
 

 

 

國 立 交 通 大 學 
       

統計學研究所 

 

碩 士 論 文 

 

在全基因關聯分析中 

利用總體的基因表現量作為穩定表現型 

 

    Using Global Gene Expression as Endophenotypes  

in a Genome-wide Association Study 

 

 

研 究 生：蔡佩芳 

指導教授：黃冠華 博士 

 

中 華 民 國 九 十 七 年 七 月



 

 

在全基因關聯分析中 

利用總體的基因表現量作為穩定表現型 

 

    Using Global Gene Expression as Endophenotypes 

in a Genome-wide Association Study 
 
 

  研 究 生：蔡佩芳  Student: Pei-Fang Tsai 

  指導教授：黃冠華  Advisor: Dr. Guan-Hua Huang 

 

國 立 交 通 大 學 

統計學研究所 

碩 士 論 文 

 
A Thesis 

Submitted to institute of Statistics  
College of Science 

National Chiao Tung University 
in Partial Fulfillment of the Requirements 

for the Degree of  
Master 

in 
Statistics 
July 2008 

 
Hsinchu, Taiwan, Republic of China 

中華民國九十七年七月



 

 i  

在全基因關聯分析中 

利用總體的基因表現量作為穩定表現型 

 

 

研究生：蔡佩芳    指導教授：黃冠華 博士 

國立交通大學統計學研究所 

 

摘要 

    在生物學上，穩定表現型(endophenotype)和疾病有著相同的遺傳路徑，但

穩定表現型卻比診斷上的表現型(phenotype)更為接近其相關的基因，這也顯示

穩定表現型在複雜疾病上基因研究的重要性。穩定表現型為主的基因遺傳分析比

表現型為主的基因遺傳分析更容易找到致病基因。由穩定表現型所發展的指標

(PHE)，穩定表現型的基因遺傳性所佔比例，用在判別出有可能的穩定表現型。 

    在這篇報告裡，氣喘是一種基因間作用和環境因素複雜的疾病，我們利用基

因表現量當作穩定表現型找尋可能的氣喘基因。我們利用指標(PHE)判斷哪些探

針組的基因表現量是穩定表現型，接著作指標(PHE)的檢定。針對多重檢定的問

題，我們利用 q-值來控制錯誤發現率和調整。我們也對每一個基因表現量做全

基因關聯分析，比較基因表現量指標(PHE)中有顯著和沒有顯著之間基因遺傳性

的變化。最後，我們論文中有(1) 評估利用基因表現量當作穩定表現型找尋跟疾

病有相關基因的適當性，(2) 檢驗從基因表現量為主的分析，辨別出的基因和文

獻中提過疾病相關的基因重複的多寡，(3) 從這些基因表現量判定為穩定表現型

中，評估它們基因遺傳的特徵。 

關鍵字: 順式作用 (cis effect) ; 穩定表現型 ; 表現量位置 ; 全基因關聯分

析 ; 基因表現量 ; 遺傳率 ; 反式作用 (trans effect)
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Using Global Gene Expression as Endophenotypes 

in a Genome-wide Association Study 

 

Student: Pei-Fang Tsai   Advisor: Dr. Guan-Hua Huang 
Institute of Statistics 

National Chiao Tung University 
 

ABSTRACT 

Endophenotype, which involve the same biological pathways as diseases but 

presumably are closer to the relevant gene action than diagnostic phenotypes, have 

emerged as an important concept in the genetic studies of complex diseases. 

Endophenotype-based genetic analysis is more likely to succeed than 

phenotype-based one in terms of search for the susceptibility genes. The index, 

proportion of heritability explained (PHE), has been proven useful in identifying 

potential endophenotypes.  

In this report, we use global gene expression as endophenotypes in search for the 

susceptibility genes underlying asthma, which is a disease caused by complex 

interactions of genetic and environmental factors. We judge which gene expressions 

of probe sets are endophenotypes by using the index PHE and do hypothesis test of 

PHE. For the problem of multiple testing, we utilize the q-value to control for the 

false discovery rate (FDR) for significance judgment. We also perform genome-wide 

association tests for each gene expression and compare various genetic properties 

between gene expressions with and without significant PHE values. At the end, this 

thesis has (1) evaluated the appropriateness of using global gene expressing as 

endophenotypes in searching possible phenotype-related genes, (2) examined the 
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overlap between genes identified by the gene-expression-based analysis and genes 

already identified in the literature, and (3) assessed genetic characteristics of gene 

expressions that are identified as the endophenotypes. 

 

Key words: Cis effect ; Endophenotype ; Expression quantitative trait loci ; 

Genome-wide association study ; Gene expression ; Heritability ; Trans effect 
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1 Introduction 

In diseases with classic or Mendelian genetics as their distal causes, genotypes are 

usually indicative of phenotypes. However, this degree of genetic certainty does not 

exist for complex disease [1]. These “complex” diseases are influenced by multiple 

genes, environmental factors and their interactions on phenotypes. As a result, the 

direct relationship between phenotype and genotype is disrupted, so that the same 

genotype may result in different phenotypes, or different genotypes may result in the 

same phenotype. To facilitate the identification of influential genetic markers of 

complex disease, endophenotype approach has been advocated. 

  Endophenotypes are useful for theorizing about clinical phenotypes and mark the 

path between genotype and phenotype. The endophenotype is closer to the underlying 

gene than the phenotype in the course of disease’s natural history and can increase the 

chance of identifying genotype (Figure 1). Huang et al. [2] defined an endophenotype 

to be “a trait for which a test of null hypothesis of no genetic heritability implies the 

corresponding null hypothesis based on the phenotype of interest” and develop a 

formal statistical methodology for accessing the utility of endophenotypes, motivated 

by the conditioning strategy used for identifying surrogate endpoints in clinical 

research. The methodology is especially useful for the situation where underlying 

genotype is unknown and researchers use endophenotypes to increase opportunities of 

finding susceptible disease genes. Similar to validating surrogate endpoints, various 

indices can be used to validate endophenotypes. One of the indices is the proportion 

of heritability explained ( PHE ) by the endophenotype, similar to PTE  introduced 

by Freedman et al. [3] in the surrogate endpoint study. The greater the PHE value, the 

more likely the intermediate variable is an endophenotype. Hsieh et al. [4] utilized the 

delta method to evaluate the variance of PHE.
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There is a problem about signal-SNP association test between SNP genotypes and 

case-control status: it cannot discover SNPs that are weakly related to the disease by 

itself, but can have great impacts on the disease variability after combining with other 

SNPs. A large PHE value represents that endophenotype and phenotype share many 

genes. Because endophenotype is closer to genotype, there will be some genes that are 

significant in endophenotype, but are not significant in phenotype. We can utilize the 

PHE to find SNPs that may be weakly associated to the disease phenotype. Hopefully, 

these additional SNPs can increase our chances in searching possible 

phenotype-related genes. 

Gene expression is a measurement of mRNA and mRNA is transcribed from a 

DNA template and carries coding information to the sites of protein synthesis. 

Because mRNA is closer to DNA genotype, we use global gene expression as 

endophenotypes in search for the susceptibility genes underlying asthma, which is a 

disease caused by complex interactions of genetic and environmental factor. In this 

thesis, we first get global gene expressions of probe sets in Epstein-Barr virus 

Iymphoblastoid cell lines (EBVL) measured with Affymetrix HG-U133 Plus 2.0 chip 

[5-6]. Gene expression values are preprocessed by the robust multi-array averaging 

(RMA). We judge which gene expressions of probe sets are endophenotypes by using 

the index PHE and do hypothesis test of PHE. For the problem of multiple testing, we 

utilize the q-value to control for the false discovery rate (FDR) for significance 

judgment. We also perform genome-wide association tests for each gene expression 

and compare various genetic properties between gene expressions with and without 

significant PHE values.  

Therefore, this thesis aims at  

(1) Evaluating the appropriateness of using global gene expressing as 

endophenotypes in searching possible phenotype-related genes, 
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(2) Examining the overlap between genes identified by the gene-expression-based 

analysis and genes already identified in the literature, and 

(3) Assessing genetic characteristics of gene expressions that are identified as the 

endophenotypes.



 

 4  

2  Literature Review 

2.1  Statistical validation of surrogate endpoints 

Surrogate endpoints have been frequently utilized in most clinical research, when 

the primary endpoint is too difficult or costly or time-consuming to obtain. Clinically 

meaningful biomarkers of the disease projected as a surrogate endpoint in a clinical 

trial is expected to ultimately demonstrate treatment effect on the primary endpoint if 

a treatment effect shown on the markers. Surrogate endpoints have been of clinical 

interest for decades, but it was not until Prentice published a seminal paper in 1989 

that formal statistical investigation started. Prentice defined a surrogate endpoint to be 

“a response variable for which a test of null hypothesis of no relationship to the 

treatment groups under comparison is also a valid test of the corresponding null 

hypothesis based on the true (clinical) endpoint”. 

Prentice’s definition can be written as 

( | ) ( ) ( | ) ( )f S X f S f T X f T= ⇔ =  

Where T denotes the status of a primary endpoint, S denotes the status of a 

surrogate end-point, X is the treatment variable, f(S) is the distribution of S, and f(S|X) 

is the conditional distribution of S given X. Validation of Prentice’s definition 

involves the following two criteria: 

( | ) ( ) and    ( | , ) ( | )f T S f T f T S X f T S≠ =  

[3, 7-8]. The first criterion states that the surrogate endpoint must be correlated with 

the primary clinical endpoint, and the second criterion is that the surrogate endpoint 

should fully capture the treatment effect on the treatment effect on the primary 

endpoint. 

  The surrogate endpoint described by Prentice mediates all of the effect of treatment 

on the primary endpoint, that is 

X S T→ →
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A more complex, but more likely, situation arises when treatment has a direct effect 

on the primary endpoint that is not mediated through the surrogate [9]: 

X S T→ →  

 

  Freedman et al. [3] proposed to focus on the proportion of the treatment effect 

mediated through the surrogate. A good surrogate is one that explains large proportion 

of that effect. The proposal can be made in the content of generalized linear models 

[10]. The net effect of X on T can be assessed through the regression coefficient 

Tβ in the generalized linear model 

[ ( )] T Tg E T Xα β= +  

Where g(.) is the link function connecting the mean response and covariates, and 

the effect of X on T after inclusion of S is the regression coefficient TSβ in the 

following generalized linear model 

[ ( )] TS TS TSg E T X Sα β γ= + +  

The proportion of the treatment effect (on the primary endpoint) explain (PTE) by 

the surrogate is given by 

1 TS

T

PTE β
β

= −  

The 100(1 )α− % confidence limits of PTE can be calculated using the delta method. 

 

2.2 Statistical validation of endophenotype  

Notation: 

1,...,i I= : representing the different family 

1,..., ij n= : representing the jth member of this family 

Pij : The observed phenotype in the jth member of the ith family 

ijx : A vector of observed covariates 
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2
Aσ : The variances arising from polygenic additive effects,  

2
Dσ : The variance arising from polygenic dominance effects  

2
Cσ : The variance arising from the shared environmental effects 

 

2.2.1  Model  

Endophenotypes are useful for theorizing about clinical phenotypes and can mark 

the path between the genotype and the phenotype. Verification of existence of the 

pathway genotype-endophenotype-phenotype is the key of validating endophenotypes. 

