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從最佳化觀點推導多評準分類規則 — 以生物及醫療資

訊為例

學生: 陳明賢 指導教授: 黎漢林

國立交通大學資訊管理研究所博士班

摘 要

從資料中推導出關鍵的分類規則, 是科學研究的重要任務之一。 一條有用的分類規

則, 除其是最適外, 應同時滿足三項評準: 高正確度、 高支持度、 高精簡度。 然而,

目前的分類方法, 諸如約略集合理論、 類神經網路、 分類樹等, 都只能推導得可行

解規則, 而非最適規則。 此外, 目前的方法推導得的規則只能同時滿足前述三項評

準之一。 本研究提出一個多評準的模式, 用以在較好的正確度、 支持度及精簡度下,

推導得最適分類規則, 其是透過混合0-1線性多目標規化模型以推導分類規則。 並

以一些實際的生物及醫療資料進行測試, 其結果顯示所提方法能比目前方法推導

得較佳的分類規則。

關鍵字: 分類規則
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Induction of Multiple Criteria Classification Rules from

Optimization Perspectives — Applied in Biology and

Medicine Informatics

Student: Ming-Hsien Chen Advisor: Han-Lin Li

Institute of Information Management

National Chiao Tung University

Abstract

To induce critical classification rules from observed data is a major task in

biological and medical research. A classification rule is considered to be

useful if it is optimal and simultaneously satisfies three criteria: is highly

accurate, has a high rate of support, and is highly compact. However, existing

classification methods, such as rough set theory, neural networks, ID3, etc.,

may only induce feasible rules instead of optimal rules. In addition, the rules

found by existing methods may only satisfy one of the three criteria. This

study proposes a multi-criteria model to induce optimal classification rules

with better rates of accuracy, support and compactness. A linear multi-

objective programming model for inducing classification rules is formulated.

Two practical data sets, one of HSV patients results and another of European

barn swallows, are tested. The results illustrate that the proposed method

can induce better rules than existing methods.

Keywords: classification rules
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Chapter 1 Introduction

1.1 Research Background

The induction of classification rules1 from a database has been one of the

major issues in the biological and medical research domains. Given a data

set with several objects, where each object has some attributes and belongs

to a specific class, the induction of rules is to find a combination of attributes

which can well describe the features of a specific class. There are three criteria

for evaluating the quality of a rule.

(i) Accuracy. A good rule which fits a specific class had better not cover

objects of other classes.

(ii) Support. A good rule which fits a specific class should be supported

by most objects of such a class.

(iii) Compactness. A good rule should be expressed in a compact way.

That means that the less the number of attributes used, the better the

rule is.

Currently, there are some well-known methods for classification, especially

the rough-set-based method and the decision-tree-based method.

In Hvidsten et al. (2003), rough sets were used as the theoretical founda-

tion for its methodology to learn the rule-based biological process from gene

expression time profiles. It reported a systematically supervised learning ap-

proach to predict a biological process from the time series of gene expression

1Instead of using the term “classification rule”, the term “rule” is used for short in the

following of this article.
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data and biological knowledge. Biological knowledge is expressed using gene

ontology and this knowledge is associated with discriminatory-expression-

based features to form minimal decision rules. In Beynon and Buchanan

(2003), which used variable precision rough sets, a variant of rough sets, to

do the gender classification of the European barn swallow. Slowinski (1992),

Tsumoto (1999), Li and Wang (2004), Tay and Shen (2002), Shen and Loh

(2004), etc., also used the rough-set- based method to get rules.

In Geurts et al. (2005), the decision-tree-based method was used for pro-

teomic mass spectra classification. They proposed a systematic approach

based on decision-tree-ensemble methods, which is used to automatically de-

termine proteomic biomarkers and predictive models. Aja-Fernandez et al.

(2004)proposed a fuzzy ID3 decision-tree methodology by which the natu-

ral language descriptions of the TW3 method for bone age assessment is

translated into an automatic classifier. And in Zhang et al. (2001), the

decision-tree-based method was used for classifying normal or tumor tissues,

etc.

Both the rough set based method and the decision tree based method are

heuristic algorithms, which are computationally effective in inducing rules.

However, there are two shortcomings for these two methods:

(i) They may find only some feasible rules, instead of inducing optimal

rules.

(ii) For most cases, they may find only rules satisfying a single criterion

such a more accuracy rate or a more support rate, instead of inducing

rules to satisfy multiple criteria.

2



1.2 Review of Some Existing Methods

There are many well-known methods for classification. Two methods are

reviewd here.

1.2.1 Review of Rough Set Theory

Rough set theory (RST) proposed by Pawlak (1982) is a methodology for

rules discovery in the database. It operates on an information system2 which

is made up of objects for which certain characteristics (i.e., condition at-

tributes3) are known. Objects with the same condition attribute values are

classified into equivalence classes or condition classes. The objects are each

grouped into a particular category with respect to the decision attribute4

value. Those classified into the same category are in the same decision class.

The rule discovery process in RST involves simplifying the decision tables

with the elimination of superfluous attributes and values of attributes, and

finding out simple rules related to the condition and decision attributes.

When an object is classified using the rules discovered, it is assumed to

be a correct classification. A variant of RST, variable precision rough sets

(VPRS), which incorporates probabilistic decision rules, has been developed

by Ziarko (1993). It has been applied in various fields to induce rules.

2The meaning of the term “information system” in RST is synonymous with the term

“data set” in this study.
3The meaning of the term “condition attribute” in RST is synonymous with the term

“attribute” in this study.
4The meaning of the term “decision attribute” in RST is synonymous with the term

“class index” in this study.

3



1.2.2 Review of ID3

The ID3 proposed by Quinlan (1986) is a popular decision tree method of

inducing rules. It is based on the greedy algorithm of entropy reduction

in constructing the decision tree. Attributes leading to substantial entropy

reduction (or information gain) are included as condition attributes5 to par-

tition the data. A condition attribute of the largest amount of entropy re-

duction is placed closer to the root and is used for the next level partitioning.

Sometimes filters may be set up so that only attributes with information gain

greater than a certain threshold will be selected in constructing the decision

tree. Variants of ID3 include C4.5 and C5 Quinlan (1993), which treat both

discrete and continuous variables.

1.3 Research Objectives

Using mathematical programming approaches to solve classification prob-

lems are current trends. Sun and Xiong (2003) proposed a mathematical

programming approach for gene selection and tissue classification; however,

it focused on two classes of classification and could not guarantee to obtain

globally optimal solutions. Li and Fu (2005) developed a linear programming

technique to solve DNA consensus sequence identification problems by find-

ing an optimum consensus sequence. It was computationally more efficient

and guaranteed to reach the global optimum.

This study proposes a multi-criteria model to induce optimal rules with

better rates of accuracy, support, and compactness. A mixed 0-1 linear

multi-objective programming model for inducing rules is formulated. Two

5The meaning of the term “condition attribute” in ID3 is synonymous with the term

“attribute” in this study, too.

4



practical data sets, one of HSV (Highly Selective Vagotomy) patient results

and the other of European barn swallows, are tested. The results refeal that

the proposed method can induce better rules than can current methods.

1.4 Structure of the Dissertation

Chapter 2 reviews some existing methods. Chapter 3 formally formulates

the problem this study deals with and introduces the presentation of data

and rules in this study. Chapter 4 developes essential propositions and a

method to induce rules. It also illustrates the proposed method with some

examples. Chapter 5 compares the proposed method with rought-set-based

methods and decision-tree-based methods by two practical data sets, the

HSV (Highly Selective Vagotomy) patients data set and the European barn

swallow data set. Chater 6 introduces a prototype system, which implements

the proposed method. The last Chapter makes some discussions and remarks

of the study.

5



Chapter 2 Problem Formulation and Nota-

tions

This chapter gives a formal formulation of induction of rules and makes a

presentation of data and rules. It also introduces the notations used in this

study.

2.1 Problem Formulation

There are n objects {x1, x2, . . ., xn}, each of which is characterized by m

attributes {a1, a2, . . ., am} and a class index c. Each attribute has its own

domain of values. The p’th value of an attribute aj is denoted as aj,p, which

is called the p’th sub-attribute of the attribute aj in this study. For a specific

class, there may exist some rules for it . The l’th rule for a class k is denoted

as Rk,l. A rule may just use some attributes. A rule Rk,l is a combination of

binary variables dk,l
j,p and each dk,l

j,p decides whether sub-attribute aj,p is used

by Rk,l or not. The purpose of this study is to find rules for each class.

2.2 Presentation of Data and Rules

Here we use an example to illustrate the way of presenting data and rules in

this study.Consider a data set in Table 2.1 which has five objects {x1, x2, x3,

x4, x5} , four attributes {a1, a2, a3, a4}, and one class index c. The domains

of values of a1, a2, a3, and a4 are {1, 2, 3}, {1, 2}, {1, 2, 3, 4}, and {1,

2, 3}, respectively. The domain of values of c is {1, 2, 3}. In most cases,

the attributes in a data set usually consist of a mixture of qualitative and

quantitative ones. In this study, all attributes are transformed into ordered

6



Table 2.1: A small data set

a1 a2 a3 a4 c

x1 2 1 2 3 1

x2 3 2 1 1 2

x3 1 2 2 3 2

x4 1 1 4 2 3

x5 1 1 3 1 3

qualitative values. To induce rules for each class, first we convert Table 2.1

into another form presented by binary values in Table 2.2 , where aj,p is called

the p’th sub-attribute of j’th attribute. An object xi in Table 2.1 can then

be written as:

xi = (ai
1,1, a

i
1,2, a

i
1,3; a

i
2,1, a

i
2,2; a

i
3,1, a

i
3,2, a

i
3,3, a

i
3,4; a

i
4,1, a

i
4,2, a

i
4,3; ci),

where ai
j,p is 1 if ai

j (the value of ap of xi) equals p; otherwise, ai
j,p is 0. For

instance, x1 is expressed as

x1 = (0, 1, 0; 1, 0; 0, 1, 0, 0; 0, 0, 1; 1).

