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ABSTRACT

There are more evidences-that gene-gene interaction is probably ubiquitous in
complex disease. Several statistical methods have been developed to detecting such
association. We are interesting in how to use these methods in a real data and want to
compare these methods. In the present study, we applied five commonly used methods:
chi-square test, logistic regression model (LRM), bayesian epistasis association
mapping (BEAM) algorithm, classification and regression trees (CART), and the
multifactor dimensionality reduction (MDR) method to a schizophrenia case-control
dataset. Our study show evidence for several single marker effects and gene-gene
interactions associated with schizophrenia. At the final part, in order to assess the
ability of prediction with these five methods, cross-validation is also proposed along

with these methods.
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1 INTRODUCTION

A grand challenge in statistical genetics is to develop powerful methods that can
identify genes that control biological pathways leading to disease. Discovery of such
genes is critical in the detection and treatment of human diseases. The dramatic
advances in human genome research coupled with the recent progress in
high-throughput technology for molecular biology and genetics now allow the study
of the genetic basis of disease and the response to treatment of complex diseases, such
as breast cancer, on a molecular level. A good example is the recent efforts of the
Human Genome Project towards large-scale characterization of human single
nucleotide polymorphisms (SNPs) [1].

Single-locus methods measure the effect of one locus irrespective of other loci
and are useful to study genetic diseases caused by a single gene, or even loci within
single genes. To study complex diseases such as cardiovascular disorders or diabetes
single-locus methods may not be appropriate, as it is possible that loci contribute to a
certain complex disease only by their ‘interaction with other genes (epistasis), while
main effects of the individual loci may be small or absent [2].

There is growing evidence that gene-gene interactions are ubiquitous in
determining the susceptibility to common human diseases. The investigation of such
gene-gene interactions presents new statistical challenges for studies with relatively
small sample sizes as the number of potential interactions in the genome can be large
[1]. Many have collected data on large numbers of genetic markers but are not
familiar with available methods to assess their association with complex diseases.
Statistical methods have been developed for analyzing the relation between large
numbers of genetic and environmental predictors to disease or disease-related

variables in genetic association studies [2].



Family, twin, and adoption studies have unequivocally demonstrated that genetic
vulnerability is a major contributing factor in the etiology of schizophrenia. Although
the details of schizophrenia’s pathophysiology remain to be worked out, current
evidence indicates that it is a complex disorder influenced by genes, environmental
risk factors, and their interaction [3-4].

In the present study, we assessed the importance of gene-gene interactions on
schizophrenia risk by investigating 65 SNPs from 5 candidate genes in a sample of
514 cases and 376 controls. We discuss the methodological issues associated with the
detection of gene-gene interactions in this dataset by applying and comparing five
commonly used methods: the chi-square test, logistic regression model (LRM),
bayesian epistasis association mapping (BEAM) algorithm, classification and
regression trees (CART), and the multifactor dimensionality reduction (MDR) method.
At the final part, in order to assess-the ability of prediction with these five methods,

cross-validation is also proposed along with-these methods.



2 LITERATURE REVIEW

2.1 SNP (http://en.wikipedia.org/wiki/Single nucleotide polymorphism)

A single nucleotide polymorphism (SNP, pronounced snip), is a DNA sequence
variation occurring when a single nucleotide - A, T, C, or G - in the genome (or other
shared sequence) differs between members of a species (or between paired
chromosomes in an individual). For example, two sequenced DNA fragments from
different individuals, AAGCCTA to AAGCTTA, contain a difference in a single
nucleotide. In this case we say that there are two alleles: C and T. In classical genetics
the two alleles are usually denoted A and a. Almost all common SNPs have only two
alleles. For a variation to be considered a SNP, it must occur in at least 1% of the
population.

Within a population, SNPs ¢an be assigned a minor allele frequency- the lowest
allele frequency at a locus that is observed in a particular population. This is simply
the lesser of the two allele frequencies for-single nucleotide polymorphisms. It is
important to note that there are variations between human populations, so a SNP allele
that is common in one geographical or ethnic group may be much rarer in another. In
the past, single nucleotide polymorphisms with a minor allele frequency of less than
or equal to 1% (or 0.5%, etc.) were given the title "SNP," an unwieldy definition. With
the advent of modern bioinformatics and a better understanding of evolution, this
definition is no longer necessary.

Single nucleotide polymorphisms may fall within coding sequences of genes,
non-coding regions of genes, or in the intergenic regions between genes. SNPs within
a coding sequence will not necessarily change the amino acid sequence of the protein
that is produced, due to degeneracy of the genetic code. A SNP in which both forms

lead to the same polypeptide sequence is termed synonymous (sometimes called a


http://en.wikipedia.org/wiki/Single_nucleotide_polymorphism

silent mutation) - if a different polypeptide sequence is produced they are
non-synonymous. SNPs that are not in protein-coding regions may still have
consequences for gene splicing, transcription factor binding, or the sequence of
non-coding RNA.

Variations in the DNA sequences of humans can affect how humans develop
diseases and respond to pathogens, chemicals, drugs, vaccines, and other agents.
However, their greatest importance in biomedical research is for comparing regions of
the genome between cohorts (such as with matched cohorts with and without a

disease).

2.2 Genotype (http://en.wikipedia.org/wiki/Genotype)

The genotype is the genetic constitution of a cell, an organism, or an individual, that is
the specific allele makeup of -the individual, usually with reference to a specific
character under consideration. For instance,-the human albino gene has two allelic
forms, dominant A and recessive ‘a, and there are three possible genotypes- AA
(homozygous dominant), Aa (heterozygous), and aa (homozygous recessive).

A more technical example to illustrate genotype is the single nucleotide
polymorphism or SNP. Returning to the SNP example with a C—T substitution
corresponding to A and a alleles, three genotypes are possible: AA, Aa and aa. Other
types of genetic marker, such as microsatellites, can have more than two alleles, and
thus many different genotypes. It is important that the two genotypes Aa and aA

cannot be distinguished from each other, so the order of alleles does not matter [5].

2.3 Haplotype (http://en.wikipedia.org/wiki/Haplotype)
The term haplotype is a contraction of the term "haploid genotype." In genetics, a

haplotype (Greek haploos = single) is a combination of alleles at multiple linked loci
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that are transmitted together on the same chromosome. Haplotype may refer to as few
as two loci or to an entire chromosome depending on the number of recombination
events that have occurred between a given set of loci.

In a second meaning, haplotype is a set of single nucleotide polymorphisms
(SNPs) on a single chromatid that are statistically associated. It is thought that these
associations, and the identification of a few alleles of a haplotype block, can
unambiguously identify all other polymorphic sites in its region. Such information is
very valuable for investigating the genetics behind common diseases, and is collected

by the International HapMap Project.

SNP SMHP SNP
+ ¥ v
Chromosome1 AACACGCCA.... TTCGGGGTC.... AGTCGACCG....
Chromosome? AACACGCCA.... TTCGAGGTC.... AGTCA ACCG....

