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Concept of Average Run Length for Coverage Interval

& p values for Gene Expression Analysis

Student : Yu-Ting Tseng Advisor : Dr. Lin-An Chen

Institute of Statistics
National Chiao Tung University

Abstract
Topic 1 :
One use of coverage Interval is monitorsf an individual should beclassified as healthy
one. It is then desired to evaluate the coverage interval-for its power if a future
observation is elassified correctly and how often'that this observationicould be
mis-classified.For this, we study the power and implement the concept of average run
length to evaluate the coverage interval. Some distributions are examined for these
two tasks.
Key words: Average run length; coverage interval; hypothesis:testing; power;
reference interval.
Topic 2 :
Outlier sum has been proposed;in Tibshirani.and Hastie(2007) and Wu(2007) for
detection of differential genes in cancer studies where one or several disease groups
show unusually high gene expression in a subset of their samples. A new outlier sum
is proposed that allows us to develop its asymptotic distribution theory for
formulating p value. Since it is a function of some distributional parameters, this p
value may be computed parametrically or nonparametrically. We further formulate
parametrically this p value when normal distribution for gene variables is assumed.
To investigate this p value, we perform a simulation and conduct a real data analysis
which indicates that this outlier sum not only allows us to compute p values for genes
but is also flexible for treatment of various structures of distribution for gene
variables.
Key words: Gene expression analysis; outlier sum; p value.
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Concept of Average Run Length for Coverage Interval
and

p values for Gene Expression Analysis
Topic 1: Concept of Average Run Length for Coverage Interval

Abstract
One use of coverage interval is monitor if an individual should be classified as
healthy one. It is then desired to evaluate the coverage interval for its power if
a future observation is classified correctly and how often that this observation
could be mis-classified. For this, we study the power and implement the concept
of average run length to evaluate the coverage interval. Some distributions are

examined for these two tasks.

Key words: Average.run length; coverage interval; hypothesis testing; power;

reference interval.

1. Introduction

The coverage interval, in accordance with the:recommendation of the Guide
to the Expression of Uncertainty in Measurement for measuring the uncer-
tainty, refers to population-based measurement values obtained from a well-
defined group'of reference.individuals. This is antinterval with two confidence
limits which covers the measurement values in the population:in some proba-
bilistic sense. Laboratory test results are commonly compared to a coverage
interval, called a reference.interval in clinical chemistry, before caregivers make
physiological assessments, medical diagnoses,-or management decisions. An in-
dividual who is being screened for some disorder according their relevant mea-
surement from that invidual is suspected to be abnormal if their measurement
value lies outside the coverage interval.

The coverage interval can be estimated either parametrically or non-parametrically.
The parametric method classically assumes that the underlying distribution
of the measurement variable is normal whereas, recently, Chen, Huang and
Chen (2007) has proposed a technique for constructing coverage intervals for

asymmetric distributions. On the other hand, the non-parametric approach
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estimates the quantiles (percentile) directly; the most popular technique for
estimating the unknown quantiles is through the empirical quantile.

Basically the coverage interval is to assay the measurement units if they
meet, defined criteria. In radiation protection, it provides a range of maxi-
mum acceptable uncertainty in a dose measured under workplace conditions.
In its application to clinical chemistry, it serves as reference standards for
measurement units such as head circumference, length and mid-arm sircum-
ference/head circumference ratio for the evaluation of exclusively breastfed
infants and it provides some guidance in the interpretation of patient results.
When the measurement values do not meet the defined criteria (falling in the
coverage interval), these units may be suspected as unsafe or unhealthy and are
required for further investigation.#These coneerns are all statistical hypothesis
problems.

However used asgjan acceptance region for some hypothetical assumption,
little has been known the statistical properties of the test based on coverage
intervals.

We say that a manufacturing process is in statistical control if the process
distribution fer the quality characteristic .is constant over time and if there
is change over time, the process is said to be statistically out of control. A
control chart provides the most pepular technique for monitoring the process.
For a control chart, the most popularlysusedstechnique to evaluate its risk is
the average run length (ARL) which is the average number of sample points
that must be plotted before a point indicates an out-of-control condition. For
a control chart, the ARL is

it (1.1)

0%
where « is the probability that a single sample point exceeds the control limits.

Coverage intervals in clinical chemistry are used for mass screening, to con-
firm a diagnosis and to monitor a patient’s disease status. Diagnosis is test
or procedure that helps detect, confirm, document or exclude a disease. An
individual is normal if his or her test result falls within a pre-specified cov-
erage interval. Once a disease is suspected, testing result falling outside the

coverage interval, further intensive tests may be performed aiming to increase



or decrease the diagnostic certainty of one diagnosis.

How can we measure a coverage interval in terms of effectiveness for its
role in diagosis in clinical practice? This is important in reducing the risk of
classifying a patient with diseased as non-diseseased person and the risk of clas-
sifying an healthy people as diseseased person. One way for this measurement
is to transfer the concept of ARL in quality control to measurement science.
Suppose that there is a sequence of individuals physically healthy. How many
individuals, on the average, in this class that will be examined before a deci-
sion of disorder will be claimed is tolerant for the laboratory? Can we design

a coverage interval that is more effective in detecting a disorder individual?

