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CHAPTER 3  PROPOSED METHODOLOGIES 
 

 

This chapter proposes algorithms for freeway incident detection. Section 3.1 introduces 

the construction of fuzzy neural network, including approach-based and lane-based 

fuzzy neural network, and back-propagation training method. Section 3.2 presents the 

rolling-trained procedure, which can update the network parameters in response to the 

prevailing traffic conditions. Section 3.3 details the chaotic diagnosis which examining 

the abnormal change in traffic dynamics due to the incident. Section 3.4 illustrates the 

definitions of incident detection performance. 

 

According the literature review, early AID algorithms focused on pattern recognition 

approaches and statistical approaches. To improve the incident detection performance 

and to achieve real-time detection, more advanced approaches have been introduced, 

such as artificial intelligent based approaches, fuzzy set theory approaches, and image 

processing based approaches. The detection performance in terms of detection rate and 

false alarm could be sensitive to the chosen traffic parameters, their designated criteria 

for judging the incident occurrence, and the detection locations. It can also be sensitive 

to the changes in prevailing traffic conditions. In practice, the complexity of traffic 

dynamics is characterized with uncertain and nonlinear nature. Most previous AID 

algorithms, however, subjectively set the parameters and use crisp criteria in 

distinguishing the abnormal traffic (incident data) from the normal one (incident-free 

data), thus they may result in poor detection performance as the traffic conditions alter 

drastically. 

 

In dealing with the subjective selection of the thresholds and uncertain contexts (unclear 

input-output relationships or imprecise input values), both neural networks (NN) and 

fuzzy systems (FS) have been proven as powerful tools. NN generally represents a 

complex system with precise inputs and outputs used for training the generic model to 

formulate a good approximation of the unclear relationship. FS, in contrast, addresses 

the imprecision of the input and output variables (often defined with fuzzy numbers) but 

their interrelationships take the form of well-defined if-then rules (Tsoukalas and Uhrig, 

1997). Each of these two tools has its own advantages and disadvantages. For instance, 
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the NN approaches have the advantages of learning capability to avoid subjectively 

setting of the parameters and possessing high fault tolerance due to the distributed 

memory of parameters separately stored on each link of the network. However, NN 

approaches usually require long training time, especially when such network parameters 

as training rate, momentum and initial weights are not appropriately chosen (Wasserman, 

1993; Shepherd, 1997). This may preclude the online training procedure for some 

advanced applications where real-time adjustments are required. The crisp criteria to 

judge for any event occurrence may be too sensitive, leading the NN approaches to 

misjudge easily. 

 

Taking traffic incident detection as an example, the distributed memory of parameters 

separately stored on each link of a NN will have the advantage of high fault tolerance. 

Consequently, reducing the number of input nodes or poor quality of few input data will 

not remarkably influence the output results. However, the crisp criteria for judging the 

incident occurrence used in NN approaches may easily cause misjudgment due to too 

sensitive to the crisp criteria. If incorporating fuzzy inference into the NN (called FNN), 

we can avoid the too sensitive problem but still possess self-learning capability with 

high fault tolerance. Consequently, FNN approaches have been commonly employed in 

traffic engineering, ranging from pavement diagnosis (Lan and Chiou, 1997), vehicular 

count and classification (Lan and Kuo, 2002; Lan, et al., 2003a) to traffic prediction 

(Abdulhai, et al., 2002; Yin, et al., 2002). More recently, Lan, et al. (2004) developed 

incident detection algorithms with various FNN structures. Off-line tests have validated 

that their proposed FNN system was capable of detecting the freeway incidents with 

rather high accuracy. Sensitivity analysis further showed that alternating the FNN 

structures by reducing the number of detectors or number of input traffic parameters 

only slightly deteriorated the detection performance, providing strong evidences of high 

fault tolerance of the FNN incident detection system. Based on the self-learning 

capacity and high fault tolerance, the FNN approach is established as the incident 

detection algorithm using the traffic data directly collected by detectors. 

