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ABSTRACT

Multidimensional Scaling (MDS) is one of many important methods in data
mining. It has two main purposes: (1) Express data in coordinate points in spatial
configuration from given pair-wise distances . between data. (2) Reduce data
dimensions and find hidden features of data through visual display. We focus on
discussing Classical multidimensional:sealing-(CMDS) in this paper since there are
many types of MDS methods. CMDS faces some challenges. One of them is that
CMDS's calculation time is huge. So it's'hardto calculate data with a large sample
size. Therefore, Tzeng, Lu and Li (2008) proposed split-and-combine multi-
dimensional scaling (SC-MDS) to figure out this problem. However, in the process
of SC-MDS, there are two important parameters to be decided: (1) the number of
overlapping points with the neighboring groups, N,, and (2) the size of each group,
Ng. These two parameters have great effects on the performance of SC-MDS. Thus,
the main topic of this paper discusses how to best choose these two parameters. We
suggest that N, should be at least the dimensionality of the data plus one and Ny be
about 1.51 times N, to make SC-MDS perform optimally. In addition, we revise the
method for combining groups. When combining two groups, we should consider
their own dimension and then align the group with lower dimensionality to the
group with higher dimensionality; instead, we randomly choose one group as the
center then align the other group to it. Therefore, CMDS and SC-MDS will be
spanned by the same space as long as any one group has the same dimension as the
whole data's. There is a proof and discussion in this article. Another main topic in
this article is using the SC-MDS concept to solve the missing value problem. We
did not refill the missing value; instead, we permute over the index of objects, in
which the subgroups in SC-MDS processing have no missing value. Then, it can
raise the tolerance of ratio of missing values from 20% to 30% by simulation result.
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1 Introduction

1.1 Origination

Multidimensional scaling (MDS) is a method developed in behavioral and social sciences. It
was proposed by Torgerson (1952) based on Young and Householder (1938). Psychologists
usually want to know the relationship between stimuli or objects, which are characterized
by some subjects. For instance, stimuli may be countries, and each country may record its
population, location, weather and so on to describe it. Dissimilarity (or similarity) will be
defined through difference of these subjects. For exploratory purposes, psychologists observe
the dissimilarity (or similarity) of these stimuli. They want to transform the dissimilarity
into a point configuration such that the distance between pairs of points is consistent with
dissimilarity. Consequently, they can find a rule to describe the point spread. Let X,,.,, be a
data set; each column vector z; can be represented.as x;=(Xy;, Xa;, - - - ,Xp,-)T € R? | denoting
the i-th stimulus characterized by p subjectsnpD= {d;;},.«, is the distance of i-th object
and j-th object in X. In Young and Heuseholder (1938) mentioned that ”a necessary and
sufficient condition for a set of numbers. d;;"="d;;-to be the mutual distances of a real set
of points in Euclidean space is that the matrix B=XTX be semi-positive definition; and
in this case the set of points is unique apart from a Euclidean transformation.” After that,
Torgerson constructed the algorithm of MDS based on Young and Householder (1938).

To introduce MDS, we must start with proximities. Proximities record the similarity or
dissimilarity between objects. They can be in a distance matrix, correlation matrix, or so
on. MDS is performed on proximities. MDS is aimed to transform proximities into a spatial
configuration and find the underlying dimension to describe the similarity or dissimilarity.
MDS can be applied to project a high dimension matrix into a low dimension matrix, which
is not the original row data; instead, it could be a reduced data (dimensional reduction),
but we can’t really specify the meaning of these orientations without changing the relative
dissimilarity of object pairs. Every object would be expressed as a point so that we can easily
give a graphical description of objects. There are many kinds of models in MDS; which model

is more appropriate depends on your input data.



1.2 Introduction to classical MDS

Assume there are N observations in an investigation; each observation would be described
using p variables. Thus we can define a p by n data matrix X, with each column of X denoted
as X; = (@1, T2, ..., Tpi), in a p-dimensional Euclidean space without loss generation. To
ensure a unique solution for an arbitrary translation when performing MDS on matrix X,
we shift the row mean to zero, denoted as > .  x; = 0, because we care about relative
location instead of absolute position of points. First, we have to define the distance matrix or
dissimilar matrix of X. Here, we use the Euclidean distance to define the dissimilar matrix,
so the square distance matrix D can be expressed as D = [dij]nxn = (xi — x3)7 (%3 — x;).
Besides, we define the inner product matrix B = XTX.

Deriving:

n
1 T T
—E dlj g xxl—x E Xi — X E Xl—f—nx X] 5 XXl—i—X X
n

i=1

n

%Zdw ZX XJ+XTZXJ+X ij—l—nx X;) ZX X; + X, X
j=1

= i DO ) = 0 3 )

j=1 i=1 j=1 i=1
1 n n
T T
:—(g xixi—l—g X; X;)
n
i=1 j=1

implies

n

1 1< 1< 1< 1

i=1 j=1 j=1 i=1
Then, matrix B can be expressed as

B=—--(D-D,-D.+D,) =HPH

where D, = [d;.] be column means of D, D, = [d.;] be row means of D, D, = [d.] be grand
mean of D, H =1 — %11T and P = [pijlnxn = —%D. B could be obtained from double

centering of distance matrix D multiplying by —%.
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Fig.-1: _Flowchart for CMDS

Second, apply SVD to B, then we can get B=UAUT (because B is a symmetric matrix,
SVD is identical with spectral decomposition), where A is a diagonal matrix with eigenvalues
on its diagonal terms, and U is an orthogonal matrix, UTU = I, hence X = A2U?. Using
the same concept with PCA | we truncate N-r components with (relatively) small eigenvalues
or with eigenvalues less than one and keep r main components such that the dissimilarity

among objects can be maintained as far as possible.