2. Specifications for Evaluating the Coverage Interval

The International Federation of Clinical Chemists.(IFCC) standard coverage
interval for a measurement variable with distribution funetion Fjy is an estimate
of the central interfractile interval

)] (2.1)

off SO o 3

2
(usually withper = 0.05) where Fj '(8) isithe?dth fractile forsmeasurement,
variable. The parametric method generally' assumes that the underlying distri-
bution of the measurement variable is normal. If it is not normal, the classical
technique to deal with this caseisrapplying=arknown transformation to nor-
mality, setting the normal limits and then transforming to obtain the required
interval.

We consider the parametric coverage intervalrwhere the underlying distri-
bution is known that we need not to make transformation for approximate
normality. Suppose that the parameter value for healthy people is 6y. Then

the true coverage interval is

7S

S Fat (1= 2l (2.2)

However, parameter value 6y for distribution of healthy people is usually un-
known so that an estimate is required. All approaches to establishing coverage

intervals require large groups of individuals (e.g., a minimum of 120 individuals
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in the IFCC recommendation). When an appropriate estimate 0 for 0 is com-
puted from the measurement values is available, the coverage interval based on

the central interfractile interval is

C(l—a) = [Fé_l(%), FIl1 - %)]. (2.3)

Our interest is, as long as we have an established coverage interval C (1—a),
how is it performed for diagnosis of disease? The use of coverage interval in

diagnosis is, in fact, testing the follwoing hypotheses:
Hy : The individual is healthy vs. Hy : The individual is unhealthy. (2.4)

The test is then set as the following:

Accepting Hy when the measirément value falls in C' (1 —a) and

- 2.5
not rejecting Hy when, the measurement value falls outside C(1 — «). (2:5)
An individual will be suspected to be abnormal when Hjy is rejected. There

are two errors may happen in the diagnosis based on coverage interval:

Type I error: The individual-is-healthy but|/he /she is claimed.to be unhealthy
Type II error: The, individual is unhealthy but he/she is claimed to be healthy

Our interest-in diagnosis of disease through the estimated coverage interval
includes the followings:
(a) A 100(1 — @)% coverage interval is expected to have probability 1 — « to
claim a healthy people to'be healthy. How is it performed in sample coverage
interval?
(b) On the other hand, a coverage interval is expected to have large probability
to claim a diseased people to be diseased. How is it performed in sample

coverage interval for this case? The test procedure is based on coverage interval.

3. A Study for Normal Distribution
Let X1i,...,X,, be a random sample drawn from the normal distribution
N (10, 08). However, pp and o3 are assumed to be unkown. The true 100(1 —

«)% coverage interval is

(o — 21— 00, fio + 21-200) (3.1)
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which is also unknown. Hence, it is estimated by the 100(1 — «)% normal
coverage interval as

(X —21-985, X +2z_29). (3.2)
Now, suppose that X is the characteristic variable of interest for diagonosis
based on coverage interval estimate of (3.2). If Xy is in healthy condition, the
probability of type I error is derived in the follwoings:
P(Type L error) = Py, 4, (Xo & (X —21-25, X 4+ 212 5))
=1- PNO,JO(X —z1-a8 < Xp < X + zl_%S)

Xo— X
=1—Piyo0(—21-2 < OT <zi_g)
Z1_a XO_X Z1_«
:l_PN()ao-O( 1 1 S 1 ISS 1
- il 31+
1o Zlla
=1-P(= 2 <t(n—-1)< 2 )
t+ 1 Lo L

Xo—X
where we use the fact that, under Hy, ﬁ ~ t(n = L) Next, suppose
that X is in unhealthy condition, let-y and o2 be the true mean and variance
of variable Xgz For deriving the probability of type II error, We first derive
the desired test statistic. It is seen that Xy — X has the normal distribution
2 2
N (p— po, 0> 4222) and % ha$ clii-square distribution y*(fs— 1) and these

two quantities‘are independent. . We then~have the following

~J

e e
2 tnl 2)
\/ il UL+n

where t;(a) represents the noncentral ¢ distribution with degrees of freedom &
and noncentrality parameter a. The derivation of type II error is as follows:
P(Type II error) = P(X, € (X —z21-28, X +2z1_28))

—Z1-g - X < Z1-g

go n
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Let 61 = 2,0, = —£2E0_ We will evaluate this probability under some values
70 2 o3
i

of §; and ds. In this design, we have

—Z1_« 21—«
B = P(Type Il error) = P(———2 <1, 1(8) < —m—2—).  (3.3)
07+ % 07 + =

and the power is 1 — 3. When §; = 1 and d5 = 0 is true, the power is expected
to be the probability of type I error. On the other hand, when this assumption
is not true, we expect that the power is large when the deviation is big.

Any sequence of sample points that leads to a disorder signal is called a
run. The number of individuals that is taken during a run is called the “run
length.” Clearly, the run length is of very importance in evaluating how well
a coverage interval performss Because run length can vary run to run, from

the statistical point of View, it is more interesting to evaluate the average run
length (ARL) that is defined as

1

If the coverage interval is monitoring a sequence of healthy peeple, a perfect
interval would'never generate a signal of disorder - thus, the ARL would be
infinitely large. If the coverage intervalis monitoring a sequence of un-healthy
people, a perfeet interval would quickly. generate. a.signal of disorder - thus, a
coverage interval with anARL, of 1 would be desired. However, statistically
this is not possible.

We would like to sée a high- ARL when the ceverage interval is treating a
group of healthy people and alow ARL when it is treating a group of un-healthy
people. However, from the statistical point, we expect a high ARL when the
parameters of the underlying distribution are on target and low ARL when the

parameters shift to an unsatisfactory level.

