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Enhancing the Power of Process Control by Utilizing

Auxiliary Information in Profiles

Student: Hsiang-Ling Huang Advisor: Dr. Jyh-Jen Horng Shiau

Institute of Statistics

National Chiao Tung University

Abstract

Traditional control charting methods-in statistical process control monitor the
quality characteristic of the product or. process of interest directly. Now thanks
to well-developed technologies; we- can-easily record many other related data that
may provide additional information about the-quality characteristic at different time
points. For example, we can record the quality response variable along the time
before the end product is finished. If we regard the record of these values as the
profile of a product item, then the quality characteristic of the end product is the
endpoint of the profile. It is natural to expect that this auxiliary information would
be able to help enhancing the control process.

In this study, we focus on Phase II monitoring. Our approach is to fit each
profile by parametric or nonparametric regression methods, and then monitor the
fitted endpoint value instead of the endpoint response. It can be shown that, with
the additional profiles information, the fitted endpoint response has smaller variance
than the endpoint response itself. Accordingly, when compared to the traditional

approach, better detecting power can be achieved with the proposed approach.

Key Words: Profiles, orthogonal polynomials, nonparametric regression, local poly-

nomial smoothing, Gaussian stochastic processes.
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1 Introduction

Control charts, a primary tool in statistical process control (SPC), is powerful in moni-
toring the quality of processes or products and has been widely applied in industries and
other fields since Shewhart introduced the technique in 1924. Standard control charting
usually consists of two distinct phases, namely, Phase I and Phase II. The major goal of
the Phase I is to quickly bring the process into a stable or in-control state and collect
some in-control data so that reliable control limits can be established for effective Phase
IT on-line monitoring of future production.

In this study, we only focus on Phase II monitoring. The new approach we propose
for control charting is different from the traditional approach of monitoring the quality
characteristic of interest directly. Our approach is to record the quality characteristic
along the time before the end product is finished. The record as such for a product item,
considered as a function of time, is referred to as the profile of the product item hereafter.
Then, the quality characteristic-of the end product is the endpoint of the profile. For
illustration, consider a bottle-filling example as follows. Suppose the quality characteristic
of interest is the total amount of.soeda inthe bottle.and the filling process takes 5 seconds
to fill the bottle with soda. Assume that the amount of soda inside the bottle can be
recorded every 250 milliseconds. Then, the response of the end product, i.e., the endpoint
of the profile, is the total amount of soda in the bottle.

While considering each of these records as a profile, we only focus on the endpoint of it.
This is quite different from the usual profile monitoring, in which the quality characteristic
monitored is the whole profile. The profile monitoring has been a popular research topic
in SPC since Kang and Albin (2000) first noted that the quality of some processes can be
better characterized by profiles.

Since our emphasis is on the endpoint of a profile, the rest of the profile can be consid-
ered as auxiliary information. Could we utilize this auxiliary information so as to monitor
the end product more effectively? Or would it assist us to screen out substandard products
more quickly?

Assume there are m profiles and each of them has n measurements. Denote y;; as



the response of the jth profile at the time point z;. Kang and Albin (2000) considered
the following linear fixed-effect model for profiles obtained from an etching process in

semiconductor manufacturing:
Yij = Ao+ Ay +¢e45, i=1,---,n, j=1,---m, (1)

where the intercept A, and slope A; are fixed parameters. The random variables ¢;; are
independent and identically distributed (i.i.d.) as a normal distribution with mean zero
and variance o?. Kim et al. (2003) also studied this same problem and proposed an
alternative method for linear profile monitoring. The model studied in Kang and Albin
(2000) and Kim et al. (2003) is a fixed-effect model. However, under this model, some
factors such as variations in temperature or pressure, characteristics of the measuring
equipments, and other hard-to-control factors that may affect the response variable are all
categorized as part of the random errorej;.s For many applications, this simplified model
may not be adequate because some of these hard-to-control factors may affect the values
of the intercept and/or the slope-of the linear profile. Shiau et al. (2006) argued that these
hard-to-control factors should be considered as.common causes of variation and proposed
a random-effect linear model in order to cope with these common-cause variations. More
specifically, now Ag; and A;; are random variables instead of fixed parameters. With the
same reasoning, we consider random-effect models in this study.

To utilize the auxiliary information contained in the profile, we fit each linear profile
by a regression line and estimate the mean of the response at the endpoint by the fitted
value. We then monitor this estimate instead of the original endpoint response. The
reason behind this approach is simple: it is expected that this estimator would have
smaller variance than that of the endpoint response, because we borrow some “strength”
from the rest of the profile; and smaller variance may lead to better detecting power of
the control chart. Our study shows that, with the new approach, better detecting power
is indeed achieved for process monitoring.

We further extend this approach to nonlinear profiles. We believe the new approach
would outperform the traditional approach in practice as well. However, the distribution

of the parametric nonlinear regression estimator of the mean of the endpoint response



depends on the form of the parametric model, and is usually too complicated to compare
with the endpoint response analytically. Thus we study the nonparametric regression
approach. The nonparametric regression estimation method we started with was the
kernel smoothing due to its simplicity. Unfortunately, the ordinary kernel estimate has a
serious boundary-effect problem and the endpoint is a boundary point. We then decide to
use the local polynomial smoothing because it is boundary-effect free. By monitoring the
fitted endpoint value of the profile, we prove that better detecting power can be achieved.

The rest of paper is organized as follows. Section 2 reviews the linear profile with
fixed /random effects, orthogonal polynomial regression as described in Montgomery et al.
(2006), nonparametric regression estimation methods including kernel and local polyno-
mial smoothing, and Gaussian stochastic processes. Section 3 studies the proposed ap-
proach with an orthogonal polynomial regression model. Section 4 studies our approach
with a nonparametric regression model, .Section 5 demonstrates the proposed methodol-
ogy with two illustrative examples: Section 6 _concludes the thesis with a brief summary

and some remarks.

2 Literature Review

2.1 Linear profiles
2.1.1 Linear Profiles with Fixed Effects

Kang and Albin (2000) described the output quality characteristic of a process as a random
variable Y that is a linear function (or profile) of an independent variable X. They modeled
the linear profiles as in (1). For the jth profile, the least squares estimators ag; and g

of Ay and A; respectively are as follows:

Say(j
Qp; = gj - aljzi" and 15 = _y(]) (2)

Y
SICE

where §; = >0 yi/n, T =301 xi/n, Seyy = 2o (@ — Ty, and Sep = 30 (2 —
a?)g. In this model, the estimators ap; and a,; are not independent.

Kim et al. (2003) coded the x-values by centering so that the average coded-value is



zero. With the centered z-values, the least squares estimators of the intercept and slope

are independent random variables. Details can be seen in Myers (1990, p. 11-15).

