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摘      要 
 

線性轉換模型是相當彈性的半母數迴歸模型。倖存分析常見的 Cox 模型與 Odds 模

型，皆是線性轉換模型的特例。近年來許多研究針對線性轉換模型提出半母數推論方法，

一套分析方法卻有廣泛的應用價值，是其吸引人的地方。我們以古典推論理論的兩個原

則(動差法和概式法)為架構，檢視現有文獻的建構方式，希望此統整的角度有助辨識不

同方法的特質。此外針對設限資料，我們除了討論現有文獻的做法外，並提出一個新的

方法。所有的方法均透過模擬實驗檢驗其表現。 

 

 

 

 

 

 

 

 

 

關鍵詞: Cox PH 模型; Odds 模型; 動差法  
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Statistical Inference for Linear Transformation Models  
 
 

Student: Tai-Tso Lin 
Advisor: Dr. Weijing Wang 

 
Institute of Statistics 

Nation Chiao Tung University 
Hsinchu, Taiwan 

 

ABSTRACT 
The linear transformation model, which includes the proportional hazard model and the 

proportional odds model, has received considerable attentions in recent years due to its 

flexibility. In the thesis, we consider semi-parametric estimation for the regression parameter. 

We review existing literature under the framework of classical inference theory. Specifically we 

will see how these “old” principles, namely method of moment and likelihood estimation, are 

applied to the modern estimation problem which involves an infinite dimensional nuisance 

parameter in the model formulation. After examining common techniques of handling censored 

data, we also propose a new approach. All the methods are evaluated by Monte Carlo 

simulations.  
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Chapter 1  Introduction 

1.1 Motivation  

In many biomedical applications, researchers are interested in studying how covariates 

affect a patient’s survival time. Let  be the failure time of interest and T Z  be a  vector 

of covariates. The most well-known regression model in survival analysis is perhaps the 

proportional hazard (PH) model proposed by Cox (1972) which can be written as  

1×p

    ( ) ( ) ,| 0
ηZ T

etZt ×= λλ                            (1.1) 

where ( Z|t )λ  is the hazard function given  and Z ( )t0λ  is the hazard for the “baseline” 

group with . The Cox model can also be written as ( T0,0,...,0Z = )

        { } ( )( ) ηZtZtS T
0log))|(log(-log += Λ ,         (1.2) 

where  is the survival function of the failure time T  given the covariate )|( ZtS Z  and 

 is the baseline cumulative hazard function. Notice that the right-hand side 

in (1.2) shows a linear structure. 

( ) ( )∫=
t

0 00 duuλΛ t

 In recent years, there has been a trend to construct a general class of models which consist 

of existing models as special cases accordingly unified inference procedure applicable for all 

members in the class can be developed. Consider the following generalization of model (1.2): 

              ,               (1.3) ηZthZtSφ T)())|(( +=

where  and φ (.) is a decreasing link function. Here we consider the 

situation that (.) is known but the form of (.) is unspecified. Based on (1.2), we see that 

Cox proportional hazard model belongs to this class with link function . 

Another example is the proportional odds model with 

)|(Pr)Z|t( ZtTS >=

φ h

))log(-log(x(x) =φ

⎭
⎬
⎫

⎩
⎨
⎧=

x-1
x-log(x)φ . 

Model (1.3) has another more direct representation given by 

                ( ) ε+= ηZTh T- ,                 (1.4) 
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where  is a completely unknown strictly increasing function,  is a  vector of 

unknown parameters and 

( ).h η 1×p

ε  is the error term with distribution function ( ) ( )xεxFε ≤= Pr . 

Model (1.4) or its equivalent expression is called the linear transformation model. Note that 

 is related to link function . By simple calculations, we see that ( )xFε (x)φ

( ) ( ) ( )( )( )
( ) ( )( )
( ) ( )( )
( ),1

1Pr
Pr

PrPr

1

1

1

x-φ                            
x-TF                            

xTS                            

xTSxεxF

-

-

-
ε

=

≤=

≤=

≤=≤=

ϕ

ϕ

ϕ

 

where the last two identities use the fact that ( ) ( )0,1U~TF . If ε  has the extreme value 

distribution, model (1.4) is the Cox PH model. If ε  has the standard logistic distribution, 

model (1.4) corresponds to the proportional odds model. Because of its generality and 

flexibility, the linear transformation model has attracted substantial attention. 

1.2 Inference Methods 

The parametric version of the linear transformation model (1.4), with  being specified 

up to a finite-dimensional parameter vector, was studied by Box & Cox (1964). In the thesis, 

we focus on semiparametric inference with 

( ).h

( ).h  being unknown. For the proportional hazard 

model, Cox (1975) proposed the partial likelihood function for parameter estimation and its 

large sample was discussed by Tsiatis (1981). For the proportional odds model, Pettitt (1982) 

utilized properties of ranks (i.e. invariance under monotone increasing transformation) to 

construct a marginal likelihood based on ranks. Dabrowska & Doksum (1988) considered the 

proportional odds model under the two-sample setting.  

In this thesis, we will review inference methods for estimating η  for the class of linear 

transformation models when T  is subject to censoring by another random variable . These 

methods can handle all members in the model in (1.4) and hence are flexible compared with the 

aforementioned methods developed for a particular member ,say the Cox model in (1.1).  

C
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1.3 Outline  

The thesis is organized as follows. In Chapter 2, we review fundamental inference ideas 

for analyzing survival data without covariates. We will see that these concepts are still useful 

for analyzing more complicated data structures. In Chapter 3, we discuss some ideas of 

inference based on complete data. In Chapter 4, we study how these methods are modified 

when data are subject to censoring. In chapter 5, we proposed a new simple method. Numerical 

analyses are summarized in Chapter 6. Concluding remarks are given in Chapter 7. 

 



Chapter 2  An Overview of Survival Analysis 

Recall that  denote the failure time with the distribution function  and 

survival function 

T ( ) ( )tTPr ≤=tF

( ) ( )tTtS >= Pr . The censoring variable is denoted by  with the survival 

function  and the density function . Here we temporarily ignore the 

information provided by the covariates. In presence of right censoring, the observed variables 

are , where  and 

C

)Pr()( tCtG >= )(tg

( Z,,X δ ) ),min( CTX = )( CTI ≤=δ . The sample contains independently 

and identically distributed observations of ( )Z,,X δ , denoted as )},...,1( ),,{( niZX iii =δ .  

2.1  Likelihood Inference 

If a parametric distribution is imposed on , we can write T ( )tF  and  as ( )tS ( )tFθ  and 

 respectively. Denote  as the corresponding density. The parametric likelihood of ( )tSθ )(tfθ

θ  can be denoted as  

    ( ) ( ) ( )[ ] ( ) ( )[ ]  xgxGxSxfθL iiii -δ
i

δ
i

n

i

-δ
iθ

δ
iθ

1

1

1∏
=

×=       

     ∝ .          (2.1) ( ) ( )[∏
=

n

i

-δ
iθ

δ
iθ

ii xSxf
1

1 ]

The maximum likelihood estimator of θ  can be obtained by solving the equation  

0/)( =∂∂ θθL  given that ( )θL  is differentiable with respect to θ . 

