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Statistical Inference for Linear Transformation Models

Student: Tai-Tso Lin
Advisor: Dr. Weijing Wang

Institute of Statistics
Nation Chiao Tung University
Hsinchu, Taiwan

ABSTRACT

The linear transformation model, which includes the proportional hazard model and the
proportional odds model, has received considerable attentions in recent years due to its
flexibility. In the thesis, we consider semi-parametric estimation for the regression parameter.
We review existing literature under the framework of classical inference theory. Specifically we
will see how these “old” principles, namely method of moment and likelihood estimation, are
applied to the modern estimation problem which involves an infinite dimensional nuisance
parameter in the model formulation. After examining common techniques of handling censored
data, we also propose a new approach. All the methods are evaluated by Monte Carlo

simulations.

Key words: Cox proportion hazard model; Proportional odds model; Counting process; Inverse

probability weighting; Method of moment; Profile likelihood.
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Chapter 1 Introduction

1.1 Motivation

In many biomedical applications, researchers are interested in studying how covariates

affect a patient’s survival time. Let 7 be the failure time of interestand Z bea px1 vector

of covariates. The most well-known regression model in survival analysis is perhaps the

proportional hazard (PH) model proposed by Cox (1972) which can be written as
M) Z)=2,(c)xe”, (1.1)
where A(f|Z) is the hazard function given Z and A,(¢) is the hazard for the “baseline”

group with Z = (0,0,...,0)T . The Cox model can also be written as

log(-log{S(t | 2)}) = log(A4,(t))+ 27, (12)

where S(¢|Z) is the survival function of the failure time 7 given the covariate Z and

A, (t) = _r Ao (u)du is the baseline cumulative hazard function. Notice that the right-hand side
0

in (1.2) shows a linear structure.
In recent years, there has been a trend to construct a general class of models which consist
of existing models as special cases accordingly unified inference procedure applicable for all

members in the class can be developed. Consider the following generalization of model (1.2):
p(S(t1Z2) =h(t)+Z"n, (1.3)

where S(t|Z)=Pr(T >t|Z) and ¢(.) is a decreasing link function. Here we consider the

situation that ¢(.) is known but the form of h(.) is unspecified. Based on (1.2), we see that

Cox proportional hazard model belongs to this class with link function ¢(x) = log(-log(x)) .

Another example is the proportional odds model with ¢(x) = -log{%} .

Model (1.3) has another more direct representation given by
Wr)=-2"n+e, (1.4)

1



where h() is a completely unknown strictly increasing function, n is a px1 vector of
unknown parameters and ¢ is the error term with distribution function F,(x)=Pr(e <x).

Model (1.4) or its equivalent expression is called the linear transformation model. Note that

F.(x) is related to link function ¢(x). By simple calculations, we see that

where the last two identities use the fact that F(T' )~ U(0,1). If & has the extreme value

distribution, model (1.4) is the Cox PH model. If ¢ has the standard logistic distribution,
model (1.4) corresponds to the proportional odds model. Because of its generality and

flexibility, the linear transformation model has attracted substantial attention.

1.2 Inference Methods

The parametric version of the linear transformation model (1.4), with h() being specified
up to a finite-dimensional parameter vector, was studied by Box & Cox (1964). In the thesis,
we focus on semiparametric inference with h() being unknown. For the proportional hazard
model, Cox (1975) proposed the partial likelihood function for parameter estimation and its
large sample was discussed by Tsiatis (1981). For the proportional odds model, Pettitt (1982)
utilized properties of ranks (i.e. invariance under monotone increasing transformation) to
construct a marginal likelihood based on ranks. Dabrowska & Doksum (1988) considered the
proportional odds model under the two-sample setting.

In this thesis, we will review inference methods for estimating 77 for the class of linear
transformation models when 7 is subject to censoring by another random variable C. These

methods can handle all members in the model in (1.4) and hence are flexible compared with the

aforementioned methods developed for a particular member ,say the Cox model in (1.1).



1.3 Qutline

The thesis is organized as follows. In Chapter 2, we review fundamental inference ideas
for analyzing survival data without covariates. We will see that these concepts are still useful
for analyzing more complicated data structures. In Chapter 3, we discuss some ideas of
inference based on complete data. In Chapter 4, we study how these methods are modified
when data are subject to censoring. In chapter 5, we proposed a new simple method. Numerical

analyses are summarized in Chapter 6. Concluding remarks are given in Chapter 7.



Chapter 2 An Overview of Survival Analysis

Recall that 7' denote the failure time with the distribution function F(¢f)=Pr(T <t) and
survival function S(¢)=Pr(T > ¢). The censoring variable is denoted by C with the survival
function G(t) = Pr(C >¢) and the density function g(¢). Here we temporarily ignore the
information provided by the covariates. In presence of right censoring, the observed variables
are (X ,S,Z), where X =min(7,C) and 6 =I(T £C). The sample contains independently
and identically distributed observations of (X,8,Z), denoted as {(X,,5.,Z,) (i = 1,...,n)}.

2.1 Likelihood Inference

If a parametric distribution is imposed on 7', we can write F(¢) and S(f) as F,(r) and

S, (t) respectively. Denote f,(¢#) as the corresponding density. The parametric likelihood of

@ can be denoted as

1(0)- H G s, (e ) o, ) g, ) ]

- 1j LG8, (6, ] @.1)

The maximum likelihood estimator of & can be obtained by solving the equation
OL(6)/06 =0 given that L(¢9) is differentiable with respectto 4.

If the distribution of 7 is not completely specified, & often involves high-dimensional
nuisance parameters and direct direction by solving 0L(6)/06 =0 is not easy. Consequently

modified versions of the likelihood function, such as marginal, conditional or profile
likelihoods, have appeared in the literature. For example, for the profile log-likelihood, € is

decomposed as @ =(p,v(p)). For fixed p, v(p) can be estimated by V(o). Then the
profile likelihood replaces the original likelihood L(8) = L(p,v(p)) by L(p,v(p)).
2.2 Nonparametric Estimation

Suppose that the distribution of 7 is completely not specified. If complete data are
4



available, S(¢)=Pr(T >¢) can be estimated by the empirical estimators:

S(t) = iI(Ti >t)/n.