Chromosome3 AACATGCCA.... TTCGGGGTC.... AGTCA ACCG....
Chromosome4 AACACGCCA....TTCGGGGTC.... AGTCGACCG....

a SNPs

b Haplotypas vy ¢
Haplotype1 CTCAAAGTACGGTTCAGGCA
Haplotype2 TTGATTGCGCAACAGTAATA
Haplotype3 CCC|/GATCTGTGATACTGGTG
HEDIDWEE-Q

¢ Tag SMPs

QAP =
O\ =
e\ |«

Figure : The construction of the HapMap occurs in three steps. (a) Single nucleotide
polymorphisms (SNPs) are identified in DNA samples from multiple individuals. (b)
Adjacent SNPs that are inherited together are compiled into "haplotypes." (c¢) "Tag"
SNPs within haplotypes are identified that uniquely identify those haplotypes. By
genotyping the three tag SNPs shown in this figure, researchers can identify which of
the four haplotypes shown here are present in each individual.

(http://www.hapmap.org/whatishapmap.html.en)
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Direct, laboratory-based haplotyping or typing further family members to infer
the unknown phase are expensive ways to obtain haplotypes. Fortunately, there are
statistical methods for inferring haplotypes and population haplotype frequencies from
the genotypes of unrelated individuals. These methods, and the software that
implements them, rely on the fact that in regions of low recombination relatively few
of the possible haplotypes will actually be observed in any population. These
programs generally perform well, given high SNP density and not too much missing
data. SNPHAP is simple and fast, whereas PHASE tends to be more accurate but
comes at greater computational cost. Recently FASTPHASE has emerged, which is

nearly as accurate as PHASE and much faster [6].

2.4 Hardy-Weinberg equilibrium

(http://en.wikipedia.org/wiki/Hardy=Weinberg principle)

In population genetics, the Hardy-Weinberg. principle states that the genotype
frequencies in a population remain ‘constant or are in equilibrium from generation to
generation unless specific disturbing influences are introduced. Those disturbing
influences include non-random mating, mutations, natural selection, limited
population size, random genetic drift and gene flow. Genetic equilibrium is a basic
principle of population genetics. This concept is also known by a variety of names:
HWP, Hardy—Weinberg equilibrium, HWE, or Hardy—Weinberg law. It was named
after G. H. Hardy and Wilhelm Weinberg.

A better, but equivalent, probabilistic description for the HWP is that the alleles
for the next generation for any given individual are chosen randomly and independent
of each other. Consider two alleles, A and a, with frequencies p and q, respectively, in
the population. The different ways to form new genotypes can be derived using a

Punnett square (also known as a Prout Square), where the fraction in each is equal to
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the product of the row and column probabilities.

Table : Punnett square for Hardy—Weinberg equilibrium

Females
A(p) a(q)
Males A(p) AA (p?) Aa (pq)
a(q) Aa (pq) aa (q*)

The final three possible genotypic frequencies in the offspring become:

B f(AA)=p’

B f(Aa)=2pq

m faa)=¢’

These frequencies are called Hardy-Weinberg frequencies (or Hardy-Weinberg
proportions). This is achieved in one generation, and only requires the assumption of
random mating with an infinite population size. Sometimes, a population is created by
bringing together males and females with different allele frequencies. In this case, the
assumption of a single population is violated until after the first generation, so the first
generation will not have Hardy-Weinberg equilibrium. Successive generations will
have Hardy-Weinberg equilibrium.

Testing for deviations from HWE can be carried out using a Pearson
goodness-of-fit test, often known simply as “the y” test” because the test statistic
has approximately a y> null distribution. Be aware, however, that there are many
different y* tests. The Pearson test is easy to compute, but the > approximation
can be poor when there are low genotype counts, and it is better to use a Fisher exact

test, which does not rely on the y° approximation. The open-source data-analysis



software R has an R genetics package that implements both Pearson and Fisher tests

of HWE, and PEDSTATS also implements exact tests [6].

2.5 Analytical approaches to interactions
2.5.1Bayesian epistasis association mapping (BEAM)

The BEAM [7] algorithm takes case-control genotype marker data as input and
produces, via Markov Chain Monte Carlo (MCMC) simulations, posterior
probabilities that each marker is associated with the disease and involved with other
markers in epistasis. The method can be used either in a ‘pure’ bayesian sense or just
as a tool to discover potential ‘hits’. For the former, one relies on the reported
posterior probabilities to make inferential statements; as for the latter, one can take the
reported hits and use another procedure to test whether these hits are statistically
significant. The latter approach, is more robust -to model selection and prior
assumptions (such as Dirichlet priors with-arbitrary parameters) and is less prone to
the slow mixing problem in the MCMC computational procedure. BEAM also
proposes the B statistic to facilitate the latter approach.

Methods

Notations. Suppose N, cases and N, controls were genotyped at L SNP

markers. Let case genotypes be D=(d,,....,dy ) with d,=(d,,....,d; ) representing

genotypes of patient | at L markers, and let control genotypes be U =(u,,...,Uy )

with u, =(U,,...,u; ). The L markers are partitioned into three groups: group 0
contains markers unlinked to the disease, group 1 contains markers contributing
independently to the disease risk and group 2 contains markers that jointly influence

the disease risk (interactions). Let | =(l,,...,1 ) indicate the membership of the

markers with 1,=0, 1 and 2, respectively. Their goal is to infer the set of markers that
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are associated with the disease (that is, thee set {j: 1, >0}).Let |, I, I, denote the

number of markers in each group (I, +1,+1,=L), and let D,, D, and D, denote

case genotypes of markers in group 0, 1 and 2, respectively.

The bayesian marker partition model. Case genotypes at associated markers should
show different distributions when compared with control genotypes. For simplicity,
the authors of BEAM describe the likelihood model assuming independence between

markers in the control population (see Supplementary Methods of BEAM [7] for a

generalized model to account for LD). Let ©,={(6,.0,,,0,;):1,=1} be the

genotype frequencies of each biallelic marker in group 1 in the disease population;

they write the likelihood of D, as

P(D1 |®1): Heijk 5

j:1=1 k=1

where {n;,n;,,n;} are genotype counts of each marker j in group 1. Assuming a

i

Dirichlet(«) prior for {6,,6,,,0,;}, where' a =(¢,,,,a;), they integrate out O,

and obtain the marginal probability:

_ 3 T(ny +a) r(|a|)

=1\ \_k=1
Here the notation |a| represents the sum of all elements in « .