 

However, their FNN approach did not adaptively adjust the network parameters in 

response to the prevailing traffic conditions, hence there may have some room for the 

improvement. To capture the change in traffic dynamics through the network training, 

Yin, et al. (2002) developed a FNN-type model with online rolling-trained procedure to 
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predict the traffic flows in an urban street network. Their FNN model consists of two 

modules: a gate network and an expert network. The gate network classifies the inputs 

into several clusters using a fuzzy approach and the expert network specifies the 

input-output relationship as in a conventional NN approach. Both simulation and real 

observation data demonstrated that the prediction power can be enhanced through the 

online rolling-trained procedure in response to the prevailing traffic conditions. Inspired 

by Yin’s et al. (2002) work, this research presumes that the rolling-trained procedure in 

FNN might be imperative in augmenting the incident detection performance. Thus, this 

research attempts to develop a rolling-trained fuzzy neural network (RTFNN) approach 

for freeway incident detection. Its underlying logic is to establish a proper fuzzy neural 

network and then adaptively adjust the network parameters using the most up-to-date 

traffic data in response to the prevailing traffic conditions so as to improve the detection 

performance over the conventional FNN approach. 

 

Most of the conventional incident detection algorithms, including pattern recognition, 

statistical approach, catastrophe theory, artificial intelligent based approach and fuzzy 

set theory, are mainly based on the change in some traffic parameters such as flow, 

speed, occupancy rate and density. These algorithms often have difficulties in 

distinguishing in traffic data during incidents from similar patterns (Cheu and Ritchie, 

1995). Sheu and Ritchie (1998) have proposed a new methodology which is capable of 

detecting incidents promptly as well as characterizing incidents in terms of time-varying 

lane changing fractions and queue lengths in blocked lanes, lanes blocked due to 

incidents, and incident duration. This research attempts to use the change in chaotic 

traffic parameters, including embedding dimension, fractal dimension, correlation 

dimension, Lyapunov exponent, BDS exponent, complexity, entropy and delay time, to 

examine the existence of traffic incident. Takens' embedding theorem is used to 

reconstruct the phase spaces of both normal and incident traffic flow time series. If an 

incident occurs, some of the above-mentioned chaotic traffic parameters may change. 

The chaotic-based approach, which is selecting the chaotic parameters with significant 

change and designate appropriate threshold values to discriminate the incident traffic 

from the normal flows, is proposed in this research. 
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3.1 The Structure of Fuzzy Neural Network 
 

The framework of fuzzy neural network (FNN) and training process are shown in this 

section. The approach-based fuzzy neural network (see Figure 3-1), which using the 

station averages across all lanes regardless of the number of lanes, is built for the 

transferability potential, which means that separate algorithms would need not to be 

developed and trained for a freeway facility with 3, 4, 5 or more lanes. Furthermore, it is 

worthy to construct the lane-based fuzzy neural network (see Figure 3-2), which using 

lane-specific traffic data, to enhance the accuracy of the incident detection algorithms. 

 

3.1.1 Layers of Fuzzy Neural Network 

 

The FNN structure of the proposed models is established with four layers. The first 

layer is the input layer, which processes all of the traffic flow information. The second 

layer is the membership layer, which processes the original traffic flow data through the 

corresponding relationship of membership functions and calculates its fuzzy 

membership. The third layer is the rule layer composed of three categories of fuzzy 

inference rules: time-specific, lane-specific and space-specific. The fourth layer is the 

output layer. The components of each layer and their relationships are detailed as 

follows. 

 

(1) The First Layer 

 

Approach-based 

Twelve nodes are designed in this layer to input the approach traffic parameters at 

upstream and downstream detectors. These nodes represent the average speeds of 

previous time step (Su0
1) and current time step (Su1

1), the aggregated flows (Fu0
1 and Fu1

1) 

and the average densities (Du0
1 and Du1

1) of the upstream detector, and the average 

speeds (Sd0
1, Sd1

1), the aggregated flows (Fd0
1, Fd1

1) and the average densities (Dd0
1, Dd1

1) 

of the downstream detector. Note that the above densities are not directly measured 

from the detectors, but indirectly calculated from the detected flows and speeds. 