- 1
X = AU wherer < p

Although truncating the components with small eigenvalues (< 1) is not the only criterion,

another principal will be introduced in the following.

1.3 Introduction to nonmetric MDS

Nonmetric MDS was proposed by Shepard (1962) and Kruskal (1964). Proximities in non-

metric MDS don’t offer distance values; instead, they offer only ordinal information. For



example, when we measure the perceptual space of human subjects, it is hard to tell how
much difference there is between two objects, but it is easy to say that comparing with object

B and C, object A is more close to object B. Hence, dissimilar rank can be defined.

1.3.1 How to sort the dissimilarity for the proximities?

There are many ways to rank the similarities. One method is to prepare cards for each
pair of objects and let subjects arrange every card according to their similarity. Another
method is to divide the cards into two groups, one with higher similarity and another with
lower similarity, and repeat the procedure on each pile until the similarity of object pairs in
the same pile are approximately equal. Furthermore, still another method is to write one
object on a card and put the similar objects in the same pile, and then count the number of
times that two objects occur in the same pile as the proximities. This kind of definition of

proximities is very intuitive.

1.3.2 How does nonmetric MDS operate?

In nonmetric MDS, the distance between two objects is meaningless to us. To be more precise,
the value of proximities only matters in their relative sizes; the distance between two values
does not have any meaning. Hence, transforming proximities into spatial points needs to
preserve the rank order of pairs of points. So, we want to find a monotonic function such that
proximities transformed by this function could still preserve their dissimilar order. Distances
of points which transform from proximities through the optimal monotonic function, denoted
as d = f(p), are called disparities. The problem of nonmetric MDS transfers to how to
arrange the points configuration and how to find an optimum transformation so that the
order of disparities and proximities will be consistent as well as possible. Here, Kruskal
(1964) proposed an iterative technique to find the transformation and suggested minimizing

STRESS to access how well the configuration fits.

>iy (pij — di)?

STRESS =
Zi,j p?j

1. Given an initial configuration



2. Find the distance d;; of the configuration
3. Find the optimum transformation and calculate d
4. Use steepest descent to find a new configuration

5. Compare the stress to one iteration forward. If it is smaller than some criterion, end

this algorithm or go back to step 2

More details are in Multidimensional Scaling, Cox and Cox, chapter3.

Although Multidimensional scaling has many types of models for each kind of data, here

we focus on classical MDS. Let’s go back to the classical MDS and confront some challenges.

1. How many components should we keep?
In other words, how many dimensions doés this data set need in order to at least keep
it dissimilarity? There are lots of suggestions, stuch as picking up those components
with eigenvalue > 1, using the minimal number of dimensions such that stress is less
than 0.05, or deleting the components with a‘small eigenvalue relative to others. Some
of these suggestions are from researchers’ experience according to huge numbers of tri-
als. No one can ensure that estimating the number of dimensions is the best estimator
according to these suggestions. Another well-known method is the scree test or elbow
test: plot the scatter plot of dimension vs. stress, observe variety of stress as dimension
changing, and choose the point which doesn’t have a significant decrease as the dimen-
sion increases. This method has a disadvantage. If the curve shows a mild decrease
when the dimension gets large, it is hard to choose which point is the elbow point,
and the method is then inactive. You can see more principals by refering to ”Stopping
Rules in Principal Components Analysis: A Comparison of Heuristical and Statistical

Approaches” , Donald A. Jackson (1993).

2. Classical MDS algorithm is slow.
The computation complexity is O(N?). It would cost a lot of time to calculate when the

sample size is large. Many kinds of MDS methods are proposed for large data sizes, such



as Chalmer’s linear iteration algorithm, anchor point method, relative MDS, landmark

MDS, or Diagonal majorization algorithm (DMA).

. Missing data of distance matrices are not allowed. CMDS is a PCA based method. It
does not allow any missing value in the matrix when we reconstruct the data coordinate.
There are many methods to refill the missing data, such as shortest path. However,

the computation cost is huge.



2 Literature Review

2.1 Chalmers’ Linear Iteration Algorithm

Many kinds of MDS models are developed. The spring model is
one kind of MDS model. It is a force-directed model. Proxim-
ities are considered as a physical system. Imagine that objects
are connected with each other using springs. The proximity of

two objects is considered the length of a relaxed spring. At first,

we will initialize positions of objects arbitrarily so these springs
will be stretched or compressed. If we have these springs oscil-
late liberally, the system will eventually get into equilibrium with a minimal energy. Stress is
a suitable measurement here to measure the energy of the system. In other words, the spring
model for MDS aims to minimize the stress.' This process will be achieved by an iterative
algorithm. However, the computation:complexity.is O(N?).

The spring model is based on a*method propeosed:by. Chalmers (2006). Its time cost is
better than the spring model’s time-cost., The'ecomputation complexity is reduced to O(N?).
The Chalmers linear iteration model rediuices the numiber of calculations for forces. Two
sets are defined. For an object ¢, the first“set, 'V, collects the neighbor objects of object i.
We randomly select some objects from those objects out of a neighbor set and check the
proximity of object ¢ and itself. If the proximity is less than any one of its current neighbors,
then swap it into set V, else collect it in a second set S. The set S will be reconstructed in
each iteration. Thus, in the iteration of each object, not all the force information is used.
This will reduce the order of computation complexity.

