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摘      要 

傳統線性迴歸模型常假設誤之分配為常態或呈對稱分配，估計方法也以最小

平方法為主軸。然而資料分析時若見到比例不低的極端值，或出現估計誤差有偏

斜的狀況，此時最小平方法是否適用，成為值得探討的問題。 

在論文中我們回顧了數個常見的推論方法，並討論其在不同誤差分配假設下

的適用性。主要的評估標準為方法的穩健性與估計的效能(efficiency)。我們並

討論把現有方法延展到設限資料的常用技巧。我們並藉由模擬實驗比較方法的優

劣。 

 

 

 

關鍵詞: 設限, 線性模型, 穩健性估計量 
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Abstract 

 In the thesis, we consider statistical inference for a general class of linear 

regression models. The assumption on the error distribution plays a crucial role for the 

development of an appropriate inference method. Here we examine several estimation 

approaches under four types of error distributions including symmetric (with 

light/heavy tails) and asymmetric distributions. In particular, we focus on the issues of 

robustness and efficiency. We also discuss how the existing methods are extended to 

the situation of censoring. Monte Carlo simulations are performed to evaluate the 

finite-sample performances of different methods.  
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Chapter 1  Introduction 

1.1 Background 

In the thesis, we consider regression analysis for analyzing failure time data. Let 

T~  be the time to the event of interest and Z  be the vector of covariates. Studying 

the effect of Z  on T~  is a practical and important problems in practical applications. 

Consider the following linear regression model, 

 ( ) ε+== βZTThT ~ ,          ( )1.1  

where ( ).h  is a monotone function and ε  is the error distribution satisfying some 

criteria. The parameters β  describe the effect of covariates on T  or )~(Th  and 

hence is of major interest. Statistical inference of β  can be classified according to 

whether the form of ( )⋅h  is specified and whether the distribution of ε  is given. 

 For the first type of analysis, the form of ( ).h  is known but the distribution of 

ε  is not specified. For example, if ( ) tth = , model ( )1.1  becomes the location-shift 

model. If ( ) )log(tth = , model ( )1.1  is the accelerated failure time model. The 

second type of analysis assumes that ε  has a known distribution function but leaves 

( ).h  to be unspecified. Such models are often called as transformation models.The 

Cox proportional hazard model is the most well-known special case with ε  being 

the extreme value distribution. Another useful example is the proportional odds model 

in which the error has the standard logistic distribution. In recent years, some authors 

consider the most general structure with both ( )⋅h  and the distribution of ε  being 

unspecified  

 In this thesis, we will focus on the first type of model in which the form of ( ).h   

is given but the distribution of ε  is not specified. We would like to study inference 

methods for estimating β . In particular, we are interested in studying how the 

inference methods adjust for the error distribution and how censoring is handled. It is 
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hoped that our review can improve our understanding about different inference ideas.  

 

1.2 Outline 

In Chapter 2, we review basic concepts in survival analysis. Chapter 3 considers 

estimation of β  in absence of censoring. Statistical inference based on censored data 

is discussed in chapter 4. Simulation results are presented in Chapter 5. In Chapter 6, 

we give concluding remarks. 
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Chapter 2  Preliminary 

 In this chapter, we review some basic concepts in survival analysis which will be 

useful for the discussion in Chapter 4. Here T  is the failure time of interest.  

 

2.1 Descriptive Measures   

The survival function of T  is defined as ( ) )P( tTtS >=  which measures the 

chance that the failure event has not occurred up to time T . The mean of T  can be 

written as               

    ( ) ( )∫∫
∞∞

=−=
00

)( dttSttdSTE ,        (2.1)  

where the second identity is obtained by performing “integration by parts”. Another 

commonly used measure is the mean residual life function defined as  

    ( ) ( )
( )

( )tS

duuS
tTtTEtmrl t

∫
∞

=>−= .            (2.2)  

The above two expressions imply that ( )TE  and ( )tmrl  are both related to the 

survival function ( )tS . Estimation of the survival function nonparametrically is am 

important problem in survival analysis. The following product-limit expression, 

proposed by Kaplan and Meier (1958), is very useful for handling censored data.  

    ( ) [ ]

  

 
)Pr(

),Pr(1∏
≤

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≥
+∈

−=
tu uT

duuuTtS      ( )3.2  

2.2 Nonparametric Inference under Right Censoring 

In practice, subjects may drop out from the study or do not developed the event 

of interest during the study period. Let C  be the censoring variable. Under right 

censoring, we only observe ),( δX  where CTX ∧=  and )( CTI ≤=δ . Observe 

data become ( ){ }niX ii ,,1  ,, K=δ , where  



 

 4

iii CTX ∧= , and 
⎩
⎨
⎧

>
≤

=
i

i
i C

C

i

i

T if ,0
T if ,1

δ .  

A crucial assumption is that T  and C  are independent. The well-known Kaplan- 

Meier estimator of )(tS  based on (2.3) is given by  

   ( )
( )

( )
∏

∑

∑
≤

=

=

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

≥

==
−=

tu
n

i
i

n

i
ii

uXI

uXI
tS

1

1

1,
1ˆ

δ
.     (2.4) 

Note that the censoring effect gets cancelled out in the ratio calculation.  

 The Kaplan-Meier estimator has many nice properties. Here we only present the 

ideas related our thesis. The survival function can be viewed as the first moment of 

the event )( tTI > , namely  

    ( ) ( ) [ ])(Pr tTIEtTtS >=>= .       

When the data are complete, the empirical estimator of ( ) ( )[ ]tTIEtS >=  is given by 

( ) ( )[ ]∑
=

>=
n

1i
i

_

n
1 tTItS , which utilizes the method of moment. Under censoring, the 

value of )( i tTI >  may not be exactly known. 

The idea of imputation is to replace )( i tTI >  by an estimate of its conditional 

expectation given the data. It follows that  

],|)([ˆ)0,()(],|)([ˆ
iii iiiiiii XTXtTIEtXItXIXtTIE >>=<+>=> δδ  

)(ˆ
)(ˆ

)0,()( i
i

ii XS
tStXItXI =≤+>= δ . 

