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CHAPTER 7  RESULTS OF CHAOTIC DIAGNOSIS 
 

 

This chapter proposes a new approach for traffic incident detection -- chaotic abnormal 

traffic diagnosis. The underlying theory for this new approach is to measure the change 

in chaotic traffic parameters, including largest Lyapunov exponent, correlation 

dimension, relative Lz complexity, correlation time, and Hurst exponent, to examine the 

existence of traffic incidents. First, the examination for the existence of chaos of the 

observed traffic flow time series data is described in section 7.1. Section 7.2 introduces 

the determination of threshold for incident detection and the off-line test results are 

shown as section 7.3. The comparison of incident detection performance between 

chaotic diagnosis and RTFNN is elaborated in section 7.4. Finally, section 7.5 presents a 

concise summary. 

 

 

7.1 Examination for Chaos 
 

As mentioned in section 4.1, under special permission from the Freeway Authority, we 

intentionally generate a real traffic incident by stalling two cars, lasting for 15 minutes 

in site, to block the outer lane and the shoulder in the northbound two-lane mainline 

section of Taiwan Freeway No. 1. Figure 7-1 compares the normal flow time series 

before this incident and the abnormal flow time series after the incident at the 

downstream camera site for consecutive 15 minutes. An insignificant change in the 

30-second flow rate time series data in Figure 7-1 suggests that the change in 

downstream flow rate time series might not provide enough information for incident 

detection if we intend to apply the conventional traffic incident detection algorithms. 

For more details on this real incident experiment and testing for the difference of speeds 

or densities before and after the incident, please refer to section 4.1. 
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Figure 7-1  The 30-second flow rate time series at downstream 

 

 

In general, the internal deterministic rules of a dynamic system cannot be confirmed 

only by a one-dimensional time series plots. But if we transform the system into another 

space (known as the phase space), we will probably find that although the system is 

aperiod on the time axis, there exists certain geometric order in the phase space. This 

process is called “phase space reconstruction.” The process of phase space 

reconstruction will help understand the hidden deterministic rules for a dynamic system. 

Since the phase space retains essential properties of the original state space including 

the dimensionality, a phase space can be used not only to make short-term predictions 

but also to make a practical distinction between low-dimensional chaotic determinism 

and stochastic noise (Sugihara and May, 1990; Sugihara, et al. 1990). 

 

The definition of chaos and its properties have been well established in the literature 

(for instance, Adrangi, et al. 2001; Barnett, et al. 1995; Hilborn, 1994; Kantz and 

Schreiber, 1997). A definition similar to the following is commonly found. The series 

ta  has a chaotic explanation if there exists a system ) x, ,( 0Fh  where )( tt xha = , 

)(1 tt xFx =+ , 0x is the initial condition at 0=t , and where h maps the n-dimensional 

phase space, nR to 1R  and F  maps nR  to nR . It is also required that all 

trajectories tx  lie on an attractor A and nearby trajectories diverge so that the system 

After incident—abnormal flow Before incident—normal flow 



 75

never reaches equilibrium or even exactly repeats its path. For a chaotic time series, if 

one knows ) ,( Fh  and could measure tx  without error, one could forecast itx +  and 

thus ita +  perfectly. In order that F generates random-looking but in effect deterministic 

behavior, nearby trajectories must diverge exponentially and eventually fold back on 

themselves. The attractors may be thought of as a subset of the phase space towards 

which sufficiently close trajectories are asymptotically attracted. 

 

Use the concept of phase space reconstruction to convert one-dimensional flow rate 

time series into multi-dimensional phase space, in which traffic flows before and after 

the incident can be tested by various chaotic parameters. The analysis results are 

presented in Table 7-1. Note that Kolmogorov entropy is not reported in Table 7-1 due 

to insufficient samples. 

 

 

Table 7-1  Chaotic parameters for 30-second flow rate time series 

Chaotic Parameters 
Before the incident 

(normal traffic) 

After the incident 

(abnormal traffic) 

Largest Lyapunov exponent 0.522 0.096 

Capacity dimension 0.792 0.500 

Correlation dimension 3 3 

Relative Lz complexity 0.981 1.144 

Kolmogorov entropy N/A N/A 

Delay time 1.270 0.937 

Hurst exponent 0.132 0.164 

Conclusions Chaos traffic Period motion 

 

 

It can be seen from Table 7-1 that largest Lyapunov exponent for the normal traffic flow 

(before the incident) is positive (=0.522), suggesting a deterministic chaos for the flow 

dynamics. For the abnormal traffic flow (after the incident), in contrast, largest 

Lyapunov exponent is near zero (=0.096), indicating a periodic motion for the flow 

dynamics. Note that the value of capacity dimension does not change much before 

(=0.792) and after (=0.500) the incident. Correlation dimensions before and after the 
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incident are of the same (=3). The value of relative Lz complexity is 0.981 for the 

normal traffic flow, indicating a relatively complicated system; and it is 1.144 for the 

incident traffic flow, indicating a relatively simple system. The delay time for the 

normal traffic flow (=1.270) is larger than that for the incident traffic flow (=0.937). 

