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摘要 

 
被測量物的不確定分析在量測科學上是一個重要的課題。然而，被測

量物的意義常被誤解，導致所求得的不確定性區間的意義造成混淆。被

測量物的真值應屬於參數，而測量結果應屬於隨機變數。通常，在測量

科學上估計參數會比預測變數的未來值有意義的多。古典不確定性分析

的理論都是將被測量物定義為隨機變數而發展的，但這會喪失不確定性

區間對於真值的準確性。我們在這篇文章中會討論被測量物的統計分

析。 
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Abstract  
 

Uncertainty analysis of measurement of measurand is an important topic in 

metrology. However, vague statistical concept of measurand results in 

inefficient inference uncertainty for the true measurand. Measurand and the 

variable representing its measurement are completely different in probability 

concept; one is an unknown distributional parameter and the other is a random 

variable. Generally, a parameter may be estimated more efficiently than the 

prediction of the future observation of a random variable. The classical 

uncertainty analysis in literature is developed based on the structure that a 

measurand is a random variable. This misspecification of statistical model costs 

serious price of sacrificing efficiency in constructing uncertainty interval for 

gaining the knowledge of the true measurand. We formally formulate a 

statistical analysis for measurement of measurand.  
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1. Introduction  

 

An experiment for measuring the measurand, the quantity to be measured, is a 

method through a process that tries to gain or discover knowledge of the measurand. 

Measurements always have errors and therefore uncertainties. The practice of 

measurement science has made us realize that the comparisons of measured values 

require, in addition to the proper value, a statement of the reliability and quality of 

that value. General rules for evaluating and reporting uncertainty in measurement has 

been published by the most important and internationally widespread metrological 

publication-ISO (the International Standards Organization) Guide to the Expression of 

Uncertainty in Measurement (GUM, 1993).  According to the GUM, the measurement 

result should be reported with a specified confidence as an uncertainty interval 

defining the range of values that could reasonably be attributed to the measurand. 

Unfortunately, uncertainty analysis of measurement is, in our opinion, totally 

inappropriate for missing the aim of gaining knowledge of real measurand due to the 

conceptual understanding of measurand.  

Those conflicting views on statistical concepts of interpreting a measurand result 

in the inappropriateness. That is, a parameter and a random variable are misleadingly 

interchangeable used to represent the measurand. The efficiencies of predicting an 

unknown parameter and a random variable are remarkably different. In fact, it is more 

capable, from point of probability, in prediction of an unknown parameter than it of a 

future random variable. In GUM B.2.9, the measurand is defined as a particular 

quantity subject to measurement. On the other hand, GUM 3.3.1 also admits that 

measurand could have a true value. Baratto (2008) proposed a new but precise and 

comprehensive definition of measurand guiding that it is a specific quantity that one 
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intends to measure. The terms particularly and specially are to specify that a quantity 

is existed with restrictive conditions or assumptions. Hence, it is generally accepted 

that a measurand is an unknown constant to be predicted.  

The uncertainty analysis becomes confusing for the fact that although a 

measurand is known as an unknown parameter, it is measurable. However, in classical 

statistical models, a parameter in the model is not measurable and is involved in the 

distribution of a measurable random variable. Hence, it is also generally accepted that 

the variable in measuring the unknown measurand be termed a measurand. Hence 

measurand or measurement quantity is used simultaneously to represent a parameter 

to be predicted and the variable for that its observations are used to predict the 

unknown measurand.  

With the confusion, classically, the study of the uncertainty interval for 

measurement is based on a statistical model of random measurand. Let Y denotes the 

random measurand and predicted value ŷ  computed from observations of its input 

quantities. ISO GUM proposes pooling estimated variance components for all sources 

of error with its square root, saying uc (y) termed the combined uncertainty. It then 

reports uncertainty interval in the form of expanded uncertainty, U, as    

UyY ±= ˆ                                                      (1.1) 

where U is termed as                                 

                                                           U = kpuc (y)                                                    (1.2) 

and where kp  is a coverage factor so that this uncertainty interval may cover the 

distribution of the random measurand Y with a fixed confidence, saying 0.95. Is this 

type of uncertainty interval appropriate in gaining proper knowledge of uncertainty in 

prediction of the constant measurand? Or more specific, does an interval covering the 
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random measurand with probability 0.95 also cover the unknown constant measurand 

with the same probability?  

For the common constant measurand, metrologists use different methods of 

measurement and analysis to define different random measurands. There are reported 

values and uncertainty intervals constructed from these different random measurands 

being communicated to other places and other times. These communications are not 

via the shared understanding or knowledge investigation of the common constant 

measurand, since each reported value and uncertainty interval is predictions of its 

corresponding random measurand determined by one method of measurement. The 

constant measurand should be the truth assumed to be unperturbed by variations in 

methods and instruments. Hence, in a course of discussion the perception of the 

method and analysis could differ from metrologist to metrologist, but they must talk 

about the same thing, the prediction of the measurand. Much information and 

knowledge must be lost if we use one reported value and uncertainty interval to 

explain the unknown constant measurand. Why shouldn’t the metrologists develop 

uncertainty interval to interpret the uncertainty of predicted value of the unknown 

measurand? 

