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Induction of Multiple Criteria Classification Rules from
Optimization Perspectives — Applied in Biology and

Medicine Informatics

Student: Ming-Hsien Chen Advisor: Han-Lin Li

Institute of Information Management

National Chiao Tung University

Abstract

To induce critical classification rules from observed data is a major task in
biological and medical research. A classification rule is considered to be
useful if it is optimal and sirhultaneously satisfies three criteria: is highly
accurate, has a high rate of support, and is highly compact. However, existing
classification methods, suclhtas rough set theory, neural networks, 1D3, etc.,
may only induce feasible rulesinstead of optimal rules. In addition, the rules
found by existing methods may only satisfy one of the three criteria. This
study proposes a multi-criteria model to induce optimal classification rules
with better rates of accuracy, support and compactness. A linear multi-
objective programming model for inducing classification rules is formulated.
Two practical data sets, one of HSV patients results and another of European
barn swallows, are tested. The results illustrate that the proposed method

can induce better rules than existing methods.

Keywords: classification rules
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Chapter 1 Introduction

1.1 Research Background

The induction of classification rules' from a database has been one of the
major issues in the biological and medical research domains. Given a data
set with several objects, where each object has some attributes and belongs
to a specific class, the induction of rules is to find a combination of attributes
which can well describe the features of a specific class. There are three criteria

for evaluating the quality of a rule.

(i) Accuracy. A good rule which fits a specific class had better not cover

objects of other classes.

(ii) Support. A good rule which fits-a-specific class should be supported

by most objects of such a class:

(iii) Compactness. A good rule'should be expressed in a compact way.
That means that the less the number of attributes used, the better the

rule is.

Currently, there are some well-known methods for classification, especially
the rough-set-based method and the decision-tree-based method.

In Hvidsten et al. (2003), rough sets were used as the theoretical founda-
tion for its methodology to learn the rule-based biological process from gene
expression time profiles. It reported a systematically supervised learning ap-

proach to predict a biological process from the time series of gene expression

nstead of using the term “classification rule”, the term “rule” is used for short in the

following of this article.



data and biological knowledge. Biological knowledge is expressed using gene
ontology and this knowledge is associated with discriminatory-expression-
based features to form minimal decision rules. In Beynon and Buchanan
(2003), which used variable precision rough sets, a variant of rough sets, to
do the gender classification of the European barn swallow. Slowinski (1992),
Tsumoto (1999), Li and Wang (2004), Tay and Shen (2002), Shen and Loh
(2004), etc., also used the rough-set- based method to get rules.

In Geurts et al. (2005), the decision-tree-based method was used for pro-
teomic mass spectra classification. They proposed a systematic approach
based on decision-tree-ensemble methods, which is used to automatically de-
termine proteomic biomarkers and predictive models. Aja-Fernandez et al.
(2004)proposed a fuzzy 1D3 decisionstree, methodology by which the natu-
ral language descriptions ofsthe TIW3 method for bone age assessment is
translated into an automatic “classifier.” And in Zhang et al. (2001), the
decision-tree-based method was used for-elassifying normal or tumor tissues,
ete.

Both the rough set based method and the decision tree based method are
heuristic algorithms, which are computationally effective in inducing rules.

However, there are two shortcomings for these two methods:

(i) They may find only some feasible rules, instead of inducing optimal

rules.

(ii) For most cases, they may find only rules satisfying a single criterion
such a more accuracy rate or a more support rate, instead of inducing

rules to satisfy multiple criteria.



1.2 Review of Some Existing Methods

There are many well-known methods for classification. Two methods are

reviewd here.

1.2.1 Review of Rough Set Theory

Rough set theory (RST) proposed by Pawlak (1982) is a methodology for
rules discovery in the database. It operates on an information system? which
is made up of objects for which certain characteristics (i.e., condition at-
tributes®) are known. Objects with the same condition attribute values are
classified into equivalence classes or condition classes. The objects are each
grouped into a particular category with respect to the decision attribute*
value. Those classified into the same catégory are in the same decision class.
The rule discovery process in RST involves simplifying the decision tables
with the elimination of superfluous attributes and values of attributes, and
finding out simple rules related to the condition and decision attributes.
When an object is classified using ‘the rules discovered, it is assumed to
be a correct classification. A variant of RST, variable precision rough sets
(VPRS), which incorporates probabilistic decision rules, has been developed

by Ziarko (1993). It has been applied in various fields to induce rules.

2The meaning of the term “information system” in RST is synonymous with the term

“data set” in this study.
3The meaning of the term “condition attribute” in RST is synonymous with the term

“attribute” in this study.
4The meaning of the term “decision attribute” in RST is synonymous with the term

“class index” in this study.



1.2.2 Review of ID3

The ID3 proposed by Quinlan (1986) is a popular decision tree method of
inducing rules. It is based on the greedy algorithm of entropy reduction
in constructing the decision tree. Attributes leading to substantial entropy
reduction (or information gain) are included as condition attributes® to par-
tition the data. A condition attribute of the largest amount of entropy re-
duction is placed closer to the root and is used for the next level partitioning.
Sometimes filters may be set up so that only attributes with information gain
greater than a certain threshold will be selected in constructing the decision
tree. Variants of ID3 include C4.5 and C5 Quinlan (1993), which treat both

discrete and continuous variables.

1.3 Research Objectives

Using mathematical programming approaches to solve classification prob-
lems are current trends. Sul and Xiong (2003) proposed a mathematical
programming approach for gene selection and tissue classification; however,
it focused on two classes of classification and could not guarantee to obtain
globally optimal solutions. Li and Fu (2005) developed a linear programming
technique to solve DNA consensus sequence identification problems by find-
ing an optimum consensus sequence. It was computationally more efficient
and guaranteed to reach the global optimum.

This study proposes a multi-criteria model to induce optimal rules with
better rates of accuracy, support, and compactness. A mixed 0-1 linear

multi-objective programming model for inducing rules is formulated. Two

5The meaning of the term “condition attribute” in ID3 is synonymous with the term

“attribute” in this study, too.



practical data sets, one of HSV (Highly Selective Vagotomy) patient results
and the other of European barn swallows, are tested. The results refeal that

the proposed method can induce better rules than can current methods.

1.4 Structure of the Dissertation

Chapter 2 reviews some existing methods. Chapter 3 formally formulates
the problem this study deals with and introduces the presentation of data
and rules in this study. Chapter 4 developes essential propositions and a
method to induce rules. It also illustrates the proposed method with some
examples. Chapter 5 compares the proposed method with rought-set-based
methods and decision-tree-based methods by two practical data sets, the
HSV (Highly Selective Vagotomy)ipatieuts. data set and the European barn
swallow data set. Chater 6 iitrodudes|a prototype system, which implements
the proposed method. The last Chapter makes some discussions and remarks

of the study.



Chapter 2 Problem Formulation and Nota-

tions

This chapter gives a formal formulation of induction of rules and makes a
presentation of data and rules. It also introduces the notations used in this

study.

2.1 Problem Formulation

There are n objects {z1, za, ..., T, }, each of which is characterized by m
attributes {ai, as, ..., a;,} and a class index c¢. Each attribute has its own
domain of values. The p’th value oftair attribute a; is denoted as a;,, which
is called the p’th sub-attribute of the attribute a; in this study. For a specific
class, there may exist some-rules for it-. The ['th rule for a class k is denoted
as RM'. A rule may just use’some att¥ibutes. ‘A rule R¥! is a combination of
binary variables d% and each d% decides whether sub-attribute a;, is used

by R*! or not. The purpose of this study is to find rules for each class.