In presence of right censoring, Kaplan and Meier (1958) proposed the following product-limit

estimator:

) il(X,. =u,0, =1)
S =110+~ e (2.2)
ust D I(X, 2u)

It can be shown that S(#) reduces to S(#) when 0,=1 for all i=1,..,n. Similarly the

cumulative hazard function A(?) = le(u)du can be estimated by
0

) S I(X, =u6, = 1)
At) =) =~
u<t ZI(X, > u)

Now we discuss some nice properties of the Kaplan-Meier estimator since these ideas can

be further utilized to solve more complicated problems. We can view
S(¢)=Pr(T > ¢)= E[I(T > 1)]. (2.3)
When the data are complete, the empirical estimator of S(¢)= E[I(T>¢)] is given by

S‘(t):lzn:[l (T, >¢)], which utilizes the method of moment. In presence of censoring,
n o

I(T, > t) may not be completely observable. Two useful techniques for handling missing data

can be applied. One is imputation and the other is weighting.

The idea of imputation is to replace I(7; >¢) by an estimation of its conditional

expectation given the data. Specifically we have

E[I(T, 20)| X,,6.1=61(X, 20)+ (X, <t,6, =0)E[I(T, >1)| X.,T, > X,]



S(1)

=0l(X,2t)+1(X, <t,0, =0)—= .
A(X; 20+ 1(X, )S(X,.)

The above idea has been utilized in constructing the following self-consistency equation:

$0) =LY B 20 x,.8]

i=1

“ISlsr 24 1(x, <16 =0) 2|
ng S(X)

(2.4)
The above equation can be solved successively from the smallest observed value of T . It is
well-known that the above equation has a unique solution which is the Kaplan & Meier
estimator. Equation (2.4) can be modified for more complicated data structures such as interval

censoring (Turnbull, 1976).

Weighting is another way of handling missing data. We can view /(X >t) as a proxy of

>
I(T >t). To correct the bias of I(X >¢), we find that E[I(é(—(t_)t)]:E[l(T>t)]. The

Kaplan estimator S(¢) can be written as 5(1‘)=Zl()é+(;t), where G(r) is the
in1 t
Kaplan-Meier estimator of G(¢) such that
> I(X, =u,6,=0)
G =[] 0- ).

ust D I(X, 2 u)
i=1

2.3 Counting Process

Aalen (1975) analyzed survival data under the framework of counting processes and
martingales. This approach provides an elegant and relatively simple structure for theoretical
analysis of many well-known inference methods for analyzing survival data.

Consider the counting process defined as N,(t)=1I(X, <t, 6, =1). The corresponding

filtration can be written as

F =c{l(X, <t,6, =1)1(X, <t,8, =0)i = 1,..,n)}.
6



Note that F, records the history of the counting process at or prior to time t and satisfies the
nested property such that F, — F, for s <¢. It follows that
E[ANQ@)F,. 1=1(X 2)Pr(X =t =1X >1)
=Y()x A(t)dt,
where Y () =I(X >t) is the “at-risk” process for the failure event under censoring. Define
A = jo Y(s)A(s)ds ,
which is the compensator for N (7). Based on the Doob-Meyer decomposition, we have
N(t)=A(t)+ M (),
where M (Z) is a mean-zero martingale, satisfying E(M (t)F ; ) =M (S) for s<t. The

counting process representation is not only useful for theoretical analysis but also provides a
nice structure for parameter estimation. We will see how the idea is applied under the regression

setting.



Chapter 3 Regression Analysis without Censoring

The linear transformation regression model can be written as
h( l.)= —ZI.T11 +e,,i=12,...n
where Z, isa px1 vector of covariates for subject i. The error terms ¢, (i=12,..,n) are
identically and independently distributed with a known distribution Fg(x) =Pr(e <x).

Semiparametric inference of # without knowing h(.) has received substantial interest in the

literature due to the model flexibility. In this chapter, we review existing modern methods based
classical inference principles, namely the method of moment and likelihood estimation. To

simplify the presentation, we ignore censoring temporarily. Hence the data can be denoted as
(1.2, (i=12,...n)}.
3.1 Moment-based Inference

The method of moment is attractive since it does not require strong distributional
assumption and usually provides more robust results. The method of moment or its modified
version is constructed based on some moment properties of a chosen response variable.
Suppose O, is a chosen response variable. Denote E, as E(O,Z,) or E(0|Z,A), where
A is a statistic, which is a function of 7 or other nuisance parameter denoted as y. In our

model, y isrelated to #(.). The following unbiased estimating equation can be constructed
U(n’7)= ZVV: x (Oi'Ei(77>7))= 0,
i=1

where W, is a weight function for subject i. If additional parameter y is involved, other

estimating equation is needed. The property of the resulting estimator is related to whether

E.(n,y) is anice function of 7 and whether the weight W, is properly chosen. We will see

1

that there exist several candidates for O, .



3.1.A The pairwise order indicator as the chosen response

In the paper of Cheng, Wei and Ying (1995), they used 7 (T,. >T ) as the response variable,

j
where I(.) denotes the indicator function. Based on the assumption that h(.) is a strictly
increasing function, it follows that

11, >7)= 1) = 0(T)) = Ie, -2, > 2, 7).
This implies that

Eli(r, 2 7)1 z] = Elrle, -2, 2 (27 - 2"y
= Pr(gi -& 2 (Zian))
= ét(Zian)a

where &(t)= J-_w {I-F_(t +s)ldF.(s) and F.(t)=Pr(¢ <t). Appendix 1 contains more detailed
derivations. A nice feature of using [/ (Tl ZTJ) as the response is that the corresponding

expectation does not involve the unknown nuisance function h() It implies no additional

estimating functions are needed. The resulting estimating equation becomes:

ZZW(ZiiT”)Zi/ X (I(Ti = T./)_ ‘f(Zz/T”)): 0. (3.1)

i)
The solution is an unbiased and consistent estimator of 7.
3.1.B The at-risk process as the chosen response
Recall that the at-risk process is defined as Y(¢)=I(T >¢). Cai, Wei and Wilcox (2000)
suggested touse Y (t) as the response. Its expected value under the model is
S(12)= ¢ (n(e)+ 2"n).