Markers in group 2 influence the disease risk through interactions. Thus, each
genotype combination over the |, markers in this group represents a potential

interaction. There are 3" possible genotype combinations with frequency

®, =(p,,-,py,) in the disease population. Let n, be the number of genotype

combination kK in D,. Again, with a Dirichlet() prior distribution of ©,,



B=(B,-... ), they integrate out ©, so that

(& +B)) T(BD
P(DZ“)‘[Q T(A) )F(Nwlﬂl) @)

The remaining data D, consist of markers that follow the same distributions as in

the control population. Let ® =(4,,...,6,) denote the genotype frequencies of the L
markers in the control population, and let n, and m; be the number of individuals
with genotype K at marker j in D and U, respectively. Assuming Dirichlet
priors with parameters y =(y,,7,,7;) for 8,,j=1,..,L, we integrate out ® and

obtain

POLUID=T] (ﬁr(njﬁmjkwa r(y)) o
k=1 I'(Z) r[i(njk+mjk)+|y|)

j=1
k=1
Combining formulas (1), (2) and (3), we obtain the posterior distribution of | as

P(I'D,U) o (D HP(D, [HP(B;,U [ DHP(1) (4)

Note that | determines the configuration of D,. They let P(l)oc p)p2(1-p,

—p,)""" which may be modified to reflect our prior knowledge of each marker

being associated with the disease. As sample sizes dictate our capability in identifying
high-order interactions, They restrict that |, <log,(N,)—1. By default (in the
available software), they set p, = p, =0.01. When BEAM is used as a search tool,
these priors can be set quite liberally without affecting the results. However, if we
need to use the posterior probabilities for decision making, the priors need to be

calibrated with our prior knowledge. We further set the parameters for the Dirichlet

priorsas ;= f; =y, =0.5, Vi, j,k.
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MCMC sampling. Their goal is to draw the indicator | from distribution (4). They
initialize | according to the prior P(l) and use the Metropolis-Hastings (MH)
algorithm to update |. Two types of proposals are used: (i) randomly change a
marker’s group membership, or (ii) randomly exchange two markers between groups
0, 1 and 2. The output is the posterior distribution of makers and interactions

associated with the disease.

B statistic and conditional B statistic. BEAM also provide a hypothesis-testing
procedure to check each marker or set of markers for significant associations, where
the marker set is selected based on ‘hits’ output by BEAM. This validation procedure
yields results that are more robust to model selection and prior misspecifications and
avoids the slow mixing problem often encountered.in MCMC.

For each set M of k markers to be tested, the null hypothesis is that markers
in M are not associated with the disease. Here, k=1,2,3,... represents single
-marker, two-way and three-way interactions, etc. They define the B statistic for

the marker set M as:

PA(DM >UM) I:)join(DM )[Pind (UM )+ I:>join(UM )]
v =In =In
PO(DM’UM) F)ind(DM’UM)+Pjoin(DM’UM)

Here, D,, and U,, denote the genotype data for M in cases and controls, and
P,(D,,U,) and P,(D,,,U,,) are really the Bayes factors (that is, the marginal
probabilities of the data with parameters integrated out from our bayesian model,
under the null and the alternative models, respectively). Under the null model,

genotypes in both cases and controls follow a common distribution, whereas under the

alternative model they follow different distributions. They choose both P,(D,,,U,,)
and P,(U,,) as an equal mixture of two distributions: one that assumes

independence among markers in M, P,,(X), of which the form is given in equation

11



(1), and the other a saturated joint distribution of genotype combinations across all

markers in M, P, (X), as in equation (2). Under the null hypothesis that M is

not associated with the disease, the B statistic is asymptotically distributed as a shifted
7> with 3 —1 degrees of freedom. The shifting parameter of the distribution can be
computed explicitly. Simulations confirm that this asymptotic approximation is quite
accurate for reasonably sized data sets.

When testing for interaction associations, a set of k (=2,3,...) markers may
include t (<k) markers that are significant through either marginal or partial
interaction associations. In this case, we want to test for the additional association
effects conditional on the t associated markers. Let T denote the t associated
markers in a set M of K markers; then,.the conditional B statistic for the marker

set M 1is defined as

—In Pisin (Dt | D[Paa Ui )+ Pigin Uy (U7 )]
n Poa (Pwirs Uit ) P (Dy .Uy, | Dy UL

Here, D, and U, denote the genotype data for the marker set X in cases and

controls, respectively. Note that the nonconditional B statistic B,, corresponds to the

conditional B statistic B,,; when T is an empty set. They also show that the

asymptotic null distribution of B, is a shifted z*, with 3“-3' degrees of

freedom.

The BEAM algorithm has two essential components: a bayesian epistasis
inference tool implemented via MCMC and a novel test statistic for evaluating
statistical significance. Although these two parts come from opposing schools of
statistics, they can provide complementary statistical insights to the scientist and help
reconfirm each other. A natural advantage of the bayesian approach is its ability to

incorporate prior knowledge about each marker (for example, whether it is in a coding

12



or regulatory region) and to quantify all information and uncertainties in the form of
posterior distributions. However, evaluating the statistical significance of a candidate
finding via p-values is more robust to model choice and prior assumptions and can

give the scientist peace of mind.

2.5.2Classification and regression trees (CART)
Tree-based modeling [8] is an exploratory technique for uncovering structure in data.
Specifically, the technique is useful for classification and regression problems where
one has a set of classification or predictor variables ( X ) and a single-response variable
(y). The models are fitted by binary recursive partitioning whereby a dataset is
successively split into increasingly homogeneous subsets until it is infeasible to
continue. The term “binary” implies that each group of patients, represented by a
“node” in a decision tree, can only be split into two-groups. Thus, each node can be
split into two child nodes, in which case the-original node is called a parent node. The
term “recursive” refers to the fact that the binary partitioning process can be applied
over and over again. Thus, each parent node can give rise to two child nodes and, in
turn, each of these child nodes may themselves be split, forming additional children.
The term “partitioning” refers to the fact that the dataset is split into sections or

partitioned [9].

Partitioning the predictors. Predictor variables appropriate for tree-based models
can be of several types: factors, ordered factors, and numeric. Partitions are governed
solely by variable type.

If x is a factor, with say K levels, then the class of splits consists of all
possible ways to assign the k levels into two subsets. In general, there are 2" —1

possibilities (order is unimportant and the empty set is not allowed). So, for example,

13



if X has three levels (a, b, ¢), the possible splits consist of ab|c, ab|c, and b|ac.

If X is a ordered factor with k ordered levels, or if X is numeric with K
distinct values, then the class of splits consists of k—1 ways to divide the
levels/values into two contiguous, nonoverlapping sets. Note that the values of a

numeric predictor are not used in defining splits, only their ranks.

Comparing distributions at a node. The likelihood function provides the basis for
choosing partitions. Specifically, the deviance (likelihood ratio statistic) is used to
determine which partition of a node is “most likely” given the data.
The model which be used for classification is based on the multinomial
distribution where we use the notation, for example,
y=(0,0, 1, 0)

to denote the response y falling into the third level out of four possible. The vector
u=(p,,P,,P;,P,), such that Z p, =1, denotes the probability that y falls into

each of the possible levels. The model consists of the stochastic component,
Vi ~M(g), i=L..,N

and the structural component
M =7(X).

The deviance function for an observation is defined as minus twice the log-likelihood,

D3 y;) = _22 Vi log(Py) -

k=1

The model we use for regression is based on the normal distribution, consisting

of the stochastic component,
Y, ~N(x,0%), i=1,..,N

and the structural component

My =7(%) -

14



The deviance function for an observation is defined as

D(u;y) = (Y, — 1),
which is minus twice the log-likelihood scaled by o, which is assumed constant for
all i.
At a given node, the mean parameter x is constant for all observations. The
maximume-likelihood estimate of 2, or equivalently the minimum-deviance estimate,

is given by the node proportions (classification) or the node average (regression).