Hurst exponent does not change much before (=0.132) and after (=0.164) the incident. 

Based on the changes in these chaotic parameters, we conclude that traffic flow changes 

from relatively complicated chaotic dynamics (before the incident) to less complicated 

cyclic motions (after the incident). 

 

Figure 7-2 demonstrates the three-dimensional phase space reconstruction for the 

30-second flow dynamics before and after the incident. It can be noted that all the time 

paths in normal traffic condition (before the incident) seem to be attracted by a strange 

attractor. The nearby trajectories diverge exponentially and the locally diverging 

trajectories eventually fold back on themselves without repeating. Such an aperiodic 

motion is an important property for deterministic chaos. Note that all the time paths 

shrink to a smaller range in abnormal traffic condition (after the incident), implying that 

the flow time series after the incident is like a periodic motion. 

 

 

    

 

Figure 7-2  Phase space reconstruction for the 30-second flow rate time series 

 

 

In order to identify the significant chaotic parameters, we further plot the changes in 

these parameters before and after the incident. Figure 7-3 illustrates the largest 

(a) before the incident (b) after the incident 
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Lyapunov exponent plots before and after the incident (with embedding dimension of 1 

and time step of 3). One can obviously see that the largest Lyapunov exponent in normal 

traffic flow condition is positive, indicating a deterministic chaotic dynamics; whereas it 

is close to zero in abnormal traffic flow condition, implying a periodic motion. Figures 

7-4 through 7-7 present the plots of capacity dimensions, correlation dimensions, delay 

times, and Hurst exponents before and after the simulated incidents. 

 

 

    
 

Figure 7-3  Lyapunov exponent plots 

 

In Figure 7-4, the value of capacity dimension does not change much before and after 

the traffic incident. In Figure 7-5, false nearest-neighbors method is used to estimate the 

value of embedding dimension and it produces the same lowest value of embedding 

dimension for both normal and incident traffic flows. Figure 7-6 indicates that the delay 

time in normal traffic flow condition is decreasing progressively with an indication of 

chaotic dynamics, while in incident traffic flow condition it presents a quasi-periodic 

movement. In Figure 7-7, Hurst exponent does not change much before and after the 

traffic incident. From the above plots, it can also be concluded that the characteristics of 

traffic flow convert from chaotic dynamics (before the incident) to periodic motion 

(after the incident). 

 

From the above analysis and plots, the chaotic parameters that change remarkably 

before and after the traffic incident are largest Lyapunov exponent and delay time. This 

paper uses the largest Lyapunov exponent for abnormality diagnosis because we find 

that the time needed for the change in delay time is much longer than that needed in the 

Lyapunov exponent. 

(a) before the incident (b) after the incident 
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Figure 7-4  Capacity dimension plots 

 

     

 

Figure 7-5  Correlation dimension plots 

 

 

    
 

Figure 7-6  Delay time plots 

 

(a) before the incident (b) after the incident 

(a) before the incident 

(a) before the incident 

(b) after the incident 

(b) after the incident 
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Figure 7-7  Hurst exponent plots 

 

 

 

7.2 Determination of threshold for ����max 

 

In order to determine the threshold value for the largest Lyapunov exponent, we use the 

calibrated simulator – Paramics to simulate different incident scenarios. The scenarios 

are composed of incidents taking place at different locations (inner or outer lane) with 

various distances (250, 500, 750 meters) from the downstream detector on a two-lane 

freeway mainline. Thirty times of simulation runs are carried out in each scenario case. 

The ranges of changes in largest Lyapunov exponents before and after the incident are 

reported in Table 7-2. From this table, the values of largest Lyapunov exponent in 

normal traffic flow range from 0.347 to 0.861. An “interval search algorithm” is further 

employed to obtain the near optimum threshold value and we find that the best 

diagnosis accuracy is achieved at largest Lyapunov exponent equal to 0.49. Therefore, 

we use this threshold value for the off-line tests. 
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λ                 (7-1) 

 

The simulation results from Table 7-2 also show that before the incident, all the largest 

Lyapunov exponent values are positive (representing a chaotic dynamics) and after the 

incident, all the largest Lyapunov exponent values are negative or near zero (indicating 

(a) before the incident (b) after the incident 

Normal Traffic (incident-free) 

Abnormal Traffic (incident-detected) 
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a cyclic movement). Once again, these results agree with the real incident analysis 

results -- traffic flow changes from relatively complicated chaos (before the incident) to 

less complicated cycle (after the incident). 