The resulting estimating equation is given by
DUT 2 0) - W)+ Z n1=0, re(z,z,). (3.22)
i=1

Note that (3.2) provides a set of equations for ¢ being the observed values of 7, (i =1,...,n).

If 7 is one-dimensional, there are n+1 unknown parameters in (3.2). Therefore we need one
9



more equation. Cai et al. (2000) suggested the following equation
S [ Z(T; 2 1)~ th(1)+ 2 mi1dt = 0, (3.2b)
=1

where (7,,7,) 1is a re-specified range that contains enough data information. The authors
suggested to solve equations (3.2a) and (3.2b) iteratively. That is with an initial value of 7,
h(t,) for i=1,..,n can be estimated based on equation (3.2). These estimators are plugged
into equation (3.3) and then 7 can be estimated. The procedure is implemented iteratively

between (3.2a) and (3.2b) until the convergence criteria is reached. This method seems to be

more complicated than the previous one since the nuisance function 4() has to be estimated as
well and the region (7 ,7,) has to be determined.
3.1.C The counting process as the chosen response

Recall that the counting process N (t) L (T < t) . The corresponding expectation

conditional on the filtration F, under the transformation model can be written as

Y(s)d/l(nTZi + h(s)).

O S

t
With the true parameter values, N(¢) —IY (S)d/l(nTZi + h(s)) is a mean-zero martingale. This
0

property can be used for constructing estimating equations.
Chen, Jin and Ying (2002) suggested two estimating equations. One for estimating h(t)

is given by

1AV, (1)~ Y, ()dA (" Z, + h(1)}]1= 0. (3.3a)

i=1

The second estimating equation for 7 is given by

S [ 21N, (1)~ ¥, (kA 17"z, + h(eh1=0. (3.3b)

The same idea of iteration mentioned in the previous sub-section is also applied to solve (3.3a)

10



and (3.3b).
3.2 Likelihood Inference
Under the linear transformation model (1.4), h(T ) =-Z"y+¢&, the survival function can

be written as S(t]|Z)= ¢ (h(t) +Z Tn). The likelihood function can be written as

B H os(t|z), _ _11[ 0p™ (n(t)+ 27n)

|- |, -
Al R ot

(3.4)

The above function is very complicated and straightforward maximization is impossible. We

will present the related work in the next chapter which accounts for the presence of censoring.

11



Chapter4  Regression Analysis with Right Censoring

In practice, patients may drop out from the study or do not develop the event of interest
during the study period. Therefore, 7' is often subject to right censoring. In this chapter, we
discuss how the aforementioned methods adjust for the presence of censoring. In Section 4.1,
we review three ways of modification for the moment-based estimators. In Section 4.2, we
review the likelihood method in presence of censoring. Suppose that under model (1.4), T is

subject to censoring by C with the survival function G(t)zPr(C Zt). Observable data
become {(X,,5,Z )(i=12,.,n)} which are random replications of (X,8,Z) , where
X =min(7,C) and 8=1(T <C).
4.1 Moment-based Inference

The chosen response variables discussed in Chapter 3 are not completely observed. To
handle this problem, two useful techniques for analyzing missing data, namely the weighting
and imputation approaches, are frequently used.

Now we illustrate the technique of weighting. For the response variable [ (T < t) , a natural

proxy under censoring is [/ (X <to= 1), which however is biased.

E(I(x <t,0=1)=E[E[I(T <t,c>T)|T]|
= E[I(T <1)G(T)]

Therefore,

E[[(XS—”S:DJ — E(I(T <1)),if G(X)> 0 @.1)

G(x)

A

Since G(t) is often unknown, the Kaplan-Meier estimator G(X) is a suitable candidate to

replace G(X ) Specifically,

A SUICX, =ud, =0)
G(t)=]u-=— 3
ust D I(X; 2 u)

12



4.1.A The pairwise order indicator as the chosen response

X, 2x .8 =1)
')

Cheng et al. (1995), suggested to use as the proxy of [ (T,, >T, )

Notice that
E[I(Xi 2 X0, =1)J:E[ElTi 2T1,,C 2T1,,C; 2T, ’Ti’TjJJ

=E[](Ti 2 Tj)GZ(T)]

This implies that

B = 200 )]=E[I(TiZT,)],

if the denominator is not zero. See Appendix 2 for the details.

The estimating equation in (3.1) can be modified as

1 ol\X. >X.
ZZW(ZUTU)ZUX jA(zl—>J)_§(ZijT’7) =0, (4.2)
i=l i#j G (XJ)

where G(.) is the Kaplan-Meier estimator Pr(C >¢).

Despite its simplicity and convenience, the weighting approach has a series drawback.
First of all, equation (4.2) produces (asymptotically) unbiased result only if the censoring

support lies within the support of 7 . Specifically define 7, =supit: G(t) >0} and
t
7, =sup{t: Pr(T > t) > 0} . The validity of (4.2) requires 7. <7, which eliminate the situation
t

G(Ti)z 0. However, this assumption rarely holds in practice since the study period is often

limited which makes 7., > 7. This situation is developed in Figure (4.1).