The deviance of a node is defined as the sum of the deviances of all observations
in the node D(/;y)= Z D(£Y;) . The deviance is identically zero if all the y’s are

the same (i.e., the node is pure), and increases as the y’s deviate from this ideal.
Splitting proceeds by comparing this-deviance to.that of candidate children nodes that

allow for separate means in the left and right splits,
D igs Y) = Z D(4; yi)+z D(i:5 )
L R

The split that maximizes the change in deviance (goodness-of-split)
AD = D(f;y) - D(f1., f1z, Y)

is the split chosen at a given node.

2.5.3Multifactor dimension reduction (MDR)
The MDR [10] approach is a model-free and nonparametric approach that it does not
assume any particular genetic model and does not estimate any parameters. With
MDR, multilocus genotypes are pooled into high risk and low risk groups, effectively
reducing the dimensionality of the genotype predictors from N dimensions to one
dimension. The new one-dimensional multilocus genotype variable is evaluated for its
ability to classify and predict disease status using cross-validation and permutation

testing. It identifies interactions through an exhaustive search, that is, it searches over

15



all possible factor combinations to find combinations with an effect on an outcome

variable.
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Figure: Summary of the general steps involved in implementing the MDR method.

The algorithm of MDR works as follows:

In step one, the data are divided into a training set (e.g. 9/10 of the data) and an
independent testing set (e.g. 1/10 of the data) as part of cross-validation. In step 2, a
set of N genetic and/or discrete environmental factors is then selected from the pool of
all factors. In step three, the N factors and their possible multifactor classes or cells
are represented in N-dimensional space. In step four, each multifactor cell in the
N-dimensional space is labeled as high-risk if the ratio of affected individuals to
unaffected individuals (the number in the cell) exceeds some threshold T (e.g. T = the
number of affected individuals in the dataset divided by the number of unaffected
individuals in the dataset) and low-risk if the threshold is not exceeded. In steps five
and six, the model with the best misclassification error is selected and the prediction

error of the model is estimated using the independent test data. Steps 1 through 6 are
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repeated for each possible cross-validation interval. Then, the best prediction error
among cross-validation is selected as the best model. In the above figure, bars
represent hypothetical distributions of cases (left) and controls (right) with each
multifactor combination. Dark-shaded cells represent high-risk genotype
combinations while light-shaded cells represent low-risk genotype combinations. No
shading or white cells represent genotype combinations for which no data was

observed.
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3 MATERIALS AND METHODS

3.1 Study population
The schizophrenia dataset was used for this study. Data collection was based on TSLS
program [3]. The ascertainment procedure began by identifying suitable probands
with clinical record of schizophrenia or depressive type of schizoaffective disorder
and probands were recruited from six data collection field research centers throughout
Taiwan. To be included in the study, the family must have had two siblings with
schizophrenia and only included families of Han Chinese ancestry. A detailed
description of methods is given by Hwu et al. [3]. Genotyping of markers on 5
candidate genes DISC1, NRG1, DAO, G72 and CACNG2 was finished by using
MALDI-TOF. Our dataset contains 514, schizophrenia cases and 376 controls. There
are total 65 SNPs in five candidate genes: 23 SNPs in DISC1 (chromosome 1q), 8
SNPs in NRG1 (chromosome 8p), 12 SNPs in DAQ (chromosome 12q), 16 SNPs in

G72 (chromosome 13q), and 6 SNPs‘in. CACNG2 (chromosome 22q).

3.2 Preliminary analyses
Data quality control. Data quality is most importance, and data should be checked
thoroughly, for example, for batch or study-centre effects, or for unusual patterns of
missing data. Testing for Hardy-Weinberg equilibrium (HWE) can also be helpful, as
can analyses to select a good subset of the available SNPs or to infer haplotypes from
genotypes. Apparent deviations from HWE can arise in the presence of a common
deletion polymorphism, because of a mutant PCR-primer site or because of a
tendency to miscall heterozygotes as homozygotes. So far, researchers have tested for
HWE primarily as a data quality check and have discarded loci that, for example,

deviate from HWE among controls at significance level o= 10~ or 10*[6].
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We discard markers if the marker’s HWE p value is less than 0.001, and if minor
allele frequency is less than 1%. We also discard markers if the percentage of missing
genotypes for this marker is greater than 25% (SNP call rate < 75%). By using these
criteria, we excluded 10 SNPs. For another way, we also exclude individuals which
the percentage of missing SNPs is greater than 50% (sample call rate < 50%). We
excluded one individual which the percentage of missing SNPs is 69.2%. After
filtering data, our data contains 55 SNPs and 889 individuals (513 cases / 376

controls).

Missing data. For single-SNP analyses, if a few genotypes are missing there is not
much problem. For multipoint SNP analyses, missing data can be more problematic
because many individuals might have one or more missing genotypes. One convenient
solution is data imputation: replacing missing.genotypes with predicted values that are
based on the observed genotypes at neighboring SNPs. This sounds like cheating, but
for tightly linked markers data imputation can be reliable, can simplify analyses and
allows better use of the observed data. Imputation methods either seek a ‘best’
prediction of a missing genotype, such as a maximum-likelihood estimate (single
imputation), or randomly select it from a probability distribution (multiple
imputations). The advantage of the latter approach is that repetitions of the random
selection can allow averaging of results or investigation of the effects of the
imputation on resulting analyses [6].

We implement data imputation by using the MDR Data Tool software

(http://compgen.blogspot.com/2006/11/mdr-101-part-1-missing-data.html).

It will perform a simple frequency-based imputation. That is, it will fill in missing

genotypes with the most common genotype for that SNP.
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3.3 Study design
The data was analyzed by two strategies: one use the original genotype-based data and
the other use the haplotype-based data. In haplotype-based study, we use the
Haploview v4.1 [11] software to define haplotype block according to the confidence
interval of D’ and use the PHASE v2.1 [12-13] software to estimate individual’s
haplotype. The program PHASE implements a Bayesian statistical method for
reconstructing haplotypes from population genotype data.

Then we discuss the methodological issues associated with the detection of
gene-gene interactions in these two datasets by applying and comparing five
commonly used methods: the chi-square test, logistic regression model, bayesian
epistasis association mapping (BEAM) algorithm, classification and regression trees
(CART), and the multifactor dimensionality reduction (MDR) method. The detail of
how to use each method to detect gene-gene interaction can be found in the following
section. In order to compare these five methods in their ability of prediction, cross-

validation is also proposed. We will discuss this in section 3.5.

3.4 Gene-gene interaction detecting methods
All these five method were applied to our genotype-based data and haplotype-based

data to detect marginal effect, two-way, and three way interactions.

Chi-square test. A chi-square test (also chi-squared or y” test) is any statistical
hypothesis test in which the test statistic has a chi-square distribution when the null
hypothesis is true, or any in which the probability distribution of the test statistic
(assuming the null hypothesis is true) can be made to approximate a chi-square
distribution as closely as desired by making the sample size large enough. In this

study, we used chi-square test as a benchmark. We used a two-step approach in
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chi-square test. It works as follows: (i) all markers are individually tested and ranked
for marginal associations with disease; (ii) the markers with p value less than 0.05 are
selected, among which all two-way and three-way interactions are tested and ranked
for association.