If the distribution of  is not completely specified, T θ  often involves high-dimensional 

nuisance parameters and direct direction by solving 0/)( =∂∂ θθL  is not easy. Consequently 

modified versions of the likelihood function, such as marginal, conditional or profile 

likelihoods, have appeared in the literature. For example, for the profile log-likelihood, θ  is 

decomposed as ( )( )ρνρθ ,= . For fixed ρ , ( )ρν  can be estimated by ( )ρν̂ . Then the 

profile likelihood replaces the original likelihood ( )( )ρνρθ ,)( LL =  by ( )( )ρνρ ˆ,L .  

2.2 Nonparametric Estimation 

Suppose that the distribution of T  is completely not specified. If complete data are 
 4



available,  can be estimated by the empirical estimators: )Pr()( tTtS >=

∑
=

>=
n

i
i ntTI(t)S

1
/)( . 

In presence of right censoring, Kaplan and Meier (1958) proposed the following product-limit 

estimator:  

    ∏
∑

∑
≤

=

=

≥

==
=

tu
n

i
i

n

i
ii

uXI

u,δXI
-(t)Ŝ }

)(

)1(
1{

1

1 .         (2.2) 

It can be shown that  reduces to (t)Ŝ (t)S  when 1=iδ  for all ni ,...,1= . Similarly the 

cumulative hazard function  can be estimated by ∫=Λ
t

duut
0

)()( λ

∑
∑

∑
≤

=

=

≥

==
=

tu
n

i
i

n

i
ii

uXI

u,δXI
)t(

1

1
^

)(

)1(
Λ .        

Now we discuss some nice properties of the Kaplan-Meier estimator since these ideas can 

be further utilized to solve more complicated problems. We can view 

    ( ) ( ) [ ])(Pr tTIEtTtS ≥=≥= .        (2.3) 

When the data are complete, the empirical estimator of ( ) ( )[ ]tTIEtS ≥=  is given by 

( ) ([∑
=

≥=
n

1i
i

_

n
1 tTItS )] , which utilizes the method of moment. In presence of censoring, 

 may not be completely observable. Two useful techniques for handling missing data 

can be applied. One is imputation and the other is weighting.  

)( i tTI ≥

 The idea of imputation is to replace  by an estimation of its conditional 

expectation given the data. Specifically we have  

)( i tTI ≥

   ],|)([ˆ)0,()(],|)([ˆ
iii iiiiiiii XTXtTIEtXItXIXtTIE >≥=<+≥=≥ δδδ
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)(ˆ
)(ˆ

)0,()( i
i

iii XS
tStXItXI =<+≥= δδ .  

The above idea has been utilized in constructing the following self-consistency equation:   

   ( )tŜ  ∑
=

≥=
n

i
iiXtTIE

n 1
i ],|)([ˆ1 δ  

∑
=

⎥
⎦

⎤
⎢
⎣

⎡
=<+≥=

n

i i
iii XS

tStXItXI
n 1

i )(ˆ
)(ˆ

)0,()(1 δδ .       (2.4) 

The above equation can be solved successively from the smallest observed value of T . It is 

well-known that the above equation has a unique solution which is the Kaplan & Meier 

estimator. Equation (2.4) can be modified for more complicated data structures such as interval 

censoring (Turnbull, 1976).  

 Weighting is another way of handling missing data. We can view  as a proxy of 

. To correct the bias of , we find that 

)( tXI ≥

)( tTI ≥ )( tXI ≥ )]([]
)(

)([ tTIE
tG

tXIE >=
≥ . The 

Kaplan estimator ( )tŜ  can be written as ∑
=

>
=

n

i

i

tG
tXI(t)S

1 )(ˆ
)(ˆ , where  is the 

Kaplan-Meier estimator of  such that  

( )tĜ

( )tG

      ∏
∑

∑
≤

=

=

≥

==
=

tu
n

i
i

n

i
ii

uXI

u,δXI
-(t)G }

)(

)0(
1{ˆ

1

1 .           

2.3  Counting Process 

Aalen (1975) analyzed survival data under the framework of counting processes and 

martingales. This approach provides an elegant and relatively simple structure for theoretical 

analysis of many well-known inference methods for analyzing survival data.  

Consider the counting process defined as ( ) ( )1=≤= iii t, δXItN . The corresponding 

filtration can be written as  

( ) ( ){ }),...,1(0t,I,1t,It niXXF iiii ==≤=≤= δδσ . 
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Note that  records the history of the counting process at or prior to time t and satisfies the 

nested property such that  for 

tF

ts FF ⊂ ts ≤ . It follows that 

)1)Pr((])([ t|Xt,δXtXI|FtdNE t- ≥==≥=        

   dtttY )()( λ×= ,  

where  is the “at-risk” process for the failure event under censoring. Define )()( tXItY ≥=

   , ∫=
t

dsssYtΛ
0

)()()( λ

which is the compensator for . Based on the Doob-Meyer decomposition, we have  )(tN

       ( ) ( ) ( )tMtΛtN += ,  

where  is a mean-zero martingale, satisfying ( )tM ( )( ) (sM|FtM s )=E  for . The 

counting process representation is not only useful for theoretical analysis but also provides a 

nice structure for parameter estimation. We will see how the idea is applied under the regression 

setting. 

ts ≤
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Chapter 3  Regression Analysis without Censoring 

The linear transformation regression model can be written as  

                              ( ) ,...,n, , iεη-ZTh i
T

ii 21=+=

where  is a  vector of covariates for subject . The error terms   are 

identically and independently distributed with a known distribution 

iZ 1×p i iε )21( ,...,n,i =

( ) )Pr( xxFε ≤= ε . 

Semiparametric inference of  without knowing η ( ).h  has received substantial interest in the 

literature due to the model flexibility. In this chapter, we review existing modern methods based 

classical inference principles, namely the method of moment and likelihood estimation. To 

simplify the presentation, we ignore censoring temporarily. Hence the data can be denoted as 

. ( ) ({ },...,n,i, ,ZT ii 21= )

3.1 Moment-based Inference  

The method of moment is attractive since it does not require strong distributional 

assumption and usually provides more robust results. The method of moment or its modified 

version is constructed based on some moment properties of a chosen response variable. 

Suppose iΟ  is a chosen response variable. Denote  as iE ( )ii|ZΟE  or , where ( ,A|ZΟE ii )

A  is a statistic, which is a function of η  or other nuisance parameter denoted as γ . In our 

model, γ  is related to . The following unbiased estimating equation can be constructed (.)h

( ) ( ) 0),(
1

=×= ∑
=

n

i
iii -EΟWη,U γηγ , 

where  is a weight function for subject i. If additional parameter iW γ  is involved, other 

estimating equation is needed. The property of the resulting estimator is related to whether 

),( γηiE  is a nice function of η  and whether the weight  is properly chosen. We will see 

that there exist several candidates for 

iW

iΟ .  

 

 8



3.1.A The pairwise order indicator as the chosen response 

In the paper of Cheng, Wei and Ying (1995), they used ( )ji TTI ≥  as the response variable, 

where  denotes the indicator function. Based on the assumption that  is a strictly 

increasing function, it follows that 

( ).I ( ).h

( ) ( ) ( ))(Z-)h()h( T
ijji ηεε ≥=≥=≥ ITTITTI jiji . 