13
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| | | i 1
0 10 20 30 40 50

Figure 4.1 Problem for the weighting technique
To overcome this problem, Fine, Ying and Wei (1998) suggested to impose a truncation

point ¢, (Figure 4.2) such that

‘--..\___\____HT
Truncation point
Never observable
o N D /
| S [ R, |
0 10 20 30 40 50

Figure 4.2 Imposing a truncation point to overcome the problem

The corresponding expected value for the adjusted response is given by

14



.S I(min(X )2 X))

Sgij = E[ GZ(X].) ]:Gti'(n)_Pr(XiZXtho)

= ELI(T; <1)I(T, 2 T))]
= [ -F @+ 2, paF, o) (4.3)

which is a function of # and A(z,). See Appendix 3 for the details. Furthermore instead of

using the first moment condition, Fine et al. (1998) proposed to use the least square principle by

minimizing the objective function:

2

n . o min(x,) > x,) .
>SS Wz, n)x Jmﬂ fo) L@@),
i=l i#j G (Xj)

which leads to the estimating equation

u r , o I\min(X,,7,) = X, .
> >z, g, () f(m“ii ) -)—e:j (n)|=0.
i=l i#j G (X])

For estimating h(t0 ), they also proposed another estimating function,

Subramanian (2004) proposed a different way of modifying equation (3.1). The idea of

Subramanian is to replace the original response [ (Tl. > TJ) by an estimator of its nonparametric

estimation. However, this method assumes that the covariate Z takes discrete values.

Ell(r,>7))z2,2,)=Pil1,2T)2,2,)= [ S(t12, WF (112, ).

O sy 8

The Kaplan-Meier estimator can be applied to estimate S (tlZ ) such

DX, =ud, =1,Z, =2)

é(t|Z)=H{1- = J
ust Y I(X, 2u,Z, =2)

i=1

Therefore, Subramanian develop its estimating equation,
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0. (4.4)

ZZW(ZUTU)Z# X (T‘g(ﬂziy];(ﬂzi)_ SE(ZUTU)]

i#j 0
where g(t|Z,,) is the K-M estimation and &(¢)= .[w {I—Fg (t+5)ldF.(s). But, t This method is

also vulnerable to the tail problem since the Kaplan-Meier estimator can not catch the tail

information either if 7, >z . Therefore, Subramanian used the same technique, imposing the

truncation point ¢, to develop the modified estimating equation,

0.

U (n)=2 2z, nZ, x[h(f) Sz} F(z,)- 5*(24,]77)}
[y 0
4.1.B The at-risk process as the chosen response

Recall 3.1.B, Cai, Wei and Wilcox (2000) suggested to use Y (t) as the response. Its
expected value under the model is

S| 2)= ¢ (n(e)+ 2"n).

Under right censoring data, the corresponding response variable is [/ (X ; Zt). Thus, we can
derived the expectation:

E[1(X, 20)]=Pi(T, 24,C, > T,)= 9" {h{e)+ 2. mG(¢).

Cai et al. modify the equation (3.2a) as

n

SU(X, 2 0)- ¢ th(t)+ 2 iG] =0, te(r,.z,) . (4.50)

i=lI
Note that (4.5) provides a set of equations for ¢ being the observed values of 7, (i =1,...,n).

If 7 is one-dimensional, there are n+1 unknown parameters in (4.5). Therefore we need one

more equation. Cai et al. (2000) suggested the following equation
[ Z,(T, 2 1)~ o th(t)+ 2y Gle)ldt = 0, (4.5b)
=1

where (7,,7,) is a re-specified range that contains enough data information. Solve equations

(4.5a) and (4.5b) iteratively. The following numerical operation is the same as 3.1.B we
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mentioned.
4.1.C The counting process as the chosen response

With censoring data structure, using the estimating equation based on counting process is
easily modifying. We would not change the formation we mentioned in 3.1.B. That is to say, it
i1s very generalized method in constructing the estimating equation in linear transformation
model.

4.2 Likelihood Inference

The likelihood function in (3.6) can be extended to the censoring situation as follows:

i ot

T[22 s T )y
Since direct maximization is impossible, how to handle the nuisance function #4(.) is the key.
4.2.1 Partial Likelihood — Cox model
Here we illustrate the way Cox (1972, 1975) used to handle the nuisance baseline hazard
function 4,(¢) under the model A(¢/Z)= 2, (t)x exp(Z - ;1). At time ¢, the probability that the
failure event is for patient 7 given the risk set information is
I(X, =1,8, =1)4,(t)x exp(Zl.T;y) I(X, =t,0 =1) exp(ZiT;y)

Zio(t)x exp(Zan) - Zexp(ZjT;y) ’

JjeRr(t) JjeR(1)

where R(t) = {j C X

;210 j:l} is the risk set at time at time ¢. The important point is that the

same /,(¢) appears in both the numerator and denominator and hence gets cancelled out. Thus

the above conditional probability is only the function of 7. The so-called partial likelihood can

be written as

ZI(XI. =u,d, =1)x exp(Zl.Tn)
= , (4.6)

n

all failture points u Z ]( X, > u)>< exp(ZjT;y)

j=1

Since 4,(t) disappears, maximization of (4.6) becomes easy. The corresponding score function
17



can be written as

n

D Z[(X,- 2 t(i))Z./ X exp(Zan)
Un) =D 12, I,
T Xl 2 )cexlz, )

J=1

where ¢, is the order values of X, with 6, =1 for j=1..,n and D= 251 is the total

j=1
number of observed failure events.
4.2.2 Conditional Profile Likelihood

The amazing cancellation for the Cox partial likelihood does not happen to the more
general class of transformation models. Therefore if the likelihood approach is pursued, the
nuisance function has to be dealt with directly.

For the general transformation model in (1.4),
Pr(T >HZ = Z) = Pr{a = h(t)+ ZT?]}: o (h(t)+ ZTn),
Chen, H. Y. (2001) proposed a likelihood approach for the case-cohort study, the covariate Z
has an unknown distribution 7(z)= Pr(Z < z), which is a more complex data structure than

that considered in the thesis. Now we organize his method based on our data structure. By

writing the full likelihood as
[Tl ()% 5, )]
T1| (-2 o oo nte)| o 02,0 )]

Chen suggested to express the function in terms of # and the marginal survival distribution of

T, such that
R(t)=Pe(T 21)= [ 9" (h(t)+ 27y Jin(2). (4.7)
where 7(z)= Pr(ZS z) is the distribution function of Z . The motivation of the above

transformation is that R(¢) can be estimated by the Kaplan-Meier estimator
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) Zn:I(X,. =1,0,=1)
Re)=TT0-+=— b
ust DX, =20

This implies that R(t), as a complicated function of #, A(.) and H(.), can be estimated.