Definition 3.1. The average run length (ARL) represents the length of time
the consecuitive diagnoses must run, on the average, before a coverage interval

will indicate an disorder.

We display the powers of (3.3) for several alternatives in Table 1.



Table 1. Powers for Normal distribution N (p,0?) (two-sided)

Ol an [ eo | an | ey | e
n = 20 0.07098 0.20102 0.34234 0.54309 0.54165 0.84932
n =30 0.06369 0.19075 0.33717 0.53437 0.53833 0.84873
n = 50 0.05806 0.18250 0.33310 0.52718 0.53571 0.84827
n = 100 0.05398 0.17630 0.33008 0.52165 0.53376 0.84792
n = 500 0.05079 0.17132 0.32769 0.51714 0.53222 0.84764
Table 2. ARL for Normal distribution N (u,0?) (two-sided)
O ey | en | an | ey | e
n = 20 14.0885 4.9745 2.9211 1.8413 1.8462 1.1774
n =30 15.7011 5.2423 2.9658 1.8713 1.8576 1.1782
n = 50 17.2236 9.4793 3.0021 1.8969 1.8667 1.1789
n = 100 18.5254 5.6721 3.0295 1.9170 1.8735 1.1794
n = 500 19.6889 5.8370 3.051% 1.9337 1.8789 1.1797

We have several egomments drawi from the abeve two tables:
(a) When Hj isgtrue; the ARL expected to.be 20. This means that, in average,
20 healthy people will have one being classified as an unhealthy individual.
However, the results are all not identical te 20-that can be asgsmall as only
14 for sample'size n = 20. The ARL increases in sample size m and it is seen
approached to 20 when n goes to_infinity.
(b) When thefparameters are meved-away-from-the null one, the power in-
creases and the ARL decreases. " This satisfies.the expectation for the use of
coverage interval in monitoring an individual’s health:
There is no other approach.that has studied- the ARL. So, we can’t make
comparison for this approach with others.

We may consider a one sided coverage interval as (—oo, o + 21_400) and
its estimate is

(—OO7 X + Zl—aS)-

The probability of type II error of this coverage interval estimate may be shown

as
21—«

et

B = P(Type II error) = P(—o00 < t,_1(d2) <
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and the power is 1 — 3. We display the power and ARL results in Tables 3 and

4.

Table 3. Powers for Normal distribution N (p,02) (one-sided)

n =20 n =30 n =50 n =100 n = 500
01 =1,00 =—1 0.00613 0.00540 0.00485 0.00446 0.00415
01 =1,00=1 0.28592 0.27725 0.27022 06489 0.26059
01 =1,00 = -2 0.00025 0.00020 0.00017 0.00015 0.00013
01 =1,00 =2 0.65648 0.65076 0.64605 0.64244 0.63950
01 =2,00 =—1 0.03662 0.03579 0.03514 0.03466 0.03428
01 =2,00=1 0.57603 0.57415 0.57267 0.57156 0.57068
01 =2,00 =—2 0.00269 0.00258 0.00250 0.00244 0.00239
01 = 2,00 =2 0.81616 0.88124 0.88095 0.88073 0.88056

Table 4. ARL for Normal distsibution N (g g?) (one-sided)

=20 n =30 n =50 n = 100 n = 500
01 =1,00 = —1 162.97 185.09 206.09 224.20 240.40
=100 =1 3.4974 3.6068 3.7006 3.7751 3.8374
01 =1,00 = —2 3913.6 4784.8 9676.4 6494.5 7264.3
01 =1,00 =2 1.5233 1.5367 125479 1.5566 1.5637
01 = 2,00 = —1 27.307 27,939 28.454 28.843 29.164
01 =2,00 =1 1.7360 1.7417 1.7462 1.7496 1.7523
01 =2,00 =—2 371.39 386.786 399.583 409.474 417.573
01 = 2,00 =2 1.2252 1.1348 1.1351 1.1354 1.1356

4. Coverage Intervals for Gamma and Exponential Distributions

Consider the Gamma distribugion T'(k, 5) with pdf of the form

The ath quantile of this distribution is Fjy L)
1 — « coverage interval is C'(1 — ) = (0, gxgk(l — «)). With mle 3 =

fa(z) = T(k)5*

a sample coverage interval is

(1 —a) = (0,

Z?:l T
2nk

F=le=%B 5 >0

- B

- 2X%k(a)'

Xk (1 — @)).

The one sided

2 T

Y

Suppose that the true coverage interval is C'(1 — a) = (0, 2x3, (1 — @)). The




power function is a function of parameter § as

> i1 Xi
Wxgk(l - a))

2X/2k03 b
237 Xi/2nk 00 - Qkﬁx2k(1 — )

= P(F(2h,200) > 123 (1 - )

7(B) = Pg(X >

= Pg(

2k
We list the power and ARL results for this Gamma distribution in Tables 5

and 6.
Table 5. Powers for Gamma distribution I'(k, 5) (one-sided)

B=0.5 g=1 B=5 B =20
k=1 0.00424 0.05753 0.55253 0.86121
k=2 0.00137 0.05613 0.75445 0.97566
k=3 0.00056 0.05550 0.86526 0.99577
k=4 0.00025 0.05513 0.92660 0.99928
k=5 0.00012 0.05487 0.96034 0.99987
k=6 0.00006 0.05468 0.97873 0.99997
k=7 0.00003 0.05454 0.98867 0.99999
k=8 0.00001 0.05442 0.99400 0.99999
k=9 0.00001 0.05433 0.99684 0.99999
k=10 0.00000 0.05425 0.99834 0.99999
k=12 0.00000 0.05412 0.99955 1.00000
k=15 0.00000 0.05397 0.99993 1.00000
k=20 0.00000 0.05381 0.99999 1.00000