Analogous to Prentice’s definition [7] that surrogate endpoint to be “a response 

variable for which a test of null hypothesis of no relationship to the treatment groups 

under comparison is also a valid test of the corresponding null hypothesis based on 

the true (clinical) endpoint”, Huang et al. [2] define an endophenotype to be “a trait 

for which a test of null hypothesis of no genetic heritability implies the corresponding 

null hypothesis based on the phenotype of interest”. More specifically, suppose P is 

the phenotype of interest, E is the selected endophenotype, and G represents an 

underlying genetic structure that fulfills the specified assumptions in calculating 

heritability, then the proposed definition is: 

( | ) ( ) ( | ) ( )f E G f E f P G f P= ⇒ =                  (1) 

The endophenotype’s definition has two important features [2]. First, “imply” replaces 

‘’if and only if’’ statement in Prentice’s definition of surrogate endpoints in avoidance 

of a problematic implication arisen in Begg and Leung [11]. This change places 

endophenotype in higher upstream of the pathway from genotype to phenotype. 

Second, genetic heritability represents the proportion of variability attributable to 

genetic factors and can be obtained in a variance component approach [12-13]. This is 

a perfect fit to our situation since it does not require knowledge of specific culprit 
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genes and allows the likelihood of multiple gene influences. 

Suppose the condition 

( | , ) ( | )f P E G f P E=        (2) 

                               

Huang et al. [2] takes (2) in a variance component model as the operational 

criterion for proposed endophenotype definition. It then requires heritability of 

phenotype becomes null, conditioning on candidate endophenotype, and implies 

genetic heritability of phenotype is captured by endophenotype. 

Given an observed phenotype, significance of (2) can be judged through the 

following variance component analysis for discrete trait [2, 14]: 

2

2 2 2

2 2 2
, , ,

,

(0, )

(0,[ ])                                                                          (3)

cov( , ) 2 ,

ij H H ij H ij ij ij

ij R

ij A D C

ij ik ij ik A ij ik D ij ik C

P E x G

Normal

G Normal

G G j k

α γ τ ε

ε σ

σ σ σ

φ σ σ λ σ

= + + + +

+ +

= + Δ + ≠

∼

∼
 

 

(4) Where Hα is a baseline mean, ijE is his/her corresponding specified 

endophenotype. The term ijε is the residual error term representing the effect of 

non-family factors. The term ijG is the random effect for the underlying genetic 

structure. The term ,ij ikφ denotes the kinship coefficient between 

individual  and ij ik : the probability of randomly drawing a single allele in 

individual ij that is identical by descent (ibd) to a single allele at the same locus 

randomly drawn from individual ik . The term ,ij ikΔ is the probability that both 

alleles at a locus are shared ibd by individuals and .ij ik  the elements, ,ij ikλ , is 
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simply binary indicator denoting whether two individuals live together ( ,ij ikλ =1 ) 

or apart ( ,ij ikλ =0 ). 

 

The (broad sense) heritability of ijP , conditional on ijE is  

2 2

2 2 2 2
A D

A D C R

h σ σ
σ σ σ σ

+
=

+ + +
                       (4) 

The significance of rejecting the hypothesis h=0 indicates the fulfillment of (2). 

Table 1 details the term ,ij ikφ and ,ij ikΔ values for selected relative pairs and the total 

genetic variances that these imply [15]. 

 

Table 1  Genetic components of variance assuming random mating. 

 
Relationship φ  Δ  Genetic covariance 

same person 1/ 2  1 2 2
A Dσ σ+  

Parent-child 1/ 4  0  21/ 2 Aσ  

Full sibling 1/ 4  1/ 4 2 21/ 2 1/ 4A Dσ σ+  

Half sibling 1/ 8  0  21/ 4 Aσ  

Monozygous twins 1/ 2  1 2 2
A Dσ σ+  

Grandparent-grandchild 1/ 8  0  21/ 4 Aσ  

Uncle/aunt-nephew/niece 1/ 8  0  21/ 4 Aσ  

First cousins 1/16  0  21/ 8 Aσ  

Double first cousins 1/ 8  1/16 2 21/ 4 1/16A Dσ σ+  

Spouses 0  0  0  
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For a discrete phenotype of ordinal scale, the liability threshold model can be used 

in the preceding variance component setting [16-17]. The model postulates the 

existence of an unobserved continuous trait (i.e., liability ijL ), and a set of thresholds 

1 2 1, ,..., Kt t t − that partition the liability distribution into intervals corresponding to 

distinct phenotypic states: 

1

1 2

1

1,

2,

,

ij

ij
ij

K ij

if L t

if t L t
P

K if t L−

<⎧
⎪

< <⎪= ⎨
⎪
⎪ <⎩

# #
 

The liability ijL is then assumed to follow the same distribution as the ijP in model (3) 

and heritability can be obtained based on the liability. 

 

Huang et al. [2] have provided the index to evaluate the validation of 

endophenotypes that is the proportion of heritability explained ( PHE ) by the 

endophenotype defined as   

1
NE

hPHE
h

= −                             (5) 

Where NEh is the heritability calculated from the variance component analysis (3) 

without including the endophenotype ijE with any other covariates. A good 

endophenotype is one that explains a large proportion of heritability, thus, the 

greater PHE value, the more likely ijE an endophenotype. 
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2.2.2  Variance of PHE  

Hsieh et al. [4] redefined 

2
( )
1 2 2 2 2

2
( )
2 2 2 2 2

2
( )
3 2 2 2 2

( ) 2 2 2 2
4

t A

A D C R

t D

A D C R

t D

A D C R
t

A D C R

h

h

h

h

σ
σ σ σ σ

σ
σ σ σ σ

σ
σ σ σ σ

σ σ σ σ

=
+ + +

=
+ + +

=
+ + +

= + + +  

Where t is representing the different models.
 

So the broad-sense heritability (1) (1)
1 2h h h≡ + . Similarly, (2) (2)

1 2NEh h h≡ + . 

Hsieh et al. [4] use the delta method [4, 18] to evaluate the variance of PHE . 

The first-order Taylor approximations give 

2

2 4 3

(1) (1) (1) (1)
1 2 1 22

2
(2)
14

(1 ) ( )

1                    ( ) ( ) 2 ( , )

1                    { ( ) ( ) 2 ( , )}

                       { (

NE NE NE

NE

NE

NE NE

h h
NE NE

h h h

h

h

h

h hVar Var
h h

Var h Var h Cov h h

Var h Var h Cov h h

Var h

μ μ
μ μ μ

μ

μ
μ

− =

≈ + −

≈ + +

+ (2) (2) (2)
2 1 2

(1) (2) (1) (2)
1 1 1 23

(1) (2) (1) (2)
2 1 2 2

) ( ) 2 ( , )}

                       2 { ( , ) ( , )

                       ( , ) ( , )}
NE

h

h

Var h Cov h h

Cov h h Cov h h

Cov h h Cov h h

μ
μ

+ +

− +

+ +

 

 

Use (1) (1)
1 2
ˆ ˆh h+ to estimate hμ  and use (2) (2)

1 2
ˆ ˆh h+ to estimate

NEhμ . The estimators 

for (1) (1) (2) (2)
1 2 1 2
ˆ ˆ ˆ ˆ, , , andh h h h are obtained from the SOLAR computer package.
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The remaining terms, such as 

(1) (1) (2) (2) (1) (1) (2) (2)
1 2 1 2 1 2 1 2

(1) (2) (1) (2) (1) (2) (1) (2)
1 2 1 2 2 1 2 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ), ( ), ( ), ( ), ( , ), ( , ),
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( , ), ( , ), ( , ), ( , )

Var h Var h Var h Var h Cov h h Cov h h

Cov h h Cov h h Cov h h Cov h h
 

will be solved in 2.2.3 [4]. 

2.2.3  The covariance of 
*

*
( )( )ˆ ˆ and tt

q q
h h  

Suppose two models are 

'(1) (1) (1) (1)
ij ij ij ijP x Gβ ε= + +  

and 

'(2) (2) (2) (2)
ij ij ij ijP x Gβ ε= + +  

Where ( ) 2 ( ) ( ) ( ) ( ) ( )
1 2 3 4(0, ( ) ) (0, (1 ) )t t t t t t

ij RN N h h h hε σ ≡ − − −∼

( ) 2 2 2 ( )(0, ( ) )t t
ij A D CG N σ σ σ+ + ≡∼  ( ) ( ) ( ) ( ) ( ) ( )

1 4 2 4 3 4(0, )t t t t t tN h h h h h h+ + , 

and 2 2 2
, , ,( , ) [ ] (2 )t

ij ik ij ik A ij ik D ij ik CCov G G j k φ σ σ λ σ≠ = + Δ + ≡

( ) ( ) ( ) ( ) ( ) ( )
, 1 4 , 2 4 , 3 42 t t t t t t

ij ik ij ik ij ikh h h h h hφ λ+ Δ + , and ijG us the random effect for the underlying 

genetic structure. Assumed I is the total number of family and there are in members in 

the ith family. Let ( ) ( ) ( ) ( ) ( )
1 2 3 4( , , , )t t t t th h h h h= , then we have 

( )

*

*
( )( )

1' '
( ) ( ) ( )( )

1( ) 1( ) ( ) ( ) 1( )
( ) ( ) ( ) ( )

1

'
( )

1( ) ( ) (
( )

ˆ ˆ( , )

ˆ ˆ

ˆ ˆ

tt
q q

t t ttR
t t t t tr r r

r rt t t t
r q q q q

t
t tr

r rt
q

Cov h h

V V VWW W S V W
h h h h

V W S V
h

−

− − −

=

−

⎡ ⎤⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂∂⎪ ⎪⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟≈ − +⎨ ⎬⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎪ ⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎩ ⎭⎣ ⎦

⎛ ⎞∂⎜ ⎟× −
⎜ ⎟∂⎝ ⎠

∑

( )( )
*

*

*

'
( )') ( ) ( ) 1( )
( )1

ˆ ˆ
tR

t t t t r
r r tr q

VS V W
h

−

=

⎡ ⎤⎧ ⎫⎛ ⎞⎢ ⎥⎪ ⎪∂⎜ ⎟−⎨ ⎬⎢ ⎥⎜ ⎟⎪ ⎪∂⎢ ⎥⎝ ⎠⎩ ⎭⎣ ⎦

∑
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( )
* * **

* * * * *

* * * *

* * * *

1' '
( ) ( ) ( )( )

1( ) 1( ) ( ) ( ) 1( )
( ) ( ) ( ) ( )1

* *

ˆ ˆ

1,2,3,4 1,2,3, 4 1,2 1

t t ttR
t t t t tr r r

r rt t t tr
q q q q

V V VWW W S V W
h h h h

q q t t

−

− − −

=

⎡ ⎤⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎢ ⎥⎪ ⎪⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂∂⎪ ⎪⎢ ⎥× − +⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎪ ⎪∂ ∂ ∂ ∂⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭⎣ ⎦

= = = =

∑

, 2

 Where 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )
1 1 1 2 1

( ) ( ) ( )

( ) ( ) ( ) ( )

( , ,..., ,..., ) ',

,

( ; , ) as given by Covariance after transformation in table 1,

r r r

t t t t t t t tt
r r r r r r rn rn rn

t t t
rjrj rj

t t t t
r r

S r r r r r r r r

r P x

V E S h

β

β

=

= −

=

 

( )2
( )

( ) ( ) ( ) ( )

( )

( )

2                         ,

      , ,

4                         ,
and 

t
ijt

r r t t t t
jm imil jl

ij
t ij

t
jmil

jm il

for the i jth pairs
W

for the i jth and l mth pairs

for the i jth pairs
W h
h

h h

σ

σ σ σ σ

σ
σ

σσ
σ σ

×

⎧
⎪= ⎨

+⎪⎩
∂

∂ ∂
=

∂∂ ∂
+

∂ ∂
      , ,jlim

jl im for the i jth and l mth pairs
h h

σσ
σ σ

⎧
⎪
⎪
⎨

∂∂⎪ + +⎪ ∂ ∂⎩

 

The table 2 shows the interested derivative of covariance components, 

related 1 2
ˆ ˆand h h  for relative pairs. 

