑

i=1

w2
i (xn)σ2

e .

Thus, Ŷn ∼ N

(
n∑

i=1

wi(xn)μ(xi) ,
n∑

j=1

n∑
i=1

wi(xn)wj(xn)G(xi, xj) +
n∑

i=1

w2
i (xn)σ2

e

)
.

Proof of Proposition 7:

Let 
i = Kh(xi − xn)
[
Sn,2 − (xi − xn)Sn,1

]
.

Then, by (20),

n∑
i=1

wi(xn)μ(xi) =

n∑
i=1


iμ(xi)

n∑
i=1


i

.
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Assume that μ(xi) = a + bxi, where a, b are real numbers. Then,

n∑
i=1


iμ(xi)

n∑
i=1


i

=

n∑
i=1


i(a + bxi)

n∑
i=1


i

= a + b

n∑
i=1


ixi

n∑
i=1


i

.

We can show that
n∑

i=1


ixi = xn

n∑
i=1


i by the following:

n∑
i=1


ixi =
n∑

i=1

Kh(xi − xn)
[
Sn,2 − (xi − xn)Sn,1

]
xi

= Sn,2

n∑
i=1

Kh(xi − xn)xi − Sn,1

n∑
i=1

Kh(xi − xn)(xi − xn)xi

= Sn,2

n∑
i=1

Kh(xi − xn)(xi − xn) − Sn,1

n∑
i=1

Kh(xi − xn)(xi − xn)(xi − xn)

+Sn,2

n∑
i=1

Kh(xi − xn)xn − Sn,1

n∑
i=1

Kh(xi − xn)(xi − xn)xn

= Sn,2Sn,1 − Sn,1Sn,2 + xnSn,2Sn,0 − xnSn,1Sn,1

= xn(Sn,2Sn,0 − Sn,1Sn,1)

= xn

n∑
i=1


i .

The last equality is due to

n∑
i=1


i =
n∑

i=1

Kh(xi − xn){Sn,2 − (xi − xn)Sn,1}

=
n∑

i=1

Kh(xi − xn)Sn,2 −
n∑

i=1

Kh(xi − xn)(xi − xn)Sn,1

= Sn,0Sn,2 − S2
n,1 .

Then, we get
n∑

i=1

wi(xn)μ(xi) = a + bxn = μ(xn).

The Mean Value Theorem for Integrals: If f is a continuous function on interval I,

then there exists a number ξ ∈ I such that
∫

I
f(x)dx = f(ξ)|I|.

Lipschitz Condition 1: Let f be a real-valued function defined on a subset D of real

numbers. We say that f : D ⊆ R → R satisfies a Lipschitz condition if there exists a
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constant C ≥ 0 such that |f(t) − f(x)| ≤ C|t − x| for all t , x in D. Here, the smallest

such C is called the Lipschitz constant of the function f .

Corollary 1: If f is differentiable and |f ′(x)| ≤ C for all x ∈ (a, b), then f satisfies the

Lipschitz condition

|f(t) − f(x)| ≤ C|t − x| for all t , x ∈ (a, b),

where C is a constant.

Proof of Proposition 8:

For s in a small neighborhood of xn, by Taylor’s Series expansion, we have

μ(s) = μ(xn) + (s − xn)
dμ(s)

ds

∣∣∣∣
s=xn

+ O(s − xn).

For |s − xn| < h, we have

|μ(s) − μ(xn)| = O(h).

Since
n∑

i=1

wi(xn) = 1, we have

n∑
i=1

wi(xn)[μ(xi) − μ(xn)] = O(h).

Lipschitz Condition 2: Let f be a continuous and defined in a neighborhood of

(t0, x0) ∈ R2. We say that f : R2 → R satisfies a Lipschitz condition if there exists a

constant C ≥ 0 such that |f(t, x1) − f(t, x2)| ≤ C|x1 − x2| for all (t, x1) and (t, x2) in a

neighborhood of (t0, x0).

Corollary 2: If f is differentiable and

∣∣∣∣∂f(t, x)

∂x

∣∣∣∣ is continuous, then Lipschitz Condition

2 is automatic.

For the above conditions and corollaries, see, for example, Marsden (1993) or Pugh

(2002).
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Lemma 1 If G is differentiable in t and

∣∣∣∣∂G(s, t)

∂t

∣∣∣∣ is continuous, |s − xn| < h, and

|t − xn| < h, then
∣∣∣G(s, t) − G(xn, xn)

∣∣∣ = O(h), where s, t, and xn ∈ [0, 1].