2.2 Presentation of Data and Rules

Here we use an example to illustrate the way of presenting data and rules in
this study.Consider a data set in Table 2.1 which has five objects {x1, za, x3,
x4, x5} , four attributes {a1, as, as, a4}, and one class index ¢. The domains
of values of a1, as, az, and a4 are {1, 2, 3}, {1, 2}, {1, 2, 3, 4}, and {1,
2, 3}, respectively. The domain of values of ¢ is {1, 2, 3}. In most cases,
the attributes in a data set usually consist of a mixture of qualitative and

quantitative ones. In this study, all attributes are transformed into ordered



Table 2.1: A small data set

a; a2 a3 a4 C

rn 2 1 2 3 1

ro 3 2 1 1 2
r3 1 2 2 3 2
gy 1 1 4 2 3
rs 1 1 3 1 3

qualitative values. To induce rules for each class, first we convert Table 2.1
into another form presented by binary values in Table 2.2 , where a;,, is called
the p’th sub-attribute of j’th attribute. An object x; in Table 2.1 can then

be written as:
Ti = (a1,1a Q19,01 35 Aoy Qg o5 U, 05, Qg 3703 45 Ay 1,0y 2, Ay 3; ci),

where a! , is 1 if a (the value of a, of-w3) equals p; otherwise, a’ , is 0. For

instance, x; is expressed as

z1 = (0,1,0;1,0;0,1,0,0;0,0,1;1).

Notation 2.1. For a data set, which is characterized by m attributes. A

general form for expressing an object x; is written as:

e (T P ¢ Y S RN S O R (2.1)

where ¢, is the number of sub-attributes of the attribute a,,°, ¢; is the

class index of x;, and aé-p are sub-attribute values of x;, which are binary

6For convenience, the total number of sub-attributes of all attributes is denoted as g,

ie., qg= Zj q;-



Table 2.2: Binary presentation for the data set in Table 2.1

aq a9 as ay C

11 Ai12 Q13 0421 Q22 G331 d4A3z2 G333 A34 Q41 (A42 (A43

)

7 1 1 1 1 1
2 1 11 1 2
25 1 1 1 1 2
s 1 1 1 1 3
O | 1 1 1 3

All blank cells are 0

values. An af, is 1if a} = p; otherwise, af , is 0. Clearly, for each object z;,

, @5, =1 forall j. O

Notation 2.2. A general form of expressing a‘rule R*! which is called the

I’th rule for the class k, is expressed. as:

RM = (Y, .. dyy e ey ity R, (2.2)

1,q17 2,q2° m,1s > ¥'m,qm

where d;, are binary variables specified as: if a;), is an active sub-attribute

for R¥!, then d?”zl) = 1; otherwise, d?;zl) =0. OJ

Such a binary expression is useful in inducing rules with conjunctive and

disjunctive forms.

Definition 2.1. (Support and Non-Violation) Given objects x;, x,, and a

rule R¥ as represented in equations (2.1) and (2.2), respectively.

(i) Object x; belongs to a class k (i.e., ¢; = k): x; is called “supporting”

RMand R* is called “supported by” z;, if 3 a§-7pdf7}l) =1 for all

active attribute a;.



Table 2.3: Some rules for Table 2.1

di1 dip dig dag doo dszn dso dsz dza din dap dag

RM 1 1

R'? 1 1
R>! 1

R? 1

R 1

R3? 1

R33 11

All blank cells are 0
(ii) Object z, does not belong to a class k (i.e., ¢, # k): x, is called
“non-violating” R*', i} ar d"' =0 for any active attribute a;. O

5P 3P

Consider the example given in Table 2.1, Table 2.3 is a list of seven rules
induced from Table 2.2. (The method ofinducing rules are described in next

chapter). RM! is expressed by a binary vector as
RY =(0,1,0;1,0;0,0,0,0;0,0,0).
Table 2.4 is the explanation of these rules. For instance, R*! means

“if (a1 =2) and (ay = 1), then the objects belong to class 17.

The ignored attributes in RY! are az and ay; the active attributes are a; and
as (in fact, the active sub-attributes are a; 5 and ay ;). This rule is supported
by object x1, since for these two active attributes, we have

1 41 1 4l
§ al,pdl,p_al,ldl

p=1...3

Tt ai,diytalads=0x0+1x1+0x0=1



and

RS IS B T s B s I N _
E gy, = a5 1dy] + ag0dy, =1 x1+0x0=1.
p=1...2

And it is not violated by object x5, since for the active attribute a;, we have

2 A1 _ 92 11, 92 g1 92 g1 _ _
g aypdy, = ajdiy +ajadiy +ajzdis =0x0+0x1+1x0=0.
p=1...3

It is also not violated by objects x3 ,z4 and z5. Furthermore, two rules may
be integrated into a more general rule. For instance, R>! and R*? can be

combined as R3?, expressed as
R*'v R*? =(0,0,0;0,0;0,0,1,0;0,0,0) v (0,0,0;0,0;0,0,0,1;0,0,0)
= (0,0,0;0,0;0,0,1,1;0,0,0,)
= R*3.

R3? means
“if (a3 =3 or 4), then the abjects belong to class 3”.

The meaning of the last three columns in:Table 2.4 is explained in next

chapter.

2.3 Notations and Variables Summary
Here is a summary of the notations and variables adopted in this chapter.
e 1;: the object 7 in a data set.
e a;: the attribute j of objects.
e a;,: the p’th sub-attribute of a;.
e c: the class index of objects.

e ¢;: the class index of z;.

10
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n: the total number of objects in a data set.

m: the total number of attributes in a data set.

q: the total number of sub-attributes of all attributes.
¢m: the number of sub-attributes of a,,.

a’: the value of a; of z;.

7

a;

- the value of a;,, of ;.
RFL: the I’th rule for the class k.

d;’;): a binary variable specified as: if a;, is an active sub-attribute for

the rule R*!, then d;?”}l, = 1; otherwise, d?,}i = 0.

12



Chapter 3 Proposed Classification Methods

This chapter developes some essential propositions and a method of inducing
rules such as those in Table 2.3. It also illustrates the proposed method with

some examples.

3.1 Propositions

First, consider the following propositions:

Proposition 3.1. For objects x; (such ¢; = k), x, (such ¢, # k), and a
rule RF! as represented in equations (2.1) and (2.2), respectively, h*! is de-

noted the number of ignored attribiités by R*.

(i) R is supported by g, if 3= 37 a;'.,pd;’zl, = m — h*

(ii) R™ is not violated by, €2 DT a;pdﬁ}l) <m—hh -1

Proof. From Definition 2.1, we have

i ai d"' =1 for all active attributes a; while R*! is supported by z;.
p Lip%ip j

So it is clear that »7. %" af d¥ = m — kit

p 5P dp
(i) >, a’ ,d>" = 0 for any active attribute a; while R®! is not violated by
o kol
x,. So it is clear that 7. 5" af di7, <m —hM —1.

p PP —

The proposition is then proven. O

Take z; and x, in Table 2.1 and R"' in Table 2.3 for instance. Since

13



cp =1 and
k,l , , :
Zza]pdjp ,1di,%+ai,2di,;+ai3di,:§) (321d + 22d )
=(0x04+1x14+0x0)+(1x14+0x0)
=2
:m_hk,l
RY! is supported by ;. Since ¢4 = 3 # 1 and
k,l 1,1 1,1
Zza]pdjp d11+a12d12—|—a13d13)+(a21d21+a22d22)
=(1x04+0x14+0x0)+(1x14+0x0)
=1
<m — hP 1]

x4 does not violate Rb!.

Proposition 3.2. Parameter h® isspecified as h*! = Z )\ , where )\f’l €

{0,1}. )\?’l = 1 if attribute a; is ignered by a rule R™!; otherwise, )\;‘f’l =

0. The relationships between d?}’zl, and )\f’l are expressed as the following

inequalities:
dj}l) S 11— )‘?’l7vj7p7
k.l Kl o\
1= )‘j = Zdap’v]’
P
kil
A €40,1}.
Proof.

e If attribute a; is ignored by R*®' then d% = 0 for all p, > i

P 2P

and )\f’l =1.

14



o If attribute a; is not ignored by RF! then at least one d% =1,
>, di > 1and A = 0.
The proposition is then proven. O]

Remark 3.1. For objects x; (such ¢; = k), z, (such ¢, # k), and a rule R,

. : : k,l
here we introduce binary variables u;" and v**!
ok
(i) uf' =1, if ; supports R*!; otherwise u/"' = 0.