Because of the concept that any stationary detector cannot readily obtain the density 

data from the field and the surrogate measure for density is to use the detector 
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occupancy (% OCC). Additionally, the density is difficult to measure in the field, a 

surrogate of it, such as percent occupancy that can be readily provided by the field 

detectors, should be used in the future work. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-1  The approach-based fuzzy neural network structure 

 

Lane-based 

Twenty-four nodes are designed in this layer to input the lane-specific traffic parameters 

at upstream and downstream detectors. These nodes represent the speeds of previous 

time step (Su10
1) and current time step (Su11

1), flows (Fu10
1 and Fu11

1) and densities (Du10
1 

and Du11
1) of the upstream inner lane, speeds (Su20

1, Su21
1), flows (Fu20

1, Fu21
1) and 

densities (Du20
1, Du21

1) of the upstream outer lane, speeds (Sd10
1, Sd11

1), flows (Fd10
1, 

Fd11
1) and densities (Dd10

1, Dd11
1) of the downstream inner lane, and speeds (Sd20

1, Sd21
1), 

flows (Fd20
1, Fd21

1) and densities (Dd20
1, Dd21

1) of the downstream outer lane. Note that 

the above densities are not directly measured from the detectors, but indirectly 

calculated from the detected flows and speeds. 
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Figure 3-2  T
he lane-based fuzzy neural netw

ork structure 
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The weighted values wi in this layer are set equal to one and there is no need for 

adjustment. The output values oi are expressed as: 

iii uufo == )(   i=1~12 (approach-based) or 1~24 (lane-based)          (3-1) 

iiiii uxwxo ==⋅=                 (3-2) 

where ui are the input values. 

 

 (2) The Second Layer 

 

Approach-based 

A trapezoid membership function as shown in Figure 3-3 is used. The nodes in the 

second layer fall into two categories. The time-specific category (6 nodes) compares the 

upstream and downstream approach-based speeds, flows and densities at present time 

with those at the previous time step (upstream: Su
2, Fu

2, Du
2; downstream: Sd

2, Fd
2, Dd

2). 

The space-specific category (3 nodes) compares the flows, speeds and densities between 

upstream at time t and downstream at time τ+t , where � is the time lag measured by the 

time for vehicles traveling from upstream detecting point to downstream detecting point. 

These space-specific nodes calculate the membership degrees of the difference of 

speeds, flows and densities between upstream and downstream (Sud
2, Fud

2, Dud
2). 

 

Lane-based 

A trapezoid membership function as shown in Figure 3-3 is used. The nodes in the 

second layer fall into three categories. The time-specific category (12 nodes) compares 

the upstream and downstream lane speeds, flows and densities at present time with 

those at the previous time step (upstream: Su1
2, Fu1

2, Du1
2, Su2

2, Fu2
2, Du2

2; downstream: 

Sd1
2, Fd1

2, Dd1
2, Sd2

2, Fd2
2, Dd2

2). The lane-specific category (6 nodes) calculates the 

membership degrees of the difference of speeds, flows and densities between upstream 

lanes (Su12
2, Fu12

2, Du12
2) and downstream lanes (Sd12

2, Fd12
2, Dd12

2). The space-specific 

category (6 nodes) compares the flows, speeds and densities between upstream at time t 

and downstream at time τ+t , where � is the time lag measured by the time for vehicles 

traveling from upstream detecting point to downstream detecting point. These 

space-specific nodes calculate the membership degrees of the difference of speeds, 

flows and densities between upstream and downstream (inner lane: Sud1
2, Fud1

2, Dud1
2; 

outer lane: Sud2
2, Fud2

2, Dud2
2). 
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The weighted values in the second layer wij are also set equal to one and there is no need 

for further adjustment. Both aj and bj are parameters of the trapezoid membership 

function, whose output values oj can be written as: 

�
�

�

�
�

�

�

>

≤<
−
−

≤

===

        for                      1

for          

for                    0

)()(

jij

jijj
jj

jij

jij

ijjjjj

bx

bxa
ab

ax

ax

xufo µ
            (3-3) 

 

In the time-specific category 1+−= iiij uux , where i=1, 3, 5 and j=1~3 for upstream 

inner lane, i=7, 9, 11 and j=7~9 for upstream outer lane, i=13, 15, 17 and j=16~18 for 

downstream inner lane, and i=19, 21, 23 and j=22~24 for downstream outer lane. In the 

lane-specific category 6+−= iiij uux , where i=2, 4, 6 and j=4~6 for upstream, i=14, 16, 

18 and j=19~21 for downstream. In the space-specific category 13+−= iiij uux , where 

i=1, 3, 5 and j=10, 12, 14 for inner lane, i=7, 9, 11 and j=11, 13, 15 for outer lane. 