In this case, the spring model is good for adding new points into system. Still, it is not

stable for the general solution; therefore, good initial values are needed.

2.2 Anchor Point Methed

The anchor point method is proposed by Andreas Buja, Deborah F. Swayne, Michael L.
Littman, and Nathaniel Dean (1998). In the anchor point method, the distance between



objects in the same cluster is important, and the distance between objects in different clusters
is less important. So, we define objects in the same cluster as anchors, and the others as the
floaters. Information about similarity for anchors is used to construct the framework of the
structure, and information about similarity for floaters is used to adjust the fine structure.
The number of anchors, k, should be larger than the dimensionality of dataset, and it only
needs to apply modified MDS on the N x k£ matrix. This method will not work if we select
an anchor randomly, which was mentioned in Buja et al (1998). Prior information about

grouping for the anchor point method is necessary.



3 Split and Combine MDS

3.1 Introduction to Split and combine MDS

Split-and-Combine Multidimensional Scaling (SC-MDS), which was proposed by Tzeng, Lu,
and Li (2008), is a modified MDS method to solve the computation problem of MDS for
large data sizes. In these cases, it is reasonable to assume that the data size is huge and
that each data is defined by RP, p < N. The main idea of SC-MDS is that the orientation
in spatial configuration does not need such a great deal of information from all the points.
For instance, in two-dimensional space, if we want to add a new object onto a plane by only
distance information, we just need to know the distance between new point and at least
three arbitrary non-colinear points on the plane, then we can set the position precisely. If we
want to set a point in a gq-dimensional space, we only need the distance from arbitrary non-
colinear ¢+ 1 points. Instead, too much infermatien will cause a huge computing complexity
in dealing with the amount of information. Torapply this main ideal in both split step and
combine step, we divide data into K groups. Each group has at least r + 1 points, where
r is the dimensionality of data. Then, find“the spatial configuration to each part. At the
moment, it faces two problems: (1) How to combine éach group and make each set of points
defined in the same axis space? (2) What sufficient conditions are needed such that this
method can perform reasonably?

First, let’s answer the first question. In this method, we would ideally like to combine
each group by overlapping points. When we divide the data, we arrange each group to have
N; overlapping points with its neighbor group, so that we can make use of information from
the overlapping part to combine each groups. Notice that the Combine step uses the same
idea as the Split step: N; must larger than r. Figure 2 shows the ideal way to combine two
groups by overlapping and what will occur if the number of overlapping points, V;, is less
than r + 1. In the following, we will simplify the problem to K = 2, and discuss the detailed
process of SC-MDS.

SC-MDS has two steps. The first step is Split and the second step is Combine. Here,
we extend the notation from the above. Let X, be a data set which can be expressed as

X = [x1,X2," - ,Xn| and each column of X, denoted as x; = (z;1, Ti2, - -+ , xip) is defined in



Fig. 2: Groups combine in two-dimengion space: Elliptic frame and quadrate frame represent

two point groups. The solid points represent overlapping: part.

a p-dimensional Euclidean space.

Split Assuming a large sample size, N is a large integer, and p < N. Under this condition,
applying CMDS will cost extensive time. We try to split the data set into two overlapping
groups X; and X, X; N X, =Y # (). We will discuss the reasons later. After applying
MDS on X; and X, individually, we can obtain two point sets defining in the same dimension
space, X and X). Y; and Y represent the spatial structure of the intersection points after

applying the MDS in two groups seperately.

Combine Subsequently, we want to utilize the overlapping part to connect two groups.
According to Young and Householder (1938), these two spatial configurations must be con-
sistent through Euclidean transformation. Thus, we want to find an affine mapping U(-) +b
such that each overlapping point x’lj € Y, can find the corresponding point in Y, satisfy-
ing X’lj = Ux’gj + b, xéj € Y,. Assume Y; and Y, represent the average of Y, and Y.
Shift the row mean of each point sets to zero, Y; — YllT and Yy — Yle and apply QR

10



factorization on Y; — 3_(11T and Yy — Yle, then it can obtain (Y; — YllT) = QiR:
and (Yy — Yle) = Q2R:. R; and R, should be equal although the same point set is
expressed by different orientations. Thus, we have to contrast R; with Ry to adjust positive
and negative signs in columns of Q; and Q. These two equal equations can combine into
QI (Y, —Y11") = QL(Y, — Yal').

Extending the equation above, we will have
Y =QiQ3Y, —QiQ3Y 1T + Y 17 (1)
U=QQ; and b=-QQ;Y,1T +Y,17"
X, =UX,+b
Then, me = [X’lfiz] However, a rounding error usually exists in practical calculation
processes. R; and Ry will not be identical altogether. Besides, even if we randomly split the

matrix into groups, two groups with different dimensionalities are still possible to occur. We

will discuss some probable situationsg'in the following.

