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CHAPTER 6  RESULTS OF RTFNN 
 

This chapter develops a rolling-trained fuzzy neural network (RTFNN) approach for 

freeway incident detection. The core logic of this approach is to establish a fuzzy neural 

network and to update the network parameters in response to the prevailing traffic 

conditions through a rolling-trained procedure. The simulation results of some thirty-six 

incident scenarios in a two-lane freeway mainline case study show that the proposed 

RTFNN approach can improve the detection performance over the FNN approach, 

which is based on the same network structure but without updating the parameters 

through a rolling-trained procedure. The highest detection rate is found at a rolling 

horizon of 45 minutes and a training sample size of 90 samples in this case study. 

Section 6.1 illustrates the off-line test results of RTFNN. The comparison of incident 

detection performance between RTFNN and FNN is shown as section 6.2. Furthermore, 

the sensitivity of RTFNN is elaborated in section 6.3 and a brief discussion is presented 

in section 6.4. 

 

6.1 Off-line Test Results 
 

The RTFNN approach is using lane-based fuzzy neural network (see Figure 3-2) to 

enhance the accuracy of the incident detection algorithms. The validation of off-line 

tests are performed by simulating various incident scenarios, which is based on the 

30-second traffic flow data observed from 6:00 to 12:00 covering a typical morning 

peak hours and two off-peak periods before and after that peak at the experimented site. 

As a base for comparison, we set the rolling horizon with 60 minutes and 30-second 

traffic data as one sample, thus the training sample size is 120 samples. Table 6-1 

presents the detection performance, based on the 100 evaluation sets, of 36 incident 

scenarios. Note that the six data rows in Table 6-1 represent six different incident 

locations within the same simulation hours. According to Table 6-1, the RTFNN 

approach has performed quite well with average DR 93.95%, FAR 0.0754%, and TTD 

68.39 seconds. The best DR is 98.12%, the best FAR is 0.05%, and the shortest TTD is 

59 seconds. From Table 6-1, we find that the detection performance for RTFNN 

approaches consistently depend on the location of the incident. In general, if the 

incident takes place near the detector, either upstream (the 250-meter scenarios) or 
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downstream (the 750-meter scenarios), the DR is higher and the TTD is shorter than the 

one occurring farther away from the detector (the 500-meter scenarios). The overall 

detection performance for an inner-lane incident is slightly better than that for an 

outer-lane incident because more traffic volumes are observed in the inner lane than in 

the outer lane. 

 

Table 6-1  The detection performance of RTFNN for 36 incident scenarios 

(rolling horizon = 60 minutes, training sample size = 120) 

Incident location RTFNN approach 

Simulation 
hour 

(time of day) 

Hourly 
volume 
(vph) 

Lane 
position 

Distance 
from 

upstream 
detector 
(meter) 

DR 
(%) 

FAR 
(%) 

TTD 
(sec) 

250 92.78 0.08 73 
500 89.68 0.05 88 Inner 
750 91.11 0.09 74 
250 88.98 0.08 79 
500 87.05 0.07 83 

1 
(6:00-7:00) 2,403 

Outer 
750 90.62 0.08 76 
250 94.70 0.08 74 
500 90.01 0.07 78 Inner 
750 93.89 0.09 72 
250 92.56 0.08 71 
500 91.17 0.06 80 

2 
(7:00-8:00) 2,919 

Outer 
750 93.58 0.08 73 
250 95.66 0.09 66 
500 92.71 0.09 72 Inner 
750 94.76 0.08 61 
250 94.33 0.08 65 
500 91.58 0.07 69 

3 
(8:00-9:00) 3,664 

Outer 
750 92.98 0.09 66 
250 95.78 0.06 66
500 92.77 0.07 65Inner 
750 95.02 0.07 67
250 96.53 0.06 68
500 93.26 0.05 62

4 
(9:00-10:00) 4,514 

Outer 
750 94.97 0.08 67
250 98.12 0.08 63
500 95.37 0.06 63Inner 
750 97.81 0.08 64
250 96.59 0.07 66
500 94.83 0.07 61

5 
(10:00-11:00) 3,310 

Outer 
750 97.98 0.08 65
250 96.89 0.07 62
500 94.31 0.05 62Inner 
750 97.00 0.06 64
250 96.28 0.08 64
500 93.73 0.06 60

6 
(11:00-12:00) 2,484 

Outer 
750 96.69 0.07 59

Note: 1. Distance of incident location is measured from the upstream detecting point. 