2.1.2 Linear Profiles with Random Effects

Shiau et al. (2006) considered representing linear profiles with random effects by the

following model:
le:AOJ+A1J$l+€Z] izl,"',ﬂ, j:]-v"'vmv (3)

where the response variable y;; refers to the ith measurement of the jth profile, random
coefficients Ag;’s and Aj;’s are i.i.d. as N(ap,03) and N(aq,o07) respectively, and error
variables €;;’s are i.i.d. as N(0,02). Moreover, assume that Ag;, A1;, and €;; are mutually
independent.

Following Kim et al. (2003), Shiau et al. (2006) centered the z-values so that £ = 0
in model (3) for simplicity. To aveid introducing new notation, let the set points x;’s
represent the centered z-valuess Shiau et al.' (2006) first fitted each profile by linear
regression as follows. For the jth profile, by treating A,; and A;; as two fixed parameters,
the least squares estimators dg; and oy of ‘Ag;-and A;; respectively are

Swy(j)
S;m: 7

where 7 = D20 Yii /1, Sey) = iy Ty — Ug)/n = 2y iy, and Sy = D00 a7 /.

O = g] and a1 =

With centered z-values, they also showed that

(i) Gor, -+, Qo are 1i.d. N(ap, 08 + 202),
(ii) Gy, - -+, G ave 1i.d. N(ag, 0 + g=07),

and these statistics are mutually independent.

2.2 Orthogonal Polynomial Regression
2.2.1 General Statistical Properties

Using orthogonal polynomials to fit data is a popular method to avoid the ill-conditioning

in computation. We review the orthogonal polynomials as described in Montgomery et

4



al. (2006). For a set of data {(x;,v;), ¢ = 1,--- ,n}, consider the orthogonal polynomial

model as follows:
vi = aoBPo(z;) + o Pr(x;) + aoPo(wy) + -+ - + g Pr(my) + 64, i=1,---,n,
where P,(-) is an rth-degree orthogonal polynomial defined such that
iPr(xi)Ps(xi) =0, r#s, r,s=0,1,--- k, and Py(z;) =1, fori=1,--- n.
i=1

Rewrite this model in vector form:

y=Xa+e,
where y = (y1,+ - ,yn)’, @ = (g, -+ ,ap)?, €= (g1, -+ ,&,)7, and the design matrix
Po(z1) Pi(zh) - Pu(z1)
X _ Po('.%'2> Pl(.l’g) s Pk(ZL’Q)
I Py(x,) Pi(my). -+ Pi(z,) |
Then X has mutually orthogonal celumns and
> Fylwi) 0 = 0
0 0 e i B )
The least squares estimator of a is & = (XTX)'XTY = (4g,- -, da)T, where
. Pr i)Y
Gy = i D@ (4)

" > iy PRai)
2.2.2 Generating Orthogonal Polynomials with Equally-Spaced z-Values

When the levels of x are equally spaced, the orthogonal polynomials P,.(z;) can be easily

constructed by the following:

Po(w;) = 1,

Py(x;) = M(555),

Py(a:) = ho((255)2 = (F52)),

Py(a;) = Ms((275)° — (25%) (32557)), and so on,




where d is the distance between the levels of z, n is the total number of levels, and {\,}
are constants such that the polynomials will have integer values. See Pearson (1996, Table
47) for more details. Orthogonal polynomials can be calculated directly by the following
method (Seber, 2003, Ch7): if z-values are equally spaced, by transforming them to

1
i:.__ ]-a
;=1 2(n+)

the orthogonal polynomials of degrees 1-3 are

Po(x;) =1,
Pl(l"z') = M1,
()
Pyfa) = Dol — 5(n” ~ 1)),
Py(x;) = As(x? — 55 (3n* = T)a;)

Again, the purpose of the multiples+{A,} here is:to make the orthogonal polynomials to

have integer values.

2.3 Fitting Data by Localized Least Squares

In general, the nonparametric regression model is defined as follows:
v = m(xz;) + &,

where m(x) is the regression function and ¢;’s are i.i.d. random variables with E(e;) =0
and Var(g;) = o2 In the following, we give a brief review on kernel smoothing and local
polynomial smoothing methods as described in Fan and Gijbels (1996), Schimek (2000),
Simonoff (1996), Ramsay and Silverman (2005), and others.

2.3.1 Kernel Smoothing

The kernel estimator is the simplest and classic estimator obtained by locally averaging
data. In other words, the kernel estimator at a given point z is a linear combination of

local observations, i.e.,

@) = 3w (®

6



for some suitably defined weights w;(x). The most popular kernel estimator, the Nadaraya-

Waston estimator, is constructed by using the weights

Kp(x; — x)

ZKh(LEk —x)

, (7)

w;(z)

where K (-) = K(-/h)/h and K is a kernel function that is usually a symmetric probabil-
ity density, and parameter h in the weight function is called the bandwidth. Small values
of bandwidth imply that only observations close to = receive some weights, while large h
means that a wide range of observations that are at a considerable distance from x are

used for local averaging. Substituting (7) into (6), the Nadaraya-Waston estimator is

2.3.2 Local Polynomial Smoothing

Suppose the regression function m(z ) can-be-approximated by

p

" m®) (g
m(w) ~ ) #(l‘ = 20)" = Bula — xo)"

v=0 v=0
for xy in a neighborhood of z, by using Taylor’s expansion. Then a pth degree local

polynomaial regression estimator at xoy can be obtained by minimizing
n p
mﬁm Z{?/z - Z Bo(wi — w0)" Y Kn(w; — m0) | (9)
i=1 v=0

where 8 = (Bo, -+, 3,)".
Let X be the design matrix

1 (x1—x9) -+ (x1—x0)P
X 1 (za—mxg) -+ (w2—x0)P
1 (v, —x0) -+ (2, — o)



Further, let W be the n x n diagonal matrix of weights:
W = diag (Kh(% — 960)) .
Denote y = (1, -+ ,yn)”. Then the weighted least squares problem (9) can be written as
min (y —XB)'W(y - Xp).

The solution vector is
B=(X"WX) ' X"Wy.

