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Abstract

Uncertainty analysis of measurement of measurand is an important topic in
metrology. However, vague statistical concept of measurand results in
inefficient inference uncertainty for the true measurand. Measurand and the
variable representing its measurement are completely different in probability
concept; one is an unknown distributional parameter and the other is a random
variable. Generally, a parameter may be estimated more efficiently than the
prediction of the future observation of ‘a random variable. The classical
uncertainty analysis in literature is developed based on the structure that a
measurand is arandom variable. This misspecification of statistical model costs
serious price of sacrificing efficiency in constructing uncertainty interval for
gaining the knowledge of the true measurand. We formaly formulate a

statistical analysis for measurement of measurand.
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1. Introduction

An experiment for measuring the measurand, the quantity to be measured, is a
method through a process that tries to gain or discover knowledge of the measurand.
Measurements always have erors and therefore uncertainties. The practice of
measurement science has made us realize that the comparisons of measured values
require, in addition to the proper value, a statement of the reliability and quality of
that value. General rules for evaluating and reporting uncertainty in measurement has
been published by the most important and internationally widespread metrological
publication-1SO (the International Standards Organization) Guide to the Expression of
Uncertainty in Measurement (GUM, 1993). According to the GUM, the measurement
result should be reported with a specified confidence as an uncertainty interval
defining the range of values that could reasonably be attributed to the measurand.
Unfortunately, uncertainty anaysis of measurement is, in our opinion, totally
inappropriate for missing the aim of gaining knowledge of real measurand due to the
conceptua understanding of measurand.

Those conflicting views on statistical concepts of interpreting a measurand result
in the inappropriateness. That is, a parameter and a random variable are misleadingly
interchangeable used to represent the measurand. The efficiencies of predicting an
unknown parameter and a random variable are remarkably different. In fact, it is more
capable, from point of probability, in prediction of an unknown parameter than it of a
future random variable. In GUM B.2.9, the measurand is defined as a particular
guantity subject to measurement. On the other hand, GUM 3.3.1 aso admits that
measurand could have a true value. Baratto (2008) proposed a new but precise and

comprehensive definition of measurand guiding that it is a specific quantity that one



intends to measure. The terms particularly and specialy are to specify that a quantity
is existed with restrictive conditions or assumptions. Hence, it is generally accepted
that a measurand is an unknown constant to be predicted.

The uncertainty anaysis becomes confusing for the fact that athough a
measurand is known as an unknown parameter, it is measurable. However, in classical
statistical models, a parameter in the model is not measurable and is involved in the
distribution of a measurable random variable. Hence, it is aso generally accepted that
the variable in measuring the unknown measurand be termed a measurand. Hence
measurand or measurement quantity is used simultaneously to represent a parameter
to be predicted and the variable for that its observations are used to predict the
unknown measurand.

With the confusion, classically, the study.of the uncertainty interval for
measurement is based on a statistical model of random measurand. Let Y denotes the

random measurand and predicted value-y-computed from observations of its input
guantities. ISO GUM proposes pooling estimated variance components for all sources
of error with its square root, saying u.(y) termed the combined uncertainty. It then
reports uncertainty interval in the form of expanded uncertainty, U, as

Y=9+U (1.1)
where U istermed as

U =k,u.(y) (1.2)
and where k; is a coverage factor so that this uncertainty interval may cover the
distribution of the random measurand Y with a fixed confidence, saying 0.95. Is this
type of uncertainty interval appropriate in gaining proper knowledge of uncertainty in

prediction of the constant measurand? Or more specific, does an interval covering the



random measurand with probability 0.95 also cover the unknown constant measurand
with the same probability?

For the common constant measurand, metrologists use different methods of
measurement and analysis to define different random measurands. There are reported
values and uncertainty intervals constructed from these different random measurands
being communicated to other places and other times. These communications are not
via the shared understanding or knowledge investigation of the common constant
measurand, since each reported value and uncertainty interval is predictions of its
corresponding random measurand determined by one method of measurement. The
constant measurand should be the truth assumed to be unperturbed by variations in
methods and instruments. Hence, in a course of discussion the perception of the
method and analysis could differ from metrologist.to metrologist, but they must talk
about the same thing, the prediction of the measurand. Much information and
knowledge must be lost if we-use one-reported value and uncertainty interval to
explain the unknown constant measurand. \WWhy ‘shouldn’t the metrologists develop
uncertainty interval to interpret the uncertainty of predicted value of the unknown
measurand?

