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Student: Wen-Ting Wang
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Hsinchu, Taiwan

Abstract

In the thesis, we consider stafistical inference for a general class of linear
regression models. The assumption on the error distribution plays a crucial role for the
development of an appropriate inference method. Here we examine several estimation
approaches under four types of error distributions including symmetric (with
light/heavy tails) and asymmetric distributions. In particular, we focus on the issues of
robustness and efficiency. We also discuss how the existing methods are extended to
the situation of censoring. Monte Carlo simulations are performed to evaluate the

finite-sample performances of different methods.

Keywords: Censoring, Linear model, Robust estimation



\!v

120N

ks
=3

FAR T FT TR E R o

- 'E;'f%'fiﬁ:?f'ﬁ”é S BRI NFIY OTA E AR 470 B} [ERy FzATEP
GibESh  Lak S T S A AR Earl e B R FAIRIRE R
TR E G o RASHA- o A A - AN T R AREY T K 3 WA

SWEATEY R ATIF B AEN RS - B ERA R Bk R - ]

N

iiﬁﬂiﬁgibﬁr;%t“;“ B B SRR R < RE P HEBRO &
BEFT R E A Ao (RIS TGN PIEA LR L0 AN
T CE A REF KL AR BROE R ﬁxnemé-f]*),a‘{ﬁl%;m
FY AR HB Be¢r3dFeAzdehmysbt hecd 102 B2 974 o

FiehwmYPEL LS hy? 3 LRiBfe® Uk e 5 LR B
Aendp R AF R PR gl G e @ o By g gL LA
FHRELY 0 D AR e g o R R FE R IE

FRolREEXEFT @y ik 7 &

E%Piﬁ};,&%_lp T‘E‘!\
ASLE S F R G F LRI L BRI R

FaBpe BUA- BIRPEZES L RHMAEXFRYRELEANARE

PRLER?NFAEBASY § A RO NS B AR LR -
B 7RIS ER R T PO GR AR T - ReNE L 3 AR
BEP AL N EDF A I - R AT R AR AR A
o Adm s A A RA NI f o R e R A GE DL
Be¢idom* 03 A KA E I FLA
PG Lt Fo R RSeE T Y S FADOREP I RF/MET o RA
- A EIPFhEREOR A RET A

RS A Y S R o R R - HY SR F R E B R



Bé- AR EOREP -

B2 - FEehRi BAGFI RS Tax o fd p i
AT RSB F R 2 Ak o B R R FEOE R B P LR F D
B o RPN A LSS £ BB AR FARE PR
dofs T E g -

PERF > Teaed ok B FEROR SR B E ATRE - B AL o

3 v ix EEA

LIS

B 2i < g‘j’)‘l‘ljm”r

kil

LN



Table of Contents

Chapter 1 INtroduCtion..............cocoiiiiiiiiiiiieiiie e 1
1.1 Back@round ... 1

1.2 OULHNE. ... 2
Chapter 2 Preliminary............ccoooiiiiiiiiii s 3
2.1 DeSCriptive MEASUIES...........ccceeiiiiiiiiiiiiie ittt 3

2.2 Nonparametric Inference under Right Censoring................c.cccccooviinnnn. 3
Chapter 3 Inference without Censoring..................cccoveeiiiiiiiiiiiie e 6
3.1 Least Squares (LS) EStimation ...............cccccooiiiiiiiiiiiiii e 6

3.2 Least Absolute Deviations (LAD) Estimation.....................cc.ccccooviiviiennnn. 7

3.3 M-estimator ............. R g e e e e e e s s e ae e n e nenan 8

3.4 Quantile estimator ... ... .. ... B 11

3.5 R-estimator ...............c.... el A = TR 12
Chapter 4 Inference under Censoving....... A ... 14
4.1 Least Squares Estim BEER 15
4.1.a Modification of the Objective Function ....................ccccovviinnnnnnnn, 15

4.1.b Modification of the LS Solution by Imputation............................. 15

4.1.c Modification of the LS Solution by Weighting ............................... 16

4.2 Least Absolute Deviation................c.cccoiiiiiiiiii i 17

4.3 M=-eSIMALOY .......oovviiiiiiiiiec e 17

4.4 Quantile ReGression ...............cccooviiiiiiiiiii 18

4.5 Rank-based eStimators ..............cccooviiiiiiiiiinie e 19
Chapter 5 Numerical Analysis .............cccoooiiiiiiii 21
5.1 Error with the Standard Normal Distribution....................ccccooooiin. 21

5.2 Error with the Student’s T Distribution ..................c.ccccoiiiiiis 22



5.3 Error with the Gumbel Distribution (right-skewed) ...................cccoonee 23

5.4 Error with the Gumbel Distribution (left-skewed) ....................cccceiie 23
5.5 Performances under Censoring ..............ccccvviiiiriiiiniiiee e 24
Chapter 6 Conclusion ..............ccocoiiiiiiiii 26
REFEIENCES ... 28
APPCIAIX ..ot 30

Vi



TABLE 5.1. A:

TABLE5.1. B:

TABLE 5.2. A:

TABLE 5.2. B:

TABLE 5.3. A:

TABLE 5.3. B:

TABLE 5.4. A:

TABLE 5.4. B:

TABLE 5.5. A:

TABLE 5.5. B:

TABLE 5.6. A:

TABLE 5.6. B:

TABLE 5.7. A:

TABLE5.7. B:

TABLE 5.8. A:

TABLE 5.8. B:

Tables

censoring rate=0, &~ N(0,1),N=100.....cccccccorrerrmrmrrrmrrserererrrererrerns 30
censoring rate=0, &~ N(0,1),N=200.....ccccccccrurrirmrrrmrrmererrerrrrrerrrerns 30
censoring rate=0, & ~T(2),N=100.....cccccccrsurrrrrsrrrrrmrrserrererrrersrrenns 31
censoring rate=0, &~ T(2),N=200......cccccoermrrerrirrrrrmrrsrrererrrererrnnns 31
censoring rate=0, &~ GUMBEL*(0,5), N=100......cccoeeuurrrrreerrrmnerene 32
censoring rate=0, &~ GUMBEL(0, 5), N=200.......cccoceuuurrrreerrrrmnrrrrne 32
censoring rate=0, &~ GUMBEL'(0, 5), N=100 ......cccoeeuurrrrreerrrrmmrerene 33
censoring 1 3 el V2 ' 5), N =200 ..., 33
censoring rate == 28.1%, & N(OL) N=100...cc.cmmmrereerrerrerrrnnn. 34
censoring rate =276 == N{01) N =200 34
censoring rate=29./%, & ~#(2), N =100......ccccccrmmrrrmmmrrmmmrrmmmrernnrrirns 35
censoring rate=28.1%, &~ 1(2),N=200........cccccrommrvrerssrirerrsrioon 35
censoring rate=26.2%, &~ Gumbel*(0,5),N=100..........cccocoo.... 36
censoring rate=26.9%, &~ Gumbel*(0,5),N=200..........cccocoo.... 36
censoring rate=26.2%, &~ Gumbel (0,5), N =100..........ccocco.... 37
censoring rate=25.8%, &~ Gumbel (0,5),N=200.......c..cccocoo.... 37

vii



Chapter 1 Introduction

1.1 Background
In the thesis, we consider regression analysis for analyzing failure time data. Let
T be the time to the event of interest and Z be the vector of covariates. Studying

the effectof Z on T isa practical and important problems in practical applications.

Consider the following linear regression model,
T=hT)=2"B+¢, (L1)
where () is a monotone function and & is the error distribution satisfying some

criteria. The parameters B describe the effect of covariates on 7 or h(f) and

hence is of major interest. Statistical inference of B can be classified according to
whether the form of A(-) is specified = ther the distribution of & is given.

For the first type of analysis, the form of A() -is known but the distribution of
¢ is not specified. For example, if /i{r)— 7, model .1) becomes the location-shift
model. If A(z)=log(r), model (.1} is the ascelerated failure time model. The
second type of analysis assumes that & has a known distribution function but leaves
h() to be unspecified. Such models are often called as transformation models.The
Cox proportional hazard model is the most well-known special case with & being
the extreme value distribution. Another useful example is the proportional odds model
in which the error has the standard logistic distribution. In recent years, some authors
consider the most general structure with both 4(-) and the distribution of & being
unspecified

In this thesis, we will focus on the first type of model in which the form of A(.)
is given but the distribution of & is not specified. We would like to study inference
methods for estimating . In particular, we are interested in studying how the

inference methods adjust for the error distribution and how censoring is handled. It is

1



hoped that our review can improve our understanding about different inference ideas.

1.2 Outline
In Chapter 2, we review basic concepts in survival analysis. Chapter 3 considers

estimation of B in absence of censoring. Statistical inference based on censored data
is discussed in chapter 4. Simulation results are presented in Chapter 5. In Chapter 6,

we give concluding remarks.



Chapter 2 Preliminary

In this chapter, we review some basic concepts in survival analysis which will be

useful for the discussion in Chapter 4. Here T is the failure time of interest.

2.1 Descriptive Measures

The survival function of 7 is defined as S(t)=P(T >¢) which measures the

chance that the failure event has not occurred up to time 7. The mean of T can be

written as
E(T)=—[wdS(t) =] S(e)dt, (2.1)
0 0
where the second identity is ¢ 0Ys PEL integration by parts”. Another
commonly used measure is the mgan residual 4iic function defined as
St )du
mrl(t)= £(T —z‘j’ ¥ *) — )— (2.2)
The above two expressions hatr () wi(¢) are both related to the

survival function S(¢). Estimation of the survival function nonparametrically is am
important problem in survival analysis. The following product-limit expression,

proposed by Kaplan and Meier (1958), is very useful for handling censored data.

Ste)= H(l_ Pr(TPf([;’zu :)du])] (23)

u<t

2.2 Nonparametric Inference under Right Censoring

In practice, subjects may drop out from the study or do not developed the event
of interest during the study period. Let C be the censoring variable. Under right
censoring, we only observe (X,5) where X =TAC and 6 =1(T <C). Observe

data become {(X,,6,), i=1...,n}, where



Lif T, <C,

X =T AC.,and ¢, = . )
' ' ! ' 0,if T, >C,

A crucial assumption is that 77 and C are independent. The well-known Kaplan-

Meier estimator of S(¢) based on (2.3) is given by

50)=TT[1- = . (2.4)

Note that the censoring effect gets cancelled out in the ratio calculation.
The Kaplan-Meier estimator has many nice properties. Here we only present the
ideas related our thesis. The survival function can be viewed as the first moment of

the event /(T >t), namely

\V/

S(¢)=Pr(7 > 1) =3Bl

When the data are complete, the-empiricat estimaior o S(¢)= E[I(T > ¢)] is given by

S(t):%zn:[l(Ti > t)], which viilizes the method of moment. Under censoring, the

i=1

value of (7, >t) may not be exacily known.
The idea of imputation is to replace 7/(7; >¢) by an estimate of its conditional

expectation given the data. It follows that

ELI(T, > )| X,,5]1= I(X, > ) + (X, <1,6, =0)E[I(T, > 1) | X,. T, > X|]

S(f)
S(x,)

=1(X,>t)+1(X, <t,6, =0)

Therefore the following self-consistent equation can be constructed:

$0) =23 EN(T > )]1X,0]

i=1l

“ IS 1, s+ 1, <1,6,=0) 0

> Al (2.5)

The Kaplan-Meier is the only solution to equation (2.5).