The distribution function 72() can also be estimated explicitly by 7%(2)=21 (Z,£z)/n.
i=1

Based on (4.7), one can derive the relationship between Ai(¢) and {R(¢),7n,H(.)} by inverse

transformation. Denote v:v{n, ﬁ,R} as the transformation. The technical issue is not the

focus of the thesis so that we do not state the details. Finally, after the transformation, # can

be estimated by maximizing the following profile likelihood function:

0
| Dot el A )R)

H 0 §0_1 {’7:21""(’7: ﬁ(zi )’]%(xi ))}

120" ol (e, VG (e Rlx)

This approach is very complicated and difficult to implement. The validity of the resulting

estimator depends on whether the suggested transformation has to be a one-to-one mapping.

19



Chapter5  New Proposed Method

Under pairwise method, we propose to directly modify the whole equation:

ZZW(ZyTn)Zy x ([(Ti 2 T.f)_ ég(Zz:an)) 0.

i#j

Specifically we only select pairs with the value of [ (Tl, >T f) being exactly known. To

illustrate the idea, we can examine the two cases.

Case 1: If 7(X,>X,,6, =1), weknow that X, =T, and I(T,>T,)=1.

Case 2: If I(XiZXj,5j=0), we have T, > X, and T, > X, but the order of (T T‘)

2"
1S uncertain.

The following figure depicts the possible order relationships for a pair subject to censoring.

X X v
r s © > Vv
© X - X
= < - X
X : death
O : Censoring

Figure 5.1: The order relationship for a pair subject to censoring
Define A, =1((6, =15, =1)u(x, > X ,,5,=0,6, =1)u(X, < X,,6, =1,6, =0)) as the
orderable indicator which corresponds to 7 (X >2X,,0 = 1) or [ (X ;2 X0 = 1) . The

J>7

corresponding estimating function is given by

U (1) = ZZW(ZU‘T”)X Zyx Ay X([(Xi = Xj)—f(Zijn)). (5.1)

i#j

The proposed estimator is obtained by solving U, (;7) =0. In Appendix 4, unbiasness of the
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estimator is proved.

We may study the proportion of the data that has been used in estimation. Define

n

4 n
p, = 21(5,. =1)/n and p, = ZZ[(A” =1) /(ZJ' By changing the censoring proportions,

i=1 i=1 i

we see that 1> p, > p,. The new propose method uses p, of the data. However all the rest
estimators use almost 100% of the data. The major advantage of our method is that there is no
need to estimator other nuisance parameters and remains unbiasness even under censoring. The
disadvantage is that 1— p, of the data is deleted. The loss of efficiency under heady censoring

is expected.

Proportion of Observable Pairs

s |
e # Complete data(%)
@7 ok
* # Ohservable pairs(%)
& 8561 R
oy *
i 78.07 o
o~ *
8 70.3
o B i ®
=2 625 .
g o *
o B 54.35
[=} L
k=] *
o 2 155
b *
QD
5 8- 3% 62 *
> *
& 2518
=0
—
| I I I I I I I
1 = % 4 H 5] 7 g
Situation

Figure 5.2: The observable proportion: Original data vs. Paired data

In addition, the new method losses too many data in using the comparable indicator A,

and causes the inefficient outcome. Thus, we want to improve this estimating equation to avoid
missing too many information. We consider the following situation in Figure 5.3. Using

comparable indicator A, we drop all the data in this situation. We use imputation technique
21



and Kaplan-Meier estimator to modify the original equation.

o < - O

X : death
O : Censoring

Figure 5.3: (X, >X,,6,=16, =0)u(x, > X,,6, =16, =0)
We imposed new comparable indicator Az/* =1 (X ;>X,,6, =16, =0) and imputation

technique to renew our estimating equation:

>SS wlz, n)x z, % {Aij <[1(x, > x,)-&(z,n)]+ A, x Kl —5,(X,)/52(x, )j —f(zy;y)}},

i#]

where S (X ) is the Kaplan-Meier estimator.
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Chapter 6  Simulation

We conduct Monte Carlo simulations to examine the finite-sample performances of the
methods in the thesis. Based on the model, h(T ):—nT Z +¢, we consider its special case,
namely the Cox proportional hazard models. These Cox model is the most popular in practical
applications. The covariate Z follows Bernoulli(0.5) or U(0,1). The censoring variable C

is generated from uniform distributions. Two sample sizes are considered, namely n =100 or
250. For each setting, 2000 replications are run. The average bias and standard deviation of

each method are reported.
6.1 Cox proportional hazard model

The error term follows the extreme value distribution with F, (s)= 1-exp(- exp(s)). It
follows that

1

£)= Jrles jart)= s

and

_eh(lo )-p-s (ep +e* ))

. er (l-e

Ep,slt, )= . .
(p | 0) o’ +¢°

The latter is used in the work of Fine et al. (1998) which requires specifying the truncation

point related to the range of integration. Here we choose ¢, =0.5. For the estimating function
proposed by Cai et al. (2000), we set (z,,7,) tobe (TO_OS,TO'%) and (7)), T)o5) -

6.2 Discussion

Besides the results of the moment-based methods, we also report the result of the Cox
partial likelihood estimator. Recall that the methods discussed in thesis are suitable of all
members in the model class but the partial likelihood estimator is developed only for the Cox
model.