Here, in this paper, we want to express the other treatment of the measurand.
Since the true value of it is a constant, we are supposed to ook on it as a parameter.
Then the uncertainty should be analyzed in terms of parameter. Of course, the
outcomes are shorter and more meaningful than that of the random variable.

In section 2, we define the statistical model for random and constant measurand,
and bring up an example to explain the difference of the uncertainty intervals between
these two measurands. In section 3 and 4, we take input qualities into consideration.

We define the statistical models for random and constant functional measurand,



respectively. Analyzing the uncertainty in different operations, such as addition,
subtraction, multiplication and divison, we find the variances of the random
measurand and MSE’s of the constant measurand. In section 5, we carry out four
examples. We rewrite the measurement function with constant measurand and find the
uncertainty intervals. Besides, we also compare them with the intervals of random

measurand method.

2. Uncertainty intervals for Random Measurand and Constant

M easur and

For the measurand, a particular quantity to be measured, its true value and the
measurement of this true value ‘are conceptually different in statistics. One is an
unknown parameter and one is:a random variable with a probability distribution and
then their statistical inferences are with.remarkably different efficiencies. We call the
true value as the constant measurand and the'measurement as the random measurand.
It is supposed that we want to measure the amount of gasin a container. There is an
unknown and fixed amount of gas contained in this specific container and it is the
constant measurand. When we have made measurements several times with different
results, the variable representing the measurement is the random measurand that also
represents the amount of gas in this container. However, it isnot afixed number. We
define statistical models for these two types of measurand.

In our opinion, the uncertainty analysis of the measurement of the constant
measurand is more important for metrologists to analyze, not that of the random

measurand. We study the uncertainty intervals for these two targets separately. The



simplest experiment of measurement is that we have a random measurand Y and we

want to predict it with arandom sampley,,...,Y..

Definition 2.1 The statistical model for random measurand includes:

(8 Random measurand: Y with distributionF,,

(b) Probability model: Y,,...,Y, are random sample drawn from distributionF, .

For arandom measurand Y with probability density function f,(y), theamin
developing uncertainty interval isto search an interval (u,v), nonrandom or random,
that satisfies

J859dy.=0.95. 2.1)

Unfortunately, the pdf fis generally “not (completely) known so that a

nonrandom uncertainty interval is not-available. With the statistical model from

random measurand, the observations.y,,...,y; @€ used for computing uncertainty

interval for random measurand Y. This idea works for computing a random type or
even approximate random type uncertainty interval.

The random measurand represents the measurement variable to measure the

constant measurand. Next, we consider a model that deals with the true measurand

value that has a sample of random measurand for prediction.

Definition 2.2. The statistical model for constant measurand includes:

(a) Constant measurand model: 6, isan unknown parameter that is measurable,
(b) Probability model: Random variable Y measuring 6, has distributionF,

(c) Sampling model: There are random sample Y;,...,Y, drawn from distributionF,.



The interest of uncertainty interval for constant measurand is to develop random

interval (T,T,)=(t.(Y,....Y,),t,(Y;,...,Y,)) such that
095=P, {T, <4, <T,}. (2.2

This may be done by the classical statistical inferences of confidence interval.

Example 1. Suppose that there is a pencil on atable and we would like to measure its
length. This pencil isthe quantity to be measured. Along our definitions, the measured
length is a random variable called the random measurand and the true length of this
pencil is the constant measurand. It is supposed that we have random variables
Y,..., Y, representing n measurements of the constant measurand (true length of the
pencil). We also assume that the instrument. for .measurement reveals that these

random variables are independent and identically distributed with normal

distributionN(1,,0°). The best estimate of the random measurand Y is Y =%2Yi :

i=1

and a 95% confidence interval for Y is (Y —tye5(N—1)-SY + t,0p5(N—1)- s)where S

is the sample standard deviation with S :nilz(\(i —\7)2 and t,.,.(N-1) is the

-1
0.975 guantile of the t-distribution T(n—1) where n—1 is degree of freedom. Suppose
that we have a sequence of 5 measurements (mm) as

41.12, 41.08, 41.10, 41.14, 41.06.
These observations are the sample realization of the random measurand. The average
of these measurements is y = 41.10mm and sample standard deviation is s =

0.032mm. The uncertainty interval for the random measurand is

41.10mm= 2.776x 0.032mm = 41.10mm= 0.089mm.



This uncertainty interval indicates that the “next” realization of random measurand Y
will between 41.011 mm and 41.189 mm with probability 0.95. This is not a direct

connection to the true length of the pencil. Isn't it weird?