Table 2  The derivative of covariance components for relative pairs. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Relationship 
1

V
h
∂
∂

 
2

V
h
∂
∂

 
1

V
h
∂
∂

�
 

2

V
h
∂
∂

�

Same person 0 0 0 0 

Parent-child 41/ 2h 0 1/ 2  0 

Full sibling 41/ 2h 41/ 4h 1/ 2  1/ 4

Half sibling 41/ 4h 0 1/ 4  0 

Monozygous twins 4h  4h  1 1 

Grandparent-grandchild 41/ 4h 0 1/ 4  0 

Uncle/aunt-nephew/niece 41/ 4h 0 1/ 4  0 
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Based on Table 2, Heish et al. [4] express the result of the above-mentioned as 

follow: 

( )

*

*
( )( )

'
( ) ( )

( ) 1( ) 1( ) ( ) ( )
4 ( ) ( )

1

1'
( ) ( )

( ) ( )1( )
4 4( ) ( )

( )
( )
4 (

ˆ ˆ( , )

ˆ ˆ ˆ

ˆ ˆ

ˆ

tt
q q

t tR
t t t t tr

r rt t
r q q

t t
t ttr r

t t
q q

t
t r

q

Cov h h

V Wh W W S V
h h

V Vh W h
h h

Vh
h

− −

=

−

−

⎡ ⎧ ⎛ ⎞ ⎛ ⎞∂ ∂⎪⎢ ⎜ ⎟ ⎜ ⎟≈ −⎨⎢ ⎜ ⎟ ⎜ ⎟∂ ∂⎪ ⎝ ⎠ ⎝ ⎠⎢ ⎩⎣

⎤⎫⎛ ⎞ ⎛ ⎞∂ ∂ ⎪⎥⎜ ⎟ ⎜ ⎟+ ⎬⎥⎜ ⎟ ⎜ ⎟∂ ∂ ⎪⎝ ⎠ ⎝ ⎠ ⎥⎭⎦

∂
×

∂

∑
�

� �

� ( )( )

( )

*
** * *

*

*

* *
* * * * *

* *

( )'
( )1( ) ( ) ( ) ( ) ( ) 1( )
4) ( )1

'
( ) ( )

( ) 1( ) 1( ) ( ) ( )
4 ( ) ( )

ˆˆ ˆˆ ˆ

ˆ ˆ ˆ

tR
tt t t t t t r

r r r rt tr
q

t t
t t t t tr

r rt tr q q

VW S V S V W h
h

V Wh W W S V
h h

− −

=

− −

⎡ ⎤⎧ ⎫⎛ ⎞⎛ ⎞⎢ ⎥⎪ ⎪⎜ ⎟∂⎜ ⎟ − −⎢ ⎥⎨ ⎬⎜ ⎟⎜ ⎟⎢ ⎥⎪ ⎪∂⎜ ⎟⎝ ⎠⎢ ⎥⎝ ⎠⎩ ⎭⎣ ⎦

⎧ ⎛ ⎞ ⎛ ⎞⎪ ∂ ∂⎜ ⎟ ⎜ ⎟× −⎨ ⎜ ⎟ ⎜ ⎟⎪ ∂ ∂⎝ ⎠ ⎝ ⎠⎩

∑
�

�

* *
* **

* *

1

1'
( ) ( )

( ) ( )1( )
4 4( ) ( )

* *

ˆ ˆ

1,2,3,4 1,2,3,4 1,2 1,2

R

t t
t ttr r

t t
q q

V Vh W h
h h

q q t t

=

−

−

⎡
⎢
⎢
⎢
⎣

⎤⎫⎛ ⎞ ⎛ ⎞ ⎥⎪∂ ∂⎜ ⎟ ⎜ ⎟+ ⎬⎥⎜ ⎟ ⎜ ⎟ ⎪∂ ∂ ⎥⎝ ⎠ ⎝ ⎠ ⎭⎦

= = = =

∑

� �

First cousins 41/8h 0 1/ 8  0 

Double first cousins 41/ 4h 41/16h 1/ 4  1/16

Spoused 0 0 0 0 
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2.2.4  Hypothesis test 

  For having more statistical meaning of PHE , we utilize the confidence interval to 

get more information about PHE . We hope to find a value that it means that there 

exist a useful endophenotype when PHE value is larger than the value. That is, do 

one-sided confidence interval.  

The hypothesis is 

0

1

:
:

H PHE a
H PHE a

=⎧
⎨ >⎩

 

Under null hypothesis and significance level ofα , we reject 0H if the lower bound 

of one-sided confidence interval of PHE ,n n
1 . .( )PHE Z s e PHEα−− × , is larger than a . 

 

2.3 The whole-genome association test for quantitative outcomes 

For each of the genotyped SNP markers, we are interested in testing whether 

observed genotypes and quantitative phenotypes are associated. We let ijmG denote 

the observed genotype at maker m for individual j in family i . 

 We label two allele “A” and “a” and define a genotype score, ijmg  

0        if /

1  if /

2        if /

ijm

ijm ijm

ijm

G a a

g G A a

G A A

⎧ =
⎪

= =⎨
⎪ =⎩

 

First we built the model for each SNP 

( )ij g ij x ijE P g xμ β β= + +  

Hereμ is the population mean, gβ is the additive effect for each SNP, and xβ is a 

vector of covariate effects [19]. 

Chen et al. [19] extend the model with 

( )ij g ij x ijE P g xμ β β= + +  
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where ijg is the expected genotype score and define as 

( | , , )

2 ( / | , , ) ( / | , , )
ijm ijm i

ijm i ijm i

g E g G F

P G A A G F P G A a G F

θ

θ θ

=

= = + =
 

whereθ is a vector of intermarker recombination fractions and F is a vector of allele 

frequencies for each marker. To allow for correlation between different observed 

phenotypes within each family, we define the variance-covariance matrix iΩ  for 

family i as 

2 2 2

2 2 2
, , ,2

A D C
ijk

ij ik A ij ik D ij ik C

if j k

if j k

σ σ σ

φ σ σ λ σ

⎧ + + =⎪Ω = ⎨
+ Δ + ≠⎪⎩

 

Chen et al. [19] provide an approach is to first fit a simple variance-components 

model to the data (with parameters 2 2, , ,x A Rμ β σ σ  but without parameters 2,g Dβ σ ). This 

model provides a vector of fitted values for each family, which they denote ( )( ) base
iE P , 

and an estimate of the variance-covariance matrix for each family, which they 

denote ( )base
iΩ . Using these two quantities, we define the score statistic 

[ ]

[ ] [ ]

2
1( ) ( )

1( )

( ) ' ( )

( ) ' ( )

base base
i i i i i

iSCORE

base
i i i i i

i

g E g y E y
T

g E g g E g

−

−

⎧ ⎫⎡ ⎤ ⎡ ⎤− Ω −⎨ ⎬⎣ ⎦ ⎣ ⎦⎩ ⎭=
⎡ ⎤− Ω −⎣ ⎦

∑

∑
 

Where ig is a vector with expected genotype scores for each individual in the 

thi family, calculated conditional on the available marker data, and ( )iE g is a vector 

with identical elements that give the unconditional expectation of each genotype score. 

SCORET  is approximately distributed as 2χ with 1 df. As usual, LOD scores were 

defined as 

2score / 2 ln(10)LOD χ≡  
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2.4 The preprocessing method for gene expression levels 

We interpret the three main steps of data preprocessing. 

2.4.1  Background adjustment 

Because partial measured probe intensities maybe caused by non-specific 

hybridization or the noise in the optical detection system, background adjustment is 

essential to rid of these intensities not exactly expressed from genes. Observed probe 

intensities need to be adjusted to give the accurate expression levels of specific 

hybridization [20]. Some methods make use of MM probes to adjust, but some are 

not. 

2.4.2  Normalization 

During the process of carrying out the microarray experiment involving multiple 

arrays, there are many obscuring sources of variation involved, such as physical 

problems with the arrays, laboratory conditions, hybridization reactions, labeling, and 

scanner difference. In order to compare measurements from different arrays, implying 

different tissue, some proper normalization is necessary. 

2.4.3  Summarization 

Due to Affymetrix platform designing multiple probes to represent a gene, 

summarization is needed to combine these probe intensities to a single value. For each 

gene, the background adjusted and normalized intensities are used to be summarized 

into one measurement that estimates the expression level. 

2.4.4  RMA 

)( :,...., 1
:,....,1

)(:,....,1

genesetprobethengrepresentiGg
genetheinpairprobethengrepresentiJj

samplearraydifferentthengrepresentiIi

=
=
=

 
RMA [21- 22], Robust Multi-array Analysis, is an expression measure consisting of 

three particular preprocessing steps: convolution background correction, quantile 

normalization, and a summarization based on a multi-array model fit robustly using 
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the median polish algorithm. These RMA authors proposed a procedure ignoring the 

MM intensities and using only the PM intensities. 

The RMA convolution background correction method is motivated by looking at 

the distribution of probe intensities. The model observed PM as the sum of a 

background intensity ijgbg caused by optical and nonspecific binding, and signal 

intensity ijgs . 

, 1, , , 1, , , 1, ,ijg ijg ijgPM bg s i I j J g G= + = = =… … …  

Under the model above, the background corrected probe intensities will be given by 

( )ijgB PM , where ( ) ( | )ijg ijg ijgB PM E s PM≡ . To obtain a computationally feasible 

)(⋅B  we consider the closed-form transformation obtained when assuming that ijgs is 

distributed exponential and ijgbg is distributed normal, and the results obtained using 

)(⋅B  work well in practice [21-22]. 

Next, perform the quantile normalization, which is to make the distribution of 

probe intensities for each array the same [22, 23]. In order to summarize the probe 

intensities, RMA introduced a log scale linear additive model. The model is: 

( )ij i j ijT PM e a ε= + + , 

where ijgPM  represents the PM intensity of array 1,...,i I=  and probe 

pair 1,...,j J= , for any given probe set g. ( )⋅T  represents the transformation that 

background corrects, normalizes, and logs the PM intensities, ie  represents the log2 

scale expression value found on arrays i , ja  represents the log scale affinity effects 

for probes j , and ijε  represents error [22, 24]. To protect against outlier probes, they 

use a robust procedure, such as median polish, to estimate model parameters [21-22]. 
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The estimate of ie  as the log scale measure of expression refers to as robust 

multi-array average (RMA). 

 

2.5 The differential expression methods 

2.5.1  Fold-change 

Fold-change analysis is used to identify genes with expression ratios or differences 

between a treatment and a control that are outside of a given cutoff or threshold. 

Intensity values may be compared using ratio, 2log ( )ratios , or difference. Biologist 

favors fold-change equal to 2 as the threshold of differential expression. 

 

2.5.2  Two sample t-test 

The simplest statistic method for comparing means between two groups is two 

sample t-test. The variances of the two samples may be assumed to be equal or 

unequal. The approach of unequal variance assumption is also called Welch’s t-test. 

For any given gene g, suppose that the number of samples in sample 1 and in sample 

2 are M and N respectively. Here we describe the two tests briefly. 

Two sample t-test for equal variance: 
2

1 1

2
1 2

0 1 2 1 1 2

2

2 2

2 1 1

 1: ,...., ~ ( , )

 2 : ,....., ~ ( , )

H :        :

: ~ ,
1 1

( ) ( )
.