Therefore the following self-consistent equation can be constructed:  

   ( )tŜ  ∑
=

>=
n

i
iiXtTIE

n 1
i ],|)([ˆ1 δ  

∑
=

⎥
⎦

⎤
⎢
⎣

⎡
=≤+>=

n

i i
ii XS

tStXItXI
n 1

i )(ˆ
)(ˆ

)0,()(1 δ .    (2.5) 

The Kaplan-Meier is the only solution to equation (2.5).  
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 Weighting is another way of handling missing data. We can view )( tXI ≥  as a 

proxy of )( tTI ≥ . To correct the bias of )( tXI ≥ , we find that 

)]([]
)(

)([ tTIE
tG

tXIE >=
> . The Kaplan estimator ( )tŜ  can be written as 

∑
=

>
=

n

i

i

tG
tXI(t)S

1 )(ˆ
)(ˆ , where ( )tĜ  is the Kaplan-Meier estimator of ( )tG  such that  

    ∏
∑

∑
≤

=

=

≥

==
=

tu
n

i
i

n

i
ii

uXI

u,δXI
-(t)G }

)(

)0(
1{ˆ

1

1 .      (2.6)  

 The ideas of imputation and weighting provide useful skills for handling missing 

data. We will see that they are also used in the regression framework considered in 

thesis when data are subject to censoring.  

With the estimator ( )tŜ , it seems that )(TE  and )(tmrl  can be estimated 

nonparametrically by ( )dttS∫
∞

=
0

ˆμ̂  and ( ) ( )∫
∞

=
t

tSduuStrlm )(ˆ/ˆˆ . However since ( )tŜ  

does not provide a valid estimator for t  locates beyond the data support, 

 }0)Pr(:{sup* >>= tXt
t

τ .  

Consequently μ̂  and ( )trlm̂  will be underestimated due to the tail problem.  
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Chapter 3  Inference without Censoring 

Consider the linear regression model 

( ) εβZTT +== Th~ , 

where the form of ( ).h  is given but the distribution of ε  is unknown. In this chapter, 

we consider observed data of form, as ( ){ }niT ii ,,1  ,, K=Z , where ( )1-ip1
T
i Z,Z1, K=Z  

denotes the vector of covariates. The main goal is to estimate ( )10 ,, −= p
T ββ Kβ . 

 Statistical methods for estimating β  requires making additional assumption on 

the error distribution. By reviewing existing methods, we can understand how the 

error distribution affects subsequent inference procedures. 

 

3.1 Least Squares (LS) Estimation 

Assume that iε  are identically and independent distributed. with ( ) 0=iE ε  

and ( ) 2σε =iVar . The most well- known result is the least-squares estimator which 

minimizes 

    ( ) ( ) ( ){ }∑∑
==

=−=
n

i
i

n

i
i eTS

1

2

1

2T
i ββZβ ,      ( )1.3  

where βZT
i−= ii Te . The resulting estimator can be obtained by solving 

( ) 0=
∂
∂ βS
β

. The solution can be written as 

      ( ) TZZZβ T1Tˆ −
= ,        ( )2.3  

where ( )TnTTT ,,, 21 K=T and ( )1-ip1
T
i Z,Z1, K=Z . When the error term are i.i.d. with 

mean-zero, we have ( ) ( )2
ii EVar εε = . Under this situation, β̂  is the best linear 

unbiased estimator (B.L.U.E.). If the normality assumption is further imposed, 

efficiency of β̂  can be established. 
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The least squares method can be adjusted for unequal variances. For example, if 

the covariance matrix of ( )nεεε ,,, 21 K  can be written as V2σ , where V is a 

non-singular and diagonal matrix, then we can estimate β  by the weighted least 

squares estimator ( ) TVZZVZβ 1T1T −−−=
1ˆ W . 

Despite its nice property under the desirable condition, the least squares 

estimator is known to be sensitive to outliers. We can view that the least squares 

method minimizes the objective function ( ) 2εερ = . Accordingly, the influence 

function of the least squares is given by  

  ( )εIF ∝  
ε
ε
∂
∂ 2

∝  ε .        ( )3.3  

This implies that the influence of ε  is proportional to its size. Therefore when ε  

has extreme values, its impact on ( )ερ  is also large. This explains why the least 

squares method is not robust. 

 

Figure 3.1: The objective function and influence function of least squares method 

 

3.2 Least Absolute Deviations (LAD) Estimation 

Assume the distribution of ε  is symmetric around zero. The absolute deviance 

is defined as 
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     ( )∑∑
==

=−
n

i
i

n

i
i eT

11

T
i ββZ .      ( )4.3  

It turns out that the median of ( ) ( )( )ββ nee , ,1 K  minimizes the least absolute 

deviations objective function in ( )4.3 .  

 We can write ( ) εερ = .The influence function of the LAD estimator is 

( )εIF ∝ ( )
⎪
⎩

⎪
⎨

⎧

<−
=
>

=
0   ,1
0     ,0
0     ,1

sgn
ε
ε
ε

ε ,                      ( )5.3  

where we define )sgn(ε  for 0=ε  despite that it is not differentiable at zero. 

 

Figure 3.2: The objective function and Influence function of LAD 

The above figure shows that the influence of ε  on ( )ερ  only depends on its sign 

regardless of its size. Since ( )εIF  is bounded, the resulting estimator, namely the 

median, is resistant or robust to extreme observations. However, ( )εIF  is not related 

to the size of ε  at all. This means large error has the same affect on estimation as the 

small error. 

 

3.3 M-estimator 

 The objective function can be written as a flexible form, ( )ερ . The so-called 

M-estimator is defined as   
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    ( )∑
=

−=
n

1i

T
i minargˆ βZβ

β iTρ .       ( )6.3  

If ( )⋅ρ  is differentiable with the derivative ψ , then β̂  can solve the equation 

    ( ) 0
n

1i

T
i =−∑

=

βZiTψ         ( )7.3  

Now the next question is how we can determine the form of ( )ερ . 

 If the error distribution is symmetric around 0, we can choose the ( )⋅ρ  that 

satisfies ( ) 00 =ρ  and ( ) εερ −= . An appropriate form of ( )ερ  can adapt to the 

error distribution to find a general principle for choosing the appropriate form of 

( )ερ , we can view ( )ερ  as the negative log-likelihood of ε . For instance, if the 

method of least squares is considered with ( ) ( )R∈= εεερ  2 , it corresponds to a 

normal distribution with the density proportional to  

     ( ) )
2

exp()
2

exp( 2

2

2 σ
ε

σ
ερ −

=
− . 

