

資訊管理研究所

博士論交

國家競爭力的規則推導與呈現

INDUCTION AND DISPLAYING OF RULES FOR NATIONS' COMPETITIVENESS

研 究 生: 柯宇謙

指導教授:黎漢林 講座教授

中華民國九十八年六月

國家競爭力的規則推導與呈現

INDUCTION AND DISPLAYING OF RULES FOR NATIONS' COMPETITIVENESS

研究生:柯宇謙

指導教授:黎漢林

Student: Yu-Chien Ko

Advisor : Han-Lin Li

Submitted to Institute of Information Management

College of Management

National Chiao Tung University

in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy in Information Management

June 2009

Hsinchu, Taiwan, the Republic of China

中華民國九十八年六月

國家競爭力的規則推導與呈現

學生:柯宇謙

指導教授:黎漢林

國立交通大學資訊管理研究所博士班

摘要

國家競爭力對形成政府策略與經濟發展日益重要。國家競爭力的規則推導與呈現,可 做為經濟政策的制定與驗證的輔助。本研究基於 MCI-WCY 提出最佳化的模型,在 14 支指標中推導競爭力的層級規則,並將規則以'IF-THEN'的格式表達 2001~2005 期間 競爭力的型態,如進步型與退步。所推導的規則並可透過多元尺度法呈現在球上,提 供使用者觀察國家在競爭力的分佈。最後,我們根據這些推導出來的規則,提出國家 群組改進或維持競爭力的策略。

關鍵字:國家競爭力,規則推導,世界競爭力年鑑的主要競爭力指標 (MCI-WCY), 最佳化,多元尺度法 (MDS)

INDUCTION AND DISPLAYING OF RULES FOR NATIONS' COMPETITIVENESS

Student : Yu-Chien Ko

Advisor: Han-Lin Li

Institute of Information Management

National Chiao Tung University

ABSTRACT

A nation's competitiveness becomes more and more important in forming government strategy and economic development. Induction and displaying of rules for national competitiveness is helpful in making and verifying economic policy. This study proposes an optimization model to generate rules for competitiveness classes based on 14 Major Competitiveness Indicators of World Competitiveness Yearbook. The obtained rules are composed of 'IF...THEN' format to imply dynamic competitiveness during 2001 ~ 2005. The implied types such as improving and depressing are helpful in understanding competitiveness changes of nations. Furthermore, the groups of nations are displayed on spheres based on the dissimilarity among nations. It helps users to observe visually the distribution of nations. Finally, we suggest the strategic implications for various groups of nations to improve or to sustain their competitiveness according to the induced rules.

Keywords: Nations' competitiveness; rule induction; Major Competitiveness Indicators ofWorld Competitiveness Yearbook (MCI-WCY); optimization, multidimensional scaling(MDS)

Acknowledgement

論文的最後階段,我的家人跟我一起高興、一起祈禱。首先,我要感 謝父親柯承發先生與母親何瑞英女士,父親在青少年時期就扛起一家人的 生計,他的奮鬥精神鼓勵我面對挑戰。接著要感謝黎漢林老師陪著我走過 研究的艱辛路程,多年來在他的指導下,我逐步的成長茁壯。同時,也要 感謝曾國雄教授、陳安斌教授、林妙聰教授、及張錦特教授的指正與建議, 使我的論文更加完備。

艱辛的路途中啦啦隊是很重要的,我要感謝 Garry Bruton 與黃俊宗 為我跟耶何華神祈禱,也要感謝劉瑞瓏在我挫折時鼓勵我再站起來。支持 我的啦啦隊還有運籌管理實驗室的伙伴強生、昶瑞、皓均、嘉珍、麗菁、 志信、云珊、嘉輝、曜暉、婉瑜、振國等人,我們一起面對挑戰、一起分 享喜悅。

我最要感謝的人是吳俐瑢。她永遠是我的支持,家裡的大小事都是她 努力支撑著。甚至累倒了住院,她還想減輕我的負擔。八年過去了,論文 完成了,黎老師說:「這個研究,夫妻一人讀一半」。

摘	要	iii
ABSTE	RACT	iv
Acknow	wledgement	V
Conten	nts	vi
Tables		viii
Figures	s	ix
Chapte	er 1 Introduction	1
1.1	Research Background	1
1.2	Current Approaches of Competitiveness Analysis	2
1.3	Research Goal and Proposed Approach	4
1.4	Advantages of Proposed Approach	7
1.5	Structure of the Dissertation	8
Chapte	er 2 WCY Data Set and Literature Review	9
2.1	Specification of Nations' Competitiveness	9
2.2	Major Competitiveness Indicators (MCI-WCY)	9
2.3	MCI-WCY Data Set	11
2.4	Consolidated Competitiveness Factors	11
2.5	Competitiveness Types for Nations	12
2.6	Review of Literatures of WCY Data Set	13
Chapte	er 3 The Proposed Method for Inducing Competitiveness Rules	15
3.1	Presentation of Data and Rules	15
3.2	Propositions	19
3.3	Models of Inducing Rules	24
Chapte	er 4 Induction Rules	
4.1	Dynamic Rules of Competitiveness Classes	26
4.2	Dynamic Rules of Sustaining Groups	
4.3	Dynamic Rules of Upward Groups	
4.4	Dynamic Rules of Downward Groups	
Chapte	er 5 Displaying National Competitiveness on Spheres	
5.1	Proposed Displaying Method	35
5.2	Data Normalization	36
5.3	Data Conversion	

Contents

5.4	Transformation	8
5.5	Displaying Induced Rules of 2003 and 200542	2
Chapter	6 Comparison of Decision Tree and the Proposed Method44	5
6.1	ID3	5
6.2	The Proposed Method	1
6.3	Analysis of Update ID3 and the Proposed Method Based on WCY-IMD for 2008.52	2
Chapter	7 Concluding Remarks	5
Appendi	x A: Classification of Nations	8
Appendi	x B: Data Set of MCI-WCY6	1
Appendi	x C: Attribute Segments6	5
Appendi	x D: Discretized Codes of MCI-WCY60	6
Appendi	x E: Data Set of Consolidated Competitiveness Factors70	0
Reference	res7.	3

Tables

Table 2.1: Major Competitiveness Indicators (MCI) of WCY	10
Table 2.2: Consolidated competitiveness factors	12
Table 2.3 Competitiveness types of 46 nations	13
Table 3.1: Example 1 of presentation	16
Table 3.2: Binary values converted from data set of Example 1	17
Table 3.3: Binary codes of rules of Example 1	
Table 3.4: Meaning of rules of Example 1	
Table 4.1: Rules of competitiveness classes	27
Table 4.2 : Sustaining type	
Table 4.3: Upward type	
Table 4.4 : Downward type	
Table 5.1: Data set of Example 2	
Table 5.2: Normalized data set of Example 2	
Table 5.3: Dissimilarity matrix of Example 2	
Table 5.4: Coordinates of nations on the sphere	40
Table 6.1: Step 1 of ID3	47
Table 6.2: Step 2 of ID3 by the attribute a_2	
Table 6.3: Step 3 of ID3	49
Table 6.4: Induced rules of Example 1 by ID3	50
Table 6.5: Induced rules of Example 1 by update ID3	50
Table 6.6: Induced rules of Example 1 by the proposed method	
Table 6.7: Comparison of update ID3 and the proposed method	53

Figures

Figure 1.1: The process of approach	5
Figure 1.2: Competitiveness types of a nation's change during 2001~2005	6
Figure 1.3: A conceptual sphere for 2005	7
Figure 4.1: Competitiveness structure of 4 classes during 2001~2005	
Figure 4.2 Critical attributes of upward type	
Figure 4.3: Critical attributes of downward type	
Figure 5.1: The process of displaying method	35
Figure 5.2: A display sphere with competitiveness classes for Example 2	41
Figure 5.3: Display sphere for 2003	43
Figure 5.4: Display sphere for 2005	44
Figure 6.1: The processes of ID3 algorithm	46
Figure 6.2: A conceptual ID3 tree	46
Figure 6.3: The ID3 tree of Example 1 in Table 3.1	49
Figure 6.4: The update ID3 tree of Example 1	51
Figure 6.5: The decision tree of nation classes for 2008	53
This way to be a second second	

Chapter 1 Introduction

1.1 Research Background

After long competition among nations, some nations have stayed highly competitive (for example the USA), or have stayed as highly non-competitive (for example ARGENTINA) [Feldstein, 2002]. Some have grown more competitive (for example MAINLAND CHINA) [Adams, 2006], while others have lost their competitiveness (for example ITALY) [Mascitelli, 2008]. Several attributes (such as export, inflation, unemployment, etc) may affect nations' competitiveness. This study, based on these attributes, induces the essential rules of explaining nations' competitiveness. The induced rules can be utilized to suggest possible strategies for a nation to improve its competitiveness. Some queries this study intends to answer are: "What are the most critical attributes of nations' competitiveness?", "If a nation wants to keep a high competitive level, what does it need to do?", "What are the essential attributes to be careful of if a nation wants to upgrade from a lower to a higher competitive position?", and "Which attributes restrict the progress of a less competitive nation?".

IMD (International Institute for Management and Development) is one of the most well-known research institutions of world competitiveness. Since 1989, IMD published World Competitiveness Yearbook (WCY), which has attracted considerable attentions from government and industries. Most of current researches based on WCY data set, however, cannot answer directly the queries as 'Why have some nations kept as highly competitive while some have stayed as highly non-competitive?', 'Why have some nations grown more competitive while others have lost their competitive?', and 'How the nations in various groups improve their competitiveness?'. Four reasons why current studies cannot be answered are [Zanakis, 2005; Oral 1996]:

(i) Too many attributes have been used. Current studies used the whole WCY data set(300 attributes) to do analysis. Since numerous attributes are strongly collinear with

each other, it is difficult to find significant attributes to represent the competitiveness function by using traditional techniques such as regression analysis and neural network techniques. In addition, the quality of these 300 attributes is different from each other. Thus, it is not proper to treat them equally.

- (ii) Lack of dynamic analysis. It is hard to have consistent data over a series of time based on 300 attributes of WCY. Current studies therefore did not perform dynamic analysis of competitiveness over time, which results in difficulty in answering the queries mentioned above.
- (iii) Difficulty in inducing general rules. Some current studies have used regression and neural network techniques to find the factors of competitiveness. Parts of specific rules may be observed from simple regression results in small sectors (such as a rule that covers a few nations). However, it is difficult to induce general rules from a set of regression equations, since there are too many combinations that make possible rules [Zanakis 2005, Oral 1996]
- (iv) Difficulty in explaining competitiveness groups. Decision tree is a widely used method to induce rules in many applications. However, its interpreting capability may suffer from too many branches when it is applied to national competitiveness. The decision tree method expands many branches due to multiplication of the number of attribute values and competitiveness levels. The more branches, the less nations are covered in a branch, i.e. the less interpreting capability it can have [Zanakis 2005; Quinlan 1986, 1993]

1.2 Current Approaches of Competitiveness Analysis

Two systematic approaches of analyzing national competitiveness are discussed below.

1. Ranking competitiveness: IMD is the representative that provides competitiveness scores for an individual nation by hierarchically and linearly aggregating more than 300

attributes. However, there are too many attributes to imply characteristics of competitiveness. Neither does it provide nation groups to illustrate competitiveness differentiation [IMD 2001, 2003, 2005].

2. Classifying competitiveness: Porter classifies nations into classes based on citizen's income capability and identifies significant attributes for each class. The classes are implied with labor intensity, efficiency, and innovation for economic development of nations. However, the income is not the only attribute to influence a nation's competitiveness. The income classes are not sufficient to make or verify competitiveness policy (Poter 2005; Garelli 2003).

Progressing into a higher class, preventing fall into a lower one, and sustaining his or her nation within a class are foci of competitiveness concerns. Either approach above only provides partial solutions. For instance, the former does not provide implications for competitiveness classes i.e. short of capability to clearly tell the competitiveness differentiation. This part, however, is important for competitiveness strategies. The later provides income classes that may not be considered as competitiveness classes. Following WCY [Garellie, 2003], national competitiveness is not necessary for wealth, power, and economic performance of a nation, which is explained below.

- A nation's competitiveness is not necessarily an indicator of wealth. Wealth can be the result of past competitiveness, for example due to accumulated capital and knowledge (such as the European industrialized nations). Wealth may also be in natural resources ready to be exploited (such as in oil-producing nations). As a consequence, a nation can be wealthy but not competitive.
- A nation's competitiveness is not necessarily an indicator of power. Since power can be the result of a combination of wealth and size (such as Japan which is not necessarily as competitive as it is powerful).

• A nation's competitiveness is not necessarily an indicator of economic performance. Since economic performance focuses on added value over the short-term (commonly expressed as GDP growth), it does not take into account the depletion of non-renewable capital (such as natural resources), the volatility of the economy, and the impact of non-tangibles (such as education, research, etc).

In this research we intend to identify significant attributes for competitiveness classes and dynamic change that nations evolve during 2001~2005.

1.3 Research Goal and Proposed Approach

The goal of this study aims to induce rules for competitiveness classification then find competitiveness types consist of classes during 2001 ~ 2005. A displaying sphere is proposed to help users to visually catch differentiation between competitiveness rules. Finally, the strategic implications are suggested for improving to higher competitive classes, preventing fall in competitiveness, and sustaining within a class. Figure 1.1 illustrates the approach. Users can realize competitiveness classes with 'IF...THEN' statements. The features of the study are listed below.

- The competitiveness scores are used to separate nations into classes by the K-mean method on competitiveness scores. Following Ulengin (2002), these classes are named as highly competitive (G₄), competitive (G₃), non competitive (G₂), and least competitive (G₁). The competitiveness scores of nations in classes follow the relation as G₄ ≥ G₃ ≥ G₂ ≥ G₁. The details of implementation are described in Appendix A.
- A high quality and precise MCI-WCY data set, the so-called Major Competitiveness Indicators (MCI) is used, instead of a large WCY data set. The data set contains the 14 most reliable and consistent attributes, which covers 46 nations and 3 time periods (2001, 2003, 2005). They are analyzed for class implications, which are described next.
- An optimization model, instead of regression analysis and neural network techniques, is

proposed to induce general rules for competitive classes. These induced rules, expressed in 'IF...THEN' form, contain the essential attributes only, especially since they are formulated with conjunctive and disjunctive terms that increase flexibility when analyzing the complexity of competitiveness attributes.

Figure 1.1: The process of approach

• Some competitiveness types labeled by such terms as upward, downward, and sustaining are formed with dynamic classes, which are helpful to realize dynamic change of nations. Figure 1.2 shows construction of competitiveness types based on classes where G_i , G_j , and G_k classes are relative to the year 2001, 2003, and 2005. Finally, we answer our target queries listed above with the implications of these types.

Sustaining			Upward			Downward		
2001	2003	2005	2001	2003	2005	2001	2003	2005
					\mathbf{G}_k		<u> </u>	
G_i	\mathbf{G}_{j}	\mathbf{G}_k	\mathbf{G}_i	\mathbf{G}_{j}		\mathbf{G}_i	Gj	
								\mathbf{G}_k
	i = j = k		i = j < k			i = j > k		
							_	
				\mathbf{G}_{j}	\mathbf{G}_k	\mathbf{G}_i		
			G _i				Gj	\mathbf{G}_k
				i < j = k		i	> j = k	

Figure 1.2: Competitiveness types of a nation's change during 2001~2005

• A displaying model is designed to transform nations with 4 consolidated competitiveness factors, government efficiency, economic efficiency, business efficiency, and infrastructure onto the surface of a sphere. Nations covered by an induced rule are located locally on a surface area of the sphere, which is presented in a conceptual sphere in Figure 1.3. Users can catch nations' differentiation by visual distance transformed from dissimilarity between nations. They can also find competitiveness direction by comparing with the top nation. Technically, the transformation is implemented by combining Multidimensional Scaling (MDS) and Integer Programming (IP) to make display available, which is described in Chapter 5.

- MDS is applied to transform high dimensional configuration to lower dimensions. After implementation, each nation is located at a point with 3 coordinates on a sphere. Users can see areas of surface to get the image of a rule.
- Integer Programming (IP) is applied to MDS computation to get optimal solutions.

Figure 1.3: A conceptual sphere for 2005

1.4 Advantages of Proposed Approach

Our displaying sphere shows the competitiveness differentiation between nation groups and gives visual help for economic decision policy. Decision makers can realize the differentiation in terms of induced rules. The induced rules will respond to following typical queries about nations' competitiveness such as: (a) What are the most critical attributes of affecting the competitiveness? (b) If a nation (such as the USA or SINGAPORE) wants to keep at a highly competitive level, what do they need to do? (c) What are the essential attributes to care about if a nation wants to upgrade from a lower to a higher class? (d) Which attributes restrict the progress of a less competitive nation? The induction rules have following features:

- (i) The rules are expressed in 'IF...THEN' statement with conjunction and/or disjunction description.
- (ii) Two criteria of a quality rule are used: the accuracy rate (AR) and the coverage rate (CR) (Pawlak 1999). A representative rule of a specific class should have high AR and CR. Such a rule should be supported by most nations within the same class and not cover nations in other classes.
- (iii) The rules are induced by using the mixed 0-1 linear programming. The objective is to maximize AR and CR values. Globally optimal solutions are guaranteed.

1.5 Structure of the Dissertation

This paper is organized below. Chapter 2 discusses the MCI-WCY data set and the competitiveness types. Chapter 3 includes the data notation and rule propositions for induction. Chapter 4 presents induction rules and dynamic rules during 2001~2005. Chapter 5 proposes a displaying model for induced rules and showing differentiation by class nations. Chapter 6 compares the decision tree ID3 and the proposed method. Finally, concluding remarks discuss the results of this research and future work.

Chapter 2 WCY Data Set and Literature Review

2.1 Specification of Nations' Competitiveness

Following WCY (Garelli, 2003), nations' competitiveness is defined as a measurement of each nation's ability to create and maintain an environment that sustains more value creation for its enterprises and more prosperity for its people. WCY divides the nations' competitiveness into four factors: economic performance, government efficiency, business efficiency, and infrastructure. More than 300 attributes are used together to represent these four factors. All these 300 attributes have the same weight in the overall consolidation of results, which lead to the overall ranking of nations. The WCY provides a competitiveness score for each nation by synthesizing all collected information into a few factors (IMD 2001, 2003, 2005).

2.2 Major Competitiveness Indicators (MCI-WCY)

MCI are selected by the WCY to analyze the performance of each nation independently of the others. They best reflect the changes in quantitative data over time. Their evolution in time series portrays competitiveness trends and how the nations compete in world market. The contents of these attributes are listed in Table 2.1.