2

g gM

g gN

M N

p

M N

i i
i i

p

sample X X N

sample Y Y N

versus H
X Ytest statistic T

S
M N

X X Y Y
where S

M N

μ σ

μ σ

μ μ μ μ

+ −

= =

= ≠

−

+

− + −
=

+ −

∑ ∑
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Two sample t-test for unequal variance (Welch’s t-test): 
2

1 1 1

2
1 2 2

0 1 2 1 1 2

2 2

2 2 2 2

1 1
2 2

 1: ,...., ~ ( , )

 2 : ,....., ~ ( , )

H :        :

: ~ ( ),
( )

1 1( ) , ( )
1 1

(

g gM

g gN

v

X Y

M N

X i Y i
i i

X Y

sample X X N

sample Y Y N

versus H
X Ytest statistic T approximately

S S
M N

where S X X S Y Y and
M N

S S
M N

μ σ

μ σ

μ μ μ μ

ν

= =

= ≠

−

+

= − = −
− −

+
=

∑ ∑
2

4 4

2 2

)
.

( 1) ( 1)
X YS S

M M N N
+

− −  
After performing the test and the conclusion leads to reject 0H , we consider that 

this gene is a differentially expressed gene. 

2.5.3  SAM (Significance Analysis of Microarrays) 

It was proposed by Tusher, Tibshirani and Chu (2001) [22, 25]. The method is 

based on a modified version of the standard t-statistic to adjust the high variance 

probably caused by a low expression level.  

 

The “relative difference” gd , 1, ,g p= " genes:                    

0

g
g

g

r
d

s s
=

+
 

Here gr  is a score, gs  is a standard deviation, and 0s  is an exchangeability 

factor in the denominator to ensure that the variance of gd is independent of gene 

expression level. In two-sample t-test for equal variance,  



 

 20  

2 1

2 2
1 2

1 2

1 2 1 2

( ) ( )
1 1( ) ,

2

g g g

gi g gi g
i group i group

g

r x x

x x x x

s
n n n n

∈ ∈

= −

− + −

= + ×
+ −

∑ ∑

 

where 1gx  and 2gx  are defined as the average levels of expression for gene g in 

group 1 and group 2, and gix  is defined as the expression level for gene g and 

sample i. Group 1 and 2 have 1n  and 2n  genes, respectively. Then rank all genes by 

the observed relative difference gd  and denote the new arrangements as )(gd . B sets 

of permutations of the samples are taken to obtain the expected relative difference 

*
)( gd  by a similar way (For more details, see [22, 25-26]). A scatter plot of )(gd  vs. 

*
)( gd  is used and the genes apart from the *

)()( gg dd =  line by a distance greater than 

the threshold Δ  are regarded as differentially expressed genes. 

 

2.6  Multiple testing procedures 

If thousands of hypotheses are tested simultaneously, the probability of false positives 

by chance increases. We use an example to understand the question: when a 

two-sample t-test is performed on a gene, the probability by which the gene’s 

expression level will be considered significantly different between two groups of 

samples is expressed by the p-value. The p-value is the probability that a gene’s 

expression levels are different between the two groups due to chance. A p-value of 

0.05 signifies a 5% probability that the gene’s mean expression value in one condition 

is different than the mean in the other condition by chance alone. If 10,000 genes are 

tested, 5% or 500 genes might be called significant by chance alone. 
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Table 3  probability of calling 1 or more false positives by chance. 

Number of genes 

tested (N) 

False positives 

incidence 

Probability of calling 1 or more false positives 

by chance (100(1 0.95 )N− ) 

1 1/20 5% 

2 1/10 10% 

20 1 64% 

100 5 99.40% 

 In microarray data analysis, false positives are genes that are found to be 

statistically different between conditions, but are not in reality. We need to adjust 

p-values derived from multiple statistical tests to correct for occurrence of false 

positives. 

 

2.6.1  Type I error rates 

The null hypotheses in M tests, 0 0(1), , ( )H H M… , we conduct 2 2×  table to 

interpret the different number of tests in different conditions. 

 

Table 4  Type I and type II errors in multiple hypothesis testing. 

  Number of not rejecting 0H Number of rejecting 0H   

Number of true 

Non-differential

genes ( 0H is true) 

 

U           
(false positive)
(type I error)

V
 

 

0M  

 

 

 

 

Number of true 

Differential genes 

( 0H is not true) 

         
(false negative)
(type II error)

T
 

S   

1M  

  M R−  R  M  
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Type I error rates is defined as a parameters, ,( )V RFθ θ= , of the joint 

distribution ,V RF  of the numbers of Type I errors V and the number of rejecting 

hypotheses R . Such a general representation covers the following commonly-used 

Type I error rates [20]. 

(1) Generalized family-wise error rate (gFWER), or probability of at least (k+1) 

Type I errors. 

( ) Pr( ).gFWER k V k≡ >  

When k=0, the gFWER is the usual family-wise error rate (FWER), or probability 

of at least one Type I error. ( ) Pr( 0).FWER k V≡ >  

(2) Tail probabilities for the pro portion of false positives (TPPFP) among the 

rejected hypotheses, 

( ) Pr( / ), (0,1).TPPFP q V R q q≡ > ∈  

(3) False discovery rate (FDR), or expected value of the proportion of false 

positives    among the rejected hypotheses (Benjamini and Hochberg, 1995), 

[ ]/ .FDR E V R≡  

The convention that / 0V R ≡  if 0R = is used. 

2.6.2  Adjusted p-values 

Given M null hypotheses being tested 0 0(1), , ( )H H M… , the adjusted 

p-value 0 ( )aP m� , for null hypothesis 0 ( )H m , is defined as the smallest Type I error 

levelα at which one would reject 0 ( )H m , that is, 

[ ]{ }0 ( ) inf 0,1 : ( ) ( ) , 1, ,aP m T m C m m Mα≡ ∈ ∈ =� …  

Where ( )T m  is the test statistic and ( )C m  is the rejection region for test m .It need 

to have null distribution of ( )T m  [22]. 

The smaller adjusted p-value, the evidence against the corresponding null 
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hypothesis is stronger. The difference between adjusted p-value and unadjusted 

p-values that the unadjusted p-value, 0 ( )p m , for null hypothesis 0 ( )H m is the smallest 

type I error rate of the single hypothesis testing procedure at which one would 

reject 0 ( )H m . 

 

2.6.3  The q-value 

Storey et al. [27] define a new false discovery rate, pFDR  

0( | 0) Pr(  is true | )VpFDR E R H T C
R

= > = ∈  

WhereT is the test statistic andC is the rejection region. The term ’positive’ has been 

added to reflect the fact that we are conditioning on the event that positive findings 

have occurred. 

As a natural extension to pFDR , the q-value has the following definition [27]. 

Definition 1  For an observed statistic T t= , the q-value of t is defined to be 

{ : }
( ) inf { ( )}

C t C
q t pFDR C

∈
=  

Definition 2  For a set of hypothesis tests conducted with independent p-values, 

the q-value of the observed p-value p is 

( ) inf{ ( )}
p

q p pFDR
γ

γ
≥

=  

Where the nested set of rejection regions take the form[0, ]γ . 

The q-value was discussed, which is the pFDR analogue of the p-value. Whereas it 

can be inconvenient to have to fix the rejection region or the error rate beforehand, the 

q-value requires us to do neither. 
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2.7 Datasets 

The dataset we used is from the Gene Expression Omnibus (GEO) in NCBI. The 

Gene Expression Omnibus (GEO) is a public repository that archives and freely 

distributes microarray and other forms of high-throughput data submitted by the 

scientific community. In addition to data storage, a collection of web-based interfaces 

and applications are available to help users query and download the experiments and 

gene expression patterns stored in GEO.  

In 2007, Moffatt et al. [5] brought up this paper about asthma and offered 

expression file free to download. Moffatt et al. [5] mentioned that the study subjects 

were recruited from family (MRC-A) and case-control panels (MAGICS and UK-C). 

The family panel included a 207 predominantly (99 %) nuclear families (MRC-A). 

these were recruited through a proband with severe (step 3) childhood onset asthma 

and contained 295 sib pairs, 11 half-sib pairs and 3 singletons (counting all possible 

sibs). The study included siblings regardless of asthma status. Lymphoblastoid cell 

lines (LCLs) were derived from peripheral blood Iymphocytes on probands and 

siblings. Cells were harvested at log phase from roller cultures in the first growth after 

transformation. Global gene expression in Epstein-Barr virus Iymphoblastoid cell 

lines (EBVL) was measured with the Affymetrix HG-U133 Plus 2.0 chip in family 

panel. The other one, in case-control panel, included 437 non-asthmatic Caucasian 

UK controls (UK-C) children, 728 asthmatic children of German in the Multicentre 

Asthmatic Genetics in Childhood Study (MAGICS) study with physician-diagnosed 

asthma for comparison with 694 reference children recruited in the cross sectional 

International Study of Asthma and Allergies in Childhood (ISAAC) study. The study 

genotyped all children in the primary association study with the Illumina Sentrix 

HumanHap300 BeadChip. Additional, the study typed the parents and children in the 

MRC-A panel with the Illumina Sentrix Human-I Genotyping BeadChip. 
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This paper had an own database, “mRNA by SNP Browser”, that provides 

graphical overviews of whole-genome association studies of datasets with very rich 

phenotypic information, such as global surveys of gene expression. The software 

incorporates a generic eQTL database and provides a graphic interface for browsing 

association between 54,675 transcript levels and 406,912 SNPs. For each transcript, 

the browser can tabulate and plot association test statistics (p-value<0.001), estimates 

of effect size and allele information across the genome. The browser automatically 

links results to the UCSC genome browser where users can examine each transcript in 

its genomic context. In addition to browsing the results by transcript or by position, 

results can be searched for information on specific SNPs. LD and tag information are 

provided for SNPs not in the database [6]. 
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3 Materials and Methods 

DNA transcribes to mRNA, mRNA translates to protein which may affect the 

disease. Because mRNA is closer to DNA and gene expression value is measured in 

mRNA, we use global gene expression of probe sets as endophenotypes in search for 

the susceptibility genes underlying asthma. Gene expression values are preprocessed 

by the robust multi-array averaging (RMA) to adjust for background noises, 

normalize expression levels and summarize multiple probs. We judge which gene 

expressions of probe sets are endophenotype by using the index PHE and do 

hypothesis test of PHE=0 : Endophenotype and phenotype share no genes. For the 

problem of multiple testing, we utilize the q-value to control for the false discovery 

rate (FDR) for significance judgment. We also perform genome-wide association tests 

for each gene expression of probe set. 

We then derive SNPs under four conditions; they are SNPs (1) significantly 

associated with gene expressions of all probes sets, (2) significantly associated with 

gene expressions of probe sets with PHEs greater than zero, (3) significantly 

associated with gene expressions of probe sets with PHEs significantly different from 

zero at unadjusted p-values smaller than 0.05, and (4) significantly associated with 

gene expressions of probe sets with PHEs significantly different from zero at q-values 

smaller than 0.05. 

Through systematic literature reviews (Hoffjan et al. [28], Ober et al. [29] and 

Zhang et al. [30]), we identify 144 genes that have been reported to be associated with 

asthma or atopy phenotypes. Among them, there are 25 genes that have been 

repeatedly reported in six or more populations [29]. We further identify additional 125 

genes that are related to these 25 genes. We then identify the overlap between these 

269 (=144+125) genes and genes identified by the above gene-expression-based 
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analysis.  

Finally, we are interests in realizing the genetic properties of gene expressions that 

are identified as the endophenotypes. We use various plots to aid us observing some 

phenomenon.  