This implies that 

( )[ ] ( )[ ]
( )
( ), Z                          

)(Z-Pr                          

)}Z{Z-EZ|E

T
ij

T
ijji

T
j

T
iji

ηξ

ηεε

ηεε

=

≥=

−≥=≥ ITTI ji

 

where  and ( ) ( ){ } sdFst-Ftξ
- εε∫
∞

∞
+= 1 ( ) ( ) ( )tεPrtFε ≤= . Appendix 1 contains more detailed 

derivations. A nice feature of using ( )ji TTI ≥  as the response is that the corresponding 

expectation does not involve the unknown nuisance function ( ).h . It implies no additional 

estimating functions are needed. The resulting estimating equation becomes: 

( ) ( )( 0)( =−≥×∑∑
≠ ji

T
ijjiij

T
ij ZTTIZZW ηξη ) .       (3.1) 

The solution is an unbiased and consistent estimator of η . 

3.1.B The at-risk process as the chosen response 

Recall that the at-risk process is defined as ( ) ( )tTItY ≥= . Cai, Wei and Wilcox (2000) 

suggested to use  as the response. Its expected value under the model is  ( )tY

( ) ( )( )ηZthφZtS T- += 1| . 

The resulting estimating equation is given by 

   .     (3.2a) ( ) ( ) ( .,0]}t{[
1

i
1

ba

n

i

T
i ,ττ   tZhtTI ∈=+−≥∑

=

− ηϕ )

Note that (3.2) provides a set of equations for  being the observed values of  . 

If 

t iT ),...,1( ni =

η  is one-dimensional, there are 1+n  unknown parameters in (3.2). Therefore we need one 
 9



more equation. Cai et al. (2000) suggested the following equation  

( ) ( )∑∫
=

− =+−≥
n

i

T
i ZhtTI

1
i

1
i 0]dt}t{[Zb

a

τ

τ
ηϕ ,        (3.2b) 

where ),( ba ττ  is a re-specified range that contains enough data information. The authors 

suggested to solve equations (3.2a) and (3.2b) iteratively. That is with an initial value of η , 

 for  can be estimated based on equation (3.2). These estimators are plugged 

into equation (3.3) and then 

)( ith ni ,...,1=

η  can be estimated. The procedure is implemented iteratively 

between (3.2a) and (3.2b) until the convergence criteria is reached. This method seems to be 

more complicated than the previous one since the nuisance function ( ).h  has to be estimated as 

well and the region ),( ba ττ  has to be determined.  

3.1.C The counting process as the chosen response 

Recall that the counting process ( ) ( )tTItN ≤= . The corresponding expectation 

conditional on the filtration  under the transformation model can be written as −tF

( ) ( )( )∫ +
t

ΛsY
0

i
T shZd η . 

With the true parameter values,  is a mean-zero martingale. This 

property can be used for constructing estimating equations.  

( ) ( )(∫ +−
t

ΛsYtN
0

i
T shZd)( η )

Chen, Jin and Ying (2002) suggested two estimating equations. One for estimating ( )th  

is given by 

           .      (3.3a) 0)}]({)()([
1

T =+Λ−∑
=

n

i
iii thZdtYtdN η

The second estimating equation for η  is given by  

               .               (3.3b) ( ) ( ) ( )∑∫
=

∞
=+Λ−

n

i
iiii hZdYdNZ

1
0

T 0}]t{tt[ η

The same idea of iteration mentioned in the previous sub-section is also applied to solve (3.3a) 
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and (3.3b).  

3.2 Likelihood Inference 

Under the linear transformation model (1.4), ( ) ε+= ηZTh T- , the survival function can 

be written as ( ) ( )( )ηZthφZtS T- += 1| . The likelihood function can be written as  

   ( )∏
=

=∂
∂

−
n

i
tt it

ZtS
1

|| ( )( )
itt

n

i

T-

t
ηZthφ

=
=
∏ ∂

+∂
−= |

1

1

.       (3.4) 

The above function is very complicated and straightforward maximization is impossible. We 

will present the related work in the next chapter which accounts for the presence of censoring.  
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Chapter 4  Regression Analysis with Right Censoring 

 In practice, patients may drop out from the study or do not develop the event of interest 

during the study period. Therefore,  is often subject to right censoring. In this chapter, we 

discuss how the aforementioned methods adjust for the presence of censoring. In Section 4.1, 

we review three ways of modification for the moment-based estimators. In Section 4.2, we 

review the likelihood method in presence of censoring. Suppose that under model (1.4),  is 

subject to censoring by C  with the survival function 

T

T

( ) ( )tCtG ≥= Pr . Observable data 

become ( ) ( ,2 ){ },...,ni,,Z,X iii 1=δ  which are random replications of , where 

 and 

( Z,,X δ )

),min( CTX = )( CTI ≤=δ . 

4.1 Moment-based Inference 

The chosen response variables discussed in Chapter 3 are not completely observed. To 

handle this problem, two useful techniques for analyzing missing data, namely the weighting 

and imputation approaches, are frequently used. 

Now we illustrate the technique of weighting. For the response variable , a natural 

proxy under censoring is , which however is biased. 

( tTI ≤ )

)( 1=≤ t,δXI

                 
( )( ) ( )[ ][ ]

( ) ( )[ ].                            
|,1,

TGtTIE
TTCtTIEEδtXIE

≤=
≥≤==≤

           

Therefore, 

( )
( ) ( )( ) ( ) 0 if , 1,

>≤=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ =≤ XGtTIE
XG
δtXIE         (4.1) 

Since  is often unknown, the Kaplan-Meier estimator  is a suitable candidate to 

replace . Specifically, 

( )tG ( )XG
^

( )XG

( ) ∏
∑

∑
≤

=

=

≥

==
=

tu
n

i
i

n

i
ii

uXI

u,δXI
-t }

)(

0)(
1{G

1

1
^

. 
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4.1.A The pairwise order indicator as the chosen response 

 Cheng et al. (1995), suggested to use 
( )

( )j

jji

X
XXI
2G

1, =≥ δ
 as the proxy of ( )ji TTI ≥ . 

Notice that 

( )[ ] [ ][ ]
( ) ( )[ ].                                   

  ,|,,1,
2 TGTTIE

TTTCTCTTEEδXXIE

ji

jijjjijijji

≥=

≥≥≥==≥
 

This implies that 

( )
( )  TTI 
X

XXI
ji

j

jji )],(E[ ]
G

1,
E[ 2 ≥=

=≥ δ
 

if the denominator is not zero. See Appendix 2 for the details. 

The estimating equation in (3.1) can be modified as 

   
( ) ( )∑∑

= ≠

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−

≥
×

n

1i
2^

0
)(

)(
ji

T
ij

j

jij
ij

T
ij Z

XG

XXI
ZZW ηξ

δ
η ,       (4.2) 

where  is the Kaplan-Meier estimator (.)
^
G ( )tC ≥Pr . 

 Despite its simplicity and convenience, the weighting approach has a series drawback. 