Symbol	Attributes	Abbreviation	Description		
<i>a</i> ₁	EXPORT OF GOODS & OF COMMERCIAL Export SERVICES		Exports summation of goods and commercial services (calculated by per million population)	US\$ billions	
<i>a</i> ₂	COMPUTERS PER CAPITA	Computer	The average computers for any given 1000 people.	Number	
<i>a</i> ₃	GDP PER CAPITA	GDP	Gross Domestic Product per person	US\$	
a_4	LISTED DOMESTIC COMPANIES	Company	The number of domestically incorporated companies listed on the country's stock exchanges at the end of the year	Number	
<i>a</i> ₅	STOCK MARKET CAPITALIZATION	Stock	The value of all the stocks traded on a specific stock exchange (calculated by per million population)	US\$ billions	
<i>a</i> ₆	COMPENSATION LEVELS	ATION Salary Total hourly compensation for manufacturing workers (wages supplementary benefits)		US\$	
<i>a</i> ₇	OVERALL PRODUCTIVITYS	Productivity	GDP per person employed	US\$	
<i>a</i> ₈	CONSUMER PRICE INFLATION	Inflation	Average annual rate; the price increases as measured by the consumer price Indicators (CPI), which reflects the prices of a representative basket of consumer goods and services.	%	
<i>a</i> ₉	UNEMPLOYMENT RATE	Unemployed	the ratio of the number of unemployed workers divided by the total civilian labor force	%	
<i>a</i> ₁₀	DIRECT INVESTMENT FLOWS INWARD	Invest –in	Foreign direct investment flows inward (calculated by per million population)	US\$ billions	
<i>a</i> ₁₁	DIRECT INVESTMENT FLOWS ABROAD	Invest-out	Direct investment flows toward oversea, calculated by per million population	US\$ billions	
<i>a</i> ₁₂	REAL GDP GROWTH	GDP growth	A measure of the annual percent change in the level of production achieved in a given country as measured in constant prices	%	
<i>a</i> ₁₃	CURRENT ACCOUNT BALANCE	Balance	The difference between a country's savings and its investment. If positive, the portion of a country's saving invested abroad; if negative, the portion of domestic investment financed by foreigners' savings (calculated by per million population)	US\$ billions	
<i>a</i> ₁₄	PRIVATE FINALCONSUMPTION EXPENDITURE PER CAPITA	Consumption	Household final consumption expenditure and final consumption expenditure of non-profit institutions serving households, incurred by resident on individual consumption goods and services	US\$	

Table 2.1: Major Competitiveness Indicators (MCI) of WCY

2.3 MCI-WCY Data Set

Our research data comes from the data set of Major Competitiveness Indicators (MCI) in WCY for 2001, 2003, and 2005. The MCI-WCY data set covers 14 major competitiveness attributes for 46 nations from 2001 to 2005 (Table B.1, B.2, and B.3 of Appendix B) These data sets are the most continued, consistent, and reliable data chosen from MCI-WCY.

In order to induce rules of competitiveness, we need to convert the data set in Appendix B into discretized codes. Each attribute is divided into four levels: very high, high, medium, and low according to the value domain of that attribute. An equal frequency of nations in each a_i level is adopted to implement the division, described in Appendix C. Following competitiveness classes in Phase (i) we divide 46 nations into 4 classes. The MCI-WCY data set in Table B.1, B.2, and B.3 of Appendix B are then converted respectively into Table D.1, D.2, and D.3 of Appendix D. Take USA in 2001 (in Table B.1) for instance, the a_2 value is 580.5 and the overall score is 100. Since such a a_2 value belongs to level 4 (according to the standard in Appendix C), we then denote $a_2 = 4$ at Table D.1.

A ALLEN A

2.4 Consolidated Competitiveness Factors

WCY divides national environment into 4 factors based on analysis of leading scholars and their own research and experience. Each factor has 5 sub-factors which highlight every facet of the areas analyzed. These 20 sub-factors comprise more than 300 criteria. The criteria may be hard data like GDP or soft data like manager ability, which all have same weight to its sub-factor. Finally, these 20 sub-factors are aggregated to make the total consolidation, which leads to the overall ranking of the WCY. The description of factors is listed in Table 2.2. The data set of the factors is listed in Appendix E.

Symbol	Factors	Description
ſ	government	Extent to which government policies are conductive to
J_1	efficiency	competitiveness.
C	economic	Maana according a valuation of the domestic according
J2	performance	Macro-economic evaluation of the domestic economy
f_3	business	Extent to which enterprises are performing in an innovative,
	efficiency	profitable, and responsible manner.
f_4	in fue stars stress	Extent to which basic, scientific, and human resources meet the
	mirastructure	needs of business.

Table 2.2: Consolidated competitiveness factors

2.5 Competitiveness Types for Nations

Examining the change of a nation's classes for years of 2001, 2003, and 2005, we may classify the 46 nations into 4 types and 18 groups as shown in Table 2.3 in the following ways.

- (i) A nation is in group G_{ijk} , if the nation belongs to *i*, *j*, and *k* class in the year 2001, 2003, and 2005 respectively.
- (ii) If i = j = k then G_{ijk} belongs to a sustaining type. There are 27 nations in this type. For instance, the USA belongs to G_{444} and INDONESIA belongs to G_{111} .
- (iii) If i < j = k or i = j < k then G_{ijk} belongs to an upward type. Only three nations are included in this type, where TAIWAN is G_{334} , THAILAND is G_{122} and INDIA is G_{112} .
- (iv) If i > j = k or i = j > k then G_{ijk} belongs to a downward type. Seven nations are included in this type.
- (v) If i > j < k or i < j > k then G_{ijk} belongs to a mixed type. For instance, CHILE belongs to the G_{323} and MALAYSIA belongs to G_{232} .

Types	Groups	Nations	Number
	G ₄₄₄	CANADA, DENMARK, FINLAND, HONG KONG,	12
		ICELAND, NETHERLANDS, SINGAPORE, SWEDEN,	
		SWITZERLAND, USA, AUSTRALIA, LUXEMBOURG	
	G ₃₃₃	BELGIUM, NEW ZEALAND, NORWAY, UNITED	4
Sustaining		KINGDOM	
	G ₂₂₂	MAINLAND -CHINA, CZECH REPUBLIC, HUNGARY,	4
type		KOREA	
	G ₁₁₁	ARGENTINA, INDONESIA, PHILIPPINES, POLAND,	7
		RUSSIA, TURKEY, VENEZUELA	
	G ₃₃₄	TAIWAN	1
Upward type	G ₁₂₂	THAILAND	1
	G ₁₁₂	INDIA	1
	G ₄₄₃	AUSTRIA	1
	G ₄₃₃	GERMANY	1
Downward	G ₃₃₂	FRANCE	1
tupo	G ₃₂₂	SPAIN SPAIN	1
type	G ₂₂₁	ITALY E	1
	G ₂₁₁	BRAZIL, MEXICO, GREECE	3
	G ₄₃₄	IRELAND 1896	1
Mixed	G ₃₂₃	ISRAEL, CHILE, JAPAN	3
	G ₂₃₂	MALAYSIA	1
type	G ₂₁₂	PORTUGAL	1
	G ₁₂₁	COLOMBIA, SOUTH-AFRICA	2

 Table 2.3 Competitiveness types of 46 nations

2.6 Review of Literatures of WCY Data Set

WCY data set has been widely used in ranking nations' competitiveness and in forming nations' strategy for development. Some studies based on WCY data set with 300 attributes are given below.

(i) Au (2006) used the WCY as a data set for finding plant locations for Hong Kong clothing suppliers. His results showed that China, Pakistan, India, Thailand, and Sri Lanka are the most prosperous locations (Au 2006).

- (ii) Zanakis and Becerra-Fernandez (2005), based on WCY data sets, used data mining and multivariate statistical techniques to identify important factors associated with a nation's competitiveness. In their validation of methods, the stepwise regression had the best average minimum square error (MSE) and the best mean absolute error (MAE); while classification tree and regression (CART) performed the poorest (Zanakis 2005).
- (iii) Pistorius (2001) used WCY rating and competitiveness factors to address the fact that SOUTH AFRICA's weak competitiveness was a threat to its national security.
 Following analytical results from the WCY, he proposed ways to improve innovation in raising SOUTH AFRICA's competitiveness in the future (Pistorius 2001).
- (iv) Sheng (1999) used the WCY data set to discover that CHINA had a less certain economy, which was still far from controlling or dominating market and industries. He then proposed that CHINA and the UNITED STATES could cooperate as strategic partners, which might fit the UNITED STATES' long-term national interests (Sheng 1999).
- (v) Oral and Chabchoub (1996) used WCY methodology and data sets to simulate competitiveness score and ranks. However, they could not reproduce results like those in the WCY.

Chapter 3 The Proposed Method for Inducing Competitiveness Rules

Our method reduces competitiveness attributes into a subset that can be used to discriminate classes. It generates a rule in terms of binary operations which approximate to a certain degree of covering nations within a class and discriminating nations in the other classes. The operation is built on matching attribute values between the rule and nations. Binary variables are designed for covered and discriminated nations with 0 and 1. A sum of binary variables within a class and another sum of binary variables in the rest of classes are used for a rule's quality parameters. The ratios of the sums to the number of their respective nations are used as quality measurement for a rule. Since the obtained rules are presented by 'IF...THEN' format, users can easily tell the discrimination between classes.

The rule and data set are reformatted for matching operations described in Section 3.1, which presents a rule and data set with binary bits. Section 3.2 proposes the binary matching operations and the approximation degree of covered nations. Section 3.3 applies integer programming to implement the matching operations in Lingo 10. Followings include the proposed method and models.

3.1 Presentation of Data and Rules

Here we use the example 1 to illustrate the way of presenting the data and rules. Consider a sample data set in Table 3.1 with 5 nations $(N_1, N_2, N_3, N_4, N_5)$, three attributes (a_1, a_2, a_3) and one class Indicators g. The domain values of a_1 , a_2 , and a_3 are $\{1, 2, 3\}$, $\{1, 2\}$, and $\{1, 2, 3, 4\}$. The domain value of g is $\{1, 2, 3\}$.

	a 1	a 2	a 3	g
N_1	2	1	3	1
N_2	3	2	3	2
N_3	2	2	1	2
N_4	3	1	4	3
N_5	1	1	2	3

 Table 3.1: Example 1 of presentation

Table 3.1 is firstly converted into a new one presented by binary values as shown in Table 3.2. Here a_{jp} is called a sub-attribute of attribute a_j . A nation N_i of the class k is expressed as

$$N_{i} = (a_{11}^{i}, a_{12}^{i}, a_{13}^{i}; a_{21}^{i}, a_{22}^{i}; a_{31}^{i}, a_{32}^{i}, a_{33}^{i}, a_{34}^{i}), \quad g_{i} = k \quad -------(3.1)$$

For instance, N_{1} is expressed as $N_{1} = (0, 1, 0; 1, 0; 0, 0, 1, 0)$ and $g_{1} = 1$.
Denote $R_{l}(k)$ as l^{th} rule of classifying k^{th} class can be expressed as a binary vector below
 $R_{l}(k) = (d_{11}^{l}, d_{12}^{l}, d_{13}^{l}; d_{21}^{l}, d_{22}^{l}; d_{31}^{l}, d_{32}^{l}, d_{33}^{l}, d_{34}^{l}) \quad ------(3.2)$

where

 $d_{jp}^{l} = 1$, if sub-attribute a_{jp} is chosen in l^{th} rule. $d_{jp}^{l} = 0$, if sub-attribute a_{jp} is not chosen in l^{th} rule.

Such an expression is very useful in expressing rules in conjunction and disjunction forms.

For a data set containing *n* nations, *m* attributes where each attribute a_j having q(j) levels. Consider the following notations and remarks.

Notation 1:

A general form for expressing a nation N_i of group k is written as

$$N_{i} = (a_{11}^{i}, a_{12}^{i} \dots a_{1q(1)}^{i}; a_{21}^{i} \dots a_{2q(2)}^{i}; \dots; a_{m1}^{i} \dots a_{mq(m)}^{i}), g_{i} = k, a_{jp} \in \{0, 1\} - - - - - - (3.3)$$

A general form for expressing a nation N_r not in group k is written as $N_r = (a_{11}^r, a_{12}^r \dots a_{1q(1)}^r; a_{21}^r \dots a_{2q(2)}^r; \dots; a_{m1}^r \dots a_{mq(m)}^r), g_r \neq k, a_{jp} \in \{0,1\}$ -----(3.4)

Notation 2: A general form of expressing a rule $R_l(k)$, the rule of classifying k^{th} group, is expressed as

$$R_{l}(k) = (d_{11}^{l}, d_{12}^{l} \dots d_{1q(1)}^{l}; d_{21}^{l} \dots d_{2q(2)}^{l}; \dots; d_{m1}^{l} \dots d_{mq(m)}^{l}), d_{jp} \in \{0, 1\} \quad -----(3.5)$$

Remark 3.1:

- (i) If *j* is an ignored attribute for $R_l(k)$, then $d_{jp}^l = 0$ for all *p*
- (ii) If *jp* is an active sub-attribute for $R_l(k)$, then $d_{jp}^l = 1$

Situation (i) is for a case when a rule can be expressed compactly by a fewer number of attributes. Situation (ii) is for a case where the disjunction expression is used for an attribute.

	a_1			<i>a</i> ₂ <i>c</i>			13			
N_i	<i>a</i> ₁₁	<i>a</i> ₁₂	<i>a</i> ₁₃	<i>a</i> ₂₁	<i>a</i> ₂₂	<i>a</i> ₃₁	<i>a</i> ₃₂	<i>a</i> ₃₃	<i>a</i> ₃₄	g_i
N_{I}	0	1	0	1	0	0	0	1	0	1
N_2	0	0	1	0	1	0	0	1	0	2
N_3	0	1	0	0	1	1	0	0	0	2
N_4	0	0	1	1	0	0	0	0	1	3
N_5	1	0	0	1	0	0	1	0	0	3

Table 3.2: Binary values converted from data set of Example 1

For a small example in Table 3.2, we can list intuitively related classification rules expressed in Table 3.3 and 3.4, the mathematical model of inducing these rules is described later. For instance, the first rule for group 2 is expressed as $R_1(2) = (0, 0, 0; 0, 1; 0, 0, 0, 0)$ which means that 'if $a_2 = 2$ then the nation belongs to group 2'. Such a rule is supported by

two nations N_2 and N_3 . In Table 3.4, two criteria AR (accurate rate) and CR (coverage rate) are used to measure the quality of a rule. The definitions and meanings of AR and CR will be discussed later.

Rule	d ₁₁	d ₁₂	d ₁₃	d ₂₁	d ₂₂	d ₃₁	d ₃₂	d ₃₃	d ₃₄
$R_1(1)$	0	1	0	1	0	0	0	0	0
$R_2(1)$	0	1	0	0	0	0	0	1	0
R ₁ (2)	0	0	0	0	1	0	0	0	0
$R_2(2)$	0	0	1	0	0	0	0	0	0
<i>R</i> ₃ (2)	0	0	0	0	0	1	0	0	0
$R_1(3)$	0	0	0	0	0	0	1	0	0
$R_2(3)$	0	0	0	E S A	0	0	0	0	1
<i>R</i> ₃ (3)	0	0	0	10:96	0	0	1	0	1

 Table 3.3: Binary codes of rules of Example 1

 Table 3.4: Meaning of rules of Example 1

Rules	Meaning	Supporting	AR	CR
		nations	(accurate rate)	(coverage rate)
$R_1(1)$	If $(a_1=2)$ and $(a_2=1)$ then $g = 1$	N_{I}	1	1
$R_2(1)$	If $(a_1=2)$ and $(a_3=3)$ then $g = 1$	N_{I}	1	1
R ₁ (2)	If $(a_2 = 2)$ then g=2	N_2 , N_3	1	1
$R_2(2)$	If $(a_1 = 3)$ then g=2	N_2	1	0.5
$R_{3}(2)$	If $(a_3 = 1)$ then g=2	N_3	1	0.5
$R_1(3)$	If $(a_3 = 2)$ then $g = 3$	N_5	1	0.5
$R_2(3)$	If $(a_3 = 4)$ then $g = 3$	N_4	1	0.5
$R_3(3)$	If $(a_3 = 2 \text{ or } 4)$ then $g = 3$	N_4, N_5	1	1

Examining Table 3.4 to know the followings:

- (i) There may be more than one classification rule for a specific group. For instance, both $R_1(1)$ and $R_2(1)$ are used to classify the 1st group.
- (ii) A rule with more supporting nations is better than the rule with less supporting nations. For instance, $R_1(2)$ is better than $R_2(2)$.
- (iii) A rule may be obtained by integrating related rules, thus having more supporting nations. For instance, $R_3(3)$ is the union of $R_1(3)$ and $R_2(3)$, which is supported by more nations than $R_1(3)$ and $R_2(3)$.
- (iv) The rules can be expressed in both conjunction and disjunction form. For instance, $R_3(3)$ is expressed in disjunction form while $R_1(3)$ and $R_2(3)$ are in conjunction form.

Otherwise the nation *i* does not support the rule $R_i(k)$.

(ii) If nation r not in class k is not discriminated by $R_l(k)$ then

$$\sum_{p} a_{jp}^{r} d_{jp}^{l} = 1 \text{ for all } j \text{ where } \sum_{p} d_{jp}^{l} \ge 1 \quad -----(3.7)$$

Otherwise the nation r supports the rule $R_l(k)$.

Take Table 3.4 for instance, inducible $R_1(1)$ is supported by N_1 .

Proposition 3.2: For the rule $R_l(k)$, $R_l(k) = (d_{11}^l, ..., d_{mq(m)}^l)$ described in Proposition 3.1, some attributes can be ignored to simplify the expression. If there are h attributes being ignored in $R_l(k)$ then

$$(i)\sum_{j=1}^{m}\sum_{p}a_{jp}^{i}d_{jp}^{l}=m-h \qquad -----(3.8)$$

for some *i* supporting the rule where $g_i = k$,

which also means *i* is covered by the rule

$$(ii)\sum_{j=1}^{m}\sum_{p}a_{jp}^{r}d_{jp}^{l} \le m-h-1 \qquad -----(3.9)$$

for some r supporting the rule where $g_r \neq k$

Take the rule $R_1(1)$ in Table 3.3 for instance to check proposition 3.2, here $d_{12} = d_{21} = 1$ and the number of attributes with $\sum_{p} d_{jp}^{l} = 0$ is 1. That means m=3 and h=1. It is convenient to

check that

check that
(i)
$$a_{12}^{1}d_{12} + a_{21}^{1}d_{21} = 2$$
 for N_1
(ii) $a_{12}^{2}d_{12} + a_{21}^{2}d_{21} = 0 \le 1$ for N_2
 $a_{12}^{3}d_{12} + a_{21}^{3}d_{21} = 1 \le 1$ for N_3
 $a_{12}^{4}d_{12} + a_{21}^{4}d_{21} = 1 \le 1$ for N_4
 $a_{12}^{5}d_{12} + a_{21}^{5}d_{21} = 1 \le 1$ for N_5

Similarly, checking a union rule $R_3(3)$ where $d_{32} = d_{34}=1$ and the number of attributes with $\sum_{p} d_{jp}^{l} = 0$ is 2, will have the following results :

(i)
$$a_{32}^4 d_{32} + a_{34}^4 d_{34} = 1$$
 for N_4
 $a_{32}^5 d_{32} + a_{34}^5 d_{34} = 1$ for N_5
(ii) $a_{32}^1 d_{32} + a_{34}^1 d_{34} \le 0$ for N_1
 $a_{32}^2 d_{32} + a_{34}^2 d_{34} \le 0$ for N_2
 $a_{32}^3 d_{32} + a_{34}^3 d_{34} \le 0$ for N_3

We then have the following remark:

Remark 3.2:

A N_i where $g_i = k$ is said to 'support' a rule $R_l(k)$ if N_i fits the condition (i) of proposition 3.2. A N_r where $g_r \neq k$ is said to 'not support $R_l(k)$ ' if N_r fits condition (ii) of proposition 3.2. Here we specify binary variable u_i and v_r defined as below:

- $u_i = 1$ if a nation N_i supports $R_i(k)$, covered by $R_i(k)$, where $g_i = k$; otherwise $u_i = 0$.
- $v_r = 1$ if a nation N_r support $R_l(k)$, not covered by $R_l(k)$, where $g_r \neq k$; otherwise $v_r = 0$.

Proposition 3.3

For a rule $R_l(k)$ and *n* nation $N_1, N_2, N_3, ..., N_n$, there exists u_i and v_r for satisfying following inequalities.

(*i*)
$$n(\boldsymbol{u}_i - 1) + m - \boldsymbol{h} \le \sum_{j=1}^{m} \sum_{p} a_{jp}^i d_{jp}^j \le m - \boldsymbol{h} + n(1 - \boldsymbol{u}_i)$$
 -----(3.10)

for all *i* where $g_i = k$

Proof : If $u_i = 1$ then (i) is equivalent to (i) in Proposition 3.2.

If $v_r = 1$ then (ii) is equivalent to (ii) in Proposition 3.2.