Let S, = XTW X, we can write the local polynomial regression estimator B as

B=58,"X"Wy,
where
Sn,O Sn,l e Sn,p
S — Sn,l Sn,2 by Sn,p—H
Sn,p Sn,p+1 o Sn,2p
with

n

Snw = Y K@ = o) (x; — 2o)" (10)

i=1
2.3.3 Local Polynomial Smoothing with Equivalent Kernels

The estimator 3, of m® (zo)/v! can be written as

By = e@THB = ev+1 N XTWy = an (xZ ) Y v=0000p, (1)

where the unit vector e,q = (0,---,0,1,0,---,0)" with 1 on the (v+ 1)th, and W(t) =
el S,* (l,th, e 7(th)P)T K (t)/h. Then the estimator 3, is a type of kernel estimator
except that the “kernel” W depends on the design points and z,. This dependence
explains why the local polynomial regression estimators adapt automatically to various
designs and to the location zq (either in the interior or at the boundaries of the support).

It is easy to show that the kernel weight function W)' satisfies the following discrete

moment conditions: for 0 < v, q < p,



(i — )W, <—xl - xo)
=1 h
1

= ZTi — o
=e) 18, Y (wi — mo)" . K (zi — x0)

i=1 :

(i — 20)”
- ngrlS;lSneq_,_l - 51),(1.

Consequently, the finite-sample bias is zero when using local polynomial fitting of

degree p to estimate polynomials of degree up to p.

2.4 (Gaussian Stochastic Processes

We introduce the covariance function G of the Gaussian stochastic process with mean zero

as described in Wahba (1990). Let 7 be an index set, say, [0,1].

Definition 1 A symmetric, real-valued function G(s,t) with s,t € T is said to be

positive definite if, for any real ay, -~ ,a, and t1,- -+ ;t, € T,

n

Z aiajG(ti,tj) 2 0.

ij=1
If G(-,-) is positive definite, then we can define a family {Y(¢),¢ € T} of zero-mean

Gaussian stochastic process with covariance function G, that is,
EY(s)Y(t) = G(s,t), s,teT.

Given a positive-definite function G(-,-), we can associate with it a reproducing kernel

Hilbert space (r.k.h.s.).

Definition 2 A (real) reproducing kernel Hilbert space is a Hilbert space of real-valued
functions on T with the property that, for eacht € T | the evaluation functional Ly, which
associates f with f(t), Lyf — f(t), is a bounded linear functional. The boundedness means

that there exists an M = M, such that

| Lof |=] fFO)IS M| f| forall f in the r.k.h.s.,



where || - || s the norm in the Hilbert space.

If H is an r.k.h.s., then for each t € T there exists, by the Riesz representation theorem,
an element R; in H with the property L,f =< Ry, f >= f(t), f € H, where R; is called

the representer of evaluation at £ and < -,- > is the inner product in H.

Let W,,[0,1] = {f : f,f,---,f™ " are absolutely continuous and f™ € L£,[0,1]},
={f:f € Wy,01], fP0) =0, v =0,---,m—1}, and W2[0,1] = {f : f €
B, f, f -, f™ ! are absolutely continuous and f(™ € £,[0,1]}.
Theorem (Taylor’s theorem)  If f is a real-valued function on [0,1] with m — 1

continuous derivatives and f™ € L£5[0,1], then we may write

m—1 1 (m—1)
_ ) (t —u) m
ft)_{;mf (O)}+{/O (m_+1)! £ >(u)du},
where (x)y =z for x > 0 and (x)y = O-otherwise. If f € B,,, then

et il
e /—) 78wy

/G (t, w) £ (u)du

where G, (t,u) = (t — )7 /(m — 1)\

1
Wahba (1990) proved that W2 [0, 1] is an r.k.h.s. withr.k. G(s,t) = / G (t, u)G (s, u)du.
0
When m = 2, W[0,1] is an r.k.h.s. with r.k.

G(s,t) = /01 Go(t, u)Go(s, u)du:/ol(t —u)y (s —u)y du:/omm(syt) (t—u)(s —u)du

/O(t—u)(s—u)du if s <t %_%37 o<t )
- t - 2 3 .

/(t—u)(s—u)du if s>t %—%, if s>t

0

The general form of r.k. is

(_1)i+lmtm—i8m+i—l ifs<t

s

&
Il
—_

G(s,t) =

(_1)i+1 msm—itmﬁ—i—l if s >t

s

&
Il
—_

10



3 Methodologies: Parametric Regression Approach

3.1 Linear Profiles with Random Effects

Assume there are many profiles and each profile has n equally spaced measurements. Fit
these profiles with the linear random-effect regression model (3). For the jth profile, by
treating A;; and A;; as two fixed parameters, the least square estimators dg; and &;; of

A;; and Ay respectively are in (2).

Proposition 1 Under the linear random-effect model (3), we can show that

N\ A ~ .. 2
(1) o, - -+, Qom are i.i.d. N (060,0(2) + (2 + m)ag) ,

2

(/”) 11, , 0y GTE ’L’Ld N <O[1,O'%—|— WJE 5
k2

2
P

(17i) Cov(bpj, Gryj) = — Z(x?fi)QU

Then, the endpoint response Y;,; is norinally. distributed with

E(Ynj) = E(Aoj -+ Aljiﬂn E 5nj) = + ATy, (13)
Var(Yy;) = Vae(Aoj +ATTF cj) = 02 + 0322 + 2.

Let Ynj = (v, + 12, be the fitted response value at the endpoint. By Proposition 1, Ynj

is normally distributed with

E(Yn]> = E(@oj + éqjl’n) = + 1Ty (14>
> ~ A Tn—T)2
Var(Y,;) = Var(aoj + duja,) = o + ota? + (+ + W)ag :

Comparing equations (13) and (14) above, we find that the variance of Y},; is smaller than
the variance of Y,,; as long as (1/n+ (2, —2)?/ Y i, (z;—%)?) < 1, a condition that usually
holds for large n. It can be shown that smaller variance will lead to larger detecting power
for the control chart in process monitoring.

Alternatively, model (3) can be re-expressed as the following mixed-effect model:
Yij = ap +oqx; + (Aoj — o) + (A —on)x; + 65, i =1,---,n, j=1,2,--- . (15)
For the jth profile, by expressing (15) as
Yij =0tz +e;, i=1,n j=1,2--,

11



where €; = (Agj — ) + (A1j — 1) + €45, we can obtain another set of estimators a5, and
&, for ag and a; by the weighted least squares estimation method. Let }7;] = Qp; + Q5 Tn.
It is found by simulation that using Y;j from the mixed-effect model (15) does not gain
more detecting power than using }A/nj. However, the form of Var(}};j) is more complicated
than that of Var(f/nj). Thus, we adopt monitoring Ynj hereafter.

In the next subsection, we consider the case of nonlinear profiles that can be adequately

fitted by polynomial regression models.