For the method of absolute deviations with ( ) Rzzz ∈=  ,ρ , it corresponds to the 

situation that ε  has the double exponential distribution with the density related to 

( ) )exp()exp( 2 εερ =− . 

 Accordingly, Huber suggested the following objective function 

    ( )
⎪
⎩

⎪
⎨

⎧

>−

≤
=

kkk

k

εε

εε
ερ

   ,
2
1

           ,
2
1

2

2

 ,      ( )8.3  

where k is given and called tuning constant. The objective function ( )8.3  can be 

interpreted that the behavior at the center of the distribution is like the least square; at 

extremes, like the least absolute deviations. 
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   Figure 3.3 The density functions of three error distributions  

By changing the value of k, we can manipulate the effect of extreme observation in 

a flexible way. Huber’s objective function can also be related to the negative 

log-likelihood of a new random variable. In Figure 3.3, we plot the density function 

of three random variables, namely, the standard normal, the double exponential and 

Huber’s random variable. 

The corresponding influence function is given by 

  ( )εIF ∝  ( )⎩
⎨
⎧

>⋅
≤

kk
k

εε
εε

   ,sgn
              , 

.                 ( )9.3  

 

Figure 3.5: The objective function and Influence function of Huber’s proposal 

The above figure shows that within the range, the information of data is maintained, 

but, outside the range, the influence of ε  is bounded. Therefore, Huber’s M 

estimator possesses the advantages of the LS and LAD estimators but avoid their 
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drawbacks. It still require that ε  is symmetric around zero. 

 

3.4 Quantile estimator 

 When the distribution is not symmetric, the resulting inference procedure has to 

be adjusted. The quantile regression was first introduced by Koenker and Bassett 

(1978). Consider the objective function: 

    ( ) ( )( ) εετερτ ⋅<−= 0I        ( )10.3  

where ( )0≤= ετ P . We can rewrite ( )10.3  as  

   ( ) ( )
⎩
⎨
⎧

<⋅
≥⋅−

=
0 if             ,
0 if     ,1

εετ
εετ

ερτ       ( )11.3  

The corresponding estimator of β  is defined as 

     ( )∑
=

−=
n

1i

T
i minargˆ βZβ

β iTρ      ( )21.3  

It is more intuitively explainable that if the distribution of error is right-skewed, put 

more weight on 0>ε , and if the distribution of error is left-skewed, put more weight 

on 0≤ε . Of course, If we set 
2
1

=τ , then ( ) εερ
2
1

2
1 = , and its estimator is 

equivalent to the least absolute deviations estimator. Therefore, we can view ( ).103  

as the generalization of the LAD method.  

 

Figure 3.6: The objective function and influence function of quantile estimation 
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The influence function is  

     ( )εIF ∝ ( )( )0<− ετ I .            ( ).133  

Figure 3.6 shows that the influence is bounded and similar to Figure 3.2 that positive 

and negative errors contribute to ( )ερ  with different magnitude. Owing to the 

bounded influence function, the quantile estimator is not sensitive to outliers of 

response variable.  

 

3.5 R-estimator 

The LAD estimator which minimizes ∑
=

n

i
i

1

ε  is valid if iε  is symmetric around 

zero. This assumption is somewhat restricted. If we take two independent replications 

of ε , denoted as iε  and jε , the distribution of ji εε −  is symmetric around zero 

no matter whether ε  is symmetric or not. Accordingly one can consider the 

objective function 

     ∑∑
<

−
ji

ji εε
2
1 ,         ( ).143  

which is the sum of pairwise absolute deviance. It has been shown that (3.14) can also 

be written in the form of  

     ( )∑
=

−
n

i
ii RR

1

ε ,        ( ).153  

where iR  is the rank of iε  and 
2

1+
=

nR . Equation (3.15) can be compared with 

the objective function for the LS method ∑
=

n

i
i

1

2ε . It is easy to see that, in (3.15), the 

impact of iε  is confined to its rank rather than its original size. The rank information 
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preserves some information about the magnitude of ε  but is more robust to extreme 

observations. 

Define ∑
−

=

−=
1

1

~
p

j
jjii ZTe β  which equal 0β+ie . Since the rank relationship is 

not affected by adding the same constant to each observation, this procedure can only 

estimate the slope parameters, ),,( 11 −pββ K , but not the intercept parameter 0β . The 

resulting estimator can be expressed as   

 ( )( ) ( )∑
=

−− ⋅⎟
⎠
⎞

⎜
⎝
⎛ +

−
n

i
pipi eneRank

1
1111 ,,~

2
1,,~minarg ββββ KK .   ( ).163   

The idea of using rank information is related to Wilcoxon or Wilcoxon-Mann- 

Whitney statistics. Jaeckel (1972) pointed out that this estimator is asymptotically 

equivalent to the following linear rank statistics:       

       ( ) ( )( )∑
=

⋅−=
n

i
ijijj eRZZU

1

~)~(β  )1,...,1( −= pj      ( ).173  

where ∑
=

=
n

i

ij
j n

Z
Z

1
. The estimator of ),,( 11 −pββ K  can be obtained by solving 

0)~( =βjU  for 1,...,1 −= pj . It is suggested that the intercept term can be estimated 

as 

    ( )( )11110
ˆˆˆ

−−++−= ppi ZZTmed βββ K  .           ( ).183  

 In summary, the R estimator is valid for symmetric and skewed distributions. It 

is for estimating the slope parameter but not the intercept. The rank-based procedure 

is robust to outliers but preserves more data information compared with the LAD 

method. 
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Chapter 4  Inference under Censoring 

Suppose that the failure time T~  is subject to censoring by C~  and hence ( )Th ~  

is subject to censoring by ( )Ch ~ . Observed data can be written as 

   ( ){ }niX iii ,,1  ,,, K=Zδ , 

where ( ) ( ) iiii CTChThX ∧=∧= i
~~  and ( )iii CTI ≤=δ .  We assume that iC  is 

independent of ( )iiT Z, . In present of censoring, the error form ( ) βZβ T
i−= ii Te  is 

subject to censoring. Let βZβ T
i−= ii Xe )(* . Notice that when 1=iδ , ( ) ( )ββ ii ee =* ; 

when  0=iδ , ( ) ( )ββ ii ee <* . The Kaplan-Meier estimator for ( )( )te >βPr  is given 

by 

   ( ) ( )
( )( )

( )( )
  

 
1,

1ˆ1ˆ
:

1

*

1

*

∏
∑

∑
≤

=

=

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

≥

==
−=−=

tui
n

i
i

n

i
ii

ueI

ueI
tFtS

β

β
ββ

δ

εε .  ( )1.4  

When ββ ~
= , the true value of β , ( )β~ˆ tFε  converges to ( )t≤εPr . 