The constant measurand 6, represents the true length of the pencil. With normal

assumption, 100(1- % confidence interval for g isy+tt Hence, a 95%

S
a/Zﬁ '

uncertainty interval for the constant measurand 6, iSO +t .Inthiscasg, itis

S
y 0.025 ﬁ

0.032

5

The uncertainty intervals of random measurand and constant measurand are with the

41.10mm= 2.776 x mm=41.10mm= 0.040mm.

same center point 9:éy =41.10mm . However, the expanded uncertainty for the

constant measurand is 0.040 mm, ‘which is significant smaller than 0.089 mm, the
expanded uncertainty for the random measurand. This uncertainty interval indicates
that we have 95% confidence with true length of the pencil to be between 41.06 mm
and 41. 14mm.

In this example, it is obvioudy that the primary interest is the true length of the
pencil on desk, not the next measurement of the length. If we study the random
measurand, we would stray from the main purpose. Therefore, we should be clear

about what we are concerned.



3. Statistical Methods for Random Functional M easurand

The GUM was also developed under the assumption that the random measurand Y
can not be measured directly, but is determined from several input (influence)
qualities (also random variables) X,,..., X, through aknown functional relation as

Y = h(Xys X,) (3.1)

where variables X;’s are measurements of some other qualities. Any measurement
for quantity X; is subject to errors such as offset of a measuring instrument, drift in
its characteristics, and personal bias in reading. This random effect shows the
variation in repeated measurements. Hence, this measurement function represents a
relationship for measturement variable not only a physica law but adso a
measurement process.

It is assume that there are results X ;,i=1...,n;, @ random sample drawn from the
distribution of variable X, that may be observed during the jth experiment.

What have been done in literaturein dealing with random measurand?

Definition 3.1. The statistical model for random functional measurand includes:

(8) Measurement variables for measurand: Y = h(X,,..., X)),

(b) Probability model: X,,..., X, areinput quantities (variables) with joint distribution
functionF_, (X1 %),

(c) Sampling model: For each j,j =1....k, X ;,...,X

j isarandom sample

jn

corresponding with random variable X;.

The classical uncertainty analysis is developed based on this model. Let X; be



the prediction estimate, classicaly it is the sample mean X;, of variable X; from the
observations x ji,i =1..,n;. The prediction of future random measurand is
§=h(%,..%). (32)
This provides a predictor of future observation of the random measurand Y, not an
estimate of the unknown true value of the constant measurand. It is not complete to

provide a predictor of Y without an indication of precision. This classical way in

developing the uncertainty interval of predictor § is stated below. Let's
denote Var (X j):o?,j =1...,k. In the construction of uncertainty interval for the
random measurand Y, it is generally assumed that >“<j is the expected value of the
distribution of input variableX , so that o = E[(X, — ;)] and this hold for all j's.
With predicted value § = h(X,,..., %), the first-order-Taylor series approximation to the

measurement variable Y about the estimates (%,..., X, ) gives
A k ~
Yag+> b (X=%) (33)

o’h(xl,...,xk)‘
X

J

where bj =

influence quantity X, . The combined standard uncertainty of the random measurand is

defined as the square root of its variance, which is approximated as

k
0'5 ~ ijzajz + ijha“ (3.9

j=1 j#l
where o, = Cov(X,,X)).
The uncertainty interval is defined as

Y =yxku(y)

p



with u.(y) = o, and k; is the coverage factor so that this uncertainty interval may

cover the possible values of random measurand Y with a fixed probability, saying
1-« . Interpreted by Willink (2006), in a potential series of equally reliable
independently-determined intervals, this uncertainty interval encloses the value of the

random measurand Y, on an average, in 100(1- «) out of every 100 measurements.

Uncertainty in Sum and Differences
Suppose that we have the measurement variable as
Y =X +...+ X,.
The uncertainty of the random measurand is the square root of its variance.

Thevarianceis

k
ol =Var (X, + .4 X )= > Var(X )+ > Cov(X,, X,)
j=1

j#l
where Cov(X,, X,) = E[(X; =X)(X;=X)l1#=l, b =1...k , representing the

covariance of variables.

Now, suppose that we have the measurement variable as
Y=X+.+ X -(Z+..+Z).