Table 6. ARL for Gamma distribution T'(%,.3) (one-sided)

=05 =1 B.= 8 B =20
k=1 235.69 17.381 1.8098 1.1612
k=2 727.76 17.813 1.3255 1.0249
k=3 1780.6 18.015 1.1557 1.0042
k=4 3904.8 18.138 1.0792 1.0007
k=5 8012.0 18.222 1.0413 1.0001
k=6 15702 18.285 1.0217 1.0000
k=7 29748 18.333 1.0115 1.0000
k=8 54888 18.373 1.0060 1.0000
k=9 99132 18.405 1.0032 1.0000
k=10 175905 18.433 1.0017 1.0000
k=12 530669 18.477 1.0004 1.0000
k=15 2562981 18.526 1.0001 1.0000
k=20 30419787 18.581 1.0000 1.0000
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For two sided coverage interval g(xgk(%), X5:(1 — %)), its estimate is

A Zn—l Xi, o 0y 4 «
1l—a)===— — 1—=)).
We then see that the power of this coverage interval estimate is
ﬁO 2 X ﬁ() 9 o
=1—-P(— —) < F(2k,2nk) < — 1——=)).
Some of the power and ARL results for this two sided consideration are listed
in Tables 7 and 8.

Table 7. Powers for Gamma distribution I'(k, 8) (two-sided)

B=05 B=1 B=5 3 =20
k=1 0.05069 0.05582 0.48751 0.83330
k=2 0.08650 0.05489 0.69533 0.96742
k=3 0.12999 0.05455 0.82175 0.99384
k=4 0.17816 0.05437 0.89733 0.99887
k=5 0.22926 0.05427 0.94165 0.99979
k=6 0.28194 0.05420 0:96722 0.99996
k=T 0.33506 0.05415 0.98176 0.99999
k=8 0.38771 0.05411 0,98994 0.99999
k=9 0.43913 0.05408 0.99449 0.99999
k=10 0.48874 0.05406 0.99701 0.99999
k=12 0.58083 0.05402 0.99913 1.00000
k=15 0.69790 0.05398 0.99986 1.00000
k= 20 0.83608 0.05395 0.99999 1.00000

Table 8. ARI_for Gamma distribution T'(k,5) (two-sided)

B=0.5 B=1 B =5 B =20
k=1 19.724 17.913 3.2461 1.4376
k=2 11.559 18.218 2.2077 1.1215
k=3 7.6925 18.330 1.2169 1.0062
k=4 5.6128 18.389 1.1144 1.0011
k=5 4.3618 18.425 1.0620 1.0002
k=6 3.0468 18.449 1.0339 1.0000
k=T 2.9845 18.466 1.0186 1.0000
k=8 2.5792 18.479 1.0102 1.0000
k=9 2.2772 18.489 1.0055 1.0000
k=10 2.0461 18.497 1.0030 1.0000
k=12 1.7217 18.510 1.0009 1.0000
k=15 1.4329 18.522 1.0001 1.0000
k=20 1.1960 18.534 1.0000 1.0000
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Let X1, ..., X, be a random sample drawn from the exponential distribution

with probability density function
1 —z/0
f(a:,ﬁ)zae ,x > 0.

The distribution function is F(z) =1 — e~*/%  Hence, the population quantile
function is F~!(a) = —0In(1 — ) indicating that a 100(1 — a)% population
coverage interval is

)

(—0in(1 — 5), —0ln( 5 ).

An appropriate estimate of § is X and then a sample 100(1 — )% coverage

interval is

where we use the fact tha — = . -~ 2,2n). The probbility

< F(2,2n) < —i*ln(g))

B = P(Type II error) = P(——In(1 — < 7 5

where 0* = %. We consider (1 — a) = 0.95 coverage interval as example and
list the results in Tables 9 and 10.

Table 9. Powers for Exponential distribution Exzp(f) (two-sided) (Assume

§=9)
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n=>5 n = 20 n =30 n = 50
0* =0.2 0.11795 0.11855 0.11867 0.11876
0* =0.5 0.05988 0.05118 0.05069 0.05037
0* =0.8 0.06916 0.04690 0.04484 0.04328
0* = 0.08803 0.05884 0.05582 0.05345
g* =1.5 0.15203 0.11506 0.11080 0.10738
0* =2 0.22060 0.18388 0.17954 0.17602
g* = 2.5 0.28451 0.25090 0.24690 0.24366
g* =3 0.34147 0.31161 0.30806 0.30518

Table 10. ARL for Exponential distribution Fzp(f) (two-sided) (Assume

g0
n=>5 n =20 n = 30 n = 50

0* =0.2 8.4777 8.4349 8.4267 8.4201

0* =0.5 16.697 19.536 19.724 19.850

0* =0.8 14,459 21.320 22.296 23.100

g* = 11.358 16.993 17.913 18.706

0* =1.5 6.5775 8.6910 9.0245 9.3119

0* = 4.5329 5.4382 5.5697 5.6809

0* =2.5 3.5147 3:9856 4.0501 4.1040

g* =3 2.9285 3.2091 3.2461 3.2767

Let’s now gonsider the one sided coverage intérval (0, —fln(a)) that is esti-

mated by (0, ~Xlin(«)). The probability of type IT error is

B = P(Type Il error).=P(0 < F(2, 2n) < —i*ln(a)).

g

Again, 1 — a = 0.95, we list the power and ARL in Tables Il and 12.