3.2 DMore discussion about combine step
o dim(Xy) = dim(Xy =dim(X;NXp))=r

This is the basic situation; the above derivation is under this assumption.

o dzm(Xl) =7r > dlm(Xg) = dzm(Xl N XQ) =7/

Assume the dimensionality of two groups is different even by random grouping, such
that the same points (overlapping part) are expressed as different dimensions. In this
case, Q; and Qg will become r x " and 7’ X r’ matrix after QR decomposition. It
means that only an 7’ basis can span these points (overlapping part) in r-dimension
space, and the corresponding R; and Ry will drop the dimension to r’ being ' x N;
matrices. Then, we can find the affine transformation based on the same dimension
such that equation (1) will hold. After U = (Qq),x,(Q2 ),/ operate on (X5),/xn,,
Xy = U,y (X%) 1 xny + brxn, to move up to r-dimension space. Inversely, if dim(X;) =

r" < dim(Xy) = r, in equation (1) U = (Qq)pxr(QF),r«, operating on (Xy),xn, will

11



project the higher dimension part into lower dimension. As a result, dimensionality of
X, will descend and lose partial information of X,. Consequently, if the dimensionality
of two groups is different, it is more reasonable to transform the lower dimension part

into higher dimension space by affine mapping.

o dim(Xy) =dim(Xsy) =r > dim(X; NXy) =1

If two overlapping parts are colinear, dim(X; N Xz) will less than r. In this case,
there are two possible conditions. Let’s repeat the example above to explain. Assume
there are two groups in two-dimension space. There are three intersection points for
these two groups. These three points are collinear so that they are located on a line
in one-dimension space, as Figure 3 shows. Fix the first group and align the second
group through affine mapping. This may occur in two situations. One is that these
two sets will be aligned through a rotation and shift, and another is that two sets
will be aligned through a rotatien or shift other than a reflection in respect to the
line. These two conditions will create two different results, and one of them would
accord with the original configuration. ~As a result, there is not enough information
to distinguish which one will ‘be correct. ' The same confusion would happen under

Fig. 3: Three solid points represent overlapping points of two groups. These three points has

collinearity and allocate in a line.

12



In the following, we will show another simple example to explain the second condition:

Matrix ~ ) ~ _
1 0000 X1
01 00O Xo
X=100100]|=]x3
00010 Xy
I 00001 | | X5 |

is a five-dimensional set. Divide matrix X into two sets, X; and X5. X; and X, are
spanned by three basis with dim(X;) = dim(Xs,) = 4. Figure 4 shows the condition.
In matrix X, x; and x5 are orthogonal to the set X; N Xy, and x; is also orthogonal to
X5, so the space spanned by X, projects on the space spanned by X; should be a three-
dimensional plane. However, x; and x5 will be considered as the same component and
aligned through affine mapping in the process of combination step in SCMDS. Doing the
wrong space alignment will cause:matrix. X to be reduced to a four-dimensional matrix
and lose information from one dimension. .So; choosing a suitable N; (the number
of overlapping points) and N, (the size of each group) is very important. We hope
that N; and N, are large enough so‘that we can-lower the chance of the appearance
of colinearity for the intersection part as well as the chance of dimensionality of the
intersection part so that it is less than the dimensionality of total data when we do the

random grouping.

In conclusion, the number of overlapping points would be at least the minimal of dimen-
sionality of two groups. This can be denoted as

dim (X1 N Xg) > min{dim(Xy), dim(Xs)}.

Remarks:

1. In the process of SCMDS, combining two overlapping groups should fix one group with
larger dimensionality and operate affine mapping on another group with smaller dimen-

sionality, and then align it with the former. If two groups have the same dimensionality,

13



1 0 0 0[0] .
0 0 0o |
0 io 1 0| o
00,0 1f of |
000 0 1] !
4
X, X,nX, X

dilTl(Xz) =4 dill’l(Xl A X?_) =4 dim(Xl) =4

Fig. 4: Split a dataset into two overlapping groups. Each groups have four dimensionality.

The overlapping part has only three dimensionality.

choose any one as the central group and align the two groups through applying affine

mapping on the other one.

2. In SCMDS, split data set X.iinto two overlapping groups, X; and X,. The num-
ber of intersection points, Ny, should be large emough such that dim(X; N X,) =
man{dim(Xy), dim(X3)}.

Theorem: Let there be a matrix X,x, = [X1,Xa, - ,X,|, X; € RP, i =1,2,--- ,n, X; and
X, are two subsets of X, X = X; UXj,, X;NXy # (. On X; and X, apply MDS separately,
resulting in new matrices denoted as X} and XJ. There exist minimal orthogonal sets such
that X C span{vi,ve, -+, v, } and X C span{wy, wy, -, wp, }, {vikil, {w;}iz, € R,
r < p, where r is the number of main component we keep, dim(X}) = r; > ry = dim(X}).
Y and Y, represent the overlapping part after applying MDS in two sets, respectively. If
rank(X; N Xsy) = ry, the affine mapping of recombination process in SC-MDS will transform
X, to a subset of span{vy, vy, -+, v, }.

Proof:

Because Y, and Y, are not centralized in the same center, we shift these two sets to the
same center, say original point. Then, we rotate them to the same configuration expension.

As the introduction of the previous recombination method, we apply QR decomposition to

14



both Y; — Y117 and Y, — Y217, We have

Y; -Y1"=QR; and Y, — Y517 = Q;R,

. 'Y is the representation of X; N Xy in R™

.. Qq only has ro orthogonal column vectors

. Q1 e M, ., (R)

Similarly, Qs € M,,(R)

"Ry = Ry are the triangular matrix of M,, (R)

We have

QI (Y1 - Y117) = QJ (Y2 — Yo17)

Y =QQIY, - QiQIY,1" + Y 17

U=QQ, b=-QQIY, 1" +Y17

.U = Q;Q? is an operator that maps vectors from R™ to R™, and the span of {q1, q2, -+ , ¢, } C
C(X) (column space of X/)

So as Q1QIY,17, and Y is the linear.assembly of X’ and is contained in span{vy, vy, - -+ , vy, }.
- Xy =U(X,) +b c C(XY))

. Xy is a subset of span{vy,va, -+ U5, }

Now, extend the simplified case into K:groups.” Apply the combining method above, we
combine the first two groups and obtain a new spatial configuration 5((1). Then, combine
the new spatial configuration with the next groups X} with the same rule. If dim(X}) >
dim(f((l)), align X(l) with X% based on X} and so forth. Low dimensional groups will be
absorbed into high dimensional groups. Repeat until all groups combine in an identity space.
In the end, the whole spatial configuration will be spanned by basis of one of the groups. In
other words, as long as, the space spanned by a group whose basis is identical with the space

spanned by the basis of data X, the result of SCMDS should be consistent with CMDS.