 

 

 

 

 

 

 

 

Figure 3-3 The membership function 

 

 

(3) The Third Layer 

 

Approach-based 

The rules in the time-specific category are stated as: IF there is a remarkable difference 

of speeds, flows or densities between the present time step and the previous one, 

upstream or downstream THEN an incident occurrence is inferred with membership 

degrees R1
3 (upstream) and R3

3 (downstream). The output values ok can be expressed as: 
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)(*)(*)()( )2()2()1()1( kjkjkjkjjkjkkk xwxwxwufo ++++ ⋅⋅⋅==                  (3-4) 

 

where j=1 and k=1 for upstream inner lane, j=7 and k=3 for upstream outer lane, j=16 

and k=5 for downstream inner lane, j=22 and k=7 for downstream outer lane. 

 

The rules in the space-specific category are stated as: IF there is a remarkable difference 

of speeds, flows or densities between the upstream at time t and downstream at 

time τ+t , inner lane or outer lane, THEN an incident occurrence is inferred with 

membership degrees R4
3. The output values ok can be expressed as: 

 

)(*)(*)(*)(*)(*)()( )5()5()4()4()3()3()2()2()1()1( kjkjkjkjkjkjkjkjkjkjjkjkkk xwxwxwxwxwxwufo ++++++++++ ⋅⋅⋅⋅⋅⋅==      (3-5) 

for j=10 and k=4. 

 

Lane-based 

The rules in the time-specific category are stated as: IF there is a remarkable difference 

of speeds, flows or densities between the present time step and the previous one, 

upstream or downstream, inner lane or outer lane, THEN an incident occurrence is 

inferred with membership degrees R1
3 (upstream inner lane), R3

3 (upstream outer lane), 

R5
3 (downstream inner lane), and R7

3 (downstream outer lane). The output values ok can 

be expressed as: 

 

)(*)(*)()( )2()2()1()1( kjkjkjkjjkjkkk xwxwxwufo ++++ ⋅⋅⋅==            (3-6) 

 

where j=1 and k=1 for upstream inner lane, j=7 and k=3 for upstream outer lane, j=16 

and k=5 for downstream inner lane, j=22 and k=7 for downstream outer lane. 

 

The rules in the lane-specific category are stated as: IF there is a remarkable difference 

of speeds, flows or densities between the inner lane and the outer lane, upstream or 

downstream, THEN an incident occurrence is inferred with membership degrees R2
3 

(upstream) and R6
3 (downstream). The output values ok are represented as: 

 

)(*)(*)()( )2()2()1()1( kjkjkjkjjkjkkk xwxwxwufo ++++ ⋅⋅⋅==            (3-7) 

for upstream: j=4 and k=2; downstream: j=19 and k=6. 
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The rules in the space-specific category are stated as: IF there is a remarkable difference 

of speeds, flows or densities between the upstream at time t and downstream at 

time τ+t , inner lane or outer lane, THEN an incident occurrence is inferred with 

membership degrees R4
3. The output values ok can be expressed as: 

 

)(*)(*)(*)(*)(*)()( )5()5()4()4()3()3()2()2()1()1( kjkjkjkjkjkjkjkjkjkjjkjkkk xwxwxwxwxwxwufo ++++++++++ ⋅⋅⋅⋅⋅⋅==      (3-8) 

for j=10 and k=4. 

 

(4) The Fourth Layer 

 

The fourth layer is the output layer, which contains one node Y1
4 for this two-lane 

freeway. The center of area method is employed to defuzzify the fuzzy number to a 

crisp binary value (Y1
4=0 indicates incident-free; Y1

4=1 represents incident-occurrence). 