3.2 Polynomial Profiles with Random Effects

Assume there are many profiles and each profile has n equally spaced measurements. Fit

these profiles with the following random-effect orthogonal polynomial regression model:
Yyij = AgjPo(wi) + Ay Pr() + -+ + Ay Dp(i) + &y, i=1,---,n, j=12,--- (16)

where P, (x;) is an rth-degree orthogonal polynomial defined such that Y. | P(z;) Ps(z;) =
0 r#s,rs=0,-,p, and Py(e)) = 1. We assume-that A,; ~ N(a,,02), r=0,---,p,

are independent normal random variables-and-&,4’s are 1.i.d. as N(0,02). Moreover, assume

that A,; and ¢;; are mutually independent for =0, -- ,p.
For the jth profile, by treating Ay;, A1, - , Ap; as fixed parameters, we estimate them
respectively by the least squares estimators dyj, éyj, - -, Gp; given in equation (5). Let

Yoy = Agj+ A1y Pr(n) + -+ Ay Py(w0) + €0 and Yoy = Goj + G Pr () + -+ Gy By ().

Proposition 2 Under the random-effect model (16), for each r = 0,1,--- .p, &;, j =

.o 0-2 ~ .
1,2,---, are i.i.d. as N(a,,0% + 2?21—1‘32(%)) and é,;, 7= 0,1,--- p, j = 1,2,---, are
ndependent.
Proposition 3 Under the random-effect model (16), Y,;, j = 1,2,---, are i.i.d. as

N( f:o o P (2y,), I;:O Gng(xn) + Ug )

Proposition 4 Under the random-effect model (16), ?nj,j = 1,2,---, are i.i.d. as

P2(zp
N (52 Pu(a), S0 _g[02PR(a,) + g2l o).

12



The proofs of all the propositions in this thesis are given in Appendix A.

3.3 Phase II Method

In Phase II monitoring, we assume that the parameters ag,ay,---, oy, 05,07, , 02,
and o2 are known. Set the overall false-alarm rate at «. Since the distributions of the

e

monitoring statistics Y,,; and ?nj are known, their control limits can be easily shown to be
LCLy, =CL — Zgany, UCLy, =CL+ Zan,

LCLy =CL—Zsn, UCLy = CL+ Zsn,
where
CL=oyg+ar1Pi(x,)+ -+ a,Bp(x,),

1/2
Mo = {0’84—0%1’312(:5”)—|—~-~+0‘12,Pp2($n)+0‘z} :

1 Pi(x,) P (x,) 2
2 2 p2 2992 1\ Tn p 2
n=<o +0P(xn)—l—---+ch(xn)+[—+n—+-~-+n— o; ,
{ ‘ . i f Zi:1]12(17i> Zi:llp2<$i)

(17)

Za is the (1 — a/2)th quantile of the standard normal distribution. Y, and Y, charts
have the same center line, ag + a1 Py (z,) + - - - + a, Py(x,,), but with different widths. The
difference is in the standard deviation term. Similar to the case of linear profiles, when n
is large, it is likely that the statistic Ynj has smaller variance than Y,,;. We demonstrate
this theoretically for the case of p = 2. If z-values are equally spaced, without loss of
generality, we can transform them to z; = i — %(n + 1) and calculate the orthogonal

polynomials directly by (5). The results are as follows:

PE(x,) = &714—_1)2’ Zé P2(z;) = MNn(n +112)(n - 1)’

P2(z,) = A3(n — 2§;(n — 1)2’ é P2(a) = A2n(n? _1818(”2 B 4)’

L, P) | P | 1 30 -2l

" : Xn: PE(z;) i P2(z;) n " n(n+1) * nn+1)(n+2) Ca. (18)

13



It is apparent that C,, = O(1/n). We calculate C,, for various n and the result is shown
in Table 1. From Table 1, we have C,, < 1 for all n and C,, < 1 for n > 3. From Figure
1, we can see the term C,, in (18) approaches zero for large n. Thus in the case of p = 2
and n > 3, we have 1 < 1. Therefore Y, chart has narrower control limits than Y,, chart.
When n is larger, the variance of }A/nj becomes smaller. Since the normal distribution of
Ynj has smaller variance, the detecting power of Y, chart is better than that of Y,, chart.
The detecting power can be calculated by the following.

When the mean of Y,,; shifts with a size of 7y, the probability for Y,,; still falling

within the control limits is

5(0) = P{OL ~ Zyny < Yoy < CL+ Zgmo}

= {—(5 — Z% < Ynj
—0(=5+25) -0 (-5-25).
where ®(-) is the c.d.f. of the standard normal distribution. If the mean of Y,,; shifts with

a size of dny, then the mean of Y/nj will shifts with a-size of §'n, where § = dny/n. Then
the probability that Ynj falls within the control limits is

B(0) =P {CL — Zan<Y,; <CL+ Z%U}
- vinL (c;]L+5’n)

:P{—é'—Z; §—5’+Z;}

=0 <_5’ +Z%> - (—5’ —Zg).

Because (y(0) and () are type II errors, the detecting powers of Y,; and Ynj are 1 —(3y(0)
and 1— 3(6), respectively. Since 19 > 7, we have § < & , which implies 1 —£y(8) < 1—03(6).
Thus Yn chart has better detecting power than Y,, chart.

The detecting power of Y,, chart, 1 — (5y(d), depends on § only. However, the detecting
power of Y,, chart, 1 — /3 (0), depends on 6, 1y, and 7. Since there are many combinations
of ny and n, it is impossible to list all the cases. For illustration, we consider the case of

p = 1, the linear case, and various ratios of the component o2+ 0} P¢(x,,) to the component

2

o.. Because the advantage of the proposed method over the traditional method relies

on the condition that the coefficient of o2 is less than 1, the ratio of the component

2
e

o2 + 0?P(x,) to the component ¢ is important. If the magnitude of o} + o3P (z,)

14



dominates the variance term, then the enhancement of the detecting power is limited.
In Figures 2-3, we demonstrate the enhancement for n = 10, 20,30,40 and the ratio
R=4,3,2,1,2/3,1/2,2/5. From Figures 2-3, we can see that the detecting power becomes

larger as the ratio R gets smaller and/or the number of the set points n gets larger.

4 Methodologies: Nonparametric Regression Approach

4.1 Model Assumptions

Without loss of generality, let 7 = [0,1]. We assume that {Y(w), reT } is a Gaussian
stochastic process with mean function p(x) and covariance function G(x, t), where z,t € 7.

For one profile, the nonparametric regression model is as follows:
Yi :Y(xz)+5u L= 17 » T (19)

where ¢;’s are i.i.d. as a normal distribution with mean zero and variance o2. Moreover,

assume that Y (z;) and ¢; are mutually independent.