Remark:
If the dimensionality of at least one of the groups is equal to the dimensionality of the total

data set, the result of SCMDS is the same as the result of CMDS apart from a rotation effect.
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3.3 Computation Complexity

When comparing SC-MDS with CMDS, computation complexity is reduced to O(N) from
O(N3). Let’s use the same notation with above. Assume there are K chain subsets belong
to a dataset with N points. Let Nj represent the intersection size for a two-neighbor subset;

the size of each subset is N, = a(r+ 1), where « is a constant. Then, KN, — (K —1)N; = N

and K = ((]]\Z) __]X{I)). In SC-MDS, we apply CMDS on each subset with computation complexity
O(N, ;), and we use QR decomposition to combine each subset with computation complexity

O(N3}). The total computation complexity of SC-MDS is

(N—r—1)
(a=1)(r+1)

~ O((r + 1)2N)

KO(N?) + (K —1)O(N}) = O(a®(r +1)*) +

Computation complexity of SC-MDS eonverges to O(N) as (r + 1) < N. In Tzeng, Lu and
Li (2008), it assumed that p < N.=Actually; if' we have some prior information about the
small rank of the data set, this assumption p < N is notmecessary; if we do not have any, p

is the upper bound of essential dimension.. Forinsurance, the assumption is needed.

Some recommended conditions for SCMDS

1. When grouping dataset X into K chain subsets X, X5, - -+ , X, we should notice that
the intersection of each subset with its neighbor should not be empty; i.e., X;NX; 1 # 0.

2. Each group size Ny can’t ne less than the dimensionality of X data. The front section
discusses the effect when N, < 7. Some information will be lost, which affects the

accuracy.

3. The intersection size between two neighboring groups in N; should be at least p + 1.
Defining any points in p-dimension space needs p + 1 pieces of distance information.
If Ny < p+ 1, then there may be more than one location that satisfies the distance

measurement.
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4. Overlapping points in groups should contain points not only in the neighborhood but
also in the distance. Under the same error disturbance when performing rotation,

adjacent points will cause larger effects than distant points will, as shown in Figure 5.

Fig. 5: With the same length of two dotted line as the error, the effect on the rotation angle

is slight when the point far away from the center of rotation.

Now that there are some constraints on choosing N;, N, by the dimensionality of data r,
does it mean that larger N;, N, means better performance for SC-MDS? It is an important

task to estimate p and choose appropriate Ny dVgvalues.

3.4 How to choose optimal values for Ny, N,

It has been mentioned that IV, is at least equal to the'dimensionality of data r in Tzeng, Lu
and Li (2008). Once Ny is less than r, the dimension of space constructed by SC-MDS will
be less than an essential dimension and will cause inaccuracy. N; > p + 1 because we want
to allocate a new point on p-dimension space, so we need information about relativity with
p~+1 non-independent points or else affine transformation would not be unique. There should
be enough overlapping points offering information to decide the correct spatial configuration.
All in all, Ny, N, affect the computation complexity and the accuracy of SC-MDS.

By simulation, we try to find some relationship between N;, N,, time cost and error.
Observe if they have some special features or patterns that we are interested in, and further
check what information they could offer. Here, we assume X; = (xy;, xo;, - - - ,mm-)T comes
from mixture multivariate normal without covariance, X; ~ MV Ny (p1,0%) 4+ MV Ny(pa, 03).
Generate N data randomly, and obtain an N x p data set X. We consider X as the final
spatial configuration we would obtain after applying MDS. Apply SC-MDS on X, then com-
pare the result with X and record the time cost and error for SC-MDS. We don’t generate

17



distance matrices instead of generating a spatial configuration because it is hard to find the
true dimensionality for a larger size distance matrix, and we can’t see the effect of data

dimensionality on different Ny, N, values.

time

Ni

Fig. 6: The time cost for SC-MDS. with variety of N; and N,

Figure 6 is the time cost of applying SC-MDSen X with N = 1000, p = 30 under different
parameters Ny, Ny. Repeat the simulation process under the same parameter settings, then

take an average for the time cost and have a scatter plot for N;, N, and time cost. The

g
outcome is shown in Figure 6. We can observe some features from the figure. It costs less
time as N; is small. We can explain the phenomenon from the computation complexity
equation, KO(N?)+ (K —1)O(N}). If Ny is large, the number of groups would become small
under fixed N,. However, the increasing rate of O(N}) is larger than the decreasing rate of
K = % affected by N;. So, when Nj increases, the time cost will also increase.

Now, observe how N, affects time cost. We can observe that N, will impact time cost
more significantly than N;. It seems that the optimal decision for N, will have a minimal

time cost. Let’s go back to the equation

N—N N — N,
KO(N3) 4+ (K — 1DO(N?) = ——LO(N3) + — 9 O(N3 9
(Ng) +( JO(N}) Ng_NI(g) Ng_NIM) (2)

We try to do some reasonable explanation. If N, is too small, the time cost on each group

applying MDS will be efficient; still a small N, will make grouping number increase. In this
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case, the total time cost will increase. On the other hand, if Ny is too large, then even if the
grouping number is decreased, the time cost in applying CMDS on each group will increase.
This will increase the computing time cost. Figure 7 shows the rough relationship between

N, and time cost.