First of all, equation (4.2) produces (asymptotically) unbiased result only if the censoring 

support lies within the support of T . Specifically define ( ) 0}tG:{tsup
t

c >=τ and 

( ) 0}tTPr:{tsup
t

T >>=τ . The validity of (4.2) requires cT ττ ≤  which eliminate the situation 

. However, this assumption rarely holds in practice since the study period is often 

limited which makes 

( ) 0TG i =

cT ττ > . This situation is developed in Figure (4.1).  
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Figure 4.1 Problem for the weighting technique 

To overcome this problem, Fine, Ying and Wei (1998) suggested to impose a truncation 

point  (Figure 4.2) such that 0t

( )( )
( )j

jji

XG
X,tXI

2
0 1,min =≥ δ

, 

where  and  is a prespecified constant satisfying.  ( ) 0t 0 >G 0t

 

Figure 4.2 Imposing a truncation point to overcome the problem 

The corresponding expected value for the adjusted response is given by 
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( ) ( ) ( )02
0* Pr]
)(
)min(

[    tXX
XG

X,tXI
E jiij

j

jij
ij ≥≥−=

≥
= ηξ

δ
ξ  

)]()([                                                       0 jij TTItTIE ≥≤=                

                                               (4.3) = ),()}(1{0 tdFηZtF
)h(t T

ij εε∫ ∞−
+−

which is a function of  and . See Appendix 3 for the details. Furthermore instead of 

using the first moment condition, Fine et al. (1998) proposed to use the least square principle by 

minimizing the objective function: 

η ( )0th

( ) ( )∑∑
= ≠ ⎟

⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−

≥
×

n

1i

2

*
2^

0 ,
)(

),min(
)(

ji
ij

j

jijT
ij

XG

XtXI
ZW ηξ

δ
η  

which leads to the estimating equation 

( ) ( ) ( ) .0
)(

),min(
)(

n

1i

*
2^

0' =
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−

≥
×∑∑

= ≠ ji
ij

j

jij
ij

T
ij

XG

XtXI
ZW ηξ

δ
ηξη  

For estimating , they also proposed another estimating function. ( )0th

Subramanian (2004) proposed a different way of modifying equation (3.1). The idea of 

Subramanian is to replace the original response ( )ji TTI ≥  by an estimator of its nonparametric 

estimation. However, this method assumes that the covariate Z takes discrete values. 

( )( ) ( ) ( ) ( ).Pr
0

.t|ZdFt|ZS,Z|ZTT,Z|ZTTIE iijijijiji ∫
∞

=≥=≥  

The Kaplan-Meier estimator can be applied to estimate ( )t|ZS  such  

( ) ∏
∑

∑
≤

=

=

=≥

===
=

tu
n

i
ii

n

i
iii

ZuXI

Zu,δXI
- }

z),(

z),1(
1{Z|tS

1

1
^

. 

Therefore, Subramanian develop its estimating equation, 
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                             (4.4) ( ) ( ) ( )∑∑ ∫
≠

∞

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−×

ji

T
ijiiij

T
ij Zt|ZFdt|ZSZZW .0)(

^

0

^
ηξη
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) ( )where  is the K-M estimation and . But, t This method is 

also vulnerable to the tail problem since the Kaplan-Meier estimator can not catch the tail 

information either if 

( it|ZS
^

( ) ( ){ } sdFst-Ftξ
- εε∫
∞

∞
+= 1

cT ττ > . Therefore, Subramanian used the same technique, imposing the 

truncation point , to develop the modified estimating equation, 0t

         ( ) ( )
( )

( ) ( ) .0)( *
^th

0

^

s

0

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−×= ∑∑ ∫

≠ ji

T
ijiiij

T
ij Zt|ZFdt|ZSZZWU ηξηη             

4.1.B The at-risk process as the chosen response 

Recall 3.1.B, Cai, Wei and Wilcox (2000) suggested to use ( )tY  as the response. Its 

expected value under the model is  

( ) ( )( )ηZthφZtS T- += 1| . 

Under right censoring data, the corresponding response variable is ( )tXI i ≥ . Thus, we can 

derived the expectation: 

    ( )[ ] ( ) ( ) ( )tGZthTCtTtXIE T
iiiii }{,Pr 1 ηϕ +=>≥=≥ − . 

Cai et al. modify the equation (3.2a) as 

    .   (4.5a) ( ) ( ) ( )    ),(    ,0]t}t{[
1

^

i
1

ba

n

i

T
i tGZhtXI ττηϕ ∈=+−≥∑

=

−

Note that (4.5) provides a set of equations for  being the observed values of  . 

If 

t iT ),...,1( ni =

η  is one-dimensional, there are 1+n  unknown parameters in (4.5). Therefore we need one 

more equation. Cai et al. (2000) suggested the following equation  

( ) ( ) ( )∑∫
=

− =+−≥
n

i

T
i GZhtTI

1

^

i
1

i 0]dtt}t{[Zb

a

τ

τ
ηϕ ,       (4.5b) 

where ),( ba ττ  is a re-specified range that contains enough data information. Solve equations 

(4.5a) and (4.5b) iteratively. The following numerical operation is the same as 3.1.B we 



mentioned. 

4.1.C The counting process as the chosen response 

With censoring data structure, using the estimating equation based on counting process is 

easily modifying. We would not change the formation we mentioned in 3.1.B. That is to say, it 

is very generalized method in constructing the estimating equation in linear transformation 

model. 

4.2 Likelihood Inference  

The likelihood function in (3.6) can be extended to the censoring situation as follows:  

( )( ) ( )( )∏
=

−−
=

−

⎥
⎦

⎤
⎢
⎣

⎡
∂

∂
−

n

i
ixt

i

i

i
xhη

t
thη

1

1
i

1i
1

,z,|,z, δ
δ

ϕϕ .  

Since direct maximization is impossible, how to handle the nuisance function  is the key.  (.)h

4.2.1 Partial Likelihood – Cox model 

Here we illustrate the way Cox (1972, 1975) used to handle the nuisance baseline hazard 

function  under the model ( )tλ0 ( ) ( ) ( )ηZtλt|Zλ Texp0 ×= . At time , the probability that the 

failure event is for patient  given the risk set information is   

t

i

( ) ( )
( ) ( )

( )

( )
( )

( )
∑∑
∈∈

==
=

×
×==

tRj

T
j

T
iii

tRj

T
j

T
iii

ηZ
ηZtXI

ηZtλ
ηZtλtXI

exp
exp)1,(

exp
exp)1,(

0

0 δδ , 

where { }1,:)( =≥= jj tXjtR δ  is the risk set at time at time . The important point is that the 

same  appears in both the numerator and denominator and hence gets cancelled out. Thus 

the above conditional probability is only the function of . The so-called partial likelihood can 

be written as  

t

( )tλ0

η

     
( ) ( )

( ) ( )
∏

∑

∑

⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

×≥

×==

=

=

u 
n

j

T
jj

n

i

T
iii

ηZuXI

ηZu,δXI

 points  failture  all

1

1

exp

exp1
,             (4.6) 

Since  disappears, maximization of (4.6) becomes easy. The corresponding score function ( )tλ0
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can be written as  

( ) ( )

( )( ) ( )

( )( ) ( )
]

Zexp

Zexp
[U

1

1
D

1i ∑

∑
∑

=

=

= ×≥

×≥
= n

j

T
jij

n

j

T
jjij

i

ηtXI

ηZtXI
-Zη , 

where  is the order values of  with ( )it jX 1=jδ  for nj ,...,1=  and  is the total 

number of observed failure events. 