Notation 2.1. For a data set, which is characterized by m attributes. A

general form for expressing an object xi is written as:

xi = (ai
1,1, . . . , a

i
1,q1

; ai
2,1, . . . , a

i
2,q2

; . . . ; ai
m,1, . . . , a

i
m,qm

; ci), (2.1)

where qm is the number of sub-attributes of the attribute am
6, ci is the

class index of xi, and ai
j,p are sub-attribute values of xi, which are binary

6For convenience, the total number of sub-attributes of all attributes is denoted as q,

i.e., q =
∑

j qj .

7



Table 2.2: Binary presentation for the data set in Table 2.1

a1 a2 a3 a4 c

a1,1 a1,2 a1,3 a2,1 a2,2 a3,1 a3,2 a3,3 a3,4 a4,1 a4,2 a4,3

x1 1 1 1 1 1

x2 1 1 1 1 2

x3 1 1 1 1 2

x4 1 1 1 1 3

x5 1 1 1 1 3

All blank cells are 0

values. An ai
j,p is 1 if ai

j = p; otherwise, ai
j,p is 0. Clearly, for each object xi,∑

p ai
j,p = 1 for all j. ¤

Notation 2.2. A general form of expressing a rule Rk,l, which is called the

l’th rule for the class k, is expressed as:

Rk,l = (dk,l
1,1, . . . , d

k,l
1,q1

; dk,l
2,1, . . . , d

k,l
2,q2

; . . . ; dk,l
m,1, . . . , d

k,l
m,qm

), (2.2)

where dk,l
j,p are binary variables specified as: if aj,p is an active sub-attribute

for Rk,l, then dk,l
j,p = 1; otherwise, dk,l

j,p = 0. ¤

Such a binary expression is useful in inducing rules with conjunctive and

disjunctive forms.

Definition 2.1. (Support and Non-Violation) Given objects xi, xr, and a

rule Rk,l as represented in equations (2.1) and (2.2), respectively.

(i) Object xi belongs to a class k (i.e., ci = k): xi is called “supporting”

Rk,l , and Rk,l is called “supported by” xi, if
∑

p ai
j,pd

k,l
j,p = 1 for all

active attribute aj.

8



Table 2.3: Some rules for Table 2.1

d1,1 d1,2 d1,3 d2,1 d2,2 d3,1 d3,2 d3,3 d3,4 d4,1 d4,2 d4,3

R1,1 1 1

R1,2 1 1

R2,1 1

R2,2 1

R3,1 1

R3,2 1

R3,3 1 1

All blank cells are 0

(ii) Object xr does not belong to a class k (i.e., cr 6= k): xr is called

“non-violating” Rk,l, if
∑

p ar
j,pd

k,l
j,p = 0 for any active attribute aj. ¤

Consider the example given in Table 2.1, Table 2.3 is a list of seven rules

induced from Table 2.2. (The method of inducing rules are described in next

chapter). R1,1 is expressed by a binary vector as

R1,1 = (0, 1, 0; 1, 0; 0, 0, 0, 0; 0, 0, 0).

Table 2.4 is the explanation of these rules. For instance, R1,1 means

“if (a1 = 2) and (a2 = 1), then the objects belong to class 1”.

The ignored attributes in R1,1 are a3 and a4; the active attributes are a1 and

a2 (in fact, the active sub-attributes are a1,2 and a2,1). This rule is supported

by object x1, since for these two active attributes, we have

∑
p=1...3

a1
1,pd

1,1
1,p = a1

1,1d
1,1
1,1 + a1

1,2d
1,1
1,2 + a1

1,3d
1,1
1,3 = 0 × 0 + 1 × 1 + 0 × 0 = 1

9



and ∑
p=1...2

a1
2,pd

1,1
2,p = a1

2,1d
1,1
2,1 + a1

2,2d
1,1
2,2 = 1 × 1 + 0 × 0 = 1.

And it is not violated by object x2, since for the active attribute a1, we have

∑
p=1...3

a2
1,pd

1,1
1,p = a2

1,1d
1,1
1,1 + a2

1,2d
1,1
1,2 + a2

1,3d
1,1
1,3 = 0 × 0 + 0 × 1 + 1 × 0 = 0.

It is also not violated by objects x3 ,x4 and x5. Furthermore, two rules may

be integrated into a more general rule. For instance, R3,1 and R3,2 can be

combined as R3,3, expressed as

R3,1 ∨ R3,2 = (0, 0, 0; 0, 0; 0, 0, 1, 0; 0, 0, 0) ∨ (0, 0, 0; 0, 0; 0, 0, 0, 1; 0, 0, 0)

= (0, 0, 0; 0, 0; 0, 0, 1, 1; 0, 0, 0, )

= R3,3.

R3,3 means

“if (a3 = 3 or 4), then the objects belong to class 3”.

The meaning of the last three columns in Table 2.4 is explained in next

chapter.

2.3 Notations and Variables Summary

Here is a summary of the notations and variables adopted in this chapter.

• xi: the object i in a data set.

• aj: the attribute j of objects.

• aj,p: the p’th sub-attribute of aj.

• c: the class index of objects.

• ci: the class index of xi.
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• n: the total number of objects in a data set.

• m: the total number of attributes in a data set.

• q: the total number of sub-attributes of all attributes.

• qm: the number of sub-attributes of am.

• ai
j: the value of aj of xi.

• ai
j,p: the value of aj,p of xi.

• Rk,l: the l’th rule for the class k.

• dk,l
j,p: a binary variable specified as: if aj,p is an active sub-attribute for

the rule Rk,l, then dk,l
j,p = 1; otherwise, dk,l

j,p = 0.
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Chapter 3 Proposed Classification Methods

This chapter developes some essential propositions and a method of inducing

rules such as those in Table 2.3. It also illustrates the proposed method with

some examples.

3.1 Propositions

First, consider the following propositions:

Proposition 3.1. For objects xi (such ci = k), xr (such cr 6= k), and a

rule Rk,l as represented in equations (2.1) and (2.2), respectively, hk,l is de-

noted the number of ignored attributes by Rk,l.

(i) Rk,l is supported by xi , if
∑

j

∑
p ai

j,pd
k,l
j,p = m − hk,l.

(ii) Rk,l is not violated by xr, if
∑

j

∑
p ar

j,pd
k,l
j,p ≤ m − hk,l − 1.

Proof. From Definition 2.1, we have

(i)
∑

p ai
j,pd

k,l
j,p = 1 for all active attributes aj while Rk,l is supported by xi.

So it is clear that
∑

j

∑
p ai

j,pd
k,l
j,p = m − hk,l.

(ii)
∑

p ar
j,pd

k,l
j,p = 0 for any active attribute aj while Rk,l is not violated by

xr. So it is clear that
∑

j

∑
p ar

j,pd
k,l
j,p ≤ m − hk,l − 1.

The proposition is then proven.

Take x1 and x4 in Table 2.1 and R1,1 in Table 2.3 for instance. Since

13



c1 = 1 and∑
j

∑
p

ai
j,pd

k,l
j,p = (a1

1,1d
1,1
1,1 + a1

1,2d
1,1
1,2 + a1

1,3d
1,1
1,3) + (a1

2,1d
1,1
2,1 + a1

2,2d
1,1
2,2)

= (0 × 0 + 1 × 1 + 0 × 0) + (1 × 1 + 0 × 0)

= 2

= m − hk,l,

R1,1 is supported by x1. Since c4 = 3 6= 1 and∑
j

∑
p

ar
j,pd

k,l
j,p = (a4

1,1d
1,1
1,1 + a4

1,2d
1,1
1,2 + a4

1,3d
1,1
1,3) + (a4

2,1d
1,1
2,1 + a4

2,2d
1,1
2,2)

= (1 × 0 + 0 × 1 + 0 × 0) + (1 × 1 + 0 × 0)

= 1

≤ m − hk,l − 1,

x4 does not violate R1,1.

Proposition 3.2. Parameter hk,l is specified as hk,l =
∑

j λk,l
j , where λk,l

j ∈

{0, 1}. λk,l
j = 1 if attribute aj is ignored by a rule Rk,l; otherwise, λk,l

j =

0. The relationships between dk,l
j,p and λk,l

j are expressed as the following

inequalities:

dk,l
j,p ≤ 1 − λk,l

j , ∀j, p, (3.1)

1 − λk,l
j ≤

∑
p

dk,l
j,p, ∀j, (3.2)

λk,l
j ∈ {0, 1}. (3.3)

Proof.

• If attribute aj is ignored by Rk,l, then dk,l
j,p = 0 for all p,

∑
p dk,l

j,p = 0

and λk,l
j = 1.

14



• If attribute aj is not ignored by Rk,l, then at least one dk,l
j,p = 1,∑

p dk,l
j,p ≥ 1 and λk,l

j = 0.

The proposition is then proven.

Remark 3.1. For objects xi (such ci = k), xr (such cr 6= k), and a rule Rk,l,

here we introduce binary variables uk,l
i and vk,l

r :

(i) uk,l
i = 1, if xi supports Rk,l; otherwise uk,l

i = 0.

(ii) vk,l
r = 1, if xr does not violate Rk,l; otherwise vk,l

r = 0. ¤

Proposition 3.3. Let M be a big positive number. For objects xi (such

ci = k), xr (such cr 6= k), and a rule Rk,l, there exit uk,l
i and vk,l

r ∈ {0, 1}

which satisfy the following inequalities:

M(uk,l
i − 1) + m − hk,l ≤

∑
j

∑
p

ai
j,pd

k,l
j,p

≤ m − hk,l + M(1 − uk,l
i ), ∀i where ci = k,

(3.4)

∑
j

∑
p

ar
j,pd

k,l
j,p ≤ m − hk,l − 1 + M(1 − vk,l

r ),∀r where cr 6= k. (3.5)

Proof.

• If uk,l
i = 1, then equation (3.4) is equivalent to Case 1 of Proposition 3.1.

• If vk,l
r = 1, then equation (3.5) is equivalent to Case 2 of Proposition 3.1.

The proposition is then proven.