The variance of the random measurand is

kK m
oo=>YVar(X;)+ Y Var(z,)+ > .Cov(X;,X)

j=1 j=1 j=l, =1k ]
+  >.Cov(Z;,Z)- D Cov(X,,Z)
j=l,j,l=1,.,m j=l,j=1,..k,l=1,..,m

Uncertainty in Multiplication and Division

Suppose that we have the measurement variable as

10



Y =X, X,

The variance of the measurement variableis

oy = Jzk;[xiJ Var (X;) + z(%}ov(xj X))

j=l i

Suppose that we have the measurement variable as

Then, we have variance as

oy = i[;{—Y] Var (X;) + z[%J@v(xjxl) :

j=1 j#l PN

Suppose that we have the true measurand as

FEL

Y= .
Xt b

Then, we have variance as

a§=é(%}Var(xj){ + > J(%}Cov(xj,xl)

jelj A=tk e j =k i

-Y
n —— [Cov(X ., X))
jl ,j=l,..;=k+l ..... w( xj XI ] : |

4. Statistical Inferencesfor Statistical M odel for Constant

M easur and

For measurement of the unknown measurand, there are input variables X,..., X,

having joint distribution with sample space ©, for every variable X;. There exist

11



unknown parameters 6,...,6, in their corresponding parameter spaces®;’s, such that
the unknown measurand ¢, may be formulated as

0,=h(8,...6,)0, € ©,,j=1...k (4.1
where h is aknown specified function. Unknown parameter 6, is the true value of the

measurand, which is the target to be estimated. Input variables are measurements for

®,’s. They are random variables since the measurements are subject to measurement

errors. This formulation serves direct way in studying estimation and uncertainty

analysis for estimation of the constant measurand.

Definition 4.1 The statistical model for constant functional measurand includes:

(@) Constant measurand model: 6, =h(é,..,6,)0, € ©, , where 6,..,6, ae
measurable,

(b) Probability model: X,,..., X, are input quantities representing the measurement
variables, respectively, for'. parameters @,...,6, with joint distribution
Foo (X %),

(c) Sampling model: For each j, j=1...k, X;;,..,X;, is arandom sample drawn

in;

from distribution F_, (X, X, )-

This statistical model needs to be further clarified as follows:
(1) In the measurand model, there exist true parameter values 6,,...,6,, such that the

true measurand 6, is€,, = h(6y,...,6,,). So, in the statistical inferences, we aim to

predict trued,, ..., 6, . If there are efficient inferences for these unknown parameters,

then the resulted inferences for measurand eyshould also be efficient.

(2) Thereis distinction between parameters in measurand model and the parameter in

12



classical statistical model. In the classical statistical models, unknown parameter
IS not measurable; but in this statistical model for the measurand, the parameters

&,...,6, and even 6, are measurable.
(3) The relationship between 6,,...,6, and joint distribution function F_ ,(X;,....X,)

has to be practically investigated and specified.

The statistical model specifies the information for establishing theory of statistical

inference procedures for measurand 6, . Practicaly there are sample realizations
Xz X i =1k for drawing inference conclusions. What has been done in

literature to deal withé,? And what has been done to deal with measurand 6, by the
use of these samples X ;,i =1,...,n;; ] =1,....k?

The inference results depend crucially on the correct relation between parameters
6,....0, and joint distribution functionF_,(X.....X,). Hence, without involving the

relation in the construction of inference techniques, any technique in influences of
measurand &, such as those proposed in literature, based on realization of random
samples may provides very biased conclusions.

A

Let ej:éj(le,...,xjnj) be appropriate estimate of ¢, based on

observations {x,i=1..,n;}, for j=1..k. The point estimate of the unknown

jiv

measurand ¢, may then be constructed by estimate of 6, ’s.

Definition 4.2 By Iettingéj :é?J.(le,...,Xjnj ),j =1,..,k, the point estimator of 6, is

defined as

13



6, =hld....0,). (4.1)
If we replace éj :éj(le,...,xinj) by its sample realization é]. :éj(le,...,xjnj),
then this éy is called the point estimate of measurand 6,
Two comments are needed to clarify the measurand estimator:
(&) The estimator éy is for estimation of parameter §,. On the other hand, the

classical estimator h()A(l,..., )Zk) represents a prediction of future variable Y.

Suppose that we let >2j = éj for al j’s. Then estimate éy and predictor y are

identical. However, their roles are different, one is predicting a future
observation and one is estimated value of a parameter and then their

uncertainty intervals are also different.

(b) In the attempt of gaining knowledge of the true measurand 6, an estimate éy
is incomplete without an indicator of its precision since there is no confidence
that we can say for éy to be equal to g,Uncertainty interval for estimate of 6,

is an appropriate choice to explain the confidence of possible values of 4),.