4.2 Monitoring Statistics and Their Distributions

If we use the Nadaraya-Waston estimator (8) to estimate Y (x), we can get

n ()
Y(z) = sz(x) yi, where w;(z) = — h :
=1 T — T
| >k (B)
k=1

It is well known that the Nadaraya-Waston estimator may estimate the boundaries badly,
especially when h is large relative to the sampling rate. Since we focus on the boundary
point, we must be cautious with the boundary effect. On the other hand, local polynomial
smoothing is superior in the region of the boundaries; see, for example, the detailed

discussions provided by Fan and Gijbels (1996). To avoid the boundary effect, we adopt
the local polynomial smoothing method. By equation (11) with p = 1, the local linear

15



regression estimator Y(a:) is BO and this estimator can be explicitly expressed as

?(I):iwi(:ﬁ) v, where wy(z) = nK (72 [Sna = (0= 95, . (20)

K (822 ) (805 = (21— 2)Sua)

1

k

with S, ; as defined in (10). We use this estimator Y (z,) with weight function w;(z,) in

(20) to obtain the fitted value ¥, of the endpoint of the profile.

Proposition 5 Y, = Y(x,) + ¢, follows a normal distribution with mean u(x,) and

variance G(Z,, T,) + 02,

Proposition 6 Y, = Y(z,) = 3.7, wi(z,)y: follows a normal distribution with mean

S w;i(zn)p(xi) and variance Y > wi(@n)w;(2,) Gz, x5) + > wi(ay,)o2.
i=1 j=li=1 i=1

4.3 Phase II method

In Phase II monitoring, for simplicity, we assume that the mean function u(x) and co-
variance function G(z,t) of the Gaussian stochastic process are known. Set the overall

false-alarm rate at o. We can derive the ¢ontrol limits of Y,, chart and Y, chart as follows:

LCLy, = p(xn) — Zgmy, UCLy, = p(xn) + Z21g,

LCLy, =Y wilz,)ulz) — Zan',  UCLy = wi(wa)u(z;) + Zsip',

=1 =1

where
1/2
Ny = {G($n,£n) + ag} ,

7= {8 Sl )+ 5 w%(xn>ag}”2 |

j=1i=1

(21)

In general, the center line zn: wi(n)pu(x;) of Y, chart is different from the center line pu(2,,)
of Y,, chart because the ncl)?&)arametric method diminishes variance at the cost of getting
some bias. However, we find that Y,, and }7” charts have the same center line when the
mean function of the Gaussian stochastic process, ju(-), is a linear function and we use the

local linear regression to fit the line.
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Proposition 7 If u(-) is a linear function and the local linear regression is used to smooth

n

data, then > wi(x,)pu(x;) = p(z,).
i=1
Proposition 7 indicates that Y;, and Y, charts have the same center line if (+) is linear.
If the mean function of the Gaussian stochastic process is not a linear function, then the

difference between » w;(x,)p(z;) and p(z,) is of size O(h).

i=1

Proposition 8 If u(-) is differentiable and i () is bounded by some constant M, then
the mean of Yy; can be expressed as > wi(zy)pu(x;) = p(x,) + O(h).
i=1
Unlike the mean of Ynj and Y,,;, the variances of Ynj and Y,,; are obviously different.

In order to see the difference clearly, we derive.the following proposition.

Proposition 9 If h — 0, nh —-e0, K(:)'4s differentiable, and K'(-) is bounded by some

constant C, then the variance of f/n cam be expressed as

1S e +o( 1 ) ]

nh ) K (u)du } 2 wh ) (%

Var(f/n) = G(zp,x,) +O(h) +

nh fmin(l,lfhz”
-1

The two conditions that K is differentiable and K'(x) is bounded by some constant
C hold for commonly used kernel functions. From the Proposition 9, we can clearly see
the difference between the variances of Ynj and Y,;. Recall that the variance of Y,; is
G (2, T,) + 0. The difference in the variances of Ynj and Y,,; includes an O(h) term and
the coefficients of o%. Note that the o2 term converges to zero as nh — oco. If we add
an additional condition nh?* — 0, then O(h) converges to zero more quickly than 1/nh.
Then, by Proposition 9, the variance of Ynj is smaller than that of Y,; asymptotically.
When the mean function of the Gaussian stochastic process is a linear function, Y, and
Y,, charts have the same center line but different widths of the control limits. The control

limits of Yn chart are narrower than that of Y,, chart. Then, the detecting power of Yn
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chart is better than that of Y,, chart. If the mean function of the Gaussian stochastic
process is not a linear function, then the center lines of Y, chart and Y, chart may be
slightly different. However, the bias of the center lines does not affect the result that Y,
has bigger detecting power than Y,, has. The detecting powers of Y, and Y, charts can be
calculated as in the following.

When the mean of Y,,; shifts with a size of dng, the probability for Y,; still falling

within the control limits is as follows:

= O(—§ + Za) — O(—0 — Za).

Since 35(0) is the type II error for Y,,;, the detecting power of Y,,; is 1 — 5;(9).
If the mean of Y,,; shifts with a size of 7, then the mean of f/nj shifts with a size of
§'n*, where §' = ong/n*. Then the probability. for Ynj falling within the control limits is

as follows:

Il
—

= B(—0' + Za) = B(—6 — Za).

Since (3*() is the type II error for Ynj, the detecting power of ffnj is 1 — 3%(0).

Similar to the polynomial regression case, ¢ is bigger than § since n* is smaller than 7;
for large n. Since Ynj shifts a larger size than Y,,; does, the detecting power of Y, chart is
bigger than that of Y,, chart. To describe the detecting power, we consider various ratios
of the component G(z,,r,) to the component ¢2. In Figures 4-5, we demonstrate the

enhancement for n = 20, 30,40, 50 and the ratio R = 4,3,2,1,2/3,1/2,2/5. Results are

similar to the polynomial regression case.
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5 Two Illustrative Examples

5.1 Linear Profile Example— Soda-Bottle Filling

In this subsection, we demonstrate the Soda-Bottle example. Assume the Soda-Bottle
filling process takes 5 seconds to fill a bottle with soda and we record the weight of a bottle
every 250 milliseconds. Then, we simulate 150 independent records of profiles and each
consists of 20 measurements measured at z; = i/4,7 =1, --- ,20. If the jth bottle, without
soda, weights Ag; and that the rate of filling a bottle in every time unit is A;;, we can
assume the output profiles conform to the random-effect model in equation (3), where oy =
25, ay = 25, 02 = 1, 02 = 1, and 0 = 4. The simulated profiles and their fitted profiles
are shown in Figure 6. The variance of Y,, is 02+ 0722 +02 = 30, where 62 + o322 = 26 and
02 = 4; and the variance of Yy, is 03+0222 +[1/n+(x,—7)2/ S0, (2;—7)?|o? = 26.7428571,
where [1/n+ (z, —2)*/ > (2, — T)?*|ef1= 0:7428571. When the mean of the response at
the endpoint shifts with a size of §(og + ofa?=+e?)}/?, we simulate 150 profiles and Figure
7-9 demonstrate the Y, chart and ¥ chart respectively for 6 =1,2,3. For 6 =1,2,3,, Y,
chart signals 4,19, 82 times while Y, signals 6,31, 92 times, respectively. Y, chart signals

more often than Y,, chart does.