Following are two criteria for evaluating the quality of the rule.

- (i) The rule should be supported by most nations of a specific group. That means, the support rate of a good rule should be high.
- (ii) The rule should be accurate. That means, the rule should not cover the nations of non-specific groups. In other words, the accuracy rate of a good rule should be high.

Proposition 3.4

Considering a data set containing *n* nations. Denote the number of nations belonging to a specific *k* group as n(k). By referring to (3.3) and (3.4), the meaning of the accuracy

rate and the supporting rate are specified below:

Accuracy rate: The accuracy rate of a rule is specified as

$$AR_{l}(k) = \frac{1}{n - n(k)} (\sum_{g_{r} \neq k} v_{r})$$

That means if none of nation N_r where $g_r \neq k$ is covered by the rule, then the accuracy rate of the rule is 1.

Coverage rate: The coverage rate of a rule is specified as

$$CR_{i}(k) = \frac{1}{n(k)} (\sum_{x_{i}=k} u_{i})$$

That means if all N_{i} where $g_{i} = k$ support the rule then the coverage rate of the rule is 1.

AR and *CR* value for the rules in Table 3.3 are listed in the last two columns of Table3.4. Explanation is described below.

(i) Considering AR and CR of $R_1(1)$, one nation belongs to group 1 (i.e., g=1) and 4 nations belong to other groups. Therefore, n(1) = 1 and n-n(1)=4. Thus,

$$AR = \frac{4}{4} = 1$$
 and $CR = \frac{1}{1} = 1$

(ii) Considering disjunctive values of the rule $R_3(3)$, two nations belongs to group 3 (i.e., g=3) and 3 nations belong to other groups. Therefore, n(1) = 2 and n-n(3)=3. Thus, its AR and CR of $R_3(3)$ is as

$$AR = \frac{3}{3} = 1$$
 and $CR = \frac{2}{2} = 1$

Take Table 3.1 for instance, inducing the rule for g = 1 is formulated below.

MAX CR(1)
s.t.
$$AR = \frac{1}{5-1} (v_2 + v_3 + v_4 + v_5) \ge a$$

 $CR = \frac{1}{1}u_1$
 $5(u_1-1) + 3 - h \le d_{12} + d_{21} + d_{33} \le 3 - h + 5 (1-u_1)$
 $d_{13} + d_{22} + d_{33} \le 3 - h - 1 + 5 (1 - v_2)$
 $d_{12} + d_{22} + d_{31} \le 3 - h - 1 + 5 (1 - v_3)$
 $d_{13} + d_{21} + d_{34} \le 3 - h - 1 + 5 (1 - v_4)$
 $d_{11} + d_{21} + d_{32} \le 3 - h - 1 + 5 (1 - v_5)$
 $u_i, v_r, d_{jp} \in \{0.1\},$
 $h \ge b$

By specifying a = 1 and b=1, the solution obtained is: CR=1 with $d_{12}=d_{21}=1$ (all other $d_{jp}=0$), h=1, $u_1=v_2=v_3=v_4=v_5=1$, AR=1. This rule is exactly R₁(1) in Table 3.3. Another instance of inducing the rule for g = 3 is formulated below

$$MIN \ CR(3)$$

s.t. $AR = \frac{1}{5-2}(v_1 + v_2 + v_3 + v_4 + v_5) \ge a$
 $CR = \frac{1}{2}(u_4 + u_5)$
 $5(u_4 - 1) + 3 - h \le d_{13} + d_{21} + d_{34} \le 3 - h + 5 (1 - u_4)$
 $5(u_5 - 1) + 3 - h \le d_{11} + d_{21} + d_{32} \le 3 - h + 5 (1 - u_5)$
 $d_{12} + d_{21} + d_{33} \le 3 - h - 1 + 5 (1 - v_1)$
 $d_{13} + d_{22} + d_{33} \le 3 - h - 1 + 5 (1 - v_2)$
 $d_{12} + d_{22} + d_{31} \le 3 - h - 1 + 5 (1 - v_3)$
 $u_i, v_r, d_{jp} \in \{0, 1\}$
 $h \ge b$

By specifying a=1 and b=1, the solution obtained is

CR = 1 with $d_{32} = d_{34} = 1$, all other $d_{jp} = 0$, h = 1, $u_4 = u_5 = v_1 = v_2 = v_3 = 1$, AR = 1

3.3 Models of Inducing Rules

From the basis of the discussion above, two models for inducing the rule are illustrated. Model (I) is designed to obtain rules that at most one attribute has disjunctive sub attribute values. The interval values of an attribute represent proximity of a class. The other attributes show specific characteristics in the class. Users can realize the specific competitiveness based on the proximity. Technically, the optimization is applied to approach the objective of the model.

Model (I)

Model (II) is designed to generate rules with attribute reduction that approaches optimal performance of coverage and accuracy rates. Two advantages are provided. First, it

ignores attributes as possible. Second, it generates a continuous sub attributes in the rule. Step (iv) of Model (II) enforces $d_{j,t}$ to value 1 if both sides of sub attribute *t* have value 1. This model generates rule presented by attribute intervals. Application of Model (II) on Example 1 is described in Section 6.2 of Chapter 6 (Li 2007).

Model (II)

s.t.

$$Max \quad \frac{CR_l(k) + AR_l(k)}{m-h},$$

m is the number of attributes

h is the number of ignored attributes

(*iii*) (3.10), (3,11), (3,12) of proposition 3.3

$$(iv) \ \boldsymbol{d}_{j,t} \ge \frac{\sum_{p=1}^{t-1} \boldsymbol{d}_{j,p}}{t-1} + \frac{\sum_{p=t+1}^{q(j)-1} \boldsymbol{d}_{j,p}}{q(j)-t} - \max\{\frac{\sum_{p=1}^{t-1} \boldsymbol{d}_{j,p}}{t-1}, \frac{\sum_{p=t+1}^{q(j)-1} \boldsymbol{d}_{j,p}}{q(j)-t}\},\$$

 $2 \le t \le q(j) - 1$, t is a sub attribute of j

q(j) is the number of sub attributes of attribute j

$$d_{jp} \in \{0,1\}$$

Chapter 4 Induction Rules

4.1 Dynamic Rules of Competitiveness Classes

By utilizing the method proposed in Chapter 3, we can induce the rules of 4 classes for each year. These rules are described as R_i^{2001} , R_i^{2003} , and R_i^{2005} , where *i* represents 4 classes G_1 , G_2 , G_3 , and G_4 . The results are presented in Table 4.1. These rules are the best rules for each class with high AR and CR. Take R_i^{2001} for instance, R_4^{2001} is the best rule for class 4 at year 2001, which is expressed as $(a_3 \ge 3)$ and $(a_1 = 4 \text{ or } a_2 = 4)$ with AR = 0.87 and CR = 0.86. That means: For a nation at year 2001, if its GDP (a_3) greater than or equal to level 3, and its Computer (a_2) or its Export (a_1) is at the highest level (level 4) then this nation belongs to the highly competitive class (G_4) . 14 of 46 nations fit these conditions (12 in G_4 , BELGIUM and NORWAY in G_3). Therefore the rule covers 12 of the 14 nations in G_4 (GERMANY, and AUSTRIA are not covered) and the coverage rate is 12/14=0.86. There are 32 nations in other classes $(G_1, G_2, \text{ and } G_3)$. Therefore, the accuracy rate is 30/32=0.94 due to BELGIUM and NORWAY in the G_3 class are covered by the rule.

	Rule ID	Rules	Supporting Nations	Not supporting	AR	CR
G ₄	R_4^{2001}	$(a_3 \ge 3)$ and $(a_1 = 4 \text{ or } a_2 = 4)$	CANADA, DENMARK FINLAND , AUSTRALIA, HONG KONG, ICELAND, IRELAND, NETHERLANDS, SINGAPORE,	Nations GERMANY, AUSTRIA	0.94	0.86
	R_4^{2003}	$(a_3 \ge 3)$ and $(a_1 = 4 \text{ or } a_2 = 4)$	AUSTRALIA, AUSTRIA, CANADA, DENMARK, FINLAND, HONG KONG ICELAND,LUXEMBOURG, NETHERLANDS, SINGAPORE,		090	1
	R_4^{2005}	$(a_3 \ge 3)$ and $(a_1 = 4 \text{ or } a_2 = 4)$	CANADA, DENMARK FINLAND, HONG KONG ICELAND, IRELAND, LUXEMBOURG, NETHERLANDS, SINGAPORE, SWEDEN,	TAIWAN	0.90	0.92
G ₃	R_3^{2001}	$(a_3 \ge 2)$ and $(a_2 = 3 \text{ or } a_5 = 3)$	BELGIUM, TAIWAN, NORWAY, FRANCE, SPAIN, JAPAN, UNITED KINGDOM	ISRAEL, NEW ZEALAND, CHILE	0.72	0.70
	R_3^{2003}	$(a_3 \ge 2)$ and $(a_2 = 3 \text{ or } a_5 = 3)$	NORWAY, BELGIUM, NEW ZEALAND, GERMANY, TAIWAN, UNITED KINGDOM, FRANCE, NEW ZEALAND	MALAYSIA	0.72	0.88
	R_3^{2005}	$(a_3 \ge 2)$ and $(a_2 = 3 \text{ or } a_5 = 3)$	AUSTRIA, BELGIUM, NEW ZEALAND, GERMANY, ISRAEL, JAPAN, NORWAY, UNITED KINGDOM	CHILE	0.72	0.88
G ₂	R_2^{2001}	$(a_1 = 2 \text{ or } a_{10} = 2)$	HUNGARY, KOREA, MALAYSIA, ITALY, CZECH REPUBLIC, MEXICO, BRAZIL, GREECE, PORTUGAL, THAU AND	MAINLAND CHINA	0.72	0.90
	R_2^{2003}	$(a_1 = 2 \text{ or } a_8 = 2)$	CHILE, SPAIN, JAPAN, HUNGARY, KOREA, ITALY, CZECH REPUBLIC, ISRAEL, SOUTH-AFRICA, THAILAND	COLOMBIA, MAINLAND CHINA	0.70	0.67
	R_2^{2005}	$(a_1 = 2 \text{ or } a_8 = 2)$	SPAIN, MALAYSIA, HUNGARY, THAILAND, INDIA, PORTUGAL, KOREA, CZECH REPUBLIC	MAINLAND CHINA, FRANCE	0.72	0.8
G1	R_1^{2001}	$a_2 = 1$ and $a_3 \le 2$	COLOMBIA, TURKEY, INDIA, PHILIPPINES, RUSSIA, POLAND, SOUTH-AFRICA, ARGENTINA, INDONESIA, VENEZUELA,		0.85	1
	R_1^{2003}	$a_2 = 1$ and $a_3 \le 2$	INDIA, TURKEY, PHILIPPINES, BRAZIL, MEXICO, RUSSIA, ARGENTINA, INDONESIA, VENEZUELA	PORTUGAL, GREECE, POLAND	0.88	0.75
	R_1^{2005}	$a_2 = 1$ and $a_3 \le 2$	COLOMBIA, TURKEY, PHILIPPINES, BRAZIL, MEXICO, RUSSIA, POLAND, ARGENTINA, INDONESIA, VENEZUELA, SOUTH-AFRICA	ITALY, GREECE	0.87	0.84

Table 4.1: Rules of o	competitiveness	classes
-----------------------	-----------------	---------

_
Table 4.1 shows that 6 most significant attributes in the induced rules. The rules in Table 4.1 can also be expressed graphically in Figure 4.1. Here we use 6 axes to express 6 key attributes included in the induced rules. They are a_1 (EXPORT), a_2 (COMPUTER), a_3 (GDP), a_5 (STOCK), a_8 (INFLATION), and a_{10} (FDI). Each axis is denoted by 4 segments which express the 4 levels of an attribute. A full dot at the segment of an axis means "necessary conditions" of supporting the rule, while a hollow-dot means "sufficient conditions" of supporting rules. For instance, 3 attributes (a_1 , a_2 , a_3) are used to describe R_4^{2001} where a_3 (GDP) ≥ 3 is a necessary condition and ($a_1 = 4$ or $a_2 = 4$) is the sufficient condition. Both of them are conjunctively connected to support the rule R_4^{2001} . Examining Table 4.1 and Figure 4.1, the induced rules are analyzed below:

- (i) GDP (a3) plays a critical role in formulating classes. If a nation wants to be highly competitive, it should have $GDP \ge 3$ during 2001-2005. On the other hand, if a nation is at the worst level (GDP=1), then it is very likely to belong to a non-competitive or a least-competitive class. That means GDP is the fundamental attribute of competitiveness.
- (ii) Computers (a_2) , indicating the level of technology infrastructure, is an essential attribute of competitiveness. For example, if a nation's a_2 is 4 or 3 then this nation quite possibly belongs to a highly competitive or competitive class. On the contrary, if a nation's computers are restricted to a low level (i.e., $a_2 = 1$) then the nation's competitiveness is limited to the least competitive class (i.e., G_1).
- (iii) Export (a_1), which shows a nation's comparative advantage and its ability to globalize, is another critical attribute of competitiveness. In the same way of a_2 , $a_1 = 4$ is another sufficient condition for a nation to be highly competitive. From the point of view of enhancing competitiveness, if a least competitive nation wants to upgrade as a non-competitive nation, one potential way is to improve its export volume to level 2 (i.e. $a_1 = 2$).
- (iv) Inflation (a_8) is important for competitive and non-competitive nations. If a nation does

not want to fall into the least competitive, it should prevent its inflation from being at a low level.

- (v) Stock (a_5) can reflect business ability and nations' competitiveness from the standpoint of globalization. Foreign capital investment gives rises of international collaboration and globalization. A competitive nation had better to keep its stock market capitalization level higher than or equal to three (i.e. $a_5 \ge 3$).
- (vi) FDI (a_{10}) carries capital and technology to help nations to promote their competitiveness. For a nation of the least competitive class to move up to a noncompetitive class, it needs to enhance its Foreign Direct Investment or its export volume (i.e. to let $a_{10} = 2$ or $a_1 = 2$).
- (vii) All R_1^{2001} , R_1^{2003} , and R_1^{2005} rules indicate that a nation may stay in the least competitive class due to its lower GDP ($a_3 \le 2$) and lowest Computer hosts ($a_2 = 1$).
- (viii) R_2^{2001} , R_2^{2003} , and R_2^{2005} rules for the non-competitive class show that inflation (*a*₈) has become more significant than Foreign Direct Investment in recent years.

mann

Figure 4.1: Competitiveness structure of 4 classes during 2001~2005

From the basis of the induced rules of forming 4 classes in Table 4.1, here we induce dynamic rules for forming 18 various competitive groups listed in Table 2.2. There are 4 types of competitive groups: sustaining type, upward type, downward type, and mixed type described in the following.

4.2 Dynamic Rules of Sustaining Groups

There are 4 groups in sustaining type. Each group has 3 same classes for 2001, 2003, and 2005. Take R_{444} for instance, R_{444} is the rule for forming G_4 class in all 2001, 2003, and 2005, which is expressed as

$$R_{444} = R_1^{2001}(4) \wedge R_1^{2003}(4) \wedge R_1^{2005}(4) = (a_3 \ge 3) \wedge (a_1 = 4 \lor a_2 = 4)$$

Twelve nations are covered by this rule, where AR = 0.94 and CR = 1. Similarly,

$$R_{333} = R_1^{2001}(3) \land R_1^{2003}(3) \land R_1^{2005}(3) = (a_3 \ge 2 \land a_8 \ge 2) \land (a_2 = 3 \lor a_5 = 3)$$

The 4 rules for sustaining types are shown in Table 5.1.

groups	Rules	Supporting nations	Not supporting	AR	CR
R ₄₄₄	$R_4^{2001} \wedge R_4^{2003} \wedge R_4^{200}$ ($a_3 \ge 3$) and ($a_1 = 4$ or $a_2 = 4$)	AUSTRALIA , CANADA, DENMARK, FINLAND, HONG KONG, ICELAND, LUXEMBOURG, NETHERLANDS, SINGAPORE, SWEDEN, SWITZERLAND, USA	USTRALIA , CANADA, DENMARK, INLAND, HONG KONG, ICELAND, UXEMBOURG, NETHERLANDS, SINGAPORE, WEDEN, SWITZERLAND, USA		
R ₃₃₃	$R_{3}^{2001} \wedge R_{3}^{2003} \wedge R_{3}^{200}$ (a ₃ \geq 2) and (a ₂ =3 \wedge a ₅ =3)	BELGIUM, NORWAY, UNITED KINGDOM	NEW ZEALAND	0.80	0.75
R ₂₂₂	$R_2^{2001} \wedge R_2^{2003} \wedge R_2^{200}$	CZECH REPUBLIC, HUNGARY, KOREA	MAINLAND CHINA	0.85	0.75
R ₁₁₁	$R_1^{2001} \land R_1^{2003} \land R_1^{2003}$ $a_2 = 1 \text{ and } a_3 \le 2$	ARGENTINA, INDONESIA, PHILIPPINES, RUSSIA, TURKEY, VENEZUELA	POLAND	0.92	0.85

Table 4.2 : Sustaining type

4.3 Dynamic Rules of Upward Groups

The rules for the upward groups are described in Table 5.2 and significant attributes are illustrated in Figure 4.2. Only 3 nations are included in this type, where Taiwan belongs to G_{334} , THAILAND belongs to G_{122} , and INDIA belongs to G_{112} . These nations benefit from an increase of GDP growth rate. However, TAIWAN is an exception, which only has growth in the number of incorporated companies. The 14 attributes cannot clearly explain this case.

groups	Nations	Critical	Description
attributes		attributes	Description
G ₃₄₄	TAIWAN	a_4	 Its incorporated companies steadily increased from 462 (2001), 584 (2003) to 669 (2005).
G ₁₂₂	THAILAND	<i>a</i> ₁₂	 Its GDP growth rate increased from 4.5 (2001) and 5.2 (2003) to 6.1 (2005). Its exports of goods and services increased from 1275 (2001) to 1252 (2003) and 1741 (2005) billions. Her GDP per capita also increased from 2001(2001) and 1955 (2003) to 2509 (2005).
G ₁₁₂	INDIA	<i>a</i> ₁₂	 Its GDP growth rate increased from 6.0 (2001) and 4.37 (2003) to 6.8 (2005). Its consumer price inflation decreased from 4.3 (2001) and 4.3 (2003) to 2.6 (2005). Its GDP per capita also increased from 444 (2001) and 445 (2003) to 578 (2005).