Here, in this paper, we want to express the other treatment of the measurand. 

Since the true value of it is a constant, we are supposed to look on it as a parameter. 

Then the uncertainty should be analyzed in terms of parameter. Of course, the 

outcomes are shorter and more meaningful than that of the random variable.   

In section 2, we define the statistical model for random and constant measurand, 

and bring up an example to explain the difference of the uncertainty intervals between 

these two measurands. In section 3 and 4, we take input qualities into consideration. 

We define the statistical models for random and constant functional measurand, 
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respectively. Analyzing the uncertainty in different operations, such as addition, 

subtraction, multiplication and division, we find the variances of the random 

measurand and MSE’s of the constant measurand. In section 5, we carry out four 

examples. We rewrite the measurement function with constant measurand and find the 

uncertainty intervals. Besides, we also compare them with the intervals of random 

measurand method.   

 

2. Uncertainty intervals for Random Measurand and Constant 

Measurand 

 

For the measurand, a particular quantity to be measured, its true value and the 

measurement of this true value are conceptually different in statistics. One is an 

unknown parameter and one is a random variable with a probability distribution and 

then their statistical inferences are with remarkably different efficiencies. We call the 

true value as the constant measurand and the measurement as the random measurand. 

It is supposed that we want to measure the amount of gas in a container. There is an 

unknown and fixed amount of gas contained in this specific container and it is the 

constant measurand. When we have made measurements several times with different 

results, the variable representing the measurement is the random measurand that also 

represents the amount of gas in this container.  However, it is not a fixed number. We 

define statistical models for these two types of measurand. 

In our opinion, the uncertainty analysis of the measurement of the constant 

measurand is more important for metrologists to analyze, not that of the random 

measurand. We study the uncertainty intervals for these two targets separately. The 
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simplest experiment of measurement is that we have a random measurand Y and we 

want to predict it with a random sampleY1,...,Yn . 

 

Definition 2.1 The statistical model for random measurand includes:  

(a) Random measurand: Y with distribution Fy , 

(b) Probability model: Y1,...,Yn  are random sample drawn from distribution Fy . 

 

For a random measurand Y with probability density function fy (y) , the aim in  

developing uncertainty interval is to search an interval u,v( ), nonrandom or random, 

that satisfies 

                                                    fy (y)dy = 0.95
u

v∫ .        (2.1) 

Unfortunately, the pdf fy  is generally not (completely) known so that a 

nonrandom uncertainty interval is not available. With the statistical model from 

random measurand, the observations y1,..., yn  are used for computing uncertainty 

interval for random measurand Y. This idea works for computing a random type or 

even approximate random type uncertainty interval.  

The random measurand represents the measurement variable to measure the 

constant measurand. Next, we consider a model that deals with the true measurand 

value that has a sample of random measurand for prediction. 

 

Definition 2.2. The statistical model for constant measurand includes: 

(a) Constant measurand model: θy  is an unknown parameter that is measurable, 

(b) Probability model: Random variable Y measuring θy  has distribution Fy , 

(c) Sampling model: There are random sample Y1,...,Yn  drawn from distribution Fy . 
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The interest of uncertainty interval for constant measurand is to develop random 

interval T1,T2( )= t1(Y1,...,Yn ),t2(Y1,...,Yn )( ) such that  

                                                  0.95 = Pθ y
T1 ≤ θy ≤ T2{ }.                                           (2.2) 

This may be done by the classical statistical inferences of confidence interval.  

 

Example 1. Suppose that there is a pencil on a table and we would like to measure its 

length. This pencil is the quantity to be measured. Along our definitions, the measured 

length is a random variable called the random measurand and the true length of this 

pencil is the constant measurand. It is supposed that we have random variables 

Y1,...,Yn  representing n measurements of the constant measurand (true length of the 

pencil). We also assume that the instrument for measurement reveals that these 

random variables are independent and identically distributed with normal 

distribution N µy,σ
2( ). The best estimate of the random measurand Y is Y =

1
n

Yi
i=1

n

∑ , 

and a 95% confidence interval for Y is Y − t0.025(n −1) ⋅ s,Y + t0.025(n −1) ⋅ s( ) where S 

is the sample standard deviation with S2 =
1

n −1
Yi −Y ( )2

i=1

n

∑  and t0.025(n −1)  is the 

0.975 quantile of the t-distribution T(n −1) where n −1 is degree of freedom. Suppose 

that we have a sequence of 5 measurements ( mm ) as  

41.12, 41.08, 41.10, 41.14, 41.06. 

These observations are the sample realization of the random measurand. The average 

of these measurements is y  = 41.10mm and sample standard deviation is s = 

0.032mm. The uncertainty interval for the random measurand is 

mmmmmmmm 890.010.41032.0776.210.41 ±=×± . 
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This uncertainty interval indicates that the “next” realization of random measurand Y 

will between 41.011 mm  and 41.189 mm  with probability 0.95. This is not a direct 

connection to the true length of the pencil. Isn’t it weird? 