 In this chapter, we extend the previous discussions to account for the presence of 

censoring. The challenge is to handle incomplete observation of iT  or ( )βie . One 

proposal is to directly modify the objective function, which however was not 

successful. The other approach is to modify the corresponding estimating function or 

estimator under censoring. Two useful techniques for handling missing data, namely 

imputation and weighting have been adopted by many statisticians. We will discuss 

how these ideas are applied under the least squares estimation in details. For other 
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types of estimation, similar principles can be applied.  

 

4.1 Least Squares Estimation 

Several modifications of the least squares method have been proposed to analyze 

censored data. Miller (1976) proposed to estimate the objective function in ( )2.3  

under censoring using the Kaplan-Meier estimator of ε  in ( )1.4  and then minimize 

the modified quantity. Buckley-James (1979) estimator and Koul-Susarla-Van Ryzin 

(1981) estimator both are constructed by directly modifying the least squares solution 

in (3.2) .  

 

4.1.a Modification of the Objective Function  

 The objective function for the least squares method can be view an estimator of 

( )2εE . In presence of censoring, Miller (1976) suggested to estimate ( )2εEn ⋅  by  

      ( )β|ˆ2 εε εFdn ∫
∞

∞−

,           

where ( )β|ˆ tFε  is given in ( )1.4 . Accordingly, the objective function becomes 

( )( ) ( )∫
∞

∞−

*2* ˆ
ii eFden ββ = ( )( ) ( )∑

=

n

i
ii eFde

1

*2* ˆ
ββ  ,                ( )2.4   

Unfortunately equation (4.2) is a complicated function of β  and hence is difficult to 

implement the minimization. Furthermore, the resulting solution does not have 

reasonable properties, such as consistency.   

 

4.1.b Modification of the LS Solution by Imputation  

  Buckley and James (1979) suggested to impute iT  by ( )iZ,,ˆ
iii XTE δ . This 
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idea is illustrated in Chapter 2. It follows that  

    ( ) ( )   ,,)1(,E iiiiiiiiiiii CXCTTEXXT Z=>−+= δδδ . 

Under the regression model ( ) βZT
i=iTE , it follows that  

( )
( )iiiii

iiiii

XXE

CXCTTE

ZβZβZ

Z
T
i

T
i

i

 ,,

 ,,

−>+=

=>

εε
 

     
( )

( )βZ
βZ T

i

βZT
i

T
i

−

⋅
+=
∫
∞

−

i

X

XS

duufu
i

ε

ε
.        ( )3.4  

Accordingly the above quantity can be estimated by  

 ( )
( ) ( )( ) ( ) ( )

( )( )β

ββββ
βZZ T

i *
1

****

i ˆ1

ˆ

 ,ˆ
k

n

k
kkki

iii eF

eeFdeeI
XTTE

ε

ε

−

⋅⋅<
+=>
∑
= .       ( )4.4  

 

4.1.c Modification of the LS Solution by Weighting 

 Alternatively, Koul, Susarla, and Van Ryzin (1981) suggested to correct the bias 

of iX  by weighting. In Chapter 2, we have seen that the Kaplan-Meier estimator can 

be expressed as a weighted average. It follows that 

   ( ) ( )( )iiiii TCTIEXE ⋅<=δ .        ( )5.4  

Hence, 

    ( ) ( )iiiiii CTTTXE <= Prδ .        ( )6.4  

It follows that if ( ) 0>iXG , ( ) ( )i
i

ii TE
XG
X

E =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ δ
. They suggested to replace iT  by  

( )i

ii

XG
X

ˆ
 δ

, where  

( )
( )( )

( )( )
∏

∑

∑
≤

=

=

⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

≥

==
−=

tu
n

i
i

n

i
ii

ueI

ueI
tG

1

*

1

* 0,
1ˆ

β

β δ
.            ( )7.4  
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4.2 Least Absolute Deviation 

Minimizing the objective function ∑
=

−
n

i
iT

1

βZT
i  is equivalent to solving the 

estimating function: 

   ( ) ( )∑
=

=⎟
⎠
⎞

⎜
⎝
⎛ −≥−=

n

i
ii TIZU

1
0

2
10βZβ T

i .           ( )8.4  

Since ( )βU  is not a continuous function of β , the solution β̂  satisfies 

( ) ( ) 0ˆˆ <−+ ββ UU . 

In presence of censoring censored data, it follows that  

 
( )( ) ( ) ( )

( )βZ

βZβZβZ

T
i

T
i

T
i

T
i

G

CTXIE iii

2
1                                  

0Pr0Pr0

=

>−⋅>−=≥−
 .   ( )9.4  

Ying, Jung and Wei (1995) proposed the estimating equation resembling ( )8.4  

    
( )

( )∑
=

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

≥−n

i

i
i

G
XI

Z
1

0
2
1

ˆ
0

βZ
βZ

T
i

T
i .           ( )10.4   

Notice that the above modification utilizes the weighting technique to correct the 

censoring bias.  

 

4.3 M-estimator 

 The M-estimator which minimizes ( )∑
=

−
n

1i
βZT

iiTρ  can be written as the 

solution to the following estimating function     

( ) ( ) 0βZZZ T
ii∑

=

=−−
n

1i
iTψ ,         ( )11.4  

where tt ∂∂= /)((t) ρψ . Ritov (1990) suggested to impute βZT
i−iT  by an 

estimator of its conditional expected value given the data. Recall that 

βZβ T
i−= ii Xe )(* . It follows that  
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))((

)())((
)1()(],,|)([ *

*

*

β

β
βZβ

β

i

i

iiiiiii eS

dFeI
eXeE

β

εεε
δδδ
∫ ⋅>

−+= .  