Proof:

For s, t in a small neighborhood of xn, say B(h), by Taylor’s Series expansion, we have

G(s, t) = G(xn, xn) + (s − xn)
∂G(s, t)

∂s

∣∣∣∣
(s,t)=(xn,xn)

+ (t − xn)
∂G(s, t)

∂t

∣∣∣∣
(s,t)=(xn,xn)

+ R,

where R is the remainder. For |s − xn| < h and |t − xn| < h, we have

|G(s, t) − G(xn, xn)| = O(h).

Lemma 2: If K is differentiable on (0, 1) and |K ′(x)| is bounded by some constant C,

then
1

n

n∑
i=1

K

(
xi − xn

h

)
=

∫ 1

0

K

(
x − xn

h

)
dx + O

(
1

n

)
.

Proof:

Let xi =
i − 0.5

n
and Ii =

[
xi − 1

2n
, xi + 1

2n

]
, i = 1, · · · , n. We calculate the absolute value∣∣∣∣∣ 1n

n∑
i=1

K
(xi − xn

h

)
−

∫ 1

0

K
(x − xn

h

)
dx

∣∣∣∣∣ to see the difference. Because K is a continu-

ous function, there exists a point ξi ∈ Ii such that

∫
Ii

K
(x − xn

h

)
dx = K

(
ξi − xn

h

)
|Ii|

for i = 1, · · · , n by the Mean Value Theorem for Integrals. Since each | Ij |= 1

n
, the

above difference can be rewritten as follows:

∣∣∣∣∣ 1n
n∑

i=1

K
(xi − xn

h

)
− 1

n

n∑
i=1

K

(
ξi − xn

h

) ∣∣∣∣∣ .
Because K is a kernel function, K( z−xn

h
) is zero for the z-values outside the boundary

interval B(h) = [xn − h, min(xn + h, 1)]. Then∣∣∣∣∣ 1n
n∑

i=1

K
(xi − xn

h

)
− 1

n

n∑
i=1

K

(
ξi − xn

h

) ∣∣∣∣∣
=

1

n

∣∣∣∣∣
∑

xi∈B(h)

K
(xi − xn

h

)
−

∑
xi∈B(h)

K

(
ξi − xn

h

) ∣∣∣∣∣
≤ 1

n

∑
xi∈B(h)

∣∣∣∣K (xi − xn

h

)
− K

(
ξi − xn

h

) ∣∣∣∣.
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By the given conditions, K satisfies the Lipschitz condition 1:∣∣∣∣K (xi − xn

h

)
− K

(
ξi − xn

h

)∣∣∣∣ ≤ C

∣∣∣∣xi − xn

h
− ξi − xn

h

∣∣∣∣ = C

∣∣∣∣xi − ξi

h

∣∣∣∣ ≤ C

nh
.

It follows that

1

n

∑
xi∈B(h)

∣∣∣∣K (xi − xn

h

)
− K

(
ξi − xn

h

) ∣∣∣∣ ≤ 1

n
�nh� C

nh
.

Thus, we have ∣∣∣∣∣ 1n
n∑

i=1

K
(xi − xn

h

)
−

∫ 1

0

K
(x − xn

h

)
dx

∣∣∣∣∣ = O

(
1

n

)
.

Proof of Proposition 9:

From Proposition 6, we know that

V ar(Ŷn) =
n∑

i=1

n∑
j=1

K

(
xi − xn

h

)
n∑

k=1

K

(
xk − xn

h

) K

(
xj − xn

h

)
n∑

k=1

K

(
xk − xn

h

)G(xi, xj)+
n∑

i=1

⎛
⎜⎜⎝

K

(
xi − xn

h

)
n∑

i=1

K

(
xi − xn

h

)
⎞
⎟⎟⎠

2

σ2
e .

Note that

n∑
i=1

n∑
j=1

K

(
xi − xn

h

)
n∑

k=1

K

(
xk − xn

h

) K

(
xj − xn

h

)
n∑

k=1

K

(
xk − xn

h

) =

n∑
i=1

K

(
xi − xn

h

)
n∑

j=1

K

(
xj − xn

h

)
[

n∑
k=1

K

(
xk − xn

h

)]2 = 1.

By Lemma 1,

n∑
i=1

n∑
j=1

K

(
xi − xn

h

)
n∑

k=1

K

(
xk − xn

h

) K

(
xj − xn

h

)
n∑

k=1

K

(
xk − xn

h

) [G(xi, xj) − G(xn, xn)] = O(h).