3.1 Datasets 

In 2007, Moffatt et al. [5] brought up this paper about asthma. The subjects of this 

study can be divided into two master parts: the case-control panel and the family 

panel. We are interested in the family panel. There are 404 children from the family 

panel. The family panel included 207 predominantly (99 %) nuclear families. These 

were recruited through a proband with severe childhood onset asthma. The study 

included siblings regardless of asthma status. Global gene expression in Epstein-Barr 

virus Iymphoblastoid cell lines (EBVL) was measured with the Affymetrix HG-U133 

Plus 2.0 chip in the family panel. The study genotyped 830 offspring and parents with 

the Illumina Sentrix HumanHap-I BeadChip and 378 offspring with the Illumina 

Sentrix HumanHap300 BeadChip in family panel.   

We downloaded the files of Gene expression levels in 404 children from the family 

panel. This dataset is available at 8http://www.ncbi.nlm.nih.gov/ego/, the GEO 

accession: GSE8052 [6]. 

3.2 Statistical method of endophenotype 

We use global gene expressions of probe sets as endophenotypes. Epstein-Barr 

virus Iymphoblastoid cell lines (EBVL) were derived from participants and global 

gene expression was measured with Affymetrix HG-U133 Plus 2.0 chip. One of the 

indices determining the gene expression of probe set an endophenotype is the 

proportion of heritability explained ( PHE ) by the endophenotype [2]. 

Given a phenotype of case-control status, the variance component analysis for 

discrete trait [2, 14]: 
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Where ijP is the observed phenotype in the jth member of the ith family, ijE is his/her 

corresponding specified endophenotype, ijZ is his/her other covariates. ijε is the 

residual error term representing the effect of non-family factors. ijG is the random 

effect for the underlying genetic structure. The components 2 2 2
C, and A Dσ σ σ represent 

the variance arising from polygenic additive effects, polygenic dominance effects and 

shared environmental effects, respectively.  

The (broad sense) heritability of ijP , conditional on ijE is  

2 2

2 2 2 2
A D

A D C R

h σ σ
σ σ σ σ

+
=

+ + +
 

  Then we calculate PHEs of all probe sets. 

1
NE

hPHE
h

= −
 

Where the term h is the heritability calculated from the variance component analysis 

with disease status as response variable and covariates including the endophenotype 

and other covariates. The term NEh  is the heritability calculated from the variance 

component analysis with disease status as response variable and covariates without 

endophenotype [2]. The greater of the PHE value, the more likely he intermediate 

variable an endophenotype. Hsieh et al. [4] utilize the delta method to evaluate the 

variance of PHE. For having more statistical meanings of PHE, We do hypothesis test 

of PHE to get more information about PHE. 
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The hypothesis is 

0

1

: 0
: 0

H PHE
H PHE

=⎧
⎨ >⎩

 

Under 0 : 0H PHE = , we suppose the phenotype and endophenotype share no genes 

and significance level ofα =0.05. We reject 0H if the lower bound of one-sided 

confidence interval of PHE ,n n
1 . .( )PHE Z s e PHEα−− × , is larger than 0 and plot the 

confidence of interval of PHEs over all chromosomes.  

If multiple hypotheses are tested simultaneously, the probability of false positives 

by chance increases. We utilize the q-value which is a natural pFDR analogue of the 

p-value to correct for occurrence of false positives. These q-values were calculated by 

applying the QVALUE (8http://faculty.washington.edu/~jstorey/qvalue/) package. 

Where h and NEh were obtained from the results by performing variance component 

analysis using the SOLAR computer package [14], so nPHE is estimated. The 

estimator of n. .( )s e PHE used delta method [4]. 

Then we classify PHEs into four conditions, there are total PHEs, PHEs higher than 

zero, significant PHEs with unadjusted p-value smaller than the significant level of 

5%, and significant PHEs with q-value smaller than the significant level of 5%. 

 

3.3 The preprocessing and differential method 

All analyses of expression value used quantile normalization, after performing 

robust multi-array averaging (RMA), to remove non-biological variation, enforce 

normality, deal with outlier and summary the intensity values [21-22, 24]. 

We want to know if a disease may be caused by large expression of particular genes 

resulting in variation between diseased and normal tissues. The differential method 

used to detect the genes expressed differentially between case-control samples is 
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significance analysis of Microarrays (SAM) [22, 25-26]. The term q-value in SAM 

output smaller than 0.05, it represents these probe sets may be different between 

diseased and normal subset. 

 

3.4 Genome-wide association tests for gene expressions 

A database, “mRNA by SNP Browser”, that provides the results of Genome-wide 

association test for each gene expression of probe set [31]. Association analysis was 

applied with Merlin (FASTASSOC option), after probabilistically inferring missing 

genotypes. This database is downloaded at 

8http://www.sph.umich.edu/csg/liang/asthma/. 

We find significant SNPs from results of associate test between expression value of 

each probe set and all SNPs genotypes with LOD score≥6 (about equivalent to the 

false discovery rate (FDR) = 0.056) [6]. We define these significant SNPs as 

“eSNPs”. 

 

3.5  Asthma genes and overlap rate 

Asthma is a disease of chronic airway inflammation that affects nearly 155 million 

individuals worldwide. Like other atopic diseases, asthma is a complex disorder 

caused by interactions between multiple genes of small to modest effect and equally 

important environmental factors. Asthma has an important genetic component but no 

clear pattern of inheritance and heritability estimates of asthma vary between 36-79%.  

To this day, there are over 100 genes that have been reported to be associated with 

asthma or related phenotypes. We look for three review papers: (1) “Association 

studies for asthma and atopic diseases: a comprehensive review of the literature” [28], 

there are 64 genes in 251 papers about asthma or atopy from 1982 to 2002, (2) 

“Asthma genetics 2006: the long and winding road to gene discovery” [29], there are 
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118 genes in nearly 500 papers about asthma or atopy from 1982 to 2005, and (3)  

“Recent advances in asthma genetics” [30], there are 34 genes in 87 papers about 

asthma or atopy from 2005 to 2007. These review papers identified the genes by 

searching the public database using the keywords “association” or “case-control” 

together with each of the following terms: “asthma”, “bronchial hyperresponsiveness”, 

“BHR”, “atopy”, ”SPT”, “atopic dermatitis”, “IgE”, or “drug response”. This 

identified a group of genes with at least one significant association reported and then 

they searched for all other studies of those genes. We collect and make up the 144 

genes that have been associated with asthma or atopy phenotypes in at least one study, 

although many of these studies are methodologically limited and need replication 

(Appendix I). 

Ober’s paper in 2006 also identified 25 genes that have been associated with 

asthma or atopy phenotype in six or more populations. We use these 25 genes as the 

basis to identify more related genes. The PubGene (8http://www.pubgene.org/) was 

used for identifying related genes. The PubGene not only catalogues individual genes 

but gene pairs. It uses co-citation to create networks of gene identifiers, allowing the 

possibility for the discovery of relationships between two genes via an intermediary 

gene. Co-citation suggests biological relationship between the implicated genes. 

There are 125 genes that are related with these 25 genes (Appendix II).  

We calculate overlap rate by comparing significant SNPs (LOD>6) from probe sets 

with significant PHEs with 269(=144+125) genes mentioned in the front statement. 

The significant PHEs can be either with unadjusted p-value smaller than 0.05, or with 

q-value smaller than 0.05. 
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3.6  Plots 

We use plot to assess genetic characteristics of gene expressions that are identified 

as the endophenotypes. 

3.6.1  Density plot of PHEs 

We plot density plots and observe the variations of PHEs’ distributions under four 

conditions of PHEs, there are total PHEs, PHEs >0, PHEs with unadjusted p-value < 

0.05 and PHEs with q-value < 0.05.   

3.6.2  The scatter plot of heritability of gene expressions versus PHEs 

We calculate the heritability of gene expression in each probe set. Then we plot the 

scatter plot under four conditions: (1) total heritability of gene expressions for all 

probe sets versus total PHEs, (2) heritability of gene expressions for probe sets with 

PHEs >0 versus PHEs >0, (3) heritability of gene expressions for probe sets with 

significant PHEs with unadjusted p-values < 0.05 versus significant PHEs with 

unadjusted p-values < 0.05, (4) heritability of gene expressions for probe sets with 

significant PHEs with q-values < 0.05 versus significant PHEs with q-values < 0.05. 

Under four conditions, we observe the relationship between heritability of gene 

expressions and PHEs. 

3.6.3   The bar-plot of proportions of probe sets with max significant SNPs’ LOD 

>6 versus PHEs 

We derive four conditions of significant SNP’s LOD >6, there are the results of 

genome-wide association tests for (1) gene expressions for all probe sets, (2) probe 

sets with PHEs >0, (3) gene expressions for probe sets with PHEs with unadjusted 

p-values < 0.05, (4) gene expressions for probe sets with PHEs with q-value < 0.05.    

Under four conditions, we plot the bar-plot of proportions of probe sets with max 

significant SNP’s LOD >6 versus PHEs. The purpose of these plot is to observe 

variable numbers of underlying genes by observing proportions of probe sets with 
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max significant SNPs’ LOD >6. 

The steps of plot: 

Step1. No matter which conditions, we divide the PHEs into 5 groups according to 

5 quantiles. 

  Step2. To evaluate the number of probe sets with eSNPs in each quantile of PHEs. 

  Step3. Each quantile of PHEs, to evaluate the proportion 

= #  of probe sets with significant SNPs (max LOD >6)
#  of probe sets

. 

Step4. The bar-plot: Proportions versus quantiles of PHEs. 

3.6.4   The bar-plot of number of cis eSNPs <100 kb or cis eSNPs >100 kb or 

trans versus PHEs 

A cis-regulatory element or cis-element is a region of DNA or RNA that regulates 

the expression of genes located on that same strand. These cis-regulatory elements are 

often binding sites of one or more trans-acting factors. In contrast, trans-regulatory 

elements are species which may modify the expression of genes distant from the gene 

that was originally transcribed to create them. To demonstrate the concept (this is not 

a specific example), a transcription factor which regulates a gene on chromosome 6 

might itself have been transcribed from a gene on chromosome 11.  

To summarize, cis-elements are present on the same strand as the gene they 

regulate whereas trans-elements can regulate genes distant from the gene from which 

they were transcribed (8http://en.wikipedia.org/wiki/Cis-regulatory_element). 

So we defined the cis eSNPs is that the strongest cis effect for a given expression 

values of probe sets was then mapped by testing SNPs located at the location of this 

probe set in the same chromosome. If cis eSNPs located within 100 kb window 

centered at the location of this probe set in the same chromosome, we define them as 

“cis eSNPs <100 kb”. If cis eSNPs located outside 100 kb window centered at the 
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location of this probe set in the same chromosome, we define them as “cis eSNPs 

>100 kb”. Trans is that eSNPs are in other chromosomes and not the same 

chromosomes of this probe set. 

We derive four conditions of significant SNP’s LOD >6 (eSNPs), there are the 

results of genome-wide association tests for (1) gene expressions for all probe sets, (2) 

probe sets with PHEs >0, (3) for gene expressions for probe sets with PHEs with 

unadjusted p-values < 0.05, (4) for gene expressions for probe sets with PHEs with 

q-value < 0.05.    

  Under four conditions, we plot 

a. The bar-plot of number of cis eSNPs <100 kb versus PHEs. 

b. The bar-plot of number of cis eSNPs >100 kb versus PHEs. 

c. The bar-plot of number of trans versus PHEs. 

The purpose of these plots is to observe the various numbers of cis eSNPs < 100 kb, 

cis eSNPs > 100 kb or trans and infer the various number of underlying genes. 

The steps of plot: 

Step1. No matter which conditions, we divide PHEs into 5 groups according to 5 

quantiles. 

Step2. To evaluate the number of cis eSNPs <100 kb, cis eSNPs >100 kb and 

trans separately in each quantile. 

