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ABSTRACT

A new combined control chart for multivariate distribution is
proposed. This control chart may be applied on any distribution
that its joint probability density:function in terms of a random
sample is known its distribution. while the existed multivariate
control charts are generally designed only for multivariate normal
distribution. A comparison of this chart with a moving average
control chart by Chen, Cheng and=Xie (2005) for bivariate normal
distribution shows that it“is. very.competitive. When the joint
probability density function is not known in its distribution, an
approximate combined chart is proposed. Studies of ARLs for
these two charts are performed and displayed.
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Combined Multivariate Control Chart

Abstract
A new combined control chart for multivariate distribution is proposed. This
control chart may be applied on any distribution that its joint probability
density function in terms of a random sample is known its distribution
where the existed multivariate control charts are generally designed only for
multivariate normal distribution. A comparison of this chart with a moving
average control chart by Chen, Cheng and Xie (2005) for bivariate normal
distribution shows that it is very competitive. When the joint probability
density function is not known in its distribution, an approximate combined
chart is proposed. Studies of ARL’s for these two charts are performed and

displayed.

1. Introduction

We say that a process is in statistical control if the process distribution
of quality characteristic of the produect-is ¢onstant over time and if there is
change over time, the process.is said. fo be out of control. A control chart
provides the most popular technique for monitoring the process.

Sometimes we encounter process that involvessnumerous quality charac-
teristics of interest. While control eharts, one for each characteristic, may
be constructed, using the multivariafe control chart (Hotelling 72) to avoid
the incorrect (probability) limits has been general application and extensive
research on it (see Mason, et al. (1997) and Wierda (1994) for a review).

However, in this process involving numerous characteristics, there can be
another situation that causes the same problem of incorrect control limits.
In some manufacturing processes, we are frequently dealing with these char-
acteristics whose distribution not only involving some location parameters
but also involving scale parameters. A common method to deal with this
problem is to design a statistical process control scheme that has a probabil-
ity a of type one error and to apply a multivariate control chart separately
to location parameters and to scale parameters. However, incorrect control

limits may also occur for this scheme. For example, when we consider a
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multivariate normal data, the multivariate control chart for location classi-
cally uses the Hotelling T2 that is composed with the sample mean X and
sample covariance matrix and the control chart for scale uses S. These two
charts for location and scale are not independent so that two test statistics
are not independent, Hence, incorrect control limits occurs for this scheme.
We note that univariate normal distribution by using X chart and R (or S)
chart is free of this problem.

This problem has been solved in univariate control chart. Under uni-
variate normal processes, the X chart and S-chart are generally used to
monitor the process mean and process variance, respectively. Many authors
have proposed to combine charts designed for different parameters into a
single chart which can simultaneously monitor various parameters. In the
case of univariate normal processes, for example, Repco (1986), Van Nuland
(1992), Chao and Cheng (1996), Spiring and Cheng (1998), and Yeh and
Lin (2002), these combined charts are designed to simultaneously monitor
the process mean and variance. A goodireview of the existing works can be
found in Cheng and Thaga (2005). Our_interestrin this paper is to generalize

the combined chart for univariate problem to.multivariate model.

2. Combined Control Chart
Let X be a p-variate random wvector with sample space RP represents the
process characteristics of the product: "We ‘consider the process with the

following elements for our concern:

(a1) The process distribution has a probability density function f(z, 01, ...,0k),x €

RP where O1, ..., O, are unknown matrices, vectors or constants.
(a2) A training sample that represents an in-control data of m samples of

sample size n so that a set of estimates él, ey Oy, is available.

(a3) A random sample X, ..., X,, that is drawn from the distribution f(z, 91, ...

for constructing a test statistic.

Woodall (2000) pointed out that a statistical quality control is to test
the hypothesis for that the process distribution is assumed to be known
along with values of the in-control parameters. With estimates (:)1, ey (:)k

computed from the in-control observations, it is appropriate to interprete a



process is in-control when the assumption of the process distribution in the

following as

A A

Hy : f('ra @17 ey @k) = f('ra @17 ey @k) (21)

is true.
The joint probability density function (pdf) of a ramdom sample X7y, ..., X,

when Hj is true is

A

L(%1, ey T, O1, ..., O) = iy f (24,01, ..., O).