Here is an example of testing association by y* test. If we want to test for
two-way interactions, there are nine possible genotypes combination for biallelic
marker (each with three genotypes). We can use the y° test with eight degrees of
freedom to test for two-way interactions. To investigate higher-order interactions,
chi-square test will face the sparse data problem and the y” approximation can be
poor. In this situation, we can use the Fisher exact test or R provides a Monte Carlo
test (Hope, 1968). The simulation is done by random sampling from the set of all

contingency tables with given marginals.

Logistic regression model. One traditional-approach still widely used today is
regression. In particular, logistic regression is used when the outcome variable is
discrete, for example, disease status. Logistic regression enables direct modeling of
the mathematical relationship of genetic and other risk factors to disease status.
However, this ‘workhorse’ suffers from the curse of dimensionality, meaning that as
the distribution of data across numerous combinations of factors becomes sparse, the
parameter estimates become unreasonably biased, particularly when the ratio of
independent variables to sample size exceeds ten to one [14].

In order to overcome this problem, we also use the two-step approach in LRM: (i)
all markers are individually tested and ranked for marginal associations with disease
by LRM; (ii) the top 20% of markers are selected, among which all two-way and
three-way interactions are tested and ranked for association.

To illustrate the method we used in LRM, for simplicity, we describe the two-way
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interactions association testing in genotype-based data. For two-way interactions,
there are three possible genotypes for each marker. We use two dummy variables for

each SNP to fit the model:

10g(%) =B+ BS, + B,.S1, + BsS, + .Sy, + 555,55, + BS,,5,

+ 187812821 + ﬂ8sl2822

Interaction effects were tested using a likelihood ratio test (LRT) statistic with four
degrees of freedom for the y” values. Note that LRM differs from chi-square test.
Chi-square test not only tested interaction effects, but also main effects. That is, if
there is a two-way model with strong main effects but only little interaction effects,
chi-square test still shows significant result. However, LRM only tested the
interaction effects.

In LRM, we will still face-the sparse data problem, that the LRT will have zero
degrees of freedom. In this situation, the-main-effect can explain all variation and can

be thought as there are no interaction effects.

BEAM. BEAM uses Markov chain Monte Carlo (MCMC) to ‘interrogate’ each
marker conditional on the current status of other markers iteratively and outputs the
posterior probability that each marker and/or epistasis is associated with the disease.
The method can be used either in a ‘pure’ bayesian sense or just as a tool to discover
potential ‘hits’. For the former, one relies on the reported posterior probabilities to
make inferential statements; as for the latter, one can take the reported hits and use
another procedure to test whether these hits are statistically significant. The latter
approach is more robust to model selection and prior assumptions (such as Dirichlet
priors with arbitrary parameters) and is less prone to the slow mixing problem in the

MCMC computational procedure. BEAM also proposes the B statistic to facilitate the
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latter approach [7]. Figure 1 shows that an example of posterior probabilities of
association for each marker by applying BEAM to our genotype-based data. We can

see that two SNPs, rsSDAQO_7 and rsDAQ_8, have a posterior probability above 0.5.

1 - D rsDAD_T
0.9 S 0 rsDAD_S
g -
.7 -
e -
05 .
0 rsDa0_13
0.4 - 0 rei372_17
0.3 -
n2 - 2 rsMRGL_A

posterior probability

0.1

o 10 20 30 40 50

Marker

Figure 1. Example of posterior probabilities of association for each marker by
applying BEAM to our genotype-based data. Two SNPs, rsDAO_7 and rsDAO_8,

have a posterior probability above 0.5.

We use BEAM to detect both single-marker and epistasis associations in our
genotype-based and haplotype-based data. The marker which had posterior
probability that is associated with disease will be examined by B statistic. Then we
can rank the association by the B statistic in one-way, two-way, and three-way

interaction.
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CART. Decision trees date back to the early 1960s with the work of Morgan and
Sonquist. Breiman and colleagues published the first comprehensive description of
recursive partitioning methodology. As a powerful data analysis method, trees are
used in many fields, such as epidemiology and medical diagnosis, and provide an
alternative to more standard model-based regression techniques for multivariate
analyses [1]. We use the S implementation [8] in the present study. Through binary
recursive partitioning, a tree successively splits the data along the coordinate axes of
the predictors such that, at each division, the resulting two subsets of data are as
homogeneous as possible with respect to the response of interest. Deviance is a
natural splitting criterion based on likelihood values.

We used the S defaults in our study. That is, a node must include at least 10
observations and the minimum node deviance before the tree growing stops should be
1% of the root node. The subsets that are not further split are the terminal nodes. The
SNP variables were considered as nominal categorical variables. We build the tree and
then pruned it to a smaller tree using the deviance criteria (set the best size of tree
equal to 5). Figure 2 is an example of applying CART to our genotype-based data.
Investigating the tree terminal nodes provides a natural way to identify interaction.
For example, we can calculate the chi-square statistic for each terminal node. Then we
can rank the association by chi-square statistic. Note that we didn’t use CART to
analyze our haplotype-based data because of computational limitation. In
haplotype-based data, there are too many categories in block variables and factor

predictor variables have a limit of levels in S.
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Figure 2. Example of applying CART to genotype-based data

MDR. The MDR approach is a model-free and nonparametric approach that it does
not assume any particular genetic model and does not estimate any parameters. With
MDR, multilocus genotypes are pooled into high risk and low risk groups, effectively
reducing the dimensionality of the genotype predictors from N dimensions to one
dimension. The new one-dimensional multilocus genotype variable is evaluated for its
ability to classify and predict disease status using cross-validation and permutation
testing. It identifies interactions through an exhaustive search, that is, it searches over

all possible factor combinations to find combinations with an effect on an outcome
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variable. We simply use the MDR default setting to detect gene-gene interactions in
our two types of data. Note that we use the MDR v1.1.0 software in this study. There
are some differences between this version and the original version described in the
paper [10]. In the current version, interaction with the lowest classification error
(average over the ten cross-validations) is selected as the best model in each k-way
interaction. The interaction that maximizes the testing accuracy is selected as the final

best overall model across all k-way models.

3.5 Cross-Validation (CV)
To evaluate the ability of a model to classify and predict a certain outcome variable,
cross-validation is often used. We can use cross-validation to obtain the classification
and prediction error of models relating predictors to disease status. We want to
compare the abilities of prediction in these five methods. In present study, we
randomly divided our genotype-based data-into training set and testing set. The
sample size of training set doubles that of testing set. For example, there are 513 cases
and 376 controls in our data, the training set will contain 342 cases and 251 controls,
and the testing set will contain 171 cases and 125 controls. We repeat this procedure
100 times to create 100 dataset. For each CV, we apply the five methods (Chi-square
test, LRM, BEAM, CART, and MDR) to the training set and get the best model for
one-way, two-way, and three-way interaction. Note that we only tested single marker
effects and two-way interaction with Chi-square test and LRM since the investigation
of three-way interactions could lead to computation problem. We use the training set
to build a prediction rule for the best model. Like MDR, we compute the case-control
ratio for each genotype combination, and partition the multi-locus genotypes into two
subgroups labeled as high or low risk. When there is genotype combination contains

no sample size in the training set, we ignore this combination and will not predict the
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testing set individuals with this genotype combination. While the prediction rule is
built, we can calculate the prediction error, the ratio of the number of individuals

which be predicted wrong to the number of individuals which be predicted.
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4 RESULTS

The data we used in present study contains 65 SNP markers and 890 individuals (514
cases and 376 controls). Table 1 shows that the information of each markers. It
contains:

# is the marker number.

Name is the marker ID specified.