Consider a data set of n objects. Denote the number of objects belonging

to a specific class k as nk. The definitions of the accuracy rate, support rate

and compactness rate are specified as the following.

15



Definition 3.1. (Accuracy Rate) The accuracy rate of a rule Rk,l is specified

as

ARk,l =
1

n − nk

∑
r where cr 6=k

vk,l
r .

¤

It means that if none of object xr (such cr 6= k) violates the rule (i.e., all

vk,l
r = 1), then the accuracy rate of the rule is 1. The binary parameter vk,l

r

is specified in Remark 3.1.

Definition 3.2. (Support Rate) The support rate of a rule Rk,l is specified

as

SRk,l =
1

nk

∑
i where ci=k

uk,l
i .

¤

If all objects xi (such ci = k) support the rule (i.e., all uk,l
i = 1), then its

support rate is 1. The binary parameter uk,l
i is specified in Remark 3.1.

Definition 3.3. (Compactness Rate) The compactness rate of a rule Rk,l is

specified as

CRk,l =
1

m

(
hk,l + 1 −

∑
j

∑
p dk,l

j,p − 1

q

)
.

¤

It implies that if the most compact rule is the rule with only one active

sub-attribute (i.e., such
∑

j

∑
p dk,l

j,p = 1), then CRk,l = 1. If different rules

have the same numbers of active sub-attributes, then the rule with larger

ignored attributes number h is considered more compact than others. By

the definition given here, the CR of a rule with larger h will be higher than

others.The parameter hk,l is specified in Proposition 3.1.
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Remark 3.2.

(i) 0 ≤ ARk,l ≤ 1

(ii) 0 ≤ SRk,l ≤ 1

(iii) 0 ≤ CRk,l ≤ 1 ¤

The related AR, SR, and CR values for the example rules in Table 2.3

are listed in the last three columns of Table 2.4 . The CR value for R1,1 is

computed as 1
4
(2 + 1 − 2−1

12
) = 0.73. R2,1 is better than R2,2 since it has a

higher SR value. R3,3 has higher SR than do R3,1 and R3,2; however, R3,3 is

not as compact as R3,1 and R3,2.

3.2 Notations and Variables Summary

Here is a summary of the notations and variables adopted in this chapter.

• hk,l: the number of ignored attributes by Rk,l.

• λk,l
j : a binary variable specified as: if aj is ignored by Rk,l, then λk,l

j = 1;

otherwise, λk,l
j = 0.

• uk,l
i : a binary variable specified as: if xi supports Rk,l, then uk,l

i = 1;

otherwise, uk,l
i = 0.

• vk,l
r : a binary variable specified as: if xr dose not violate Rk,l, then

vk,l
r = 1; otherwise, uk,l

i = 0.

• M : a big positive number.

• nk: the number of objects which belong to the class k.

• ARk,l: the accuracy rate of Rk,l.
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• SRk,l: the support rate of Rk,l.

• CRk,l: the compactness rate of Rk,l.

3.3 Models for Inducing Rules

The program to induce a rule Rk,l is formulated as the following linear mul-

tiobjective program:

Max ARk,l

Max SRk,l

Max CRk,l

Subject to:

M(uk,l
i − 1) + m − hk,l ≤

∑
j

∑
p

ai
j,pd

k,l
j,p

≤ m − hk,l + M(1 − uk,l
i ), ∀i where ci = k,

(C1)

∑
j

∑
p

ar
j,pd

k,l
j,p ≤ m − hk,l − 1 + M(1 − vk,l

r ), ∀r where cr 6= k, (C2)

dk,l
j,p ≤ 1 − λk,l

j , 1 ≤ j ≤ m, 1 ≤ p ≤ qj, (C3)

1 − λk,l
j ≤

∑
p

dk,l
j,p, 1 ≤ j ≤ m, (C4)

hk,l =
∑

j

λk,l
j , (C5)

dk,l
j,p′ + dk,l

j,p′+2 − 1 ≤ dk,l
j,p′+1, 1 ≤ p′ ≤ qj − 2, (C6)

uk,l
i , vk,l

r , dk,l
j,p, λ

k,l
j ∈ {0, 1}, 1 ≤ i, j ≤ n, 1 ≤ j ≤ m, 1 ≤ p ≤ qj. (C7)

The objective of this program is to maximize AR, SR and CR simul-

taneously, where constrainsts (C1) and (C2) come from Proposition 3.3,

and constraints (C3)–(C5) come from Proposition 3.2. The purpose of con-

straint (C6) is to avoid the discontinuity of active sub-attributes for the same

18



attribute. ARk,l, SRk,l, and CRk,l are specified in Definitions 3.1, 3.2, and

3.3, respectively. This is a multiple criteria decision problem. There are three

typical models for solving this multiobjective program:

(i) A constraint model, where two of the three objectives with lower bounds

are assigned.

(ii) An aspiration model, where aspiration levels are set for the three ob-

jectives.

(iii) A weighting model, where relative weights are assigned to the three

objectives.

All these three models are reformulated below.

Model 3.1. (Specifying the lower bounds for AR and SR)

Max obj = CRk,l

Subject to: constraints (C1)–(C7), and

ARk,l ≥ AR,

SRk,l ≥ SR,

where AR and SR are constant, representing the lower bounds of ARk,l and

SRk,l. ¤

Example 3.1. Take Table 2.3 for instance. The program to induce a rule

R1,l for class 1 using Model 3.1 is formulated below:

Max CR1,l =
1

4

(
h1,l + 1 −

∑
j

∑
p d1,l

j,p

12

)
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subject to:

5(u1,l
1 − 1) + 4 − h1,l ≤ d1,l

1,2 + d1,l
2,1 + d1,l

3,2 + d1,l
4,3 ≤ 4 − h1,l + 5(1 − u1,l

1 ),

d1,l
1,3 + d1,l

2,2 + d1,l
3,1 + d1,l

4,1 ≤ 4 − h1,l − 1 + 5(1 − v1,l
2 ),

d1,l
1,1 + d1,l

2,2 + d1,l
3,2 + d1,l

4,3 ≤ 4 − h1,l − 1 + 5(1 − v1,l
3 ),

d1,l
1,1 + d1,l

2,1 + d1,l
3,4 + d1,l

4,2 ≤ 4 − h1,l − 1 + 5(1 − v1,l
4 ),

d1,l
1,1 + d1,l

2,1 + d1,l
3,3 + d1,l

4,1 ≤ 4 − h1,l − 1 + 5(1 − v1,l
5 ),

d1,l
1,p ≤ 1 − λ1,l

1 , for p = 1, 2, 3, (3.6)

d1,l
2,p ≤ 1 − λ1,l

2 , for p = 1, 2, (3.7)

d1,l
3,p ≤ 1 − λ1,l

3 , for p = 1, 2, 3, 4, (3.8)

d1,l
4,p ≤ 1 − λ1,l

4 , for p = 1, 2, 3, (3.9)

1 − λ1,l
1 ≤ d1,l

1,1 + d1,l
1,2 + d1,l

1,3, (3.10)

1 − λ1,l
2 ≤ d1,l

2,1 + d1,l
2,2, (3.11)

1 − λ1,l
3 ≤ d1,l

3,1 + d1,l
3,2 + d1,l

3,3 + d1,l
3,4, (3.12)

1 − λ1,l
4 ≤ d1,l

4,1 + d1,l
4,2 + d1,l

4,3, (3.13)

h1,l = λ1,l
1 + λ1,l

2 + λ1,l
3 + λ1,l

4 , (3.14)

d1,l
1,1 + d1,l

1,3 − 1 ≤ d1,l
1,2, (3.15)

d1,l
3,1 + d1,l

3,3 − 1 ≤ d1,l
3,2, (3.16)

d1,l
3,2 + d1,l

3,4 − 1 ≤ d1,l
3,3, (3.17)

d1,l
4,1 + d1,l

4,3 − 1 ≤ d1,l
4,2, (3.18)

AR1,l =
1

5 − 1
(v1,l

2 + v1,l
3 + v1,l

4 + v1,l
5 ) ≥ AR,
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SR1,l =
1

1
u1,l

1 ≥ SR,

u1,l
1 , v1,l

2 , v1,l
3 , v1,l

4 , v1,l
5 ,d1,l

1,1, d
1,l
1,2, d

1,l
1,3, d

1,l
2,1, d

1,l
2,2, d

1,l
3,1, d

1,l
3,2, d

1,l
3,3, d

1,l
3,4,

d1,l
4,1, d

1,l
4,2, d

1,l
4,3, λ

1,l
1 , λ1,l

2 , λ1,l
3 , λ1,l

4 ∈ {0, 1}.

Solution. By pecifying AR, SR = 1, the optimal solutions obtained are

d1,l
1,2 = d1,l

2,1 = 1, and all others are d1,l
j,p = 0, u1,l

1 = v1,l
2 = v1,l

3 = v1,l
4 = v1,l

5 = 1,

λ1,l
1 = λ1,l

2 = 0, λ1,l
3 = λ1,l

4 = 1, h1,l = 2. The objective value CR1,l is

1
4
(2 + 1 − 2−1

12
) = 0.73. The rule is exactly the same as R1,1 in Table 2.3 and

Table 2.4. ¤

Example 3.2. Similarly, the model of inducing a rule R3,l for class 3 is

formulated below:

Max CR3,l

subject to: equations (3.6)–(3.18) with changing superscripts 1, l to 3, l, and

5(u3,l
4 − 1) + 4 − h3,l ≤ d3,l

1,1 + d3,l
2,1 + d3,l

3,4 + d3,l
42 ≤ 4 − h3,l + 5(1 − u3,l

4 ),

5(u3,l
5 − 1) + 4 − h3,l ≤ d3,l

1,1 + d3,l
2,1 + d3,l

3,3 + d3,l
4,1 ≤ 4 − h3,l + 5(1 − u3,l

5 ),

d3,l
1,2 + d3,l

2,1 + d3,l
3,2 + d3,l

4,3 ≤ 4 − h3,l − 1 + 5(1 − v3,l
1 ),

d3,l
1,3 + d3,l

2,2 + d3,l
3,1 + d3,l

4,1 ≤ 4 − h3,l − 1 + 5(1 − v3,l
2 ),

d3,l
1,1 + d3,l

2,2 + d3,l
3,2 + d3,l

4,3 ≤ 4 − h3,l − 1 + 5(1 − v3,l
3 ),

AR3,l =
1

5 − 2
(v3,l

1 + v3,l
2 + v3,l

3 ) ≥ AR,

SR3,l =
1

2
(u3,l

4 + u3,l
5 ) ≥ SR,

v3,l
1 , v3,l

2 , v3,l
3 , u3,l

4 , u3,l
5 ,d3,l

1,1, d
3,l
1,2, d

3,l
1,3, d

3,l
2,1, d

3,l
2,2, d

3,l
3,1, d

3,l
3,2, d

3,l
3,3, d

3,l
3,4,

d3,l
4,1, d

3,l
4,2, d

3,l
4,3, λ

3,l
1 , λ3,l

2 , λ3,l
3 , λ3,l

4 ∈ {0, 1}.
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Solution. By specifying AR = SR = 1, the optimal solutions obtained are

d3,l
3,3 = d3,l

3,4 = 1, and all others are d3,l
j,p = 0, u3,l

4 = u3,l
5 = v3,l

1 = v3,l
2 = v3,l

3 = 1,

λ3,l
3 = 0, λ3,l

1 = λ3,l
2 = λ3,l

4 = 1, h3,l = 3. The objective value CR3,l is

1
4
(3 + 1 − 2−1

12
) = 0.98. The rule is exactly the same as R3,3 in Table 2.3 and

Table 2.4. ¤

Model 3.2. (Specifying the aspiration levels for AR, SR, and CR)

Max ARk,l + SRk,l + CRk,l

subject to: constraints (C1)–(C7), and

ARk,l ≥ AR,

SRk,l ≥ SR,

CRk,l ≥ CR.

¤

Model 3.3. (Specifying the weights on AR, SR and CR)

Max wk,l
a ARk,l + wk,l

s SRk,l + wk,l
c CRk,l

subject to: constraints (C1)–(C7), where wk,l
a , wk,l

s and wk,l
c are the weighting

value of ARk,l, SRk,l and CRk,l, respectively. ¤

In addition to inducing the best rule, we may also generate conveniently

the second best, the third best, etc. rules.

Procedure 3.1. The solution procedure for Model 3.1 is:

Step 1. Specify the AR and SR

Step 2. Obtain the solution of Model 3.1
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Step 3. If no feasible solution exists

Step 3.1. Decrease AR or SR, and go to Step 3

Else

Step 3.2. A rule is obtained

Step 4. If more rules are wanted,

Step 4.1. Add the solution obtained from Step 3.1 as a new constraint

for Model 3.1, then go to Step 2.

In the first iteration of Step 3.2 in Procedure 3.1, we get the global optimal

rule for a specified class; and in the second iteration, we get the second

optimal rule, and so on. Example 3.3 illustrates the solution procedure using

Procedure 3.1.

Example 3.3. Take Example 3.2 for instance. Since u3,l
4 = u3,l

5 = 1 is the

solutions of Example 3.2, if one more rule for class 3 is needed, we can add

the following new constraint

u3,l
4 + u3,l

5 < 2

to the model of Example 3.2. This constraint prevents u3,l
4 = u3,l

5 = 1, simul-

taneously. There is no feasible solution after adding the above constraint. It

means that no more rule with AR3,l = SR3,l = 1 can be induced. Then, we

can decrease the acceptable level of AR or SR to get second best rules. Here,

we decrease SR to 0.5, and the solutions obtained are d3,l
3,2 = 1; all others are:

d3,l
j,p = 0, u3,l

4 = 0, u3,l
5 = v3,l

1 = v3,l
2 = v3,l

3 = 1, λ3,l
3 = 0, λ3,l

1 = λ3,l
2 = λ3,l

4 = 1,

h3,l = 3, AR3,l = CR3,l = 1, SR3,l = 0.5. The rule is exactly the same as
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R3,1 in Table 2.3, which is the second best rule for class 3. By adding the

next constraint,

u3,l
5 < 1

to the model, the third best rule, exactly the same as R3,2 in Table 2.3, is

then obtained. ¤

3.4 Analysis of Models

For a data set having n objects and characterized by m attributes with q

sub-attributes, the analysis of constraints and binary variables for inducing

a specific rule Rk,l is described below.

• For each object, it needs either a constraint of (C1) or a constraint

of (C2). So the instance of constraints of (C1) and (C2) is n.

• For each sub-attribute, it needs a constraint of (C3). So the instance

of constraints of (C3) is q.

• For each attribute, it needs a constraint of (C4). So the instance of

constraints of (C4) is m.

• There is only one instance of constraint (C5).

• The instance of constraints of (C6) depends on each qj. The worst case

is only one qj 6= 1 and the instance of constraints of (C6) is q −m− 2.

• The number of binary variables uk,l
i and vk,l

r is n, since each object

needs a uk,l
i or vk,l

r .

• To represent a rule, it needs a binary variable dk,l
j,p for each sub-attribute.

So the number of dk,l
j,p is q.

24



• The number of binary variables λk,l
j is m.

To sum up, the maximum number of constraints of (C1)–(C6) is n + 2q − 1

and the total number of binary variables is n + q + m.
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Chapter 4 Experiments

This chapter demonstrates the solution process of the proposed method by

two practical data sets, the HSV (Highly Selective Vagotomy) patients and

the European Barn Swallow, and compares the induction results with RST

(or VPRS) and ID3.

4.1 The HSV Patients Data Set

The HSV patients data set is a clinical data set of F. Raszeja Mem. Hos-

pital in Poland. HSV, also called proximal gastric vagotomy, is an effective

method of treatment of duodenal ulcer, which consists of vagal denervating

of the stomach area secreting hydrochloric acid (Dunn et al., 1980). This

data set is composed of 122 patients with duodenal ulcer treated by HSV,

as described by 11 pre-operating attributes. For more details about the data

set, please see Appendix A. The patients are classified into four classes, ac-

cording to a long-term result of HSV, and all evaluated by a surgeon in the

modified Visick grading, following the definition of Goligher et al. (1978).

Exact values of the considered quantitative attributes are translated into or-

dered qualitative terms, i.e., “high,” “medium,” “low,” etc. This translation

is due to some empirical norms defining intervals of attribute values corre-

sponding to qualitative terms. The terms are then coded by numbers 1, 2,

3, etc., which create the domain of coded attributes. The norms adopted in

the study are shown in Table 4.1 (Slowinski, 1992).
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Table 4.2: The best rule for each class of HSV found by ROSE2

No. Rule

1 if (a2 = 2) ∧ (a4 = 1) ∧ (a6 = 2), then c = 1

2 if (a1 = 1) ∧ (a2 = 1) ∧ (a4 = 1) ∧ (a5 = 3) ∧ (a9 = 2) ∧ (a11 = 3), then c = 2

3 if (a3 = 1) ∧ (a4 = 1), then c = 3

4 if (a4 = 1) ∧ (a6 = 3) ∧ (a10 = 3) ∧ (a11 = 4), then c = 4

4.1.1 Rules Induced by RST and ID3

Here, we use a software tool named ROSE2 (Rough Sets Data Explorer)(Predki

et al., 1998; Predki and Wilk, 1999) to induce rules by RST. The compu-

tations of ROSE2 are based on rough-set fundamentals. Table 4.2 lists the

best rule for each class found by ROSE2.

Figure 4.1 is the partial HSV classification tree by ID3, which only lists

the best path for each class. For example, from the branch a4 = 1, a6 = 3,

a11 = 4 and a10 = 3, the leaf c = 4 is reached. It means that

“if (a4 = 1) and (a6 = 3) and (a11 = 4) and (a10 = 3),

then the objects belong to class 4”.

4.1.2 Rules Induced by the Proposed Method

To simplify the presentation, we utilize Model 3.1 to induce rules where the

accuracy rate is fixed at 100%. The used model is as follows:

Max CRk,l

subject to: constraints (C1)–(C7), and

ARk,l = 1,
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a61 3 ...... 3c=42 3...4 ...3 2... a4 a11 a10...a5 4a10 a62a111 ...... ... ... ... ... ...... a323 1c=1 c=1 ...a523 1c=2 c=2 ...a523 1c=2 c=2...
Figure 4.1: A partial ID3 decision tree for HSV data set.

SRk,l ≥ α,

where CRk,l is to be maximized with restrictions that ARk,l = 1 and SRk,l ≥

α. α is a parameter value. The best rule found and the second best rules for

each class are listed in Table 4.3. R1,1 means the best rule for class 1, and

R1,2 is the second best rule for class 1. R1,1 is found by specifying α = 19
79

(there is no feasible solution for α > 19
79

), which means

“if (a2 = 2) and (a4 = 1 or 2 or 3) and (a9 = 3),

then the objects belong to class 1”.