The resulting estimating function becomes  

0
β

β
βZZ

β

β

i =
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ ⋅>
−+−∑

∫
=

n

i i

i

iii
eS

FdeI
e

1
*

*

*

))((ˆ

)(ˆ))((
)1()()(

εεε
δδ ,  ( )21.4  

where  )(ˆ tSβ  is given in ( )1.4     

   

4.4 Quantile Regression   

Quantile regression assumes that ( ) ( ) τε =<−=< 0Pr0Pr βZTT . In presence of 

censoring, CTX ∧=  is observed instead of T . Now we discuss how this change 

affects the quantitle calculation. It is easy to see that  

C}{C0 ∧<∧⇔<⇔<− βZβZβZ TTT TTT .  

Writing C},min{C βZβZ TT =∧ , we have  

0)C},min{Pr()0Pr( <−==<− βZβZ TT XT τ .  

This implies that as long as we replace the original βZβ T−=Te )(  by 

C},min{ βZT−X , the quantile criteria is the same. That is, the objective function can 

be written as  

( )31.4                                           , )}min{(X)( CT ∧−=− βZβZ TT
ττ ρρ  

where ( ) ( )( ) εετερτ ⋅<−= 0I . 

 However the above expression is still not directly applicable since C  is subject 

to censoring by T . The imputation principle is also applies to replace the unknown 

C  by an estimator of its conditional expected value. Notice that when 0=δ , C  is 

observed but when 1=δ , C  is censored. In summary to minimize 

( )( ))C ,min( βZT−Xτρ , Hornoré, Khan and Powell (1992) proposed to use  
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( ) ( )(

( )
( )

)
i

ii
i

n

i
iii

XG

cGdcXIcX

XX
n

ˆ1

)(ˆ}),min{(
                     

},min{11
1

−

<⋅−
+

−⋅−

∫

∑
=

βZ

βZ

T
i

T
i

τ

τ

ρ
δ

ρδ

, 

where )(ˆ)(ˆ)(ˆ cGcGcGd −−=  and )(ˆ cG  is the Kaplan-Meier estimator of 

)Pr( cC > . Note that the same idea of imputation has been used by Hornoré, Khan 

and Powell (2002) in M-estimation. 

 

4.5 Rank-based estimators 

  If we do not consider the previous way to change the structure of data, we can 

attempt to use the primary information of data – rank. We have discuss that we can 

explain R-estimator in different meanings but the equivalent result. The following 

methods are based on modify the solving equation ( ).183 . 

In presence of censoring, direct ranking is impossible. Therefore the alternative 

expression in terms of pairwise comparison in ( ).173  becomes useful. Fygenson and 

Ritov (1994) suggested to select “comparable pair” ( ) ( )( )1,** => iij eeI δββ . Note that 

as long as 1=iδ , we know the value ( ) ( )( )ββ ij eeI >  despite of censoring. They 

proposed the following estimating function  

    ( ) ( ) ( )( )∑∑
= =

−

>⋅⋅−
n

i

n

j
iji eeIn

1 1

**2
3

ββZZ ii δ ,      ( )41.4  

which has a nice monotonic property that guarantees unit-root. Note that the resulting 

estimator is a U-statistic useful for large-sample analysis.  

Tsiatis (1990) proposed a log-rank type estimator of the form 

    ( ) [ ] 0βZβ i =−⋅⋅∑
=

n

i
iii Zw

1
)(δ ,         ( )51.4  
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where ( ).iw  is some nonnegative weight function and 

( ) ( )( )

( ) ( )( )∑

∑

=

=

≥

⋅≥
= n

j
ij

n

j
ij

i

eeI

eeI
Z

1

**

1

**

)(
ββ

Zββ
β

j

        ( )61.4  

can be interpreted as the average value of covariate for subjects in the risk set:  

   ( ) }:{)|( tejtR j ≥= ββ ,  

for ( )βiet =  with 1=iδ . When ( ) 1=βiw , the estimator is the log-rank estimator. 
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Chapter 5  Numerical Analysis 

In this chapter, w evaluate finite-sample performances of several estimators by 

Monte-Carlo simulations. We consider the following model with ( ) ( )tth log=  such 

that  

     ( ) iii ZT εββ ++= 10log , 

where ( )1,0~ NZi  and iε  follows different types of distributions. Under censoring,  

the observable variable becomes  

( ) CZX ∧++= εββ 10 ,  

where the censoring variable C is generated from a uniform variable distributed in the 

interval [-1.5, 1.5]. The overall censoring rates vary between 25% and 30%. Sample 

size set to be n= 100 and 200 with 1000 replications. 

 

5.1 Error with the Standard Normal Distribution  

  Consider that ε  has the standard normal distribution with the density depicted 

in Figure 5.1: 

 
        Figure 5.1: )1,0(~ Nε   

The results are given in Table 5.1. Under this case, LAD and the quantile 

estimator ( )5.0=π  yield the same result. The two rank-based methods also have nice 
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results. Since ε  is symmetric around zero and the chance of observing extreme 

observations is pretty low, we can expect that the LS has the best performance and all 

the methods should be valid. 

 

5.2 Error with the Student’s T Distribution  

 Consider that ε  has the student’s t distribution )(vT  with the density  

     ( ) ( )R
vvv

v

f

v

∈⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

⎟
⎠
⎞

⎜
⎝
⎛Γ

⎟
⎠
⎞

⎜
⎝
⎛ +

Γ
=

⎟
⎠
⎞

⎜
⎝
⎛ +

−

εε

π
ε    1

2

2
1

2
1

2

, 

where v is the degree of freedom. The density for )2(T  is depicted in Figure 5.2. 

 

Figure 5.2: )1,0(~ .  ~ )2( NvsT εε  

For comparison, we also plot the density of the standard normal distribution. We see 

that )2(T  tends to produce more extreme observations. Under the adaptive choice of k, 

Huber’s estimator performs the best. The LAD and quantile methods with 5.0=π  

are also the same since ε  is symmetric around zero. They become superior to the LS 

method, which is vulnerable to outliers, under the T distribution with heavy tails. The 

two log-rank methods still have nice results without being affected by extreme 
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observations.  