Weighting is another way of handling missing data. We can view (X >¢) asa

proxy of [(T'>¢t) . To correct the bias of (X >¢) , we find that

I(X >1)

W]:E[I(T>t)]. The Kaplan estimator S(r) can be written as

E[

S(1) = Zl()é—;t) where G(r) is the Kaplan-Meier estimator of G(¢) such that

i=1
S I(X, =u,6,=0)

G = [ }. (2.6)
ust D I(X, zu)

The ideas of imputation and weighting provide useful skills for handling missing
data. We will see that they are also used in the regression framework considered in

thesis when data are subject to censoring.

With the estimator S(¢) msLthai , ind mri(¢) can be estimated
nonparametrically by ,[z:_[ﬁt roand mrils) = SGodul S(r) . However since S(r)
0

does not provide a valid estimator for s bevond the data support,

T =oupy .ri\a ~i)-~ug.
t

Consequently 4z and mri(¢) will be underestimated due to the tail problem.



Chapter 3 Inference without Censoring
Consider the linear regression model
T=h(T)=Z"p +¢,
where the form of 4(.) is given but the distribution of & is unknown. In this chapter,

we consider observed data of form, as {(7,,Z,), i=1...,n}, where Z =(1,2,..,Z,,)

denotes the vector of covariates. The main goal is to estimate p” :( ) ,...,ﬂpfl).

Statistical methods for estimating B requires making additional assumption on
the error distribution. By reviewing existing methods, we can understand how the

error distribution affects subsequent inference procedures.

3.1 Least Squares (LS) Estimation

Assume that &, are identically and tdepcndent distributed. with E(g,)=0
and Var(e,)= . The most well- kriown restlt is the least-squares estimator which

s)=21, -8 = ke ) 1)

where e, =T, —Z'B . The resulting estimator can be obtained by solving

%S(ﬁ): 0. The solution can be written as

p=(z'z)'z'T, (3.2)
where T=(7},7,,...,T,) and ZT =(1,Z...,Z,,). When the error term are i.i.d. with

mean-zero, we have Var(gi):E(giZ). Under this situation, B is the best linear
unbiased estimator (B.L.U.E.). If the normality assumption is further imposed,

efficiency of ﬁ can be established.



The least squares method can be adjusted for unequal variances. For example, if
the covariance matrix of (s,,¢,,...,&,) can be written as o’V , where V is a

non-singular and diagonal matrix, then we can estimate p by the weighted least

squares estimator B =(z"V'Z)'Z"V'T.
Despite its nice property under the desirable condition, the least squares
estimator is known to be sensitive to outliers. We can view that the least squares

method minimizes the objective function p(é‘)zez. Accordingly, the influence

function of the least squares is given by

2

IF(g)oc aioc £.
o€

(3.3)

This implies that the influence of & is proportional to its size. Therefore when ¢

i

has extreme values, its impact op o 1so-large. This explains why the least

squares method is not robust.

Influence FfunNnction

Objective Tunctic

o Bl

fle)=:

I

a
a
M
W

Figure 3.1: The objective function and influence function of least squares method

3.2 Least Absolute Deviations (LAD) Estimation

Assume the distribution of & is symmetric around zero. The absolute deviance

is defined as



2| ~ZTB[ = e, (B)- (34)
i1 i1
It turns out that the median of (e, (B).....e,(B)) minimizes the least absolute

deviations objective function in (3.4).

We can write p(g)= & .The influence function of the LAD estimator is

1, &>0
IF(g) c sgn(¢)=40, &=0, (3.5)
-1, <0

where we define sgn(e) fore =0 despite that it is not differentiable at zero.

Objective TunNnction INnfluence TunNnction

/Il

il =8l

ole =l

Figure 3.2: The objective function and Influence function of LAD
The above figure shows that the influence of & on p(g) only depends on its sign
regardless of its size. Since IF(g) is bounded, the resulting estimator, namely the
median, is resistant or robust to extreme observations. However, IF(g) is not related
to the size of & atall. This means large error has the same affect on estimation as the

small error.

3.3 M-estimator

The objective function can be written as a flexible form, p(e). The so-called

M-estimator is defined as



B =arg mpin Zn: p(Ti - ZiTB). (3.6)

i=1

If p() is differentiable with the derivative y ,then B can solve the equation
> (T, -z7)=0 (37)

i=1

Now the next question is how we can determine the form of p(g).

If the error distribution is symmetric around 0, we can choose the p(-) that
satisfies p(0)=0 and p(s)=—-&. An appropriate form of p(s) can adapt to the
error distribution to find a general principle for choosing the appropriate form of
ple), we can view p(s) as the negative log-likelihood of &. For instance, if the
method of least squares is considered with p(g)=&? (s € R), it corresponds to a

normal distribution with the density proportional to

2

—ple)) 3B
exp(— .

LI
20

For the method of absolute deviations with o )= -|,ze R, it corresponds to the

situation that & has the double expo ustribution with the density related to
exp(—p, (&) = exp(é])

Accordingly, Huber suggested the following objective function

182, |g|£k

pls)=1 2 . , (3.8)
k|g|—5k2, e > &

where k is given and called tuning constant. The objective function (3.8) can be

interpreted that the behavior at the center of the distribution is like the least square; at

extremes, like the least absolute deviations.



05

— NN(O.1)
Double Exponential
——— Huber pdfi{k=1_345)

04

f(z)
03

0]

Figure 3.3 The density functions of three error distributions
By changing the value of k, we can manipulate the effect of extreme observation in
a flexible way. Huber’s objective function can also be related to the negative
log-likelihood of a new random variable. In Figure 3.3, we plot the density function
of three random variables, nan he standard the double exponential and
Huber’s random variable.
The corresponding influence fungtion is given by

IF(g) o “ ; e (3.9)

N

Huber's functionmn k=1 . 345
Objective funNnctionmn Influence FfunNnctiomn

=— — i<

flz)

Figure 3.5: The objective function and Influence function of Huber’s proposal
The above figure shows that within the range, the information of data is maintained,
but, outside the range, the influence of & is bounded. Therefore, Huber’s M

estimator possesses the advantages of the LS and LAD estimators but avoid their

10



drawbacks. It still require that & is symmetric around zero.