 

The constant measurand θy  represents the true length of the pencil. With normal 

assumption, 100 1−α( )%  confidence interval for θy  is
n
sty 2α± . Hence, a 95% 

uncertainty interval for the constant measurand θy is n
sty 025.0

ˆ ±θ . In this case, it is  

mmmmmmmm 400.010.41
5

032.0776.210.41 ±=×± . 

The uncertainty intervals of random measurand and constant measurand are with the 

same center point mmy y 10.41ˆˆ == θ . However, the expanded uncertainty for the 

constant measurand is 0.040 mm , which is significant smaller than 0.089 mm , the 

expanded uncertainty for the random measurand. This uncertainty interval indicates 

that we have 95% confidence with true length of the pencil to be between 41.06 mm  

and 41. 14 mm . 

In this example, it is obviously that the primary interest is the true length of the 

pencil on desk, not the next measurement of the length. If we study the random 

measurand, we would stray from the main purpose. Therefore, we should be clear 

about what we are concerned. 
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3. Statistical Methods for Random Functional Measurand  

The GUM was also developed under the assumption that the random measurand Y 

can not be measured directly, but is determined from several input (influence) 

qualities (also random variables) X1,..., Xk  through a known functional relation as  

                                                         Y = h X1,...,Xk( )        (3.1) 

where variables X j ’s are measurements of some other qualities. Any measurement 

for quantity X j  is subject to errors such as offset of a measuring instrument, drift in 

its characteristics, and personal bias in reading. This random effect shows the 

variation in repeated measurements. Hence, this measurement function represents a 

relationship for measturement variable not only a physical law but also a 

measurement process.  

It is assume that there are results X ji,i =1,...,n j , a random sample drawn from the 

distribution of variable X j , that may be observed during the j th experiment. 

  What have been done in literature in dealing with random measurand? 

 

Definition 3.1. The statistical model for random functional measurand includes:  

(a) Measurement variables for measurand: Y = h X1,...,Xk( ), 

(b) Probability model: X1,..., Xk  are input quantities (variables) with joint distribution   

      function F1,...,k x1,...,xk( ), 

(c) Sampling model: For each j, j =1,...,k, X j1,..., X jn j
is a random sample  

      corresponding with random variable X j . 

 

The classical uncertainty analysis is developed based on this model. Let jx̂  be 
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the prediction estimate, classically it is the sample mean x j , of variable X j  from the 

observations x ji,i =1,...,n j . The prediction of future random measurand is     

                                                           ( )kxxhy ˆ,...,ˆˆ 1= .           (3.2) 

This provides a predictor of future observation of the random measurand Y, not an 

estimate of the unknown true value of the constant measurand. It is not complete to 

provide a predictor of Y without an indication of precision. This classical way in 

developing the uncertainty interval of predictor ŷ  is stated below. Let’s 

denote Var(X j ) = σ j
2, j =1,...,k . In the construction of uncertainty interval for the 

random measurand Y, it is generally assumed that jx̂  is the expected value of the 

distribution of input variable X j , so that ])ˆ[( 22
jjj xXE −=σ  and this hold for all j’s. 

With predicted value ( )kxxhy ˆ,...,ˆˆ 1= , the first-order Taylor series approximation to the 

measurement variable Y about the estimates ( )kxx ˆ,...,1̂  gives  

                                                     ( )∑
=

−+≈
k

j
jjj xXbyY

1

ˆˆ            (3.3) 

where khxx
j

k
j hhX

xxhb ,...,1,ˆ
1 ),...,(

===
∂

∂ , called the uncertainty coefficient with respect to 

influence quantity X j . The combined standard uncertainty of the random measurand is 

defined as the square root of its variance, which is approximated as     

 jll

k

j lj
jjjy bbb σσσ ∑ ∑

= ≠

+≈
1

222        (3.4) 

where σ jl = Cov(X j ,Xl ) . 

The uncertainty interval is defined as  

)(ˆ yukyY cp±=  
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with uc (y) = σ y  and kp  is the coverage factor so that this uncertainty interval may 

cover the possible values of random measurand Y with a fixed probability, saying 

1−α . Interpreted by Willink (2006), in a potential series of equally reliable 

independently-determined intervals, this uncertainty interval encloses the value of the 

random measurand Y, on an average, in 100(1−α)  out of every 100 measurements.  

 

Uncertainty in Sum and Differences 

Suppose that we have the measurement variable as  

kXXY ++= ...1 . 

The uncertainty of the random measurand is the square root of its variance.  

The variance is  

∑ ∑
= ≠

+=++=
k

j lj
ljjky XXCovXVarXXVar

1
1

2 ),()()...(σ  

where kljljxXxXEXXCov lljjlj ,...,1,,,)]ˆ)(ˆ[(),( =≠−−= , representing the 

covariance of variables.  

 

Now, suppose that we have the measurement variable as  

Y = X1 + ...+ Xk − (Z1 + ...+ Zm ) .  

The variance of the random measurand is  

∑∑

∑ ∑∑

==≠=≠

= =≠=

−+

++=

mlkjlj
lj

mljlj
lj

k

j kljlj
lj

m

j
jjy

ZXCovZZCov

XXCovZVarXVar

,...,1,,...,1,,...,1,,

1 ,...,1,,1

2

),(),(

),()()(σ
. 