Consider that (z,...,72) and (2%, ...,2%) are two observations and we sup-
pose that (z§, ..., z2%) is already classified as an in-control sample point. Then
there is no reason not to classify (z%,...,22) also as an in-control sample
point if L(x‘f,...,x‘}b,@l,...,@k) < L(a8, ...,xz,(:)l,...,(;)k) is true. Suppose

that there is a constant £(O1, ..., Oy) satisfying
l—a="Ps o (L(X1,.s Xn,01,...,0k) > £(O, ..., O4)) (2.2)

where L(X1, ..., Xy, @1, ey @k) serves as a test.statistic for testing hypoth-
esis Hy. We then may set a control chart, as
LEL =¥(61,-..,64)
Test statistic funetiom: (., 2y, O1, ..., Ok ).

If sample points x4, ..., x, from the multivariate distribution has a value
L(x1, ..., T, O1, ..., O) lying above the lower limit £(O1, ..., ©,) and does not
exhibit any systematic pattern, we may say that the process is in statistical
control at the level 1 — a.. Classically we choose 1 —a = 0.9,0.95 or 0.9973.

There is a situation that the test statistic is in a simpler form. Sup-

pose that there is a statistic T = t(xl,...,xn,(:)l, ,@k) and a constant
t*(©1, ..., ©4) such that

A

L(.Tl, . .Tn, @1, .

., B) < £(O4,...,0y) if and only if (2.3)
t(21,s e, Ty O1, ..y Op) < t* '

(61,...,04), or >t*(01,...,0)
If inequality < holds in (2.3), an alternative combined chart is

LCL = t*(Oy, ...,0})
Test statistic function : T' = t(x1, ..., Ty, O1, ..., Of).



On the other hand, if > holds in (2.3), an alternative combined chart is
UCL = t*(0y,...,0y) ) )
Test statistic function : T' = t(x1, ..., Tp, O1, ..., Of).
In the chart with lower control limit, if sample points x4, ..., ,, from the mul-
tivariate distribution has a value ¢(z1, ..., Ty, O, ..., @k) lying below LCL,
we may claim that there is potential assignable cause occurring. On the
other hand, in the chart with upper control limit, if sample points x4, ..., x,
has a value t(a:l,...,a:n,él, ,@k) lying above UC'L, we may claim that

there is potential assignable cause occurring.

3. Combined Multivariate Normal Control Chart
Suppose that the vector X of quality characteristics is multivariate nor-
mal N, (4, ¥) where p-vector 1 and p X p covariance matrix 3 are unknown.

With a random sample X1, ..., X,,, the joint pdf is
1 1 n rg—1
— —35 i (@i—p)' 27 (zi—p)
L(xyy .., Ty, 1, 2) (27r)pn/2|2|n/26 .

Suppose that we have a training sample,z;;,¢ = 1,...,n,7 = 1,...,m of m

groups of size n from an in-control multivariate normal distribution. We

can then calculate m sample p X 1 means '« and m sample p X p covariance

matrices s;, 7 = 1,...,m; a§ well"as their averages 7 = %Zﬁl 7; and
5 = % Z;n:l sj. The appropriate hypothesis' for this in control process

distribution is
Hy: X ~ Np(;:c, 5).

When we consider that Z and § as the true mean and covariance matrix, we

have >0 (X; — )57 1(X; — Z) ~ x*(pn). The inequality
L(Xy,....Xn,2,8) > 4(z,s)

subjected to 1 — o = P5;(L(X41,...,X,,2,5) > {(z,5) yields {(z,5) =
2
1 Xl—«

e e where x?_, satisfies 1 — a = P(x%(pn) < x3_,). We
then have a new control chart when the process distribution is multivariate

normal as

2
X1—a

LOL = Grypgmr” 7

Test statistic function: L(zy,...,2p,Z,5) = We‘é Y (@i—2)'s (zi—7)



For a given observation x1, ..., z,,, we compare its density value L(z1, ..., Zpn, T, 5)
with the lower control limit LC'L. The control chart indicates being out of
control if L(xy,...,zpn,2,5) < LCL.