3.4 Quantile estimator

When the distribution is not symmetric, the resulting inference procedure has to
be adjusted. The quantile regression was first introduced by Koenker and Bassett

(1978). Consider the objective function:
p.(e)=(c—I(e <0))-& (3.10)

where 7= P(¢ <0). We can rewrite (3.10) as

(1—r)-|g|, ife>0
= A1
p:(¢) {r-|€|, if 6<0 (&.11
The corresponding estimator o is defined as

I = ’ "‘pn il n(/z; A ; l}) (3.12)

It is more intuitively explainabie thai +f the disiribution of error is right-skewed, put
more weight on ¢ >0, and if fistributionsof e 5 left-skewed, put more weight

1 . . .
on £<0. Of course, If we set z‘=%, then p1(£)=5|£|, and its estimator is
2

equivalent to the least absolute deviations estimator. Therefore, we can view (3.10)

as the generalization of the LAD method.

COuantile Regresion (p=0_.1)

Objective funNnctionmn Influenmnce FfunNction

flz)
Fie)

Figure 3.6: The objective function and influence function of quantile estimation
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The influence function is
IF(g) oc (r — I(s < 0)). (3.13)

Figure 3.6 shows that the influence is bounded and similar to Figure 3.2 that positive

and negative errors contribute to p(g) with different magnitude. Owing to the
bounded influence function, the quantile estimator is not sensitive to outliers of

response variable.

3.5 R-estimator
The LAD estimator which minimizes »'|¢,| is valid if &, is symmetric around
i=1

zero. This assumption is some csiniete.y | e two independent replications

of ¢, denoted as &, and ¢, e distiibution of & — ¢, is symmetric around zero
no matter whether ¢ is symimetric or nat. Accordingly one can consider the

objective function

223k-a. (614

i<y
which is the sum of pairwise absolute deviance. It has been shown that (3.14) can also
be written in the form of

> (R -R)e,, (3.15)
where R, is the rank of &, and R :"TH. Equation (3.15) can be compared with
the objective function for the LS method Zn:gf . It is easy to see that, in (3.15), the

i=1

impact of ¢, is confined to its rank rather than its original size. The rank information

12



preserves some information about the magnitude of & but is more robust to extreme
observations.
Define e, =T, —Zﬂij which equal e, + S,. Since the rank relationship is
j=1
not affected by adding the same constant to each observation, this procedure can only

estimate the slope parameters, (f,,...,,,), but not the intercept parameter ;. The

resulting estimator can be expressed as

n+l

argminjzl(zeank(a(ﬂl,..., ﬂpl))_Tj.a(ﬁl,..., 5. (3.16)
The idea of using rank information is related to Wilcoxon or Wilcoxon-Mann-
Whitney statistics. Jaeckel (1972) pointed out th IS estimator is asymptotically
equivalent to the following linear rank statistics:

U,(B) = >4, S R Y =1... p 1) (3.17)

n

_ Z.
where Z, :Z—”. The estimator of (f,,...,,,) can be obtained by solving
' -1 N

U;(B)=0 for j=1,..,p-1.Itissuggested that the intercept term can be estimated

as

By =med(T, ~ (2.8, +..+Z,.p,.)) . (3.18)
In summary, the R estimator is valid for symmetric and skewed distributions. It
is for estimating the slope parameter but not the intercept. The rank-based procedure

is robust to outliers but preserves more data information compared with the LAD

method.

13



Chapter 4 Inference under Censoring
Suppose that the failure time T is subject to censoring by C and hence h(f)
is subject to censoring by h(E) Observed data can be written as
{(x,,6.2,) i=1...,n},
where X, = h(ﬁ)A h(@i ): T,AC, and & =I(T,<C,). We assume that C, is
independent of (7,Z,). In present of censoring, the error form e,(B)=7, —Zp is
subject to censoring. Let e; (B) = X, — Z{B . Notice that when &, =1, e (B)=e¢, (B);

when S =0, e (8)<e, (B). The Kaplan-Meier estimator for Pr(e(p)>¢) is given

1

by

When B =8, the true value of B, F. (tﬁ) converges to Pr(s <t¢).

In this chapter, we extend the previous discussions to account for the presence of
censoring. The challenge is to handle incomplete observation of 7, or e, (B). One
proposal is to directly modify the objective function, which however was not
successful. The other approach is to modify the corresponding estimating function or
estimator under censoring. Two useful techniques for handling missing data, namely

imputation and weighting have been adopted by many statisticians. We will discuss

how these ideas are applied under the least squares estimation in details. For other

14



types of estimation, similar principles can be applied.

4.1 Least Squares Estimation

Several modifications of the least squares method have been proposed to analyze
censored data. Miller (1976) proposed to estimate the objective function in (3.2)
under censoring using the Kaplan-Meier estimator of & in (4.1) and then minimize
the modified quantity. Buckley-James (1979) estimator and Koul-Susarla-Van Ryzin

(1981) estimator both are constructed by directly modifying the least squares solution

in (3.2).

4.1.a Modification of the O hject 1neti
The objective function for-the least squares meihod can be view an estimator of

E(gz). In presence of censoring, IViller (1976} su0gested to estimate n-E(gZ) by
n jz )

where F_(¢|B) isgivenin (4.1). Accordingly, the objective function becomes

n

o [l W dF, e1)= 3 ) o, ) (42)

i=1
Unfortunately equation (4.2) is a complicated function of B and hence is difficult to

implement the minimization. Furthermore, the resulting solution does not have

reasonable properties, such as consistency.