 

Uncertainty in Multiplication and Division  

Suppose that we have the measurement variable as  
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Y = X1...Xk . 

The variance of the measurement variable is   

),()(
2

1

2
lj

lj lj
j

k

j j
y XXCov

XX
YXVar

X
Y ∑∑

≠=










+










=σ . 

 

Suppose that we have the measurement variable as  

Y =
1

X1...Xk

. 

Then, we have variance as  

∑∑
≠=











+









 −
=

lj
lj

lj

k

j
j

j
y XXCov

XX
YXVar

X
Y )()(

1

2

2σ . 

 

Suppose that we have the true measurand as  

Y =
X1...Xk

Xk+1...Xw

. 

Then, we have variance as 

∑

∑∑∑

+==≠

+=≠=≠=










 −
+



















++










=

wklkjlj
lj

lj

lj
ljwkljljkljlj

w

j
j

j
y

XXCov
XX
Y

XXCov
XX

YXVar
X
Y

,...,1,,...,1,

,...,1,,,...,1,,1

2

2

),(

),()(σ

. 

 

 

4. Statistical Inferences for Statistical Model for Constant 

Measurand 

For measurement of the unknown measurand, there are input variables X1,..., Xk  

having joint distribution with sample space Θ j  for every variable X j . There exist 
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unknown parameters θ1,...,θk  in their corresponding parameter spacesΘ j ’s, such that 

the unknown measurand θy  may be formulated as  

                                          θy = h θ1,...,θk( ),θ j ∈ Θ j , j =1,...,k      (4.1) 

where h is a known specified function. Unknown parameter θy  is the true value of the 

measurand, which is the target to be estimated. Input variables are measurements for 

Θ j ’s. They are random variables since the measurements are subject to measurement 

errors. This formulation serves direct way in studying estimation and uncertainty 

analysis for estimation of the constant measurand.  

 

 Definition 4.1 The statistical model for constant functional measurand includes: 

(a) Constant measurand model: θy = h θ1,...,θk( ),θ j ∈ Θ j , where θ1,...,θk  are 

measurable, 

(b) Probability model: X1,..., Xk  are input quantities representing the measurement 

variables, respectively, for parameters θ1,...,θk  with joint distribution 

F1,...,k x1,...,xk( ), 

(c) Sampling model: For each j , j =1,...,k , X j1,..., X jn j
 is a random sample drawn 

from distribution F1,...,k x1,...,xk( ). 

 

This statistical model needs to be further clarified as follows: 

(1) In the measurand model, there exist true parameter values θ10,...,θk0  such that the 

true measurand θy  isθy 0 = h θ10,...,θk0( ). So, in the statistical inferences, we aim to 

predict trueθ1,...,θk . If there are efficient inferences for these unknown parameters, 

then the resulted inferences for measurand θy should also be efficient.  

(2) There is distinction between parameters in measurand model and the parameter in 



 

 13

classical statistical model. In the classical statistical models, unknown parameter 

is not measurable; but in this statistical model for the measurand, the parameters 

θ1,...,θk  and even θy  are measurable.  

(3) The relationship between θ1,...,θk  and joint distribution function F1,...,k x1,...,xk( ) 

has to be practically investigated and specified.  

 

The statistical model specifies the information for establishing theory of statistical 

inference procedures for measurand θy . Practically there are sample realizations 

x j1,...,x jn j{ }, j =1,...,k  for drawing inference conclusions. What has been done in 

literature to deal withθy ? And what has been done to deal with measurand θy  by the 

use of these samples X ji,i =1,...,n j ; j =1,...,k ? 

The inference results depend crucially on the correct relation between parameters 

θ1,...,θk  and joint distribution function F1,...,k x1,...,xk( ). Hence, without involving the 

relation in the construction of inference techniques, any technique in influences of 

measurandθy , such as those proposed in literature, based on realization of random 

samples may provides very biased conclusions.  

 

Let ( )
jjnjjj xx ,...,ˆˆ

1θθ = be appropriate estimate of θ j  based on 

observations x ji,i =1,...,n j{ }, for j =1,...,k . The point estimate of the unknown 

measurand θy  may then be constructed by estimate ofθ j ’s.  

 

Definition 4.2 By letting ( ) kjXX
jjnjjj ,...,1,,...,ˆˆ

1 == θθ , the point estimator of θy  is 

defined as   
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                                                        ( )ky h θθθ ˆ,...,ˆˆ
1= .          (4.1) 

If we replace ( )
jjnjjj XX ,...,ˆˆ

1θθ =  by its sample realization ( )
jjnjjj xx ,...,ˆˆ

1θθ = , 

then this yθ̂  is called the point estimate of measurandθy . 

     Two comments are needed to clarify the measurand estimator: 

(a) The estimator yθ̂  is for estimation of parameter θy . On the other hand, the 

classical estimator ( )kXXh ˆ,...,ˆ
1  represents a prediction of future variable Y. 

Suppose that we let jjX θ̂ˆ =  for all j’s. Then estimate yθ̂  and predictor ŷ  are 

identical. However, their roles are different, one is predicting a future 

observation and one is estimated value of a parameter and then their 

uncertainty intervals are also different.  