 Table 4.3: Upward type

Figure 4.2 Critical attributes of upward type

4.4 Dynamic Rules of Downward Groups

The downward type is described in Table 4.4 and significant attributes are illustrated in Figure 4.3. Most nations in the downward type (AUSTRIA, GERMANY, FRANCE, SPAIN, and ITALY) suffered from the increase in the unemployment rate (a_9). Some competitive nations (GERMANY, FRANCE, SPAIN, ITALY, and BRAZIL) are affected by a decrease in the GDP growth rate (a_{12}). Some nations (SPAIN, ITALY, and GREECE) have lost competitiveness due to continuously borrowing money from foreign nations (a_{13}).

groups	Nations	Critical attributes	Description	
G ₄₄₃	AUSTRIA	<i>a</i> ₁₂	 Its GDP growth rate decreased from 3.3 (2001) to 0.5 (2003) and 2 (2005). There are negatives of soft data from Global Competitiveness Report about her most problematic attributes such as tax regulations, corruption, and access to financing, and inefficient government bureaucracy. 	
G ₄₃₃	GERMANY	$a_{12} \\ a_{9}$	 Its GDP growth rate decreased from 3.2 (2001) to 0.1 (2003) and 1.6 (2005). Its foreign direct investment decreased from 631 (2001) to 381 (200 and -592 (2005) billions. Its unemployment rate increased from 7.7 (2001) to 8.2 (2003) and 9 (2005). 	
G ₃₃₂	FRANCE	$a_{12} \\ a_{9}$	 Its GDP growth rate decreased from 3.2 (2001) to 0.1 (2003) and 1.6 (2005). Its er unemployment rate started at 9.7 (2001), 8.7 (2003) and up to 9.6 (2005). Her current account balance decreased from 373 (2001) and 459 (2003) to -108 (2005) billions. 	
G_{322}SPAIN a_{12} a_{9} \bullet Its GDP gr \bullet Its unemple (2003) and \bullet Its current (2003) andG_{322}SPAIN a_{9} a_{13} \bullet Its current (2003) and		$\begin{array}{c}a_{12}\\a_{9}\\a_{13}\end{array}$	 Its GDP growth rate decreased from 4 (2001) to 2 (2003) and 2.7 (2005). Its unemployment rate has been keeping high as 14.1 (2001), 11.4 (2003) and 10.8 (2005). Its current account balance is extremely negative as -380 (2001), -379 (2003) and -1113 (2005) billions. 	
G ₂₂₁	ITALY	<i>a</i> ₁₂	• Its GDP growth rate decreased from 2.8 (2001) to 0.4 (2003) and 1.2	

 Table 4.4 : Downward type

		a_9	(2005).
		a_{13}	• Its unemployment rate has been keeping high as 10.8 (2001), 9 (2003)
			and 8 (2005).
			• Its current account balance has been keeping negative for -75 (2001),
			-116 (2003) and -189 (2005) billions.
			• Its unemployment rate has been keeping high as 9.6 (2001), 10.5 (2003)
		a_8	and 11.48 (2005).
	DKAZIL	a_9	• Its consumer price inflation has been keeping high as 5.97 (2001), 12.5
			(2003) and 7.6 (2005)
	GREECE		• Its current account balance has been extremely negative as -379 (2001),
G		<i>a</i> ₁₃	-775 (2003) and -1001 (2005) billions.
U ₂₁₁		a_9	• Its unemployment rate has been keeping high as 11.4 (2001), 10 (2003)
			and 9.1 (2005).
			• Its consumer price inflation has been keeping high as 9.49 (2001), 5.06
	MEVICO	a_8	(2003) and 5.2 (2005)
	MEAICO	<i>a</i> ₁₃	• Its current account balance has been keeping negative -172 (2001), -147
			(2003) and -84 (2005) billions.

Figure 4.3: Critical attributes of downward type

Chapter 5 Displaying National Competitiveness on Spheres

Nations covered by rules of Table 4.1 are displayed on spheres in this chapter. A visual differentiation of nations is presented to enhance readability of the induced rules. The displaying method consists of 3 steps, which are data normalization, data conversion, and transformation, as shown in Figure 5.1.

5.1 Proposed Displaying Method

Figure 5.1: The process of displaying method

In our design the first two steps are preprocessing steps that generate dissimilarity between nations. The last step transforms the dissimilarity into coordinates of nations on a sphere. An example (Example 2) is illustrated with data and implementation below.

This example randomly selects 11 nations covered by two induced rules for 2005 from Table 4.1. Consider a data set in Table 5.1 with 11 nations $(N_1, N_2, ..., N_{10}, N_{11})$, 4 factors (f_1, f_2, f_3, f_4) and 1 class indicator g. The domain values of f_1, f_2, f_3 , and f_4 are continuous numbers, which are retrieved from Table E.1 in Appendix E. The domain value of g is {4, 2}. For instance, N_{11} (USA) is expressed as N_{11} = (62.72, 100.00, 84.00, 95.46) and g_{11} = 4.

	Nations	f_1	f_2	f_3	f_4	g
N_1	Australia	73.39	53.03	78.62	65.05	4
N_2	Canada	69.97	57.92	72.50	72.37	4
N_3	Denmark	74.34 E S	46.97	77.07	73.99	4
N_4	Finland	75.87	46.08	75.66	75.09	4
N_5	France	38.63	58.94	37.46	63.96	2
N_{6}	India	42.83	56.85	53.34	25.38	2
N_7	Korea	47.57	42.48	49.21	59.88	2
N_8	Malaysia	51.22	59.53	51.11	43.69	2
N_9	Spain	47.81	50.82	34.31	46.96	2
N ₁₀	Taiwan	60.19	54.19	77.19	63.89	4
N ₁₁	USA	62.72	100.00	84.00	95.46	4

 Table 5.1: Data set of Example 2

Based on the Table 5.1, the steps of display method are illustrated in following sections.

5.2 Data Normalization

The normalizing function puts different measures of factors into the same scale [0, 1]. It

is formulated as

$$s_{i,f} = w_j * \frac{f_{i,j} - f_j}{\overline{f_j} - f_j}$$
 for $i = 1, ..., 45; j = 1, ..., 4$ -----(5.1)

where i is an index for nations, j for factors, i.e. government efficiency, economic

performance, business efficiency, and infrastructure, respectively; w_j is 0.25 for each factor

defined in WCY-IMD; $f_{i,j}$ is the raw data of the *j* factor for the *i* nation in Table E.1,

$$\overline{f_j} = \max\{f_{1,j}, f_{2,j}, ..., f_{46,j}\} \text{ and } \underline{f_j} = \min\{f_{1,j}, f_{2,j}, ..., f_{46,j}\}; \ 0 \le s_{if} \le 1.$$

Example 2 of Table 5.1 can be normalized into Table 5.2 by using (5.1).

	Table 5.2. Normalized data set of Example 2					
$S_{i,f}$	Nations	f_1	f_2	f_3	f_4	g
N_1	Australia	0.220	0.087	0.198	0.161	4
N_2	Canada	0.210	0.104	0.182	0.182	4
N_3	Denmark	0.121	0.059	0.117	0.115	4
N_4	Finland	0.223	0.066	0.194	0.187	4
N_5	India	0.228	0.062	0.190	0.190	2
N_{6}	Korea	0.116	0.107	0.090	0.158	2
N_7	Malaysia	0.135	0.041	0.116	0.116	2
N_8	Portugal	0.154	0.109	0.125	0.098	2
N_9	Spain	5 0.144 E S	0.079	0.081	0.108	2
N ₁₀	Taiwan	0.218	0.090	0.170	0.197	4
N ₁₁	USA	0.188	0.250	0.212	0.250	4

Table 5.2: Normalized data set of Example 2

5.3 Data Conversion

The dissimilarity between nations i and j, is calculated by the function (5.2), which converts the normalized data of Table 5.2 into Table 5.3.

The dissimilarity function is formulated as

$$\overline{d}_{ij}(w) = \sqrt{\sum_{k=1}^{4} (s_{i,f} - s_{j,f})^2}, \quad 0 \le d_{ij} \le 1, \quad d_{ij} = d_{ji} \qquad -----(5.2)$$

	Table 5.3: Dissimilarity matrix of Example 2										
\overline{d}_{ij}	N_1	N_2	N_3	N_4	N_5	N_6	N_7	N_8	N ₉	N_{10}	N ₁₁
N_1	0	0.031	0.030	0.035	0.156	0.115	0.117	0.189	0.154	0.037	0.149
N_2		0	0.033	0.036	0.160	0.105	0.113	0.182	0.145	0.039	0.130
N_3			0	0.007	0.176	0.116	0.133	0.195	0.162	0.051	0.151
N_4				0	0.179	0.117	0.135	0.195	0.162	0.057	0.154
N_5					0	0.104	0.056	0.101	0.084	0.136	0.245
N_6						0	0.063	0.086	0.060	0.093	0.206
N_7							0	0.090	0.055	0.098	0.202
N_8								0	0.040	0.172	0.274
N_9									0	0.137	0.236
\overline{N}_{10}										0	0.146
N 11											0

To illustrate visual classes, we select 4 nations from Table 5.3 to represent 2 classes. Apparently, the dissimilarity between nations of the same class is much smaller than those of different classes. For instance, $\overline{d}_{Finland, Australia} = 0.035$ (within class 4) is much smaller than $\overline{d}_{Finland, Spain} = 0.162$ (between different classes).

Based on the pair dissimilarity provided in Table 5.3, we further display Example 2 through a transformation function, which is described next.

5.4 Transformation

This section adopts multidimensional scaling to transform \overline{d}_{ij} to \hat{d}_{ij} , the distance between nation *i* and *j*, as shown on the surface of sphere. Following Kruskal (1964), the Stress has the value range from 0 to 1, with 0 indicating a perfect fit and 1 implying the worst possible fit. The rule of thumb for the value of Stress is that anything under 0.1 is excellent and anything over 0.15 is unacceptable. To display nations covered by the induced rules on the sphere we have a function that transforms dissimilarity into distance on the sphere, which is described below.

Transformation Model:

 $\begin{aligned} \text{MIN} \quad & \sum_{i} \sum_{j} |d_{ij}^{2} - \overline{d}_{ij}^{2}| \\ Stress = \frac{\sum_{i} \sum_{j} (d_{ij} - \overline{d}_{ij})^{2}}{\sum_{i} \sum_{j} \overline{d}_{ij}} \leq 0.15, \text{ (i and j belong to the same class)} \\ & \sqrt{x_{i}^{2} + y_{i}^{2} + z_{i}^{2}} = 1 \\ & x_{USA} = 0, \ y_{USA} = r, \ z_{USA} = 0 \end{aligned}$

 $d_{ij} \ge \delta$ (where nation i belongs class k and j belongs class k+1,

classes are arranged away mutually by δ)

The optimization technique is applied to restrict the error rate of MDS to less than 0.15. Our model is implemented in Lingo 10. Once users finish the dissimilarity matrix the execution of model will solve a_{ij} and get coordinates of nations.

By executing the model above, coordinates (x, y, z) of Australia (N_1), Finland (N_4), Malaysia (N_8), Spain (N_9), USA (N_{11}) are listed in Table 5.4. They are displayed on the

Figure 5.2.

	Х	У	Z
N_1	0.2885919	0.8992801	-0.3286487
N_2	0.2850063	0.9230719	-0.2582821
N_3	-0.5639094	0.7994895	0.4131095
N_4	0.3353658	0.8889409	-0.3119515
N_{51}	0.344036	0.8854371	-0.3124744
No	-0.5771191	0.6684961	0.5562589
N_7	-0.5752986	0.8093132	0.3808428
N8	0.2632078	0.9103639	-0.3193105
Ng	0.1036893	0.9393901	-0.3267948
N_{10}	-0.4580393	0.8218026	0.4999124
N_{11}	-0.5982569	0.6455617	-0.4746987

 Table 5.4: Coordinates of nations on the sphere

Figure 5.2: A display sphere with competitiveness classes for Example 2

According to values of Table 5.4 and Figure 5.2, users can take visual distance and direction of the North Pole to have enhanced realization of induced rules. The proposed method provides a simple way to understand the approximate differentiation of competitiveness rules, which is described in details next section.

5.5 Displaying Induced Rules of 2003 and 2005

In this section induced rules and their covered nations are displayed to give explanation for competitiveness differentiation of Table 4.1. Users can catch competitiveness direction from Figure 5.3 and 5.4 which show the closer to the USA the more competitiveness in computer usage and Gross Domestic Product. For instances, R_4^{2005} and R_4^{2003} , the covered nations have good investment in computers and their citizens have a good standard living. Inversely, nations farther away from USA like those covered by R_1^{2005} and R_1^{2003} are worse in the previous two indicators. For nations covered by R_3^{2005} , they have medium Gross Domestic Product and stock market value. Nations under R_2^{2005} struggle with inflation and have low investment in computers, which means they have weak potential for the future competitiveness.

Figure 5.3: Display sphere for 2003

Figure 5.4: Display sphere for 2005

Chapter 6 Comparison of Decision Tree and the Proposed Method

ID3 is one of the most popular methods in rule induction. In research literature, it is appraised with easy and simple rule expression. It is better in classification accuracy than other methods (Mak 2002; Sikder 2009). However, it is a heuristic method that does not provide optimal solutions. We develop the inducing method based on optimization technology that has good accuracy performance and provides more rules than ID3. This chapter compares ID3 and our proposed method for inducing rules based on class nations for 2008 of WCY-IMD.

There are 3 sections next. Section 6.1 presents ID3 based on Example 1. Section 6.2 applies the proposed method on Example 1. Finally comparison between update ID3 and the proposed method are presented.

6.1 ID3

ID3 provides decision trees by recursively partitioning a set, S, and presents the classified subsets at leaf level with conjunctive terms of attribute values. Selecting a classifier is the critical issue of the performance, which has been improving for 20 years. We present the ID3 by using Example 1 of Table 3 below. Finally, an update ID3 is also presented to show its improvement.

The algorithm of ID3 is illustrated in Figure 6.1 with 4 steps.

- Step 1: Compute the entropy value of information over a set, S, by E(S), which is illustrated in Table 6.1.
- Step 2: Compute the entropy value of information over classes for each attribute by $PE(S_j)$, which is illustrated in Table 6.2. If all samples in S are in the class k then stop and

return.

Step 3: Select an attribute with the biggest information gain E(S) - PE(S, j) then partition the nations of S into subsets like Figure 6.2.

Step 4: Apply the algorithm recursively to subsets S_1, S_2, \ldots , and S_x .

Figure 6.1: The processes of ID3 algorithm

Figure 6.2: A conceptual ID3 tree

Here we take the example in Table 3.1 of this dissertation to illustrate the steps of ID3. The process is calculated as below.

Step 1: Compute E(*S*)

Consider a data set, *S*, in Table 3.1. The set of sample nations is expressed as *S*. Three classes indicated by g of Example 1 are involved in probability calculation. The expected information to express the classes is measured by E(S) of (6.1).

	1					
Set and class sets	Probability	Entropy value of information over S				
$S = \{N_1, N_2, N_3, N_4, N_5\}$		E(S)				
$\boldsymbol{S}(1) = \{N_1\}$	$P(1) = \frac{ S(1) }{ S } = 0.2$	$= \sum_{m=1}^{m} (-1) * P(k) \log_{m}(P(k))$				
$\boldsymbol{S}(2) = \{N_2, N_3\}$	$P(2) = \frac{ S(2) }{ S } = 0.4$					
$S(3) = \{N_4, N_5\}$	$P(3) = \frac{ S(3) }{ S } = 0.4$	- 0.9002				
	- all all a -					

Table 6.1: Step 1 of ID3

$$E(S) = \sum_{k=1}^{m} P(k) * (-1) * \log_{m}(P(k))$$

-----(6.1)

m is the number of classes in the set S,

k is an index for a class

 $P(k) = \frac{\text{the number of nations in class } k}{\text{the number of nations in } S},$

which is the probability distribution for the class k

 $(-1)*\log_m(P(k))$ is a random variable on the class k

If P(k) = 0 *then* $P(k) \log_m(1/P(k)) = 0$

Step 2: Compute PE(S,j)

This step measures the entropy of information over classes by $PE(S_j)$ of (6.2) for each attribute. The computation of attribute, a_2 , is illustrated in Table 6.2.

av presents a value of attribute a_i

 $S_{aj=av}$ is a subset composed of nations having $a_j = av$

$$p_{aj=av} = \frac{\text{the number of nations having } S_{aj=av}}{\text{the number of nations in } S} = \frac{|S_{aj=av}|}{|S|}$$

 $E(S_{aj=av})$ is the function (6.1) applied on a subset $S_{aj=av}$

	Set and class sets	Probability	Entropy of information over
		TIN THE THE	classes
a ₂ =1	$\boldsymbol{S}_{a2=1} = \{N_1, N_4, N_5\}$	$p_{a2=1} = \frac{ S_{a2=1} }{ S } = 0.6$	$\operatorname{PE}(\boldsymbol{S}, a_2)$
	$S_{a2=1}(1) = \{N_1\}$	$P_{a2=1}(1) = \frac{ \boldsymbol{S}_{a2=1}(1) }{ \boldsymbol{S}_{a2=1} } = 0.33$	$= \sum_{av=1}^{2} \mathbf{p}_{a2=av} \times \mathbf{E}(\mathbf{S}_{a2=av})$
	$\boldsymbol{S}_{a2=1}(2) = \boldsymbol{\emptyset}$	$P_{a2=1}(2) = 0$	
	$S_{a2=2}(3) = \{N_4, N_5\}$	$P_{a2=1}(3) = \frac{ \boldsymbol{S}_{a2=1}(3) }{ \boldsymbol{S}_{a2=1} } = 0.67$	$= p_{a2=1} * E(S_{a2=1}) + p_{a2=2} * E(S_{a2=2})$ = 0.6 * E(S_a) + 0.4 * E(S_a)
a ₂ =2	$S_{a2=2} = \{N_2, N_3\}$	$p_{a2=2} = \frac{ S_{a2=2} }{ S } = 0.4$	$= 0.0 \cdot E(\mathbf{S}_{a2=1}) + 0.4 \cdot E(\mathbf{S}_{a2=2})$
	$\boldsymbol{S}_{a2=2}(1) = \boldsymbol{\emptyset}$	$P_{a2=2}(1) = 0$	$= 0.6*(-\frac{1}{3}*\log_3 3 - \frac{2}{3}*\log_2 \frac{3}{2}) +$
	$S_{a2=2}(2) = \{N_2, N_3\}$	$P_{a2=2}(2) = \frac{ S_{a2=2}(2) }{ S_{a2=2} } = 1$	$0.4*(-1*\log_3 1)$
	$\boldsymbol{S}_{a2=2}(3) = \boldsymbol{\emptyset}$	$P_{a2=2}(3) = 0$	= 0.29814

Table 6.2: Step 2 of ID3 by the attribute a_2

Step 3: Select a classifier and generate subtrees

The results of PE(\mathbf{S} , j) are listed in Table 6.3. The classifier, a_3 , is selected due to having the maximum information gain in Table 6.3. Then, \mathbf{S} is partitioned into \mathbf{S}_1 , \mathbf{S}_2 , \mathbf{S}_3 , and \mathbf{S}_4 by a_3 , as shown in Figure 6.3.

	E(S)	$PE(\mathbf{S}, a_1)$	$PE(\mathbf{S}, a_2)$	$PE(\mathbf{S}, a_3)$
Entropy of	0.0602	0.6200	0 20814	0
information	0.9602	0.0309	0.29814	0
Information		0.2202	0.66206	0.000
Gain		0.3293	0.66206	0.9602
Selected				
classifier	Ē	ESA		a_3
	THE	1896		

Table 6.3: Step 3 of ID3

(6.3)

Figure 6.3: The ID3 tree of Example 1 in Table 3.1

Step 4: Recursively partition subsets with Step 1

All nations of S_1 , S_2 , and S_4 in Figure 6.3 are in the same class. The ID3 terminates at these subtrees. S_3 has two nations belonging to different classes. Thus, S_3 is further partitioned with Step 1.

Decision rules of ID3 are extracted by taking attribute values conjunctively from the root to the leaf in the tree. The class rules with AR and CR are listed in Table 6.4.

	Induced Rules	AR	CR
g=1	$a_3=3 \text{ and } a_2=1$	1	1
g=2	<i>a</i> ₃ =1	1	0.5
g=3	<i>a</i> ₃ =4	1	0.5

Table 6.4:	Induced	rules of	f Example	1 k	ov ID3

An update ID3 modifying information gain with an average value is formulated below

(Wang, 2007).