4.1.b Modification of the LS Solution by Imputation

Buckley and James (1979) suggested to impute 7, by E(Ti|Xl.,5l.,Zi). This

15



idea is illustrated in Chapter 2. It follows that
E(T|5,, X,)=6X, + Q- 8)ET|T,>C,. X, =C,,Z,) .
Under the regression model E(T,)=Z[p, it follows that

E(r|r,>c.x,=C, 2,
—E(Z'B+se, > X, -2, X,,Z,)

[ A YT

=7 : 4.3
P sz 9
Accordingly the above guantity can be estimated by
) > 1(e; (B)< e; (B))- dF c;[B)- <; (B)
E(T|r > X,.2,)=2]p +*2 (4.)

4.1.c Modification of the 'S Selution by Weighting
Alternatively, Koul, Susaria and Van Ryzin (1981) suggested to correct the bias

of X, by weighting. In Chapter 2 we 0 that the Kaplan-Meier estimator can

be expressed as a weighted aveirage. it ichiows that

E(é‘iXi):E(I(T;'<Ci)'Ti ) (4'5)
Hence,

E.X,|1)=1, Pr(T, <C)). (46)

. o.X.

It follows that if G(X,)>0, Eim] = E(T,). They suggested to replace 7, by
o.X.
~——'—  where
G(X,)

A ZI(e:(B):u 5120)

G)=TTi1-2— (4.7)

16



4.2 Least Absolute Deviation

Minimizing the objective function z T - ZiTB‘ is equivalent to solving the
i=1

estimating function:

1

U(B)zgzi[l(n —Z}pzo)—zjzo. (4.8)

Since U(B) is not a continuous function of B, the solution ﬁ satisfies

Ul pp-)<o.

In presence of censoring censored data, it follows that

E(1(x, -zTp>0))=Pr(r, - Zp>0)-Pr(Cc, -Z7B >0)

1 (4.9)
=5 6lzp)
2
Ying, Jung and Wei (1995) proposea the estimating ation resembling (4.8)

22(1—( ""'_Zi:'j\i(”'—‘l -6 (4.10)

Notice that the above modifica Utitizes theamet J technique to correct the

censoring bias.

4.3 M-estimator

The M-estimator which minimizes Zp(ﬂ - ZiTB) can be written as the

i=1
solution to the following estimating function

n

> (z,-ZW(r, -2p)=, (411)
i=1
where (t) = dp(¢)/ ot . Ritov (1990) suggested to impute 7, —Zp by an

estimator of its conditional expected value given the data. Recall that

e (B)=X, —Z]B . It follows that
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| 1>l (B)e - dFy ()

E[ei (B)|X[’§[’Z[]:§[e;(ﬁ) + (1_5;)

Sy (e (B))
The resulting estimating function becomes
T PP KLk L iC) IO
i i€ +Ll-09; . =Y, '
= Sy (e; (B))

where §ﬁ(t) is given in (4.1)

4.4 Quantile Regression
Quantile regression assumes that Pr(g < O) = Pr(T -Z'B< O): 7. In presence of

censoring, X =T A C is observed instead of 7. Now we discuss how this change
affects the quantitle calculation. I1.s e2 et

T-Z"B<0 I <Z'"8 ST NE<{Z"BAC}.
Writing Z"pAC=min{Z"B,C}, we have

Pr(T—Z"p <) =¢ Pr(x ~min{Z"B,C}<0).
This implies that as long as we replace the original e(p)=7-Z"p by
X —min{Z" B, C}, the quantile criteria is the same. That is, the objective function can

be written as
p(T—Z"B)=p,(X—mi{Z"B A C}), (4.13)
where p_(g)=(r-1(¢<0))-¢.
However the above expression is still not directly applicable since C is subject
to censoring by 7 . The imputation principle is also applies to replace the unknown

C Dby an estimator of its conditional expected value. Notice that when 6 =0, C is

observed but when &6=1, C is censored. In summary to minimize

(pr (X —min(Z"B, C))), Hornoré, Khan and Powell (1992) proposed to use

18



23 (2-6.)- p. (x, ~mingzB, x,3)

nia
[ . (X, —min{Z]B,c}) - 1(X, <cldG(c) |’
+3, - )
1_G(Xi)

where dé(c) = é(c—)—é(c) and G‘(c) is the Kaplan-Meier estimator of
Pr(C > ¢). Note that the same idea of imputation has been used by Hornoré, Khan

and Powell (2002) in M-estimation.

4.5 Rank-based estimators
If we do not consider the previous way to change the structure of data, we can
attempt to use the primary information of data — rank. We have discuss that we can

explain R-estimator in differe canings but:t Jivalent result. The following
methods are based on modify the solving equation (3 8).
In presence of censoring, direct ranking is impossible. Therefore the alternative

expression in terms of pairwis \parison in (3 oecomes useful. Fygenson and

Ritov (1994) suggested to select “comparable pair” (e; (B)>e (B).S, =1). Note that

as long as . =1, we know the value I(e_/. (B)>e, (B)) despite of censoring. They

proposed the following estimating function

-3 n n
023 (2, -2,)-5,-1(;(8)> ¢ (B)), (4.14)
i=1 j=1
which has a nice monotonic property that guarantees unit-root. Note that the resulting
estimator is a U-statistic useful for large-sample analysis.