Step3. The bar-plots: Number (cis eSNPs <100kb, cis eSNPs >100kb and trans) 

versus quantiles of PHEs. 

3.6.5   The bar-plot of number of cis eSNPs <100 kb or cis eSNPs >100 kb or 

trans versus heritability of gene expressions and differential expressions. 

Heritability of gene expression is the proportion of gene expressional variation that 

is attributable to genetic variation. We calculate the heritability of gene expression 

value in each probe set and use the q-values from output of SAM as differential 
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expression value. 

We calculate heritability of gene expressions (differential expressions) under four 

conditions: (1) gene expressions for all probe sets, (2) gene expressions for probe sets 

with PHEs >0, (3) gene expressions for probe sets with PHEs with unadjusted 

p-values < 0.05, (4) gene expressions for probe sets with PHEs with q-value < 0.05. 

Under four conditions, we plot 

a. The bar-plot: numbers of cis eSNPs <100 kb versus heritability of gene 

expressions and differential expressions. 

b. The bar-plot: numbers of cis eSNPs >100 kb versus heritability of gene 

expressions and differential expressions. 

c. The bar-plot: numbers of trans versus heritability of gene expressions and 

differential expressions. 

The purpose of these plots is to observe that the various numbers of cis eSNPs < 

100 kb, cis eSNPs > 100 kb or trans corresponding to heritability of gene expressions 

and differential expression values. 

The steps of plot: 

Step1. No matter which conditions, we divide heritability of gene expressions and 

differential expressions into 5 groups according to 5 quantiles. 

Step2. To evaluate the numbers of cis eSNPs <100 kb, cis eSNPs >100 kb and trans 

separately in each quantile of heritability of gene expressions and 

differential expressions. 

Step3. The bar-plots: Numbers (cis eSNPs <100kb, cis eSNPs >100kb and trans) 

versus quantiles of heritability of gene expressions and differential 

expressions. 
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3.6.6 The density plot of LOD score for cis eSNPs <100 kb, cis eSNPs >100 kb 

and trans 

We derive four conditions of SNP’s LOD scores, there are the result of 

genome-wide association tests for (1) gene expressions for all probe sets, (2) for gene 

expressions for probe sets with PHEs >0, (3) gene expressions for probe sets with 

PHEs with unadjusted p-values < 0.05, (4) gene expressions for probe sets with PHEs 

with q-value < 0.05. 

Under four conditions, we plot the density plot of LOD scores for cis eSNPs <100 

kb, cis eSNPs >100 kb and trans and observe these distributions of cis eSNPs <100 kb, 

cis eSNPs > 100 kb and trans. 
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4 result 

4.1 Test of PHEs and the distribution of different conditions of PHEs 

There are 54675 gene expressions of probe sets and calculate 54675 PHEs. Among 

total PHEs, the minimum is -0.3708, the maximum is 0.315897, the mean is -0.01053 

and the median is -0.00679. The results of hypothesis test: PHE=0 and solving the 

problem of multiple test by utilizing the q-value which is a natural pFDR analogue of 

the p-value to correct for occurrence of false positives: there are 19876 probe sets 

with PHEs greater than 0, 522 probe sets with PHEs with unadjusted p-value smaller 

than 0.05 and 38 probe sets with q-value smaller than 0.05 (Table 5). In Figure 2-a, 

most the low bounds of PHEs are smaller than zero. In Figure 2-b, the only low 

bounds of PHEs are higher than zero. Most PHEs are between 0.1 and 0.2, 25 PHEs 

are greater than 0.2 and one PHE is greater than 0.3 (Table 6). 

In Density plot of four conditions of PHEs, total PHEs are mostly distributed 

between -0.15 and 0.15(Figure 3-a). Significant PHEs with unadjusted p-values < 

0.05 are mostly distributed between 0.05 and 0.2 (Figure 3-c). Significant PHEs with 

q-value < 0.05 are most distributed between 0.15 and 0.3 (Figure 3-d). Under four 

conditions of PHEs, the distribution is from (-0.15, 0.15) to (0.15, 0.25). After testing 

and adjusting the problem of multiple tests, these significant PHEs have stronger 

evidences that asthma and endophenotype share more genes to provide more genetic 

information. 

4.2  The scatter plot of heritability of gene expression versus PHEs 

The scatter plots are under four conditions: (1) total heritability of gene expressions 

for all probe sets versus total PHEs, (2) heritability of gene expressions for probe sets 

with PHEs >0 versus PHEs >0, (3) heritability of gene expressions for probe sets with 

significant PHEs with unadjusted p-values < 0.05 versus significant PHEs with 
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unadjusted p-values < 0.05, (4) heritability of gene expressions for probe sets with 

significant PHEs with q-values < 0.05 versus significant PHEs with q-values < 0.05. 

Then we fit two lines in scatter plot, one is regression line and the other is smooth line 

of loss function.  

Under (1) condition, two lines in plots are increasing with greater PHEs. There is a 

positive correlation between heritability of gene expression and PHEs (Figure 4).  

Under (2) condition, the smooth line is slowly increasing (Figure 5-a) and the other 

is slowly decreasing in plot (Figure 5-b). Two lines are almost horizontals. We infer 

that heritability of gene expression have very weak relationship with PHEs.  

Under (3) condition, most of the smooth line is decreasing in plot. But this smooth 

line is increasing with few greater PHEs (Figure 6-a). The other in plot is decreasing. 

Besides greater PHEs, there may be a negative correlation between heritability of 

gene expression and PHEs (Figure 6-b). 

Under (4) condition, the smooth line is irregular (Figure 7-a) and in Figure 7-b, the 

other is almost horizontal (Figure 7-b). There is no relationship between heritability of 

gene expression and PHEs. 

 

4.3  The overlap rate 

The overlap rate by comparing significant SNPs (LOD>6) from probe sets with 

significant PHEs with 269 genes (144 genes: asthma or atopy genes, 125 genes: genes 

associated with these 25 asthma or atopy genes in six or more populations).The 

significant PHEs can be (1) with unadjusted p-value smaller than 0.05, (2) with 

q-value smaller than 0.05. 

Under the (1) condition of significant PHEs, there are 767 significant SNPs (LOD 

> 6) from genome-wide association test. There are 14 significant SNPs (LOD > 6) 

overlap with 144 asthma or atopy genes. There is 0 significant SNPs (LOD > 6) 



 

 39  

overlap with 125 genes associated with these 25 asthma or atopy genes in six or more 

populations (Table 7). 

The overlap rate =  

#  significant SNPs (LOD >6) overlap with asthma or atopy genes plus 
   genes associated with an asthma or atopy phenotype in six or more populations.

# significant SNPs (LOD >6) 
14 0.015
767

= ≈

 

Under the (2) condition of significant PHEs, there are 12 significant SNPs (LOD > 

6) (Table 9, 10). There is 0 significant SNPs (LOD > 6) overlap with 269 genes. The 

overlap rate is zero. 

These overlap rates are not high. We infer that some significant SNPs may be 

weakly associated with asthma or atopy. Because we lack the genome-wide 

association data, the validation of this assumption does not analyze. 

 

4.4 The result of association test under four conditions of PHEs 

We utilize genome-wide association tests for gene expression of probe set and take 

the SNPs’ LOD score greater than 6 as significant SNPs. We define these significant 

SNPs as “eSNPs” and show various plots of eSNPs to observe the genetic properties. 

4.4.1 The bar-plot of proportion of probe sets with max significant SNPs’ 

LOD >6 versus PHEs 

Four conditions of significant SNP’s LOD >6 (eSNPs), there are the results of 

genome-wide association tests for (1) gene expressions for all probe sets, (2) probe 

sets with PHEs >0, (3) gene expressions for probe sets with PHEs with unadjusted 

p-values < 0.05, (4) gene expressions for probe sets with PHEs with q-value < 0.05.   

Under (1) and (2) conditions, the proportions are almost similar and slowly 

increasing when PHEs are larger (Figure 8-a, b). The underlying genes may be more 
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because of greater proportion of probe sets with max significant SNPs’ LOD > 6. 

Under (3) condition, the proportions are decreasing (Figure 8-c). When PHEs are 

larger, proportions of probe sets with max significant SNPs’ LOD > 6 are smaller and 

the underlying genes may be less. Although most underlying genes are not significant 

in greater PHEs, some remaining underlying genes may be very significant to provide 

more genetic information.  

4.4.2 The bar-plot of the number of cis eSNPs <100 kb or cis eSNPs >100 kb 

or trans versus PHEs 

Four conditions of significant SNP’s LOD >6 (eSNPs), there are the results of 

genome-wide association tests for (1) gene expressions for all probe sets, (2) probe 

sets with PHEs >0, (3) gene expressions for probe sets with PHEs with unadjusted 

p-values < 0.05, (4) gene expressions for probe sets with PHEs with q-value < 0.05. 

We do the bar-plot with the number of cis eSNPs <100 kb at first. Under (1) 

condition, the numbers will slowly increasing when PHEs are larger (Figure 9-a). 

When PHEs are greater, the number of underlying genes may be more. Under (2) 

condition, the numbers are almost similar (Figure 9-b). Under (3) condition, the 

numbers are irregularly up-and-down (Figure 9-c).  

To compare with Figure 9-c and Figure 8-c. The smallest proportion is in 5th 

quantile of PHEs (Figure 9-c), but the number of cis eSNPs < 100 kb in 5th quantile of 

PHEs is not least. This may be because some probe sets does not significantly 

associated to underlying genes at all, but some probe sets significantly associated to 

many underlying genes. 

Then we do the bar-plot with the number of cis eSNPs > 100 kb. Under (1) and (2) 

conditions, the pattern of Figure 10-a and 10-b are similar with Figure 9-a and 9-b to 

result in the same conclusions. Under (3) condition, the numbers are almost less, 

besides 2nd quantile of PHEs (Figure 10-c). It represents more number of underlying 
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genes in 2nd quantile. 

Finally we do the bar-plot with the number of trans. Under (1) condition, the 

numbers are slowly increasing when PHEs are larger (Figure 11-a). When PHEs are 

greater, the number of underlying genes may be more. Under (2) condition, the 

numbers are increasing, besides 1st quantile of PHEs (Figure 11-b). Under (3) 

condition, the numbers are almost less, besides 2nd and 3rd quantile of PHEs (Figure 

11-c). It represents more number of underlying genes in 2nd and 3rd quantile. 

Under the condition of (4), it only has 12 eSNPs (Table 6). 

4.4.3  The bar-plot of number of cis eSNPs <100 kb or cis eSNPs >100 kb or 

trans versus heritability of gene expressions and differential 

expressions. 

There are four conditions of heritability of gene expressions (differential 

expression): (1) gene expressions for all probe sets, (2) gene expressions for probe 

sets with PHEs >0, (3) gene expressions for probe sets with PHEs with unadjusted 

p-values < 0.05, (4) gene expressions for probe sets with PHEs with q-value < 0.05. 

We do the bar-plot with the numbers of cis eSNPs <100 kb, cis eSNPs > 100 kb and 

trans, the numbers increase with greater heritability of gene expressions under (1) and 

(2) conditions (Figure 12-a,b; Figure 13-a,b; Figure 14-a,b). The higher heritability 

represents the more proportion of genetic component to result in more numbers of 

eSNPs < 100 kb. The numbers are irregular with heritability of gene expressions 

under (3) condition (Figure 12-c, Figure 13-c, Figure 14-c).The greater heritability of 

gene expressions not sure to result more number of cis eSNPs < 100 kb. There is no 

relationship between PHEs with unadjusted p-value < 0.05 and heritability of gene 

expressions. 