Table 11. Powers for Exponential distribution Exp(f) (one-sided) (Assume

g0
n=>5 n = 20 n =30 n = 50

0* =0.2 0.00098 0.00001 0.00000 0.00000

0* =0.5 0.01947 0.00529 0.00424 0.00318

0* =0.8 0.06111 0.03230 0.02934 0.02702

0* = 0.09562 0.06172 0.05753 0.05450
0*=1.5 0.18631 0.14902 0.14464 0.14109

0* = 0.26977 0.23588 0.21848 0.22858

0* = 2.5 0.34157 0.31230 0.30882 0.30600

0* =3 0.40235 0.37740 0.37444 0.37204
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Table 12. ARL for Exponential distribution Exp(f) (one-sided) (Assume

£=)

n=>5 n =20 n = 30 n = 50
0* =0.2 1018.5 71428 188679 500000
0* =0.5 51.336 188.80 235.69 286.80
0* =0.8 16.363 30.954 34.081 37.005
g* = 10.457 16.201 17.381 18.346
f*=1.5 5.3673 6.7101 6.7136 7.0873
0* =2 3.7068 4.2394 4.5770 4.3748
0* =2.5 2.9276 3.2020 3.2381 3.2679
g* =3 2.4854 2.6497 2.6706 2.6878

Topic 2: p Value of an Outllier Sum in Differential Gene

Expression Analysis

Abstract
Outlier sum has been proposed in Tibshirani and Hastie (2007) and Wu (2007)
for detection ofidifferential genes in cancersstudies where one or several disease
groups show unusually high gene expression in a subset of their samples. A new
outlier sum is-proposed that allows us to develop its asymptotic distribution
theory for formulating p value. Sincesit is a function of some distributional
parameters, this p value may be computed parametrically or nonparametrically.
We further formulate parametrically-thissp=valueswhen normal distribution for
gene variables is assumed. To investigate thispwalue, weperform a simulation
and conduct a realdata analysis which indicates that this eutlier sum not only
allows us to compute p'values for genes but is.also flexible for treatment of

various structures of distribution for gene variables.

Key words: Gene expression analysis; outlier sum; p value.
5. Introduction

Microarray technology by probing thousands of genes simultaneously has
been successfully used in medical research to classify different diseases (see
this point in, for examples, Agrawal et al. (2002); Alizadeh et al. (200 0) Ohki
et al. (2005); Sorlie et al. (2003)). For example, two molecular subtypes of

breast cancer (two distinct gene expression patterns), luminal A and basal-like
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subtypes, have been reported to have different clinical outcome (see Sorlie et al.
(2003)). Another example is diffuse large B-cell lymphoma (DLBCL). Patients
with one particular molecular pattern, germinal centre B-like DLBCL, had a
significant better overall survival than those with another molecular pattern,
activated B-like DLBCL (see Alizadeh et al. (2000)). Furthermore, microarray
analysis has been advanced to identify oulier genes which are over-expressed
only in a small number of disease samples (see Beer et al. (2002); Tibshi-
rani and Hastie (2007); Tomlins et al. (2005)), such as recurrent chromosomal
rearrangements (one type of chromosomal mutation), which is common in lym-
phoma and leukemia, but rare in other cancers. Standard statistical methods
for two-group comparisons (e.g., t-tests) have a limitation to identify these

genes to distinguish tumor versusmormal samples.

Several statistical approaches have been propesedito address this issue of
finding those genesswhere only a subset of the samplesshas high expression.
Among the proposals, Tomlins et al. (2005) introduced a method called cancer
outlier profile analysis (COPA). Latter, Tibshirani and  Hastie (2007) intro-
duced a sum of the values-in-the cancer group, called the outlier sums, and
showed that the technique of outlier sums is noticeably better in' simulation of
p values than the technique of COPA . There is an alternative outlier sums - like
statistic proposed by Wu (2007)..Basically, these methods of outlier sums pool
outlier score which is a standardized score centered at median and scales by
median absoluteddeviation in various ways. A" larger outlier score indicates an
outlier gene. The outlier sum statistics are very promising in detecting genes
where only a subset of theirssamples have high expression. Unfortunately,
without development of distribution theory for the outlier sum statistic, its
power (see the simulations in Tibshirani and Hastie (2007)) in gene expression
analysis relies on that the number of genes with samples having high expression
is known. However, this is usually not true in practice and then there is no

natural cut off point to decide the number of influential genes.

We propose the non-standardized outlier sum statistics and develop a tech-
nique for computing p values for genes. One interesting result is that this

technique will generally produce a cut off point to classify the genes into class
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of outlier genes and non-outlier genes. So, this would not require that there
is only one outlier gene. The studies of gene expression detection such as the
t test, Tibshirani and Hastie (2007) and Wu (2007) all assume that the un-
derlying distributions for all genes are normal distributions. Hence, under this
distribution, we further derive a simpler formula for p values and perform sim-
ulations evaluate its ability in detection of outlier genes. A formula developed
in this paper makes the study of p values in parameteric of other distributions
and nonparametric techniques is straight forward, however, we would not go

further for this.