Tsiatis (1990) proposed a log-rank type estimator of the form

ilwi(ﬁ)'é‘i '[Zi _Z(B)]:Oy (4.15)
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where w,(.) is some nonnegative weight function and

(4.16)

can be interpreted as the average value of covariate for subjects in the risk set:
R(IB)={j:e,(B)2 1},

for t=e, (B) with 5 =1.When w,(B)=1, the estimator is the log-rank estimator.
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Chapter S Numerical Analysis
In this chapter, w evaluate finite-sample performances of several estimators by
Monte-Carlo simulations. We consider the following model with #(z) = log(z) such
that
log(T,)= B, + B.Z, +¢,,
where Z, ~ N(0.1) and &, follows different types of distributions. Under censoring,
the observable variable becomes

X=(B, +BZ+e)rC,

where the censoring variable C is generated from a uniform variable distributed in the
interval [-1.5, 1.5]. The overall censoring rates vary between 25% and 30%. Sample

size set to be n=100 and 200 vvith 1000 replications

5.1 Error with the Standard Noymai Bistribution
Consider that & has the [ardimormal ition with the density depicted

in Figure 5.1:

— RO 1)

[}

Figure5.1: ¢~ N(0,0)
The results are given in Table 5.1. Under this case, LAD and the quantile

estimator (z = 0.5) yield the same result. The two rank-based methods also have nice

21



results. Since ¢ is symmetric around zero and the chance of observing extreme
observations is pretty low, we can expect that the LS has the best performance and all

the methods should be valid.

5.2 Error with the Student’s T Distribution

Consider that & has the student’s t distribution TV) with the density

) r(v—;lj(uﬁju (scR)

fle)=
()

where v is the degree of freedom. The density for T(Z) is depicted in Figure 5.2.

"\
-
~N
O
-
-

Z

Figure 5.2: &~T, vs.e~N(01)
For comparison, we also plot the density of the standard normal distribution. We see
that 7, tends to produce more extreme observations. Under the adaptive choice of £,

Huber’s estimator performs the best. The LAD and quantile methods with 7 =0.5
are also the same since ¢ is symmetric around zero. They become superior to the LS
method, which is vulnerable to outliers, under the 7 distribution with heavy tails. The

two log-rank methods still have nice results without being affected by extreme
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observations.

5.3 Error with the Gumbel Distribution (right-skewed)
Consider that ¢ has the Gumbel distribution with the density

(8—0{) 7(;;7:1

4

( 8€R),

where « is the location parameter and y is the scale parameter. The density with

(a,7)=(05) is depicted in Figure 5.3:

— Gumbel (O, S

Fio S ~.Gumb ,5)

<

The distribution is asymmetric such that it yields positive extreme values but with low

frequency. Based on the results in Table 5.3, we see that most of the methods cannot

accurately estimate f,, the intercept term, except for the quantile method. Notice

that for Z =0, log(T)=f, +&. It is easy to see that rank-based procedure cannot

detect f,. The first three methods fail too since & is asymmetric around zero. The

quantile can flexibly adjust for this situation. For the slope estimation, all the methods

are valid.

5.4 Error with the Gumbel Distribution (left-skewed)

Consider that ¢ has the Gumbel distribution (left-skewed) with the density

23



where « is the location parameter and y is the scale parameter. The density with

(a,7)=(05) is depicted in Figure 5.4:

— Gumbel (0O, S}

lo]

Figure 5.4: &~ Gumbel (0,5),

The distribution is asymmetric such that vields negative extreme values. Table 5.4
indicates that most of the methods significantly. uncerestimate f,, except for the
quantile method. Similarly the rank-based methods cannot detect S, either. The
asymmetry of ¢ also violates the assumption of first three methods still. Only

the quantile estimator can handle this problem. For the slope estimation, all the

methods are valid.

5.5 Performances under Censoring

Here we focus on the estimation of f,, the slope parameter under censoring.
From Table 5.5 to Table 5.8, we see the same pattern again that the LS method has
better performance under the normal error distribution. Here the LAD and qunatile
method withz =0.5 are no longer the same since they use different methods to adjust

for censoring. The imputation approach discussed in §4.4 seems to perform better
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than the weighting method. Besides, the quantile method still can handle asymmetric
error data as well. Most methods, which use the Kaplan-Meier estimator in estimation
is much affected by the censoring rate. The linear rank estimator without using

Kaplan-Meier estimator is more robust to the censoring condition.
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Chapter 6 Conclusion

In this thesis, we consider a class of general linear model and the major objective
IS to estimate the regression parameter. The underlying error distribution is unknown
but usually practitioners may have some prior knowledge about its shape. Such
information is useful for choosing an appropriate inference method for parameter
estimation. For example, the least squares estimator is a suitable choice if the error is
symmetric around zero with light tails like the normal distribution. On the other hand,
if the chance of extreme observations is not low, the LAD estimator or rank-based
procedures are more appropriete. [{the erroris sk , most of the methods can not
capture the intercept information except the guantile regression estimator. Generally
speaking, the rank-based estimaitrs have nice perfermances in most situations.

There are two different ways ot handling missing data. One is imputation and the
other is weighting. We have seen that these two approaches are also adopted for
analyzing censored data as well. In the previous discussions, the LS estimator is more
sensitive to the tail behavior. It is also more vulnerable to censoring since the
Kaplan-Meier estimator does not estimate the tail well. The of quantile estimator
which uses the imputation approach to handle censoring is valid in most situations.
The rank-based estimators perform pretty well even under censoring. In fact, they are

frequently adopted in related problems.
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As mentioned at the beginning, another area of research considers the situation
that the distribution of ¢ is known but the form of transformation is unspecified.
Such a model is called the transformation model. It seems that most research in this
area has not addressed on the relationship between ¢ and the objective function. We

think that this may deserve further investigation.
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Appendix