∑
=

=
n

j
jD

1

δ

4.2.2 Conditional Profile Likelihood  

The amazing cancellation for the Cox partial likelihood does not happen to the more 

general class of transformation models. Therefore if the likelihood approach is pursued, the 

nuisance function has to be dealt with directly.  

For the general transformation model in (1.4),  

( ) ( ){ } ( )( ),PrPr 1 ηZthηzthεzt|ZT T-T +=+>==> ϕ   

Chen, H. Y. (2001) proposed a likelihood approach for the case-cohort study, the covariate  

has an unknown distribution 

Z

( ) ( )zZPrz ≤=π , which is a more complex data structure than 

that considered in the thesis. Now we organize his method based on our data structure. By 

writing the full likelihood as  

( ) ( )[ ]

( ){ } ( ) ( ){ } ( )[ ]∏

∏

=

=

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=
n

i

-δ 
ii

-
 δ

ii
-

n

i

-δ 
iη

 δ
iη

i
i

ii

zdπx,hη,Zzdπx,hη,Z
t

-

xSxf   

1

111

1

1

,ϕϕ
 

Chen suggested to express the function in terms of  and the marginal survival distribution of 

, such that 

η

T

                   ( ) ( ) ( )( ) ( )∫ +=≥= zPr 1 πϕ dηZthtTtR T- ,                      (4.7) 

where ( ) ( )zZPrz ≤=π  is the distribution function of Z . The motivation of the above 

transformation is that  can be estimated by the Kaplan-Meier estimator  ( )tR
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    ( ) }
)(

)1,(
1{ˆ

1

1∏
∑

∑
≤

=

=

≥

==
−=

tu
n

i
i

n

i
ii

tXI

tXI
tR

δ
.  

This implies that , as a complicated function of ,  and , can be estimated. 

The distribution function 

( )tR η (.)h (.)H

( ).π  can also be estimated explicitly by . 

Based on (4.7), one can derive the relationship between  and 

∑
=

≤=
n

i
i nzZIz

1

/)()(π̂

)(th (.)},),({ HtR η  by inverse 

transformation. Denote { Rηvv ,, }π=  as the transformation. The technical issue is not the 

focus of the thesis so that we do not state the details. Finally, after the transformation,  can 

be estimated by maximizing the following profile likelihood function:  

η

( ) ( )( ){ }
( ) ( )( ){ } ( )

( ) ( )( ){ }
( )∏

∫= ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

∂
∂
∂
∂

n

i

-δ

i

iii
-

δ

iiii
-

iii
-

i

i

xR
xR,zη,,vη,zφ

zdxR,zη,,vη,zφ

xR,zη,,vη,zφ

1

11

1

1

.ˆ
ˆˆ

ˆˆˆ

ˆˆ π

ππ

π
 

This approach is very complicated and difficult to implement. The validity of the resulting 

estimator depends on whether the suggested transformation has to be a one-to-one mapping.  
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Chapter 5  New Proposed Method   

Under pairwise method, we propose to directly modify the whole equation: 

( ) ( )( ) 0)( =−≥×∑∑
≠ ji

T
ijjiij

T
ij ZTTIZZW ηξη .      

Specifically we only select pairs with the value of ( )ji TTI ≥  being exactly known. To 

illustrate the idea, we can examine the two cases.  

Case 1: If ( )1, =≥ jji XXI δ , we know that jj TX =  and ( ) 1=≥ ji TTI .  

Case 2: If ( )0, =≥ jji XXI δ , we have  and  but the order of jj XT > ji XT > ( )ji TT ,  

is uncertain.  

The following figure depicts the possible order relationships for a pair subject to censoring.   

 

Figure 5.1: The order relationship for a pair subject to censoring 

Define ( ) ( ) ( )( )0,1,1,0,1,1I ==<∪==>∪===Δ jijijijijiij XXXX δδδδδδ  as the 

orderable indicator which corresponds to ( )1, =≥ jji XXI δ  or ( )1, =≥ iij XXI δ . The 

corresponding estimating function is given by  

( ) ( ) ( ) ((∑∑
≠

−≥×Δ××=
ji

ijjiijij
T

ij ηZξXXIZηZWηU new )).           (5.1) 

The proposed estimator is obtained by solving ( ) 0new =ηU . In Appendix 4, unbiasness of the 
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estimator is proved.  

 We may study the proportion of the data that has been used in estimation. Define 

 and . By changing the censoring proportions, 

we see that . The new propose method uses  of the data. However all the rest 

estimators use almost 100% of the data. The major advantage of our method is that there is no 

need to estimator other nuisance parameters and remains unbiasness even under censoring. The 

disadvantage is that 

nIp
n

i
i /)1(

1
1 ∑

=

== δ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=Δ= ∑∑

= ≠ 2
/)1(

1
2

n
Ip

n

i ij
ij

121 pp >> 2p

21 p−  of the data is deleted. The loss of efficiency under heady censoring 

is expected.  

 

Figure 5.2: The observable proportion: Original data vs. Paired data 

 In addition, the new method losses too many data in using the comparable indicator ijΔ  

and causes the inefficient outcome. Thus, we want to improve this estimating equation to avoid 

missing too many information. We consider the following situation in Figure 5.3. Using 

comparable indicator ijΔ , we drop all the data in this situation. We use imputation technique 
 21



and Kaplan-Meier estimator to modify the original equation.  

 

Figure 5.3: ( ) ( )0,1,0,1, ==>∪==> ijijjiji XXXX δδδδ  

 We imposed new comparable indicator ( )0,1,* ==>=Δ jijiij XXI δδ  and imputation 

technique to renew our estimating equation: 

( ) ( ) ( )[ ] ( ) ( ) ( )∑∑
≠

∧∧

⎭
⎬
⎫

⎩
⎨
⎧

⎥⎦

⎤
⎢⎣

⎡ −⎟
⎠
⎞

⎜
⎝
⎛ −×Δ+−≥×Δ××

ji
ijjZiZijijjiijij

T
ij ηZξXSXSηZξXXIZηZW ji /1* , 

where  is the Kaplan-Meier estimator. ( )XS
∧

 

 

 

 

 

 

 

 

 

 

 

 22



Chapter 6  Simulation 

 We conduct Monte Carlo simulations to examine the finite-sample performances of the 

methods in the thesis. Based on the model, ( ) εZ-ηTh T += , we consider its special case, 

namely the Cox proportional hazard models. These Cox model is the most popular in practical 

applications. The covariate Z  follows ( )50Bernoulli .  or ( )10,U . The censoring variable  

is generated from uniform distributions. Two sample sizes are considered, namely n =100 or 

250. For each setting, 2000 replications are run. The average bias and standard deviation of 

each method are reported.  

C

6.1 Cox proportional hazard model 

The error term follows the extreme value distribution with ( ) ( )( )s--sF expexp1=ε . It 

follows that 

( ) ( ) ( ) ( )s
tdFst-Fsξ

- exp1
1}1{

+
=+= ∫

∞

∞

 

and 

( )
( ) ( )( )

sp

ee-ep

ee
-eetspξ

sp-p-sth

+
=

+01|, 0
* . 