 

5.3 Error with the Gumbel Distribution (right-skewed) 

 Consider that ε  has the Gumbel distribution with the density  

   ( )
( ) ( )

( )Reef e ∈=
−

−
−

−
−

ε
γ

ε
γ
αε

γ
αε

     1 ,  

where α  is the location parameter and γ  is the scale parameter. The density with 

( ) ( )5,0, =γα  is depicted in Figure 5.3: 

 

Figure 5.3: )5,0(~ +Gumbelε  

The distribution is asymmetric such that it yields positive extreme values but with low 

frequency. Based on the results in Table 5.3, we see that most of the methods cannot 

accurately estimate 0β , the intercept term, except for the quantile method. Notice 

that for 0=Z , ( ) εβ += 0log T . It is easy to see that rank-based procedure cannot 

detect 0β . The first three methods fail too since ε  is asymmetric around zero. The 

quantile can flexibly adjust for this situation. For the slope estimation, all the methods 

are valid.  

 

5.4 Error with the Gumbel Distribution (left-skewed)  

Consider that ε  has the Gumbel distribution (left-skewed) with the density  
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    ( )
( ) ( )

Reef e ∈=
−

−
−

ε
γ

ε
γ
αε

γ
αε

     ,1 ,  

where α  is the location parameter and γ  is the scale parameter. The density with  

( ) ( )5,0, =γα  is depicted in Figure 5.4: 

 

Figure 5.4: )5,0(~ −Gumbelε ,  

The distribution is asymmetric such that yields negative extreme values. Table 5.4 

indicates that most of the methods significantly underestimate 0β , except for the 

quantile method. Similarly the rank-based methods cannot detect 0β  either. The 

asymmetry of ε  also violates the assumption of the first three methods still. Only 

the quantile estimator can handle this problem. For the slope estimation, all the 

methods are valid.  

 

5.5 Performances under Censoring  

 Here we focus on the estimation of 1β , the slope parameter under censoring. 

From Table 5.5 to Table 5.8, we see the same pattern again that the LS method has 

better performance under the normal error distribution. Here the LAD and qunatile 

method with 5.0=τ  are no longer the same since they use different methods to adjust 

for censoring. The imputation approach discussed in §4.4 seems to perform better 
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than the weighting method. Besides, the quantile method still can handle asymmetric 

error data as well. Most methods, which use the Kaplan-Meier estimator in estimation 

is much affected by the censoring rate. The linear rank estimator without using 

Kaplan-Meier estimator is more robust to the censoring condition. 
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Chapter 6  Conclusion 

In this thesis, we consider a class of general linear model and the major objective 

is to estimate the regression parameter. The underlying error distribution is unknown 

but usually practitioners may have some prior knowledge about its shape. Such 

information is useful for choosing an appropriate inference method for parameter 

estimation. For example, the least squares estimator is a suitable choice if the error is 

symmetric around zero with light tails like the normal distribution. On the other hand, 

if the chance of extreme observations is not low, the LAD estimator or rank-based 

procedures are more appropriate. If the error is skewed, most of the methods can not 

capture the intercept information except the quantile regression estimator. Generally 

speaking, the rank-based estimators have nice performances in most situations.  

There are two different ways of handling missing data. One is imputation and the 

other is weighting. We have seen that these two approaches are also adopted for 

analyzing censored data as well. In the previous discussions, the LS estimator is more 

sensitive to the tail behavior. It is also more vulnerable to censoring since the 

Kaplan-Meier estimator does not estimate the tail well. The of quantile estimator 

which uses the imputation approach to handle censoring is valid in most situations. 

The rank-based estimators perform pretty well even under censoring. In fact, they are 

frequently adopted in related problems. 
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 As mentioned at the beginning, another area of research considers the situation 

that the distribution of ε  is known but the form of transformation is unspecified. 

Such a model is called the transformation model. It seems that most research in this 

area has not addressed on the relationship between ε  and the objective function. We 

think that this may deserve further investigation. 
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Appendix 

 

 

 

Table 5.1. A: Performances of Different Estimators 
)1,0(~   0, rate  censoring Nε= , n = 100 

M-Huber  LS LAD 
k=1.2 k=1.8 

Quantile
5.0=τ  

Linear  
rank 

Log-rank

-20 =β  
Bias 
(SD) 
 

31 =β  
Bias 
(SD) 

 
-0.0013 
(0.1010)
 
 
0.0024 
(0.0999)

  
-0.0012 
(0.1262) 
 
 
-0.0025 
(0.1275) 

 
0.0016 
(0.1049)
 
 
0.0021 
(0.1044)

 
-0.0002 
(0.0716)
 
 
-0.0023 
(0.1010)

 
0.0012 
(0.1262)
 
 
-0.0025 
(0.1275)

 
0.0014 
(0.1012) 
 
 
-0.0014 
(0.1100) 

 
0.0017 
(0.1010) 
 
 
-0.0020 
(0.1031) 

 

 

Table 5.1. B: Performances of Different Estimators 
)1,0(~   0, rate  censoring Nε= , n = 200 

M-Huber  LS LAD 

k=1.2 k=1.8 

Quantile
5.0=τ  

Linear  
rank 

Log-rank

-20 =β  
Bias 
(SD) 
 

31 =β  
Bias 
(SD) 

 
-0.0003 
(0.0710)
 
 
-0.0000 
(0.0720)

  
-0.0001 
(0.0880) 
 
 
-0.0011 
(0.0901) 

 
0.0000 
(0.0735)
 
 
0.0007 
(0.0750)

 
-0.0002 
(0.0716)
 
 
-0.0003 
(0.0729)

 
-0.0001 
(0.0880)
 
 
-0.0011 
(0.0900)

 
-0.0012 
(0.0701) 
 
 
-0.0006 
(0.0719) 

 
-0.0013  
(0.0703) 
 
 
0.0010 
(0.0772) 
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Table 5.2. A: Performances of Different Estimators  
)2(~   0, rate  censoring Tε= , n = 100 

M-Huber  LS LAD 
k=1.2 k=1.8 

Quantile
5.0=τ  

Linear  
rank 

Log-rank

-20 =β  
Bias 
(SD) 
 

31 =β  
Bias 
(SD) 

 
0.0019 
(0.3515)
 
 
0.0144 
(0.3628)

  
0.0018 
(0.1438) 
 
 
-0.0058 
(0.1491) 

 
0.0009 
(0.1366)
 
 
-0.0065 
(0.1400)

 
0.0008 
(0.1445)
 
 
-0.0071 
(0.1463)

 
0.0018 
(0.1438)
 
 
-0.0058 
(0.1491)

 
0.0028 
(0.3474) 
 
 
-0.0064 
(0.1823) 

 
0.0032 
(0.3475) 
 