We denote x3 = Y"1, (X; —Z)'s7'(X; — ) which has distribution x?(pn)
when Hy is true. From the relation L(z1,...,%,,%,§) < LCL if and only if
X2 > x3_,, we may see that the new control chart is exactly a chi-square
control chart as

UCL=x%_,
LCL =0

Test statistic function: x3 = >0 (z; — z)'s ' (z; — 7)

If a sequence of data so that their xZ fall within the control limits LC'L
and UCL, and it does not exhibit any systematic pattern, we say that the

process is in statistical control.

Example 1. To monitor manufacturing fabric, it is interesting in factors
of single-strand break (a measure of the breaking strength) and the weight
of textile fibers (hanks per pound)."“A data of two characteristics for 20
samples of size n = 4 and a study.'of control charting for this samples
have been provided by Amitava«(1998). The Hotelling’s T? chart at level
a = 0.0054 has been contructed that‘indicates sample number 9 an out of
control point. For this bivariate samples, they also conducted two separate
level & = 0.0054 X-charts to monitor the means of single-strand break and
weight of textile fibers, however, they claimed that no sample is indicated as
out of control point in either chart and then they conclude that multivariate
control chart may observe out of control points that couldn’t observe by
separate single charts. It is interesting to see what may happen to apply
the density control chart that we monitor the mean vector but also the
dispersion matrix simultaneously.

We first conduct Hotelling’s T2 chart at level o = 0.01 resulted the upper
control limit UC'L = 9.629 which indicates that sample numbers 9, 11, 14 are
suspected out of control points since they have T2 values 15.25,10.08, 10.66
lie outside the upper control limit. The density control limit at level 0.01 is

LCL = 4.60681F — 11. There is no sample point below this lower control



limit LC'L. That is, sample points showing potential assignable causes due
to the T chart are no-longer out of control points when we apply the density
control chart. To search a reason for the difference between the performance
between the density chart and the Hotelling’s T chart, we compute the
sample covariance matrices of these 20 samples. One way to evaluate the
size of covariance matrices is to evaluate their corresponding determinants.
The following listed sequentially the determinants of these sample covariance
matrices for comparison:
13.2472, 9, 5.4189, 15.1875, 22.5875, 2.6097, 5.5861,
8.5222, 2.0075, 3.7336, 1.84, 0.51, 25.2075, 4.2075
1.7822, 8.01, 48.5811, 4.0736, 51.6536, 5.84.
We see that the determinants of sample numbers 9,11, 14 are, respectively,
2.0075, 1.84, 4.2075. It is clear that these three samples although have
relative large T2 values, however, their sizes in dispersion are moderate so
that the combined performance is not siginificant in terms of density to be
claimed as out of control points.
How can we execute on-line quality control based on density control chart.
The constructed density control chart is

LCL = 4.60681E — 11
Test statistic function: L{®1, .5 &n, ,8) = 1.06153E — 06

24 .01 0. - 2.4
o (S gL " s,

e 20.17 —0.3571°3.29 20.17

For a given observation x1, ..., z,,, we compare its density value L(z1, ..., Xy, T, §)
with the lower control limit LC'L. The control chart indicates being out of

control if L(x1,...,zpn,2,5) < LCL.

Example 2. Ryan (2000) provides an illustrative example with data set to
compare the Hotelling’s T2 chart and the individual X charts. The data set
been studied is a bivariate case that contains 20 subgroups of sample size
n = 4. In this analysis, the upper control limit for Hotelling’s T2 chart is
UCL = 11.04 and it is observed that numbered 10 and 20 sample points are
with T2 values 63.76 and 13.4 respectively. Hence, from the T2 chart, these

two sample points are out of control sample points. This study also present
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two individual X charts that shows only sample point numbered 6 is out of

control.

The author indicated a benefit in using the T2 chart. The sample means
for these two variables show that they are strongly and positively correlated.
It is also seen that the sample means of two variables showing on the re-
spective X charts are both above their respective control midlines or below
their midlines, and the distances to the midline are about the same on each
chart. However, there is one exception. The sample point numbered 10 ex-
hibit far away this pattern, one is well below its midline whereas the other
point is somewhat above its midline. The author declared this benefit of
able detecting the out of trend sample point through the 72 chart whereas
the individual X charts do not share this benefit.