5.2 Nonparametric Example

Assume the profiles are from a Gaussian stochastic process {Y(gg), reT } with mean
function p(x) = 5e3* and covariance function G(z,t) defined in (12), where 7 = [0, 1].
Take n measurements at x; = (i — 0.5)/n. The ith simulated profile with measurement
error is y; = Y (x;) + &;, where ¢; ~ N(0,1),i = 1,--- ,n. Fit each simulated profile by
the local linear regression estimator given in (20) with bandwidth » = 0.2. For n = 20,
150 simulated profiles and their fitted profiles are shown in Figure 10. The variance of
Y, is G(xn, x,) + 02, where G(z,,r,) = 0.3333333 and ¢ = 1; and the variance of Y,
is Doy iy wilwn)w(2,)G (i, x5) + D wi(a,)o) = 0.3332085 + 0.7122667. We can
clearly see that }A/n and Y, have about the same mean, but }A/n has smaller variance than

Y,, does.
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When the mean function of {Y(;p), x € ’]’} shifts with a size of 6(G(x,,z,) + 02)1/2,
the Y,, chart and }A/n chart are illustrated in Figures 11-13 for 0 = 1,2, 3 respectively. For
0 =1,2,3,Y, chart signals 4,22, 67 times while Y, signals 7,34, 93 times, respectively. Y,
chart signals more often than Y,, chart does.

The results are for the case of n = 20. If n =30, Y211, Y27 wi(@n)w;(2,)G (35, 75) =
0.3331576 and >, w?(x,)o2 = 0.543526. We find that when n is larger, the variance of
Y, chart becomes smaller. This indicates that the larger the n is, the larger the detecting

power Y,, chart has.

6 Conclusions

In this study, we focus on Phase II monitoring. Assuming the whole profile data of
a product are available, we propose a monitoring scheme different from the traditional
method that directly monitors the endpoint, of the profile. Our method is to take advantage
of the auxiliary information contained in the profile by fitting each profile with a regression
function, and estimating the mean response at the éndpoint by the fitted value. Take
this estimator as the monitoring Statistic instead of the original endpoint response. This
approach is better than the traditional'method since this estimator has smaller variance
than the endpoint response when n is not too small. For the profile fitting, both parametric
and nonparametric regression methods are considered. We show that better detecting
power can be obtained by the new approach. If the profiles can be fitted adequately
by polynomials, we will choose the orthogonal polynomial regression to fit these profiles;
otherwise, we adopt the nonparametric regression method. How do we determine that the
fitting is adequate? We can consider some goodness-of-fit tests. See Seber (2003, Ch4)
for more details. In this study, we only consider the Phase Il monitoring. Developing 37“

chart for Phase I analysis is a potential future research topic.
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A Appendix: Proofs

Proof of Proposition 1:

(ii) Since > (z; — ) =0and > (z; — T)x; = >, (x; — T)?, we have

Gy = —22 Iy(J) -5 Z )y,

1’13

n

=3 Z(x,- — &) (Agj + Ayjzi + i)
=1

n

R REFIO ST S
> (zi—z)? = =1

=1
_ 4y i (T Ty
MDY

Thus,

E(OAélj) = 07 and
2

VGT(&U) T 0'% i m

Therefore, dlj ~ N(Oq, 0'% + #5175)2)

(i) Since Y1 ((zi — ) =0 and > 1y (wy— Z)az="> 1, (x; — )%, we have
d()j =Y — OAélj.’J_Z
¢ S (@ — @)y
= E Z y’L] Alj + ! J ).Z'
i=1

Zz 1(% - x)
IS E? (z; — T)ey
-t -

)T

1- — —)5“
1\ ij
- AO] + = E Eij — Zn T

fL 1 ':Cl_x)2
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: BN > i (@i — T)ey;
Since Cov (ﬁ Zeij, INEASE =0, we have

E(éé()j) = and

2 7202 1 - n_ XT; — T €id
Var(do) = o8 + 26 + 20— —22Cov | = Y &y, iz (7= T)ey
n n —\o n 4 2:1(171‘ _ .’L')Q
Z(ZL’Z - fL') i=1 g
i=1
2 z i’20'g
=0y + —+ Py
> (i — 1)
i=1
Therefore, o; ~ N (a, of + (4 + zz;fiﬁw)GZ)

(iii)
COU(@OJ, dlj) = CO’U(A()J' + l ZEZ‘]' - %nlfz;__ ;;51] x Al] Xz:énll(:(i;__:i):;j)
= Cov( . Die = (z: 2 T)ey; 3 D i1 (Ti — 7)&]1: > i (T — T)ey
- Z G PR S SN E El SN o
Zz 1(56% — )5w)
- 22:;;1 (z; — )2

- >y (v —3)%

=—zVar(

Proof of Proposition 2:

(1) Since > P.(xz;) =0, r=1,---,p, we have
i=1

Z Po(%)yij 1
——— = EZ [Agj + A1y Pr(wi) + -+ + Api Pp(w:) + 5]
=1

nAo+ Ay Pi(mi) 4+ Ay Bylri) + Y ey
i=1 1=1

i=1

1 n

Thus,
E(doj) =F (Aoj + % Z Eij) = and
=1

Var(éo;) = Var (Aoj + % > 5”’) =02 + %_



Therefore, dg; ~ N(ag,of + %)

(2) Since > P.(z;) =0 and > P.(x;)Ps(z;) =0, for r #s, r,s =1,---,p, we have
=1 i=1

> Br(xi)yi
e —
;Pf( ;)
1 n
=5——> B [Aoj + Ay Pi(w) + -+ A Po(@) 4 -+ + Ay Py(ai) + 5ij]
> Prw;) i=1
=1
1 n n
= (AOj D Po(wi) + Ay Y P Pi(w) + -+
2. B (xi) i=1 i=1

A, z": P?(gapdieadgn, Z P (z;)Py(x;) + Z P, (z; %)
i=1
Z Pr(xi)&j
i=1

== Arj + ':n

ZPTQ(%)

Thus, E(4,;) = E Arj—i—zk— =, and

Var(ay;) = Var | A+ S——r 11 =02+ o2+

Therefore, &,; ~ N(a,, 02 + e ).