 
-0.0066 
(0.1443) 

 

 

Table 5.2. B: Performances of Different Estimators  
)2(~   0, rate  censoring Tε= , n= 200 

M-Huber  LS LAD 
k=1.2 k=1.8 

Quantile
5.0=τ  

Linear  
rank 

Log-rank

-20 =β  
Bias 
(SD) 
 

31 =β  
Bias 
(SD) 

 
-0.0016 
(0.2682)
 
 
-0.0044 
(0.2665)

  
-0.0011 
(0.1423) 
 
 
0.0040 
(0.1009) 

 
-0.0009 
(0.0936)
 
 
0.0020 
(0.0963)

 
-0.0005 
(0.0987)
 
 
0.0020 
(0.1009)

 
-0.0011 
(0.1423)
 
 
0.0040 
(0.1009)

 
-0.0016 
(0.2674) 
 
 
0.0025 
(0.1284) 

 
-0.0015 
(0.2673) 
 
 
0.0023 
(0.0997) 
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Table 5.3. A: Performances of Different Estimators
 ~   0, rate  censoring  ε= Gumbel+( 0, 5), n= 100 

M-Huber  LS LAD 
k=1.2 k=1.8 

Quantile
33.0=τ

Linear  
rank 

Log-rank

-20 =β  
Bias 
(SD) 
 

31 =β  
Bias 
(SD) 

 
2.9002 
(0.6455)
 
 
-0.0018 
(0.6497)

  
1.8733 
(0.7255) 
 
 
0.0038 
(0.7335) 

 
1.8856 
(0.6942)
 
 
0.0026 
(0.6946)

 
1.9030 
(0.6781)
 
 
0.0011 
(0.6791)

 
0.0410 
(0.6557)
 
 
-0.0024 
(0.6623)

 
2.9025 
(0.6455) 
 
 
-0.0006 
(0.5916) 

 
2.9003 
(0.6467) 
 
 
-0.0031 
(0.7776) 

 

 

Table 5.3. B: Performances of Different Estimators
 ~   0, rate  censoring  ε= Gumbel+(0, 5), n= 200 

M-Huber  LS LAD 
k=1.2 k=1.8 

Quantile
33.0=τ

Linear  
rank 

Log-rank

-20 =β  
Bias 
(SD) 
 

31 =β  
Bias 
(SD) 

 
2.8751 
(0.4487)
 
 
0.0176 
(0.4457)

  
1.8348 
(0.5020) 
 
 
0.0185 
(0.5086) 

 
1.8512 
(0.4741)
 
 
0.0172 
(0.4850)

 
1.8680 
(0.4642)
 
 
0.0169 
(0.4726)

 
0.0049 
(0.4531)
 
 
0.0156 
(0.4627)

 
2.8756 
(0.4484) 
 
 
0.0157 
(0.4405) 

 
2.8751 
(0.4531) 
 
 
0.0196 
(0.5354) 
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Table 5.4. A: Performances of Different Estimators

 ~   0, rate  censoring  ε= Gumbel-(0, 5), n = 100 
M-Huber  LS LAD 
k=1.2 k=1.8 

Quantile
67.0=τ

Linear  
rank 

Log-rank

-20 =β  
Bias 
(SD) 
 

31 =β  
Bias 
(SD) 

 
-2.9044 
(0.6420)
 
 
0.0182 
(0.6534)

  
-1.8955 
(0.7200) 
 
 
0.0167 
(0.7358) 

 
-1.9058 
(0.6867)
 
 
0.0166 
(0.6867)

 
-1.9220 
(0.6706)
 
 
0.0176 
(0.6839)

 
-0.0700 
(0.6633)
 
 
0.0263 
(0.6540)

 
-2.9022 
(0.6402) 
 
 
0.0212 
(0.5984) 

 
-2.9042 
(0.6400) 
 
 
-0.0137 
(0.5265) 

 

 

 
Table 5.4. B: Performances of Different Estimators  
  ~   0, rate  censoring  ε=  Gumbel-(0, 5), n = 200 

M-Huber  LS LAD 
k=1.2 k=1.8 

Quantile
67.0=τ

Linear  
rank 

Log-rank

-20 =β  
Bias 
(SD) 
 

31 =β  
Bias 
(SD) 

 
-2.8918 
(0.4577)
 
 
0.0116 
(0.4571)

 
-1.8479 
(0.5148) 
 
 
0.0020 
(0.5063) 

 
-1.8634 
(0.4886)
 
 
0.0031 
(0.4867)

 
-1.8800 
(0.4786)
 
 
0.0022 
(0.4752)

 
-0.0327 
(0.4722)
 
 
0.0012 
(0.4593)

 
-2.8914 
(0.4573) 
 
 
0.0029 
(0.4109) 

 
-2.8921 
(0.4570) 
 
 
-0.0052 
(0.3607) 
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Table 5.5. A: Performances of Different Estimators
 )1,0(~   28.1%, rate  censoring Nε= , n = 100 

LS LAD Quantile Linear 
rank 

Log 
-rank 

 

Objective 
function 

imputation weighting (Median) 
 

5.0=τ    

-20 =β  
Bias 
(SD) 
 

31 =β  
Bias 
(SD) 

 
-0.1861 
(0.1321) 
 
 
-0.1285 
(0.2497) 

 
-0.3278 
(0.3092) 
 
 
0.0221 
(0.7729) 

 
-0.1284 
(0.2215) 
 
 
-0.0959 
(0.2646) 

 
-0.0062 
(0.4535) 
 
 
-0.0551 
(0.6660) 

 
0.4136 
(0.5294)
 
 
0.1766 
(0.0650)

 
-0.6435 
(0.2560) 
 
 
0.0004 
(0.1448) 

 
0.7760 
(0.2568)
 
 
-0.2669 
(0.1712)

 

 
 

Table 5.5. B: Performances of Different Estimators
 )1,0(~   27.6, rate  censoring Nε= , n = 200 

LS LAD Quantile Linear 
rank 

Log 
-rank 

 

Objective 
function 

imputation weighting (Median) 
 

5.0=τ    

-20 =β  
Bias 
(SD) 
 

31 =β  
Bias 
(SD) 

 
-0.1340 
(0.1019) 
 
 
-0.1210 
(0.2087) 

 
-0.3392 
(0.3446) 
 
 
-0.0508 
(0.6463) 