(ii) v®! =1, if z, does not violate R*!; otherwise v*! = 0. O]

Proposition 3.3. Let M be a big positive number. For objects z; (such
¢ = k), 2, (such ¢, # k), and a rule R*!, there exit v’ and v € {0,1}

which satisfy the following inequalities:

k,l k.l k.l
M(uf' = 1) +m — b5 <y ST al bt
=P

LR ME < uh), Vi where ¢; = k,

(3.4)

Z Z a; pdfylj — pPL ZUEM( = oY, ¥ where ¢, # k. (3.5)
Proof.
o If uf’l = 1, then equation (3.4) is equivalent to Case 1 of Proposition 3.1.
o If v =1, then equation (3.5) is equivalent to Case 2 of Proposition 3.1.

The proposition is then proven. O

Consider a data set of n objects. Denote the number of objects belonging
to a specific class k as n¥. The definitions of the accuracy rate, support rate

and compactness rate are specified as the following.

15



Definition 3.1. (Accuracy Rate) The accuracy rate of a rule R*! is specified

as
Apkl — 1 S
n —nk "
r where c,#£k
O
[t means that if none of object x, (such ¢, # k) violates the rule (i.e., all
v®! = 1), then the accuracy rate of the rule is 1. The binary parameter v*"

is specified in Remark 3.1.

Definition 3.2. (Support Rate) The support rate of a rule R¥! is specified

as

1
SRk’l = E Uf’l.
n
iywhere c;=k

O

If all objects x; (such c;= k) support the rule (i.e., all u/"' = 1), then its

support rate is 1. The binary parameter uf’l is.specified in Remark 3.1.

Definition 3.3. (Compactness Rate) The compactness rate of a rule R*! is

specified as

kL
CRM — i (hk,l 41— Zj Zpdj,p — 1) _

m q

O

It implies that if the most compact rule is the rule with only one active

. . k.l _ kl _ .
sub-attribute (i.e., such } . > d;7, = 1), then CR™ = 1. If different rules
have the same numbers of active sub-attributes, then the rule with larger
ignored attributes number h is considered more compact than others. By

the definition given here, the C'R of a rule with larger h will be higher than

others.The parameter h*! is specified in Proposition 3.1.
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Remark 3.2.
i) 0 < ARM <1
(i) 0 < SRF <1
(iii) 0 < CRM <1 O

The related AR, SR, and C'R values for the example rules in Table 2.3
are listed in the last three columns of Table 2.4 . The CR value for R is
computed as (24 1 — 251) = 0.73. R®! is better than R*? since it has a

higher SR value. R%3 has higher SR than do R*! and R3?; however, B33 is

not as compact as R*! and R32.

3.2 Notations and Variables'Summary
Here is a summary of the notations and variables adopted in this chapter.
e hF!: the number of ighored attribites by L%
. )\f’l: a binary variable specified as: if a; is ignored by R*!, then )\?’l =1

. k)l
otherwise, )\j’ =0.

° uf’l: a binary variable specified as: if x; supports R®!, then uf’l = 1;

: Kl
otherwise, u;,” = 0.

e vMl: a binary variable specified as: if x, dose not violate R¥!, then

vl = 1; otherwise, uf' = 0.
e M: a big positive number.

e nF: the number of objects which belong to the class k.

o ARM: the accuracy rate of R¥!.

17



e SRM!: the support rate of R*!.

e C'RF!: the compactness rate of R*!.

3.3 Models for Inducing Rules

The program to induce a rule R*! is formulated as the following linear mul-

tiobjective program:

Max ARF!
Max SR™
Max C'R™

Subject to:
M(uf! = 1) +m— 1 < 3N a4
0 =P
e e — uf’l),w where ¢; = k,

PP —

X:X:a’T dL < m — WEETP M1 — k), Vr where ¢, # k,
VN

diy <1=A71<j<m1<p<g,

LA <) dp1<j<m,
p

J,p?
kil _ k,l
= S,
J
k.l k,l k,l
dj,p/ + d],p/+2 - ]_ S dj;p/“l’l’ ]_ S p, S q] — 27

uPt B N e {0,111 <0, <n1<j<m1<p<g,.

(C1)

(C2)
(C3)
(C4)
(C5)
(C6)

(C7)

The objective of this program is to maximize AR, SR and C'R simul-

taneously, where constrainsts (C1) and (C2) come from Proposition 3.3,

and constraints (C3)—(C5) come from Proposition 3.2. The purpose of con-

straint (C6) is to avoid the discontinuity of active sub-attributes for the same

18



attribute. ARM, SR¥ and CR* are specified in Definitions 3.1, 3.2, and
3.3, respectively. This is a multiple criteria decision problem. There are three

typical models for solving this multiobjective program:

(i) A constraint model, where two of the three objectives with lower bounds

are assigned.

(ii) An aspiration model, where aspiration levels are set for the three ob-

jectives.

(iii) A weighting model, where relative weights are assigned to the three

objectives.
All these three models are reformulated below.

Model 3.1. (Specifying thedower-boimnds.for AR and SR)
Max obj = C R™!
Subject to: constraints (C1)—(C7), and
ARM > AR,

SR > SR,

where AR and SR are constant, representing the lower bounds of AR®! and

SRR, 0

Example 3.1. Take Table 2.3 for instance. The program to induce a rule

R for class 1 using Model 3.1 is formulated below:

11
Max CRM = 411 (hl’l T %)

19



subject to:

Buy' — 1) +4 — hM < dph + dyf + dyh + dyy <4 — hM 4+ 5(1

dyy + dyy + dyt +dyh <4 — R — 1451 — ),
dyy + dyh + dyy +dyy <4—hM — 1451 — vy,
dyy +dyy +dy +dyh <4—RhY = 1451 — o),
dyl +dyy +dyh +dyh <4— M 1451 — o),
dié <1- )\}’l, forp=1,2,3,
dy! <1- X', for p=1,2,
dyi, <1— )\, for p=1,2,3,4,
di:; <1 - A}L’l, for.p =.1,2, 3,
L= A dy sy +dys,
13057 < 4 s,
L= A" < g+ gy + diy + dyy,
1= A <dy) +dyh +dys,
AU = A AL A N
d +dpy — 1< dp,
dy' +dyy — 1 < dy,
dyy + dyy — 1 < dy,
dy +dyy — 1 < dys,

1
ARM = (" + vy’ + oy’ + ") > AR,

20
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(3.11)
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(3.16)
(3.17)

(3.18)



1 ___
SRY = Iui’l > SR,

vt vyt v ot di, iy, dly dy, diy, dyy, i, d,

diys diy dis, AV 0 A8 A € {0, 1.
Solution. By pecifying AR, SR = 1, the optimal solutions obtained are
d%; = d;ll = 1, and all others are d}}’; =0, u%’l = U;’l = vé’l = vi’l = v;’l =1,
/\}’l = )\é’l = 0, )\é’l = )\i’l = 1, hb = 2. The objective value CR is
1(24+ 1 —2!) = 0.73. The rule is exactly the same as R"! in Table 2.3 and

Table 2.4. 0

Example 3.2. Similarly, the model of inducing a rule R*! for class 3 is

formulated below:

Mt CR3!

subject to: equations (3.6)—+3.18) with-changing superscripts 1, to 3,[, and
Bluy' — 1) +4 — p¥ < &Y HdSEd - dy < 4— P2 +5(1 — ulh),

Bugt — 1) +4 — B3 < d}f + doy +dyh +dyy <4 - R 4 5(1—ud),
dih + dyy +dyh +dyh <4 — P 1451 — o),
il + dyy + A3+ dY <4 — B3 — 1451 — o),

B4 a4 < 4 - B - 14 5(1 - ),

1
AR = m(vi”l + o3t 403" > AR,

1
SR = §(ui’l +ud') > SR,

30 30 301 31 31 30 31 301 30 31 530 30 31 3.1
Uy Uy , Uz Uy 5 Us ad1,1ad1,2>d1,3ad2,1ad2,2>d3,1ad3,27d3,3>d3,4v

30 330 130 3.0 \3,0 \3,0 3,
d4,1ad4,27d4,3a)‘1 S AL AL A € {0, 1}
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Solution. By specifying AR = SR = 1, the optimal solutions obtained are

30 _ 3l _ 30 _ 30 30 .30 301 31
dyy = dyy = 1, and all others are d;, =0, uy” = uz” = v)" = vy =vy" =1,

/\g’l = 0, /\?’l = )\g’l = )\i’l = 1, ¥ = 3. The objective value CR*! is
1(34+ 1 —21) = 0.98. The rule is exactly the same as R*? in Table 2.3 and

Table 2.4. -
Model 3.2. (Specifying the aspiration levels for AR, SR, and C'R)
Max AR® 4+ SR + CRF
subject to: constraints (C1)—(C7), and
ARM > AR,

SR> TR,

CRESEIOR,

Model 3.3. (Specifying the weights'on'AR, SR and C'R)

Max w*' AR + w SRF 4wkt C RM

k,l

a ?

subject to: constraints (C1)—(C7), where w®!, w®! and w®! are the weighting

value of ARM, SRF and CR¥!, respectively. 0

In addition to inducing the best rule, we may also generate conveniently

the second best, the third best, etc. rules.
Procedure 3.1. The solution procedure for Model 3.1 is:

Step 1. Specify the AR and SR

Step 2. Obtain the solution of Model 3.1

22



Step 3. If no feasible solution exists

Step 3.1. Decrease AR or SR, and go to Step 3

Else

Step 3.2. A rule is obtained

Step 4. If more rules are wanted,

Step 4.1. Add the solution obtained from Step 3.1 as a new constraint

for Model 3.1, then go to Step 2.