Average Information Gain = $\frac{E(S) - PE(S, j)}{\text{the number of } a_i \text{ value}} = -----(6.4)$

The update ID3 chooses a classifier by skipping the attribute that has many attribute values. The result of update ID3 is shown in Table 6.5 and Figure 6.4. It enhances coverage rate of rules by choosing a_2 . Take a look at Table 6.4 and 6.5. The update ID3 has a better coverage rate than ID3 for g=2.

group	Induced Rules	AR	CR
g=1	$a_2=1$ and $a_1=2$	1	1
g=2	<i>a</i> ₂ =2	1	1
g=3	$a_2=1 \text{ and } a_1=1$	1	0.5

 Table 6.5: Induced rules of Example 1 by update ID3

Figure 6.4: The update ID3 tree of Example 1

6.2 The Proposed Method

By applying the proposed Model (II) on Example 1, formulation of continuous sub attributes is illustrated below (Li, 2007).

$$\begin{array}{c} Max \quad \frac{AR(k) + CR_{l}(k)}{m-h} \\ s.t. \\ (i) \quad AR_{l}(k) = \frac{1}{n-n(k)} (\sum_{g_{r} \neq k} v_{r}) \end{array}$$

(*ii*)
$$CR_{l}(k) = \frac{1}{n(k)} (\sum_{g_{i}=k} u_{i})$$

- (*iii*) (3.9), (3,10), (3,11) of proposition 3.3
- $(iv) \ d_{1,2} \ge \frac{d_{1,1}}{1} + \frac{d_{1,3} + d_{1,4}}{2} \max\{\frac{d_{1,1}}{1}, \frac{d_{1,3} + d_{1,4}}{2}\}$
- $(v) \ d_{3,2} \ge \frac{d_{3,1}}{1} + \frac{d_{3,3} + d_{3,4}}{2} \max\{\frac{d_{3,1}}{1}, \frac{d_{3,3} + d_{3,4}}{2}\}$

$$(vi) \ d_{3,3} \ge \frac{d_{3,4}}{1} + \frac{d_{3,1} + d_{3,2}}{2} - \max\{\frac{d_{3,4}}{1}, \frac{d_{3,1} + d_{3,2}}{2}\}$$

Model (II) of inducing the rule for g = 3 is formulated below.

$$\begin{split} 5(u_4 -1) + 3 - h &\leq d_{21} + d_{34} \leq 3 - h + 5 (1 - u_4) \\ 5(u_5 -1) + 3 - h &\leq d_{21} + d_{32} \leq 3 - h + 5 (1 - u_5) \\ d_{21} + d_{33} &\leq 3 - h - 1 + 5 (1 - v_1) \\ d_{33} &\leq 3 - h - 1 + 5 (1 - v_2) \\ 0 &\leq 3 - h - 1 + 5 (1 - v_3) \\ d_{3,2} &\geq \frac{d_{3,3} + d_{3,4}}{2} - \max\{0, \frac{d_{3,3} + d_{3,4}}{2}\} \\ d_{3,3} &\geq \frac{d_{3,4}}{1} + \frac{d_{3,2}}{2} - \max\{\frac{d_{3,4}}{1}, \frac{d_{3,2}}{2}\} \\ u_i, v_r, d_{jp} \quad \{0.1\} \end{split}$$

The solution obtained is: CR=1 with AR=0.667 $d_{21}=1$ and $d_{32}=d_{33}=d_{34}=1$ (all other $d_{jp}=0$), h=1, $u_4=u_5=1$, $v_1=0$, $v_2=v_3=1$. This rule is shown R₁(3) in Table 6.6.

Table 6.6: Induced rules of Example 1 by the proposed method

1896													
Rule	d ₁₁	d ₁₂	d ₁₃	d ₂₁	d ₂₂	d ₃₁	d ₃₂	d ₃₃	d ₃₄	AR	CR		
$R_1(1)$: $a_2=1$ and $a_1=2$	0	0	0	1	0	0	0	1	0	1	1		
$R_1(2): a_2=2$	0	0	0	0	1	0	0	0	0	1	1		
$R_1(3): a_2=1 \text{ and } a_3 \ge 2$	0	0	0	1	0	0	1	1	1	0.67	1		

6.3 Analysis of Update ID3 and the Proposed Method Based on WCY-IMD for 2008

According to Table 6.1, and 6.2, update ID3 performs better than ID3 for all classes. To discriminate update ID3 and the proposed method, we take a data set from WCY-IMD for 2008 and induce rules for nation classes. The raw data is presented in Table B.4 and discretized data and classes in Table D.4 (nations are partitioned by k-mean of SPSS into 4

classes). The induced results are presented in Table 6.7.

Clas s	Rules by update ID3	AR	CR	Rules by the proposed method	AR	CR
G ₄	$a_2 = 4$	0.78	0.5	$(3 \le a_1 \le 4) \land (3 \le a_2 \le 4) \land (3 \le a_3 \le 4) \land$	0.8	1
				$(3 \le a_9 \le 4) \land (3 \le a_{11} \le 4) \land (3 \le a_{14} \le 4)$		
G ₃	a ₂ = 3	0.84	0.36	$(3 \le a_2 \le 4) \land (3 \le a_7 \le 4)$	0.80	0.84
G ₂	a ₂ = 2	0.82	0.45	$(2 \le a_2 \le 3) \land (2 \le a_3 \le 3) \land (2 \le a_6 \le 3)$	0.72	0.78
G ₁	a ₂ = 1	0.9	0.7	$a_2 = 1$	0.9	0.7

Table 6.7: Comparison of update ID3 and the proposed method

The comparison of induced rules for nation classes is presented below.

- (i) The good rules generated by update ID3 can also be found by the proposed method.For instance, induced rule for G₁.
- (ii) Some rules generated by the proposed method cannot be found by update ID3 such as G₄, G₃, and G₂. The reason for this is that ID3 suffers from too many branches to give a quality rule. Users can take a look at Figure 6.5 and find 12 sub branches that are too many to cover enough nations to support rule quality.

Figure 6.5: The decision tree of nation classes for 2008

In summary, the advantages of the proposed method over the ID3 are listed below:

• The decision tree technique is a widely used method of inducing rules. However, its

induced rules may not be optimal, and may not cover all set of rules. That means the accuracy rate and the coverage rate for the rules found by the decision tree may not be the best.

- The greedy algorithm of the decision tree recursively partitions a tree with the most entropy reduction but it cannot guarantee the selected attribute is the best classifier.
- As described in the literature of Zanakis 2005 and Quinlan 1986, the decision tree method may expand many branches due to multiplication of the number of attribute values and those of classes. The more branches, the fewer nations are covered in a branch.

Chapter 7 Concluding Remarks

This research constructs an optimization model for inducing a nation's dynamic rules based on the MCI-WCY data set. The rules, expressed in 'IF...THEN' forms, are generated with a high coverage rate and accuracy rate. Based on the simple and consistent rules during 2001~2005, policy makers can use them to imply strategic initiatives for global competition or validate their decisions of economic policy.

The integer programming is applied to design models of rule extraction of competitiveness classes. Induced rules are composed of conjunctive and disjunctive terms of attribute values that give high coverage and accuracy rates. A visual displaying sphere is provided to show the dissimilarity of nations on the surface and also gives direction of competitiveness. Users can get a visual understanding of knowledge in WCY over years.

Advantages from two approaches of analyzing national competitiveness, ranks and classes, are combined into our proposed method. Stakeholders can catch competitiveness differentiation of classes and get explanation from induced rules, which directly point how to sustain, improve, or prevent fall in competitiveness. The features of the proposed model are listed below, compared with the other studies of inducing the rules of a nation's competitiveness:

- (i) Instead of using the WCY data set with a huge number of attributes, a high quality data set is used in the proposed model. This data set contains 14 most reliable and consistent attributes for 46 nations and three time periods, which help us to induce more reasonable rules.
- (ii) Instead of using regression, neural network and decision tree techniques, the proposed model utilizes optimization techniques to induce rules. The rules have higher accuracy rates and coverage rates, and can be expressed in conjunction and disjunction terms.

(iii) Various types of national competitiveness have been found in this study, labeled as upward, downward, and sustaining, which are quite helpful to understand the critical factors affecting national competitiveness.

Some useful suggestions for both nations and investors are as follows:

- (i) For nations wanting to move to a highly competitive level, the nations need to have a leading technology infrastructure or high export capacity.
- (ii) For nations wanting to move from medium to competitive level, the nations need to have a medium level of GDP and have a high degree of technology infrastructure or stock market value.
- (iii) For nations wanting to prevent falling in competitiveness, the nations need to lower unemployment rates and prevent GDP growth rates from declining.
- (iv) GDP plays a fundamental role in forming nations' classes.
- (v) Computer, which indicates the level of technology infrastructure, is an essential attribute of competitiveness. A nation can enhance significantly its competitiveness by enhancing its computer network.
- (vi) Export is another sufficient condition for a nation to be highly competitive.
- (vii) A nation should prevent its inflation from being at the low level if it does not want to be the least competitive.
- (viii) A nation of the least competitive or non-competitive class should enhance its Foreign Direct Investment and its export volume.

The limitations of this study and validation with data are discussed in the followings.

A limitation of this study is the classification of nation groups. By applying the k-mean technique based on nations' annual competitiveness scores, this study divides nations into 4 classes. Since k-mean is a heuristic method, the ranges of the 4 groups may not be the optimal.

- The attribute discretization (Appendix C) is determined approximately by equalizing the number of nations in each level. A more precise process of discretization may be studied in the future.
- The competitiveness scores before 2001 are not available, which restricts the time period of our study.

Appendix A: Classification of Nations

Here we use the algorithm of k-mean (reference) to classify 46 nations into four classes, G_4 , G_3 , G_2 , and G_1 , based on the score values in TableB.1, Table B.2, and Table B.3. The steps are listed below (Han , 2001).

Step 1: Initialization

To assign initially each nation into a class for a specific year. Two criteria are used in the assignment. Firstly, the number of nations in each group is kept the same as possible. Secondly, the gap of scores for the nearby groups is obvious. Take 2001 for instance, the initial classification is listed below.

- G_1^{2001} ={PHILIPPINES, INDIA, SOUTH AFRICA, ARGENTINA, TURKEY, RUSSIA, COLOMBIA, POLAND, VENEZUELA, INDONESIA}
- G_2^{2001} ={ JAPAN, HUNGARY, KOREA, MALAYSIA, GREECE, BRAZIL, ITALY, MAINLAND CHINA, PORTUGAL, CZECH REPUBLIC, MEXICO, THAILAND}
- $G_3^{2001} =$ { ICELAND, AUSTRIA, DENMARK, ISRAEL, BELGIUM, TAIWAN, UNITED KINGDOM, NORWAY, NEW ZEALAND, SPAIN, CHILE, FRANCE}
- G_4^{2001} ={USA, SINGAPORE, FINLAND, LUXEMBOURG, HONG KONG, NETHERLANDS, IRELAND, SWEDEN, CANADA, SWITZERLAND, AUSTRALIA, GERMANY}

Step 2: Computing the average score, C_k^y for a specific year y and class k, in each class. Following Step 1 the related C_k^y values are as follows:

$$C_1^{2001} = 34.5, C2001$$

$$C_2^{2001} = 48.8, C2001$$

 $C_3^{2001} = 65.5, C2001$
 $C_4^{2001} = 81.4$

Step 3: Denote $d^{y}(i,k)$ as the similarity distance of nation *i* to the center of the class *k*, defined as $d^{y}(i,k) = |S_{i}^{y} - C_{k}^{y}|$ where S_{i}^{y} is the score of *i*th nation in year *y* Compute $d^{y}(i,k)$ for i = 1, 2, 3, ..., 46 and k = 1, 2, 3, 4.

Step 4: If $d^{y}(i,k) \le d^{y}(i,k')$ then nation *i* belongs to class *k*.

Step 5: Recalculate C_i^y and $d^y(i,k)$ until converges to a final solution. The final classification is listed in Table A.

For instance, ARGENTINA belongs to G1 (least competitive) in 2001, 2003, and 2005. The group type is G_{111} . AUSTRIA belongs to G4 for 2001 and 2003, but downward to G_3 in 2005. The group type is G_{443} .

Nations	20	01	20	03	3 2005 Competitivene		Competitiveness
INALIOIIS	score	classes	score	classes	score	classes	groups
ARGENTINA	37.5	G1	12.5	G1	37.8	G1	G111
AUSTRALIA	75.9	G_4	86.5	G ₄	82.0	G_4	G 444
AUSTRIA	72.5	G_4	82.6	G_4	74.3	G3	G443
BELGIUM	66.0	G ₃	74.6	G ₃	67.5	G3	G333
BRAZIL	49.7	G ₂	40.7	G 1	49.9	G_1	G ₂₁₁
CANADA	76.9	G_4	84.1	G ₄	82.6	G_4	G 444
CHILE	59.8	G ₃	61.5	G_2	72.2	G ₃	G323
MAINLAND-CHINA	49.5	G ₂	50.8	G ₂	63.2	G ₂	G222
COLOMBIA	32.8	G_1	44.5	G ₂	51.4	G_1	G ₁₂₁
CZECH-REPUBLIC	46.7	G_2	45.6	G_2	60.1	G_2	G222
DENMARK	71.8	G_4	92.4	G ₄	82.5	G_4	G 444
FINLAND	83.4	G_4	100.0	G ₄	82.6	G_4	G 444
FRANCE	59.6	G ₃	66.4	G ₃	64.2	G_2	G332
GERMANY	74.0	G ₄	69.8	G ₃	67.8	G ₃	G ₄₃₃
GREECE	50.0	G ₂	34.2	G ₁	50.3	G ₁	G ₂₁₁
HONG-KONG	79.5	G ₄	90.3	G ₄	93.1	G4	G ₄₄₄
HUNGARY	55.6	G ₂	42.5	G ₂	59.9	G ₂	G222
ICELAND	73.7	G ₄	83.4	G ₄	85.3	G ₄	G ₄₄₄
INDIA	40.4	G ₁	42.2	G ₁	59.1	G ₂	G112
INDONESIA	28.3	G_1	13.2	G_1	33.8	G ₁	G111
IRELAND	79.2	G_4	79.4	G ₃	77.8	G_4	G434
ISRAEL	67.9	G ₃	43.6	G ₂	67.3	G ₃	G323
ITALY	49.6	G ₂	44.3	G ₂	45.8	G1	G ₂₂₁
JAPAN	57.5	G3	56.3	G ₂	68.7	G3	G323
KOREA	51.1	G ₂	46.5	G ₂	64.2	G ₂	G222
LUXEMBOURG	82.8	G ₄	88.7	G ₄	80.3	G4	G 444
MALAYSIA	50.0	G ₂	72.9	G ₃	65.8	G ₂	G ₂₃₂
MEXICO	43.7	G ₂	33.3	G ₁	41.5	G ₁	G ₂₁₁
NETHERLANDS	79.5	G ₄	86.5	G ₄	77.4	G_4	G 444
NEW-ZEALAND	61.7	G ₃	72.2	G ₃	75.5	G ₃	G333
NORWAY	63.1	G ₃	75.8	G ₃	76.2	G ₃	G333
PHILIPPINES	40.6	G1	37.9	G1	51.1	G1	G111
POLAND	32.0	G1	21.5	G1	39.0	G1	G111
PORTUGAL	48.4	G ₂	35.2	G 1	52.4	G_2	G ₂₁₂
RUSSIA	34.6	G 1	24.6	G 1	43.6	G_1	G111
SINGAPORE	87.7	G ₄	98.2	G ₄	89.7	G ₄	G 444
SOUTH-AFRICA	38.6	G 1	43.9	G ₂	52.0	G_1	G ₁₂₁
SPAIN	60.1	G ₃	59.8	G ₂	59.4	G_2	G322
SWEDEN	77.9	G_4	87.1	G ₄	76.3	G_4	G 444
SWITZERLAND	76.8	G_4	89.7	G ₄	82.5	G_4	G 444
TAIWAN	64.8	G3	69.3	G3	78.3	G4	G ₃₃₄
THAILAND	42.7	G 1	58.4	G ₂	66.0	G ₂	G122
TURKEY	35.4	G 1	29.8	G 1	51.3	G1	G111
UNITED-KINGDOM	64.8	G3	66.5	G3	68.5	G ₃	G333
USA	100.0	G_4	100.0	G_4	100.0	G_4	G444
VENEZUELA	30.7	G_1	9.8	G_1	30.3	G_1	G111

Table A: Classified nations

Appendix B: Data Set of MCI-WCY

	Table B.1: Raw data set for 2001														
	Nation	a_1	<i>a</i> ₂	<i>a</i> ₃	a_4	a_5	a_6	a_7	a_8	a_9	<i>a</i> ₁₀	<i>a</i> ₁₁	<i>a</i> ₁₂	<i>a</i> ₁₃	<i>a</i> ₁₄
1	ARGENTINA	792.7	69.9	7694	129	2174.1	5.6	23643.0	-0.9	14.7	611.0	31.6	-0.5	-256.5	5117.9
2	AUSTRALIA	3989.2	555.8	20495	1217	21037.9	14.3	43910.0	4.5	6.6	278.4	-141.7	4.2	-910.0	10836.2
3	AUSTRIA	11593.0	401.6	22850	97	4009.7	18.9	50724.0	2.3	4.6	343.9	340.2	3.3	-716.9	12891.9
4	BELGIUM	20337.5	402.4	22384	172	17727.7	19.7	57552.0	2.6	8.2	3680.7	3246.4	3.8	776.6	11543.6
5	BRAZIL	333.4	70.8	3523	478	1228.7	6.7	7383.0	6.0	9.6	176.0	9.1	4.2	-132.6	1762.8
6	CANADA	9660.6	549.0	22379	3767	24849.5	15.6	46124.0	2.7	6.7	779.7	553.5	4.8	390.9	12171.9
7	CHILE	1187.5	80.5	4635	285	4191.8	4.9	13275.0	4.0	9.3	566.7	298.7	5.4	-41.8	2667.5
8	MAINLAND-CHINA	263.0	14.3	845	950	308.1	0.5	1518.0	0.4	3.1	37.3	1.7	8.0	15.1	458.7
9	COLOMBIA	291.5	46.1	1948	145	252.0	2.1	5105.0	8.7	20.4	24.8	-0.2	3.0	3.9	1155.5
10	CZECH-REPUBLIC	3513.7	164.4	4816	164	1156.9	2.1	10584.0	3.9	8.8	499.0	19.6	2.5	-232.4	2578.4
11	DENMARK	11996.3	560.5	30112	233	19428.0	19.8	66491.0	2.9	5.2	1564.6	1804.4	2.9	627.3	14262.0
12	FINLAND	9190.5	573.3	23430	147	66552.4	18.3	52527.0	3.3	9.6	636.2	906.7	5.6	1733.3	11352.4
13	FRANCE	6271.5	369.4	21751	968	24308.1	15.6	55717.0	1.6	9.7	639.5	1760.0	3.2	374.0	11510.7
14	GERMANY	7624.3	372.6	23098	933	17307.6	22.6	51612.0	2.0	7.7	631.2	1194.4	3.1	-326.3	13062.2
15	GREECE	1913.4	130.2	10410	281	18429.6	8.6	28402.0	3.1	11.4	88.4		4.0	-379.1	7833.9
16	HONG-KONG	34540.3	414.0	24010	708	87464.0	5.4	50727.0	-3.7	5.0	3324.2	2866.0	10.5	1524.5	13703.2
17	HUNGARY	3612.1	178.0	4578	66	1617.1	1.8	11829.0	9.8	6.7	193.5	24.8	5.6	-165.7	2777.8
18	ICFLAND	9000.0	573.0	29680	56	16000.0	14.2	54999.0	5.0	13	500.0	233 3	4 0	-2600.0	17000.0
19	INDIA	50.8	6.5	444	5863	166.6	0.6	1033.0	43	5.8	2.0	0 1	6.0	-5.9	261.1
20	INDONESIA	304.0	14.0	654	2003	298.9	0.0	1541.0	83	16.9	-12.5	0.1	4.8	26.4	424.4
21		22055.7	408.6	24711	8/	10290.6	11.7	5/903.0	5.6	3.0	1622.3	1312 3			10581.1
22	ISPAEL	5952.8	347.7	17710	644	0127 3	12.1	46125.0	1.2	8.8	337.6	147.4	53	_274.7	9327.6
22	ITALV	5088.3	308.0	18730	2/1	12528.8	14.4	51811.0	2.6	10.8	116.6	116.1	28	-75.7	10755.2
24	IADAN	1223 6	380.0	37567	2470	35580 /	22.0	73825.0	2.0	10.8	96.4	174.3	1.0	016.6	20825.8
25		4088.2	313.0	0668	725	6388 5	87	21709.0	23	4.1	103.2	87.0	8.0	228.6	5423.5
26		41565.2	300.0	/3051	51	78043 5	18.1	77416.0	2.3	2.7	175.2	. 07.0	85	4065.2	16730 1
20	MALAVSIA	4217.0	114.6	3680	757	5564.5	2.0	0230.0	1.6	2.7	50.3	306.0	86	313.8	1446.6
28		1728.7	66.2	5817	199	1/03 7	2.0	12386.0	0.5	2.0	114.4	120.5	<u> </u>	172.7	3731.3
20	METHEDI ANDS	16496 7	168.2	22810	244	1495.7	19.1	12580.0	2.5	2.2	2117.2	2606 9	20	9/2 1	11171 7
30	NEW ZEALAND	4053.4	400.5	13003	11/	6803.2	7.8	28136.0	2.0	6.1	182.0	182 (3.0	0723	7378.6
21	NORWAY	17670 7	571.7	26147	105	15212 5	22.5	72455.0	2.0	2.4	965 A	605 9	2 1	1567.2	15965 4
22		5267	22.2	009	195	5657	1.0	2720.0	3.0	11.0	605.4	005.0	2 0	4307.3	621.0
22		1099.0	109.9	4222	220	774.0	1.0	11228.0	10.1	16.5	100.2	-0.7	5.9	258.0	2586.4
24		2047.2	100.0	10546	125	6207.2	5.2	22482.0	2.0	10.5	105.1	200.7	2 2 2	1022.7	6164.8
25		770.7	67.4	1607	207	502.1	0.5	2700.0	2.9	12.2	22.1	14.0	3.2	172.0	781.2
20		719.1	420.9	22040	207	45(00.2	0.5	44041.0	1.2	2.1	1.01.0	14.5		5011.5	0102
27	SINGAPORE	3/455.2	439.8	22949	333	43009.2	- /.1 5.2	17058.0	1.3	26.0	20.4	905.7	9.9	3011.5	8482.8
20	SOUTH-AFRICA	/41./	09.8	2804	710	0796.0	5.5	20766.0	3.3	30.2	29.4	23.5	3.1	-14.5	7202.0
38	SPAIN	3/19.2	205.9	14077	277	9/86.9	10.5	38/66.0	3.3	14.1	211.3	/99.1	4.0	-380.9	/383.8
39		1 4257 5	3/6.1	23/05	2//	<u>+1248.6</u>	19.5	34937.0	1.0	4./	1226.0	4620.4	3.6	939.2	12383.0
40	DWIIZEKLAND TAIWAN	14357.5	488.4	12021	239	93158.6	21.0	01063.0	1.6	2.0	1336.0	4038.4	3.4	40/2.6	19193.6
41		1075.0	536.0	13921	462	16513.0	6.2	326/3.0	1.3	3.0	128.7	194.1	6.0	409.3	8467.3
42		1275.8	48.4	2001	392	897.2		3784.0	1.6	2.3	95.4	5.4	4.5	142.9	10/3.9
43	IUKKEY	601.2	34.6	3045	285	1558.2	3.5	9398.0	54.9	6.3	10.8	9.0	1.2	-135.6	1594.3
44	UNITED-KINGDOM	6356.1	442.4	23688	1945	48855.8	15.5	51038.0	2.9	5.5	1412.6	3365.6	2.9	-374.8	15268.2
45	USA	3493.1	580.5	36144	7651	56101.1	19.2	73888.0	3.4	4.0	929.2	508.9	5.0	-1459.6	22793.1
46	IVENEZUELA	1 795.7	L 63.3	4981	I 87	1 2.82.2	2.5	L 12778.0	162	10.2	1 120.0	19.6	a 3.2	503.0	2859.3