6. General Formulation for Outlier Means

Suppose that there are m genes to be cocerned and for each gene there are
two groups of subjects, one normal-or healthy group and one cancer (disease)
group. We assume that there are available ni and ms expression variables
respectively for two groups forming.as follows:

Normal group Cancer group
Gene 1 Xll,---aXlnl Y].].)"')Ylng
Gene 2 X21,...,X2n1 Yél,...,Y2n2 (61)

Gene m Xml,...,anl ley---,Yan

The outliergsums for gene expression in literature actually implicitly defined
three parameters:
H; : Centering parameter for measuring distance of ebservations in Y group
Hs : Threshold for identifying observations from ¥ group as outliers
Hjs : Scale parameter for'standardizing an outlier sum
Let H,;, Hy;, Hs; represent, respectively the above three parameters for gene
j and we assume that there are appropriate estimators H 17 _HQj, FIgj, based on
variables in gene 7, available for estimating these parameters.

The outlier sum statistic for gene j defined by Tibshirani and Hastie (2007)

and Wu (2007) may be represented in a general form as

A H 2
W, = Z Y “[Y > Hy;), (6.2)
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where fflj, ffzj and fIgj are estimates of Hy;, Hy; and Hz; respectively.
Let Fg; and F,;, respectively, be the distribution functions that {Xj;,i =

1,...,n1} and {Y};,4 = 1,...,ne} are drawn. Let’s denote

Fw_jl(a) : ath percentile of the set {Xj;,i=1,...,n1}
f);l(a) : ath percentile of the set {X;;,0=1,...,n1,Yj;,i =1,...,n2}
~1(0.5)

med,; = F;71(0.5), medy; = F7-1(0.5), med; = £
(0.75) — L;"(0.25),

IQRy; = F;'(0.75) — F;;'(0.25), IQR; = L} "
mad,; = 1.4826 x median{|Y;; — med,;|,i =1,...,n2}

where the constant 1.4826 is chosen such that mad,; is approximately equal
to the normal standard error.

For comparison of the twe approaches on Gutlier sums by Tibshirani and
Hastie (2007) and Wu, (2007), we use a table to éxpress their formulations of
outlier sums. This ‘expression allows us to generate alternative outlier sums
when thresholdssH i I:IZJ- and FI3J~ are chosen in different ways that could be

in consideration of robustness or efficiency.

Table 14. Comparison of parameter estimates for outlier sums method and

outlier robust-¢ method

Parameter Tibshirani W
estimate and Hastie
H 15 med; med,

Hy; L71(0.75) + IQR; F:1(0.75) +4QRy;
- : median{| X ;; — med,;[;",

Y55 — medy; [2, }

When gene expression values j;,% = 1,...,n1,¥;i,% = 1,...,no are available,
we can evaluate statistic values w; for the outlier sum statistics W; of (6.2).
The technique applied in Tibshirani and Hastie (2007) of gene expression anal-

ysis computes the p values as

Pjw = E Z I(wj: Z wj),j = 1, e, M. (63)
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The genes with smaller p values are suspected to be significant genes.

It is desired to evaluate p values with probability sense. Suppose that we
have a statistic ¢(Z) where Z is a random sample from a distribution involving
parameter @ and we consider the null hypothesis Hy : # = 6. The classical

significance test defines the p value as
pt = P, {t(Z) at least as extreme as the observed #(z)}, (6.4)

where z is the realization of the random sample Z. Extending this concept, the
proposal of p value for gene expression based on outlier sums is appropriate in
the form as
P} = Pr, AW; > w;},j=1,...,m, (6.5)
where statistic W; involves 'distributions F; and#F ; since it is function of
{Xji} and {Y};} but we consider that F,; = F,; in (6:5).
We consider a noen-centered andrnon-scaled outlier sumstatistic in the fol-

lowing and use it to introduce a test_statistic that does mvolve centering and

scaling estimates.
Definition 6.1. The outlier sum statistic.for jth gene is
~ 22
T3P S siNE. ). (6.6)
i=1

The aim in this papertis to dévelop p values for outlier sum statistics II;, j =

1,....,m.

7. Formulation of p Value with Normal Samples
From now on, for simplicity, we drove the index j. The threshold suggested
by Wu (2007) is

H, = F750.75) + IQR, = 2F7(0.75) — F,1(0.25).
For latter comparison, we suggested a flexible type of threshold as

Hy, = F71(0.5) + 1.5kIQR,.
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We now further denote the outlier mean II by I, when its threshold is H= I;Ta
and it by II; when H= fIb.

We have notes on the design of threshold Hy:

(a) Consider that the underlying distributions F,, is normal. We then see that
fIa and I:Ib when k£ = 1 are both estimates of u, + 30,20.75. Hence, ﬁb when

k =1 is asymptotically equlivalent to H,.

(b) Small £ will make the outlier sum able to detect any positive outliers in
second group. The larger the outliers the more the efficiency will be. However,
it could happen that there are many genes to be identified as outlier genes

since their p values all indicate significant different.

(c) Larger k can only detect larger shift in distribution and it will probably

not be able to detect, smaller shift in distribution.
(d) We latter willisee that when ik =1 the p values p, and py are identical.

We now assume that {X;} and {Y;} are two random sample, respectively,
from normal distributions N(y.,07) and N(pg,0,). With denoted ¢ as the
probability density function of the standard normal distribution N(0,1), we
further let ¢, s1be the probability’density function of the normal distribution

N(p,0?).