The rule R1,1 is supported by 19 objects. They are x1, x4, x9, x11, x15, x19,

x25, x27, x46, x57, x61, x71, x83, x88, x94, x104, x106, x111, and x117. Its support

rate is SR1,1 = 19
79

= 0.24 . There are eight attributes ignored and five active

sub-attributes in R1,1, so its compactness rate is CR1,1 = 1
11

(8 + 1 − 5−1
34

) =

0.81. The second best rule R1,2 is conveniently induced by adjusting α = 17
79

and adding the following new constraint to Model 3.1.

u1,2
1 + u1,2

4 + u1,2
9 + u1,2

11 + u1,2
15 + u1,2

19 + u1,2
25 + u1,2

27 + u1,2
46 + u1,2

57 + u1,2
61

+ u1,2
71 + u1,2

83 + u1,2
88 + u1,2

94 + u1,2
104 + u1,2

106 + u1,2
111 + u1,2

117 < 19.
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The solution is R1,2, which means

“if (a4 = 2) and (a9 = 2 or 3), then the objects belong to class 1”

with CR1,2 = 0.90 and SR1,2 = 0.16. In the same processes, the best rules for

remaining three classes are obtained. The SR of the best rules for classes 2,

3, 4 are 0.22, 0.38,0.23, respectively, and CR are 0.72, 0.81, 0.63, respectively

4.1.3 Comparison of Results

Here, we compare the proposed method with ROSE2 and ID3. Table 4.3 lists

the best rules found by the three methods. All the rules listed here are 100%

accuracy. For class 1, R1,1 with CR1,1 = 0.81 and SR1,1 = 0.24 and R1,2 with

CR1,2 = 0.90 and SR1,2 = 0.16 are the best and second best rules found by

the proposed method, respectively. R1,3 with CR1,3 = 0.81 and SR1,3 = 0.16

is the best rule that can be found by ROSE2. It is worse than R1,1 and

R1,2. R1,4 with CR1,4 = 0.81 and SR1,4 = 0.15, the best rule that can be

found by ID3, is even worse than R1,3. For class 2, R2,1 with CR2,1 = 0.72

and SR2,1 = 0.22, the best rule found by both the proposed method and

ID3, is better than R2,2 with CR2,2 = 0.53 and SR2,2 = 0.22, the best rule

that can be found by ROSE2. Consider class 3, R3,1 with CR3,1 = 0.81 and

SR3,1 = 0.38 is the best rule found by the proposed method. Although R3,2

with CR3,2 = 0.91 and SR3,2 = 0.25 is the second best rule found by the

proposed method, it is the best rule that can be found by ROSE2. R3,3 with

CR3,3 = 0.81 and SR3,3 = 0.25, the best rule that can be found by ID3, is

worse than R3,2. Similarly, R4,1, the best rule found by proposed method, is

better than R4,3, the best rule that can be found by ROSE2 and ID3.

30



T
ab

le
4.

3:
C

om
p
ar

is
on

of
th

e
p
ro

p
os

ed
m

et
h
o
d
,
R

O
S
E

2
an

d
ID

3
fo

r
th

e
H

S
V

d
at

a
se

t.

C
la

ss
U

se
d

In
d
u
ce

d
M

ea
n
in

g
o
f
ru

le
A

R
S

R
C

R
S
u
p
p
o
rt

in
g

o
b
je

ct
s

m
et

h
o
d
s

ru
le

1
P

ro
p
o
se

d
R

1
,1

if
(a

2
=

2
)
∧

(a
4

=
1
∨

2
∨

3
)
∧

(a
9

=
3
),

1
0
.2

4
0
.8

1
x
1
,
x
4
,
x
9
,
x
1
1
,
x
1
5
,
x
1
9
,
x
2
5
,
x
2
7
,
x
4
6
,
x
5
7
,
x
6
1
,
x
7
1
,

th
en

c
=

1
x
8
3
,
x
8
8
,
x
9
4
,
x
1
0
4
,
x
1
0
6
,
x
1
1
1
,
x
1
1
7

P
ro

p
o
se

d
R

1
,2

if
(a

4
=

2
)
∧

(a
9

=
2
∨

3
),

th
en

c
=

1
1

0
.1

6
0
.9

0
x
2
,
x
6
,
x
7
,
x
8
,
x
1
6
,
x
4
6
,
x
4
7
,
x
5
2
,
x
5
6
,
x
5
7
,
x
8
8
,
x
1
1
6
,
x
1
1
7

R
O

S
E

2
R

1
,3

if
(a

2
=

2
)
∧

(a
4

=
1
)
∧

(a
6

=
2
),

th
en

c
=

1
1

0
.1

6
0
.8

1
x
1
,
x
9
,
x
1
9
,
x
2
5
,
x
3
1
,
x
4
8
,
x
6
7
,
x
8
3
,
x
9
3
,
x
9
7
,
x
1
0
6
,
x
1
1
4
,
x
1
1
5

ID
3

R
1
,4

if
(a

3
=

2
∨

3
)
∧

(a
4

=
2
)
∧

(a
5

=
3
),

th
en

c
=

1
1

0
.1

5
0
.8

1
x
2
,
x
6
,
x
7
,
x
8
,
x
1
6
,
x
4
6
,
x
4
7
,
x
5
2
,
x
5
6
,
x
8
8
,
x
1
1
6
,
x
1
1
7

2
P

ro
p
o
se

d
/

R
2
,1

if
(a

4
=

3
)
∧

(a
5

=
2
∨

3
)
∧

(a
6

=
2
)
∧

(a
1
0

=
2
),

1
0
.2

2
0
.7

2
x
1
2
,
x
4
5
,
x
6
2
,
x
1
1
0

ID
3

th
en

c
=

2

R
O

S
E

2
R

2
,2

if
(a

1
=

1
)
∧

(a
2

=
1
)
∧

(a
4

=
1
)
∧

(a
5

=
3
)∧

1
0
.2

2
0
.5

3
x
8
7
,
x
9
0
,
x
1
0
3
,
x
1
2
0

(a
9

=
2
)
∧

(a
1
1

=
3
),

th
en

c
=

2

3
P

ro
p
o
se

d
R

3
,1

if
(a

3
=

2
)
∧

(a
9

=
1
)
∧

(a
1
1

=
2
∨

3
),

th
en

c
=

3
1

0
.3

8
0
.8

1
x
4
3
,
x
7
9
,
x
1
0
9

P
ro

p
o
se

d
/

R
3
,2

if
(a

3
=

1
)
∧

(a
4

=
1
),

th
en

c
=

3
1

0
.2

5
0
.9

1
x
5
,
x
5
6

R
O

S
E

2

ID
3

R
3
,3

if
(a

4
=

4
)
∧

(a
5

=
1
∨

3
)
∧

(a
1
1

=
1
),

th
en

c
=

3
1

0
.2

5
0
.8

1
x
1
3
,
x
2
4

4
P

ro
p
o
se

d
R

4
,1

if
(a

1
=

2
)
∧

(a
2

=
2
)
∧

(a
3

=
3
)
∧

(a
5

=
3
)∧

1
0
.2

3
0
.6

3
x
1
8
,
x
7
5
,
x
1
0
7

(a
6

=
1
),

th
en

c
=

4

P
ro

p
o
se

d
R

4
,2

if
(a

6
=

3
)
∧

(a
9

=
3
)
∧

(a
1
0

=
3
),

th
en

c
=

4
1

0
.1

5
0
.8

1
x
3
9
,
x
7
5

R
O

S
E

2
/

R
4
,3

if
(a

4
=

1
)
∧

(a
6

=
3
)
∧

(a
1
0

=
3
)
∧

(a
1
1

=
4
),

1
0
.1

5
0
.7

2
x
3
9
,
x
7
5

ID
3

th
en

c
=

4

T
h
e

ru
le

s
a
re

ra
n
k
ed

b
y

S
R

th
en

C
R

.

31



Table 4.4: Norms for attributes of the European barn swallow data set

Domain (code)

No. Attribute [units] 1 2 3 4

a1 Head and bill length [mm] [28.9, 29.48) [29.48, 30.05) [30.05, 30.53) [30.53, 31)

a2 Right streamer length [mm] [74, 87.8) [87.8, 101.5) [101.5, 115.3) [115.3, 129)

a3 Mid tail length [mm] [41, 43.8) [43.8, 46.5) [46.5, 48.3) [48.3, 50)

a4 Left streamer length [mm] [77, 89.8) [89.8, 102.5) [102.5, 115.8) [115.8, 129)

a5 Right wing length [mm] [118, 121.3) [121.3, 124.5) [124.5, 128.8) [128.8, 133)

a6 Left wing length [mm] [118, 121.3) [121.3, 124.5) [124.5, 128.8) [128.8, 133)

a7 Mass [g] [16.6, 18.38 [18.38, 20.15) [20.15, 22.63) [22.63, 25.1)

a8 Wing area [mm2] [3780, 4873) [4873, 5966) [5966, 6291) [6291, 6616)

4.2 The European Barn Swallow Data Set

The European barn swallow (Hirundo rustica) data set was obtained by

trapping individual swallows in Stirlingshire, Scotland, between May and

July 1997 (Beynon and Buchanan, 2003). This data set contains 69 swallows,

which were described by eight attributes. For more details about the data

set, please see Appendix B. The birds are classified by gender of each bird.

The norms of attributes of the swallow data set are shown in Table 4.4.

4.2.1 Rules Found by VPRS and ID3

The rules found by VPRS (variable precision rough sets), a variant of RST,

as shown in Beynon and Buchanan (2003), are listed in Table 4.5, where AR,

SR and CR values are computed by this study.

The rules found by ID3, also appearing in Beynon and Buchanan (2003),

are listed in Figure 4.2. Each terminal node of the decision tree classifies all its

associated objects correctly into the identified decision class. At each node,
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Table 4.5: Rules for swallow data set found by VPRS

Rule AR SR CR

1 if (a2 = 1 ∨ 2) ∧ (a5 = 1 ∨ 2) ∧ (a6 = 1 ∨ 2), then c = 1 0.97 0.66 0.730

2 if (a1 = 3 ∨ 4) ∧ (a2 = 1 ∨ 2), then c = 1 1 0.16 0.863

3 if (a2 = 3 ∨ 4), then c = 2 1 0.72 0.996

4 if (a1 = 1 ∨ 2) ∧ (a5 = 3 ∨ 4) ∧ (a6 = 3 ∨ 4), then c = 2 0.97 0.31 0.730

The rules are extracted from Beynon and Buchanan (2003) where AR, SR and CR

are computed by this study.