Position is the marker position specified (in base pair).

ODbsHET is the marker’s observed heterozygosity.

PredHET is the marker’s predicted heterozygosity (i.e. 2*MAF*(1-MAF)).
HWopval is the Hardy-Weinberg equilibrium p value.

%Geno is the percentage of non-missing genotypes for this marker.

MAF is the minor allele frequency for this marker.

® & & & & & & o e

Alleles are the major and minor alleles for this marker.

Using the criteria we described in the section of data quality control, we will exclude
10 SNPs: rsNRG1_E_1, rsG72_8, rsG72_E 4, rsG72_E_3, rsDAO_3, rsDAO_E_1,
rsDAO_E 2, rsDISC1 _E_3, rsDISC1_34, and rsDISC1_5. All because of the MAF is
less than 0.01.

As we described in the section of study design, we used the Haploview software
to define haplotype block. Figure 3 shows that the pair-wise LD plot and defined
block in five genes. The deeper color means the stronger LD. There are five blocks
(each block contains 2 SNPs) in DISC1, no block in NRG1, one block (contains 7
SNPs) in DAO, two blocks (one contains 3 SNPs and one contains 2 SNPs) in G72,
and two blocks (each block contains 2 SNPs) in CACNG2. One block can be treated
as one variable. Therefore, the haplotype-based data will have 39 variables (10 blocks

and 29 SNPs).
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Our goal is to detect single marker effect, two-way and three-way interaction. We
use the five methods and rank the association in our genotype-based and
haplotype-based data. We showed the top five best models of single marker effects,

two-way, and three-way interactions in table 2 to 4.

Single marker effects. In our genotype-based single marker effects study, chi-square
test, LRM, and BEAM identified that the SNP rsDAO_13 as the most significant
marker. CART and MDR identified that the SNP rsDAO_7 as the most significant
marker, which as the second most significant marker by chi-square test, LRM, and
BEAM. And in the haplotype-based data, all methods shows that DAO_block1, which
contains SNP rsDAQO_13 and rsDAO_7, as the best model. It shows that DAO might

be a significant gene with associated with schizophrenia.

Two-way interaction. In genotype-based--two-way interaction study, Chi-square,
LRM, and CART still shows that:SNPs in DAO gene (rsDAO_6, rsDAQO_7, and
rsDAO_8) have two-way interaction, whereas BEAM and MDR did not detected.
BEAM identified rsDISC1 _E_7*rsDISC1 E_4 as two-way best model, and MDR
identified rsNRG1_14*rsG72_16. It might because that Chi-square test, LRM, and
CART require significant main effect to be detected before including interaction
effects between factors. This is a major methodological limitation for situations where
each marker has relatively small main effects but more substantial interactive effects.
In these situations, using haplotype-base study might give more information. In
haplotype-base study, Chi-square test and LRM detected that G72_block2 (which

contains rSG72_16) has interaction effects with other SNP.

Three-way interaction. The markers detected in three-way interaction study were
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showed in table 4. Most of them were also detected by two-way interaction study. For
example, rsDAO_6, rsDAO_7, rsG72_16, etc. In haplotype-based three-way
interaction study, LRM faced numerical difficulties for estimating the model
parameters since there are too many categories in block variables. Therefore, we did

not propose the LRM three-way interaction in haplotype-based study.

Odds ratio. In order to realize the relationship between genotype (haplotype) and
disease, we further calculate the odds ratio and its confidence interval for some
candidate model (rsDAO_13, rsDAO_7, DAO_blockl, and rsDAO_6*rsDAQO_7). The
results are showed in table 5 to 8. The genotype (haplotype) with minimum odds is
considered as reference group. If the genotype with zero case or control, we didn’t
calculate the odds ratio. We can'see that the genotype CC of rsDAO_13 has a
significant result, that is, the confidence interval of the odds ratio did not cover 1.
Also, the genotype GA of rsDAO_7 has a significant result. In the model DAO_block1,
there are also some haplotypes with significant odds ratio. Besides, there are many
haplotypes with only affected individuals. Similar result also appeared in

rsDAO_6*rsDAO _7.

Cross validation. By using the cross-validation procedure, we can get 100 best
models in each one-way, two-way, and three-way interaction along with each method.
Using the prediction rule we described before, we can calculate prediction errors with
each best model in each CV. We averaged the prediction errors across 100 CVs, which
be showed in table 9. The box-plots of prediction error were also displayed in figure 4
to 6. In one-way interaction, BEAM shows best ability of prediction. However, the
differences between each method are not too significant in box-plot. In two-way

interaction, the traditional approach LRM shows that minimum prediction error, and
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is much smaller than the others. BEAM seems to have worst prediction and has
biggest variation. In three-way interaction, CART has the smaller prediction error but
all three methods do not have good performance. Their prediction errors are too close
to 0.5. A prediction error of 0.5 is what you expect if you were to predict case-control
status by flipping a coin. It might because that our data did not contain a three-way
interaction. We can see that the prediction error go up at two-way interaction and go
down at three-way interaction in CART and MDR. Over-fitting might be the reason,
that is, we add the false positives thus decreasing its predictive ability. It might be
worth to note that the MDR has the smaller variation. This means that MDR is much

stable than others.
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5 CONCLUSION

Our aim of this study is to propose a methodological issue in detecting gene-gene
interaction. We chose five commonly used methods and apply them to a schizophrenia
data. Methods included traditional methods (chi-square test, LRM), Bayesian
approach (BEAM), tree based model (CART), and combinatorial method (MDR). We
also propose a haplotype-based study in gene-gene interaction. Using the haplotype
based marker could give more information. If a haplotype block is highly associated
with disease, the true disease gene (SNP) could be in the haplotype block. In the
present study, we find that SNPs rsDAO_13 and rsDAO_7 have strong main effect.
SNPs rsDAQO_6, rsDAO_7, and rsG72_16 have strong gene-gene interaction effects. It
can give the biologist a suggestion to, type.more markers in these genes for future
analysis.