			Т	able	B.2:	Raw d	lata	set for	r 20	03					
	Nation	<i>a</i> ₁	a_2	<i>a</i> ₃	a_4	<i>a</i> ₅	a_6	<i>a</i> ₇	a_8	a_9	<i>a</i> ₁₀	<i>a</i> ₁₁	<i>a</i> ₁₂	<i>a</i> ₁₃	<i>a</i> ₁₄
1	ARGENTINA	758.0	68	2875	111	4988.3	1.8	9496.0	25.9	17.8	83.2	-3.1	-11.2	241.2	1648.1
2	AUSTRALIA	3970.5	630	19965	1334	18411.2	13.8	42471.0	3.0	6.3	215.9	571.1	3.8	-873.6	11603.5
3	AUSTRIA	13566.2	476	25002	114	2976.9	20.4	53573.0	1.8	4.1	716.9	370.6	0.5	-201.7	14167.7
4	BELGIUM	22698.0	509	23981	156	15896.5	22.2	59553.0	1.7	7.3	4838.0	6364.3	0.7	1112.2	12838.0
5	BRAZIL	372.3	83	2591	428	1003.4	2.4	5870.0	12.5	10.5	122.0	12.2	1.5	-41.3	1445.4
6	CANADA	8941.0	647	23262	4004	21743.7	15.5	47714.0	2.2	7.7	851.4	1103.6	3.4	342.1	12901.0
7	CHILE	1339.9	120	3878	249	3460.4	2.1	10986.0	1.5	9.0	275.4	87.9	1.9	-34.0	2636.8
8	MAINLAND-CHINA	345.5	27	963	1160	505.0	0.6	1678.0	-0.8	4.0	42.6	6.6	8.0	16.8	534.7
9	COLOMBIA	312.6	59	1878	123	286.7	2.2	4980.0	7.0	16.9	50.6	0.9	2.5	-46.2	1129.5
10	CZECH-REPUBLIC	3950.0	211	6767	94	911.8	2.9	14410.0	1.8	7.2	482.4	9.8	2.0	-363.5	3598.0
11	DENMARK	15444.7	658	32183	208	17527.7	23.2	63396.0	2.4	4.5	1335.8	1776.8	1.6	907.7	15332.1
12	FINLAND	9270.5	662	25303	152	36285.7	21.0	55523.0	1.6	9.1	653.3	1592.4	1.6	1791.0	12628.6
13	FRANCE	6743.8	419	23939	791	19347.6	16.7	58822.0	1.9	8.7	864.9	1370.5	1.0	459.8	12828.7
14	GERMANY	8361.2	480	24123	988	12951.1	24.1	51359.0	1.4	8.2	381.0	516.6	0.2	556.7	14145.0
15	GREECE	2531.6	130	13365	338	7806.9	7.0	33462.0	3.6	10.0	143.5	55.1	4.0	-775.3	8113.7
16	HONG-KONG	35021.6	434	24003	857	72925.1	5.2	50541.0	-3.0	7.3	3426.5	1634.0	2.3	2519.2	13098.0
17	HUNGARY	4163.7	153	6186	57	1031.7	2.1	16515.0	5.3	5.6	242.1	33.7	3.3	-257.9	4156.7
18	ICELAND	9900.0	649	29156	61	12000.0	14.0	53958.0	5.2	2.5	500.0	1233.3	-0.5	26.7	15333.3
19	INDIA	63.6	9	445	5795	99.6	0.4	1103.0	4.3	10.3	2.1	0.3	4.4	2.3	285.5
20	INDONESIA	260.6	13	802	316	105.0	0.4	1556.0	10.0	9.0	-15.0	0.7	3.7	34.9	557.6
21	IRELAND	26295.4	516	30514	68	18232.5	14.0	67213.0	4.6	4.4	2389.8	1309.9	5.1	-41.2	13268.8
22	ISRAEL	5765.4	387	15541	636	10057.2	12.0	44873.0	5.7	10.4	460.7	163.1	-1.1	-972.4	8555.1
23	ITALY	5315.2	310	20447	288	9072.8	14.5	54332.0	2.5	9.0	255.8	374.3	0.4	-116.5	12196.8
24	JAPAN	3754.4	477	31368	2471	17625.2	19.0	63132.0	-1.0	5.4	48.5	301.3	0.3	890.4	17881.2
25	KOREA	3977.4	342	9797	1409	4555.8	8.4	21499.0	2.8	3.1	66.3	53.8	6.3	126.1	5939.1
26	LUXEMBOURG	59891.3	460	45972	52	51739.1	18.3	76964.0	2.1	2.4		18760.9	1.0	3869.6	19130.4
27	MALAYSIA	4197.9	137	3814	809	4592.4	2.8	9900.0	1.8	3.5	21.0	10.3	4.2	275.9	1603.5
28	MEXICO	1681.3	88	6161	168	1225.0	2.3	15091.0	5.1	2.7	239.9	217.0	0.9	-147.8	4260.9
29	NETHERLANDS	18290.8	605	25963	180	28406.7	20.3	52827.0	3.4	2.7	3176.7	2458.8	0.3	552.4	12851.8
30	NEW-ZEALAND	4344.7	571	14583	145	4320.4	8.5	30107.0	2.7	5.2	419.9	72.8	3.2	-419.9	8058.3
31	NORWAY	18516.8	657	42241	186	16610.6	26.1	84407.0	1.3	3.9	521.6	-262.0	1.0	6358.2	20576.9
32	PHILIPPINES	414.6	25	977	232	488.1	0.9	2548.0	3.2	10.2	21.1	-1.9	5.2	29.2	625.7
33	POLAND	1255.0	114	4801	230	680.6	2.5	13295.0	1.9	19.9	149.5	-2.4	1.0	-176.3	3196.3
34	PORTUGAL	3086.2	201	12014	97	4384.5	4.9	23882.0	3.6	5.0	563.4	745.3	0.4	-883.5	6354.2
35	RUSSIA	820.6	77	2408	236	531.0	0.7	5219.0	15.1	7.1	17.2	17.6	4.1	240.9	1073.9
36	SINGAPORE	34931.0	596	20906	386	26965.5	7.8	43109.0	-0.4	4.4	2517.2	2195.4	2.2	4299.8	8597.7
37	SOUTH-AFRICA	721.3	84	2293	542	2981.4	5.3	7897.0	10.1	29.4	152.7	-78.7	3.0	6.7	1379.8
38	SPAIN	3997.7	224	16282	1458	10614.4	11.5	40229.0	3.5	11.4	488.3	628.0	2.0	-379.7	8589.9
39	SWEDEN	11327.1	687	26921	285	25701.7	19.5	56143.0	0.5	4.9	1446.4	769.1	1.6	1106.1	12817.7
40	SWITZERLAND	15157.3	641	36937	263	70053.8	23.7	64151.0	0.7	3.0	1159.9	1485.2	0.1	4279.6	21814.5
41	TAIWAN	6612.2	314	12500	584	12850.2	6.1	29777.0	-0.2	5.2	180.5	240.7	3.5	1130.0	7804.1
42	THAILAND	1252.9	43	1955	449	557.7	0.9	3759.0	0.7	2.2	58.7	2.5	5.2	117.2	1096.9
43	TURKEY	709.2	52	2631	310	654.9	3.5	9045.0	45.0	10.6	45.4	6.9	7.8	-24.8	1698.3
44	UNITED-KINGDOM	6400.7	526	25894	1923	36930.4	16.8	54775.0	1.6	5.1	1051.1	570.3	1.6	-217.0	16892.1
45	USA	3227.1	739	36552	6355	46574.9	20.3	77812.0	1.6	5.8	441.1	431.1	2.3	-1697.7	24622.0
46	VENEZUELA	1071.1	76	5137	63	233.3	2.5	14151.0	31.2	18.3	129.8	7.9	-9.6	287.5	3186.6

			Т	able	B.3:]	Raw d	lata	set for	· 200	5					
	Nation	a_1	<i>a</i> ₂	<i>a</i> ₃	a_4	a_5	<i>a</i> ₆	<i>a</i> ₇	<i>a</i> ₈	a_9	a_{10}	<i>a</i> ₁₁	<i>a</i> ₁₂	<i>a</i> ₁₃	<i>a</i> ₁₄
1	ARGENTINA	987.6	77	3833	107	1008.0	1.8	11581.0	6.1	13.5	27.2	20.5	8.5	80.3	2500.6
2	AUSTRALIA	5276.9	689	30679	1405	28799.8	22.6	63758.0	2.4	5.5	245.9	763.4	3.6	-1923.3	17732.4
3	AUSTRIA	19279.5	547	36026	86	6622.1	27.9	78202.0	2.1	4.5	884.6	857.8	2.0	-158.0	19829.9
4	BELGIUM	33681.7	575	33840	152	17123.7	30.5	84466.0	2.1	7.8	671.1	2290.5	2.7	1140.9	18283.8
5	BRAZIL	571.8	105	3330	367	1264.3	2.8	7451.0	7.6	11.5	97.9	51.0	5.2	63.1	1801.6
6	CANADA	11292.3	689	31153	3578	27738.1	20.8	62317.0	1.8	7.2	204.2	1372.6	2.8	806.7	17232.4
7	CHILE	2257.5	159	5896	240	5304.2	2.1	16645.0	2.4	8.8	467.1	57.8	6.1	-86.0	3337.4
8	MAINLAND-CHINA	616.6	41	1269	1296	656.5	0.8	2187.0	3.9	4.2	59.8	-0.1	9.5	44.2	613.4
9	COLOMBIA	312.6	70	2082	114	310.6	2.2	5369.0	5.9	13.6	53.6	20.4	3.6	-23.9	1288.0
10	CZECH-REPUBLIC	5539.2	272	10535	63	1735.3	5.2	22750.0	2.8	8.3	490.2	23.5	4.0	-539.2	5215.7
11	DENMARK	19870.9	721	44725	187	23616.2	35.4	88720.0	1.2	5.4	219.6	158.7	2.4	1107.0	21420.7
12	FINLAND	13053.3	719	35526	142	32438.1	29.8	78653.0	0.2	8.9	872.4	-224.8	3.7	1600.0	18323.8
13	FRANCE	9059.8	487	33617	723	22332.8	23.2	83111.0	2.1	9.6	576.6	972.8	2.1	-108.7	18192.8
14	GERMANY	12452.0	562	32716	684	13039.3	32.8	70349.0	1.7	9.5	-592.1	30.9	1.6	1169.8	19076.7
15	GREECE	3436.8	166	18337	339	9639.0	7.0	47520.0	3.1	9.1	65.0	0.9	3.9	-1001.8	12355.6
16	HONG-KONG	43786.7	503	23926	1029	102968.3	5.5	50023.0	-0.4	6.8	4903.5	5727.7	8.1	2305.5	13876.1
17	HUNGARY	6251.0	191	9879	49	1617.1	2.1	25585.0	6.8	5.9	436.5	59.5	4.0	-873.0	6756.0
18	ICELAND	12266.7	726	41765	48	31000.0	19.1	78342.0	3.2	3.1	1466.7	8433.3	5.2	-3333.3	23666.7
19	INDIA	88.0	12	578	5644	251.9	0.6	1296.0	2.6	10.3	5.4	0.4	6.8	9.6	346.8
20	INDONESIA	347.8	16	1191	333	249.6	0.3	2681.0	6.0	9.5	4.8	0.0	5.1	23.7	782.6
21	IRELAND	33840.2	560	44923	55	20605.3	21.0	98851.0	2.2	4.5	6295.4	854.7	5.6	-435.8	19878.9
22	ISRAEL	7038.6	495	17100	576	10829.8	11.9	48861.0	1.2	10.4	78.7	364.8	4.3	0.0	9914.2
23	ITALY	7204.4	390	29167	271	10576.3	20.2	74927.0	2.2	8.0	258.0	154.7	1.2	-189.2	17235.5
24	JAPAN	4979.0	543	36559	3116	23800.1	21.5	73757.0	0.0	4.7	54.8	225.2	2.6	1212.4	20666.9
25	KOREA	6020.1	539	14105	1563	6825.4	10.7	30140.0	3.6	3.6	173.1	99.2	4.6	571.5	7247.9
26	LUXEMBOURG	83804.3	692	70744	44	81087.0	25.4	105588.0	2.2	4.2			4.2	5000.0	27608.7
27	MALAYSIA	5356.3	192	4604	897	6444.7	2.4	12106.0	1.4	3.5	180.6	71.6	7.1	570.2	1932.6
28	MEXICO	1951.2	105	6415	159	1188.2	2.4	16101.0	5.2	3.8	174.6	17.3	4.4	-84.4	4532.5
29	NETHERLANDS	26149.4	685	35629	183	30291.4	29.5	73074.0	1.2	4.7	973.3	2182.3	1.4	1475.5	17569.8
30	NEW-ZEALAND	5502.4	604	22369	157	8034.0	12.7	45358.0	2.7	3.9	623.8	118.9	4.6	-728.2	13155.3
31	NORWAY	24901.4	717	54433	156	22764.4	33.2	110942.0	0.5	4.5	495.2	555.3	2.9	8197.1	26947.1
32	PHILIPPINES	500.5	30	1026	234	277.6	0.7	2737.0	5.6	12.2	3.8	1.9	6.1	38.8	702.2
33	POLAND	2262.8	138	6205	203	973.8	2.5	17350.0	3.5	18.8	130.9	5.2	5.4	-107.3	3568.1
34	PORTUGAL	4078.6	252	15719	59	5520.8	6.8	32525.0	2.3	6.7	568.2	12.3	1.5	-1259.5	8608.0
35	RUSSIA	1387.4	132	4083	214	1608.4	0.9	8827.0	11.0	8.9	69.7	67.8	7.1	249.5	1958.9
36	SINGAPORE	48312.6	573	25191	475	33356.3	7.6	51680.0	1.7	4.0	3692.0	2452.9	8.4	6413.8	10367.8
37	SOUTH-AFRICA	1115.6	104	4574	426	5709.1	4.9	17782.0	1.4	27.8	12.4	34.3	3.7	-147.2	2874.8
38	SPAIN	5786.7	257	22968	3191	16463.4	16.4	57964.0	3.0	10.8	223.3	952.2	2.7	-1113.1	12931.3
39	SWEDEN	16722.7	741	38063	264	31768.0	27.7	79315.0	0.5	6.3	0.0	1319.3	3.3	3038.7	16254.1
40	SWITZERLAND	20215.1	712	48389	289	97540.3	30.2	85425.0	0.8	4.4	1918.0	3778.2	1.9	6733.9	28951.6
41	TAIWAN	8975.0	375	13459	669	16644.7	6.0	31204.0	1.6	4.4	83.4	311.4	5.7	834.4	8445.3
42	THAILAND	1741.7	57	2509	405	1823.6	0.9	4686.0	2.7	2.0	15.4	5.2	6.1	112.2	1396.5
43	TURKEY	1134.0	58	4190	284	949.1	3.5	13667.0	10.6	10.0	35.7	11.9	9.6	-215.1	2762.6
44	UNITED-KINGDOM	8144.7	595	35566	2311	40179.9	22.8	75779.0	3.0	5.0	916.1	1089.9	3.2	-504.7	19623.6
45	USA	3732.3	763	39468	5295	48112.4	22.0	84261.0	2.7	5.5	408.1	684.3	4.4	-2037.6	27759.3
46	VENEZUELA	919.5	90	4184	54	143.0	2.5	10667.0	19.2	16.6	42.9	-6.0	17.3	549.3	2061.7
Table B.4: Raw data set for 2008															
----------------------------------	----------------	-------	-------	-----------------------	-------	-----------------------	-----------------------	-----------------------	-------	-----------------------	------------------------	------------------------	------------------------	------------------------	------------------------
	Nation	a_1	a_2	<i>a</i> ₃	a_4	<i>a</i> ₅	<i>a</i> ₆	<i>a</i> ₇	a_8	<i>a</i> ₉	<i>a</i> ₁₀	<i>a</i> ₁₁	<i>a</i> ₁₂	<i>a</i> ₁₃	<i>a</i> ₁₄
1	ARGENTINA	31	104	6616	103	80		17593	8.50	7.50	5	1	8.50	6	3875
2	AUSTRALIA	73	796	43251	1751	1096	26.12	86821	2.33	4.40	24	26	4.13	-57	24051
3	AUSTRIA	93	691	44891	96	191	30.42	92955	2.20	4.40	22	24	3.40	11	24342
4	BELGIUM		705	42741	153	396	31.80	104064	1.82	7.50	8	34	2.80	3	22412
5	BRAZIL	58	156	6941	392	711	4.90		3.64	9.30	35	7	5.40	14	4225
6	CANADA	247	790	43300	3790	1701	25.74	84540	2.14	6.03	110	49	2.70	13	24147
7	CHILE	20	239	9880	244	175		24644	7.57	7.20	12	4	5.10	7	5403
8	CHINA MAINLAND	208	65	2454	1440	2426	1.14	4211	4.80	4.00		19	11.90	363	
9	COLOMBIA	13	94	3915	114	58		9475	5.54	10.87	9	0	7.52	-6	2429
10	CZECH REPUBLIC	33	375	16991	29	49	6.78	35405	2.80	5.30	9	1	6.50	-5	8066
11	DENMARK	64	825	57204	201	231	35.44	110848	1.70	3.80	11	18	1.80	3	28417
12	FINLAND	50	788	46322	134	265	29.86	98184	2.50	6.90	8	9	4.40	11	23440
13	FRANCE	405	645	41449	717	2429	24.87	99693	1.49	8.30	124	195	2.20	-33	23400
14	GERMANY	624	706	40316	656	1638	34.16	83460	2.30	8.30	62	108	2.50	252	22868
15	GREECE	21	232	27973	318	208	16.08	69295	2.89	8.30			4.00	-44	19800
16	HONG KONG	209	636	29847	1165	1715	5.16	59121	2.00	4.00	60	53	6.30	27	17888
17	HUNGARY	28	306	13707	41	42	6.29	35156	7.90	7.40	23	23	1.30	-7	8915
18	INDIA	45	24	988	4796	819		2729	6.78	8.92			9.00	0	548
19	INDONESIA	55	25	1923	344	139		4432	6.59	9.75	6	2	6.32	11	1221
20	IRELAND	81	677	58926	57	163	25.92	121753	4.90	4.60	11	22	5.30	-14	28815
21	ISRAEL	33	677	22347	612	173	12.98	60326	0.52	7.30	10	7	5.32	5	12429
22	ITALY	312	559	35696	284	1027	25.04	90538	1.82	6.10	32	60	1.50	-48	20928
23	JAPAN	455	642	34274	3362	4726	20.19	68308	0.06	3.90	22	73	2.10	213	19044
24	KOREA	157	673	20015	1694	835	14.70	41388	2.50	3.20	2	15	5.00	6	10825
25	LUXEMBOURG		719	105243	36	80	27.70	150438	2.30	4.70			4.50	5	
26	MALAYSIA	85	262	6864	1027	235	2.74	16369	2.03	3.26	7	8	6.30	29	3164
27	MEXICO	129	152	8886	131	348	2.75	21542	3.80	4.06	22	10	3.30	-7	5811
28	NETHERLANDS	263	802	46772	226	780	32.29	91336	1.60	3.20	2	57	3.50	50	21991
29	NEW ZEALAND	16	718	30109	154	45	14.45	59525	2.38	3.60	4	0	3.10	-10	17002
30	NORWAY	56	816	83482	195	281	41.03	154670	0.80	2.60	3	17	3.70	67	34520
31	PHILIPPINES	29	56	1593	238	69	0.85	4281	2.77	6.30	3	3	7.30	4	1105
32	POLAND	39	260	11027	267	149	4.99	27580	2.50	9.60	24	9	6.50	-16	6623
33	PORTUGAL	34	351	21035	47	104	7.64	43135	2.50	8.00	6	6	1.80	-22	13588
34	RUSSIA	87	221	9069	309	1057	2.18	18292	9.10	6.10	40	44	8.10	70	4345
35	SINGAPORE	132	651	35163	461	276	8.54	59085	2.10	2.10	24	12	7.70	39	13922
36	SOUTH AFRICA	32	135	5907	401	715	7.39	21358	7.20	23.00	2	1	5.10	-21	3656
37	SPAIN	160	370	31791	3339	1323	18.81	70592	2.80	8.30	59	115	3.80	-146	18081
38	SWEDEN	102	847	49509	321	573	31.77	102281	2.20	6.10			2.70	38	23118
39	SWITZERLAND	105	817	56224	256	1213	30.67	96003	0.73	3.60	53	42	3.10	71	32798
40	TAIWAN	129	488	16201	1222	655	6.43	36133	1.80	3.91	7	11	5.70	32	9590
41	THAILAND	68	86	3734	518	141		6772	2.27	1.38	10	2	4.80	15	1997
42	TURKEY	50	83	9552	314	162	2.50	31060	8.76	9.90	22	2	4.45	-38	6751
43	UNITED KINGDOM	385	729	45511	2913	3794	27.05	94849	2.32	5.30	121	128	3.00	-116	28793
44	USA	921	836	45256	5133	19426	23.82	94774	2.85	4.60	191	285	2.20	-739	31822
45	VENEZUELA	19	119	7837	53	9		18723	18.70	7.50	1	4	8.40	20	4409