Table 4.6: Some better rules for swallow data set found by ID3

Rule AR SR CR

1 if (a2 = 1 ∨ 2) ∧ (a5 = 3 ∨ 4) ∧ (a3 = 2 ∨ 3 ∨ 4), then c = 1 1 0.66 0.727

2 if (a2 = 2) ∧ (a5 = 3 ∨ 4) ∧ (a1 = 2 ∨ 3 ∨ 4), then c = 1 1 0.06 0.730

3 if (a2 = 3 ∨ 4), then c = 2 1 0.72 0.996

4 if (a2 = 1 ∨ 2) ∧ (a5 = 1 ∨ 2) ∧ (a3 = 1), then c = 2 1 0.03 0.734

5 if (a2 = 1 ∨ 2) ∧ (a5 = 3 ∨ 4) ∧ (a1 = 1), then c = 2 1 0.16 0.734

information is given for the objects associated with it. From the root (top)

node the left-hand branch is defined by a2 ≤ 101.5 with 41[32, 9] representing

41 objects satisfying this criteria. Of them, 32 objects have class value ‘1’ and

nine objects have class value ‘2’. Also shown to the right of every node box is

the majority proportion of the objects in a same decision class. Continuing

the same example as before, 32/41 = 0.780 is the highest proportion of the

objects at that node to the same decision class. Since this is a complete tree,

a terminal node is identified when the associated majority proportion value

equals 100%. Figure 4.2 can be expressed in ”If · · · Then · · · ” form as shown

in Table 4.6.
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a2 >101.5c=223[0,23]100%<=101.5a5 >124.5<=124.5 78% a1a3c=2 c=1>43.8<=43.81[0,1] 21[21,0] 57.9%19[11,8]22[21,1] >29.48<=29.48c=25[0,5]100% 100% 100% a214[11,3]95.5% 78.6%a8 c=2100%2[0,2]>87.5<=87.512[11,1]91.7% >4837<=4837c=2 c=11[0,1] 11[11,0]100% 100%
41[32,9]

Figure 4.2: The ID3 decision tree for swallow data set. (Beynon and

Buchanan, 2003)

4.2.2 Rules Induced by the Proposed Method

Here, we use Model 3.2 to induce rules. First, we specify AR ≥ 0.97, SR ≥

0.66 and CR ≥ 0.730, then the optimal solution is the first rule in Table 4.7.

Similarly, we specify other three sets of α values to get other three rules as

listed in Table 4.7.

Table 4.7: Rules for swallow data set found by the proposed method

Rule AR SR CR AR SR CR

1 if (a2 = 1 ∨ 2) ∧ (a5 = 1 ∨ 2), then c = 1 0.97 0.66 0.730 0.97 0.66 0.863

2 if (a1 = 4) ∧ (a2 = 1 ∨ 2), then c = 1 1 0.16 0.863 1 0.16 0.867

3 if (a2 = 3 ∨ 4), then c = 2 1 0.72 0.996 1 0.72 0.996

4 if (a1 = 1 ∨ 2) ∧ (a6 = 3 ∨ 4), then c = 2 0.97 0.31 0.730 0.97 0.31 0.863
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4.2.3 Comparison of Results

Compare Table 4.7 with Table 4.5 and Table 4.6 to know that the proposed

method can induce rules with better or equivalent values of AR, SR and

CR. For example, the aspiration levels AR, SR and CR of the four rules in

Table 4.7 are set as equal to the corresponding AR, SR and CR in Table 4.5.

The results show that the first, second and fourth rules in Table 4.7 are better

than the corresponding rules in Table 4.5, and the third rule in both table

are the same. In fact, the proposed method can induce optimal solutions

while ROSE2 and ID3 may find only feasible solutions.
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Chapter 5 Implementation

MCOCR (Multiple Criteria Optimal Classification Rules) is a software tool

implementing the models proposed by this study. It is currently a proto-

type. MCOCR is developed by DELPHI 7.0 and runs on the Microsoft

WindowsXP operating system. The computing kernel behind MCOCR is

LINGO 9.0. MCOCR gathers input data and relative parameters from users

in order to generate a corresponding LINGO program, then calls LINGO

to solve such a program. Finally, MCOCR interprets the results returned by

LINGO into rules form.

Before starting MCOCR, an input data file must be prepared. The input

data file contains the data set to be induced rules. In addition, the input data

file also contains some meta information about the data set itself. So it must

follow the input data file format, otherwise MCOCR cannot work properly.

For more detail about input data file format, please see Appendix C.

When starting MCOCR, you will see the window shown in Figure5.1.

There are five tags in the window:

• Model: for choosing which model (i.e., Model 3.1, 3.2 or 3.3) used

• Parameter: for inputting parameters that MCOCR needs

• Origin Data: for showing contents of an input data file

• Program: for showing the LINGO model generated by MCOCR

• Result: for showing the rules induced by MCOCR
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So, the fist thing is to decide what model used. Here, Model 3.1 is used

as an example. After chosen a model, the user must input some related

parameters. There are some steps to induce rules.

• Select an input data file (Figure 5.1). After chosen an input data file,

the “Origin Data” tag appears (Figure 5.2). Click the tag, contents of

the input file will be displayed on the window (Figure 5.3).

• Select an objective, for instance, “max CR” (Figure 5.4).

• Specify lower bounds, for instance, “AR” and “number of supporting

objects” (Figure 5.4).

• Specify the class value to classify (Figure 5.4).

• Generate LINGO program (Figure 5.4). While LINGO program gen-

erated, the “Program” tag appears (Figure 5.5). Click the tag, contents

of the generated LINGO program will be displayed on the window

(Figure 5.6).

• Induce rules(Figure 5.7). The “Result” tag will appear while a rule

generated and generated rules will be displayed on the window (Fig-

ure 5.8).

• Induce next rules if needed (Figure 5.9). The rules will display on the

window after previous rules (Figure 5.10).
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Figure 5.1: Step1: Click ”Select Data File” button to select an input data

file

Figure 5.2: After chosen an input data file, the “Origin Data” tag appears.

38



Figure 5.3: Click ”Origin Data” tag, the contents of the input file will be

displayed on the window.

Figure 5.4: Select an objective. The ”max CR” is chosen, here. Specify

Lower Bounds. The AR is specified as 1 and the number of supporting

objects is specified as 3, here. Specify the class to classify. Here is 2. Click

”Generate Program” button to generate LINGO program.

39



Figure 5.5: After ”Generate Program” button clicked, the ”Program” tag

appears.

Figure 5.6: Click ”Program” tag, the contents of the generated Lingo pro-

gram will be displayed on the window.
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Figure 5.7: Step 6: Click ”Induce Rule” button to start inducing rules.

Figure 5.8: The ”Result” tag will appear while a rule generated and generated

rules will be displayed on the window.
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Figure 5.9: Click ”Induce Next Rule” button to induce another rule.

Figure 5.10: The result of ”Induce Next Rule”.
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Chapter 6 Discussions and Remarks

6.1 Discussions

This study develops a multiple criteria mixed 0-1 linear programming model

to induce rules. Some advantages of the proposed method are listed below:

(i) Solution quality: The rules obtained by the proposed method are glob-

ally optimal solutions, but the rules obtained by RST or ID3 may just

be feasible solutions.

(ii) Multiple criteria: Three criteria accuracy rate, support rate, and com-

pact rate are considered to be maximized simultaneously.

(iii) Constraints: The proposed method is conveniently to add other con-

straints to fit requirements, but it is difficult to do in RST and ID3

methods.

Although the proposed method is applied in biology and medicine infor-

matics, it can apply in a variety of research and application areas.

6.2 Remarks

Although the adventages mentioned above, there are some limitations of

proposed method, which are the future works of this study.

The number of binary variables uk,l
i and vk,l

r is direct propotion to the

number of obejcts n in such data set. While the number of objects become

large, the computation time will increase, seriously. The numbers of binary

variables λk,l
j and dk,l

j,p are also direct propotion to the numbers of attributes m
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and sub-attributes q, respectively, but this is a relatively minor problem since

the numbers of attributes and sub-attributes are not very large in most cases.

So, how to discrease the number of uk,l
i and vk,l

r is a major issue for future

works.
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Appendices

A The HSV Patients Data Set

The data set as shown in Table A.1, is composed of 122 patients with duo-

denal ulcer treated by HVS, described by 11 pre-operating attributes. At-

tribute 1 – 4 concern anamnesis, and the remaining attributes are related

to pre-operation gastric secretion examined with the histaminic test of Kay

(1967). The patients are classified according to a long term result of HVS,

evaluated by a surgeon in the modified Visick grading. The grading was

derived from the following definition Goligher et al. (1978):

• Excellent: absolutely no symptoms, perfect result. The class index,

1, is given.

• Very good: patient considers result perfect, but interrogation elicits

mild occasional symptoms easily controlled by a minor adjustment of

diet. The class index, 2, is given.

• Satisfactory: mild or moderate symptoms easily controlled by care,

which cause some discomfort, but patient and surgeon are satisfied with

result which dose not interfere seriously with life or work. The class

index, 3, is given.

• Unsatisfactory: moderate or sever symptoms of complications which

interfere with work or normal life; patient or surgeon dissatisfied with

result; includes all cases with recurrent ulcer and those submitted to

further operation, even though the latter may have been followed by

considerable symptomatic improvement. The class index, 4, is given.
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Table A.1: The HSV patients data set with original values of attributes

No. a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 class

1 1 46 12 0 5.6 79 50 4.4 19 119 22.6 1
2 0 27 3 1 12.5 58 15 7.3 26 120 31.2 1
3 0 25 6 0 11.5 77 15 8.9 16.1 93 15 1
4 0 48 3 0 15.6 29 2 4.5 28.7 186 53.4 1
5 1 26 0.5 0 7.6 80 45 6.1 17.1 101 17.2 3
6 0 32 5 1 11.9 56 100 6.7 13.6 150 20.4 1
7 0 26 2 1 6.1 19 8 1.2 14.8 58 8.6 1
8 1 28 2 1 6 36 40 2.2 20.4 65 13.33 1
9 0 55 30 0 16.8 118 12 19.8 40.4 172 69.6 1