ZP2 x;)

To show that &, and &, are independent, for r # s, r,s =0,--- , p,
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> Pu(wi)es; PR ACHES
i=1 =1

COU(&TjJ éés]) = COU(ATJ‘ + ‘:n 7Asj + :n—)

ZPTQ(%‘) pr(xi)

ZP T;)€ij

= Cov( Ay, Agj ) + Cov( Ay, HSi—)

Z P2 (x;)
iPT(xi)eij ZP Z; 81] ZP ZT; 61]

—l—C’ov(i:%— Agj) + Cou( =L )

i=1 i=1
ZP Ti)€ij ZP Ti)€ij

= Cov(*=; )

Z Pf (x;) Z P2 (x;)
i=1

Zp(ﬂ:z 5” ZP(Z‘Z){:‘U
= Cou( ]zr(m)&j =l ) 4o 4 Cou P.(z,)en; ima )

n ) n

ZPTQ(%) pr(xi) ZPTQ(% Z

_ b (xl)P (:vl)Var(slj) T P, (gcn)P (wn)Var(an)

ZPQQ ZPQ:@ ZP2 T; ZPle

ZPT(@)P
ZPE(%)ZPS?(%)

=0.

Proof of Proposition 3:

Trivial.
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Proof of Proposition 4:
E(Y,;) = E( do; + ayPi(n) + - + dy Bp(a) )
= E(daoj) + E(a1Pi(zn)) + - + E(ay Pp(xn))
=op+ a1 Pi(z,) + - + o Py(y,).

Var(ffnj) = Var( doj + da; Pr(xn) + - + Gy Py(24) )

o2 2

= (02+f)+(02+n—)P2(1’n)+ +(02+n0—e)P2(l’n)
’ ' Z P (xi) P 21 P2 () P
2z,
_O—O+O—1P2(‘rn> ‘|‘0'12,PZ)2(5C71>—|— %—F—Pf(x") 44 PP( ) 02 =7

> PRz > P)
Thus, Ynj are i.i.d. as N(ap+ a1 Py(z,) + -+ + o Py(22,), n?).

Proof of Proposition 5:
E(Y,)=E(Y(x,) +e,) = u(z,) and:Var( V)= Var(Y(x,) + &,) = Gz, x,) + 02
Thus, Yo ~ N (p(a,) . Gl 2,) 4 02)-

Proof of Proposition 6:
B = B (S uiwu) = 3 i E (¥ gh=) = 3 wion)uo)

(v
mmnpwm(ZW@@Q vw(é <><>+§m(>)
= 52 Sy ma) Gl ) + 3w (el
wmmmxiiw@mwmm%m+iw@wg.

j=1li=1 i=1

M: I

Il
—

Thus, Y, ~ N (

2

Proof of Proposition 7:

Let ¢; = Kh(-Ti - xn) |:Sn,2 - (xi - l'n)Sn,l] )
Then, by (20),

=1
wz (@n)l(:) = =—F——
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Assume that p(z;) = a + bx;, where a, b are real numbers. Then,

n

> liplws) ) lia + bay) > bz
=1 =1 =1

= =a+b—; )
>l >l >4

=1 =1 i=1

We can show that > ¢;x; =z, Y ¢; by the following:
i=1

i=1

Yl =Y Ky(w; — x,) |:Sn2 — (x; — ) Sh, } x;
i=1 i=1

= Sua 3 Kl — ) — nlzw = ) (i — )1

i=1

- n,ziKh(xi—xm—xn)— mzm ) (s — ) (2 — 1)

i=1

+Sn2 Y Kn(x; — x)x, — Spa Z Kp(x; — xn) (2 — )2y,
=1

=1

= n,QSn,l - Sn,lsn,Q + ann,2Sn,0 — xnsn,lsn,l
= xn(*gn,ZSn,O - Sn,lsn,l)

n
=1

The last equality is due to

l; = Z Kh(% - l’n){Sn,z - (xz - xn)Sn,l}
=1 i=1

7 =

= > Kp(z; — ) Sn2 — > Kn(xi — ) (2 — 1) Snn
=1 =1

)

— 2
- n,OSn,Z - S

n,l *

Then, we get

sz o) (x;) = a+ bx, = p(xy,).

The Mean Value Theorem for Integrals: If f is a continuous function on interval I,

then there exists a number & € I such that [, f(x)dx = f(&)|1].

Lipschitz Condition 1: Let f be a real-valued function defined on a subset D of real
numbers. We say that f : D C R — R satisfies a Lipschitz condition if there exists a
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constant C > 0 such that |f(t) — f(x)] < C|t — x| for all t,x in D. Here, the smallest
such C' is called the Lipschitz constant of the function f.

Corollary 1: If f is differentiable and |f'(z)| < C for all x € (a,b), then f satisfies the

Lipschitz condition
|f(t) — f(z)| < C|t — 2| for allt,x € (a,b),
where C' is a constant.

Proof of Proposition 8:

For s in a small neighborhood of x,,, by Taylor’s Series expansion, we have

dp(s)
ds

+ O(s — zy).

S=Tn

uls) = nlwa) + (s — )

For |s — x,| < h, we have
|iu(s) = )| = O(h).

Since > w;(x,) = 1, we have
i=1

Z wi(wn) (i) = p(an)] = O(h).

Lipschitz Condition 2: Let f be a continuous and defined in a neighborhood of
(to, o) € R%. We say that f : R* — R satisfies a Lipschitz condition if there exists a
constant C' > 0 such that |f(t,z1) — f(t,x2)| < Clzy — 22| for all (t,x1) and (t,x2) in a
neighborhood of (to, x).

of (t,x)

Corollary 2: If f is differentiable and 3
x

s continuous, then Lipschitz Condition

2 1s automatic.
For the above conditions and corollaries, see, for example, Marsden (1993) or Pugh

(2002).
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0G(s,t)

Lemma 1 If G is differentiable in t and ‘T is continuous, |s — x,| < h, and

[t — xn| < h, then |G(s,t) — G(;Umxn)‘ = O(h), where s,t, and z,, € [0, 1].

Proof:

For s,t in a small neighborhood of z,,, say B(h), by Taylor’s Series expansion, we have
G(s.1) = Gl ) + (5 — ) oo Tt -y 2600 + R,

88 (5,)=(2n,2n) 8t (s,;)=(zn,zn)

where R is the remainder. For |s — x,| < h and |t — z,| < h, we have

|G(s,t) — G(xp, x,)| = O(h).