The mean square error (MSE) of estimator éy is
MSE, = E[(éy—ey } 4.2)
In this constant measurand statistical model, the uncertainty in the result of constant
measurand estimator éy is an estimate of the MSE of éy. Whenever éy is unbiased

for true value ¢, of the measurand, the MSE of éy is equal to the variance of éy as

MSE, :ajy . Under statistical model for measurand, the first order Taylor's

A A

expansion for measurand function h on estimators (91,...,9k) yields

14



0,=0, +zk:c,. 6,-0)+r 4.3)

where we let C = éhel’;"’ek .

influence parameter ¢, and R, isthe remainder expressed by

{ azhgel,, 4.)
-1

ﬁ@z

Al o o)

J¢| 50 ﬁg

6,=0,+5(6 —9.)(91 _91')2

withO<d<1. When é, — 6, for al i, the remainder term approaches zero more
quickly than the first terms in (4.3) and.all .the higher terms are generally neglected,
provided that the uncertainties in é, 's are small and é's are, respectively, close to

6's.

The M SE can be substituted into equation (4.3).to yield

MSE, = Eﬂj}k;c, 6,-0 )ﬂ

(300 +3esl-0Ja-a)] )

=1 j=l
k
=D CMSE, +) c,cMSE,
-1 =l
where MSE, = E (6, -6, | and, MSE,, = EI(, ~6,)(4 - )] called the co-mean

square error between estimates ¢; and ¢ which is not necessary to be nonnegative.

This formulation introduces the uncertainty of esti mafteéy , as alinear combination of

15



MSE’s and co-MSE’s associated with parameter esti mateséj ’s. The expected values

are considered to be the best estimate for parameters.
There are several comments on this decomposition of MSE of estimator of
constant measurand:

@ MSEE,j isthe M SE of the constant measurand estimate contributed by the estimate
of parameter 6,.

(b) MSEQjI is the co-mean square error associated with estimates of parameters 6,
and 6, , and that contributes the M SE of the constant measurand estimate.

(c) From (4.4), the standard uncertainty of the estimate, éy , of the measurand that is

attributed to the input quantity parameter estimates is a function of the estimated

MSE, 'sand their estimates of MSE, 's.

Uncertainty in Sum and Differences
Suppose that we have the true meaurand as

0,=0,+..+ 6.

We also have their estimator aséj, j =1...k.Wethen have

k
MSE, =D MSE, +> B, B,

j=1 jl

whereB, = E[6, -6,], ] =1...k, representing the bias of estimators 6, s.
Now, if we have true measurand as

O,=0+.+6—(0+..+5,)

the M SE of estimator of true measurand is

16



k m
MSE, =D MSE, +D> MSE, +> B, B,

j=1
+z Bo"j B(s| _Z Baj B(>‘|

j=l j=l

j=1 j#l

Uncertainty in Multiplication and Division

Suppose that we have the true measurand as

Then, we have

2
<8 4
MSE, =Z(;YJ MSE, +> —-B, B, .

j= YV

Then, we have

2
<8 4
MSE, =Z(;YJ MSE, +> —-B, B, .
j j il Vi

6, = 6,...0,
0k+l' Hw
Then, we have
w (o) 0
MSEHy:Z[—yJ MSEejj{ Yoo+ D) } *-B, B,
j=1 ‘9j il =tk =l =k w ngl _
-0
+ Z _yBe- Be,

0.6 "

j#l, =1k, =k+1...,w ]

17



Here we list atable to compare the constant and random functional measurands.

M SE of the constant measurand

Variance of the random variable

Uncertainty | 6, =6+ ..+ 6 X :
y Mszay:zMSEHj +ZB¢9,- B@I 05=;Vw(xj)+§00v(xj,xl)
in Sum and =t i " '
i 0,=0,+..+6 ; & k m
Differences y T T MSE, =) MSE, + D MSE, +D B, B, | o) = Var(X))+ Y Var(Z))
— (0, +..+9,) =t = = - =
+Y B, B, —> B, B, + > Cov(X;, X))+ Y .Cov(Z;,Z)
- T 2l 1=l k j#,j 0L, ..m
- >.Cov(X,,Z)