(b) In the attempt of gaining knowledge of the true measurandθy , an estimate yθ̂  

is incomplete without an indicator of its precision since there is no confidence 

that we can say for yθ̂  to be equal toθy . Uncertainty interval for estimate of θy  

is an appropriate choice to explain the confidence of possible values ofθy .  

     The mean square error (MSE) of estimator yθ̂  is  

                                                     ( ) 



 −=

2ˆ
yyEMSE

y
θθθ .          (4.2)  

In this constant measurand statistical model, the uncertainty in the result of constant 

measurand estimator yθ̂  is an estimate of the MSE of yθ̂ . Whenever yθ̂  is unbiased 

for true value θy  of the measurand, the MSE of yθ̂  is equal to the variance of yθ̂  as 

2
yy

MSE θθ σ= . Under statistical model for measurand, the first order Taylor’s 

expansion for measurand function h on estimators ( )kθθ ˆ,...,1̂  yields  



 

 15

 ( )∑
=

+−+=
k

j
jjjyy

y
Rc

1
ˆ

ˆˆ
θ

θθθθ           (4.3) 

where we let ( )
ki

j

k
j ii

hc ,...,1,ˆ
1

ˆ
ˆ,...,ˆ

==
= θθθ∂

θθ∂ , the sensitivity coefficient with respect to 

influence parameter θ j , and 
y
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 is the remainder expressed by   
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with 0 < δ < 1. When ii θθ →ˆ , for all i, the remainder term approaches zero more 

quickly than the first terms in (4.3) and all the higher terms are generally neglected, 

provided that the uncertainties in iθ̂ ’s are small and iθ̂ 's are, respectively, close to 

θi ’s.  

The MSE can be substituted into equation (4.3) to yield 
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
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

















−≈

1

2

2

1

2

2

1

ˆˆˆ

ˆ

 (4.4) 

where ( ) 



 −=

2ˆ
jjEMSE

j
θθθ  and, )]ˆ)(ˆ[( lljjEMSE

jl
θθθθθ −−= called the co-mean 

square error between estimates θ j  and θl  which is not necessary to be nonnegative. 

This formulation introduces the uncertainty of estimate yθ̂ , as a linear combination of 
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MSE’s and co-MSE’s associated with parameter estimates jθ̂ ’s. The expected values 

are considered to be the best estimate for parameters.  

There are several comments on this decomposition of MSE of estimator of 

constant measurand: 

(a) MSEθ j
 is the MSE of the constant measurand estimate contributed by the estimate   

      of parameter θ j . 

(b) MSEθ jl
 is the co-mean square error associated with estimates of parameters  θ j   

      and θl  , and that contributes the MSE of the constant measurand estimate. 

(c)  From (4.4), the standard uncertainty of the estimate, yθ̂ , of the measurand that is  

      attributed to the input quantity parameter estimates is a function of the estimated   

     MSEθ j
’s and their estimates of MSEθ jl

’s. 

 

Uncertainty in Sum and Differences  

Suppose that we have the true meaurand as  

θy = θ1 + ...+ θk . 

We also have their estimator as kjj ,...,1,ˆ =θ . We then have  

MSEθ y
= MSEθ j

j=1

k

∑ + Bθ j
Bθ l

j≠ l
∑  

where kjEB jjj
,...,1,]ˆ[ =−= θθθ , representing the bias of estimators jθ̂ ’s.  

     

Now, if we have true measurand as  

θy = θ1 + ...+ θk − (δ1 + ...+ δm )  

the MSE of estimator of true measurand is  
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MSEθ y
= MSEθ j

j=1

k

∑ + MSEδ j
j=1

m

∑ + Bθ j
Bθ l

j≠ l
∑

+ Bδ j
Bδ l

j≠ l
∑ − Bθ j

Bδ l
j≠ l
∑

. 

 

Uncertainty in Multiplication and Division  

Suppose that we have the true measurand as  

θy = θ1...θk . 

Then, we have  

MSEθ y
=

θy

θ j

 

 
  

 

 
  

2

MSEθ j
j=1

k

∑ +
θy

θ jθl

Bθ j
Bθ l

j≠ l
∑ . 

 

Suppose that we have the true measurand as  

θy =
1

θ1...θk

. 

Then, we have  

MSEθ y
=

θy

θ j

 

 
  

 

 
  

2

MSEθ j
j=1

k

∑ +
θy

θ jθl

Bθ j
Bθ l

j≠ l
∑ . 

 

Suppose that we have the true measurand as  

θy =
θ1...θk

θk +1...θw

. 

Then, we have  

MSEθ y
=

θy

θ j

 

 
  

 

 
  

2

MSEθ j
j=1

w

∑ +
j≠ l, j ,l=1,...,k

∑ +
j≠ l , j,l= k+1,...,w

∑
 

 
 
 

 

 
 
 

θy

θ jθl

Bθ j
Bθ l

+
−θy

θ jθl

Bθ j
Bθ l

j≠ l, j=1,...,k,l= k +1,...,w
∑

. 
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Here we list a table to compare the constant and random functional measurands. 