 

 

7.3 Off-line Test Results 
 

In the following off-line tests, if the largest Lyapunov exponent value is greater than 

0.49, the traffic flow will be identified as normal (no incident occurs). By contrast, if the 

largest Lyapunov exponent value is less than 0.49, the traffic flow will be identified as 

abnormal (an incident occurs). In order to evaluate the detection performance by the 

chaotic parameters, we conduct off-line tests by using the calibrated Paramics again to 

simulate different incident scenarios. Ninety-six simulation runs are carried out in each 

scenario case. To evaluate the detection performance, detection rate (DR) and false 

alarm rate (FAR) are used and defined as 

follow. 

 

Table 7-2 also reports the detection performance. We find that the overall average DR is 

93.75% and FAR is 2.60%. The best DR is 100% where the incident takes place in the 

outer lane 250 meters from the downstream detector; while the worst DR is 87.5% for 

the scenario case that the incident occurs in the inner lane 500 meters from the 

downstream detector. The detection rates diagnosed by the largest Lyapunov exponent 

are slightly better than those accomplished by most of conventional incident detection 

algorithms with DR near 90% (Lan and Huang, 2003). However, the false alarm rates 

are a bit too high. It could be due to too sensitive of the largest Lyapunov exponent. 
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Table 7-2  Changes in Largest Lyapunov Exponents and Detection Performance 

Largest Lyapunov exponent1 
Detection 

performance2 

Location 

of incident 

Distance 

from 

downstream 

detector 

(meters) 

Before 

incident 
After incident 

Detection 

rate (DR) 

False 

alarm 

rate 

(FAR) 

250 0.490~0.714 -1.136~0.478 93.75 % 0.00 % 

500 0.455~0.778 -0.838~0.618 87.50 % 3.12 % Inner lane 

750 0.502~0.861 -0.797~0.656 93.75 % 3.12 % 

250 0.588~0.822 -1.258~0.513 100.00 % 3.12 % 

500 0.347~0.848 -0.622~0.639 93.75 % 3.12 % Outer lane 

750 0.540~0.742 -0.808~0.539 93.75 % 3.12 % 

Overall average 93.75 % 2.60% 
1. 30 simulation runs for each incident scenario case 
2. 96 simulation runs for each incident scenario case 

 

 

7.4 Comparison with RTFNN 
 

Base on the 30-seconds traffic flow data are observed from 6:00 to 12:00 covering a 

typical morning peak hours and two off-peak periods before and after that peak at the 

experimented site, the off-line tests comparison between RTFNN (the rolling horizon is 

60 minutes and the training sample size is 120 samples) and chaotic diagnosis is 

established. 

 

Figure 7-8 reveals that the chaotic diagnosis approach has outperformed with higher DR, 

compared with the RTFNN approach in various traffic conditions. But the chaotic 

diagnosis approach has accompanied with inferior FAR. Note that the six points in the 

Figure 7-8 represent six different incident locations within the same simulation hours. 

Figure 7-9 further presents the interaction between DR and FAR for both approaches. 
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Figure 7-8  Comparison of detection performance for each simulation hour between 

RTFNN and chaotic diagnosis approaches 

(rolling horizon = 60 minutes, training sample size = 120) 

 

Table 7-3 reports the statistical difference of mean values (t-test) of detection 

performance between these two approaches. As time goes by, RTFNN gradually 

outperforms because RTFNN updates the trained parameters in every 60 minutes, 

however, the chaotic diagnosis approach keeps the higher DR. It is found that the 

overall DR for RTFNN is 93.95% and for the chaotic diagnosis approach is 95.99%; 

both are quite high and have statistical difference at 5% significance level. The overall 

FAR for RTFNN is 0.0754% and for the chaotic diagnosis approach is 1.8017%; the 

chaotic diagnosis approach has slightly higher and both have statistical significant 

difference. The overall TTD requires only about two time steps, 68.39 seconds for 

RTFNN and the fixed three time steps for the chaotic diagnosis approach.  
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Figure 7-9  Graph of detection rate vs. false alarm rate between RTFNN and chaotic 

diagnosis approaches for 36 incident scenarios 

 