2. Each scenario is simulated for 100 times. The values in this table are the average of 100 simulation runs. 
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6.2 Comparison with FNN 
 

Table 6-2 reports the statistical difference of mean values (t-test) of detection 

performance between these two approaches -- with rolling-trained (hereafter referred as 

RTFNN approach) and without rolling-trained (hereafter referred as FNN approach). 

Initially, both RTFNN and FNN network parameters are based on the same trained 

results using all six-hour 100 training sets of simulation data, thus they have exactly the 

same detection performance in the first hour validation. However, after a few hours, 

RTFNN gradually outperforms over FNN because RTFNN updates the trained 

parameters in every 60 minutes, but FNN keeps using the initially trained parameters. It 

is found that the overall DR for RTFNN is 93.95% and for FNN is 91.09%; both are 

quite high and have statistical difference at 5% significance level. The overall FAR for 

RTFNN is 0.0754% and for FNN is 0.0803%; both are quite low but have no significant 

difference. The overall TTD requires only about two time steps, 68.39 seconds for 

RTFNN and 74.19 seconds for FNN; both are statistically different. The high detection 

performance suggests that both FNN and RTFNN approaches are all satisfactory in 

freeway incident detections; but through the rolling-trained, the detection performance 

can be significantly enhanced. Specifically, as the traffic conditions changed from low 

to high and then from high to low, the detection performance (DR and TTD) for RTFNN 

is increased from 90% to about 96%; but the detection performance for FNN remains 

rather stable between 90% and 92%. As for the FAR, the overall performance shows 

that there is no significant difference between these two approaches (Table 6-2). Figure 

6-1 also demonstrates that the RTFNN approach has outperformed with higher DR, 

lower FAR and shorter TTD, compared with the FNN approach in various traffic 

conditions. Note that the six points in the Figure 6-1 represent six different incident 

locations within the same simulation hours. Figure 6-2 further presents the interaction 

between DR and FAR for both approaches. In sum, the enhancement of DR (and TTD) 

without significantly deteriorating the FAR and the superior performance of RTFNN 

over FNN should be ascribed to the rolling-trained effects of adaptively adjusting the 

network parameters in response to the traffic variations. 
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Figure 6-1  Comparison of detection performance for each simulation hour between 

RTFNN and FNN approaches 

(rolling horizon = 60 minutes, training sample size = 120) 
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Table 6-2  Test for the difference of detection performance between RTFNN and FNN 

approaches (rolling horizon = 60 minutes, training sample size = 120) 

DR FAR TTD Simulation 

hour 

(time of day) 

Hourly  

volume 

(vph) 

Detection 

approaches Average1 
Test 

result2 
Average1 

Test 

result2 
Average1 

Test 

result2 

RTFNN 90.04% 0.0794% 
78.83 

sec 1 

(6:00-7:00) 
2,403 

FNN 90.04% 

Same 

0.0794% 

Same 
78.83 

sec 

Same 

RTFNN 92.65% 0.0815% 
74.67 

sec 2 

(7:00-8:00) 
2,919 

FNN 91.15% 

NSD 

(0.752) 
0.0760% 

NSD 

(0.891) 78.50 

sec 

SD 

(0.046) 

RTFNN 93.67% 0.0881% 
66.50 

sec 3 

(8:00-9:00) 
3,664 

FNN 91.36% 

SD 

(0.021) 
0.0795% 

NSD 

(0.701) 74.33 

sec 

SD 

(0.009) 