In absence of censoring, the results produced by the pairwise comparison approach are
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similar to those of the partial likelihood method. However the weighting adjustment by Cheng
et al. (1995) is problematic when censoring becomes heavier due to the tail problem mentioned
earlier. The modification by Fine et al. (1998) by adding a truncation point successfully fixes
the tail problem. Subramanian (2004) suggest using the nonparametric estimation to replace the
pairwise indicator when data is censoring. However, the method of Subramanian is suitable
under one important assumptation, the covariates Z follows discrete distribution. Our method
uses the idea of choosing only comparable pairs to develop the unbiased estimating equation.
However, we find that method losses too many data when censoring is heavy, the performance

of estimation is inefficient (variance is relatively large). Thus, we use imputation technique to

add a new comparable indicator Aij* to avoid losing too many data. In numerical outcome, we

find that the equation imposing new comparable indicator Aij* is more efficient.

The approach by Cai et al. (2000) used at-risk process approach which requires

specification of (r,,7,) and we see that this choice affects the result. If the range is set too

wide including the extreme value, the variation of the estimator gets larger. How to choose the

suitable (ra ,rb) becomes the biggest problem in this method.

The counting process approach is the ideal method in the linear transformation models. In
addition, we prove that counting process approach is equal to the specific method, Cox partial
likelihood (1975), under Cox PH model in appendix 5. Because counting process approach uses
the advantage of martingale, we find the numerical results of Chen et al.’s (2002) in below
tables is more efficient than other unified methods. In theory, Chen’s method also has good

properties and generalization.
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Table 1 Comparison for different estimators of n, =2 when the covariate Z isi.i.d. Unif (0,1) and the sample size equal to 100

N=100 ( Re-sampling Size=2000)
X, >2X,) iz
| (X, >1)
Censoring Partial ! I (X <t )
True Parameter Proportion Likelihood . New !
Cheng et al. | Fine et al.
Aij Aij* (To‘os ’ T0‘95 ) (To,oz) T0A98 )
0% Bias 0.06 -0.03 0.02 0.06 0.06
(SD) (0.41) (0.43) (0.43) (0.45) (0.41)
149% Bias -0.02 -0.03 -0.02 -0.02 -0.01 -0.03 -0.07 -0.02
(SD) (0.43) (0.47) (0.43) (0.50) | (0.48) (0.44) (0.49) (0.43)
220 Bias 0.02 0.03 0.04 0.04 -0.05 0.05 0.03 0.02
(SD) (0.44) 0.49 0.47 (0.51) | (0.49) (0.45) (0.50) (0.44)
30% Bias 0.06 0.06 0.07 0.08 -0.08 0.06 0.06 0.06
(SD) (0.48) (0.51) (0.49) (0.55) | (0.52) (0.48) (0.52) (0.48)
Ny =2 18% Bias 0.02 -0.01 0.02 0.05 -0.09 0.08 0.09 0.02
(SD) (0.49) (0.51) (0.49) (0.57) | (0.50) (0.49) (0.55) (0.49)
46% Bias 0.01 -0.06 -0.03 0.02 -0.08 0.02 0.07 0.01
(SD) (0.53) (0.55) (0.54) (0.61) | (0.55) (0.54) (0.59) (0.53)
549 Bias 0.03 -0.14 0.02 0.07 -0.06 0.06 0.06 0.03
(SD) (0.56) (0.61) (0.57) (0.68) | (0.62) (0.57) (0.62) (0.56)
65% Bias 0.02 -0.29 -0.08 0.06 -0.04 0.01 0.05 0.02
(SD) (0.63) (0.65) (0.65) (0.76) | (0.72) (0.65) (0.70) (0.63)
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Table 2 Comparison for different estimators of 1, =2 when the covariate Z isi.i.d. Unif (0,1) and the sample size equal to 250

N=250 ( Re-sampling Size=2000)
X, 2x,)i=;j s
| | (X, >1)
True Parameter [?ri)r:(?rrtligi Lii:g}l;l)lo d | e . New l 1 (X LSt
eng etal. | Fine et al.
AU Aij* (TO.OS 4 T0.95 ) (T0402’ T0.98 )
0% Bias 0.01 0.01 0.02 0.04 0.01
(SD) (0.25) (0.25) (0.26) (0.30) (0.25)
14% Bias 0.00 0.00 0.00 0.00 -0.05 0.01 0.04 0.00
(SD) (0.27) (0.31) 027) | (032) | 030) | (029 (0.31) (0.27)
2% Bias 0.01 0.01 0.01 0.01 -0.07 0.02 0.05 0.01
(SD) (0.25) (0.29) 026) | (031) | 029 | (029 (0.33) (0.25)
30% Bias 0.02 0.01 0.02 0.03 -0.08 0.02 0.06 0.02
(SD) (0.28) (0.32) 029 | 034) | 029 | (0.30) (0.35) (0.28)
My = 2 18% Bias 0.02 -0.01 0.01 0.03 -0.09 0.01 0.04 0.02
(SD) (0.28) (0.32) 031) | 035 | 031) | (0.33) (0.36) (0.28)
46% Bias 0.02 -0.04 0.02 0.03 -0.08 -0.02 0.05 0.02
(SD) (0.30) (0.34) 033) | (038) | 033) | (034 (0.38) (0.30)
54% Bias 0.01 -0.13 0.00 0.02 -0.06 -0.01 0.08 0.01
(SD) (0.35) (0.38) 037) | (0.42) | 036) | (038) (0.40) (0.35)
65% Bias 0.00 -0.33 -0.01 0.02 -0.04 0.03 0.06 0.00
(SD) (0.37) (0.40) 0.40) | (0.46) | (043) | (0.40) (0.42) (0.37)
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Table 3 Comparison for different estimators of n, =2 when the covariate Z is i.i.d. Ber(O.S) and the sample size equal to 100

N=100 ( Re-sampling Size=2000)
| X, 2X,)i#] 10X, > 1)
True Parameter g oS .Par.tial 1 (X i St )
roportion Likelihood - - New
Cheng et al. | Fine et al. | Subramanian
Aij Aij* (TOAOS 4 TOA95 ) (T0.02’ TO,98 )