It is essential to set the initial weighted values for this layer wkm and then adjust them 

through the network training. The output values om are: 

�
=

⋅==
3

1

)(
k

kmkmmm xwufo                 (3-9) 

 

 

3.1.2 Back-propagation Training Algorithm 

 

The structure of FNN would be introduced. In this section, the learning process, 

including supervised learning (back-propagation, perception, and counter-propagation), 

unsupervised learning (self-organizing map and adaptive resonance theory) and 

associate learning (hopfield and bi-directional associative memory), to train the 

proposed FNN would be discussed. The back-propagation learning process is the most 

popular training algorithm in the training of artificial neural networks. The learning 

process, called the generalized delta rule, involves the presentation of a set of pairs of 

input patterns and target output patterns. The system of neural network with randomly 

(or otherwise) initialized weights uses the given input vector to produce its own output 

vector and compares this with the target output pattern. When there is a difference, the 

rule will change weights appropriately. There are some parameters to be adjusted in the 
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FNN. However, the link weighted values of first layer to second layer and second layer 

to third layer are set equal to one and there is no need for adjustment. Because that first 

layer is input layer, which distributed the original traffic flow data to FNN, and second 

layer is membership function, which directly carried the fuzzy membership degree into 

fuzzy inference layer. Only the parameters of the membership function in the second 

layer, fuzzy inference rules in the third layer, and the weighted values between the third 

and fourth layers need to adjust by training process. After parameters are initialized, a 

gradient descent-based back-propagation algorithm is used to train the proposed FNN 

approaches. By learning the training patterns from training data set, the parameters in 

the FNN approaches could be updated. The main goal of supervised learning is to 

minimize the total error function. To show that the learning method is based on 

back-propagation algorithm, the inference due to error for each layer should be 

computed. Because, this procedure can be started from fourth layer since the error is 

feed-backward from output layer. 

 

A back-propagation approach, minimizing the total error function with the gradient 

steepest descent method, is used for the training process. The process is described as 

follows. 

 

Step 1: Initialize the network parameters, including weighted value (wkm), membership 

function parameters (aj, bj), momentum term (�), and learning rate (�) presents 

the number of current training epochs. Learning rate (�) would decrease as the 

number of training cycles (n) increases. Initially, the network parameters, 

including momentum parameter (�), aj, bj are set as 0.5, 0, 1 respectively. 

 

Step 2: Obtain the output value (om
4) with the above-mentioned FNN by inputting a 

training sample using the existing network parameters. A training sample is 

composed of an input vector (flow, speed, and density of the approach-based or 

lane-based data) and output vector (binary incident occurrence information). 

The output value is calculated as formula 3-9 shown. 
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Step 3: Calculate the error of the fourth layer (�m
4):  

444
mmm od −=δ                     (3-10) 

where dm
4 is the observed output value of training sample. 

 

Step 4: Update the weighted values between the third and fourth layers (wkm): 

)]1()([)()1( 4 −−⋅+⋅⋅+=+ twtwxtwtw kmkmkmmkmkm αδη        (3-11) 

 

Step 5: Calculate the errors of the third and second layers (�k
3, �j

2): 

)1(43 +⋅= twkmmk δδ               (3-12) 

jkjkkj xw ⋅⋅= 32 δδ .               (3-13) 

 

Step 6: Adjust the parameters of the membership function in the second layer (aj, bj): 

)]1()([
)]()([

)(
)()1(

2
2 −−⋅+

−
−

⋅⋅⋅+=+ tata
tatb

tbx
xtata jj

jj

jj
kjjj αδη        (3-14) 

)]1()([
)]()([

)(
)()1(

2
2 −−⋅+

−
−

⋅⋅⋅+=+ tbtb
tatb

xta
xtbtb jj

jj

jj
kjjj αδη .       (3-15) 

 

Step 7: Repeat Steps 2 through 6 until all training samples have been inputted. Each 

routine is finished called an epoch. 

 

Step 8: Calculate the value of total error function of ith epoch (TEi). In each epoch, the 

total error function is calculated as follow: 

�
=

−=
N

t
mmi totdTE

1

2)]()([
2
1

             (3-16) 

where N is the total number of training samples. 

 

Step 9: Test the stop condition. 