RTFNN 94.72% 0.0658% 
65.99 

sec 4 

(9:00-10:00) 
4,514 

FNN 90.27% 

SD 

(0.003) 
0.0801% 

SD 

(0.051) 73.36 

sec 

SD 

(0.024) 

RTFNN 96.78% 0.0742% 
62.62 

sec 5 

(10:00-11:00) 
3,310 

FNN 91.19% 

SD 

(0.015) 
0.0807% 

NSD 

(0.053) 71.19 

sec 

SD 

(0.037) 

RTFNN 95.82% 0.0634% 
61.75 

sec 6 

(11:00-12:00) 
2,484 

FNN 92.55% 

SD 

(0.011) 
0.0862% 

SD 

(0.027) 73.27 

sec 

SD 

(0.049) 

RTFNN 93.95% 0.0754% 
68.39 

sec 
Overall 

FNN 91.09% 

SD 

(0.033) 
0.0803% 

NSD 

(0.092) 74.19 

sec 

SD 

(0.008) 

Note: 1. The results for RTFNN and FNN approaches for the first-hour simulation are the same as it is the initial condition. Average 

represents the mean values of six incident scenarios, each of which undertakes 100 simulation runs. 

2. NSD represents no significant difference and SD represents significant difference with P-value in parenthesis (�=0.05). 

The null hypothesis is that the mean values (DR, FAR, or TTD) between two approaches are the same. 
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Figure 6-2  Graph of detection rate vs. false alarm rate for 36 incident scenarios 

 

 

6.3 Sensitivity of Rolling Horizons and Training Sample Sizes 
 

The above-mentioned results conclude that the RTFNN approach, based on the rolling 

horizon of 60 minutes and the training sample size of 120 samples, can improve the 

detection performance over the conventional FNN approach. One might wonder if there 

still exists some room for improvement of detection performance by changing the 

rolling horizons and/or training sample sizes. Thus, the following sensitivity analyses 

are further undertaken: case (I) altering the rolling horizons from 15, 20, 30, 45, 90 to 

120 minutes, provided that the training sample size is remained as 120; case (II) altering 

the training sample sizes from 30, 40, 50, 60, 180 to 240, provided that the rolling 

horizon is remained as 60 minutes; case (III) simultaneously altering both rolling 

horizons and training sample sizes. Figures 6-3, 6-4 and 6-5 respectively present the 

change in detection rates for these three cases and Tables 6-3, 6-4 and 6-5 respectively 

report the details of the change. The sensitivity analyses of these three cases consistently 

show that the highest average detection rate is at the 45-minute rolling horizon and 90 

training sample sizes in this case study.  

 

It is interesting to note that very short or very long rolling horizons can lower the 

detection rates, compared with the base with rolling horizon of 60 minutes. The main 

reasons are insufficient updated training samples would be collected if the rolling 

horizon is too short and less capable of capturing the flow variations for longer rolling 
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horizons. Similarly, small training sample sizes can also lower the detection rates, 

compared with the base with training sample size of 120. The main reason is the 

difficulty in reaching the convergence of total error function, should one select a 

training sample size as small as 30 or 40 samples. The sensitivity analyzes also find that 

heavier traffic conditions tend to have higher detection rates than lighter ones, 

regardless of the changes in rolling horizon and/or training sample size. 

 

 

 

Table 6-3  Detection rates for Case (I)  

(training sample size fixed at 120) 

Rolling horizons (minutes) Simulation 

hours 

Hourly flow 

(veh/hr) 15 20 30 45 60 90 120 

1 2,403 91.50 92.13 91.28 90.96 90.04 91.08 91.02 

2 2,919 91.68 92.61 92.47 93.24 92.65 92.21 90.93 

3 3,664 91.87 93.17 95.61 96.22 93.67 92.59 91.54 

4 4,514 92.08 94.37 94.33 97.15 94.72 92.70 90.63 

5 3,310 94.02 94.49 94.02 95.29 96.78 93.79 91.26 

6 2,484 94.74 95.56 96.25 96.81 95.82 92.84 92.15 

Note: shadow indicates the base condition of rolling horizon 

 