 

5. Example  

 

    The measurement of Y is generally assumed to follow normal or t distribution in 

GUM. However, Sim and Lim (2008) claim that Y actually follows asymmetric 

distribution, not just normal or t distribution. The random measurand can be stated 

as ( ) ( )∑∑
==

−+=−+≈
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jjj

k

j
jjj xXbyxXbyY
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ˆˆˆ , and x j  is always regarded as the true 
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θ j
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=
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value of X j . The distribution of ( )∑
=

−=−
k

j
jjj xXbyY

1

ˆ  is not always normal, if the 

distribution of X j may not be normal. Hence, Sim and Lim consider other 

distributions and the coverage factors corresponding to different distribution. The 

uncertainty interval is Y = y ± kpuc (Y ) . The coverage factor, kp , can be obtained by 

the coefficient of skewness and kurtosis in these distributions. Meanwhile, the central 

moments of random variable are involved to identify those two coefficients. So, Sim 

and Lim focus on coverage factors, corresponding to four asymmetric distributions: 

the Pearson family of distribution, the Tukey’s lambda- distribution, the Tukey’s gh-

distribution, and the GS-distribution.  

Here, we focus on the difference between parameter and variable, which lead to 

different standard uncertainties and uncertainty intervals. In the following examples, 

we’ll express the measurands as the constant ones, if they are actually constants, and 

express the constant measurand function by first-order Taylor expansion. We assume 

that the estimates are unbiased for true value of measurand. Therefore, with MSE of 

the estimate of the measurands, we can obtain a 95% uncertainty interval for the 

constant measurand.  

 

Example 1.   

  

    The first example is drawn from Sim and Lim (2008), and Willink (2006).  The 

measurand Y is the velocity of a type of wave in some medium and measurement 

function is  

Y =
X1

X2
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where X1 is the distance from a transmitter to a receiver and X2 is the time of flight. 

However, this measurand, velocity of a wave, is a particular quantity to be measured.  

The distance between a transmitter and a receiver should be fixed, and it is a constant 

to be measured. Besides, the time of the flight of the wave is a constant as well. 

Therefore, both can be expressed as parameter. We use 1θ  and 2θ to replace X1 and 

X2 respectively, and yθ replace Y. So, the measurement function is  

θy =
θ1

θ2

 . 

The first-order Taylor expansion of measurand function is  

( ) ( )222
2

1
11

22

1

2

1 ˆˆ1
ˆ
ˆˆ θθ

θ
θθθ

θθ
θ

θ
θθ −−−+==y . 

It is supposed that 11̂ θθ −  is distributed as−2 ×10−4θ1V1, where V1 follows a chi-square 

distribution; 22̂ θθ −  is distributed asU2V2 , where U2 follows a uniform distribution 

U[4.5 ×10−6,5.5 ×10−6] and V2  follows an exponential distribution with mean as 1. θ1 

is taken as 4.931 mm, and θ2 as 10.9 ×10−3s. 

    The expected value is  

( ) ( )222
2

1
11

22

1 ˆˆ1)ˆ( θθ
θ
θθθ

θθ
θθ −−−+= EEE y  

while  

( ) 1102)(102ˆ
1

4
11

4
11 ⋅×−=⋅×−=− −− θθθθ VEE

( ) 1
2

105.5105.4)()(ˆ
66

2222 ⋅






 ×+×
=⋅=−

−−

VEUEE θθ . 

Hence, 087.452)ˆ( =yE θ  which is close to θ1

θ2

= 452.385.  

 

    The MSE of the estimate of measurand is 
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MSEθ y
=

1
θ2

2 MSEθ1
+

θ1

θ2
2

 

 
 

 

 
 

2

MSEθ 2
. 

The MSE’s are:  

2
1

4
2
ˆ

)102(21

1
θ

σθ
θ

−×−⋅==
nn

MSE . 








 ++
==

12
2551 222

2̂

2

αββασ
θ

θ nn
MSE , where α = 4.5 ×10−6,β = 5.5 ×10−6 . 

 

Hence, a 95% uncertainty interval for the constant measurand θy  is  









+−

yy
MSEzMSEz θθ θ

θ
θ
θ

025.0
2

1
025.0

2

1
ˆ
ˆ

,ˆ
ˆ

. 

 

Since sample size is needed in the uncertainty interval, we assume that n = 1, 5, 10, 30 

and 50. The uncertainty interval of the method for constant measurand is named as  

UM; that of the method for random measurand is named as USL . In the table below is 

the comparison of USL from Sim and Lim (2008) and UM corresponding to different 

sample size.  