Training can be terminated when the predetermined number of training epochs reaches 

or the total error function converges; otherwise, go to step 2. In this paper, the later 

condition is used. Namely, 

ε≤− −1nn TETE                                                     (3-17) 

where � is an arbitrary small number. We stop the network training as TEi decreases 

smoothly. 
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3.2 The Rolling-trained Procedure 
 

A back-propagation technique that minimizes the total error function with gradient 

steepest descent method is used for the network training. To capture the fluctuations of 

traffic, we further develop a rolling-trained procedure. The most up-to-date flow 

parameters are used to distinguish the traffic characteristics of one time interval from 

another. The proposed rolling-trained procedure is depicted in Figure 3-4 and detailed 

as follows. 

 

Step 1: Gather the initial training data. 

 

Step 2: Train and update the network parameters by back-propagation algorithm. 

The back-propagation algorithm (see 3.1.2) may not have appropriate initial 

values, thus its network parameters need to be updated through the initial 

training process. 

 

Step 3: Collect new training data. 

Gather input data and conduct incident detection through the FNN algorithm. In 

the meantime, save both input data and output results in the training sample 

dataset for the follow-up training. 

 

Step 4: Verify the incident by persistence tests. 

As an incident can last for a while, it is necessary to conduct the persistence tests 

to avoid including the incorrect (misjudged) data in the training dataset. The 

underlying philosophy of a persistence test is that if there are no continuous 

detections of an incident occurrence, then that detected incident should be 

considered as a false alarm. In this case we should discard the training sample 

and go back to Step 3. 

 

Step 5: Update the training dataset. 

Put into the training dataset the data that have passed the persistence tests in step 

4. Replace the most distant data with the most updated data so that the training 

dataset can be maintained at a predetermined training sample size. Go back to 
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step 2 every fixed time interval (e.g., every hour; hereafter, rolling horizon) to 

keep renewing the network parameters to the latest traffic conditions. The idea 

of RTFNN is to capture the change in traffic dynamics through rolling-trained 

procedure so as to adaptively adjust the network parameters. Therefore, the 

potential advantage for fixing the training sample size is to avoid too many 

obsolete traffic data which may significantly differ from the prevailing traffic 

conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-4  The rolling-trained procedure 

 

 

3.3 Chaotic Diagnosis 
 

The philosophy of chaotic diagnosis for freeway incidents is to use the change in 

appropriate chaotic parameters to examine the abnormal change in traffic dynamics due 

to the incident. Figure 3-5 presents the framework for our proposed chaotic diagnosis. 
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Firstly, we generate a real incident on the freeway mainline. The observed traffic flow 

time series data are tested for the existence of chaos. Next, the variations of some 

selected chaotic parameters before and after the traffic incident are compared and those 

with significant changes are selected as measures for abnormality diagnosis. Then, we 

use a traffic simulator (Paramics) to generate sufficient flow data with different incident 

scenarios. The values of the significant chaotic parameters are calculated and their 

corresponding threshold values are determined so as to distinguish the abnormal traffic 

dynamics from the normal one. Finally, off-line tests are carried out to evaluate the 

performance of this chaotic diagnosis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-5  Framework of chaotic diagnosis for incident detection 

 

In this section, we briefly introduce the examination for chaos, including largest 

Lyapunov exponent, capacity dimension, correlation dimension, relative Lz complexity, 

Kolmogorov entropy, delay time and Hurst exponent. Details of these indexes can be 

found in Sprott and Rowlands (1995). 
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(1) Largest Lyapunov exponent 

Perhaps the simplest way of testing for chaos is to compute the dominant Lyapunov 

exponent. Testing for a positive value for Lyapunov exponent is equivalent to testing for 

the SDIC property of chaos. The Lyapunov exponents for a dynamical system are 

measures of the average rate of divergence or convergence of typical trajectories in the 

phase space. A positive Lyapunov exponent is a measure of the average exponential 

divergence of two nearby trajectories. If a discrete nonlinear system is dissipative, a 

positive Lyapunov exponent is an indication that the system is chaotic (Gencay, 1996). 