The latter is used in the work of Fine et al. (1998) which requires specifying the truncation 

point related to the range of integration. Here we choose 0.50 =t . For the estimating function 

proposed by Cai et al. (2000), we set ),( ba ττ  to be ( )950050 .. ,TT  and ( )980020 .. ,TT  .  

6.2 Discussion 

 Besides the results of the moment-based methods, we also report the result of the Cox 

partial likelihood estimator. Recall that the methods discussed in thesis are suitable of all 

members in the model class but the partial likelihood estimator is developed only for the Cox 

model.  

 In absence of censoring, the results produced by the pairwise comparison approach are 

 23



similar to those of the partial likelihood method. However the weighting adjustment by Cheng 

et al. (1995) is problematic when censoring becomes heavier due to the tail problem mentioned 

earlier. The modification by Fine et al. (1998) by adding a truncation point successfully fixes 

the tail problem. Subramanian (2004) suggest using the nonparametric estimation to replace the 

pairwise indicator when data is censoring. However, the method of Subramanian is suitable 

under one important assumptation, the covariates 

 

 The counting process approach is the ideal method in the linear transformation models. In 

addition, we prove that counting process approach is equal to the specific method, Cox partial 

likelihood (1975), under Cox PH model in appendix 5. Because counting process approach uses 

the advantage of martingale, we find the numerical results of Chen et al.’s (2002) in below 

tables is more efficient than other unified methods. In theory, Chen’s method also has good 

properties and generalization.  

Z  follows discrete distribution. Our method 

uses the idea of choosing only comparable pairs to develop the unbiased estimating equation. 

However, we find that method losses too many data when censoring is heavy, the performance 

of estimation is inefficient (variance is relatively large). Thus, we use imputation technique to 

add a new comparable indicator  to avoid losing too many data. In numerical outcome, we 

find that the equation imposing new comparable indicator  is more efficient. 

24

*
ijΔ

*
ijΔ

( )ba

 The approach by Cai et al. (2000) used at-risk process approach which requires 

specification of ττ ,

( )ba

 and we see that this choice affects the result. If the range is set too 

wide including the extreme value, the variation of the estimator gets larger. How to choose the 

suitable 

 

τ τ,  becomes the biggest problem in this method. 



 
Table 1 Comparison for different estimators of 20 =η  when the covariate Z  is i.i.d. ( )10,Unif  and the sample size equal to 100 

                                             N=100                            ( Re-sampling Size=2000) 

( ) j, iXXI ji ≠≥  ( )tXI i ≥  
New True Parameter

Censoring 
Proportion 

Partial 
Likelihood Cheng et al. Fine et al. 

ijΔ  *
ijΔ  

( )950050 .. ,TT

( )tXI i

( )980020 .. ,TT

≤
 

0% 
Bias 
(SD) 

0.06 
(0.41) 

-0.03 
(0.43) 

0.02 
(0.43) 

0.06 
(0.45) 

0.06 
(0.41) 

14% 
Bias 
(SD) 

-0.02  
(0.43) 

-0.03  
(0.47) 

-0.02  
(0.43) 

-0.02 
(0.50)

-0.01 
(0.48) 

-0.03  
(0.44) 

-0.07  
(0.49) 

-0.02  
(0.43) 

22% 
Bias 
(SD) 

0.02  
(0.44) 

0.03  
0.49 

0.04  
0.47 

0.04 
(0.51)

-0.05 
(0.49) 

0.05  
(0.45) 

0.03  
(0.50) 

0.02  
(0.44) 

30% 
Bias 
(SD) 

0.06  
(0.48) 

0.06  
(0.51) 

0.07  
(0.49) 

0.08 
(0.55)

-0.08 
(0.52) 

0.06  
(0.48) 

0.06  
(0.52) 

0.06  
(0.48) 

38% 
Bias 
(SD) 

0.02  
(0.49) 

-0.01  
(0.51) 

0.02  
(0.49) 

0.05 
(0.57)

-0.09 
(0.50) 

0.08  
(0.49) 

0.09  
(0.55) 

0.02  
(0.49) 

46% 
Bias 
(SD) 

0.01  
(0.53) 

-0.06  
(0.55) 

-0.03  
(0.54) 

0.02 
(0.61)

-0.08 
(0.55) 

0.02  
(0.54) 

0.07  
(0.59) 

0.01  
(0.53) 

54% 
Bias 
(SD) 

0.03  
(0.56) 

-0.14  
(0.61) 

0.02  
(0.57) 

0.07 
(0.68)

-0.06 
(0.62) 

0.06  
(0.57) 

0.06  
(0.62) 

0.03  
(0.56) 

20 =η  

65% 
Bias 
(SD) 

0.02  
(0.63) 

-0.29  
(0.65) 

-0.08  
(0.65) 

0.06 
(0.76)

-0.04 
(0.72) 

0.01  
(0.65) 

0.05  
(0.70) 

0.02  
(0.63) 

 

 25



 
 
Table 2 Comparison for different estimators of 20 =η  when the covariate Z  is i.i.d. ( )10,Unif  and the sample size equal to 250 

                                             N=250                            ( Re-sampling Size=2000) 

( ) j, iXXI ji ≠≥  

New 
( )tXI i ≥  

True Parameter
Censoring 
Proportion 

Partial 
Likelihood Cheng et al. Fine et al.

ijΔ  *
ijΔ  ( )950050 .. ,TT ( )980020 .. ,TT

( )tXI i ≤  

0% 
Bias 
(SD) 

0.01 
(0.25) 

0.01 
(0.25) 

0.02  
(0.26) 

0.04  
(0.30) 

0.01 
(0.25) 

14% 
Bias 
(SD) 

0.00 
(0.27) 

0.00 
(0.31) 

0.00 
(0.27) 

0.00 
(0.32) 

-0.05 
(0.30) 

0.01 
(0.29) 

0.04 
(0.31) 

0.00 
(0.27) 

22% 
Bias 
(SD) 

0.01 
(0.25) 

0.01 
(0.29) 

0.01 
(0.26) 

0.01 
(0.31) 

-0.07 
(0.29) 

0.02 
(0.29) 

0.05 
(0.33) 

0.01 
(0.25) 

30% 
Bias 
(SD) 

0.02 
(0.28) 

0.01 
(0.32) 

0.02 
(0.29) 

0.03 
(0.34) 

-0.08 
(0.29) 

0.02 
(0.30) 

0.06 
(0.35) 

0.02 
(0.28) 

38% 
Bias 
(SD) 

0.02 
(0.28) 

-0.01 
(0.32) 

0.01 
(0.31) 

0.03 
(0.35) 

-0.09 
(0.31) 

0.01 
(0.33) 

0.04 
(0.36) 

0.02 
(0.28) 

46% 
Bias 
(SD) 

0.02 
(0.30) 

-0.04 
(0.34) 

0.02 
(0.33) 

0.03 
(0.38) 

-0.08 
(0.33) 

-0.02 
(0.34) 

0.05 
(0.38) 

0.02 
(0.30) 