. 3
toc O(Ny

time

Ng

Fig. 7: Rough relationship‘between N, and time cost.

We want to find the optimal N, so that SC-MDS has the most efficient performance. So,
we do some simulations on a different /N, but fix N;, N, and p values, where N;, N and p
are chosen randomly from intervals [p+1,0.1N], [1000, 3000}, and [20, 50], respectively. Also,
we record the time cost and all the parameter information. Each point that we record is the
average of ten times the simulation result under the same parameter setting. Find the points
with shortest computing time in fixed N7, N, p values and various N, values. The result is
shown in Figure 8. We also fit these points by a linear model in Figure 8.

In the following, we try to derive the theoretical value and compare the results by simu-
lation. Assume N, = aN;. s and ¢ are third order coefficients for computation complexity
equation in CMDS and QR decompositions, respectively. Here, we ignore other terms except

the leading term. Substitute into equation (2) to obtain

N - N, N-N, N - N, N-N,
—O 3N3 —HO N3 - 3N3 ' N3
@ DN, N+ Ty W = o s N oy
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Fig. 8: Each points represent the minimal time cost for fixed N;, Ny and V.

Let g(a) = (5:1])\7]{,1 sa N} + (iv:lj)vjf,l gNpand we want toffind « such that g(«) has a minimum.

dg(a) _ 3(N — Np)sa’Nj= (N = Np)sa’Ni = Niqg (N—fNJ)qu
da (x—1) (x —1)2 (x—1) (x—1)2 1

g'(a)=0

a = ((S+2q+2\/2qs(q+5))52)1/3 + s

RN mrmEIYE + 3 (there are still two imaginary roots)
s+2q q(q+s))s

6(N — N;)szN? 6(N — Np)sz®?N} 2(N — Np)sz®N?  2N}q  2(N —xNj)g
(x—1) (x —1)2 x(r —1) (x —1)2 (x —1)3

g"(a) = N

g"(als = 26,q =2/3) = 454.20(N — N;)N? + 521N} + 10.31(N — 1.51N;)N7 > 0

The leading coefficient is % for QR-Decomposition by the Householder transformation (refer-
ence, Golub’s book, page n0.225), and the leading coefficient is 26 for the R-SVD algorithm
(reference, Golub’s book, page no.254). Hence we can have the result a = 1.51. We think
this result is quite close to the result o = 1.73 by simulation.

In conclusion, the best choice for Ng is about 1.51 times Ni.

We continue on to compare variations in parametersN;, Ny. Assume D = [d;;],xp is the
Euclidean distance matrix of original dataset, and D = [dij}nxn is the Euclidean distance

matrix of a new spatial configuration by SC-MDS. We define STRESS to measure the error
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to SC-MDS as

>, (dig — dij)?
>0 &
dAij

where d;; = 5= M The higher STRESS is, the larger error we have.

max;,;j dij

STRESS =

In the same simulation process, the result is shown in Figure 9. STRESS declines sharply
on Ny = 31, and has a smooth and mild decrease in error after N; = 31. In Figure 9, it is
apparent that error is maintained in the 107! level. This outcome is consistent with what
we discussed. Ny is at least equal to the dimensionality of data plus one. Of course, to avoid
the colinearity problem as we discussed in last section, choosing a large N is a good method.

So we can consider choosing a large N in the tolerance of computation cost.

stress

Fig. 9: The stress for SC-MDS with variety of N; and N,.

3.5 Hidden dimensionality of sample

Now that we know that the choice of N; will strongly affect the accuracy of SC-MDS, we
can use the information from the variety of stress to decide the hidden dimensionality of
data. Scree plot would be a good tool to help us solve this problem. Let r be the hidden
dimensionality of sample. Error will decrease significantly as N; = r+ 1. As the result shows

in Figure 10 where » = 30, when N; > 31 the error of SC-MDS decrease to 1.0E-13 level.
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However, variation is quite large after N; > 31. It is hard to find a criterion to judge which

Ny is large enough. But it is easy to observe the relative variation through the scree plot.
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Fig. 10: Variety of error<(stress) with different N;
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4 Missing value

4.1 An intuitive method

The third challenge for MDS is dealing with the missing value. The most common solution
is filling up missing part with a substitute value. The substitute value can be any kind of
estimator. However, estimators may cause some bias. This would disturb the MDS process.
SC-MDS has an advantage for dealing with missing data, because SC-MDS doesn’t need the
entire distance matrix. Only the data in the neighborhood of main diagonal are needed. If
we can shift the missing part to an off-diagonal region, missing values will have no impact on
the SC-MDS process. So how can we permute the index of data such that the missing part
will be away from the main diagonal part (the gray region showed in Figure 11). A straight
idea is to check whether there is missing value in the diagonal region that is showed as gray
shadow in figure 11. If there is a missing value, find a column such that after swapping, the
missing value can be moved to the white region:-Notice that we should swap the rows and
the columns at the same time to keep the symmetric property of the distance matrix. Repeat
the process until all the missing values are moved off the diagonal area. Then we can process
SC-MDS to reconstruct data coordinate. The flow chart is shown in Figure 12 to describe

the process more clearly.

Fig. 11: Perfect permutation for SC-MDS. There is no missing value in the gray area.