Methods for 

uncertainty interval 

for random 

measurand 

USL, 95% 

uncertainty interval

(n is not involved) 

Methods for 

uncertainty interval 

for constant 

measurand 

UM, 95% uncertainty 

interval  

(n is involved) 

GUF (GUM 

uncertainty 

framework) 

(451.91, 452.86) n=1             (451.9063, 452.8643) 

Pearson family of 

distribution 

(451.96, 452.93)             n=5             (452.1711, 452.5995) 

Tukey’s lambda-

distribution 

(451.95, 452.93) n=10           (452.2339, 452.5368) 
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Tukey’s gh-

distribution 

(451.96, 452.93) n=30           (452.2979, 452.4728) 

GS-distribution 

(Generalized S-

distribution) 

(451.95, 452.93) n=50           (452. 3176, 452.4531) 

MCM (Monte Carlo 

method) 

(452.06, 453.09)  

 

In left columns shows few different methods of uncertainty intervals for 

random measurand. Besides GUM framework, Sim and Lim have tried five other 

methods. There are only slight differences between uncertainty intervals from five 

other methods. In the right columns shows the uncertainty interval for constant 

measurand. We have some finding as below. Firstly, when rounding to hundredth 

digit, UM, with n as 1, is the same as USL of GUF. This clearly indicates that, the 

sample size is not taken into consideration in Sim and Lim’s method. Secondly, in our 

method, the 95% uncertainty interval for constant measurand θy  is shorter than the 

results of Sim and Lim.  

 

Example 2.  

 

    Another example is from Sim and Lim (2008) and Willink (2006). The measurand 

Y is an intensity measured by a circular sensor from a simple measurement function  

Y =
exp(X1)

X2
2  

where X1 is the ideal reading of the sensor which follows a normal N (1.044, 0.0225) 

distribution and X2 is the diameter of the sensor that follows a uniform U (0.57, 0.61) 

distribution. However, the “ideal” reading of the sensor should be the most accurate 
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one, and it should be a constant. The diameter of the sensor is fixed, and it’s a 

constant as well. Since the reading of the sensor and the diameter of the sensor are 

particular quantities that can be measured. So, we use 1θ  and 2θ to replace X1 and X2 

respectively, and yθ to replace Y. So, the measurement function is  

θy =
exp(θ1)

θ2
2 . 

The first-order Taylor expansion of measurand function is  

( ) ( )223
2

112
2

2
2

2
2

ˆ

ˆ2ˆ
ˆ

1111

θθ
θ

θθ
θθθ

θθθθ

−−−+=
eeee . 

 

    The MSE of the estimate of measurand is 

MSEθ y
=

eθ1

θ2
2

 

 
 

 

 
 

2

MSEθ1
+ 2 eθ1

θ2
3

 

 
 

 

 
 

2

MSEθ 2
 

where MSEθ1
=

σθ1

2

n
 and MSEθ 2

=
σθ 2

2

n
. We can obtain σθ1

2 =0.0225, and 

σθ 2

2 =
0.61− 0.57( )2

12
from the given distribution. The question doesn’t indicate the 

value for θ1 and θ2. So, we assume they are unbiased, and estimate them with their 

expected value. We take 1̂θ  as E(θ1) =1.044  and 2̂θ  as E(θ2) =
1.044 + 0.0225

2
= 0.59.  

 

Hence, a 95% uncertainty interval for the constant measurand θy  is  











+−

yy
MSEzeMSEze

θ

θ

θ

θ

θθ 025.02
2

ˆ

025.02
2

ˆ

ˆ,ˆ
11

. 
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    The 95% uncertainty interval for the measurand, [6.001, 11.025], is obtained from 

Wiilink(2006). In the table below is the comparison of USL from Sim and Lim (2008) 

and UM corresponding to different sample size n = 1, 5, 10, 30 and 50 

 

Methods for 

uncertainty interval 

for random 

measurand 

USL, 95% 

uncertainty interval

(n is not involved) 

Methods for 

uncertainty 

interval for 

constant 

measurand 

UM, 95% uncertainty 

interval  

(n is involved) 

GUF (GUM 

uncertainty 

framework) 

(5.7143, 10.7437) n=1             ( 5.680745,  10.63960) 

Pearson family of 

distribution 

(6.0020, 11.0242)             n=5             (7.05134, 9.269008) 

Tukey’s lambda-

distribution 

(5.9948, 11.0111) n=10           (7.37611, 8.944238) 

Tukey’s gh-

distribution 

(6.0016, 11.0164) n=30           (7.707494, 8.612854) 

GS-distribution 

(Generalized S-

distribution) 

(5.9835, 11.0143) n=50           ( 7.80953, 8.510818) 

MCM (Monte Carlo 

method) 

(5.9980, 11.0210)  

 

    In the left columns are uncertainty intervals of random variables.  Among them, 

USL of Tukey’s lambda-distribution and USL of Pearson family are shorter than others.  

In the right columns is the uncertainty interval of constant measurand method. 

Obviously, the 95% uncertainty interval for constant measurand θy  is shorter than the 

results from Sim and Lim (2008) and Willink (2006). Since we can obtain shorter and 

meaningful uncertainty interval for measurand, why not try this method?  
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Example 3. 

 

An example comes from Semyon Rabinovich (1995). The current I, generated by 

γ  rays from standards of unit radium mass, is defined by the expression
τ

CUI = . C is 

the capacitance of the capacitor which helps the ionization current compensate, U is 

the initial voltage on the capacitor, and τ is the compensation time (seconds). The 

measurement is performed by making 27 repeated observations in Semyon 

Rabinovich (1995), with certain fixed conditions: C =4006.3 pF and U=7V is 

established, and compensation time is measured. Under same circumstances, the 

compensation time should be fixed, and it should be a constant. The current, the 

measurand, generated by γ  rays should be constant as well. So, we replace τ with τθ , 

and I with Iθ .  The formula of the current is expressed asθI =
CU
θτ

.  