0% Bias 0.04 0.04 0.06 0.04 0.04
(SD) (0.30) (0.34) (0.30) (0.32) (0.30)

14% Bias 0.03 0.05 0.05 0.05 0.05 0.00 0.05 -0.05 0.03
(SD) (0.30) (0.36) (0.32) (0.35) (0.36) | (0.35) (0.32) (0.35) (0.30)

2204 Bias 0.03 0.04 0.04 0.04 0.05 -0.03 0.02 0.06 0.03
(SD) (0.31) (0.36) (0.33) (0.37) (0.37) | (0.34) (0.34) (0.36) (0.31)

30% Bias 0.04 0.06 0.06 0.02 0.06 -0.04 0.00 0.08 0.04
(SD) (0.33) (0.40) (0.35) (0.39) (0.41) | (0.35) (0.36) (0.39) (0.33)

My =2 18% Bias 0.05 0.06 0.06 0.03 0.09 -0.06 0.01 -0.05 0.05
° (SD) (0.34) (0.39) (0.35) (0.40) (0.42) | (0.36) (0.37) (0.41) (0.34)

46% Bias 0.05 0.03 0.06 0.04 0.08 -0.06 0.02 0.04 0.05
(SD) (0.40) (0.46) (0.41) (0.46) (0.49) | (0.40) (0.42) (0.48) (0.40)

549, Bias 0.06 0.12 0.08 0.03 0.07 -0.07 0.08 -0.06 0.06
(SD) (0.42) (0.46) (0.43) (0.47) (0.48) | (0.41) (0.43) (0.51) (0.42)

65% Bias 0.08 -0.35 -0.09 -0.08 0.07 0.07 0.04 0.08 0.08
(SD) (0.46) (0.51) (0.46) (0.52) (0.55) | (0.45) (0.49) (0.53) (0.46)
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Table 4 Comparison for different estimators of n, =2 when the covariate Z is i.i.d. Ber(O.S) and the sample size equal to 250

N=250 ( Re-sampling Size=2000)
. 106X, i+ 1,20
Consoring | partil , 1(x, <1)
True Parameter Proportion Likelihood ‘ . New :
Cheng et al. | Fine et al. | Subramanian
Aij Aij* (TOAOS 4 TOA95 ) (TO.OZ’ T0.98 )

0% Bias 0.00 0.02 0.02 0.04 0.00
(SD) (0.17) (0.20) (0.19) (0.21) (0.17)

14% Bias 0.02 0.03 0.03 0.05 0.03 -0.03 0.03 0.05 0.02
(SD) (0.19) (0.22) (0.19) (0.20) (0.23) | (0.19) (0.22) (0.23) (0.19)

2204 Bias 0.03 0.02 0.03 -0.03 0.03 -0.06 -0.05 0.07 0.03
(SD) (0.18) (0.21) (0.19) (0.21) (0.22) | (0.21) (0.22) (0.24) (0.18)

30% Bias 0.01 0.02 0.02 -0.02 0.02 -0.06 0.02 0.06 0.01
(SD) (0.20) (0.24) (0.21) (0.24) (0.25) | (0.21) (0.23) (0.25) (0.20)

My =2 18% Bias 0.01 0.01 0.02 0.05 0.02 -0.08 0.01 -0.08 0.01
° (SD) (0.21) (0.23) (0.20) (0.22) (0.24) | (0.22) (0.24) (0.28) (0.21)

46% Bias 0.01 -0.02 0.02 0.02 0.03 -0.09 -0.01 0.06 0.01
(SD) (0.23) (0.27) (0.23) (0.28) (0.28) | (0.26) (0.26) (0.30) (0.23)

549, Bias 0.03 -0.08 -0.02 0.02 0.05 -0.08 0.05 -0.05 0.03
(SD) (0.26) (0.34) (0.31) (0.32) (0.31) | (0.25) (0.29) (0.32) (0.26)

65% Bias 0.03 -0.33 -0.07 0.08 0.04 -0.08 0.04 0.06 0.03
(SD) (0.30) (0.33) (0.29) (0.33) (0.35) | (0.30) (0.33) (0.35) (0.30)
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Chapter 7 Concluding Remarks

In this thesis, we consider semiparametric inference for linear transformation models
which form a general class of regression models. We review existing literature under the
classical framework of estimation theory. Specifically the method of moment and likelihood
method are the two most important principles for parameter estimation. Here we see that how
these approaches are adapted to the semi-parametric structure. The method of moment usually
yields simpler solutions than the likelihood method in presence of high-dimensional nuisance

parameter, namely /%(.), in our problem.

Another focus of thesis is to review how censoring is handled in an estimation procedure.
The weight approach is appealing due to its simplicity. However we have seen that the
suggested weight, in terms of the reciprocal of a Kaplan-Meier estimator, is sensitive to the tail
estimation. When the censoring support lies within the support of the true lifetime, the
weighting method can lead to bias solution. Nevertheless, Fine et al. (1998) proposed to further
truncate the tail area to fix this problem. The method utilizing the martingale theory proposed
by Chen, Jin and Ying (2002), is appealing in presence of censoring. First of all, it can be easily

modified for censored data without estimation of G(.). It does not need to select the range of
integration as Cai et al. (2000) did for (z,,7,) since the expectation conditional on F, can

update the most recent information and hence flexible. The likelihood approach is useful for the
Cox model since the nuisance function gets cancelled out in estimating the conditional hazard.

However likelihood inference becomes very complicated under the more general model setting.
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Appendix

Appendix 1: Prove &(s)= Pr(gl. —&; 2 s) = Ji {1—F, (¢ +s)dF,(t)

iid

Let V=¢ —¢. and &~f (&)
i J &
By convolution, we can find the following result:

fT(t):.[:fgi'ej (V+8j,8j)d8j = J.:jre(v+sj)xfs(8j)da = J._:jg(v+ej)ng(aj).