In order to compare the predictive ability of these methods, we used
cross-validation approach and .defined a-prediction rule. LRM shows the best

predictive ability in our data.
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Table 1. Marker’s Information

# Name Position |ObsHET |PredHET| HWpval | %Geno | MAF | Alleles
1 rsNRG1 6 32198397 0.348 0.381 0.0153 99.1 0.256 G:T
2 rsNRG1 14 32525521 0.301 0.322 0.0973 88.9 0.201 C:T
3 rsNRGI1 8 32541620 0.092 0.096 0.3498 99.6 0.05 T:C
4 rsNRGI 1 32572900 0.336 0.334 0.9863 99.6 0.212 A:G
5 rsNRG1 13 32593784 0.492 0.494 0.9683 99.2 0.443 T:C
6 rsNRG1 11 32641669 0.467 0.482 0.3734 99.1 0.405 A:T
7 rsNRG1 2 32705627 0.127 0.133 0.3115 99.8 0.072 T:C
8 rsNRG1 _E 1 32733529 0 0 1 89.5 0 G:G
9 rsCACNG2 3 35302102 0.425 0.427 0.9 99.6 0.31 G:T
10 | rsCACNG2 23 35318530 0.459 0.478 0.2592 99 0.395 A:G
11 | rsCACNG2 16 35351483 0.477 0.494 0.3322 99.4 0.447 A:G
12 | rsCACNG2 15 35351741 0.495 0.497 0.9549 96.9 0.459 A:G
13 ] rsCACNG2 20 35399975 0.298 0.291 0.6309 99.4 0.177 C:T
14 | rsCACNG2 18 35400118 0.298 0.292 0.5946 99.9 0.177 A:T
15 rsG72_8 103817126 0 0 1 99.8 0 C:.C
16 rsG72_15 103817362 0.464 0.478 0.4088 99.9 0.395 C:A
17 rsG72 9 103817700 0.031 0.03 1 99 0.015 G:A
18 rsG72_10 103839852 0.073 0.072 1 97.1 0.038 G:A
19 rsG72_11 103840146 0.061 0.059 0.8786 97.2 0.031 CA
20 rsG72_1 104908896 0.443 0.456 0.4583 99.2 0.351 C:A
21 rsG72 2 104915349 0.447 0.456 0.5988 99.4 0.351 C:T
22 rsG72 E 1 104916613 0.141 0.15 0.1193 99.8 0.082 C:T
23 rsG72_16 104927525 0.325 0.341 0.2251 89.2 0.218 G:.C
24 1sG72_E 4 104927538 0 0 1 89.4 0 A:A
25 rsG72 17 104927721 0.338 0.347 0.4586 98.7 0.223 A:T
26 rsG72_6 104940236 0.241 0.253 0.196 99.8 0.149 C:T
27 rsG72_7 104940237 0.031 0.03 1 99.3 0.015 G:A
28 1sG72_E 3 104940243 0.004 0.004 1 89.5 0.002 C:T
29 rsG72 13 104941175 0.47 0.475 0.7798 99.9 0.388 C:A
30 rsG72_14 104941217 0.045 0.044 1 96.5 0.023 A:T
31 rsDAO_2 107797548 0.117 0.114 0.761 96.4 0.061 G:A
32 rsDAO 3 107797907 0.009 0.009 1 99.3 0.005 G:.C
33 rsDAO 5 107798175 0.097 0.096 1 99 0.051 G:A
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Table 1. Marker’s Information (Cont’d)

34 rsDAO_6 107801621 0.477 0.474 0.9449 95.5 0.387 CA
35 rsDAO_7 107801849 0.479 0.47 0.646 93.7 0.378 G:A
36 rsDAO_8 107801872 0.483 0.47 0.4581 98.8 0.377 T:G
37 rsDAO _E 1 107803071 0.006 0.006 1 89.4 0.003 C:A
38 rsDAO_9 107805607 0.123 0.12 0.5754 99.4 0.064 G:C
39 rsDAO_10 107807701 0.124 0.121 0.5991 96 0.064 T:G
40 rsDAO_E 2 107808165 0 0 1 89.5 0 T:T
41 rsDAO 11 107811039 0.123 0.119 0.6063 98.2 0.064 G:A
42 rsDAO_13 107816559 0.231 0.225 0.5161 99.8 0.129 CT
43 rsDISC1_24 229829230 0.29 0.305 0.1719 99.6 0.188 G:A
44 rsDISC1_40 229829627 0.454 0.471 03114 100 0.38 A:G
451 1sDISCI1 E 1 229896474 0.026 0.026 1 99.7 0.013 C:T
46 | rsDISC1_E 3 229896886 0.001 0.001 1 89.4 0.001 CT
471 rsDISC1_E 4 229897110 0.021 0.021 1 99.9 0.011 C:A
48 rsDISC1_27 229925804 0.472 0.481 0.6406 99.8 0.402 G:A
49 rsDISC1 16 229926137 0.212 0.211 1 97 0.12 G:A
50 rsDISC1_2 229961231 0.493 0.5 0.7202 93.6 0.493 G:A
51 rsDISC1_35 229969633 0.342 0.35 0.5493 99.9 0.226 C:T
52| rsDISCI1 E 5 229973212 0.296 0.296 1 99.6 0.181 C:T
53| rsDISCI1 E 6 229973396 0.077 0.084 0.046 99.8 0.044 G:C
54 rsDISC1_3 229997671 0.189 0.202 0.0964 99.4 0.114 T:C
55 rsDISC1_4 230020768 0.05 0.051 0.9073 98.9 0.026 G:A
56 rsDISC1 12 230024766 0.465 0.465 1 99.4 0.368 G:A
57 rsDISC1 34 230068001 0 0 1 99.2 0 A:A
58 rsDISC1_26 230069015 0.466 0.468 0.9427 99.9 0.374 A:G
59 rsDISC1_5 230143129 0.014 0.014 1 98.4 0.007 AT
60 | rsDISC1 E 7 230211221 0.214 0.207 0.4108 99.6 0.117 AT
61 rsDISC1 38 230228487 0.134 0.129 0.3688 99.6 0.069 G:T
62 rsDISC1_20 230240183 0.364 0.381 0.2247 99.1 0.256 G:T
63 rsDISC1_36 230241611 0.253 0.266 0.1683 99.2 0.158 A:G
64 rsDISC1_7 230242818 0.201 0.207 0.4383 99.7 0.117 G:T
65 rsDISCI1 15 230243610 0.421 0.442 0.1649 99.8 0.33 C:T
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Table 2.a. Single marker effects detected by the five methods in genotype-based data
rank Chisq LRM BEAM CART MDR
1 rsDAO_13 rsDAO_13 rsDAO_13 rsDAQO_7 rsDAO _7
2 rsDAO_7 rsDAO_7 rsDAO_7 rsDAO_6
3 rsDAO_6 rsDAO_6 rsNRG1_6 rsNRG1_6
4 rsNRG1_6 rsNRG1_6 rsCACNG2_3 rsDAO_13
5 rsDISC1_38 rsDISC1_38 rsDISC1_38 rsDAO_8
Table 2.b. Single marker effects detected by the four methods in haplotype-based data
rank Chisq LRM BEAM MDR
1 DAO_blockl DAO_blockl DAO_blockl DAO_blockl
2 G72_block2 G72_block2 CACNG2_block2 rsNRG1_6
3 rsNRG1 6 rsNRG1_6 DISC1_block4
4 CACNG2_block2 CACNG2_block2 DISC1_block2
5 rsDISC1_38 rsDISC1_38 G72_block2
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Table 3.a. Two-way interaction detected by the five methods in genotype-based data

rank Chisq LRM BEAM CART MDR
1 rsDAO_6 rsDAO _7 rsDAO_6 rsDAO _7 rsDISC1_E 7 rsDISC1 E 4  rsDAO_7rsDAO_8 rsNRG1 14 rsG72_16
2 rsNRG1_6 rsDAO_6 rsDAO_7 rsDAO_8 rsDAO_6 rsDAO_7 rsSNRG1_6 rsDAO_6
3 rsNRG1_6 rsDAO_7 rsDAO_6 rsDAO _8 rsDISC1_3 rsDAO_7
4 rsDAO_7 rsDAO_13 rsDISC1 20 rsNRG1 6 rsDISC1 16 rsNRG1 6
5 rsDAO_6 rsDAO_13 rsDISC1 16 rsDISC1 20 rsDAO_6 rsDAO 7