Lemma 2: [f K is differentiable on (0,1) and |K'(x)| is bounded by some constant C,

then

1 & PR ! o Ln 1

—ZK<“" 3 ):/ K(‘T : )d:c +0(—).

né— h 0 h n
Proof:

, — 0.5
Let z; = ! and I; = [z; — 5= , @j+ 5-],i=1,--- ,n. We calculate the absolute value
n

to see the difference. Because K is a continu-

" ' , N
%;K(% h$n> _/O K(x hxn)dx

ous function, there exists a point & € I; such that / K (x —h$n> der = K (& ;CE”) | I;]|
I;

1
for i = 1,---,n by the Mean Value Theorem for Integrals. Since each | I; |= —, the
n

1 - i~ n 1 N i
above difference can be rewritten as follows: - Z_Zl K (x ? m > - ; K (gz hx”) ‘

Because K is a kernel function, K(%5™) is zero for the z-values outside the boundary

interval B(h) = [z, — h, min(x, + h,1)]. Then
I~ (xi—x) L & —
P G )‘ﬁ;K< ; )'
Ko (T K(&—xn)
mzezB(h) ( h > l’zeZB(h) h
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By the given conditions, K satisfies the Lipschitz condition 1:

'K<xi;xn)_K(§i;xn)‘§C

It follows that

T — &
h

h h

C
<

=C S

Thus, we have

Proof of Proposition 9:

From Proposition 6, we know that

Var(ffn)zzn:zn: K«;f”) K(xj;x”) G(:ci,xj)Jan: K(J;;_%) | 2

Thus,

W n K(xzx”) K —%;x">
G(xi, z;) = G(zy, x,) + O(h).



Using Lemma 2,
1< , — ! — 1
—ZK(% x”) :/ K(x x”) dx +O(—>
né= h 0 h n
min(zn+h,1) o 1
:/ K(x “"”)dx+0(—)
Zn—h h n

[ o (1)

then, the second term in Var(f/n) can be re-expressed as follows:

O’E
1 n Ly — T
K| ———

1 _ 17L Ty — Tn
T i > (1) IEZKQ( h )]Ug

2
Ty — X
K( i n>
n h 2 _ 1 z": [lK (xi—xn)raz

(2

Finally, we re-express Var(Y;) by

Var(V,) = G, 1) + O(h) + % {ﬁlzi z:)‘zur 40 ( 1 > o2,
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Ch Cs Cs Cy Cs
1.00000 | 1.00000 | 1.00000 | 0.95000 | 0.88571
Ce C Cs Cy Cho
0.82143 | 0.76190 | 0.70833 | 0.66061 | 0.61819
Cn Cia Ci3 Cua Cis
0.58042 | 0.54670 | 0.51648 | 0.48929 | 0.46471
Cie Ciz Cis Co &
0.44240 | 0.42208 | 0.40351 | 0.38647 | 0.37078
Co Coo Cos Coy Cos
0.35623 | 0.34289 | 0.33043 | 0.31885 | 0.30803
Cas Cor Cas Ca Cso
0.29792 | 0.28845 | 0.27956 | 0.27119 | 0.26331
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Table 1:+C', values for m=1,---,30
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Figure 1: C, plot forn=1,---
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Figure 2: Detecting power of Y, and Y, charts, when linear regression is used to fit the

liner profile. The ratio R = (0§ + o1 PE(x,))/02 > 1.

33



n=10,y=Ag+A;Pi(xX)+¢ n=20,y=Ag+APi(x)+e

o | e
Pt i
© ©
o 7 S
© ©
[SE 2
a - R=1 a R=1
2 / 2
s R=—~ g / R=—
S} 3 [} / 3
1 / 1
% R== % R==
2 2
R 2 o~ R 2
o~ =— =—
Sl - 5 o —* 5
- Y, = Y,
o o |
o 7 S}
T T T T T T T T T T
0 2 4 6 8 0 2 4 6 8
3 )
n=30,y=Ag+A;P;(X)+¢ n=40,y=Ag+APi(x) +&
o o
- S
@ «©
S 7 2 4
© ©
[SE =
a -4 R=1 a R=1
2 / 2
pog R=— < / R=—
S} 3 [} / 3
1 / 1
% R== % R==
2 2
R 2 o~ R 2
o =— =—
s 7 - 5 o —* 5
- Y, - Y,
o o |
S 7 =}
T T T T T T T T T T
0 2 4 6 8 0 2 4 6 8
) 8

Figure 3: Detecting power of Y, and Y, charts, when linear regression is used to fit the

liner profile. The ratio R = (0§ + 01 PE(xy,) ) /02 < 1.

34



n=20,y=Y(x)+e n=30,y=Y(x)+e

o | e
Pt i
© ©
o 7 o 7
© ©
[SE c 7
a a
< A < A
S Ya S 7 Yo
—A— R=4 —A R=4
R=3 R=3
% R=2 % R=2
~ % R=1 ~ —~+ R=1
c 7 o 7
- Y, - Y,
o | o |
S} S}
T T T T T T T T T T
0 2 4 6 8 0 2 4 6 8
8 3
n=40,y=Y(x)+e n=50,y=Y(x)+e
o o
a7 o)
@ «©
S 7 S
© ©
[SE IS
a a
< N < A
< Yo S A\
—A— R=4 —A- R=4
R=3 R=3
% R=2 % R=2
~ —~+* R=1 ~ —~+* R=1
© = Y, © - Y,
< e
(=] S
T T T T T T T T T T
0 2 4 6 8 0 2 4 6 8
) 8

Figure 4: Detecting power of Y, and Y, charts, when linear regression is used to fit the

profile. The ratio R = G(x,,x,)/02 > 1.
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Figure 5: Detecting power of Y, and Y, charts, when linear regression is used to fit the

profile. The ratio R = G(x,,,x,)/0? < 1.
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Soda-Bottle profiles: y=Aq+A;x+¢, where £ ~ N(0, 4)

gram
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Fitted Soda-Bottle profiles: y.= o+ 04X
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Figure 6: 150 simulated profiles and their fitted profiles for bottle-filling example.
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Figure 7: Y, and Y,, charts with 6 = 1 for bottle-filling example.
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Figure 8: Y,, and Y,, charts with § = 2 for bottle-filling example.
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Control chart for Y, when mean of Y, shifts 3ng
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Figure 9: Y,, and Y,, charts with 6 = 3 for bottle-filling example.
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Y =Y(t) +¢, where e ~ N(0, 1)
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Figure 10: 150 simulated profiles and their fitted profiles for a nonlinear example.
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Figure 11: Y,, and ffn charts with § = 1 for a nonlinear example.
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Figure 12: Y,, and ffn charts with § = 2 for a nonlinear example.
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Figure 13: Y,, and ffn charts with § = 3 for a nonlinear example.
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