The first-order Taylor expansion of measurand function is  

( )ττ
τττ

θθ
θθθ

θ −







−+== ˆ

ˆ
ˆ

2
CUCUCU

I . 

 

The MSE of the estimated measurand is  

MSEθ I
= −

CU
θτ

2

 

 
 

 

 
 

2

MSEθτ
 

where 2
2

890.00039041 s
n

MSE == τ

τ

θ
θ

σ
, 2

τθσ =0.01054131 2s , and τ = 74.41481 s as 

best estimate for θτ . So, 2-24100.01001328 AMSE
I

×=θ .   

Therefore, we can obtain a 95% uncertainty interval for the constant measurand θI :  
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( )AMSEzCUMSEzCU
II

1212
025.0025.0 10,377.057910376.6657ˆ,ˆ

−− ××=







+− θ

τ
θ

τ θθ
 

                                              ( )A1010 10,3.770579103.766657 −− ××= . 

 

The 95% uncertainty interval from Semyon Rabinovich (1995) is  

( )AI 101010 1077.3,10752.310)009.0761.3( −−− ××=×±= . 

 

Example 4. 

 

An example from Semyon Rabinovich (1995).  The density of a solid body is 

measured by
V
m

=ρ , where m is the mass of the body and V is the volume of the body. 

Under the same circumstances, the mass and the volume of the solid body wouldn’t 

be changed no matter how many times we measured. They are both particular 

quantities to be measured, so they are constant measurand.  We should replace m with 

θm , v with θv  and ρ  with θρ , in order to show them in terms of parameter. Then we 

express the formula as 
v

m

θ
θθρ = . Please see the 11 repeated measurements in Semyon 

Rabinovich (1995). We haveθm = 252.9120 ×10−3 kg, andθv =195.3798 ×10−6 m3 .  

The first-order Taylor expansion of the measurand function is  

( ) ( )vv
v

m
mm

vv

m

v

m θθ
θ
θθθ

θθ
θ

θ
θθρ −







 −
+−








+== ˆˆ1

ˆ
ˆˆ

2 . 

   

The MSE of the estimate of the measurand θρ  is  
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MSEθ ρ
=

∂θρ

∂θm

 

 
 

 

 
 

2

MSEθ m
+

∂θρ

∂θv

 

 
 

 

 
 

2

MSEθ v

=
1
θv

 

 
 

 

 
 

2

MSEθ m
+ −

θm

θv
2

 

 
 

 

 
 

2

MSEθ v

 

where θm  and θv are regarded as the best estimate of θm  and θv  respectively. 

MSEθ m
=

σθ m

2

n
 , 2-122 102.130545 kg

m
×=θσ  and MSEθ v

=
σθ v

2

n
, 

6-182 101.802727 m
v

×=θσ , and 3
3101.294463ˆ

ˆˆ
m

kg
v

m ×==
θ
θθρ . 

 

Therefore, a 95% uncertainty interval for the constant measurand θρ is  

3
33

025.0025.0 m
kg)101.294470 ,10(1.294456ˆ

ˆ
,ˆ

ˆ
××=








+−

ρρ θθ θ
θ

θ
θ MSEzMSEz

v

m

v

m . 

In our method, expanded uncertainty is z0.025 MSEθ ρ
= 0.007 = 7 ×10−3 kg

m3 .  

 

Now, let’s compare the result with those in Semyon Rabinovich (1995). 

In this case, Semyon Rabinovich tried two different ways to find the expanded 

uncertainty. One is under student t distribution with degree of freedom as 10: the 

relative error is %106.0 -4× , which means the expanded uncertainty is  

3
3-34- 107.76678101.294463%106.0 m
kg×=××× . 

 

The other is under student t distribution with the effective estimate of the degree of 

freedom, 19=effv : the relative error is %107.5 -4× , which means the expanded 

uncertainty is  

3
3-34- 107.37844101.294463%107.5 m
kg×=××× . 
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With the method of constant measurand, the expanded uncertainty 7 ×10−3  is smaller 

than the other two. So, the uncertainty interval of the measurand is shorter. With this 

method, we can provide shorter and more meaningful interval. Why don’t we use it?  

 

6. Conclusion  

     When the measurand is an unknown, but measurable constant, it should be 

regarded as a parameter. We consider the true value of the measurand. With first-

Taylor expansion and Central limit theorem, we have MSE’s of the input quantities, 

and obtain an uncertainty interval for the constant measurand, which covers the true 

value of the measurand.  

In this paper, we clarify the misinterpretation of the constant and variable 

measurand. Before analyzing uncertainty, we should know what we are concerned? 

The prediction of the variable or the estimation of the parameter? If we are dealing 

with an unknown parameter, then we have a more efficient way to analyze the true 

value. In our method, the uncertainty interval of the true value is shorter than that of 

the random measurand method. 

However, criticizing others is not what we want to do; we just have different idea 

about the treatment of the measurand.  We just provide a meaningful and thoughtful 

concept about the measurand. Hope this will be helpful to get more precise knowledge 

about the quantity to be measured.  
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