For this data set, we performed in contructing the normal density control
chart that gives lower control limit LCL = 3.26156 F — 15 which indicates
that there is one sample point, numbered 10 with density value 2.46463F —
24, lying below the lower countrol limit.. Hence; based on the criterion of
density, numbered 10 sample 18 an out of control point. We delet this sample
point and re-construct the normalidensity control chart that yields LCL =
1.03162F — 14. Again, only sample point numbered 10 is an out of control
point. The density control chart has'exactly detected the sample point that
does not follow the pattern of the major data set. This is interesting for
use of density control chart when we compare it with the T2 chart and
individual X charts. First, the T2 chart have to pay the price to classify a
sample point numbered 20 that stay on the main trend of the data set as
an out of control point although it has the ability to observe sample point
numbered 10 as an out of control point. Second, the individual X charts do
not observe sample point numbered 20 as an out of control point but also
indicates a sample point numbered 6 as out of control point, unfortunately,

which point also stays on the main trend of the data set.

With sample point numbered 10 deleted, the constructed density control
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chart is

LCL =1.03162F — 14
Test statistic function: L(zy,...,2p,Z,5) = 5.45183E — 10
LIS (g (61.38158) ),<226.7237 100.6974) 71(”_ (61.38158>)

e 18.36842 100.6974  49.50877 18.36842

for on-line process control.

In the case of normal processes, one can actually use the statistic

n

> (@i —2)'s (i — 1)
i=1
for diagnosing whether the mean or the covariance matrix or both are out

of control. Rewrite the statistic as

where z = 2 3" | z; and SS,= 3 7 g(ws= ©)'s '(z; — z). Given z and s

and «, the region
{(z,88;) : SSs +m(z=T)sTHz=7) <xi_,} (3.1)

Any sample which produces (z,S5;) ‘that lies outside of the semi-circle
indicates that the sample is out of control. If s? is closer to 0 while X is
away from Jig, this is an indication that there is a possible mean shift. On
the other hand, if X is closer to jig while s? is far away from 0, it is an

indication that the variance has changed.

4. ARL Study for Normal Density Control Chart

The average run length (ARL) tell us, for a given situation in the dis-
tribution, how long on the average successive control chart points will be
plotted before we detect a point beyond the control chart. Suppose that
the vector of quality characteristics when the process is under control is

multivariate normal N, (p0,0) where we may let o = = and ¥y = 5. We
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consiedr the ARL when X follows the same multivariate normal distribu-
tion but with mean p = po + af and covariance matrix ¥ = b2¥,. When
a = 0 and b = 1, this will be an in control process, otherwise, it is out
of contol process. Now, suppose that we have a random sample X1, ..., X,,
drawn from distribution N, (po + af, b*%y), the ARL under this setting is

derived based on the followings:

-n -n/2_—x2(n
P* = Prarp2y, (L(X1, ..., Xn, po, Xo) < (2m) P/2| 5|/ 2eXa nP)/2)

n

1o +al,b? S Z i — 10)'Sg (Xi — po) > x2(np))
=1

With the fact that X;—po ~ Np(o+al—pio, b*S), we see that (b25) /2 (X;—
o) ~ Np(%Eal/zlf,Ip). This further implies, from the independence as-
sumption, that Z?:l(Xi—,uo)/(szo)_l (X;—po) has a noncentral chi-square
2
na é/

distribution x7,(%4%-£'%y 10) where "b2 ¢'S51¢ is the noncentrality parame-

ter. Hence, we further have

n

2
* - Xa\1tP
P’ = Puo+a£,b2Eo(E (X5 — o) 7o) " (X — po) > b(2 ))

i=1

2
- Xa\1tp

With the derivation of p*, the ARL is formulated in the following

1
p

For displaying its performance, we consider the case that £ = (1,...,1)’
and Yo = I, where this ¥ assumes that this multivariate normal dis-

tribution contains independent normal variables. In this situation, p* =

2
P(Xfw(";ﬁp ) > X‘lb(f? 2)). Restricting to bivariate distribution (p = 2) and

for several cases of sample size n and combinations of (a,b), we display the
ARL’s in the following table.