 
-0.1008 
(0.1808) 
 
 
-0.0631 
(0.2187) 

 
-0.1043 
(0.2954) 
 
 
-0.2116 
(0.4516) 

 
0.2510 
(0.3419)
 
 
0.2857 
(0.4334)

 
-0.6317 
(0.1999) 
 
 
0.0015 
(0.1012) 

 
0.7709 
(0.2118)
 
 
-0.2658 
(0.1193)
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Table 5.6. A: Performances of Different Estimators 
( )2~   29.7%, rate  censoring tε= , n = 100 

LS LAD Quantile Linear 
rank 

Log 
-rank 

 

Objective 
function 

imputation weighting (Median) 5.0=τ    

-20 =β  
Bias 
(SD) 
 

31 =β  
Bias 
(SD) 

 
-0.5400 
(0.3301) 
 
 
-0.4040 
(0.6289) 

 
-0.1159 
(0.6246) 
 
 
-1.1075 
(1.1656) 

 
-0.6415 
(0.4430) 
 
 
-0.4281 
(0.5313) 

 
-0.0385 
(0.4368) 
 
 
-0.1335 
(0.6987) 

 
0.2041 
(0.4905)
 
 
0.2147 
(0.5238)

 
0.1856 
(0.5115) 
 
 
0.0114 
(0.2035) 

 
0.4297 
(0.4994)
 
 
-0.5068 
(0.2582)

 

 

Table 5.6. B: Performances of Different Estimators 
( )2~   28.1%, rate  censoring tε= , n = 200 

LS LAD Quantile Linear 
rank 

Log 
-rank 

 

Objective 
function 

imputation weighting (Median) 
 

5.0=τ    

-20 =β  
Bias 
(SD) 
 

31 =β  
Bias 
(SD) 

 
-0.5073 
(0.2982) 
 
 
-0.4413 
(0.6174) 

 
-0.5717 
(0.8982) 
 
 
-1.6455 
(1.3123) 

 
-0.6300 
(0.3844) 
 
 
-0.4163 
(0.5001) 

 
-0.1108 
(0.3013) 
 
 
-0.2581 
(0.5995) 

 
0.0810 
(0.2880)
 
 
0.0744 
(0.4775)

 
-0.1675 
(0.4631) 
 
 
0.0020 
(0.1437) 

 
0.4141 
(0.4594)
 
 
0.5124 
(0.1848)
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Table 5.7. A: Performances of Different Estimators 
         ( )5,0umbel~   26.2%, rate  censoring += Gε , n = 100 

LS LAD Quantile Linear 
rank 

Log 
-rank 

 

Objective 
function 

imputation weighting (Median) 
 

37.0=τ    

-20 =β  
Bias 
(SD) 
 

31 =β  
Bias 
(SD) 

 
1.1859 
(0.5508) 
 
 
-0.7790 
(0.5270) 

 
4.6696 
(0.5944) 
 
 
-2.4757 
(0.5442) 

 
1.4614 
(0.9480) 
 
 
-0.1113 
(1.1291) 

 
1.6400 
(0.7482) 
 
 
-0.4304 
(0.7822) 

 
0.1379 
(0.6539)
 
 
0.0519 
(0.6867)

 
0.1874 
(0.4420) 
 
 
-0.0138 
(0.5920) 

 
0.8057 
(0.3802)
 
 
-1.1260 
(0.5788)

 

 

Table 5.7. B: Performances of Different Estimators      
        ( )5,0umbel~   26.9%, rate  censoring += Gε , n = 200 

LS LAD Quantile Linear 
rank 

Log 
-rank 

 

Objective 
function 

imputation weighting (Median) 
 

37.0=τ    

-20 =β  
Bias 
(SD) 
 

31 =β  
Bias 
(SD) 

 
1.2861 
(0.3702) 
 
 
-0.8018 
(0.4247) 

 
5.1294 
(0.3758) 
 
 
-2.9283 
(0.3128) 

 
1.5220 
(0.7198) 
 
 
-0.0633 
(0.8660) 

 
1.7736 
(0.5550) 
 
 
-0.2357 
(0.6233) 

 
0.0815 
(0.4789)
 
 
0.0424 
(0.4947)

 
0.1817 
(0.3304) 
 
 
0.0007 
(0.4154) 

 
0.8041 
(0.2779)
 
 
-1.1398 
(0.4119)
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Table 5.8.A: Performances of Different Estimators  
     ( )5,0umbel~   26.2%, rate  censoring −= Gε , n = 100 
LS LAD Quantile Linear 

rank 
Log 
-rank 

 

Objective 
function 

imputation weighting (Median) 
 

63.0=τ    

-20 =β  
Bias 
(SD) 
 

31 =β  
Bias 
(SD) 

 
-4.2216 
(0.8235) 
 
 
-1.0619 
(0.7909) 

 
-0.4363 
(1.2551) 
 
 
-2.3659 
(0.7207) 

 
-5.1710 
(0.6908) 
 
 
-1.4866 
(0.7472) 

 
-2.2504 
(0.7482) 
 
 
-0.6683 
(0.7100) 

 
-4.5248 
(0.8694)
 
 
0.1208 
(0.8777)

 
-3.9803 
(0.7141) 
 
 
0.0448 
(0.7182) 

 
-2.9932 
(0.7200)
 
 
1.8801 
(0.5088)

 

 

Table 5.8.B: Performances of Different Estimators 
          ( )5,0umbel~   25.8%, rate  censoring −= Gε , n = 200 

LS LAD Quantile Linear 
rank 

Log 
-rank 

 

Objective 
function 

imputation weighting (Median) 
 

63.0=τ    

-20 =β  
Bias 
(SD) 
 

31 =β  
Bias 
(SD) 

 
-4.0744 
(0.6259) 
 
 
-1.1297 
(0.7273) 

 
-0.9522 
(0.3517) 
 
 
-2.4377 
(0.2811) 

 
-5.1669 
(0.4993) 
 
 
-1.4950 
(0.5319) 

 
-2.1398 
(0.5370) 
 
 
-0.5732 
(0.5040) 

 
-4.5600 
(0.6116)
 
 
0.0320 
(0.6220)

 
-4.0065 
(0.5334) 
 
 
0.0200 
(0.4965) 

 
-3.0066 
(0.5083)
 
 
1.9184 
(0.3483)

 

 