In the first iteration of Step 3.2 in Procedure 3.1, we get the global optimal
rule for a specified class; and in the second iteration, we get the second
optimal rule, and so on. Example 3.3 illustrates the solution procedure using

Procedure 3.1.

Example 3.3. Take Example 3.2 for-instance.” Since ui’l = ug’l = 1 is the
solutions of Example 3.2, if one more rule forclass 3 is needed, we can add

the following new constraint

30, 3l
uy +oug <2

to the model of Example 3.2. This constraint prevents ui’l = ug’l =1, simul-

taneously. There is no feasible solution after adding the above constraint. It
means that no more rule with AR*»' = SR3! = 1 can be induced. Then, we
can decrease the acceptable level of AR or SR to get second best rules. Here,
we decrease SR to 0.5, and the solutions obtained are dgé = 1; all others are:
d?”zl) =0, udt =0, ud =¥ = =¥ =1 NP =0, AP = N =N =

3t =3, AR = CR* =1, SR* = 0.5. The rule is exactly the same as

23



R3! in Table 2.3, which is the second best rule for class 3. By adding the
next constraint,

ug’l <1
to the model, the third best rule, exactly the same as R*? in Table 2.3, is

then obtained. O

3.4 Analysis of Models

For a data set having n objects and characterized by m attributes with ¢
sub-attributes, the analysis of constraints and binary variables for inducing

a specific rule R*! is described below.

e For each object, it needs either a constraint of (C1) or a constraint

of (C2). So the instance’of constraints 6f (C1) and (C2) is n.

e For each sub-attribute, it needs a constraint of (C3). So the instance

of constraints of (C3) 15 g.

e For each attribute, it needs a constraint of (C4). So the instance of

constraints of (C4) is m.
e There is only one instance of constraint (C5).

e The instance of constraints of (C6) depends on each ¢;. The worst case

is only one ¢; # 1 and the instance of constraints of (C6) is ¢ — m — 2.

. . k.l . . .
e The number of binary variables u;” and v®! is n, since each object

Kl
needs a u;" or v,

e To represent a rule, it needs a binary variable df”; for each sub-attribute.

So the number of d;’ll) is q.

24



e The number of binary variables )\f’l is m.

To sum up, the maximum number of constraints of (C1)-(C6) is n + 2¢ — 1

and the total number of binary variables is n 4+ g + m.
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Chapter 4 Experiments

This chapter demonstrates the solution process of the proposed method by
two practical data sets, the HSV (Highly Selective Vagotomy) patients and
the European Barn Swallow, and compares the induction results with RST

(or VPRS) and ID3.

4.1 The HSV Patients Data Set

The HSV patients data set is a clinical data set of F. Raszeja Mem. Hos-
pital in Poland. HSV, also called proximal gastric vagotomy, is an effective
method of treatment of duodenal ulcer, which consists of vagal denervating
of the stomach area secreting;hydrochloric acid (Dunn et al., 1980). This
data set is composed of 122 patients with duodenal ulcer treated by HSV,
as described by 11 pre-operatingtattributes: For more details about the data
set, please see Appendix A. The patientsare classified into four classes, ac-
cording to a long-term result of HSV, and all evaluated by a surgeon in the
modified Visick grading, following the definition of Goligher et al. (1978).
Exact values of the considered quantitative attributes are translated into or-
dered qualitative terms, i.e., “high,” “medium,” “low,” etc. This translation
is due to some empirical norms defining intervals of attribute values corre-
sponding to qualitative terms. The terms are then coded by numbers 1, 2,
3, etc., which create the domain of coded attributes. The norms adopted in

the study are shown in Table 4.1 (Slowinski, 1992).
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Table 4.2: The best rule for each class of HSV found by ROSE2

No. Rule

1 if (ag =2) A (ags = 1) A (ag = 2), then c =1

2 if (ag=1)A(ag=1)A(ag =1) A (a5 =3) A (ag =2) A (a11 = 3), then ¢ =2
3 if (a3 =1) A (ag =1), then ¢ =3

4 if (ag = 1) A (a6 = 3) A (a10 = 3) A (a11 =4), then c =4

4.1.1 Rules Induced by RST and ID3

Here, we use a software tool named ROSE2 (Rough Sets Data Explorer)(Predki
et al., 1998; Predki and Wilk, 1999) to induce rules by RST. The compu-
tations of ROSE2 are based on rough-set fundamentals. Table 4.2 lists the
best rule for each class found bysROSE2.

Figure 4.1 is the partial HSV classification tree by ID3, which only lists
the best path for each class. For example, from: the branch a, = 1, ag = 3,

a1 = 4 and a9 = 3, the leaf'e = 4"is reached. It means that

c‘if (a4 = 1) and (CLG = 3) and (a11 = 4) and (alo = 3),

then the objects belong to class 4”.

4.1.2 Rules Induced by the Proposed Method

To simplify the presentation, we utilize Model 3.1 to induce rules where the

accuracy rate is fixed at 100%. The used model is as follows:
Max C'RM
subject to: constraints (C1)—(C7), and

ARM =1,
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aqq d1i0 ds 3 a 3
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c=2 c=2 as -c=1 ec=1 B
|3/'2\1| 3=
c=2 c= c=4

Figure 4.1: A partial ID3 decision tree for HSV data set.

SRk > Q,

where C'R*! is to be maximized with restrictions that AR® = 1 and SR¥! >
a. « is a parameter value. The best, rule found and the second best rules for
cach class are listed in Table:4.3. RbYt-means the best rule for class 1, and

19

R'Y? is the second best rule for elass 1. "R is-found by specifying o = =

(there is no feasible solution for @ =) which- means

“if (ag =2) and (ay =1"0r2 or 3) and (a9 = 3),

then the objects belong to class 17.

The rule R'! is supported by 19 objects. They are z1, x4, Tg, T11, T15, T19,
Ta5, T27, Ta6, Ts7, T61, T71, T3, Tss, L94, T104, T106, L111, and T1y7. Its support
rate is SRV = % = 0.24 . There are eight attributes ignored and five active

sub-attributes in R™!, so its compactness rate is CRM = L(8 +1 — 221 =

17

0.81. The second best rule R%? is conveniently induced by adjusting o = o

and adding the following new constraint to Model 3.1.