 

Table 6-4  Detection rates for Case (II)  

(rolling horizon fixed at 60 minutes) 

Training sample sizes Simulation 

hours 

Hourly flow 

(veh/hr) 30 40 50 60 90 120 180 240 

1 2,403 91.03  90.93  91.86  91.02  91.89  90.04  90.12  90.23  

2 2,919 91.95  91.64  92.55  93.11  94.17  92.65  92.97  92.10  

3 3,664 92.09  92.27  93.07  93.95  95.32  93.67  93.85  93.11  

4 4,514 91.81  92.96  93.59  94.48  95.28  94.72  94.07  94.66  

5 3,310 92.17  92.94  93.21  94.15  94.39  96.78  95.48  94.70  

6 2,484 92.06  92.56  92.61  93.74  94.90  95.82  94.78  93.51  

Note: shadow indicates the base condition of training sample size 
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Table 6-5  Average detection rates for Case (III)  

(rolling horizon and training sample size varied) 

Rolling horizon (minutes) 
Training sample size 

15 20 30 45 60 90 120 

30 91.51 91.72 91.64 91.92 91.85 91.97 91.55 

40 91.22 91.60 91.26 91.73 92.22 92.03 91.67 

50 93.86 93.49 93.07 92.66 92.82 92.36 92.20 

60 93.48 93.93 94.20 93.35 93.41 93.06 92.46 

90 95.04 94.67 94.70 95.63 94.33 94.15 93.28 

120 92.65 93.72 93.99 94.95 93.95 92.54 91.26 

180 95.02 94.63 94.48 93.87 93.54 94.07 92.47 

240 93.96 93.98 93.32 93.25 93.05 94.87 93.10 
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Figure 6-3  Detection rates in each simulation hour for Case (I) 
(training sample size fixed at 120) 
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Figure 6-4  Detection rates in each simulation hour for Case (II) 
(rolling horizon fixed at 60 minutes) 
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Figure 6-5 Average detection rates of 36 incident scenarios for Case (III) 
(rolling horizon and training sample size varied) 

 

6.4 Summary 
 

The main advantage of the proposed RTFNN approach is to adaptively adjust the 

network parameters using the most up-to-date traffic data in response to the prevailing 

traffic conditions. The case study has shown that as the traffic volumes vary from low to 

high and then change from high to low, the detection performance for RTFNN is getting 

better (but not for the FNN approach), which can be ascribed to the rolling-trained 

effects of adaptively adjusting the network parameters in response to the traffic 

variations. 

 

The findings are limited to some thirty-six incident scenarios in the two-lane freeway 

contexts. One might argue that the lane-specific traffic data used in the input layer of the 

neural network would limit the transferability potential of the proposed algorithm to 

other freeway facilities with three or more lanes. A number of studies in the literature 

(e.g., Ritchie and Cheu, 1993; Lan, et al., 2004) have shown that using the station 

averages across all lanes rather than lane-specific traffic data does not substantially 

reduce the accuracy of the incident detection model. Of course, future study can further 

examine the transferability of the proposed RTFNN approach basing on the station 

average data. 
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Paramics is employed in this research for generating speed, flow and density data which 

are used for training and off-line validations. Future work can attempt other different 

micro traffic simulators. Additionally, the density is difficult to measure in the field, a 

surrogate of it, such as percent occupancy that can be readily provided by the field 

detectors, should be used in the proposed RTFNN approach from practical perspectives. 

 

The robustness of RTFNN approach at different places (e.g., freeway mainline sections 

with three or more lanes) with different scenarios (e.g., incidents at different locations 

and affecting more than one lane) can also be examined.  Development of new 

methods to determine the optimal rolling horizon and/or training sample size deserves 

further exploration. 

 

 

 