The definition of Lyapunov exponent is expressed as follows: 

 

0

ln
1

d
d

n
n=λ                                                         (3-18)                                  

where  

ix = ith value from the time series data 

jx = jth value that is close to ix  

ij xxd −=0  

ninjn xxd ++ −=  

Chaotic orbits should have at least one positive Lyapunov exponent. For periodic orbits, 

all Lyapunov exponents are negative. Hence, testing for positive largest Lyapunov 

exponent produces a direct examination for chaos. 

 

(2) Capacity dimension 

It is an estimate of the fractal dimension of any attractor that results when the data are 

plotted in a reconstructed phase space with some high embedding dimension. Normally, 

the capacity dimension for a chaotic time series is less than 5. A capacity dimension 

greater than 5 implies essentially random time series data. For more details of the 

related capacity dimension test, see Mandelbrot (2000). 

 

(3) Correlation dimension 

Correlation dimension, applied to characterize chaotic attractors, is widely used by the 

physicists to test for chaos in time series data (Hilborn, 1994). Compared with other 
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measures such as capacity dimension, it has a computational advantage because it uses 

the trajectory points directly and does not require a separate partitioning of the state 

space. This method is based on the correlation integral )(εC . Grassberger and Procaccia 

(1983) define the correlation dimension of a time series as 
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where N is the embedding dimension. A correlation dimension greater than about 5 

implies essentially random data. For more details of the related Grassberger-Procaccia 

correlation dimension test, see Kantz and Schreiber (1997). 

 

(4) Relative Lz complexity 

It is a measure of the algorithmic complexity of the time series. Maximal complexity 

(randomness) has a value of 0. In the calculation, each data point is converted into a 

single binary digit depending on whether its value is greater than or less than the median 

value. For more details of the related Relative Lz complexity test, see Kantz and 

Schreiber (1997). 

 

(5) Kolmogorov entropy 

Similar to Lyapunov exponent, Kolmogorov entropy (or Kolmogorov-Sinai invariant) 

also focuses on the concept of SDIC for chaos. Consider two trajectories representing 

time paths that are extremely close so as to be indistinguishable. However, as time 

passes, these two trajectories diverge so that they become distinguishable. The 

Kolmogorov entropy (K) measures the speed with which such a divergence takes place 

and is given by (Hilborn, 1994) 
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where 

  )(εMC  = correlation integral with M historical data.  

m = number of historical time series data 

N = number of dimension reconstructing phase space 
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If a time series is non-complex and completely predictable, K will approach to zero. If a 

time series is completely random, the value will approach to very large. That is, the 

lower the value of K, the more predictable the system is. For chaotic systems, one 

would expect small K values. 

 

(6) Delay time 

Delay time, or correlation time, is a measure of the time over which the data correlate 

with preceding data. It is the value where the correlation function first falls to 1/e of its 

fully correlated value (Kantz and Schreiber, 1997). 

 

(7) Hurst exponent 

Hurst exponent is a measure of the extent to which the data can be represented by a 

random walk which is called Brownian motion. In such a case that a time series 

trajectory tx , on average, moves away from its initial position by an amount 

proportional to the square root of time, we say that its Hurst exponent is 0.5 (Kantz and 

Schreiber, 1997). Thus, we can judge whether the time series is random or not by this 

test. It is determined from the square root relation between increments and time 

intervals as follows: 

 

( ) Htx 22 ∆∝∆                                                        (3-21) 

where H is the Hurst exponent. For a time series data, H close to 0.5 implies the data is 

random and uncorrelated. H greater than 0.5 indicates the time series data are positively 

correlated (or persistence). H less than 0.5 indicates the time series data are 

anti-correlated (or anti-persistence). 

 

 

3.4 Definitions of AID Performance 
 

The detection performance is evaluated by three criteria: detection rate (DR), false 

alarm rate (FAR), and time to detection (TTD), which are defined as follows.  

 

� DR is defined as the ratio of number of detected incidents to the actual number of 

actual incidents. The DR is given as a percentage. 
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� FAR is defined as the fraction of incorrect detections to the total number of 

incident-free. The FAR is typically expressed as a percentage. 

 

� TTD is the difference between the time the incident is detected by the algorithm 

and the actual time the incident occurs. 

 