12 12 . 12, 12 . 12, 12, 12 . 12, 12, 12 , 12
Uy F Uy Uy U Uy Uy T Ugs Uy T Uyg + Usy Tt Ug)

12 12 12 . 12, 12 1,2 1,2 1,2
+uzy +ugy +ugy + ugy + Uppy + Uypg + Uiy Ui < 19.
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The solution is R%?, which means
“if (ay =2) and (ag = 2 or 3), then the objects belong to class 1”

with CR? = 0.90 and SR'? = (0.16. In the same processes, the best rules for
remaining three classes are obtained. The SR of the best rules for classes 2,

3, 4 are 0.22, 0.38,0.23, respectively, and C'R are 0.72, 0.81, 0.63, respectively

4.1.3 Comparison of Results

Here, we compare the proposed method with ROSE2 and ID3. Table 4.3 lists
the best rules found by the three methods. All the rules listed here are 100%
accuracy. For class 1, RY with CRY! = 0.81 and SRY! = 0.24 and R'? with
CRY = 0.90 and SR%? = 0.16 are the best and second best rules found by
the proposed method, respectively. B3 with C R%? = 0.81 and SR'3 = 0.16
is the best rule that can be found by ROSE2: It is worse than R'! and
RYZ. RY with OR'" = 081 and"SR'* = 0.15, the best rule that can be
found by ID3, is even worse than-R3. For:class 2, R*! with CR*' = 0.72
and SR*! = 0.22, the best rule found by both the proposed method and
ID3, is better than R*? with CR?? = 0.53 and SR*? = 0.22, the best rule
that can be found by ROSE2. Consider class 3, R*! with CR*! = 0.81 and
SR3! = (.38 is the best rule found by the proposed method. Although R3?
with CR3? = 0.91 and SR>? = 0.25 is the second best rule found by the
proposed method, it is the best rule that can be found by ROSE2. R?*? with
CR3? = 0.81 and SR*? = 0.25, the best rule that can be found by ID3, is
worse than R*2. Similarly, R*!, the best rule found by proposed method, is

better than R*3, the best rule that can be found by ROSE2 and ID3.
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Table 4.4: Norms for attributes of the European barn swallow data set

Domain (code)

No. Attribute [units] 1 2 3 4
a;  Head and bill length [mm]  [28.9,29.48) [29.48,30.05)  [30.05,30.53)

az  Right streamer length [mm] [74, 87.8) [87.8,101.5)  [101.5,115.3)

as  Mid tail length [mm] [41,43.8) [43.8,46.5) [46.5,48.3)

aqy  Left streamer length [mm] [77,89.8) [89.8,102.5)  [102.5,115.8)

as  Right wing length [mm] [118,121.3)  [121.3,124.5) [124.5,128.8)

ag  Left wing length [mm] [118,121.3)  [121.3,124.5) [124.5,128.8)

ar  Mass [g] [16.6,18.38  [18.38,20.15) [20.15,22.63)

ag  Wing area [mm?] [3780,4873) [4873,5966)  [5966,6291)

[
[
[
[
[128.8,133)
[
[
[

30.53,31)
115.3,129)
48.3,50)

115.8,129)

128.8,133)
22.63,25.1)
6291, 6616)

4.2 The European Barn Swallow Data Set

The European barn swallow.((Hirundo. rustica) data set was obtained by
trapping individual swallows in Stirlingshire, Scotland, between May and
July 1997 (Beynon and Buchanan,2003)--This'data set contains 69 swallows,
which were described by eight"attributes: For more details about the data
set, please see Appendix B. The birds are classified by gender of each bird.

The norms of attributes of the swallow data set are shown in Table 4.4.

4.2.1 Rules Found by VPRS and ID3

The rules found by VPRS (variable precision rough sets), a variant of RST,
as shown in Beynon and Buchanan (2003), are listed in Table 4.5, where AR,
SR and C'R values are computed by this study.

The rules found by ID3, also appearing in Beynon and Buchanan (2003),
are listed in Figure 4.2. Each terminal node of the decision tree classifies all its

associated objects correctly into the identified decision class. At each node,
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Table 4.5: Rules for swallow data set found by VPRS

Rule AR SR CR
1 if(aa=1V2)A(as=1V2)A(ag=1V2),thenc=1 0.97 0.66 0.730
2 if (a1 =3VA)A (a2 =1V2), then c =1 1 016 0.863
3 if (as =3V 4), then ¢ = 2 1 072 0.996
4 if(ag=1V2)A(as=3V4)A(ag=3V4),thenc=2 097 031 0.730

The rules are extracted from Beynon and Buchanan (2003) where AR, SR and CR

are computed by this study.

Table 4.6: Some better rules for swallow data set found by 1D3

Rule AR SR CR
1 if(ae=1V2)A(as =3V4)A(a3=2V3V4),thenec=1 1 0.66 0.727
2 if(a2=2)A(as=3V4) A(@gr=2V3V4a)then c=1 1 0.06 0.730
3 if (ag =3V 4), then c =2 1 0.72  0.996
4 if (a2 =1V 2) A (a5 = 1 V2)'A (a3 = 17, then c == 1 003 0734
5 if (ag =1V 2) A (a5 = 3 V4) A (a1 ="1)5then ¢/=2 1 0.16 0.734

information is given for the objects associated with it. From the root (top)
node the left-hand branch is defined by ay < 101.5 with 41[32, 9] representing
41 objects satisfying this criteria. Of them, 32 objects have class value ‘1" and
nine objects have class value ‘2’. Also shown to the right of every node box is
the majority proportion of the objects in a same decision class. Continuing
the same example as before, 32/41 = 0.780 is the highest proportion of the
objects at that node to the same decision class. Since this is a complete tree,
a terminal node is identified when the associated majority proportion value
equals 100%. Figure 4.2 can be expressed in "If - -+ Then ---” form as shown

in Table 4.6.
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|
az

<=101.5 >101.5
41[32,9] 23[0,23]

s 78% c=2 100%
<=124.5 >124.5
22(21.1] 19[11,8]
ag 95:5% a4 57.9%
<=43, >43.8 «=29 48 >00 48
m S[09] 14[11,3]
c=2100% 100%C=1  C=2100% ED 5 6%
<=87 >87 5
12[11,1]%
91.7% ag 100% c=2
<=4837 >4837
1[0,1]KI\‘11[11,0]
100% C=2 c=1100%

Figure 4.2: The ID3 decision tree for swallow data set. (Beynon and
Buchanan, 2003)

4.2.2 Rules Induced by the Proposed Method

Here, we use Model 3.2 to induce rulés: First, we specify AR > 0.97, SR >
0.66 and CR > 0.730, then the optimal gohttion is the first rule in Table 4.7.

Similarly, we specify other three sets of a values to get other three rules as

listed in Table 4.7.

Table 4.7: Rules for swallow data set found by the proposed method

Rule AR SR CR AR SR CR

as=1V2)A(as=1V2),thenc=1 097 066 0.730 097 0.66 0.863
(a2 =1V 2), then ¢ =1 1 016 0863 1 0.6 0.867
, then ¢ = 2 1 072 099 1 072 0.996

= W N
MR R

)
A (ag =3V 4), thenc=2 097 0.31 0.730 0.97 0.31 0.863




4.2.3 Comparison of Results

Compare Table 4.7 with Table 4.5 and Table 4.6 to know that the proposed
method can induce rules with better or equivalent values of AR, SR and
CR. For example, the aspiration levels AR, SR and C'R of the four rules in
Table 4.7 are set as equal to the corresponding AR, SR and C'R in Table 4.5.
The results show that the first, second and fourth rules in Table 4.7 are better
than the corresponding rules in Table 4.5, and the third rule in both table
are the same. In fact, the proposed method can induce optimal solutions

while ROSE2 and ID3 may find only feasible solutions.

35



Chapter 5 Implementation

MCOCR (Multiple Criteria Optimal Classification Rules) is a software tool
implementing the models proposed by this study. It is currently a proto-
type. MCOCR is developed by DELPHI 7.0 and runs on the Microsoft
WindowsXP operating system. The computing kernel behind MCOCR is
LINGO 9.0. MCOCR gathers input data and relative parameters from users
in order to generate a corresponding LINGO program, then calls LINGO
to solve such a program. Finally, MCOCR interprets the results returned by
LINGO into rules form.

Before starting MCOCR, an input data file must be prepared. The input
data file contains the data set to be induced rules. In addition, the input data
file also contains some meta-information about the data set itself. So it must
follow the input data file formaty oetherwise MEOCR cannot work properly.
For more detail about input data. file format., please see Appendix C.

When starting MCOCR, you will see the window shown in Figureb.1.