Appendix C: Attribute Segments

Each attribute a_i is divided into four levels with three cutting points P_1 , P_2 , and P_3 . a_i belongs to 1st, 2nd, 3rd, and 4th level respectively if $a_i \le P_1$, $P_1 \le a_i \le P_2$, $P_2 \le a_i \le P_3$, and $P_3 \le a_i$. The values of P_1 , P_2 , and P_3 are determined by the approximate equal number of nations in each level. Take a_1 for instance, by specifying P_1 =1645, P_2 =6537, and P_3 =13024, the number of nations at 1st, 2nd, 3rd, and 4th is 12, 12, 11, and 11. The cutting point of each attribute is listed in Table C.

year		a_1	a_2	<i>a</i> ₃	a_4	<i>a</i> ₅	a_6	<i>a</i> ₇	a_8	a_9	<i>a</i> ₁₀	<i>a</i> ₁₁	<i>a</i> ₁₂	<i>a</i> ₁₃	<i>a</i> ₁₄
	p_1	2.645	179	6970	330	4.782	3	16310	3.3	8.3	0.316	0.157	3.9	0.064	4.486
2001	p_2	6.537	408	20022	483	11.759	9	35405	4.5	11.8	0.645	.306	5.0	0.445	11.527
	p_3	13.024	523	26548	940	28.039	17	58320	8.0	15.3	1.467	1.053	7.2	1.206	14.344
2003	p_1	2.457	126	4087	271	3.013	5	17764	4.2	5.0	0.228	0.469	2.2	-0.087	4.846
	p_2	6.046	330	14103	397	10.295	10	38590	6.6	7.7	0.470	1.260	3.2	0.236	10.933
	p_3	10.833	593	25940	904	20.461	20	59416	11.4	10.9	0.956	2.021	5.1	1.041	15.466
	p_1	3.437	237	6191	239	4.256	4	17743	2.5	5.1	0.269	0.295	3.6	-0.105	5.710
2005	p_2	8.460	538	21628	352	12.482	9	45154	3.5	8.2	0.441	0.641	5.2	0.356	11.074
	p_3	15.157	688	37064	690	28.934	24	83531	5.2	10.2	0.785	1.161	6.8	1.509	20.013
	p_1	82.4	232.4	9552	153	162	3.5	24643	2.03	4	3.1	2.2	3.1	-7.4	5811
2008	p_2	216	558.8	27973	314	348.3	13	59121	2.76	6.1	10	12.3	5	5	13922
	p_3	435.8	717.5	43300	1165	1095.8	26	92955	4.9	8	32	43.9	6.5	28.9	23400

Table C: Cutting point of indicator value

Appendix D: Discretized Codes of MCI-WCY

	Nation	a_1	a_2	a_3	$a_{\scriptscriptstyle A}$	a_5	a_6	a_7	a_8	a_{9}	a_{10}	a_{11}	a_{12}	a_{13}	a_{14}
1	ARGENTINA	1	1	2	1	1	2	2	1	1	3	2	1	2	2
2		2	1	3	1	3	3	3	2	3	2	1	2	1	3
3	AUSTRIA	3	3	3	1	2	1	3	3	1	2	3	1	1	3
1	BELGIUM	1	3	3	1	3		1	3	3	- 2	1	2	3	3
5	BRAZII	1	1	1	3	1	2	1	2	2	2	2	2	2	1
6	CANADA	3	4	3	4	3	3	3	3	3	3	3	3	3	3
7	СНП Б	1	1	1	2	2	2	2	2	2	3	3	3	2	1
8	MAINLAND-CHINA	1	1	1	4	1	1	1	4	4	1	1	4	2	1
9	COLOMBIA	1	1	1	1	1	1	1	1	1	1	1	1	2	1
10	CZECH-REPUBLIC	2	2	2	1	1	1	1	2	2	3	2	1	2	1
11	DENMARK	4	4	4	2	3	4	4	3	3	4	4	1	3	4
12	FINLAND	3	4	3	1	4	4	3	2	2	3	4	3	4	3
13	FRANCE	3	3	3	4	3	3	4	4	2	3	4	1	3	3
14	GERMANY	3	3	3	4	3	4	3	4	3	3	4	1	1	4
15	GREECE	2	2	2	2	3	3	2	3	2	1	1	2	1	2
16	HONG-KONG	4	3	3	3	4	2	3	4	3	4	4	4	4	4
17	HUNGARY	2	2	1	1	1	1	1	1	3	2	2	3	2	1
18	ICELAND	3	4	4	1	3	3	4	2	4	3	3	2	1	4
19	INDIA	1	1	1	4	1	1	1	2	3	1	1	3	2	1
20	INDONESIA	1	1	1	2	1	1	1	1	1	1	1	3	2	1
21	IRELAND	4	3	4	1	3	3	4	2	4	4	4	4	2	3
22	ISRAEL	3	2	2	3	2	3	3	4	2	2	2	3	2	2
23	ITALY	2	2	3	2	3	3	3	3	2	1	2	1	2	3
24	JAPAN	2	3	4	4	4	4	4	4	4	1	3	1	4	4
25	KOREA	2	2	2	3	2	3	2	3	4	2	2	4	3	2
26	LUXEMBOURG	4	2	4	1	4	4	4	3	4	1	1	4	4	4
27	MALAYSIA	2	1	1	3	2	1	1	4	4	1	3	4	3	1
28	MEXICO	2	1	2	2	1	1	1	1	4	1	2	4	2	2
29	NETHERLANDS	4	4	3	3	4	4	3	3	4	4	4	2	4	3
30	NEW-ZEALAND	2	4	2	1	2	2	2	3	3	2	3	2	1	2
31	NORWAY	4	4	4	2	3	4	4	3	4	3	3	1	4	4
32	PHILIPPINES	1	1	1	2	1	1	1	2	2	1	1	2	3	1
33	POLAND	1	1	1	2	1	1	1	1	1	2	1	3	2	1
34	PORTUGAL	2	2	2	1	2	2	2	3	4	1	3	1	1	2
35	RUSSIA	1	1	1	2	1	1	1	1	1	1	2	4	3	1
36	SINGAPORE	4	3	3	3	4	2	3	4	4	4	4	4	4	2
37	SOUTH-AFRICA	1	1	1	3	2	2	2	2	1	1	2	1	2	1
38	SPAIN	2	2	2	3	3	3	3	2	1	2	3	2	1	2
39	SWEDEN	3	4	4	2	4	4	4	4	4	4	4	2	4	3
40	SWITZERLAND	4	4	4	2	4	4	4	4	4	4	4	2	4	4
41	TAIWAN	3	2	2	3	3	2	3	4	4	1	3	3	3	2
42	THAILAND	1	1	1	3	1	1	1	4	4	1	1	3	3	1
43	TURKEY	1	1	1	2	1	2	1	1	3	1	2	4	2	1
44	UNITED-KINGDOM	3	3	3	4	4	3	3	3	3	4	4	1	1	4
45	USA	2	4	4	4	4	4	4	2	4	3	3	3	1	4
46	VENEZUELA	1	1	2	1	1	2	2	1	2	1	2	1	3	1

Table D.1: Discritized codes for 2001

	Nation	a_1	a_2	<i>a</i> ₃	a_4	a_5	a_6	a_7	a_8	a_9	<i>a</i> ₁₀	<i>a</i> ₁₁	<i>a</i> ₁₂	<i>a</i> ₁₃	<i>a</i> ₁₄
1	ARGENTINA	1	1	1	1	2	1	1	1	1	1	1	1	3	1
2	AUSTRALIA	2	4	3	4	3	3	3	3	3	2	2	3	1	3
3	AUSTRIA	4	3	3	1	2	4	3	4	4	3	2	1	2	4
4	BELGIUM	4	3	3	2	3	4	4	4	2	4	4	1	4	3
5	BRAZIL	1	1	1	3	1	1	1	1	1	2	1	2	2	1
6	CANADA	3	4	3	4	4	3	3	3	2	4	3	3	3	3
7	CHILE	2	2	2	2	2	1	1	4	2	2	1	2	2	1
8	MAINLAND-CHINA	1	1	1	4	1	1	1	4	4	1	1	4	2	1
9	COLOMBIA	1	1	1	1	1	1	1	2	1	1	1	3	2	1
10	CZECH-REPUBLIC	2	2	2	1	1	1	2	4	2	3	1	2	1	2
11	DENMARK	4	4	4	2	3	4	4	3	3	4	4	2	4	4
12	FINLAND	3	4	4	2	4	4	4	4	2	3	3	2	4	3
13	FRANCE	3	3	3	4	4	3	4	3	2	4	3	1	3	3
14	GERMANY	3	3	3	4	3	4	3	4	2	3	2	1	3	4
15	GREECE	2	2	3	3	2	2	2	3	2	2	1	3	1	2
16	HONG-KONG	4	3	3	4	4	2	3	4	2	4	3	3	4	3
17	HUNGARY	2	2	2	1	1	1	2	2	3	2	1	3	1	2
18	ICELAND	4	4	4	1	3	3	3	2	4	3	3	1	2	4
19	INDIA	1	1	1	4	1	1	1	2	2	1	1	4	2	1
20	INDONESIA	1	1	1	3	1	1	1	1	2	1	1	3	2	1
21	IRELAND	4	3	4	1	3	3	4	2	4	4	3	4	2	3
22	ISRAEL	3	3	3	3	3	3	3	2	1	3	2	1	1	2
23	ITALY	3	2	3	3	3	3	3	3	2	2	2	1	2	3
24	JAPAN	2	3	4	4	3	4	4	4	3	1	2	1	4	4
25	KOREA	2	3	2	4	2	2	2	3	4	1	1	4	3	2
26	LUXEMBOURG	4	3	4	1	4	3	4	3	4	1	4	1	4	4
27	MALAYSIA	2	2	2	4	2	1	1	4	4	1	1	4	3	1
28	MEXICO	2	1	2	2	1	1	2	2	4	2	2	1	2	2
29	NETHERLANDS	4	4	4	2	4	4	3	3	4	4	4	1	3	3
30	NEW-ZEALAND	2	3	3	2	2	2	2	3	3	3	1	3	1	2
31	NORWAY	4	4	4	2	3	4	4	4	4	3	1	1	4	4
32	PHILIPPINES	1	1	1	2	1	1	1	3	2	1	1	4	2	1
33	POLAND	1	2	2	2	1	1	1	3	1	2	1	1	2	1
34	PORTUGAL	2	2	2	1	2	2	2	3	3	3	2	1	1	2
35	RUSSIA	1	1	1	2	1	1	1	1	3	1	1	3	3	1
36	SINGAPORE	4	4	3	3	4	2	3	4	4	4	4	2	4	2
37	SOUTH-AFRICA	1	1	1	3	2	2	1	1	1	2	1	3	2	1
38	SPAIN	2	2	3	4	3	3	3	3	1	3	2	2	1	2
39	SWEDEN	4	4	4	3	4	4	4	4	3	4	2	2	4	3
40	SWITZERLAND	4	4	4	2	4	4	4	4	4	4	3	1	4	4
41	TAIWAN	3	2	2	3	3	2	2	4	3	2	2	3	4	2
42	THAILAND	1	1	1	3	1	1	1	4	4	1	1	4	3	1
43	TURKEY	1	1	1	3	1	1	1	1	1	1	1	4	2	1
44	UNITED-KINGDOM	3	3	4	4	4	3	3	4	3	4	2	2	2	4
45	USA	2	4	4	4	4	4	4	4	3	3	2	3	1	4
46	VENEZHELA	1	1	2	1	1	1	2	1	1	2	1	1	3	1

Table D.2: Discretized codes for 2003

	Nation	a_1	a_2	a_3	$a_{\scriptscriptstyle A}$	a_5	a_6	a_7	a_8	a_9	a_{10}	a_{11}	a_{12}	a_{13}	a_{14}
1	ARGENTINA	1	1	1	1	1	1	1	1	1	1	1	4	2	1
2	AUSTRALIA	2	4	3	4	4	3	3	3	3	2	3	2	1	3
3	AUSTRIA	4	3	4	1	2	4	4	3	4	4	3	1	2	4
4	BELGIUM	4	3	3	2	3	4	4	3	2	4	4	1	3	4
5	BRAZIL	1	1	1	3	1	2	1	1	1	2	1	3	2	1
6	CANADA	3	4	3	4	4	3	3	3	3	2	4	1	3	3
7	CHILE	2	1	2	3	2	1	2	3	2	3	1	4	2	1
8	MAINLAND-CHINA	1	1	1	4	1	1	1	2	4	1	1	4	2	1
9	COLOMBIA	1	1	1	1	1	1	1	1	1	1	1	2	2	1
10	CZECH-REPUBLIC	2	2	2	1	1	2	2	2	2	3	1	2	1	2
11	DENMARK	4	4	4	2	3	4	4	4	3	2	2	1	3	4
12	FINLAND	3	4	3	2	4	4	4	4	2	4	1	2	4	4
13	FRANCE	3	3	3	4	3	3	4	3	2	3	3	1	2	3
14	GERMANY	3	3	3	4	3	4	3	3	2	1	1	1	3	4
15	GREECE	2	2	2	3	2	2	3	2	2	1	1	2	1	3
16	HONG-KONG	4	3	3	4	4	2	3	4	3	4	4	4	4	3
17	HUNGARY	2	2	2	1	1	1	2	1	3	3	1	2	1	2
18	ICELAND	3	4	4	1	4	3	4	2	4	4	4	3	1	4
19	INDIA	1	1	1	4	1	1	1	2	1	1	1	4	2	1
20	INDONESIA	1	1	1	3	1	1	1	1	2	1	1	3	2	1
21	IRELAND	4	3	4	1	3	3	4	3	4	4	3	3	1	4
22	ISRAEL	3	3	2	3	3	3	3	4	1	1	2	2	2	3
23	ITALY	3	2	3	3	3	3	3	3	2	2	2	1	2	3
24	JAPAN	2	3	4	4	3	3	3	4	3	1	2	1	3	4
25	KOREA	2	3	2	4	2	3	2	2	4	2	1	3	3	2
26	LUXEMBOURG	4	4	4	1	4	4	4	3	4	1	1	2	4	4
27	MALAYSIA	2	2	1	4	2	1	1	4	4	2	1	4	3	1
28	MEXICO	2	1	2	2	1	1	2	1	4	2	1	2	2	2
29	NETHERLANDS	4	4	3	2	4	4	3	4	3	4	4	1	4	3
30	NEW-ZEALAND	2	3	3	2	2	3	3	2	4	4	1	3	1	3
31	NORWAY	4	4	4	2	3	4	4	4	4	3	3	2	4	4
32	PHILIPPINES	1	1	1	2	1	1	1	1	1	1	1	4	2	1
33	POLAND	2	1	2	2	1	2	2	2	1	2	1	3	2	1
34	PORTUGAL	2	2	2	1	2	2	2	3	3	3	1	1	1	2
35	RUSSIA	1	1	1	2	1	1	1	1	2	1	1	4	3	1
36	SINGAPORE	4	3	3	3	4	2	3	3	4	4	4	4	4	3
37	SOUTH-AFRICA	1	1	1	3	2	2	2	4	1	1	1	2	2	1
38	SPAIN	2	2	3	4	3	3	3	2	1	2	3	1	1	3
39	SWEDEN	4	4	4	3	4	4	4	4	3	1	4	2	4	3
40	SWITZERLAND	4	4	4	3	4	4	4	4	4	4	4	1	4	4
41	TAIWAN	3	2	2	4	3	2	2	3	4	1	2	3	3	2
42	THAILAND	1	1	1	3	1	1	1	2	4	1	1	4	2	1
43	I'URKEY	1	1	1	3	1	2	2	1	1	1	1	4	2	1
44	UNITED-KINGDOM	3	3	3	4	4	3	3	2	3	4	4	2	1	4
45	USA	2	4	4	4	4	3	4	2	3	3	3	2	1	4
46	VENEZUELA	1	1	1	1	1	1	1	1	1	1	1	4	3	1