10 0 21 5 3 20.9 111 32 23.2 34.5 270 93.1 2
11 0 37 2 0 12.6 152 30 19.2 38.7 202 78.2 1
12 0 48 5 2 2.3 73 6 1.7 5.5 199 10.9 2
13 0 43 20 3 8.1 97 32 7.8 11 120 13.2 3
14 0 30 2 0 10 15 15 1.5 18.8 121 22.7 1
15 0 49 14 2 11.7 118 38 13.8 23.2 266 52.5 1
16 0 27 3 1 9.5 154 25 14.6 13.5 141 19.1 1
17 0 28 10 0 20.9 178 26 36.1 23.3 214 49.8 1
18 1 40 4 0 8.1 62 17 5 5.6 41 2.3 4
19 0 60 20 0 13.4 107 27 14.3 19 335 63.5 1
20 0 22 4 0 3.5 176 40 6.1 5.6 190 10.6 2
21 0 21 4 0 1 155 66 1.6 2.6 160 4.2 1
22 0 21 6 4 4 360 210 14.4 3.4 211 7.1 1
23 0 28 0 1 6 152 15 9.2 9.8 227 22.3 1
24 0 31 2 3 1.8 60 10 1.1 12.3 117 14.4 3
25 0 37 3 0 8.5 94 20 8 17.3 188 32.6 1
26 0 22 2 0 8.3 111 28 9.2 20.8 192 39.8 1
27 0 43 5 0 1.9 401 53 7.5 16.3 94 15.2 1
28 1 59 1 0 4.8 30 12 1.4 9.3 27 5.2 1
29 0 32 3 0 2.8 164 35 4.5 10.3 178 18.3 1
30 0 34 8 0 6.3 82 13 5.2 7.4 130 9.6 1
31 0 51 1 0 8.6 87 25 7.5 13.7 230 31.4 1
32 0 41 20 0 2.6 29 15 0.8 6.1 108 6.6 1
33 1 50 5 1 2.5 44 120 1.1 4.1 49 2.1 1
34 0 24 2 0 14.1 160 22 22.5 21.2 209 44.4 1
35 0 32 3 0 9 122 45 10.9 15.7 223 35 1
36 0 30 8 0 8.5 121 26 10.3 5.7 261 11.4 1
37 0 63 2 0 5.8 60 34 3.5 8.7 133 11.5 1
38 0 30 2 1 1.7 171 60 2.8 4.7 139 6.6 1
39 0 21 4 0 14.7 182 31 26.8 27.5 379 104.2 4
40 0 42 6 0 6.8 319 254 21.8 9.7 266 25.7 1
41 0 71 4 2 2 34 27 1.1 4.2 185 7.8 4
42 0 34 2 0 4.1 212 32 8.7 5.3 154 8.1 4
43 0 54 2 3 5.3 166 124 8.7 6.8 236 16 3
44 0 60 0 0 11.4 127 30 14.5 9.3 148 13.8 2
45 0 33 2 2 8.7 135 54 11.8 29 186 53.8 2
46 0 40 20 1 11.6 123 88 14.2 22 152 33.3 1
47 1 32 10 1 10.3 120 20 12.3 11.9 135 16.1 1
48 0 37 3 0 7.5 86 21 6.4 15 189 28.3 1
49 1 31 5 3 4 56 43 2.2 7.4 137 10.2 1
50 0 25 7 3 2.2 184 10 4.1 5.4 459 24.7 1
51 1 27 1 3 3.1 140 60 4.4 6.6 167 11 2
52 0 56 15 1 8.3 60 17 5 11.4 72 8.2 1
53 0 23 2 0 6 133 26 8 11.5 113 13 1
54 0 33 14 0 2.9 191 23 5.6 15.5 136 21.1 2
55 0 56 6 3 5.6 140 35 7.9 12.5 129 16.1 1
56 1 27 7 1 7.1 270 180 19.1 11.2 345 38.7 1
57 0 51 3 1 3.5 111 50 3.8 15.1 212 32 1
58 0 31 0.5 3 4.7 525 105 24.7 10.8 627 67.7 1
59 0 50 8 4 10.6 185 21 19.6 25.3 224 56.6 4
60 1 31 12 0 2 45 63 0.9 7.1 165 11.7 1
61 1 47 2 0 26.1 68 46 17.7 28 307 86 1
62 0 34 4 2 8.8 95 32 8.3 11.8 183 12.6 2
63 0 42 1 3 3.7 514 75 19.2 12.5 312 39.1 4
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Table A.1: (conti.)

No. a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 class

64 0 27 2 2 4 96 14 3.8 14.9 69 10.3 4
65 1 32 0.5 0 7.8 69 78 5.4 16.7 51 8.5 3
66 1 35 3 0 2.3 43 28 1 8.3 90 7.5 1
67 0 36 10 0 3.2 79 38 2.6 9.2 165 15.2 1
68 0 34 2 0 5.5 108 80 6 11.1 121 13.4 1
69 0 27 4 0 3.3 159 72 5.2 5 127 6.3 1
70 1 32 7 0 6.1 43 74 2.6 10.8 326 35.1 1
71 1 47 15 2 2.2 112 35 2.4 16.7 53 8.7 1
72 0 35 7 0 4.4 118 38 5.2 5.7 129 7.4 1
73 0 28 15 4 7.3 23 110 1.7 9.8 21 20.6 2
74 0 45 24 0 1.4 60 28 0.9 7.1 146 10.3 1
75 1 27 10 0 21 187 225 39.1 39.1 387 151.4 4
76 0 27 4 0 10.6 127 30 14 11 430 45.6 1
77 0 26 3 0 3.8 283 43 11 11.7 260 30.3 1
78 0 27 4 0 4.6 79 20 3.6 8.7 184 16.1 1
79 0 28 1 1 1 214 40 2.1 8.6 442 37.9 3
80 0 50 32 0 5.1 171 30 8.8 5.1 135 7 2
81 0 28 11 0 4.3 145 65 6.3 6 196 11.8 4
82 0 27 4 0 6 225 50 13.6 18.8 129 24.2 3
83 0 48 10 0 11 102 20 11.2 16.3 142 23.2 1
84 0 30 10 0 9.4 249 70 23.5 18.6 194 36.1 1
85 1 34 15 0 15.9 136 60 21.6 17.8 184 32.8 1
86 0 22 3 0 10.6 198 30 20.9 11.9 188 22.4 2
87 0 30 5 0 8.6 155 37 13.3 13.9 232 32.1 2
88 0 51 1 1 14.9 80 20 11.9 20.7 128 26.5 1
89 1 30 10 0 6.8 136 100 9.3 20.7 128 26.5 1
90 0 30 5 0 7.4 213 90 15.7 10.5 266 28 2
91 0 35 4 0 3.8 57 116 2.2 10.4 191 19.8 1
92 0 30 10 0 7.6 158 22 12 12.1 169 20.4 4
93 0 43 6 0 3.1 122 15 3.8 1.6 208 3.4 1
94 0 42 10 0 11.7 159 132 18.6 19.6 127 24.9 1
95 1 45 12 0 5.2 53 32 2.7 13.8 286 39.5 4
96 0 34 1.5 1 4.5 104 70 4.6 12.1 263 32.6 2
97 0 36 5 0 7.1 110 26 7.9 13.5 277 37.4 1
98 0 30 9 0 4.3 134 55 5.8 8.8 336 29.6 1
99 0 31 5 2 2.5 19 134 0.48 9.1 149 13.5 1

100 0 25 9 0 8.2 60 78 4.9 14.2 151 21.4 1
101 0 30 10 1 1.5 122 80 1.9 5.3 220 11.6 4
102 0 33 5 2 5.7 68 10 3.9 6.4 245 15.6 1
103 0 32 2 0 6 187 60 11.2 11 285 31.4 2
104 0 45 22 2 8.7 80 90 7 42.3 270 114.3 1
105 0 38 2 0 5.8 58 8 3.4 7.1 148 10.6 4
106 1 56 0.83 0 8.8 73 30 6.4 20 68 13.7 1
107 1 45 11 0 6.3 50 105 3.1 13.2 91 12 4
108 0 32 2 1 8.9 143 75 12.8 10.9 280 30.4 1
109 0 60 2 0 4.2 195 50 8.1 6.5 265 17.3 3
110 1 44 3 2 3.7 86 5 3.2 7.7 170 13.1 2
111 0 49 4 0 6.3 180 15 11.4 21 115 84.2 1
112 1 28 10 0 9.5 98 60 9.3 14.7 1344 19.7 1
113 0 26 2 0 8.3 82 60 6.8 26.3 330 86.9 1
114 0 39 5 0 7.5 137 14 10.3 10.7 160 17.1 1
115 0 49 9 0 3.1 150 40 4.6 7 261 18.4 1
116 0 30 1 1 17.4 76 29 13.2 24.8 229 56.7 1
117 0 52 4 1 5.7 45 27 2.6 15.4 242 37.2 1
118 0 45 3 0 5.2 67 128 3.5 11.8 230 27.1 3
119 0 53 7 0 7.4 68 30 5 8.7 140 12.2 1
120 0 29 6 0 15.7 120 40 18.8 12.3 220 27 2
121 0 28 4 0 8.9 88 28 7.8 12.3 163 20 2
122 0 38 5 2 1 128 6 1.3 5.8 145 8.4 1
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B The European Barn Swallow Data Set

Table B.2: The European barn swallow data set with original values of at-

tributes

No. a1 a2 a3 a4 a5 a6 a7 a8 class

1 30 104 47 104 127 127 18.2 4844 2
2 30.2 107 46 109 127 126 18.3 5434 2
3 30.6 110 45 96 126 126 17.9 6498 2
4 30.6 108 46 108 126 127 18.4 5789 2
5 30.9 123 50 126 130 129 18.4 5553 2
6 30.2 112 48 100 122 122 17.7 5553 2
7 30 92 47 93 121 122 20.9 5907 1
8 30.5 99 44 99 127 126 17.9 5080 2
9 29 91 44 91 120 120 17.1 5198 1