Uncertainty | 6, =6..6,

<(g ) 0
MSE, =Z{Hy] MSE, +> —-B, B,
i=1\"]

j= VY

j#l,j=1,..kl=1,...m

0'3 = i(;} Var(XJ ) +Z[XYX| }:OV(XJ' ’ XI)

j=1 j=l

in
Multiplicati
on and 1 (o V ) Ny .
Hyze P MSE, —Z y MSEHJ_+Z y B, B, oizz(x_} vw(xj)+2|[“]00v(xjx,)
Division 1k j=1 0] il 010( AN j= i
6,...6, 2 . 2
9 = 1 K W 0 2 _ L »
0,0, MSEey:Z[—V] MSE, oy Z(X Var(X )
-, 4
Y
0 +{_ o }[ ‘ }COV(XJ-,XI)
+|: + Z }_VBHI BB Jel itk e ket XX
j#l,j = j#l, ] l=k+ W99| A _y
j=l,j 1=k j=l,jl=k+1,..., i N Cov(xj’XI)
z - y B B j=l,j=1 kI =k, w ij|
_+_
i1, j, ki=kin,...w 0,6 %
5. Example

The measurement of Y is generally assumed to follow normal or t distribution in

GUM. However, Sim and Lim (2008) clam that Y actualy follows asymmetric

distribution, not just normal or t distribution. The random measurand can be stated

Y~ 9+§k:bj(xj - %
i1

): A+Zk;bj (X,- —X_,) and x; is always regarded as the true
=

18




k _
value of X;. The distribution of Y—§/=ij(xj —xj) Is not aways normal, if the
j=1

distribution of X; may not be normal. Hence, Sim and Lim consider other

distributions and the coverage factors corresponding to different distribution. The

uncertainty interval is Y =y+k u.(Y). The coverage factor, k;, can be obtained by

the coefficient of skewness and kurtosis in these distributions. Meanwhile, the central
moments of random variable are involved to identify those two coefficients. So, Sim
and Lim focus on coverage factors, corresponding to four asymmetric distributions:
the Pearson family of distribution, the Tukey’s lambda- distribution, the Tukey’s gh-
distribution, and the GS-distribution.

Here, we focus on the difference between parameter and variable, which lead to
different standard uncertainties and uncertainty intervals. In the following examples,
we' |l express the measurands as the constant ones, if-they are actually constants, and
express the constant measurand-function-by-first-order Taylor expansion. We assume
that the estimates are unbiased for true value of measurand. Therefore, with MSE of
the estimate of the measurands, we can obtain a 95% uncertainty interval for the

constant measurand.
Example 1.
The first example is drawn from Sim and Lim (2008), and Willink (2006). The

measurand Y is the velocity of a type of wave in some medium and measurement

functionis

19



where X; is the distance from a transmitter to a receiver and X, is the time of flight.
However, this measurand, velocity of awave, isa particular quantity to be measured.

The distance between a transmitter and a receiver should be fixed, and it is a constant
to be measured. Besides, the time of the flight of the wave is a constant as well.

Therefore, both can be expressed as parameter. We use ¢, and 6,to replace X, and

X, respectively, and 6, replace Y. So, the measurement function is

D

0,=-2.

y

N

The first-order Taylor expansion of measurand function is

éy:éz%e_lz(él_el)_ai}(@_ez).

It is supposed that él — 6, isdistributed as-2 x1076\V,, where V, follows a chi-square

distribution; 92 — 6, isdistributed asU,V,, where U ,follows a uniform distribution
U[4.5x10°,5.,5x10°] and V, followsan exponential distribution with mean as 1. 6,
istaken as4.931 mm, and 6, as 10.9x107s.

The expected valueis

EG) =2+ 1Ef-0)-2E@ -0,

6, 0, 6,
while

E(él - 91): _2X10_491 ‘E(V) = _2X10_401 1

~ 45%x10°+55x10°
E(d,-0,)- EU,)-EV) { j-l.

2

Hence, E(éy) = 452.087 whichiscloseto % =452.385.

2

The MSE of the estimate of measurand is
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2
MSE, =i2MSEH +(i12] MSE, .
y 02 1 62 2
The MSE s are:
)
MSE, =% =Z.(-2x1076)?.
' n n
o2 2 2
msE, = =%(5“ +5lﬂz+2aﬂj,where a=45x10°,$=55x10".

Hence, a 95% uncertainty interval for the constant measurand 6, is

N

0 e 0,
[971 ~ %025 MSEQY ’971 T Zo025 MSEgy j .
2 2

Since sample size is needed in the uncertainty interval, we assumethat n =1, 5, 10, 30

and 50. The uncertainty interval of the method for constant measurand is named as

Uwm; that of the method for random measurand ishamed as Ug . In the table below is

the comparison of Ug. from Sim and Lim (2008) and Uy corresponding to different

sample size.