Table 5.1. A: Performances of Different Estimators

censoring rate=0, ¢~ N(0,1), n=100

LS LAD M-Huber Quantile | Linear Log-rank
k=1.2 k=1.8 =05 |rank
ﬂo =-2
Bias -0.0013 |-0.0012 | 0.0016 |-0.0002 |0.0012 |0.0014 |0.0017
(SD) (0.1010) | (0.1262) | (0.1049) | (0.0716) | (0.1262) | (0.1012) | (0.1010)
ﬂl =3
Bias 0.0024 | -0.0025 PN ).0025 |-0.0014 |-0.0020
(SD) (0.0999) | (0.1275) (0.a044) ' (0.1010) (0.1275) | (0.1100) | (0.1031)
Table 5.1. B: T1aNCesior nt Estimators
censoring rate=0, ¢~ N(0,1), n=200
LS LAD M-Huber Quantile | Linear Log-rank
k=1.2 k=1.8 7=05 |rank
ﬂo =-2
Bias -0.0003 |-0.0001 | 0.0000 |-0.0002 |-0.0001 |-0.0012 |-0.0013
(SD) (0.0710) | (0.0880) | (0.0735) | (0.0716) | (0.0880) | (0.0701) | (0.0703)
ﬂl =3
Bias -0.0000 |-0.0011 |0.0007 |-0.0003 |-0.0011 |-0.0006 |0.0010
(SD) (0.0720) | (0.0901) | (0.0750) | (0.0729) | (0.0900) | (0.0719) | (0.0772)
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Table 5.2. A: Performances of Different Estimators
censoring rate=0, ¢~ T7(2),n=100

LS LAD M-Huber Quantile | Linear Log-rank
k=1.2 k=1.8 =05 |rank
ﬂo =-2
Bias 0.0019 |0.0018 |0.0009 |0.0008 |0.0018 |0.0028 |0.0032
(SD) (0.3515) | (0.1438) | (0.1366) | (0.1445) | (0.1438) | (0.3474) | (0.3475)
B =3
Bias 0.0144 | -0.0058 | -0.0065 |-0.0071 |-0.0058 |-0.0064 |-0.0066
(SD) (0.3628) | (0.1491) (0.1400) (0446 ).1491) | (0.1823) | (0.1443)
Table 5.2. B: P ‘manees.of i Estimators
censoring iaic =0, ¢ ~ {2, =200
LS LAD M-Huber Quantile | Linear Log-rank
k=1.2 k=1.8 =05 |rank
By =-2
Bias -0.0016 |-0.0011 |-0.0009 |-0.0005 |-0.0011 |-0.0016 |-0.0015
(SD) (0.2682) | (0.1423) | (0.0936) | (0.0987) | (0.1423) | (0.2674) | (0.2673)
B =3
Bias -0.0044 | 0.0040 |0.0020 |0.0020 |0.0040 |0.0025 |0.0023
(SD) (0.2665) | (0.1009) | (0.0963) | (0.1009) | (0.1009) | (0.1284) | (0.0997)
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Table 5.3. A: Performances of Different Estimators
censoring rate=0, &~ Gumbel®(0, 5), n=100

LS LAD M-Huber Quantile | Linear Log-rank
k=1.2 k=1.8 7=0.33 | rank
ﬂo =-2
Bias 2.9002 |1.8733 |1.8856 |1.9030 |0.0410 |2.9025 |2.9003
(SD) (0.6455) | (0.7255) | (0.6942) | (0.6781) | (0.6557) | (0.6455) | (0.6467)
py =3
Bias -0.0018 | 0.0038 [0.0026 |0.0011 |-0.0024 |-0.0006 |-0.0031
(SD) (0.6497) | (0.7335) (0.6946)  (0.679] .6623) | (0.5916) | (0.7776)
Table 5.3. B: Performances0f Di nt Estimators
censoring raic =0, ¢~ Guinbel (0, 5), n=200
LS LAD M-Huber Quantile | Linear Log-rank
k=1.2 k=1.8 7=0.33 | rank
ﬂo =-2
Bias 2.8751 |1.8348 |1.8512 |1.8680 |0.0049 |2.8756 |2.8751
(SD) (0.4487) | (0.5020) | (0.4741) | (0.4642) | (0.4531) | (0.4484) | (0.4531)
B =3
Bias 0.0176 |0.0185 |0.0172 |0.0169 |0.0156 |0.0157 | 0.0196
(SD) (0.4457) | (0.5086) | (0.4850) | (0.4726) | (0.4627) | (0.4405) | (0.5354)
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Table 5.4. A: Performances of Different Estimators
censoring rate=0, &~ Gumbel (0, 5), n =100

LS LAD M-Huber Quantile | Linear Log-rank
k=1.2 k=1.8 7=0.67 | rank
ﬂo =-2
Bias -2.9044 | -1.8955 |-1.9058 |-1.9220 |-0.0700 |-2.9022 |-2.9042
(SD) (0.6420) | (0.7200) | (0.6867) | (0.6706) | (0.6633) | (0.6402) | (0.6400)
B =3
Bias 0.0182 | 0.0167 |0.0166 |0.0176 |0.0263 |0.0212 |-0.0137
(SD) (0.6534) | (0.7358) | (0.6867) | (0.6839) | (0.6540) | (0.5984) | (0.5265)
Table 5.4. B: Performances of Different Estimators
censoring rat€ & 05.c = GU 0,5),n=200
LS LAD IVi-Hubei GQuantile | Linear Log-rank
k=1.2 k=1.8 7=0.67 | rank
ﬂo =-2
Bias -2.8918 | -1.8479 |-1.8634 |-1.8800 |-0.0327 |-2.8914 |-2.8921
(SD) (0.4577) | (0.5148) | (0.4886) | (0.4786) | (0.4722) | (0.4573) | (0.4570)
B =3
Bias 0.0116 | 0.0020 | 0.0031 |0.0022 |0.0012 |0.0029 |-0.0052
(SD) (0.4571) | (0.5063) | (0.4867) | (0.4752) | (0.4593) | (0.4109) | (0.3607)
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Table 5.5. A: Performances of Different Estimators
censoring rate=28.1%, ¢~ N(0,1),n =100