10 29.6 102 45 104 130 129 18.1 6616 2
11 30.3 94 48 95 123 124 18.7 4962 1
12 29.6 86 47 87 120 120 17 5316 1
13 30 98 46 99 123 123 18.2 5553 1
14 30.2 90 46 89 125 125 18.7 4607 2
15 30.8 88 41 89 126 126 21.7 5198 1
16 29.5 96 46 97 125 125 18.4 4371 2
17 29.5 85 45 83 130 129 20.1 5434 2
18 30.2 85 45 86 122 122 19.5 5316 1
19 31 100 47 102 123 123 21.8 4371 1
20 30.6 129 44 129 125 125 18.2 5671 2
21 29.6 83 47 83 121 121 19.9 4607 1
22 30.1 115 47 84 123 123 19 4489 2
23 29.7 92 49 94 124 124 22.1 5080 1
24 29.2 91 44 90 124 124 20 4844 1
25 29.6 75 46 85 129 129 19.7 4253 2
26 29.2 110 44 110 123 123 16.7 4962 2
27 30 95 47 95 121 121 21.5 5789 1
28 29.4 96 44 95 123 124 17.2 4607 1
29 29.7 93 44 94 123 123 25.1 5080 1
30 30.9 105 45 105 121 120 19 5553 2
31 30.1 118 46 118 127 128 19.7 5671 2
32 30.9 84 46 86 125 126 21.2 4962 1
33 29.6 93 46 87 123 122 21.3 5316 1
34 30.1 110 43 111 126 126 18.9 5198 2
35 29.8 90 43 84 120 120 16.6 5080 1
36 30.4 89 50 91 133 133 20 5434 1
37 30.5 109 46 109 125 125 17.6 5671 2
38 29.6 108 45 109 125 125 17.1 4726 2
39 30.4 87 47 87 126 126 21.5 5198 1
40 29.6 86 46 86 124 124 21 5316 1
41 30 99 45 99 125 124 19.7 4844 2
42 30.4 90 41 97 122 122 17.2 3780 2
43 30.1 94 46 96 122 122 18.8 4607 2
44 30.2 113 47 115 126 124 19 6616 2
45 29.7 102 49 95 128 126 17.5 4726 2
46 29.6 93 44 92 122 123 21.7 5434 1
47 29.9 100 46 97 125 123 19.6 5671 1
48 29.3 97 47 96 130 130 18.5 4962 2
49 30.2 86 47 85 126 126 18 5080 1
50 29.7 85 47 85 125 125 18.8 5080 1
51 30.1 88 45 89 120 122 18.8 4489 1
52 30.4 106 48 106 124 124 18 4253 2
53 29.5 105 49 103 126 126 17.8 6025 2
54 30.2 96 48 97 126 125 18.4 5198 1
55 30 107 45 109 128 128 18.8 6498 2
56 30.9 90 49 89 129 129 20.4 5789 1
57 29.3 101 48 97 123 123 20.2 4962 1
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Table B.2: (conti.)

No. a1 a2 a3 a4 a5 a6 a7 a8 class

58 30.3 126 44 125 130 130 17.9 4607 2
59 30 88 48 88 122 121 19.2 4962 1
60 30.7 117 44 119 127 126 19.6 5316 2
61 29.5 85 48 84 118 118 17.5 5080 1
62 30.8 108 47 108 126 127 18.9 5671 2
63 30.3 97 46 95 126 125 18.4 5316 1
64 30.6 97 48 97 128 127 18.1 5434 1
65 29.6 90 48 77 122 121 18.2 5198 1
66 30.2 112 46 113 129 130 19.6 5198 2
67 29.6 93 45 91 119 118 21 5080 1
68 29.7 86 49 86 125 124 17.6 5080 1
69 28.9 74 46 103 127 126 17.3 4726 2
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C The Input Data File Format for MCOCR

The file as shown in Appendix D is a sample input data file for MCOCR. An

input data file represents an input data set. There are three tags in an input

data file.

• Classes: to tell MCOCR that classes’ definitions are beginning.

• Attributes: to tell MCOCR that attributes’ definitions are beginning.

• Objects: to tell MCOCR that objects’ details are beginning.

The order of tags ”Attributes,” ”Classes” and ”Objects” is arbitrary.

CLASS.

Format—

Classes [Class num.] [1’st class index] [2’nd class index] ... [n’th class index]

meaning:

• first field means the number of classes in the input data set

• the following fields means the class index of each class

Example—

Classes 4 c1 c2 c3 c4

The example means that there are four classes in the input data set. Their

index are c1, c2, c3 and c4, respectively.

NOTE: The initial character of a class index must be ‘C’ or ‘c’, and followed

by a number. ¤

ATTRIBUTES.

Format—

Attributes

[1’st attribute index] [num. of 1’st attribute values]
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[2’nd attribute index] [num. of 2’nd attribute values]

· · · · · · · · ·

· · · · · · · · ·

[n’th attribute index] [num. of n’th attribute values]

meaning:

• each row represents an attribute

• first field means the attribute index

• second field means the number of attribute values of such attribute

Example—

Attributes

a1 3

a2 2

a3 4

a4 3

The example means that there are four attributes in the input data set. Their

index are a1, a2, a3 and a4, respectively.

• Attribute a1 has three possible attribute values, i.e., 1, 2, 3.

• Attribute a2 has two possible attribute values, i.e., 1, 2.

• Attribute a3 has four possible attribute values, i.e., 1, 2, 3, 4.

• Attribute a4 has three possible attribute values, i.e., 1, 2, 3.

NOTE: The initial character of an attribute index must be ‘A’ or ‘a’, and

followed by a number. ¤

OBJECTS.

Format—
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Objects

[1’st obj idx] [1’st obj 1’st attr val] · · · [1’st obj n’th attr val] [1’st obj cls idx]

[2’st obj idx] [2’st obj 1’st attr val] · · · [2’st obj n’th attr val] [2’st obj cls idx]

· · · · · · · · ·

· · · · · · · · ·

[m’st obj idx] [m’st obj 1’st attr val] · · · [m’st obj n’th attr val] [m’st obj cls idx]

meaning:

• each row represents an object

• first field means the object index

• last field means the class index of such object

• the rest of fields mean the attribute value of each attribute

Example—

Objects

o1 3 2 4 3 c1

o2 2 2 1 2 c1

o3 1 1 2 1 c2

o4 2 2 3 3 c3

o5 3 1 4 2 c4

The example means that there are five objects in the input data set. Their

index are o1, o2, o3, o4, o5.

• Object o1 belongs to class c1, and each attribute values are 3, 2, 4, 3.

• Object o2 belongs to class c1, and each attribute values are 2, 2, 1, 2.

• Object o3 belongs to class c2, and each attribute values are 1, 1, 2, 1.

• Object o4 belongs to class c3, and each attribute values are 2, 2, 3, 3.
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• Object o5 belongs to class c4, and each attribute values are 3, 1, 4, 2.

NOTE: The initial character of an object index must be ‘O’ or ‘o’, and fol-

lowed by a number. ¤

NOTE: The separator between two fields can only be SPACE.
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D A Sample Input Data File for MCOCR
classes 4 c1 c2 c3 c4
ATTRIBUTES
a1 2
a2 2
a3 3
a4 5
a5 3
a6 3
a7 3
a8 3
a9 3
a10 3
a11 4
OBJECTS
o1 2 2 3 1 3 2 1 3 3 2 2 c1
o2 1 1 2 2 3 1 1 3 3 2 3 c1
o3 1 1 3 1 3 2 1 3 3 1 1 c1
o4 1 2 2 1 3 1 1 3 3 2 4 c1
o5 2 1 1 1 3 2 1 3 3 2 2 c3
o6 1 1 3 2 3 1 2 3 2 2 2 c1
o7 1 1 2 2 3 1 1 1 2 1 1 c1
o8 2 1 2 2 3 1 1 2 3 1 1 c1
o9 1 2 3 1 3 2 1 3 3 2 4 c1
o10 1 1 3 4 3 2 1 3 3 3 4 c2
o11 1 2 2 1 3 3 1 3 3 2 4 c1
o12 1 2 3 3 2 2 1 1 1 2 1 c2
o13 1 2 3 4 3 2 1 3 2 2 1 c2
o14 1 1 2 1 3 1 1 1 3 2 2 c1
o15 1 2 3 3 3 2 1 3 3 3 4 c1
o16 1 1 2 2 3 3 1 3 2 2 2 c1
o17 1 1 3 1 3 3 1 3 3 2 4 c1
o18 2 2 3 1 3 1 1 3 1 1 1 c4
o19 1 2 3 1 3 2 1 3 3 3 4 c1
o20 1 1 3 1 2 3 1 3 1 2 1 c2
o21 1 1 3 1 1 3 2 1 1 2 1 c1
o22 1 1 3 5 2 3 3 3 1 2 1 c1
o23 1 1 1 2 3 3 1 3 1 2 2 c1
o24 1 1 2 4 1 1 1 1 2 2 1 c3
o25 1 2 2 1 3 2 1 3 3 2 3 c1
o26 1 1 2 1 3 2 1 3 3 2 3 c1
o27 1 2 3 1 1 3 2 3 3 1 2 c1
o28 2 2 2 1 3 1 1 1 1 1 1 c1
o29 1 1 2 1 2 3 1 3 2 2 2 c1
o30 1 1 3 1 3 2 1 3 1 2 1 c1
o31 1 2 2 1 3 2 1 3 2 2 3 c1
o32 1 2 3 1 2 1 1 1 1 2 1 c1
o33 2 2 3 2 2 1 3 1 1 1 1 c1
o34 1 1 2 1 3 3 1 3 3 2 4 c1
o35 1 1 2 1 3 2 1 3 3 2 3 c1
o36 1 1 3 1 3 2 1 3 1 3 1 c1
o38 1 1 2 2 1 3 2 2 1 2 1 c1
o39 1 1 3 1 3 3 1 3 3 3 4 c4
o40 1 2 3 1 3 3 3 3 1 3 3 c1
o41 1 2 3 3 1 1 1 1 1 2 1 c4
o42 1 1 2 1 3 3 1 3 1 2 1 c4
o43 1 2 2 4 3 3 3 3 1 2 2 c3
o44 1 2 1 2 3 2 1 3 1 2 1 c2
o45 1 1 2 3 3 2 2 3 3 2 4 c2
o46 1 2 3 2 3 2 2 3 3 2 3 c1
o47 2 1 3 2 3 2 1 3 2 2 2 c1
o48 1 2 2 1 3 2 1 3 2 2 3 c1
o49 2 1 3 4 2 1 1 2 1 2 1 c1
o50 1 1 3 4 2 3 1 3 1 3 2 c1
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