Table 1. ARL for normal density control chart
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n=2 n=3 n=>5 n =20
a=20
b=1 370.37 370.37 370.37 370.37
b=1.2 42.48 32.88 22.46 5.69
b=1.5 8.02 5.60 3.47 1.17
b= 2.51 1.84 1.33 1.00
b=>5 1.04 1.00 1.00 1
a=0.5
b=1 101.23 84.03 63.13 20.40
b=1.2 21.70 15.79 9.97 2.35
b=1.5 6.07 4.23 2.65 1.07
b=2 2.32 1.72 1.27 1.00
b= 1.04 1.00 1.00 1
a =
b=1 15.14 9.98 5.61 1.34
b=1.2 6.90 4.66 2.80 1.07
b=1.5 3.45 2.43 1.62 1.00
b= 1.91 1.46 1.15 1.00
b=>5 1.04 1.00 1.00 1
In the next, we consider %o = 016 0i6 which indicates that nor-

mal random variables forming the multivariate distribution are positivaly
correlated. We denote k = X7 1¢. With the same design for £, we have
k= 1.25.

We have several comments.drawn fromthe above two tables:
(a) As usual, the ARL for in centrol process‘is 370.37. It is desired that
all other situations that revealed out of control process’ have ARL’s smaller
than 370.37.
(b) For a given a,a = 0,0.5,1, the ARL decreases when value b increases.
On the other hand, when b is fixed the ARL is also nonincreasing when
value a increases. This shows that the chart has better ability to detect a
poorer process.
(¢) Comparing the ARL’s for a fixed combination of (n,a,b) in Tables 1
and 2, we see that ARL for correlated normal variables is relatively larger
than it for uncorrelated one. This means that when correlation exists, the

detection of out of control process is relatively more difficult.

Table 2. ARL for normal density control chart



n =2 n=3 n=>5 n = 20
0

370.37 370.37 370.37 370.37
b=1.2 54.69 44.10 31.98 9.52
b=1.5 11.73 8.47 13.96 1.55
b= 3.66 2.64 2.66 1.01
b=5 1.16 1.05 1.01 1
a=0.5
b=1 120.85 103.96 82.31 31.87
b=1.2 29.88 22.75 15.25 3.86
b=1.5 8.98 6.42 9.30 1.30
b=2 3.36 2.44 2.40 1.01
b= 1.16 1.05 1.01 1
b=1 23.18 16.12 9.55 2.00
b=1.2 10.51 7.33 4.47 1.30
b=1.5 5.16 3.65 4.21 1.05
b=2 2.71 2.00 1.88 1.00
b=>5 1.15 1.05 1.01 1

A combined chart for multivariate normal distribution is not new. Chen,
Cheng and Xie (2005) develoed a‘multivariaté EWMA control chart, named
the Max-MEWMA chart. They also compare this chart with the combina-
tion chart, the combination of x% chart and the |S] chart through the ARL’s
in a Monte Carlo study. They observedrthat this Max-MEWMA chart is
more sensitive than the combination chart in detecting small to moderate
changes in the mean vector and/or the variability. It is then interesting to
compare this density control chart with Max-MEWMA chart and combina-

tion chart. Let’s first define the indices for comparison:

_ ARL of Max-MEWMA
~ ARL of density control chart

ARL of Combination chart
ARL of densitycontrol chart

Ym y Ye =

When the process is in-control, the v values are expected to be 1 since these
charts are designed to have the same first alarm rate. When the process is
out of control, the smaller the 7 values indicate the worser the density control
chart than the other charts and the larger the v values indicate the better
(more sensitive) the density control chart than the other charts. The ARL’s
compuation of Chen, Cheng and Xie (2005) is based on distribution Ny(f, )
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with p = (8) -+ (2) and ¥ = b2 (; T) with case a = 0,b = 1 the in-

control distribution. We follow this design to compute the theoretical values
of ARL’s for the density control chart and compute their corresponding ~y

values. The results are listed in Table 3.
We have several comments drawn from the above table:

(a) When the data is drawn from the in-control distribution (¢ = 0 and

b =1), the three charts are similarly sensitive with equal ARLs.

(b) The Max-MEWMA is designed for detecting smaller changes in the
distribution. We see that when b = 1 and a < 1 this moving average
method is more sensitive than the density control chart in all p’s. In all
cases, the density control chart are better than the moving average chart.
When the samples are drawn from wider situations such as b = 2 the ~,,

values may be as large as 2.

(¢) The combination chart is_mote Sensitive than the density chart in all
cases when b = 1. Again, in all‘other situations, the density chart is better
than the combination chart. This sensitivity is strong for moderate change

in distribution (b = 1.5,2.0) and less strong for wide change (b = 2, 3).