54% 
Bias 
(SD) 

0.01 
(0.35) 

-0.13 
(0.38) 

0.00 
(0.37) 

0.02 
(0.42) 

-0.06 
(0.36) 

-0.01 
(0.38) 

0.08 
(0.40) 

0.01 
(0.35) 

20 =η  

65% 
Bias 
(SD) 

0.00 
(0.37) 

-0.33 
(0.40) 

-0.01 
(0.40) 

0.02 
(0.46) 

-0.04 
(0.43) 

0.03 
(0.40) 

0.06 
(0.42) 

0.00 
(0.37) 
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Table 3 Comparison for different estimators of 20 =η  when the covariate Z  is i.i.d. ( )50.Ber  and the sample size equal to 100 

                                                  N=100                          ( Re-sampling Size=2000) 

( ) j, iXXI ji ≠≥  ( )tXI i ≥  
New True Parameter

Censoring 
Proportion 

Partial 
Likelihood Cheng et al. Fine et al. Subramanian

ijΔ  *
ijΔ  

(
( )950050 .. ,TT ( )980020 .. ,TT

)tXI i ≤
 

0% 
Bias 
(SD) 

0.04  
(0.30) 

0.04  
(0.34) 

0.06  
(0.30) 

0.04  
(0.32) 

0.04  
(0.30) 

14% 
Bias 
(SD) 

0.03  
(0.30) 

0.05  
(0.36) 

0.05  
(0.32) 

0.05  
(0.35) 

0.05 
(0.36)

0.00 
(0.35) 

0.05  
(0.32) 

-0.05  
(0.35) 

0.03  
(0.30) 

22% 
Bias 
(SD) 

0.03  
(0.31) 

0.04  
(0.36) 

0.04  
(0.33) 

0.04  
(0.37) 

0.05 
(0.37)

-0.03 
(0.34) 

0.02  
(0.34) 

0.06  
(0.36) 

0.03  
(0.31) 

30% 
Bias 
(SD) 

0.04  
(0.33) 

0.06  
(0.40) 

0.06  
(0.35) 

0.02  
(0.39) 

0.06 
(0.41)

-0.04 
(0.35) 

0.00  
(0.36) 

0.08  
(0.39) 

0.04  
(0.33) 

38% 
Bias 
(SD) 

0.05  
(0.34) 

0.06  
(0.39) 

0.06  
(0.35) 

0.03  
(0.40) 

0.09 
(0.42)

-0.06 
(0.36) 

0.01  
(0.37) 

-0.05  
(0.41) 

0.05  
(0.34) 

46% 
Bias 
(SD) 

0.05  
(0.40) 

0.03  
(0.46) 

0.06  
(0.41) 

0.04  
(0.46) 

0.08 
(0.49)

-0.06 
(0.40) 

0.02  
(0.42) 

0.04  
(0.48) 

0.05  
(0.40) 

54% 
Bias 
(SD) 

0.06  
(0.42) 

0.12  
(0.46) 

0.08  
(0.43) 

0.03  
(0.47) 

0.07 
(0.48)

-0.07 
(0.41) 

0.08  
(0.43) 

-0.06  
(0.51) 

0.06  
(0.42) 

20 =η  

65% 
Bias 
(SD) 

0.08  
(0.46) 

-0.35  
(0.51) 

-0.09  
(0.46) 

-0.08  
(0.52) 

0.07 
(0.55)

0.07 
(0.45) 

0.04  
(0.49) 

0.08  
(0.53) 

0.08  
(0.46) 

 27



                                                  N=250                          ( Re-sampling Size=2000) 

( ) j, iXXI ji ≠≥  ( )tXI i ≥  
New True Parameter

Censoring 
Proportion 

Partial 
Likelihood Cheng et al. Fine et al. Subramanian

ijΔ  *
ijΔ  

(
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Table 4 Comparison for different estimators of 20 =η  when the covariate Z  is i.i.d. ( )50.Ber  and the sample size equal to 250 

( )980020 .. ,TT( )950050 .. ,TT

)tXI i ≤
 

0% 
Bias 
(SD) 

0.00 
(0.17) 

0.02  
(0.20) 

0.02 
(0.19) 

0.04 
(0.21) 

0.00 
(0.17) 

14% 
Bias 
(SD) 

0.02  
(0.19) 

0.03  
(0.22) 

0.03  
(0.19) 

0.05  
(0.20) 

0.03 
(0.23)

-0.03 
(0.19) 

0.03  
(0.22) 

0.05  
(0.23) 

0.02  
(0.19) 

22% 
Bias 
(SD) 

0.03  
(0.18) 

0.02  
(0.21) 

0.03  
(0.19) 

-0.03  
(0.21) 

0.03 
(0.22)

-0.06 
(0.21) 

-0.05  
(0.22) 

0.07  
(0.24) 

0.03  
(0.18) 

30% 
Bias 
(SD) 

0.01  
(0.20) 

0.02  
(0.24) 

0.02  
(0.21) 

-0.02  
(0.24) 

0.02 
(0.25)

-0.06 
(0.21) 

0.02  
(0.23) 

0.06  
(0.25) 

0.01  
(0.20) 

38% 
Bias 
(SD) 

0.01  
(0.21) 

0.01  
(0.23) 

0.02  
(0.20) 

0.05  
(0.22) 

0.02 
(0.24)

-0.08 
(0.22) 

0.01  
(0.24) 

-0.08  
(0.28) 

0.01  
(0.21) 

46% 
Bias 
(SD) 

0.01  
(0.23) 

-0.02  
(0.27) 

0.02  
(0.23) 

0.02  
(0.28) 

0.03 
(0.28)

-0.09 
(0.26) 

-0.01  
(0.26) 

0.06  
(0.30) 

0.01  
(0.23) 

54% 
Bias 
(SD) 

0.03  
(0.26) 

-0.08  
(0.34) 

-0.02  
(0.31) 

0.02  
(0.32) 

0.05 
(0.31)

-0.08 
(0.25) 

0.05  
(0.29) 

-0.05  
(0.32) 

0.03  
(0.26) 

20 =η  

65% 
Bias 
(SD) 

0.03  
(0.30) 

-0.33  
(0.33) 

-0.07  
(0.29) 

0.08  
(0.33) 

0.04 
(0.35)

-0.08 
(0.30) 

0.04  
(0.33) 

0.06  
(0.35) 

0.03  
(0.30) 



Chapter 7  Concluding Remarks 

 In this thesis, we consider semiparametric inference for linear transformation models 

which form a general class of regression models. We review existing literature under the 

classical framework of estimation theory. Specifically the method of moment and likelihood 

method are the two most important principles for parameter estimation. Here we see that how 

these approaches are adapted to the semi-parametric structure. The method of moment usually 

yields simpler solutions than the likelihood method in presence of high-dimensional nuisance 

parameter, namely , in our problem.  (.)h

 Another focus of thesis is to review how censoring is handled in an estimation procedure. 