Table 3.b. Two-way interaction detected by the four methods in haplotype-based data

rank Chisq LRM BEAM MDR
1 rsNRG1 6 G72_block2 rsDISC1_E_7 G72_block2 No two-way nteraction detected DISC1 block3 DAO_blockl
2 DAO_blockl G72_block2 rsNRG1 6 CACNG2_block2 DISC1 blockl DAO_blockl
3 |G72_block2 CACNG2_block?2 rsDISC1_E 7 rsCACNG2_3 DAO_blockl G72_blockl
4 rsNRG1 6 DAO_blockl G72 _block2 CACNG2_block2 DISC1_block4 DAQO_blockl
5 | rsNRG1_6 CACNG2_block2 rsDISC1 38 CACNG2_block2 DISC1_block5 DAQO_blockl
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Table 4.a.

Three-way interaction detected by the five methods in genotype-based data

rank Chisq LRM BEAM CART MDR
rsDAO_6 rsDISC1_16 rsDISC1_E_7 rsNRG1_6
1 rsDAQ_7 rsNRG1 6 No three-way nteraction detected rsDAO_6 rsDAO_6
rsDAO_13 rsDAO_6 rsDAQ_7 rsG72_16
rsNRG1_6 rsDISC1_38 rsDISC1_12
2 rsDAO_6 rsDAQ_7 rsNRG1 6
rsDAO_7 rsDAO_13 rsCACNG2_3
rsNRG1_6 rsDISC1_16 rsNRG1_6
3 rsDAO_7 rsNRG1 6 rsNRG1 14
rsDAO_13 rsCACNG2_3 rsG72_16
rsNRG1_6 rsNRG1_6 rsDISC1 16
4 rsDAO_6 rsDAO_6 rsNRG1_6
rsDAO_13 rsDAO_13 rsDAO_6
rsNRG1_6 rsNRG1_6
5 rsDAO_7 rsDAO_6
rsDAO_13 rsCACNG2_3
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Table 4.b.

Three-way interaction detected by the three methods in haplotype-based data

rank Chisq BEAM MDR

G72_block2 DISC1_blockl

1 rsNRG1 6 No three-way leraction detected DISC1 block3
CACNG2_block2 DAOQO_blockl

DAO_blockl DISC1 blockl
2 G72_block2 DAO_blockl
rsNRG1_6 G72_blockl

DAO_blockl DISC1_blockl

3 rsNRG1_6 DISC1_block4
CACNG2_block2 DAO_blockl

DAO_blockl DISC1_block3

4 G72_block2 DISC1 block4
CACNG2_block2 DAO_blockl

DISC1_block2

5 DISC1_block4
DAO_blockl
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Table 5. Summary of rsDAO_13

Genotype Case Control Total Odds Odds ratio Cl
CcC 405 267 672 1.5169 4.5506 (1.2208 , 16.9628)*
TC 105 100 205 1.05 3.15 (0.8289, 11.9707)
TT 3 9 12 0.3333 Reference
Total 513 376 889
Table 6. Summary of rsDAO_7
Genotype Case Control Total Odds Odds ratio Cl
AA 68 47 115 1.4468 1.4022 (0.9105, 2.1593)
GA 283 172 455 1.6453 1.5946 (1.1932, 2.1310)*
GG 162 157 319 1.0318 Reference
Total 513 376 889
Table 7. Summary of DAO_block1
Haplotype Case Control Total Odds -Odds ratio Cl
AAGGTGC
61 47 108  1.2979  3.8936 (0.9984 , 15.1842)
AAGGTGC
AAGGTGC
1 0 1 NA
AAGGTGT
AATGTGC
3 0 3 NA
AAGGTGC
AGGGTGC
8 0 8 NA
AAGGTGC
AGTGTGC
2 0 2 NA
AAGCGAC
AGTGTGC
4 0 4 NA
AAGGTGC
CAGGTGC
2 0 2 NA
AAGGTGC
CATGTGC
1 0 1 NA

AAGCGAC
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Table 7. Summary of DAO_blockl (Cont’d)

Haplotype Case Control Total Odds Odds ratio Cl

CGTCGAC

18 45 1.5 4.5 (1.0701 , 18.9238)*
AAGGTGC

CGTCGAC
CATGTGC

CGTCGAC
CGTGTGC

16 38 1.375 4.125 (0.9611 , 17.7043)

CGTCGGC
AAGGTGC

CGTCTAC
AGGGTGC

CGTGTGC

172 113 285 1.5221  4.5664 (1.2101, 17.2320)*
AAGGTGC

CGTGTGC
AGTGTGC

CGTGTGC

70 143 1.0429  3.1286 (0.8133,12.0342)
CGTGTGC




Table 7. Summary of DAO_blockl (Cont’d)

Haplotype Case Control Total Odds Odds ratio Cl
CGTGTGT
2 2 4 1 3 (0.2845 ,31.6342)
AAGCGAC
CGTGTGT
45 36 81 1.25 3.75 (0.9451 , 14.8792)
AAGGTGC
CGTGTGT
1 0 1 NA
AATGTGC
CGTGTGT
1 0 1 NA
AGGGTGC
CGTGTGT
3 2 5 1.5 4.5 (0.4909 , 41.2495)
AGTGTGC
CGTGTGT
6 0 6 NA
CATGTGC
CGTGTGT
3 9 12 0.3333 Reference
CGTGTGT
Total 513 376 889

Table 8. Summary of rsDAO_6*rsDAQO_7

Genotype Case Control Total Odds Odds ratio Cl
AA*AA 65 47 112 1.3830 1.4784 (0.9537,2.2916)
AA*GA 14 14 NA
AA*GG 0 0 NA
AC*AA 3 3 NA
AC*GA 251 172 423 1.4593 1.5599 (1.1577 , 2.1019)*
AC*GG 17 19 8.5 9.0862 (2.0630, 40.0185)*
CC*AA 0 0 NA
CC*GA 18 18 NA
CC*GG 145 155 300 0.9355 Reference

Total 513 376 889
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Table 9. Average prediction error across 100 CVs

Chisq LRM BEAM CART MDR

one-way | 0.471283784 0.476047297 0.471148649 0.486824324 0.473783784
two-way |0.464207618 0.448881209 0.488123798 0.477674915 0.470942832
three-way 0.495776846 0.491696159 0.494607021
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