With the normality assumptions, F, (o) = g +zo0zindicates that F.1(0.5)+
1.5k(F1(0.75) — F1(0.25)) = pis + 3kzo.750,. Henée, the outlier sum may be

reformulated as

n2

=1

that requires only estimators fi, and 6,. Furthermore, the p value is evaluated
under that Hy is assumed to be true. Hence, we may let p, = p,, 0, = 0, and,

with careful checking, we may see that some elements for evaluating p value in
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Section 4 are as follows:

i=1

8= #(z)dz, a known constant,

3kzo.75

ox [
[ = g + 5 z¢p(2)dz,
3kzo.75

1

by = B3kz0.750m¢(3kz0_75)\/ﬁ¢_1(0)7
br 4

b2 — b3 = 15km¢ (20.75)7

h, pe and og. -

Theorem 7.1 random samples

2

from distributions Dy = iy, 02 =

Oy,

(7.1)

converges asymptotically to the standard normal distribution.
We then apply an estimator of W of (7.1) as the test statistic
Definition 7.2. Suppose that we have appropriate estimators of 3, u, and

or. Then we define the test statistic as

I fI - /Bn2ﬁ’7r

W = W(X;,Y;) = /na( ). (7.2)
\/ Bn2&n
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Definition 7.3. Suppose that the outlier mean II; has the asymptotic property
of (6.2) and there are Bj, fijx= and 6., estimates, respectively, of 3;, 1 and
oj= based on observations zj;’s. We define the p value for gene j as

pj = / d(z)dz,j=1,...,m. (7.3)

We have two notes for the specified p values:

(a) The estimates Bj, ftj= and ;. are designed to be computed from the data
x;;'s since p values try to see how significant the observation 7;’s it is when
y;; are drawn from the same distribution of z;;’s.

(b) Suppose that p;’s for all j are available. The genes with indexes j’s such

those with relatively lar ~Ehis resolve the difficulty
of ordinal p values propose tlier sums statistics for not
been able to determine I fial wenes 1en it is not known

pe=r+2 [ g (7.4)
ﬁ 3kzo.75
by = %3kz0_75s$¢(3kz0_75)\/ﬁq&_l(O)
by = by = 1-5k¢_b11(0) ¢~ (20.75)
2 [ee) [e’e)
o= 22 / e / s
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2

2 1s estimated as

Then the asymptotic variance o
6—721' = 0—721' (b17 b27 b37 ﬁ) (75)

and then the p value of (6.4) is

oo

p= [ . e (7.6)
v

The p value of (7.6) uses only Z and s, to estimate u, and o, for formulating

jir and .. The computation of p value under normality assumption is very

simple. If it is the situation that G, and G are known but not normal, this

procedure of establishing p value may be analogously derived.

8. Simulation and Data Analysis

It is desired to evaluate the ability of outlier sum in‘detecting significant
genes through the.p values of genes. We restrict this evaluation for that the un-
derlying distributions are normal that are generally assumed in the approaches
of Tibshirani and Hastie (2007) and Wu (2007)..Under the normal assumption,

the outlier sum statistic may be formulated as

na

iy, = W Yl (> X + 3kz.755.) (8.1)
i=1

where X and S, 'are, respectively, sample mean and sample standard deviation

based on sample of normal.group people. This outlier, sum is equivalent to

the proposals of Wu (2007) when & = 1. It-is then interesting to study the

choice of constant k for detecting significant genes through simulation and data

analysis.

We conduct two simulations. First, the classical ¢ test has been criticized
that when there are occassionally hundreds of influential genes if 10 thounsands
genes are investigated. Hence, we generate n; = 20 and ny = 20 observations
from N(0,1) and conduct 1 million replications of this data generation to
compute p values of (7.6). Setting significance level v = 0.001,0.01,0.05 and

constant k£ = 1,2,3, we compute the numbers of p values smaller than the
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corresponding specified significance level a. The results are displayed in Table
15.

Table 15. Numbers in 1 millions replications with p values smaller than «

Q k=1 k=2 k=3
0.05 27808 460 )
0.01 25231 86 2
0.001 9632 23 1

We have two conclusions drawn from the results in Table 1:

(a) Consider that £ = 1. If &« = 0.05, there are more than 50 thousands genes to
be claimed influential. So, if there are totally 10 thounsands genes, then there
are about 500 or more genes to be identified as influential. Similarly, a = 0.01
and o = 0.001 indicate to hayejsrespectively, 200 and 90 or more genes to
be identified as influengidl.. This shows that outlier,sum of k¥ = 1 which is
equivalent to Wu (2007) is still struggled in having t06 many influential genes.
(b) Consider that"k'= 2. The results show that when the gene number is
about 10 thousands, there will be very small' numbers of influential genes to
be identified. On the other hand, & = 3 will be almost none to be identified as
influential gene. Hence, based on this simulation, £ = 2 or 3 istan appropriate
constant to contruct the outlier sum.

We first consider a simulation to evaluate the efficiency of the approach of p
value for differential sum in' detctingroutliersgenesml et (s,h) be a fixed index
for gene data generation. We generate ny =20 and ny =120 observations from
N(0,1). However,“we add.h units for s of the samples in‘the second group of
ny observations. We then compute the p value of (7.6).

For the next simulation, we consider that there are influential genes and
see the efficiency of the approach of p value for detection of influential genes.
Again, we generate n; = 20 and ny = 20 observations from N(0,1). However,
we add h units for s of the samples in the second group of ns observations.
This process is repeated 10 thousands times and we compute the averaging p
value. For several values of s and h, we perform this simulation and display

the simulation results of averaged p values in Tables 16 and 17.