(d) From (b) and (c), we see that when moderate or large changes may occur

in a process, the density control chart is a suitable choice.

Table 3. ARL comparison with Max-MEWMA chart and combination
chart
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a=20 a=0.5 a=1.0 a=2.0
b=1.0
200 78.58 14.45 1.51
p=20.0 Y =1 Ym = 0.14 Ym = 0.26 Y, = 1.32
Ye=1 Y. = 0.61 Ye = 0.45 Yo = 0.72
200 72.76 12.35 1.37
p=0.3 Ym = 1.00 Ym = 0.15 Ym = 0.29 Ym = 1.38
Y. = 1.00 Y. = 0.59 Y. = 0.46 Y. = 0.80
200 52.07 6.69 1.08
p=0.6 Ym = 1.00 Ym = 0.14 Ym = 0.44 Ym = 1.48
Y. = 1.00 Y. = 0.54 Y. = 0.47 Y. = 0.92
200 9.06 1.18 1.00
p=0.9 Y = 1.00 Y, = 0.36 Y = 1.52 Y, = 1.00
Y. = 1.00 Yo = 0.46 Y. = 0.84 Y. = 1.00
b=1.5
2.91 2.56 1.92 1.16
p=20.0 Ym = 1.44 Ym = 1.48 Ym = 1.61 Ym = 1.63
Yo = 1.75 Y. = 1.60 Ye = 1.35 Y. = 1.03
2.91 2.53 1.86 1.13
p=0.3 Ym = 1.44 Ym = 1.50 Ym = 1.61 Ym = 1.59
ve = 1.75 \s7e:=1.58 ve = 1.29 ve = 1.06
291 241 1.64 1.05
p=0.6 Ym = 1.44 H==-1.59 Ym = 1.64 Ym = 1.52
Yo = 1.75 e 1053 Y. = 1.21 Y. = 1.04
2.91 1.75 1.08 1.00
p=20.9 Ym = 1.44 =t 6() Ym = 1.D7 Ym = 1.00
Yo = 1.75 Yo = 1.25 Y. = 1.01 Y. = 1.00
b=2.0
1.26 1.24 1.17 1.05
p=10.0 Ym = 1.82 Ym = 1.85 Ym = 1.88 Ym = 1.71
Yo = 1.34 Y. = 1.29 Y. = 1.19 Y. = 1.04
1.26 1.23 1.17 1.04
p=0.3 Ym = 1.82 Ym = 1.86 Ym = 1.79 Ym = 1.63
Y. = 1.34 Y. = 1.30 Yo = 1.19 Y. = 1.05
1.26 1.22 1.14 1.02
p=0.6 Ym = 1.82 Ym = 1.88 Ym = 1.84 Ym = 1.47
Yo = 1.34 Y. = 1.31 Y. = 1.14 Y. = 1.07
1.26 1.15 1.03 1.00
p=20.9 Ym = 1.82 Ym = 1.82 Ym = 1.55 Ym = 1.00
Yo = 1.34 Y. = 1.21 Y. = 1.06 Y. = 1.00

Table 3 (Continue). ARL comparison with Max-MEWMA chart and




14

combination chart

a=20 a=0.5 a=1.0 a=2.0
b=2.5
1.05 1.05 1.04 1.01
p=0.0 Ym = 1.90 Ym = 1.90 Ym = 1.82 Ym = 1.68
Y. = 1.14 Y. =1.14 Yo = 1.05 Yo = 1.08
1.05 1.05 1.04 1.01
p=0.3 Ym = 1.90 Ym = 1.90 Ym = 1.82 Ym = 1.58
Y. = 1.14 Y. =1.14 Yo = 1.05 Yo = 1.08
1.05 1.05 1.03 1.00
p=0.6 Ym = 1.90 Ym = 1.90 Ym = 1.84 Ym = 1.50
Yo = 1.14 Yo = 1.14 Y. = 1.06 Y. = 1.00
1.05 1.03 1.01 1.00
p=20.9 Ym = 1.90 Ym = 1.84 Ym = 1.48 Ym = 1.00
Y. = 1.14 Y. = 1.06 Y. = 1.00 Y. = 1.00
b=3.0
1.01 1.01 1.01 1.00
p=20.0 Ym = 1.88 Ym = 1.88) Ym = 1.78 Ym = 1.30
Y. = 1.08 Y. = 1.08 Y. = 1.08 Y. = 1.00
1.01 1.01 1.01 1.00
p=0.3 Ym = 1.88 sl 88 Ym = 1.78 Ym = 1.30
Y. = 1.08 Yo.=.1.08 Y. = 1.08 Y. = 1.00
1.01 1.01 1.01 1.00
p=20.6 Ym = 1.88 BT~ PS Ym = 1.68 Ym = 1.20
Y. = 1.08 Yo =1.08 Y. = 1.00 Y. = 1.00
1.01 1.01 1.00 1.00
p=209 Ym = 1.88 Ym = 178 Ym = 1.10 Ym = 1.10
Y. = 1.08 ¥e'="1.00 Y. = 1.00 Y. = 1.00