Thus,
EG)=Pr(s, —e,25)= [ [ flv+e,)aF (e, )av
=["["f.lv+e,)avar,(e,)
-[ 1-( [ fils+e, )dv) dF ¢, )
=[ 1F e, +s)are,)

[ - Fle+s)arF(),

where F(s)=Pr(e <s).

Appendix 2: Unbiased property for Cheng's

Recall that Cheng’s estimating equation under right censoring:

n sIX >Xx ,
U(’?): ZZW(Z”TU)ZU X ’ (2l - ")—f(Z” 77) ’
i=l i#j G (X])

where f(s) = JZ {l—Fg (t + s)}ng (s)

Now, we want to show that equation (A-1) is unbiased. That is to say, we will prove
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Eé'jl(XiZXj) 2,21=¢z,)
[W| i’ j]_é: i 1)

We use the conditional double expectation technique in the following:

51X, 2x,) I(C, 2THI(X,2 X))
E[Wﬂpzj]:ﬂ ' G (X ) 12,21
1(min(C.,Xi) >T))
= E[E[ > —1Z,2,T,]]
G(T) o
- BA S 2,2, T
GZ(T]-) i J LA A

= E[E[I(T; 2T))|Z,Z,,T,]]
=E(T; 2T))Z2,Z,]
=Pr(W(T)2WT)|Z,.Z))
=Pr(¢,~¢,22,'n1Z,Z,)

:‘f(Zi/T”)'

Appendix 3: Unbiased property for Fine's

Fine et al. added a truncation point t, to overcome the biased problem of Cheng et al.’s

estimating equation. We recall Fine’s estimating equation:

. e | (min(x, )2 X)L
Ui)= 3wz, e, () w2 %) el a
i=l i#j G (Xj)

h(ty)

where &y(n,)= [ 1= F,(t+ 2, n,)YdF, (1).

—00

Now, we want to prove equation (A-2) is unbiased. Thus, we will show that
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o I\min(X,,t,)> X, .
E J ( (2 i 0) j)|Zl~,Zj,t0 :glj(n)

G (X))

Again, we take advantage of the conditional double expectation technique in our procedure:

. S I{min(X ,t,) 2 X )
G(X,)

I(C, 2 T)I(X, = X )I(X, <1,)
G'(x,)
_ E[E[I(min(Xi,Ciz) 2THI(T, <t,) 2,2,,7,])
G (X)) -
P )I(min(C;i,Cj) > T)I(T, <1,)
G'(T,)

g CO 2T L BT T NZZ ot T
- GZ(T]) Jj — "0 [ Pt g
= BT, <) BUT, 2T |2, Z,1,.T,]

j’to’

Z,Z,,t,]= E[

1Z,Z,,t,]

1228, T;]]

= E[I(T, £ t,)I[(T, 2 T))|Z,Z .1, ]

=Pi(T, <1, T, 2T|Z,Z 1,

= Pi(T, >T|Z,Z )-Pu(T, > 1, T,>T)\Z,Z 1,)

= Pr(i(T}) > W(T,)\Z,Z,) - Pr(T, 2 T, 2 1|2, Z 1)

= Pr(W(T,) = W(T)\Z,Z,)- Pr(h(T) 2 W(T,) 2 h(t, V2, 7 t,)
= [" 1~ F.(c+ 2, p)dF. ()

=&%(n).
Appendix 4: Unbiased property for New proposed method

We take the observing pairs to be our main idea to develop our simple method. Therefore,

we use an indicated function I((Ti AT, ) < (Ci nC, )) to construct our estimating equation. Now,
we would show that new estimating equation we proposed is unbiased. For convenience, we let
(7, A7,)<(C, AC))=A

, and recall our simple estimating equation:

ij
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U ()= Z Wiz, n)x&(z,n)x 4, x(1(x, = x,)-&(z,1)).

In the beginning, we want to find E[I(X, > X, )-Pr(7; > T, )| (T, AT, )< (C, A C, )| Thus, we
use two cases to help us analyze the problem:
I. Given (,AT,)=T, and (1;nT,)<(C,AC,)
Then 7, is the smallestof 7;, T,, C, and C,
Therefore, we can get 7,°C, >T, =>X, >T,
2. Given ([ AT,)=T, and (T;AT,)<(C,AC,)
Then 7, is the smallestof 7,, 7,, C, and C,
Therefore, we can get T,°C, >T, =>X,>T,
Then, we can make some inference based on above information:
Elllx, > x,)-pPr(7, 2 7,)1 (1, AT, )< (€, A C) )|
=E[ilx, > X,)-Pe(T, > 7)) | (T, AT, )< (C AC T AT, )=T < Pe((T, AT,)=T; )+
Elllx, 2 X, )P, > 7, )| (T, AT, )< (C, AC T, AT, ) =T, |xPr(7; AT, )=T))
=Pl 2 X (T, AT,)<(C A C T AT )=T %P7, AT, )= T, )+
Pr(X, > T, | (T, AT,)<(C, AC )T AT, )=T, )xPe(T, AT, )=T))
= (0-0)xPr(T, AT, =T, +(1-1)x Pe{T, AT, = T)
=0

Appendix 5: Chen et al. (2002) is equal to partial likelihood method under Cox model

Consider the special case of the Cox model, in which A(t)=exp(t). We use this result

A(t)=exp(t), plug into equation (3.3). We can find the following result,
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> an, (1)

d[eh(t)]z .
Y, ()xexp(zn)

n

i=1

If we plug the result (3.5) in the martingale integral equation (3.4), we obtain

n

R Z[(Tj > T(l.))zj X exp(z(iTn)
Uln)= Z[Z(i)_ = 1=0,
- ZI(TJ ZT(I'))X@CP(ZJT”)

J=1

which is precisely the Cox partial likelihood score equation.

Y ovalle

0.000

-0.010

Appendix 6: trend plot of new proposed method

Trendency plot-1
( Real Beta=2 & Proportion of censoring=0.4)
Pl
f’
I I I I I
-10 -5 0 5 10
Beta Hat
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