There are five tags in the window:

e Model: for choosing which model (i.e., Model 3.1, 3.2 or 3.3) used

Parameter: for inputting parameters that MCOCR needs

Origin Data: for showing contents of an input data file

e Program: for showing the LINGO model generated by MCOCR

Result: for showing the rules induced by MCOCR
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So, the fist thing is to decide what model used. Here, Model 3.1 is used
as an example. After chosen a model, the user must input some related

parameters. There are some steps to induce rules.

e Select an input data file (Figure 5.1). After chosen an input data file,
the “Origin Data” tag appears (Figure 5.2). Click the tag, contents of

the input file will be displayed on the window (Figure 5.3).
e Select an objective, for instance, “max C'R” (Figure 5.4).

e Specify lower bounds, for instance, “AR” and “number of supporting

objects” (Figure 5.4).
e Specify the class value to classify (Figure 5.4).

e Generate LINGO program (Figure5.4).-While LINGO program gen-
erated, the “Program? tag appears (Figure-5.5). Click the tag, contents
of the generated LINGO:program- will -be displayed on the window

(Figure 5.6).

e Induce rules(Figure 5.7). The “Result” tag will appear while a rule
generated and generated rules will be displayed on the window (Fig-

ure 5.8).

e Induce next rules if needed (Figure 5.9). The rules will display on the

window after previous rules (Figure 5.10).
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Model  Parameter |
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5R or Num, of Supporting Objects
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Geterate Frogam

Step ;.

Step B Induce Rule

Figure 5.1: Stepl: Click ”Select Data File” button to select an input data
file g

X - s
=L |
- ’ "I
2 MCOCR. Betal [_ O] x]
Eile Help
Model  Parameter | Drigin Datall‘e
)

Please input parameters for Model 1

Step1: |{Select Data File I |D:\D elphi_Rule 09025HYSFUlDB31 kt
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o en eenea |
& Num of Supporting Ohjsots |

Stepds Specili the Houp 1o Elasiy |

Geterate Program

Step 5

Step [nduce Huls

Figure 5.2: After chosen an input data file, the “Origin Data” tag appears.
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w
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Figure 5.3: Click ”Origin Data” tag, the contents of the input file will be

displayed on the window.

7 MCOCR Betal
File Help
Model  Parameter | Origin Datal

Please input parameters for Model 1

Step1:  Select DataFile I |D:\DeIphi_F!uIe_DSD2\HVSfuII0831.txt
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Step 3: Specify Lower Bounds
AR [DeARe=1] |1
CHTER=1] |

SR or Num, of Supporting Objects

 sR(0esRe) |

& Mum, of Supporting Dbjgcts |3

Step 4: Specify the Group to Clazsify |21

Step 5 Generate Program [!

Step B: [nduce Hule

Figure 5.4: Select an objective. The "max CR” is chosen, here. Specify
Lower Bounds. The AR is specified as 1 and the number of supporting
objects is specified as 3, here. Specify the class to classify. Here is 2. Click

”Generate Program” button to generate LINGO program.
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Figure 5.5: After ”Generate Program” button clicked, the ”"Program” tag

appears.
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Figure 5.6: Click ”Program” tag, the contents of the generated Lingo pro-

gram will be displayed on the window.
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Figure 5.7: Step 6: Click "Induce Rule” button to start inducing rules.
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Figure 5.8: The "Result” tag will appear while a rule generated and generated

rules will be displayed on the window.
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Figure 5.10: The result of "Induce Next Rule”.
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Chapter 6 Discussions and Remarks

6.1 Discussions

This study develops a multiple criteria mixed 0-1 linear programming model

to induce rules. Some advantages of the proposed method are listed below:

(i) Solution quality: The rules obtained by the proposed method are glob-
ally optimal solutions, but the rules obtained by RST or ID3 may just

be feasible solutions.

(ii) Multiple criteria: Three criteria accuracy rate, support rate, and com-

pact rate are considered to be maximized simultaneously.

(iii) Constraints: The proposed method is conveniently to add other con-
straints to fit requirements, but it is difficult to do in RST and ID3

methods.

Although the proposed method is applied in biology and medicine infor-

matics, it can apply in a variety of research and application areas.

6.2 Remarks

Although the adventages mentioned above, there are some limitations of
proposed method, which are the future works of this study.

The number of binary variables uf’l and v®! is direct propotion to the
number of obejcts n in such data set. While the number of objects become
large, the computation time will increase, seriously. The numbers of binary

variables )\?’l and d;’; are also direct propotion to the numbers of attributes m
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and sub-attributes ¢, respectively, but this is a relatively minor problem since
the numbers of attributes and sub-attributes are not very large in most cases.
So, how to discrease the number of v and v¥! is a major issue for future

works.
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Appendices

A The HSV Patients Data Set

The data set as shown in Table A.1, is composed of 122 patients with duo-
denal ulcer treated by HVS, described by 11 pre-operating attributes. At-
tribute 1 — 4 concern anamnesis, and the remaining attributes are related
to pre-operation gastric secretion examined with the histaminic test of Kay
(1967). The patients are classified according to a long term result of HVS,
evaluated by a surgeon in the modified Visick grading. The grading was

derived from the following definition Goligher et al. (1978):

e Excellent: absolutely no symptoms, perfect result. The class index,

1, is given.

e Very good: patient ‘considers'result perfect, but interrogation elicits
mild occasional symptoms. easily controlled by a minor adjustment of

diet. The class index, 2, is given.

e Satisfactory: mild or moderate symptoms easily controlled by care,
which cause some discomfort, but patient and surgeon are satisfied with
result which dose not interfere seriously with life or work. The class

index, 3, is given.

e Unsatisfactory: moderate or sever symptoms of complications which
interfere with work or normal life; patient or surgeon dissatisfied with
result; includes all cases with recurrent ulcer and those submitted to
further operation, even though the latter may have been followed by

considerable symptomatic improvement. The class index, 4, is given.
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Table A.1: The HSV patients data set with original values of attributes

No. al a2 a3 a4 ab ab a7 a8 a9 al0 all class
1 1 46 12 0 5.6 79 50 4.4 19 119 22.6 1
2 0 27 3 1 125 58 15 7.3 26 120 31.2 1
3 0 25 6 0 115 77 15 8.9 16.1 93 15 1
4 0 48 3 0 156 29 2 4.5 28.7 186 53.4 1
5 1 26 0.5 0 7.6 80 45 6.1 17.1 101 17.2 3
6 0 32 5 1 119 56 100 6.7 13.6 150 20.4 1
7 0 26 2 1 6.1 19 8 1.2 148 58 8.6 1
8 1 28 2 1 6 36 40 2.2 204 65 13.33 1
9 0 55 30 0 16.8 118 12 19.8 404 172 69.6 1