Thus,

n∑
i=1

n∑
j=1

K

(
xi − xn

h

)
n∑

k=1

K

(
xk − xn

h

) K

(
xj − xn

h

)
n∑

k=1

K

(
xk − xn

h

)G(xi, xj) = G(xn, xn) + O(h).
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Using Lemma 2,

1

n

n∑
i=1

K

(
xi − xn

h

)
=

∫ 1

0

K

(
x − xn

h

)
dx + O

(
1

n

)

=

∫ min(xn+h,1)

xn−h

K

(
x − xn

h

)
dx + O

(
1

n

)

= h

∫ min(1, 1−xn
h )

−1

K(u)du +O

(
1

n

)
,

then, the second term in V ar(Ŷn) can be re-expressed as follows:

n∑
i=1

⎛
⎜⎜⎝

K

(
xi − xn

h

)
n∑

i=1

K

(
xi − xn

h

)
⎞
⎟⎟⎠

2

σ2
e = 1⎡

⎢⎣ 1

n

n∑
i=1

K

(
xi − xn

h

)⎤
⎥⎦

2

n∑
i=1

[
1

n
K

(
xi − xn

h

)]2

σ2
e

=
1[

h
∫ min(1, 1−xn

h )
−1 K(u)du +O

(
1
n

)]2

(
n−1

) [ 1

n

n∑
i=1

K2

(
xi − xn

h

)]
σ2

e

=

n−1

[
h
∫ min(1, 1−xn

h )
−1 K2(u)du + O

(
1
n

)]
[
h
∫ min(1, 1−xn

h )
−1 K(u)du

]2 σ2
e

=

⎧⎪⎨
⎪⎩

1

nh

∫ min(1, 1−xn
h )

−1 K2(u)du[∫ min(1, 1−xn
h )

−1 K(u)du

]2 + O

(
1

n2h2

)⎫⎪⎬
⎪⎭σ2

e .

Finally, we re-express V ar(Ŷn) by

V ar(Ŷn) = G(xn, xn) + O(h) +

⎧⎪⎨
⎪⎩

1

nh

∫ min(1, 1−xn
h )

−1 K2(u)du[∫ min(1, 1−xn
h )

−1 K(u)du

]2 + O

(
1

n2h2

)⎫⎪⎬
⎪⎭σ2

e .
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C1 C2 C3 C4 C5

1.00000 1.00000 1.00000 0.95000 0.88571

C6 C7 C8 C9 C10

0.82143 0.76190 0.70833 0.66061 0.61819

C11 C12 C13 C14 C15

0.58042 0.54670 0.51648 0.48929 0.46471

C16 C17 C18 C19 C20

0.44240 0.42208 0.40351 0.38647 0.37078

C21 C22 C23 C24 C25

0.35623 0.34289 0.33043 0.31885 0.30803

C26 C27 C28 C29 C30

0.29792 0.28845 0.27956 0.27119 0.26331

Table 1: Cn values for n = 1, · · · , 30
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Figure 1: Cn plot for n = 1, · · · , 50
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Figure 2: Detecting power of Ŷn and Yn charts, when linear regression is used to fit the

liner profile. The ratio R = ( σ2
0 + σ2

1P
2
1 (xn) )/σ2

e ≥ 1.
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Figure 3: Detecting power of Ŷn and Yn charts, when linear regression is used to fit the

liner profile. The ratio R = (σ2
0 + σ2

1P
2
1 (xn) )/σ2

e ≤ 1.
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Ŷn

●

R == 4
R == 3

x
*

R == 2
R == 1

Yn

Figure 4: Detecting power of Ŷn and Yn charts, when linear regression is used to fit the

profile. The ratio R = G(xn, xn)/σ2
e ≥ 1.
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Figure 5: Detecting power of Ŷn and Yn charts, when linear regression is used to fit the

profile. The ratio R = G(xn, xn)/σ2
e ≤ 1.
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Figure 6: 150 simulated profiles and their fitted profiles for bottle-filling example.
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Figure 7: Yn and Ŷn charts with δ = 1 for bottle-filling example.
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Figure 8: Yn and Ŷn charts with δ = 2 for bottle-filling example.
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Figure 9: Yn and Ŷn charts with δ = 3 for bottle-filling example.
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Figure 10: 150 simulated profiles and their fitted profiles for a nonlinear example.
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Figure 11: Yn and Ŷn charts with δ = 1 for a nonlinear example.
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Figure 12: Yn and Ŷn charts with δ = 2 for a nonlinear example.
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Figure 13: Yn and Ŷn charts with δ = 3 for a nonlinear example.
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