Under (1) and (2) conditions, the numbers are similar with differential expression 

values (Figure 12-a, b; Figure 13-a, b; Figure 14-a, b). Under (3) condition, the 
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numbers are irregular with differential expression value (Figure 12-c; Figure 13-c; 

Figure 14-c). These differential expressions are significant with the differences of case 

and control status and not necessary associated with significant SNPs (LOD > 6). 

4.4.4  The density plot of LOD score for cis eSNPs <100 kb, cis eSNPs >100 kb 

and trans 

Four conditions of SNP’s LOD scores, there are the result of genome-wide 

association tests for (1) gene expressions for all probe sets, (2) for gene expressions 

for probe sets with PHEs >0, (3) gene expressions for probe sets with PHEs with 

unadjusted p-values < 0.05, (4) gene expressions for probe sets with PHEs with 

q-value < 0.05. 

No matter which conditions, if the LOD scores increase, the effect in cis eSNPs 

<100 kb is stronger than the other two. The effects in trans were weaker than in cis 

eSNPs <100kb or cis eSNPs >100kb and distributed at lower LOD score (about 

LOD<5). Most LOD greater than 6 were in cis eSNPs <100 kb (Figure 15-21). 
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5 Conclusions and Discussion 

5.1  Conclusions 

We start with 54675 gene expressions of probe sets, preprocessed by the robust 

multi-array averaging (RMA). These preprocessed gene expressions are used as 

endophenotypes in search for the susceptibility genes underlying asthma. We judge 

which gene expressions are endophenotypes by the index PHE. The greater the PHE 

value, the more likely the intermediate variable being an endophenotype and sharing 

more genes with the phenotype. We do hypothesis test (H0: PHE=0: the probe set and 

phenotype share no genes versus H1: PHE>0) and adjusted for multiple testing by 

utilizing the q-value to control for the false discovery rate (FDR). Then we perform 

genome-wide association tests for each gene expression. We are interested in 

assessing genetic characteristics of gene expressions that are identified as the 

endophenotypes. 

The conclusion of these plots: For all probe sets, the greater the PHEs, the more 

underlying genetic components the gene expressions have. For probe sets with PHEs 

greater than zero, the genetic properties are not obvious, not like for all probe sets. For 

probe sets with PHEs with unadjusted p-value < 0.05, the proportion of probe sets 

with max significant SNPs’ LOD > 6 decreases when the PHE value increases. 

However, there is an increasing numbers of underlying genes when the PHE value 

increases. This may be because some probe sets does not significantly associated to 

underlying genes at all, but some probe sets significantly associated to many 

underlying genes. The larger heritability of gene expressions is not sure to result more 

number of cis eSNPs < 100 kb. So there is no relationship between PHEs with 

unadjusted p-value < 0.05 and heritability of gene expressions. To sum up, these 

PHEs are greater, the genetic components are less or irregular. For probe sets with 
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PHEs with q-value smaller than 0.05, the irregular pattern make us hardly observing 

the genetic properties. 

The genetic effect in cis eSNPs <100 kb is stronger than the other two in greater 

LOD scores (LOD>6). Trans effects were weaker than the other two and distributed at 

lower LOD score (LOD<5). 

 

5.2 Discussion 

  If All SNPs put into gene-gene interaction test, the number of test is too many. In 

signal-SNP association test between SNP genotypes and case-control status, it only 

discoveries significant SNPs with disease and neglect Some SNPs are weakly related 

with disease, but affected disease after combining with other SNPs. So we use the 

properties of endophenotype to find these significant SNPs weakly associated with 

disease from association test between gene expression of each probe set and all SNP 

genotypes. We collect these significant SNPs from single-SNP association test of 

case-control and continuous outcome (gene expression) and then do gene-gene 

interaction to add more opportunity for searching possible underlying disease genes. 

But there is a problem, what criteria of PHE judging the expression value of probe 

sets as an endophenotype is appropriate. In the future, we will keep on overcoming 

this problem and utilize the real SNP data that provided by Moffatt et al [5] to confirm 

the assumption.    
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Figure 1  A surrogate endpoint versus an endophenotype in the disease process.
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Figure 2  The confidence interval of PHEs on all chromosomes (red: PHE, blue: the 
low bound of PHE). | a. the confidence interval of total PHEs, b. the confidence 
interval of the low bound of PHEs >0
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Figure 3  The density plot of PHEs. | a. Density plot of total PHEs. b. Density plot of 
PHEs >0. c. Density plot of PHEs with unadjusted p-value <0.05. d. Density plot with 
q-value<0.05.
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Figure 4  The scatter plot of heritability versus total PHEs. 
a. Scatter plot with a smooth line of loss function. 
b. Scatter plot with a regression line. 
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Figure 5  The scatter plot of heritability versus PHEs >0.  
a. Scatter plot with a smooth line of loss function.  
b. Scatter plot with a regression line. 
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Figure 6  The scatter plot of heritability versus PHEs with unadjusted p-value <0.05.   
a. Scatter plot with a smooth line of loss function.  
b. Scatter plot with a regression line. 
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Figure 7  The scatter plot of heritability versus PHEs with q-value <0.05.   
a. Scatter plot with a smooth line of loss function. 
b. Scatter plot with a regression line. 
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Figure 8  The bar-plot of proportion of probe sets with max significant SNPs’ LOD 

>6 versus PHEs. 
a. The bar-plot of proportion of probe sets with max significant SNPs’ LOD >6 versus total PHEs.  

b. The bar-plot of proportion of probe sets with max significant SNPs’ LOD >6 versus PHEs >0. 

c. The bar-plot of proportion of probe sets with max significant SNPs’ LOD >6 versus PHEs with 

unadjusted p-value <0.05. 
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Figure 9  The bar-plot of the number (cis eSNPs <100kb) versus PHEs.  
a. The bar-plot of the number versus total PHEs.  
b. The bar-plot of the number versus PHEs>0.  
c. The bar-plot of the number versus PHEs with unadjusted p-value <0.05. 
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Figure 10  The bar-plot of the number (cis eSNPs >100kb) versus PHEs. 
a. The bar-plot of the number versus total PHEs.  
b. The bar-plot of the number versus PHEs>0.  
c. The bar-plot of the number versus PHEs with unadjusted p-value <0.05. 
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Figure 11  The bar-plot of the number (trans) versus PHEs. 
a. The bar-plot of the number versus total PHEs.  
b. The bar-plot of the number versus PHEs>0.  
c. The bar-plot of the number versus PHEs with unadjusted p-value <0.05. 
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Figure 12  The bar-plot of the number (cis eSNPs <100 kb) versus heritability and 

differential expression. 
a. The bar-plot of the number versus heritability and differential expression for probe sets with total PHEs.  

b. The bar-plot of the number versus heritability and differential expression for probe sets with PHEs>0. 

c. The bar-plot of the number versus heritability and differential expression for probe sets with PHEs with 

unadjusted p-value <0.05. 
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Figure 13  The bar-plot of the number (cis eSNPs >100 kb) versus heritability and 
differential expression. 

a. The bar-plot of the number versus heritability and differential expression for probe sets with total PHEs.  

b. The bar-plot of the number versus heritability and differential expression for probe sets with PHEs>0. 

c. The bar-plot of the number versus heritability and differential expression for probe sets with PHEs with 

unadjusted p-value <0.05. 
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Figure 14  The bar-plot of the number (trans) versus heritability and differential expression. 
a. The bar-plot of the number versus heritability and differential expression for probe sets with total PHEs.  

b. The bar-plot of the number versus heritability and differential expression for probe sets with PHEs>0. 

c. The bar-plot of the number versus heritability and differential expression for probe sets with PHEs with 

unadjusted p-value <0.05. 
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Figure 15  The density plot of LOD score for cis eSNPs <100 kb (red), cis eSNPs >100 kb 

(green) and trans (trans) between X-limit (3, 50) and Y-limit (0, 0.8) for probe 
sets with total PHEs. 
a. The density plot of LOD score for cis eSNPs <100 kb.  
b. The density plot of LOD score for cis eSNPs >100 kb.  
c. The density plot of LOD score for trans.  
d. The density plot of LOD score for cis eSNPs <100 kb, cis eSNPs >100 kb and 

trans. 
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Figure 16  The density plot of LOD score for cis eSNPs <100 kb (red), cis eSNPs >100 kb 

(green) and trans (blue) between X-limit (3, 25) and Y-limit (0, 0.3) for probe sets 
with total PHEs. 
a. The density plot of LOD score for cis eSNPs <100 kb.  
b. The density plot of LOD score for cis eSNPs >100 kb.  
c. The density plot of LOD score for trans.  
d. The density plot of LOD score for cis eSNPs <100 kb, cis eSNPs >100 kb and 

trans. 
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Figure 17  The density plot of LOD score for cis eSNPs <100 kb (red), cis eSNPs >100 kb 

(green) and trans (blue) between X-limit (3, 50) and Y-limit (0, 0.8) for probe sets 
with PHEs>0. 
a. The density plot of LOD score for cis eSNPs <100 kb.  
b. The density plot of LOD score for cis eSNPs >100 kb.  
c. The density plot of LOD score for trans.  
d. The density plot of LOD score for cis eSNPs <100 kb, cis eSNPs >100 kb  

and trans. 
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Figure 18  The density plot of LOD score for cis eSNPs <100 kb (red), cis eSNPs >100 kb 

(blue) and trans (blue) between X-limit (3, 25) and Y-limit (0, 0.5) for probe sets 
with PHEs>0. 
a. The density plot of LOD score for cis eSNPs <100 kb.  
b. The density plot of LOD score for cis eSNPs >100 kb.  
c. The density plot of LOD score for trans.  
d. The density plot of LOD score for cis eSNPs <100 kb, cis eSNPs >100 kb and 

trans. 
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Figure 19  The density plot of LOD score for cis eSNPs <100 kb (red), cis eSNPs >100 kb 
(green) and trans (blue) between X-limit (3, 50) and Y-limit (0, 0.8) for probe sets 
with PHEs with unadjusted p-value <0.05. 
a. The density plot of LOD score for cis eSNPs <100 kb.  
b. The density plot of LOD score for cis eSNPs >100 kb.  
c. The density plot of LOD score for trans.  
d. The density plot of LOD score for cis eSNPs <100 kb, cis eSNPs >100 kb   

and trans. 
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Figure 20  The density plot of LOD score for cis eSNPs <100 kb (red), cis eSNPs >100 kb 

(green) and trans (blue) between X-limit (3, 25) and Y-limit (0, 0.5) for probe sets 
with PHEs with unadjusted p-value <0.05. 
a. The density plot of LOD score for cis eSNPs <100 kb.  
b. The density plot of LOD score for cis eSNPs >100 kb.  
c. The density plot of LOD score for trans.  
d. The density plot of LOD score for cis eSNPs <100 kb, cis eSNPs >100 kb  

and trans. 
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Figure 21  The density plot of LOD score for cis eSNPs <100 kb (red), cis eSNPs >100 kb 
(green) and trans (blue) between X-limit (3, 10) and Y-limit (0, 0.8) for probe sets 
with PHEs with q-value <0.05. 
a. The density plot of LOD score for cis eSNPs <100 kb.  
b. The density plot of LOD score for cis eSNPs >100 kb.  
c. The density plot of LOD score for trans.  
d. The density plot of LOD score for cis eSNPs <100 kb, cis eSNPs >100 kb    

and trans. 
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Table 5  The PHEs of probe sets with q-value < 0.05. 
 