The weight approach is appealing due to its simplicity. However we have seen that the 

suggested weight, in terms of the reciprocal of a Kaplan-Meier estimator, is sensitive to the tail 

estimation. When the censoring support lies within the support of the true lifetime, the 

weighting method can lead to bias solution. Nevertheless, Fine et al. (1998) proposed to further 

truncate the tail area to fix this problem. The method utilizing the martingale theory proposed 

by Chen, Jin and Ying (2002), is appealing in presence of censoring. First of all, it can be easily 

modified for censored data without estimation of . It does not need to select the range of 

integration as Cai et al. (2000) did for 

(.)G

),( ba ττ  since the expectation conditional on  can 

update the most recent information and hence flexible. The likelihood approach is useful for the 

Cox model since the nuisance function gets cancelled out in estimating the conditional hazard. 

However likelihood inference becomes very complicated under the more general model setting.  

−tF

 

 

 

 

 29



Appendix 

 
Appendix 1: Prove ( ) ( ) ( ) (t}1{sPrs εεεεξ dFstFji ∫

∞

∞−
+−=≥−= )   

 

Let  and  ji εεV −= )(f~
iid

εε ε

By convolution, we can find the following result: 

( ) ( ) ( ) ( ) ( ) ( jε- jε- jεjεj- jj,εεT εdFεvfdεεfεvf dε,εεvftf
ji

  ∫∫∫
∞

∞

∞

∞

∞

∞
+=×+=+= ). 

Thus,  

ξ (s)= )( ji sPr ≥− εε = ( ) ( )dvεdFεvf
s jε- jε∫ ∫
∞ ∞

∞
+    

           = ( ) ( )∞

∞

∞
+

- s jεjε εdFdvεvf   ∫ ∫  

        = ( ) ( )∞

∞ ∞
⎟
⎠
⎞⎜

⎝
⎛ +

- jε

s

- jε εdFdvεsf-  1  ∫ ∫

        = ( ) ( )∞

∞
+

- jεjε εdFsε-F  ∫ 1  

        = ,  ( ) (tdFstF∫
∞

∞−
+−  }1{ )

where ( ) ( )sPrs ≤= εF . 

 
Appendix 2: Unbiased property for Cheng’s 

 
 Recall that Cheng’s estimating equation under right censoring: 

( ) ( ) (∑∑
= ≠ ⎟

⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
≥

×=
n

1i
2

)(
)(

ji

T
ij

j

jij
ij

T
ij Z

XG

XXI
ZZWU ηξ

δ
ηη )

( )

,   (A-1) 

where . ( ) ( ){ } sdFst-Fsξ
- εε∫
∞

∞
+= 1

Now, we want to show that equation (A-1) is unbiased. That is to say, we will prove 
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( )
( ) ( )ηξ

δ T
ijji

j

jij Z,ZZ
X

XXI
=

≥
]|

G
E[ 2 . 

We use the conditional double expectation technique in the following: 

( )
( )

 ,T,Z|ZTTIE
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T,CCmin
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,T,Z|Z
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T,CCminITTI
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 ,T,Z|Z
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]])([
)(
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)(
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[[                                                       
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)(

)()(
[]|

G
E[              

2

2
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22

≥
≥

=

≥≥
=

≥
=

≥≥
=

≥δ

 

           ]])([[ jjiji ,T,Z|ZTTIEE ≥=

                             ])([ jiji ,Z|ZTTIE ≥=

                             ))()(Pr( jiji Z,Z|ThTh ≥=

                             )|Pr( ji
T

ijji Z,ZZ ηεε ≥−=

       = ( )ηξ T
ijZ . 

 

Appendix 3: Unbiased property for Fine’s 

 

 Fine et al. added a truncation point  to overcome the biased problem of Cheng et al.’s 

estimating equation. We recall Fine’s estimating equation: 

0t

( ) ( ) ( ) ( )∑∑
= ≠ ⎟

⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
≥

×=
n

1i

*
2

0'
f

)(

),min(
)(

ji
ij

j

jij
ij

T
ij

XG

XtXI
ZWU ηξ

δ
ηξηη ,      (A-2) 

where . ( ) )()}(1{0

00
* tdFηZtF

)h(t T
ijij εεηξ ∫ ∞−

+−=

Now, we want to prove equation (A-2) is unbiased. Thus, we will show that 

 31
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)(
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⎥
⎥
⎥

⎦

⎤

⎢
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⎢

⎣

⎡
≥

. 

Again, we take advantage of the conditional double expectation technique in our procedure: 
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Appendix 4: Unbiased property for New proposed method 

 

 We take the observing pairs to be our main idea to develop our simple method. Therefore, 

we use an indicated function ( ) ( )( )jiji CCTT ∧<∧I  to construct our estimating equation. Now, 

we would show that new estimating equation we proposed is unbiased. For convenience, we let 

( ) ( )( ) ijΔI =∧<∧ jiji CCTT  , and recall our simple estimating equation: 
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( ) ( ) ( ) ( ) ( )( )∑∑
≠

−≥×××=
ji

ijjiijij
T

ij ηZξXXIηZξηZWηU Δ'
new . 

In the beginning, we want to find ( ) ( ) ( ) ( )[ ]jijijiji CCTT|TTXX ∧<∧≥−≥ PrIE . Thus, we 

use two cases to help us analyze the problem: 

1. Given ( )ji TT ∧ =  and iT ( ) ( )jiji CCTT ∧<∧  

Then  is the smallest of , ,  and  iT iT jT iC jC

Therefore, we can get  =>  ijj TCT ≥^ ij TX ≥

2. Given ( )ji TT ∧ =  and jT ( ) ( )jiji CCTT ∧<∧  

Then  is the smallest of , ,  and  jT iT jT iC jC

Therefore, we can get  =>  jii TCT ≥^ ji TX ≥

Then, we can make some inference based on above information: 

( ) ( ) ( ) ( )[ ]jijijiji CCTTTTXX ∧<∧≥−≥ |PrIE  

( ) ( ) ( ) ( ) ( )[ ] ( )( )+=∧×=∧∧<∧≥−≥= ijiijijijijiji TTTTTTCCTTTTXX Pr,|PrIE  

  ( ) ( ) ( ) ( ) ( )[ ] ( )( )jjijijijijiji TTTTTTCCTTTTXX =∧×=∧∧<∧≥−≥ Pr,|PrIE j  

( ) ( ) ( )( ) ( )( )+=∧×=∧∧<∧≥= ijiijijiji TTTTTTCCTT Pr,|XTPr ji  

  ( ) ( ) ( )( ) ( )( )jjijjijijiji TTTTTTCCTTTX =∧×=∧∧<∧≥ Pr,|Pr  

= (0-0) ( )iji TTT =∧× Pr +(1-1) ( )jji TTT =∧× Pr  

=0 

Appendix 5: Chen et al. (2002) is equal to partial likelihood method under Cox model 

 

Consider the special case of the Cox model, in which ( ) ( )texpt =λ . We use this result 

( ) ( )texpt =λ , plug into equation (3.3). We can find the following result, 
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If we plug the result (3.5) in the martingale integral equation (3.4), we obtain 

( ) ( )

( )( ) ( )

( )( ) ( )
][U

1

1
D

1i ∑

∑
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=

=

= ×≥

×≥
= n
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T
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ηzexpTTI

ηzexpzTTI
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which is precisely the Cox partial likelihood score equation. 

 

Appendix 6: trend plot of new proposed method 
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