Table 16. Average p values of outlier sum
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(s,h) E=1 k=2 k=3
(0,0) 0.4726 0.4972 0.5
(2,2) 0.2441 0.4642 0.4985
(2,4) 0.0198 0.2018 0.4475
(2,6) 0.00075 0.0162 0.2103
(2,8) 1.75E — 05 0.00056 0.0313
(4,2) 0.1271 0.4354 0.4973
(4,4) 0.00038 0.1052 0.4160
(4,6) 2.88F — 08 0.0013 0.1293
(4, 8) 2.80F — 13 5.7T6E — 07 0.0070
(4,10) 6.19F — 18 3.72F — 12 2.77TE — 05
(6,2) 0.0694 0.4145 0.4960
(6,4) 1.74FE — 05 0.0672 0.3891
(6,6) 5.37TE — 13 0.00027 0.0948
(6,8) 5.34F — 24 1.95F — 11 0.0029
(6,10) 2.03F —386 3.20F — 21 3.74F — 06
Table 17. Average pvalues of outlier sum
(s, h) k=14 k=5 k=6
(0,0) 0.5 0:5 0.5
(2,2) 0.4999 0.5 0.5
(2,4) 0.4958 0.4997 0.4998
(2,6) 0.4280 0.4890 0.4986
(2,8) 0.2170 0.4084 0.4798
(4,2) 0.4999 0.5 0.5
(4,4) 0.4911 0.4992 0.4998
(4,6) 0.3901 0.4821 0.4978
(4,8) 0.1463 0.3712 0.4695
(4,10) 0.0179 0.1657 0.3518
(6,2) 0.4999 0.5 0.5
(6,4) 0:4886 0.4990 0.4999
(6,6) 0.3633 0.4766 0.4970
(6,8) 0.1152 0.3482 0.4614
(6,10) 0.0106 0.1322 0.3291

We have several conclusions drawn from Tables 2 and 3:
(a) Consider the case that (s,h) = (0,0). It is nice that the outlier sums in all
cases of k all have average p values more than 0.4 that indicates not statistical
significant for practically non-influential genes.
(b) Consider that k = 1 and (s, h) # (0,0). Besides few cases, the average p

values are small enough that would efficiently classify these genes as influential
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genes. Is k = 1 appropriate for constructing outlier sum? We should remind
that £ = 1 may occassionally generate too many influential genes as we have
seen in Table 15. So, it is good in detecting influential genes but would produce
non negligible type I error.

(c) Consider that k = 2. The simulation results for (s, h) = (0,0) in Table 16
shows that it would produce only negligible type I error. For (s,h) # (0,0),
when h is far enough away from 0, the outlier sum performs very well. From
consideration of balanced two errors, k = 2 seems to be an appropriate choice
of outlier sum.

(d) From the table results that k£ > 2, it seems to be not efficient to detect
influential genes in all situations of (s, h) # (0,0).

We now consider an application of p valuerof outlier sum on a real gene
data. The breast cancer microarray data reported by Huang et al. (2003)
contained the expression levels of 12625 genes from 37 {er 52) breast tumor
samples. Each sample had a binary outcome describing the status of lymph
node involvement in.breast cancer (breast-cancer récurrencé): Among them,
19 samples had no positive-nodes. (Or'34 samples had no cancer recurrence
and 18 samples had breast cancer recurrence).- The gene expressions, obtained
from the Affymetrix human U95a chip: We pre-processed the data using RMA
(Irizarry et ala(2003)).

We first compute the p'values of (7.6) for various values/of &£ and we display
the numbers no 2y go1 of genes that are classified to be significant for that theirs

p values are less than 0.001 in the following table.

Table 18. Numbers of genes with p values smaller than 0.001

10<0.001 10<0.001
k=1 9583 k=4 35
k=15 2407 k=5 8
k=2 922 k=6 d
k=3 158

We have several comments drawn from the results in Table 18:

(a) We have seen that H, is the proposal of Wu (2007) and H, with k = 1 is

asymptotically equivalent to H, when the underlying distribution is assumed
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to be normal. The number of siginificant genes when k = 1 for H, is 5583.
This huge number shows that this gene data is definitely not appropriate to
be analyzed by the outlier sum proposals been introduced. The other cases
with £ < 3 the numbers of genes claimed to be significant are still too big for
further investigation.
(b) When £ is as large as 4 the number of siginificant genes is down to 35 and
it further goes down to 8 when & = 5. This shows that gene data may need
outlier sum of more extreme threshold to simplify the pothetial group of genes
for further study.

In the following table, we select the cases £ = 5 and 6 and list their corre-
sponding gene numbers that are with significant p values and the outlier sum

values for reference.

Table 19. Gene numbérs with their outlier sums associated with p value

Gene number OS Gene number OS

k=5 k=6

4029 27.88125 4029 27.88125
4028 3140937 4028 31.40937
10210 16.62765 10210 16.62765
3758 7.615114 3758 7.615114
8972 6.014273 8972 6.014273
10987 5.93685
10019 10.82669

198 10.14491

Detection of significant genes through the p values of eutlier sum solves
the difficulty of classical outlier sum technique that is not not able to detect
significant genes when the number of them is not known. But how to decide
constant k for the outlier sum of (8.1)7 We propose to list the numbers of
significant genes for various values of k£ and select k£ for that has a moderate

small group of significant genes.
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