10 0 21 5 3 209 111 32 232 345 270 93.1 2
11 0 37 2 0 126 152 30 19.2 38.7 202 78.2 1
12 0 48 5 2 2.3 73 6 1.7 5.5 199 10.9 2
13 0 43 20 3 8.1 97 32 7.8 11 120 13.2 3
14 0 30 2 0 10 15 15 1.5 1838 121 22.7 1
15 0 49 14 2 11.7 118 38 13.8 23.2 266 52.5 1
16 0 27 3 1 9.5 154 25 14.6 13.5 141 19.1 1
17 0 28 10 0 209 178 26 36.1 23.3 214 49.8 1
18 1 40 4 0 8.1 62 17 5 5.6 41 2.3 4
19 0 60 20 0 134 107 27 14.3 19 335 63.5 1
20 0 22 4 0 3.5 176 40 6.1 5.6 190 10.6 2
21 0 21 4 0 1 155 66 1.6 2.6 160 4.2 1
22 0 21 6 4 4 360 210 14.4 3.4 211 7.1 1
23 0 28 0 1 6 152 15 9.2 9.8 227 22.3 1
24 0 31 2 3 1.8 60 10 1.1 123 117 14.4 3
25 0 37 3 0 8.5 94 20 8 17.3 188 32.6 1
26 0 22 2 0 8.3 1Ll 28 9.2 208 192 39.8 1
27 0 43 5 0 1.9.°-401 53 7.5 16.3 94 15.2 1
28 1 59 1 0 4.8 30 12 174 9.3 27 5.2 1
29 0 32 3 0 528164 35 4.5  10.3 178 18.3 1
30 0 34 8 0 6.3 82 13 5.2 7.4 130 9.6 1
31 0 51 1 0 8.6 87 25 i.o@m 13.7 230 31.4 1
32 0 41 20 0 2.6 29 15 0.8 6.1 108 6.6 1
33 1 50 5 1 2.5 44120 1.1 4.1 49 2.1 1
34 0 24 2 0 *14.1 . 160 22- 22i5.7 21.2 209 44.4 1
35 0 32 3 0 9. 122 45 109 15.7 223 35 1
36 0 30 8 0 85 =121 26+ 10.3 5.7 261 11.4 1
37 0 63 2 0 5.8 60 34 3.5 8.7 133 11.5 1
38 0 30 2 1 1.7 171 60 2.8 4.7 139 6.6 1
39 0 21 4 0 147 182 31 26.8 27.5 379 104.2 4
40 0 42 6 0 6.8 319 254 21.8 9.7 266 25.7 1
41 0o 71 4 2 2 34 27 1.1 4.2 185 7.8 4
42 0 34 2 0 4.1 212 32 8.7 5.3 154 8.1 4
43 0 54 2 3 53 166 124 8.7 6.8 236 16 3
44 0 60 0 0 114 127 30 14.5 9.3 148 13.8 2
45 0 33 2 2 8.7 135 54 11.8 29 186 53.8 2
46 0 40 20 1 116 123 88 14.2 22 152 33.3 1
47 1 32 10 1 103 120 20 123 11.9 135 16.1 1
48 0 37 3 0 7.5 86 21 6.4 15 189 28.3 1
49 1 31 5 3 4 56 43 2.2 7.4 137 10.2 1
50 0 25 7 3 2.2 184 10 4.1 5.4 459 24.7 1
51 1 27 1 3 3.1 140 60 4.4 6.6 167 11 2
52 0 56 15 1 8.3 60 17 5 114 72 8.2 1
53 0 23 2 0 6 133 26 8 11.5 113 13 1
54 0 33 14 0 2.9 191 23 5.6 15.5 136 21.1 2
55 0 56 6 3 5.6 140 35 79 125 129 16.1 1
56 1 27 7 1 7.1 270 180 19.1 11.2 345 38.7 1
57 0 51 3 1 3.5 111 50 3.8 15.1 212 32 1
58 0 31 0.5 3 4.7 525 105 24.7 10.8 627 67.7 1
59 0 50 8 4 106 185 21 196 25.3 224 56.6 4
60 1 31 12 0 2 45 63 0.9 7.1 165 11.7 1
61 1 47 2 0 26.1 68 46 177 28 307 86 1
62 0 34 4 2 8.8 95 32 8.3 118 183 12.6 2
63 0 42 1 3 3.7 514 75 19.2 125 312 39.1 4
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Table A.1: (conti.)

No. al a2 a3 a4 ab ab a7 a8 a9 al0 all class
64 0o 27 2 2 4 96 14 3.8 149 69 10.3 4
65 1 32 0.5 0 7.8 69 78 54 16.7 51 8.5 3
66 1 35 3 0 2.3 43 28 1 8.3 90 7.5 1
67 0 36 10 0 3.2 79 38 2.6 9.2 165 15.2 1
68 0 34 2 0 5.5 108 80 6 11.1 121 13.4 1
69 0 27 4 0 3.3 159 72 5.2 5 127 6.3 1
70 1 32 7 0 6.1 43 74 2.6 10.8 326 35.1 1
71 1 47 15 2 2.2 112 35 2.4 16.7 53 8.7 1
72 0 35 7 0 44 118 38 5.2 5.7 129 7.4 1
73 0 28 15 4 7.3 23 110 1.7 9.8 21 20.6 2
74 0 45 24 0 1.4 60 28 0.9 7.1 146 10.3 1
75 1 27 10 0 21 187 225 39.1 39.1 387 151.4 4
76 0 27 4 0 106 127 30 14 11 430 45.6 1
7 0 26 3 0 3.8 283 43 11 11.7 260 30.3 1
78 0 27 4 0 4.6 79 20 3.6 8.7 184 16.1 1
79 0 28 1 1 1 214 40 2.1 8.6 442 37.9 3
80 0 50 32 0 5.1 171 30 8.8 5.1 135 7 2
81 0 28 11 0 4.3 145 65 6.3 6 196 11.8 4
82 0 27 4 0 6 225 50 13.6 18.8 129 24.2 3
83 0 48 10 0 11 102 20 11.2 16.3 142 23.2 1
84 0 30 10 0 9.4 249 70 23.5 18.6 194 36.1 1
85 1 34 15 0 159 136 60 21.6 17.8 184 32.8 1
86 0 22 3 0 10.6 198 30 209 119 188 22.4 2
87 0 30 5 0 8.6 155 37 13.3 139 232 32.1 2
88 0 51 1 1 149 80 20 119 20.7 128 26.5 1
89 1 30 10 0 6.8 136y 1100 9.3 20.7 128 26.5 1
90 0 30 5 0 7,454 213 90 ~45.7 10.5 266 28 2
91 0 35 4 0 3.8 57 116 272 104 191 19.8 1
92 0 30 10 0 576 158 A% 12¢ 12.1 169 20.4 4
93 0 43 6 0 3.1§—122 15 3.8 1.6 208 3.4 1
94 0 42 10 0w 1.7 159 182¢ 18.6 = 19.6 127 24.9 1
95 1 45 12 0 5.2 53 32 2.7 4138 286 39.5 4
96 0 34 1.5 1 4.5 . 104 70 4.6 . 12.1 263 32.6 2
97 0 36 5 0 7.1 . 110 26 79" 135 277 37.4 1
98 0 30 9 0 4.3. 134 55 5.8 8.8 336 29.6 1
99 0 31 5 2 225 19 134+ 0.48 9.1 149 13.5 1

100 0 25 9 0 8.2 60 78 4.9 14.2 151 21.4 1

101 0 30 10 1 1.5 122 80 1.9 5.3 220 11.6 4

102 0 33 5 2 5.7 68 10 3.9 6.4 245 15.6 1

103 0 32 2 0 6 187 60 11.2 11 285 31.4 2

104 0 45 22 2 8.7 80 90 7 423 270 114.3 1

105 0 38 2 0 5.8 58 8 3.4 7.1 148 10.6 4

106 1 56 0.83 0 8.8 73 30 6.4 20 68 13.7 1

107 1 45 11 0 6.3 50 105 3.1 13.2 91 12 4

108 0 32 2 1 8.9 143 75 12.8 10.9 280 30.4 1

109 0 60 2 0 4.2 195 50 8.1 6.5 265 17.3 3

110 1 44 3 2 3.7 86 5 3.2 7.7 170 13.1 2

111 0 49 4 0 6.3 180 15 114 21 115 84.2 1

112 1 28 10 0 9.5 98 60 9.3 14.7 1344 19.7 1

113 0 26 2 0 8.3 82 60 6.8 26.3 330 86.9 1

114 0 39 5 0 7.5 137 14 103 10.7 160 17.1 1

115 0 49 9 0 3.1 150 40 4.6 7 261 18.4 1

116 0 30 1 1 174 76 29 13.2 248 229 56.7 1

117 0 52 4 1 5.7 45 27 2.6 154 242 37.2 1

118 0 45 3 0 5.2 67 128 3.5 11.8 230 27.1 3

119 0 53 7 0 7.4 68 30 5 8.7 140 12.2 1

120 0 29 6 0 157 120 40 18.8 123 220 27 2

121 0 28 4 0 8.9 88 28 7.8 123 163 20 2

122 0 38 5 2 1 128 6 1.3 5.8 145 8.4 1
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B The European Barn Swallow Data Set