Here we define the ratio of missing value as

the number of missing values

NN —1)/2
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We count one missing value when d;; and dj; are both missing. In this process, the convergence
velocity is intolerable when ratio of missing values is higher than 0.03, because it is easy to
fall into a swapping cycle. That is also why we select the swapping columns randomly to

prevent this condition from occurring.

No | Inthe ith column, check pointwisely if

F 3

there is any missing value in the gray

Yes

h 4

Random choose an jth column, and check
—>»| if the missing value can be moved after b

swap their position. No

Yes

b

Swap the ith row and jth row.
Swap the ith columm and jth column.

Yes

b

If the ith columm is the end of distance

matrix No

Yes

b

If there is any missing value allocate it in

Yes | the diagonal neighborhood (gray area)

No

b
A Apply SC-MDS

Fig. 12: Flow chart for dealing with missing value problem by intuitive method.

Another idea is to fill up the missing part when we sort the index to speed up the
convergence velocity. In the process of permutation, we apply SC-MDS on a partial of
distance matrix at the same time as long as SC-MDS available to be used. Hence, we can
decrease the ratio of missing values and speed up the converge velocity. In Figure 11, we

assume the second and the third group has no missing value in the gray area, and there
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are some missing values in the white area. Thus, we can apply SC-MDS to find the point
configuration and then calculate its distance matrix for these points. The missing part in the
white area can be filled up. In this case, once we find some part of the distance matrix that
has this feature, which has missing values in the upper right corner and lower left corner and
complete data in the diagonal region, we can fill up the missing part by SC-MDS. With this
method to decrease the ratio of missing value, convergence velocity has increase. But the

convergence velocity is still intolerable when ratio of missing value is higher than 0.06.

4.2 A SC-MDS basic concept based method

In the third method, we don’t focus on how to permute these objects such that all these
missing part can be removed from the neighborhood around the main diagonal part. Instead,
we utilize the basic concept of SC-MDS to combine only each complete part in the data set to
compute the coordinate of objects. Let’s.sée an extreme example. Suppose there is a distance
matrix with dimensionality r and size N (meaning there are N objects). All elements in this
distance matrix are missing values except the elements from the i-th column to the (i+r)-th
column and from the i-th row to the (i+r)-th-row-,This matrix can be shown as in Figure
10. Gray represents the missing part’and white represents the complete part. As shown
in the figure, this distance matrix has information in the white cross region. On the other
hand, we have complete information about the r+1 objects. Obviously, we can not find a
permutation of index (shown in Figure 11) such that the chain of any two neighbor groups
have a partial overlap at the same time. In this case, the only way to solve this question
is to align all the other points individually with the r+1 points as the center group. The
split step will show in figure 13 on the right side. We split the whole data set into N-(r+1)
groups, except the (r+1) points. The remainder will be allocated to a different group, and
each group will include those (r+1) points with complete information and one point of the
remainder. Each groups will have size r+2. Therefore, we can combine each group in the r
dimension coordinate space through the (r+1) overlapping part after applying MDS on each
part.

We have two remarks here.
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Fig. 13: An extreme example for missing value problem. This square represent a distance

matrix and there is information only on the white cross region.

1. Do not persist in permuting objects. In the condition that the data has no missing value
(complete dataset), each chain group has different overlapping part (see in Figure 11).
But with the effect of missing data, we don’t have sufficient information to do this.
Hence, to make good use of the mformatlon 1n eXlstence we allow the overlapping part

to occur repeatedly in dlfferent groups E|5 3

2. When we know the actual dlmensmm of Mes and the overlapping region is greater
than the dimension, the random permutatlon p}ays no role in improving accuracy of
SC-MDS. In the case of missing Value problém, we should focus on how to find the max
group that the pairwise distance has no missing value. Then using this group as the
center to combine other points, then we can process SC-MDS to get the coordinates of

the other points.
How do we utilize the concept of SC-MDS to deal with the missing value problem practically?

o Let aset G = {1,2,---, N} records that the whole distance matrix is composed of
which objects.

e At fist, we find the largest complete data groups G1 = {g11, 912, ** , 91k, }, g1i i the
index of samples such that the distance matrix composed of the set of object in G

have no missing value.

e In the second step, we want to find a set Gy which satisfies length(Gy N Gy) > r + 1,
length(Go N (G \ G1)) > 1 and the distance matrix is composed of objects in G5 have
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no missing value. Then, we apply the SC-MDS process on two groups to find the point

configuration.

The next step is to find a set G5 which satisfies G5 which satisfies length(G; N (G U
Gs)) > 1+ 1, length(GoN (G \ (G1 UG3))) > 1, and the distance matrix composed of
objects in G3 has no missing value. Then, we apply an MDS process on group 3 to find

the point configuration and use the combine step to align with group 1 and group 2.

i1
The next step is to find a set G; which satisfies Zength(Glﬂ(ﬂ Gi) > r+1), length(GaN
i1 =

(G\ U Gk)) > 1, and the distance matrix composed of objects in G; have no missing

Value]?:”}fhen, we apply the MDS progelss on group ¢ to find Ehe point configuration and
3= i—

use the combine step to align with U G- We consider U G, as the center group of
k=1 k=1

G;.

Then we could get the spatial configuration ‘of all‘ebjects.

The following is an easy example to'help you to understand the process more clearly.

Assume there are six objects and their distance matrix is expressed as the following. A cross

symbols a missing value.

SN oL s W B

1 2 3 4 5 6

X X X
X X X
X X
X
X X X
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To get the largest complete data groups, we delete an object that has the most cross

marks (missing value).