Methods for

Ust, 95%

M ethods for

Uwm, 95% uncertainty

uncertainty interval | uncertainty interval | uncertainty interval interval

for random (nisnot involved) for constant (nisinvolved)
measurand measurand
GUF (GUM (451.91, 452.86) n=1 (451.9063, 452.8643)
uncertainty
framework)

Pearson family of (451.96, 452.93) n=5 (452.1711, 452.5995)
distribution

Tukey’ s lambda- (451.95, 452.93) n=10 (452.2339, 452.5368)
distribution
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Tukey’'s gh- (451.96, 452.93) n=30 (452.2979, 452.4728)
distribution

GS-distribution (451.95, 452.93) n=50 (452. 3176, 452.4531)
(Generalized S
distribution)

MCM (Monte Carlo (452.06, 453.09)
method)

In left columns shows few different methods of uncertainty intervals for
random measurand. Besides GUM framework, Sim and Lim have tried five other
methods. There are only dlight differences between uncertainty intervals from five
other methods. In the right columns shows the uncertainty interval for constant
measurand. We have some finding as below. Firstly, when rounding to hundredth
digit, Uy, with n as 1, is the same as Ug; of GUF. This clearly indicates that, the
sample sizeis not taken into consideration in'Sim and-Lim’s method. Secondly, in our

method, the 95% uncertainty interval for constant measurand 6, is shorter than the

results of Sim and Lim.

Example 2.

Another exampleisfrom Sim and Lim (2008) and Willink (2006). The measurand
Y isanintensity measured by acircular sensor from a simple measurement function

exp(X,)

Y =
X,?

where X isthe idea reading of the sensor which follows a normal N (1.044, 0.0225)
distribution and X is the diameter of the sensor that follows a uniform U (0.57, 0.61)

distribution. However, the “ideal” reading of the sensor should be the most accurate
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one, and it should be a constant. The diameter of the sensor is fixed, and it's a
constant as well. Since the reading of the sensor and the diameter of the sensor are

particular quantities that can be measured. So, we use 6, and 6,to replace X; and X,

respectively, and 6, to replace Y. So, the measurement functionis

g, - &00)
92

The first-order Taylor expansion of measurand function is

The M SE of the estimate of measurand is
e\’ Ak
MSE, == | MSE; +| 2= | MSE,
r A\, % 0, 2

2

02 O,
where MSE, = rjl and MSE, = :Z 7 We can obtain o =0.0225, and

61-0.57)°
0922 :Wfrom the given distribution. The question doesn’t indicate the

value for g, and 6,. So, we assume they are unbiased, and estimate them with their

expected value. We take él as E(6)=1.044 and 92 as E(6,) = 1044 +20'0225 =0.59.

Hence, a 95% uncertainty interval for the constant measurand 6, is

e e
-5 — IMSE, , =+ MSE, |.
L 022 Zo025 0, sz L0025 9, ]
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The 95% uncertainty interval for the measurand, [6.001, 11.025], is obtained from

Wiilink(2006). In the table below is the comparison of Ug. from Sim and Lim (2008)

and Uy, corresponding to different samplesizen =1, 5, 10, 30 and 50

Methods for Us, 95% Methods for Uwm, 95% uncertainty
uncertainty interval | uncertainty interval uncertainty interval
for random (nisnot involved) interval for (nisinvolved)
measurand constant
measurand
GUF (GUM (5.7143, 10.7437) n=1 (5.680745, 10.63960)
uncertainty
framework)
Pearson family of (6.0020, 11.0242) =5 (7.05134, 9.269008)
distribution
Tukey’s lambda- (5.9948, 11.0111) n=10 (7.37611, 8.944238)
distribution
Tukey’s gh- (6.0016, 11.0164) n=30 (7.707494, 8.612854)
distribution
GS-distribution (5.9835, 11.0143) n=50 ( 7.80953, 8.510818)
(Generdlized S
distribution)
MCM (Monte Carlo | (5.9980, 11.0210)
method)

In the left columns are uncertainty intervals of random variables. Among them,

Ug. of Tukey’slambda-distribution and Ug_ of Pearson family are shorter than others.

In the right columns is the uncertainty interval of constant measurand method.

Obviously, the 95% uncertainty interval for constant measurand 6, is shorter than the

results from Sim and Lim (2008) and Willink (2006). Since we can obtain shorter and

meaningful uncertainty interval for measurand, why not try this method?




Example 3.