Table B.2: The European barn swallow data set with original values of at-

tributes

No al a2 a3 ad ab ab a7 a8 class
1 30 104 47 104 127 127 18.2 4844 2
2 302 107 46 109 127 126 18.3 5434 2
3 30.6 110 45 96 126 126 17.9 6498 2
4 306 108 46 108 126 127 184 5789 2
5 309 123 50 126 130 129 184 5553 2
6 30.2 112 48 100 122 122 17.7 5553 2
7 30 92 47 93 121 122 20.9 5907 1
8 30.5 99 44 99 127 126 17.9 5080 2
9 29 91 44 91 120 120 17.1 5198 1
10 29.6 102 45 104 130 129 18.1 6616 2
11 30.3 94 48 95 123 124 18.7 4962 1
12 29.6 86 47 87 120 120 17 5316 1
13 30 98 46 99 123 123 18.2 5553 1
14 30.2 90 46 89 125 125 18.7 4607 2
15 30.8 88 41 89 126 126 21.7 5198 1
16 29.5 96 46 97 125 125 184 4371 2
17 29.5 85 45 83 130 129 20.1 5434 2
18 30.2 85 45 8 122 122 19.5 5316 1
19 31 100 47 102 123 123 21.8 4371 1
20 30.6 129 44 129 . 12575125 18.2 5671 2
21  29.6 83 4T 83 121 121 19.9 4607 1
22 30.1 115 47 84 m123+7.123 19 4489 2
23 29.7 92 =49 94 =124 124" *22.1 5080 1
24 29.2 91 m 44 QS EoA o T2 20 4844 1
25 29.6 75 46 85 129" 129 @ 19.7 4253 2
26 29.2 110 44 110+.123 123 | 16.7 4962 2
27 30 95 = 47 95wl 2ty 21,/ 21.5 5789 1
28 294 96 744 965 1237124 . "17.2 4607 1
29 29.7 93 44 94 123 123" 25.1 5080 1
30 30.9 105 4574105 121 120 19 5553 2
31 30.1 118 46 118 " "127 128 19.7 5671 2
32 309 84 46 8 125 126 21.2 4962 1
33 296 93 46 87 123 122 21.3 5316 1
34 30.1 110 43 111 126 126 18.9 5198 2
35 29.8 90 43 84 120 120 16.6 5080 1
36 30.4 89 50 91 133 133 20 5434 1
37 305 109 46 109 125 125 17.6 5671 2
38 29.6 108 45 109 125 125 17.1 4726 2
39 304 87 47 87 126 126 21.5 5198 1
40 29.6 86 46 86 124 124 21 5316 1
41 30 99 45 99 125 124 19.7 4844 2
42 30.4 90 41 97 122 122 17.2 3780 2
43  30.1 94 46 96 122 122 18.8 4607 2
44 30.2 113 47 115 126 124 19 6616 2
45 29.7 102 49 95 128 126 17.5 4726 2
46  29.6 93 44 92 122 123 21.7 5434 1
47 299 100 46 97 125 123 19.6 5671 1
48 29.3 97 47 96 130 130 18.5 4962 2
49  30.2 86 47 85 126 126 18 5080 1
50 29.7 85 47 85 125 125 18.8 5080 1
51 30.1 88 45 89 120 122 18.8 4489 1
52 304 106 48 106 124 124 18 4253 2
53 295 105 49 103 126 126 17.8 6025 2
54  30.2 96 48 97 126 125 184 5198 1
55 30 107 45 109 128 128 18.8 6498 2
56  30.9 90 49 89 129 129 204 5789 1
57 29.3 101 48 97 123 123 20.2 4962 1
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Table B.2: (conti.)

No. al a2 a3 ad ab ab a7 a8 class
58 30.3 126 44 125 130 130 17.9 4607 2
59 30 88 48 88 122 121 19.2 4962 1
60 30.7 117 44 119 127 126 19.6 5316 2
61 295 85 48 84 118 118 17.5 5080 1
62 30.8 108 47 108 126 127 18.9 5671 2
63 30.3 97 46 95 126 125 184 5316 1
64 30.6 97 48 97 128 127 18.1 5434 1
65 29.6 90 48 77T 122 121 18.2 5198 1
66 30.2 112 46 113 129 130 19.6 5198 2
67 29.6 93 45 91 119 118 21 5080 1
68 29.7 86 49 86 125 124 17.6 5080 1
69 28.9 74 46 103 127 126 17.3 4726 2
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C The Input Data File Format for MCOCR

The file as shown in Appendix D is a sample input data file for MCOCR. An
input data file represents an input data set. There are three tags in an input

data file.
e Classes: to tell MCOCR that classes’ definitions are beginning.
e Attributes: to tell MCOCR that attributes’ definitions are beginning.
e Objects: to tell MCOCR that objects” details are beginning.

The order of tags ” Attributes,” ”Classes” and ”Objects” is arbitrary.

CLASS.
Format—
Classes [Class num.] [1'st class.index| [2'nd €elass index] ... [n'th class index]

meaning:
e first field means the numbeér of-elasses in the input data set
e the following fields means the ¢lass‘index of each class

Example—

Classes 4 cl c2 c3 c4

The example means that there are four classes in the input data set. Their
index are cl, ¢2, ¢3 and c4, respectively.

NOTE: The initial character of a class index must be ‘C” or ‘c’, and followed

by a number. 0

ATTRIBUTES.
Format—
Attributes

[1'st attribute index] [num. of 1'st attribute values]
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[2’nd attribute index] [num. of 2’'nd attribute values|

[n'th attribute index] [num. of n’th attribute values]

meaning:
e cach row represents an attribute
o first field means the attribute index
e second field means the number of attribute values of such attribute

Example—

Attributes

al 3

a2 ?2

a3 4

a4 3

The example means that there are four attributes in the input data set. Their

index are al, a2, a3 and a4, respectively.
e Attribute al has three possible attribute values, i.e., 1, 2, 3.
e Attribute a2 has two possible attribute values, i.e., 1, 2.
o Attribute a3 has four possible attribute values, i.e.; 1, 2, 3, 4.
e Attribute a4 has three possible attribute values, i.e., 1, 2, 3.

NOTE: The initial character of an attribute index must be ‘A’ or ‘a’, and

followed by a number. OJ

OBJECTS.

Format—

o4



Objects
[1'st obj idx| [1'st obj 1'st attr val] - -+ [1'st obj n’th attr val] [1'st obj cls idx]

[2'st obj idx] [2'st obj 1'st attr val] - -+ [2'st obj n’th attr val] [2st obj cls idx]

[m'st obj idx] [m’st obj 1'st attr val] - - - [m’st obj n'th attr val] [m’st obj cls idx]

meaning:
e cach row represents an object
e first field means the object index
e last field means the class index of such object
e the rest of fields mean the attribute value of each attribute

Example—

Objects

013243cl

022212cl

031121¢c2

042233c3

053142c4

The example means that there are five objects in the input data set. Their

index are ol, 02, 03, 04, 05.
e Object ol belongs to class c1, and each attribute values are 3, 2, 4, 3.
e Object 02 belongs to class c1, and each attribute values are 2, 2, 1, 2.
e Object 03 belongs to class c2, and each attribute values are 1, 1, 2, 1.

e Object 04 belongs to class ¢3, and each attribute values are 2, 2, 3, 3.
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e Object 05 belongs to class c4, and each attribute values are 3, 1, 4, 2.

NOTE: The initial character of an object index must be ‘O’ or ‘o’, and fol-

lowed by a number. O

NOTE: The separator between two fields can only be SPACE.
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D A Sample Input Data File for MCOCR

classes 4 cl ¢2 c3 c4
ATTRIBUTES

al 2

a2 2

a3 3

ad 5

ab 3

ab 3

a7 3

a8 3

a9 3

al0 3

all 4

OBJECTS
0122313213322cl
0211223113323¢cl
0311313213311¢cl
0412213113324c¢cl
0521113213322¢c3
0611323123222cl
o711223111211c¢cl
0821223112311cl
0912313213324c¢cl
01011343213334¢c2
01112213313324c¢cl
01212332211121¢c2
01312343213221¢c2
01411213111322cl
01512333213334¢cl
01611223313222cl
0l1711313313324c¢cl
0l1822313113111c4
01912313213334c¢cl
02011312313121¢c2
02111311321121cl
02211352333121cl
02311123313122¢cl
02411241111221¢c3
02512213213323¢cl
02611213213323cl
02712311323312cl
02822213111111c¢cl
02911212313222cl
03011313213121cl
03112213213223¢cl
03212312111121c¢cl
03322322131111cl
03411213313324¢cl
03511213213323cl
03611313213131cl
03811221322121cl
03911313313334c4
04012313333133¢cl
04112331111121c4
04211213313121c4
04312243333122¢c3
04412123213121c2
04511233223324c2
04612323223323cl
04721323213222cl
04812213213223cl
04921342112121¢cl
05011342313132cl

o7