LS LAD Quantile | Linear | Log
rank -rank

Objective | imputation | weighting | (Median) | 7=0.5

function
Py =-2
Bias -0.1861 -0.3278 -0.1284 -0.0062 0.4136 | -0.6435 | 0.7760
(SD) (0.1321) (0.3092) (0.2215) (0.4535) (0.5294) | (0.2560) | (0.2568)
b= 3
Bias -0.1285 0.0221 ODOLLLLIL#P, 0.1766 | 0.0004 | -0.2669
(SD) (0.2497) (0.7729) 052646 ) mi 0. 666 (0.0650) | (0.1448) | (0.1712)

Table 5.5. B: Performances of Different Estimators
censoring rate=27.6, ¢~ N(0,1), n=200
LS LAD Quantile | Linear | Log
rank -rank

Objective | imputation | weighting | (Median) | 7 =0.5

function
By =-2
Bias -0.1340 -0.3392 -0.1008 -0.1043 0.2510 |-0.6317 | 0.7709
(SD) (0.1019) (0.3446) (0.1808) (0.2954) (0.3419) | (0.1999) | (0.2118)
B =3
Bias -0.1210 -0.0508 -0.0631 -0.2116 0.2857 | 0.0015 | -0.2658
(SD) (0.2087) (0.6463) (0.2187) (0.4516) (0.4334) | (0.1012) | (0.1193)
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Table 5.6. A: Performances of Different Estimators

censoring rate =29.7%, ¢ ~#(2), n =100

LS LAD Quantile | Linear | Log
rank -rank

Objective | imputation | weighting | (Median) | r=05

function
Py =-2
Bias -0.5400 -0.1159 -0.6415 -0.0385 0.2041 | 0.1856 | 0.4297
(SD) (0.3301) (0.6246) (0.4430) (0.4368) (0.4905) | (0.5115) | (0.4994)
B =3 |
Bias -0.4040 -1.1075 0,47 0. 133 0.2147 | 0.0114 | -0.5068
(SD) (0.6289) (1.1656) 5(0.5813)-|"4 [0.6987 (0.5238) | (0.2035) | (0.2582)

Table 5.6. B: Performances of Different Estimators
censoring rate =28.1%, &~#(2), n =200
LS LAD Quantile | Linear | Log
rank -rank

Objective | imputation | weighting | (Median) | r=05

function
Py =-2
Bias -0.5073 -0.5717 -0.6300 -0.1108 0.0810 |-0.1675 |0.4141
(SD) (0.2982) (0.8982) (0.3844) (0.3013) (0.2880) | (0.4631) | (0.4594)
p, =3
Bias -0.4413 -1.6455 -0.4163 -0.2581 0.0744 | 0.0020 | 0.5124
(SD) (0.6174) (1.3123) (0.5001) (0.5995) (0.4775) | (0.1437) | (0.1848)
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Table 5.7. A: Performances of Different Estimators

censoring rate=26.2%, &~ Gumbel*(0,5), n =100

LS LAD Quantile | Linear | Log
rank -rank

Objective | imputation | weighting | (Median) | r=0.37

function
Py =-2
Bias 1.1859 4.6696 1.4614 1.6400 0.1379 |0.1874 | 0.8057
(SD) (0.5508) (0.5944) (0.9480) (0.7482) (0.6539) | (0.4420) | (0.3802)
py =3
Bias -0.7790 -2.4757 -0.1113 -0.4304 0.0519 |-0.0138 |-1.1260
(SD) (0.5270) (0.5442) (1.1291) (0.7822) (0.6867) | (0.5920) | (0.5788)

Table 5.7. B: Performances of Different Estimators
censoring rate =26.9%, &~ Gumbel®(0,5), n =200
LS LAD Quantile | Linear | Log
rank -rank

Objective | imputation | weighting | (Median) | r=0.37

function
Py =-2
Bias 1.2861 5.1294 1.5220 1.7736 0.0815 |0.1817 |0.8041
(SD) (0.3702) (0.3758) (0.7198) (0.5550) (0.4789) | (0.3304) | (0.2779)
p, =3
Bias -0.8018 -2.9283 -0.0633 -0.2357 0.0424 | 0.0007 |-1.1398
(SD) (0.4247) (0.3128) (0.8660) (0.6233) (0.4947) | (0.4154) | (0.4119)

36




Table 5.8.A: Performances of Different Estimators
censoring rate=26.2%, &~ Gumbel (0,5), n =100

LS LAD Quantile | Linear | Log
rank -rank

Objective | imputation | weighting | (Median) | r=0.63

function
Py =-2
Bias -4.2216 -0.4363 -5.1710 -2.2504 -4.5248 | -3.9803 | -2.9932
(SD) (0.8235) (1.2551) (0.6908) (0.7482) (0.8694) | (0.7141) | (0.7200)
py =3
Bias -1.0619 -2.3659 -1.4866 -0.6683 0.1208 | 0.0448 | 1.8801
(SD) (0.7909) (0.7207) (0.7472) (0.7100) (0.8777) | (0.7182) | (0.5088)

Table 5.8.B: Performances of Different Estimators
censoring rate = 25.8%, &~ Gumbel (0,5), n =200
LS LAD Quantile | Linear | Log
rank -rank

Objective | imputation | weighting | (Median) | r=0.63

function
Py =-2
Bias -4.0744 -0.9522 -5.1669 -2.1398 -4.5600 | -4.0065 |-3.0066
(SD) (0.6259) (0.3517) (0.4993) (0.5370) (0.6116) | (0.5334) | (0.5083)
p, =3
Bias -1.1297 -2.4377 -1.4950 -0.5732 0.0320 | 0.0200 |1.9184
(SD) (0.7273) (0.2811) (0.5319) (0.5040) (0.6220) | (0.4965) | (0.3483)
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