An example comes from Semyon Rabinovich (1995). The current |, generated by

y rays from standards of unit radium mass, is defined by the expression| = v .Cis
T

the capacitance of the capacitor which helps the ionization current compensate, U is
the initial voltage on the capacitor, and 7 is the compensation time (seconds). The
measurement is performed by making 27 repeated observations in Semyon
Rabinovich (1995), with certain fixed conditions. C =4006.3 pF and U=7V is
established, and compensation time is measured. Under same circumstances, the
compensation time should be fixed, and it should be a constant. The current, the

measurand, generated by » rays should be constant as well. So, we replace 7 withé_,

and | with 6, . The formula of the current is expressed as6, :C;—U.

T

The first-order Taylor expansion of measurand function is

§ -0y _cu +[_CU)((§ o).

0 0 N N

T T T

The M SE of the estimated measurand is

where MSE, === 0.00030041805", o} 0010541315’ and 7= 7441481 s as

best estimate for 6. So, MSE, =0.01001328x 10 A®.

Therefore, we can obtain a 95% uncertainty interval for the constant measurand 6, :
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cu cu ] :
(7 ~ Zy s [MSE, T s IVSE, ] = (376.6657x107,377.0579x 102 )A

T T

— (3.766657x10°,3.770579x 10" )A.

The 95% uncertainty interval from Semyon Rabinovich (1995) is

| =(3.761+0.009) x10™ = (3.752x 10 3.77x 10 ™°)A.

Example 4.

An example from Semyon Rabinovich (1995). The density of a solid body is

measured by p = g , Where mis the massiof the body and V is the volume of the body.

Under the same circumstances, the mass and the volume of the solid body wouldn’t
be changed no matter how many times we measured. They are both particular
quantities to be measured, so they are constant measurand. We should replace m with

0, v With 6, and p with @, in order to show them in terms of parameter. Then we

express the formulaas 6, = % . Please see the 11 repeated measurements in Semyon

Vv

Rabinovich (1995). We haved, = 252.9120 x10 kg, and §, =195.3798 x 10°m®.
Thefirst-order Taylor expansion of the measurand function is

ép=ﬁ=%+(9ij(ém—9m)+£_992mJ(év—ev).

v \

The M SE of the estimate of the measurand 0, is
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20 ) 20 Y
MSE, = ﬁ MSE, + ﬁ MSE,,

m A

2 2
{eij MSE,_ +[—%} MSE,,

\ v

where 6, and 6, are regarded as the best estimate of ¢ and ¢, respectively.

2

2
MSE, = agm . 02 =2.130545x10"kg? and MSE, :%,

m

o2 =1.802727x10™m’, and §, = - =1.294463x 10° k%3 .

P >|3 >

Therefore, a 95% uncertainty interval for the constant measurand 6,is

0, O k
(7_ s [MISE, B T /7|\/|5E0pJ=(1.294456><103,1.29447O><103) % .

\ \

In our method, expanded uncertainty 1Sz gs+/ MSE, =0.007=7x 10° k%?, :

Now, let’s compare the result with those in Semyon Rabinovich (1995).
In this case, Semyon Rabinovich tried two different ways to find the expanded

uncertainty. One is under student t distribution with degree of freedom as 10: the

relative error is6.0x10% , which means the expanded uncertainty is

6.0x 1006 x 1.294463x 10° = 7.76678x10° k%3 _

The other is under student t distribution with the effective estimate of the degree of

freedom, v, =19: the relative error is5.7 x 10*% , which means the expanded
uncertainty is

5.7 x 1006 x 1.294463x 10°  7.37844x 10° k%la .
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With the method of constant measurand, the expanded uncertainty 7 x107° is smaller
than the other two. So, the uncertainty interval of the measurand is shorter. With this

method, we can provide shorter and more meaningful interval. Why don’'t we use it?

6. Conclusion

When the measurand is an unknown, but measurable constant, it should be
regarded as a parameter. We consider the true value of the measurand. With first-
Taylor expansion and Central limit theorem, we have MSE’ s of the input quantities,
and obtain an uncertainty interval for the constant measurand, which covers the true
value of the measurand.

In this paper, we clarify the misinterpretation of the constant and variable
measurand. Before analyzing uncertainty , we should know what we are concerned?
The prediction of the variable or the estimation of the parameter? If we are dealing
with an unknown parameter, then we have a more efficient way to analyze the true
value. In our method, the uncertainty interval”of the true value is shorter than that of
the random measurand method.

However, criticizing othersis not what we want to do; we just have different idea
about the treatment of the measurand. We just provide a meaningful and thoughtful
concept about the measurand. Hope this will be helpful to get more precise knowledge

about the quantity to be measured.
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