ProbeID low PHE chr Start End q-value 

223949_at 0.210989 0.291867 21 42675053 42689269 1.54E-05 

223952_x_at 0.14619 0.210583 2 1.7E+08 1.7E+08 0.000156 

238076_at 0.18335 0.264808 1 1.51E+08 1.51E+08 0.000156 

203627_at 0.176716 0.258253 15 97010284 97320636 0.000248 

226841_at 0.127579 0.192336 11 58732558 58734705 0.001084 

235835_at 0.153614 0.232668 19 63631810 63651932 0.00113 

239938_x_at 0.131783 0.202743 5 88066154 88066571 0.001813 

209772_s_at 0.101687 0.157232 24 19542359 19542777 0.001813 

220177_s_at 0.100664 0.156129 21 42665067 42689269 0.001813 

209071_s_at 0.128678 0.19985 1 1.6E+08 1.6E+08 0.001813 

214254_at 0.150264 0.23343 23 1.51E+08 1.51E+08 0.001813 

65472_at 0.151357 0.235664 2 85744034 85745751 0.001813 

218390_s_at 0.148063 0.230837 10 1.2E+08 1.2E+08 0.001813 

219799_s_at 0.130186 0.206607 2 1.7E+08 1.7E+08 0.003115 

239199_at 0.145202 0.230571 17 579571 580102 0.003115 

1570156_s_at 0.132495 0.211029 15 30849385 30850684 0.003243 

202615_at 0.10535 0.169551 9 77562838 77875925 0.004321 

222842_at 0.132372 0.214778 1 35942865 35991660 0.005079 

1553296_at 0.093781 0.152233 3 1.02E+08 1.02E+08 0.005079 

1552514_at 0.11781 0.192029 22 40719270 40748979 0.005473 

1562098_at 0.120392 0.199272 12 98922496 98923786 0.008119 

223948_s_at 0.101249 0.168402 21 42675053 42689269 0.00885 

1570087_at 0.186288 0.315897 22 41759088 41772869 0.013429 

239904_at 0.113997 0.193411 6 83136598 83137111 0.013429 

239786_at 0.125965 0.214028 3 1.39E+08 1.39E+08 0.013429 

226997_at 0.108961 0.18607 2 30775651 30778742 0.014572 

242477_at 0.116073 0.198662 9 44414427 44415310 0.014812 

238676_at 0.117222 0.203013 1 52266829 52267579 0.018643 

226818_at 0.075209 0.130817 18 26899939 26901242 0.019778 

266_s_at 0.063488 0.110892 24 19540661 19542776 0.020873 

244783_at 0.098588 0.175553 9 1.01E+08 1.01E+08 0.029632 

235667_at 0.098162 0.175046 10 15595956 15596395 0.029632 

204837_at 0.107754 0.193471 9 6522466 6635650 0.03267 

230282_at 0.095278 0.172182 16 79644602 79645066 0.035667 

231237_x_at -0.90096 -0.08877 6 29748238 29753058 0.03723 
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242142_at 0.105077 0.190967 6 1.14E+08 1.14E+08 0.03723 

219067_s_at -0.17093 -0.05114 15 73122679 73129132 0.040256 

240089_at 0.104381 0.192788 4 1.21E+08 1.21E+08 0.04628 
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Table 6  The probe sets with PHEs > 0.2. 

ProbeID PHE var low chr 
1570087_at 0.3159 0.0062 0.1863 5 
223949_at 0.2919 0.0024 0.2110 21 
1559680_at 0.2701 0.0074 0.1288 2 
238076_at 0.2648 0.0025 0.1834 1 
203627_at 0.2583 0.0025 0.1767 15 
65472_at 0.2357 0.0026 0.1514 2 
224459_at 0.2341 0.0148 0.0342 14 
214254_at 0.2334 0.0026 0.1503 23 
235835_at 0.2327 0.0023 0.1536 19 
218390_s_at 0.2308 0.0025 0.1481 10 
239199_at 0.2306 0.0027 0.1452 17 
216407_at 0.2275 0.0078 0.0823 16 
230717_at 0.2255 0.0138 0.0326 9 
222842_at 0.2148 0.0025 0.1324 1 
220978_at 0.2146 0.0101 0.0491 17 
239786_at 0.2140 0.0029 0.1260 12 
1570156_s_at 0.2110 0.0023 0.1325 15 
223952_x_at 0.2106 0.0015 0.1462 2 
1563113_at 0.2069 0.0077 0.0623 1 
219799_s_at 0.2066 0.0022 0.1302 2 
1556538_at 0.2038 0.0134 0.0131 3 
238676_at 0.2030 0.0027 0.1172 21 
239938_x_at 0.2027 0.0019 0.1318 5 
1557548_at 0.2018 0.0073 0.0614 10 
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Table 7 Genes of significant SNPs (LOD>6) overlap with asthma or atopy genes 

SNP chr LOD Gene 
rs2844484 6 6.146 LTA 
rs2239704 6 6.403 LTA 
rs1041981 6 7.141 LTA 
rs10776482 4 7.124 TLR10 
rs4129009 4 13.141 TLR10 
rs10776483 4 7.144 TLR10 
rs11096955 4 6.049 TLR10 
rs11096956 4 9.563 TLR10 
rs3024498 1 8.219 IL10 
rs3024496 1 7.823 IL10 
rs1518111 1 9.300 IL10 
rs3024490 1 7.265 IL10 
rs1800872 1 8.131 IL10 
rs1800896 1 7.473 IL10 
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Table 8  The probe set with max eSNPs' LOD >6 (PHEs with q-value < 0.05). 

 
Table 9  Cis eSNPs < 100 kb (PHEs with q-value < 0.05). 

 
 
 
 
 
 
 

 
Table 10  Cis eSNPs > 100 kb (PHEs with q-value <0.05). 

probe set ID PHE hertibility q-value(SAM) chr 
cis eSNPs 
<100kb

cis eSNPs 
>100kb 

trans

1558102_at 0.156884 0.275246 0.515981 15 5 7 0 

SNP chr LOD 
rs7172665 15 8.28 
rs7177599 15 8.03 
rs8023669 15 7.83 
rs8035001 15 6.26 
rs11259964 15 6.40 

SNP chr LOD 
rs1877240 15 6.630 
rs8042254 15 6.430 
rs6603044 15 7.910 
rs8038619 15 12.53 
rs8040998 15 7.720 
rs4386103 15 6.230 
rs8033380 15 6.750 



 

 74  

Appendix I 
 

 
 

Appendix II 
 
25 genes that have been associated with asthma or atopy phenotype in >6 populations 

Gene Related Gene 

HLA-DRB1 TNF IFNG RA MYLK MLCK HLA-DPB1 DRB1 HLA-A LOC642072

 HLA-B HLA-C INFRSF10A INFRSF10B      

IL13 IL4 IL5 IFNG TNF IL10     

IL4 IL13 IFNG IL5 IL10 TNF     

IL10 IL4 CD4 IL5 CD8A IFNG TNF    

IL4RA IL5 IL2 IL10 IL4 CD4 ISG20 IL13 IFNG IL2RA 

LTA IL4 IL1B IFNG IL1A TNF IL10    

LTC4S ALOX5 LTA4H STK32C GSTA1 MGST2 YWHAZ CYSLTR1 GSTA2 CYSLTR2

 SEC23IP PGCP        

Asthma genes (review papers from 2003, 2006, 2008) 

AACT(SERPINA3) CCL11 CMA1 DCNP1 GATA3 HLA IL15 IL5RA MRP1 PTGER3 TBXA2R VDR

ACE CCL2 COX2 DEFB1 GCLM HNMT IL16 IL8 MUC7 PTGIR TCRA/D  

ACP1 CCL24 CRHR1 DPP10 GPRPA ICOS IL17F IL8RA NAT2 RANTES TGFB1  

ADAM33 CCL26 CRTH2 ECP GSTM1 IFNG IL18 IRF1 NOD1 SCCE TGFB2  

ADRB2 CCL5 CSF2 EDN1 GSTP1 IFNGR1 IL1A IRF2 NOS1 SDF1 TIMP1  

AGT CCR3 CSTA EDNRA GSTT1 IFNGR2 IL1B ITGB3 NOS2A SELP TLR10  

AICDA CCR5 CTLA4 EOTAXIN1 HAVCR1 IGHG IL1RL1 KCNS3 NOS3 SOCS1 TLR2  

ALOX5 CD14 CXCL12 EOTAXIN2 HAVCR2 IKAP IL1RN LTA ORMDL3 SPINK5 TLR4  

CHIA CD40 CXCR3 EP2 HLADPB1 IL10 IL27 LTA PAFAH STAT3 TLR6  

C3 CD86 CYFIP2 FCER1B HLA-DQA1 IL12B IL3 LTC4S PGDS STAT4 TLR9  

C3AR1 CFTR CYSLTR1 FCER2 HLA-DQB1 IL12RB1 IL4 MCP1 PHF11 STAT6 TNF  

C5 CHRM3 CYSLTR2 FLAP HLADRB1 IL13 IL4RA MIF PTGDR TAP1 UGRP1  

CC16/CC10 CLCA1 DAP3 FLG HLA-G IL13RA1 IL5 MMP9 PTGER2 TBX21 VCAM1  
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NOS1 CALM3 CALM1 NOS3 NOS2A NANOS1 CALM2 TNF   

CCL5 EEF1A1 CCR5 CCL2 CCL4L1 CCR2 CCL4L2 CCL3 CXCL9 IFNG 

 TRIM24 CXCL10 CCL4 TNF      

SPINK5 NETS KLK6 PLG DSG1 KLK1 KLK5 SPINK5L3 DSP SERPINA13

 KLK7 DSG3        

STAT6 JUN STK32C IL5 IL10 IL4 CD4 IL13 CD8A IFNG 

 FAM48A TNF        

TBXA2R PTGER4 PTGER3 STK32C SAC YWHAZ PTGIR PTGER1 PTGS2 PTGDS 

 ADCY7 INS SEC23IP       

TGFB1 PLAT PLG NUDT6 IL10 C20orf181 IL4 FGF13 IFNG TNF 

 FGF2         

TNF IL1A MAPK14 IL10 IL4 IL1B IFNG MAPK1 AHSA1  

CC16/CC10 PLA2G4A TFF1 STK32C YWHAZ TFF2 SFTPB SFTPA2 SEC23IP TFF3 

 SFTPC         

CD14 ITGB2 TLR4 IL10 CD4 ITGAM LTBR NDUFA2 CD8A IFNG 

 TLR2 TNF        

CTLA4 CELIAC3 CD40 CD80 CD4 CD28 CD8A CD86 IFNG  

FCER1B DNAH8 IGER IL10 PTPRC PHF11 GCG IL4 PPY CANT1 

 IFNG INS        

NOD1 CCK TLR4 ACUG IL10 GAST NOD2 RIPK2 IFNG TLR2 

 TNF         

HLA-DQB1 HLA-DQA1 DRB1 IDDM2 IDDM1 HLA-DRB1 INS HLA-DPB1 RA  

GRPA(AAA1) PSORS# DNAH8 KRT5 HLA-DRB4 SLC7A10 SLC3A2 ATP5E SLC36A1 KRT19 

 PSORS1 KRT14 HLA-C GJA8 CALM2     

GSTM1 SLC45A2 GSTP1 GSTM2 GSR GSPT2 GSPT1 CYP1A2 CYP1A1  

GSTP1 CYP1A2 CYP1A1 G6PD XDH GSTA1 GSR EPHX1 CAT GSTA2 

 SLC45A2         

ADAM33 MS4A2 DPP10 IL5 IGER IL10 PHF11 IL4 NPS IL13 

 IFNG NPSR1        

ADRB2 INSR ADRB1 PDE4B STK32C SAC GCG ADCY7 ADRB3 INS 

 SEC23IP         

 
 
 
 