5. Approximate Density Control Chart

In previous sections, we discussed situations in which the distribution
of the plotting statistics of the density control chart can be readily de-
rived. However, in other applications it may be too complicated to derive
such a distribution. In general, given @1, @2, ey @p, if the distribution of
L(X1, X, .. Xp; (:)1, @2, e (:)p) is too complicated, one can repeatedly gen-
erate samples from f(a:;@l,@g, ...,(:)p) calculate the likelihood of each of
the, say, k generated samples, which are denoted by [y, ls, ..., [x. Then the
LCL can be estimated as LOL = lkaj+1)> where [(1) <) < -+ <l are

the ordered statistics and [a] is the largest integer smaller than or equal to
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a. Here we look at another distribution to illustrate the use of simulations
to approximate the LCL.

Suppose that a quality characteristic follows a multivariate ¢ distribution
having the following density function
[(2LY) 1

2
1
T o2 T

ptv

flz,p, %) = (x—p)S N z—p) 7 ,zeR?

v

where p and ¥ are assumed to be unknown. However, it can be seen that
i and Y are, respectively, the population mean and covariance matrix of
random vector X. Suppose that py and Yo are determined from a training
sample. We carry out the process of generating a sample of size n from
distribution with probability density function f(x,po, ¥¢) & = 1 million
times to form LCL. We conduct the process of generating lower limit LCL
1 million times. By denoting #/ the jth resulting limit, we let approximate
LCL as /= 1 Z;:niillion IZB

We then perform a 1 million replications to generate simulated ARL’s.
Let ;1 and ¥ be the true parameters-forthe multivariate ¢ distribution that
sample X= (X1, .., X;,) be drawns For jthreplication, we consecutively gen-
erate samples and compute their corresponding likelihood L(z1, ..., Zn, to, X0)-

This generation stop when

A

L(xlv"'axnalj'()vEO) <L (51)

We let ARL; be the iteration number for that (5.1) occurs. The simulated
ARL is then defined as

1 million

= ARL;.
=1

ARL = ——
R 1 million 4=

We consider true parameters g = po + a and ¥ = b2%,. The simulated
ARL’s are listed in the following table.

Table 4. Simulated ARL’s for approximate density control chart
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(a,b) ARL (a,b) ARL (a,b) ARL
0,1) 390.52 0,1) 390.52 0,1) 390.52
(0.3,1) | 288.64 | (0,1.1) 86.220 (0.2,1.2) 95.554
(0.5,1) 158.07 | (0,1.3) 11.139 (1,2) 1.2427
(1,1) 24.186 | (0,1.5) 3.9138 (1,5) 1.000075
(1.5,1) 4.772 0,2) 1.3293 (2,2) 1.0915
(2.5,1) | 1.0928 0,3) 1.0142 (3,2) 1.0190
(5,1) 1.0000 (0,5) 1.000075 (3,5) 1.0000

We have several comments for the simulation results in Table 4:

(a) The design (a,b) = (0, 1) reveals that the process is in control and the
theoretical value of ARL is approximately 370. The simulated ARL is 390.52
better than expected value.

(b) The cases in first column consider shift in location parameter p but
with scale parameter unchanged. The ARL decreases rapidly when value of
it moves away from pg. This fulfills our desirability. The ARL’s perform in
a similar manners when the location parameter is unchanged but the scale
increases and both parameters move away.from the control one.

(¢) The performance of the ability of approximate simultaneous control chart

showing in Table 4 seems to be satisfactory:
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