1 3 4 5 o

1
3 X | X
4 X
5 X
6 X | x

1 4 5
1
4
5

G1=1{1,4,5}

To get G which satisfies length(G1 Q1.G5) > 1 + 1, length(G> N (G \ G1)) > 1 and a
distance matrix composed of objects in G5 that hasno missing value. Assume we only need
two overlapping objects, and find the object” which has no missing value with at least two

object in Gy = {1,4, 5}.

1 4 35
2 X
3 X
6 X
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Choose two overlapping objects which have the fewest missing values.

I @
2
3 X
6
Delete the object which has the most cross marks
1 4
2
6
Check if there is any missing value in relation of object 2 and object 6.
2 6
2 X
6 | x

Go = {1,5,2} To get G5 which satisfies length(GyN (G1 UGs)) > r+1, length(Go N (G \
(G1UG3))) > 1, and the distance matrix composes by objects in i3 have no missing value.

Choose two overlapping objects which have fewest missing value.
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3 X X
6 X | X
1 5
6
Gs ={1,5,6}

Repeat the process consist with former.

1 2 4 5 6

3 X X | X
1 4
3
G4:{1,3,4}

Apply SC-MDS on Gy, G,, Gs, Gy in sequence. The tolerance of missing data depends
on the number of the overlapping numbers. We perform the simulation with N = 1000 and
r = 3. The tolerance of ratio of missing value is around 0.3 based on the simulation results.
However, SC-MDS is also possible to operate successfully when ratio of missing value is
more than 0.3. The missing value should spread well enough. What does "spread well”
means? The first sufficient condition is that each column should have missing value less than
(N —r — 2), because each object needs at least the information about the relation of itself
and the overlapping part. Moreover, each group should have at least r41 overlapping points
connecting with its center group. For example, if the missing value is located as Figure 15,
there are no overlapping region between the two groups (or the overlapping region is smaller
than r + 1), then SC-MDS falt to reconstruct the coordinate from the given distance matrix.

The following is the time cost variation in different ratios of missing values. By intuition,
the time cost should increase as the ratio of missing values increases. However, as shown
in Figure 15, the time cost increases sharply when the ratio of missing values goes up, then

decreases mildly when the ratio of missing values exceeds 0.13. The main reason for this is
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Fig. 14: Missing values do not spread well to employ SC-MDS.

in the sorting process. When we try to find the largest complete data group, we will choose
certain objects as our overlapping points. Then, we will collect all the objects that have no
missing values with these overlapping objects and delete one object from the collection at a
time according to which has the most missing values until the distance between pairs of these
objects have no missing values. In this pfdc;égs" tilé:'humber of missing values in each column
of the distance matrix will be sorted over andi @ver We compare the sorting process when
the ratio of missing values is 0.13 and 0. 30 The number of objects that have no missing
values and that have overlapping obJects Wlﬂ—b'e—larger When the ratio of missing values is
0.13 than when the ratio of missing Vahles is 0.30. __It'WIH cost more time when the ratio of

missing values is 0.13 than when the ratio is 0.30.
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Fig. 15: Average time cost for SC-MDS with.missing values with different ratio of missing

value
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5 Empirical Study

Scree plot Scree plot
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Fig. 16: Scree plot of SC-MDS and CMDS

Yeast data obtained from Cho et al., 1998: Tt‘records 6457 genes whose expression changes
during 17 hours. We keep 4000 genes which ehanges significantly by evaluating the ratio of
standard error to mean for each gene; and remove the remainder 2457 genes. We apply
SC-MDS on this data with 4000 genes. On.the other hand, we can remove some values from
distance matrix of this data randomly. Then, we use SC-MDS to reconstruct the distance
matrix and evaluate the error by calculating stress. Then, we compare the performance of
SC-MDS in both conditions. A scree plot is shown in Figure 16. The left panel is the scree
plot of SC-MDS, and the right panel is the scree plot of CMDS. It can help us to estimate the
hidden dimensionality of data. Here, we choose r = 19, Ni = 20, Ng = 1.5%20 = 30, and the
ratio of missing value is 0.2. Stress of SC-MDS without missing values is 2.09% 1079, and time
cost is 1.29 seconds. Stress of SC-MDS with missing values is 0.54, and time cost is 445.21
seconds. As we mentioned above, the tolerance of ratio of missing value is strongly related
to the sample size and hidden dimensions. Especially when the missing value is randomly
remove from the distance matrix, it is hard to achieve the ”well spread” as we mentioned
before. Consequently, the tolerance of ratio of missing value will decade. Figure 17 is the

result of SC-MDS of data with missing values.
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Fig. 17: Spatial configuration of yeast data with missing values
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6 Conclusion

In this article, we try to complete the SC-MDS process. Parameters in SC-MDS have sugges-
tions. SC-MDS will have the optimal performance when the number of overlapping points,

Ny, is at least the dimensionality of samples plus one, and the size of group, N,, is about

9
1.51 times N;. We can also estimate the hidden dimensionality from the variation of error
by changing the number of overlapping points. Besides, the combine step should have slight
revision. When we process the combine step, we should take into account of the dimension-
ality of two groups. Consider the group with larger dimensionality as center groups to align
two groups together. At last, we prove that the result of SCMDS is the same as CMDS in
the sense of rotation effect, if there is at least one dimensionality of groups is equal to the
dimensionality of the total data set.

Another result is using SC-MDS to solve the missing value problem. We apply the

property of SC-MDS on dealing with inecomplete data. The tolerance of missing values have

improvement, ratio of missing value raises from 20%:(Troyanskaya et al., 2001) to more than

30%.
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