 

Table 7-3  Test for the difference of detection performance between RTFNN and 

chaotic diagnosis approaches (rolling horizon = 60 minutes, training sample size = 120) 

DR FAR Simulation 

hour 

(time of day) 

Hourly  

volume 

(vph) 

Detection 

approaches Average1 
Test 

result2 
Average1 

Test 

result2 

RTFNN 90.04% 0.0794% 1 

(6:00-7:00) 
2,403 

Chaotic 95.33% 

SD 

(0.021) 1.2243% 

SD 

(0.003) 

RTFNN 92.65% 0.0815% 2 

(7:00-8:00) 
2,919 

Chaotic 96.36% 

SD 

(0.022) 1.8676% 

SD 

(0.002) 

RTFNN 93.67% 0.0881% 3 

(8:00-9:00) 
3,664 

Chaotic 95.07% 

SD 

(0.021) 1.9841% 

SD 

(0.001) 

RTFNN 94.72% 0.0658% 4 

(9:00-10:00) 
4,514 

Chaotic 94.92% 

NSD 

(0.903) 1.2887% 

SD 

(0.001) 

RTFNN 96.78% 0.0742% 5 

(10:00-11:00) 
3,310 

Chaotic 97.19% 

NSD 

(0.615) 2.2570% 

SD 

(0.003) 

RTFNN 95.82% 0.0634% 6 

(11:00-12:00) 
2,484 

Chaotic 97.08% 

SD 

(0.037) 2.1884% 

SD 

(0.002) 

RTFNN 93.95% 0.0754% 
Overall 

Chaotic 95.99% 

SD 

(0.013) 1.8017% 

SD 

(0.002) 

Note: 1. Average represents the mean values of six incident scenarios, each of which undertakes 100 simulation runs. 

2. NSD represents no significant difference and SD represents significant difference with P-value in 

parenthesis (�=0.05). The null hypothesis is that the mean values (DR or FAR) between two approaches are 

the same. 
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7.5 Summary 
 

Our philosophy of chaotic diagnosis for traffic incidents is to use the change in 

appropriate chaotic parameters to examine the existence of an incident. This paper 

attempts the changes in chaotic parameters including largest Lyapunov exponent, 

capacity dimension, correlation dimension, relative Lz complexity, Kolmogorov 

entropy, delay time, and Hurst exponent to develop the abnormality diagnosis for 

incidents. Tests for chaos show that the traffic flow dynamic time series have the nature 

of deterministic chaos. 

 

We find that the chaotic parameters that change significantly before and after the 

experimented incident are largest Lyapunov exponent and delay time. In order to detect 

the occurrence of an incident shortly, we select the largest Lyapunov exponent as the 

chaotic parameter for abnormality diagnosis. When largest Lyapunov exponent value is 

greater than 0.49, the traffic flow is identified as normal (no incident occurs); if it is less 

than 0.49, the traffic flow is viewed as abnormal (an incident occurs). The overall 

average detection rate, which using 45-minute simulation off-line tests, based on 

Lyapunov exponent chaotic parameter is 93.75%, which is slightly better than that by 

the conventional incident detection algorithms (with an average detection rate of 90%) 

based on microscopic or macroscopic traffic parameters. However, the false alarm rates 

are a bit too high. It requires further investigation. 

 

The high detection performance suggests that both RTFNN and the chaotic diagnosis 

approach approaches are all satisfactory in freeway incident detections; but the false 

alarm rate and detection time of the chaotic diagnosis approach could be significantly 

enhanced. Specifically, as the traffic conditions changed from low to high and then from 

high to low, the detection performance (DR and TTD) for RTFNN is increased from 

90% to about 96%; but the detection performance for the chaotic diagnosis approach 

remains rather stable between 95% and 97%. As for the FAR, the overall performance 

shows that there is statistical significant difference between these two approaches 

(0.075% and 1.802%). In sum, the enhancement of DR significantly deteriorating the 

FAR due to too sensitive of the largest Lyapunov exponent and it maybe can reduce the 

FAR by adaptively replacing the thresholds. 
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Note that the largest Lyapunov exponent threshold value of 0.49 might only valid for 

our specific traffic demand pattern. Different threshold values might be anticipated if 

the traffic demand varies. More scenarios including incidents taking place at different 

locations with various distances from the downstream detector on various numbers of 

lanes of freeway need to be analyzed before a generalized conclusion can be made. To 

enhance the detection rate and reduce the false alarm rate, altering the threshold values 

or attempting other chaotic parameters also requires further studies. 

 

 

 