Table D.3: Discretized codes for 2005

			14		. T . L	ISCI	LILU	u cou	103 10	UI 2 0	00				1	
	Nation	a_1	a_2	<i>a</i> ₃	a_{4}	a_5	a_6	a_7	a_8	a_9	a_{10}	<i>a</i> ₁₁	<i>a</i> ₁₂	<i>a</i> ₁₃	a_{14}	g
1	ARGENTINA	1	1	1	1	1	1	1	1	2	2	1	4	3	1	G_1
2	AUSTRALIA	3	4	3	4	3	3	3	3	3	3	3	2	1	4	G ₃
3	AUSTRIA	3	3	4	1	2	4	3	3	3	3	3	2	3	4	G ₃
4	BELGIUM	3	3	3	1	3	4	4	4	2	2	3	1	2	3	G ₃
5	BRAZIL	2	1	1	3	3	2	1	2	1	4	2	3	3	1	G ₁
6	CANADA	4	4	3	4	4	3	3	3	3	4	4	1	3	4	G ₃
7	CHILE	1	2	2	2	2	2	2	1	2	3	2	3	3	2	G ₂
8	CHINA	4	1	1	4	4	1	1	1	4	3	3	4	4	3	G ₃
9	COLOMBIA	1	1	1	1	1	1	1	1	1	2	1	4	2	1	G_1
10	CZECH REPUBLIC	2	2	2	1	1	2	2	2	3	2	1	4	2	2	G ₂
11	DENMARK	2	4	4	2	2	4	4	4	4	3	3	1	2	4	G ₃
12	FINLAND	2	4	4	1	2	4	4	2	2	2	2	2	3	4	G ₃
13	FRANCE	4	3	3	3	4	3	4	4	1	4	4	1	1	4	G ₂
14	GERMANY	4	3	3	3	4	4	3	3	1	4	4	1	4	3	G ₃
15	GREECE	1	2	2	3	2	3	3	2	1	1	1	2	1	3	G_1
16	HONG KONG	4	3	3	4	4	2	2	4	3	4	4	3	3	3	G_4
17	HUNGARY	1	2	2	1	1	2	2	1	2	3	3	1	2	2	G ₂
18	INDIA	2	1	1	4	3	2	1	1	1	2	2	4	2	1	G ₂
19	INDONESIA	2	1	1	3	1	1	1	1	1	2	1	4	3	1	G_1
20	IRELAND	3	3	4	1	2	3	4	1	3	3	3	3	1	4	G ₃
21	ISRAEL	1	3	2	3	2	2	3	4	2	2	2	3	2	2	G ₃
22	ITALY	4	2	3	2	3	3	3	4	2	4	4	1	1	3	G ₁
23	JAPAN	4	3	3	4	4	3	3	4	4	3	4	1	4	3	G ₃
24	KOREA	3	3	2	4	3	3	2	2	4	1	3	3	3	2	G ₂
25	LUXEMBOURG	3	4	4	1	1	4	4	3	3	3	3	3	2	3	G ₃
26	MALAYSIA	3	2	1	3	2	1	1	3	4	2	2	3	4	1	G ₃
27	MEXICO	3	1	1	1	3	2	2	2	3	3	2	2	2	2	G ₁
28	NETHERLANDS	4	4	4	2	3	4	3	4	4	1	4	2	4	3	G ₃
29	NEW ZEALAND	1	3	3	2	1	3	3	3	4	1	1	2	2	3	G ₃
30	NORWAY	2	4	4	2	2	4	4	4	4	1	3	2	4	4	G ₃
31	PHILIPPINES	1	1	1	2	1	1	1	2	2	1	2	4	2	1	G ₁
32	POLAND	2	2	2	2	1	2	2	2	1	3	2	4	1	2	G ₁
33	PORTUGAL	2	2	2	1	1	2	2	2	1	2	2	1	1	2	G ₂
34	RUSSIA	3	2	2	2	3	1	1	1	2	4	4	4	4	1	G ₁
35	SINGAPORE	3	3	3	3	2	2	2	3	4	3	3	4	4	3	G_4
36	SOUTH AFRICA	1	1	1	3	3	2	1	1	1	2	1	3	1	1	G ₁
37	SPAIN	4	2	3	4	4	3	3	2	1	4	4	2	1	3	G ₂
38	SWEDEN	3	4	4	3	3	4	4	3	2	3	3	1	4	3	G ₃
39	SWITZERLAND	3	4	4	2	4	4	4	4	4	4	3	2	4	4	G ₄
40	TAIWAN	3	2	2	4	3	2	2	4	4	3	2	3	4	2	G ₃
41	THAILAND	2	1	1	3	1	2	1	3	4	2	1	3	3	1	G ₂
42	TURKEY	2	1	2	2	2	1	2	1	1	3	1	2	1	2	G ₁
43	UNITED	4	4	4	4	4	4	4	3	3	4	4	1	1	4	G ₃
44	USA	4	4	4	4	4	3	4	2	3	4	4	1	1	4	G_4
45	VENEZUELA	1	1	1	1	1	1	1	1	2	1	2	4	3	2	G_1

Table D.4: Discretized codes for 2008

Appendix E: Data Set of Consolidated Competitiveness Factors

The data set of competitiveness factors is available for 2003 and 2005 but not for 2001. Its definition is described in Table 2.2. There are a few cells being empty which means no data available. Nations with empty cells are ignored on the displaying sphere.

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Table E.1: Data Set of Competitiveness Factors													
Nation i_1 i_2 i_4 i_4 i_4 i_4 i_4 1 ARGENTINA 4.39 6.47 6.62 32.14 9.64 49.30 3.24 31.30 2 AUSTRIA 64.91 59.19 68.67 73.47 58.89 50.07 68.24 60.82 4 BELGUM 44.54 100.00 54.87 64.25 41.89 54.06 51.28 64.78 5 BRAZIL 36.45 32.16 81.99 69.97 57.92 72.50 72.37 7 CHILE 66.38 44.59 63.50 26.60 68.22 52.13 76.06 33.05 9 COLOMBIA 52.25 32.29 43.76 38.86 41.88 36.46 39.18 30.29 10 CZECHREPUBLIC 39.69 50.55 22.45 38.20 40.34 45.21 47.70.7 73.49 10 DENMARK 75.92 72.65 38.87		NIstisu		20	003			20	005					
1 ARGENTINA 4.39 6.47 6.62 32.14 9.64 49.30 3.24 31.30 2 AUSTRALIA 89.91 57.16 85.79 82.48 73.39 53.03 78.62 65.05 4 BELGIUM 34.54 100.00 54.87 64.25 41.89 54.06 51.28 64.78 5 BRAZIL 36.45 34.40 49.67 33.35 19.96 45.64 48.87 27.13 6 CANADA 76.83 68.45 82.16 81.99 69.97 57.92 72.50 72.37 7 CHILE 66.38 44.459 63.50 26.60 68.22 52.13 76.96 33.60 8 MAINLAND-CHINA 55.23 52.245 38.29 40.34 45.21 47.70 49.46 11 DENMARK 75.92 60.30 77.40 76.57 78.46 63.96 12 FINLAND 92.36 44.90 91.75		Nation	\mathbf{f}_1	\mathbf{f}_2	f_3	f_4	\mathbf{f}_1	f_2	f_3	\mathbf{f}_4				
2 AUSTRALLA 89.91 57.16 85.79 82.48 73.39 53.03 78.62 65.05 3 AUSTRIA 64.91 59.19 68.67 73.47 58.89 50.79 68.94 60.82 5 BRAZIL 36.45 34.00 49.67 33.35 19.96 45.64 48.87 77.13 6 CANADA 76.83 68.45 82.16 81.99 69.97 57.92 72.50 72.37 7 CHILE 66.38 44.59 63.50 26.66 68.22 52.13 76.09 33.60 9 COLOMBIA 52.35 32.29 43.76 38.86 41.88 36.46 39.18 30.29 10 CICCHREPUBLIC 36.95 73.44 75.27 74.34 46.97 71.07 73.99 12 DINARK 75.29 69.30 77.40 75.67 74.34 46.97 71.07 73.99 12 DINARK 75.92 <	1	ARGENTINA	4.39	6.47	6.62	32.14	9.64	49.30	3.24	31.30				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2	AUSTRALIA	89.91	57.16	85.79	82.48	73.39	53.03	78.62	65.05				
4 BELGIUM 34.54 100.00 54.87 64.25 41.89 54.06 51.28 64.78 5 BRAZIL 36.65 34.00 49.67 33.35 19.96 45.64 48.87 27.13 6 CANADA 76.83 68.45 82.16 81.99 69.97 57.92 72.80 72.37 7 CHILE 66.38 44.59 63.50 26.60 68.22 52.13 76.96 33.60 8 MAINLAND-CHINA 56.57 73.86 36.98 41.88 36.46 39.18 30.29 10 CZECH-REPUBLIC 39.69 50.55 22.45 38.29 40.34 45.21 47.70 49.46 11 DENMARK 75.92 69.30 77.40 75.87 46.08 75.66 75.09 12 FINLAND 92.36 44.90 91.75 86.03 71.21 40.18 31.08 41.13 15 GREACE 17.59 31.22	3	AUSTRIA	64.91	59.19	68.67	73.47	58.89	50.79	68.94	60.87				
5 BRAZIL 36.45 34.00 49.67 33.35 19.96 45.64 48.87 27.13 6 CANADA 76.83 68.45 82.16 81.99 69.97 57.92 72.50 72.37 7 CHILE 66.38 44.85 63.50 26.60 68.22 52.13 76.50 33.60 8 MAINLAND-CHINA 56.57 73.86 36.98 33.93 58.57 70.94 28.59 36.95 9 COLOMBIA 52.25 52.24 38.29 40.34 45.21 47.70 49.46 11 DENMARK 75.92 69.30 77.40 76.25 74.34 45.21 47.70 73.99 12 ENLAND 92.26 51.44 69.45 91.88 78.09 45.91 52.45 44.74 70.45 15 GREECE 17.59 31.22 36.63 77.00 31.12 40.18 41.18 30.84 47.37 49.61	4	BELGIUM	34.54	100.00	54.87	64.25	41.89	54.06	51.28	64.78				
6 CANADA 76.83 68.45 82.16 81.99 69.97 57.92 72.50 72.37 7 CHILE 66.38 44.59 63.50 26.60 68.22 52.13 76.96 33.60 8 MAINLAND-CHINA 55.57 73.86 36.98 33.93 58.57 70.94 28.59 36.95 9 COLOMBIA 52.35 32.29 43.76 38.86 41.88 36.44 39.18 30.29 10 CZECH-REPUBLIC 39.69 50.55 22.45 38.29 40.34 45.91 72.66 73.09 12 FINI AND 92.36 64.49.0 91.75 86.03 75.87 46.08 75.66 75.09 13 FRANCE 50.14 72.22 51.51 76.19 38.63 58.94 47.76 63.96 14 GERMANY 51.03 72.65 59.38 78.09 70.11 98.60 62.47 17 HUNGARY 33.2 <td>5</td> <td>BRAZIL</td> <td>36.45</td> <td>34.00</td> <td>49.67</td> <td>33.35</td> <td>19.96</td> <td>45.64</td> <td>48.87</td> <td>27.13</td>	5	BRAZIL	36.45	34.00	49.67	33.35	19.96	45.64	48.87	27.13				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	6	CANADA	76.83	68.45	82.16	81.99	69.97	57.92	72.50	72.37				
8 MAINLAND-CHINA 56.57 73.86 36.98 33.93 58.57 70.94 28.59 36.95 9 COLOMBIA 52.35 32.29 43.76 38.86 41.88 36.46 39.18 30.29 10 CTECH-REPUBLIC 39.69 50.55 22.45 38.29 40.34 45.21 47.70 47.04 46.97 77.07 73.99 12 FINLAND 92.36 44.90 91.75 86.03 75.87 46.08 75.66 75.09 13 FRANCE 50.14 72.22 51.51 76.19 38.63 58.94 37.46 63.96 14 GREMANY 51.03 72.65 59.81 78.09 45.91 52.45 44.74 70.45 15 GRECE 17.59 31.22 34.63 57.46 39.83 47.37 49.61 18 CELAND 73.33 27.94 81.03 77.26 72.91 54.22 86.46 69.98 <	7	CHILE	66.38	44.59	63.50	26.60	68.22	52.13	76.96	33.60				
9 COLOMBIA 52.35 32.29 43.76 38.86 41.88 36.46 39.18 30.29 10 CZECH-REPUBLIC 39.69 50.55 22.45 38.29 40.34 45.21 47.70 49.46 11 DENMARK 75.92 69.30 77.40 76.25 74.34 46.97 77.07 73.99 12 FINLAND 92.36 44.90 91.75 86.03 75.87 46.08 75.66 75.09 13 FRANCE 50.14 72.25 59.38 78.09 45.91 52.45 44.74 70.45 16 HONG-KONG 85.14 69.46 89.18 48.19 83.29 70.11 98.60 62.47 17 HUNGARY 33.32 40.31 36.58 28.05 44.84 39.38 47.37 49.61 18 CELAND 73.33 27.94 81.03 77.26 72.91 54.22 86.46 69.98 52.57.46 63.87 23	8	MAINLAND-CHINA	56.57	73.86	36.98	33.93	58.57	70.94	28.59	36.95				
10 CZECH-REPUBLIC 39.69 50.55 22.45 38.29 40.34 45.21 47.70 49.46 11 DENMARK 75.92 69.30 77.40 76.25 74.34 46.97 77.07 73.99 12 EINLAND 92.36 44.90 91.75 86.03 75.87 46.08 75.66 75.09 13 FRANCE 50.14 72.22 51.51 76.19 38.63 58.94 37.46 63.96 14 GERECE 17.59 31.22 34.63 27.00 31.12 40.18 31.08 41.13 16 HONG-KONG 85.14 69.46 89.18 48.19 83.29 70.11 86.60 62.47 17 HUNGARY 33.32 7.94 81.03 77.26 72.91 54.22 86.46 69.98 19 NDA 41.48 52.68 43.33 60.47 47.86 43.93 55.74 63.87 20 NDONESIA	9	COLOMBIA	52.35	32.29	43.76	38.86	41.88	36.46	39.18	30.29				
II DENMARK 75.92 69.30 77.40 76.25 74.34 46.97 77.07 73.99 I2 FINLAND 92.36 44.90 91.75 86.03 75.87 46.08 75.66 75.09 I3 FRANCE 50.14 72.22 51.51 76.19 38.63 58.94 37.46 63.96 I4 GERMANY 51.03 72.65 59.38 78.09 45.91 52.45 44.74 70.45 15 GREECE 17.59 31.22 34.63 27.00 31.12 40.18 31.08 41.13 16 HONG-KONG 85.14 69.46 89.18 48.19 83.29 70.11 98.60 62.47 18 CELAND 73.33 27.94 43.83 56.85 53.34 25.38 20 NDONESIA 16.90 28.00 6.11 9.58 29.96 28.11 9.32 10.04 12 IRELAND 67.38 67.06 <	10	CZECH-REPUBLIC	39.69	50.55	22.45	38.29	40.34	45.21	47.70	49.46				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	11	DENMARK	75.92	69.30	77.40	76.25	74.34	46.97	77.07	73.99				
13 FRANCE 50.14 72.22 51.51 76.19 38.63 58.94 37.46 63.96 14 GERMANY 51.03 72.65 59.38 78.09 45.91 52.45 44.74 70.45 15 GREECE 17.59 31.22 34.63 27.00 31.12 40.18 31.08 41.13 16 HONG-KONG 85.14 69.46 89.18 48.19 83.29 70.11 98.60 62.47 17 HUNGARY 33.32 40.31 36.58 28.05 44.84 39.83 47.37 49.61 18 CELAND 73.33 27.94 81.03 77.26 72.91 54.22 86.45 69.98 20 NDONESIA 16.90 28.00 6.11 9.58 29.96 28.11 9.32 10.04 21 RRAEL 21.68 48.33 60.47 47.86 43.93 55.74 63.87 23 TALY 33.85 46	12	FINLAND	92.36	44.90	91.75	86.03	75.87	46.08	75.66	75.09				
14 GERMANY 51.03 72.65 59.38 78.09 45.91 52.45 44.74 70.45 15 GREECE 17.59 31.22 34.63 27.00 31.12 40.18 31.08 41.13 16 HONG-KONG 85.14 69.46 89.18 48.19 83.29 70.11 98.60 62.47 17 HUNGARY 33.32 40.31 36.58 28.05 44.84 39.83 47.37 49.61 18 ICELAND 73.33 27.94 81.03 77.26 7.21 54.22 86.46 69.98 19 NDIA 41.48 52.68 43.53 27.24 42.83 56.85 53.34 25.38 20 NDONESIA 16.90 28.00 6.11 9.58 29.96 28.11 9.32 10.04 21 RELAND 67.38 67.06 75.61 48.03 60.47 47.86 43.93 55.74 63.87 23 TA	13	FRANCE	50.14	72.22	51.51	76.19	38.63	58.94	37.46	63.96				
Image Image <th< td=""><td>14</td><td>GERMANY</td><td>51.03</td><td>72.65</td><td>59.38</td><td>78.09</td><td>45.91</td><td>52.45</td><td>44 74</td><td>70.45</td></th<>	14	GERMANY	51.03	72.65	59.38	78.09	45.91	52.45	44 74	70.45				
Instruct	15	GREECE	17 59	31.22	34.63	27.00	31.12	40.18	31.08	41.13				
17 HUNGARY 33.32 40.31 36.58 28.05 44.84 39.83 47.37 49.61 18 ICELAND 73.33 27.94 81.03 77.26 72.91 54.22 86.46 69.98 19 INDIA 41.48 52.68 43.53 27.24 42.83 56.85 53.34 25.38 20 INDONESIA 16.90 28.00 6.11 9.58 29.96 28.11 9.32 10.04 21 IRELAND 67.38 67.06 75.61 48.08 68.92 61.82 73.44 49.39 22 ISRAEL 21.68 48.33 60.47 47.86 43.93 55.74 63.87 23 ITALY 33.85 46.89 44.25 43.90 18.06 44.16 21.64 41.60 24 JAPAN 43.69 47.07 41.48 76.42 42.22 53.24 46.10 75.23 26 LUXEMBOURG 80.23 <td< td=""><td>16</td><td>HONG-KONG</td><td>85.14</td><td>69.46</td><td>89.18</td><td>48.19</td><td>83 29</td><td>70.11</td><td>98.60</td><td>62.47</td></td<>	16	HONG-KONG	85.14	69.46	89.18	48.19	83 29	70.11	98.60	62.47				
In District District <thdistrict< th=""> District Di</thdistrict<>	17	HUNGARY	33 32	40.31	36 58	28.05	44 84	39.83	47.37	49.61				
19 INDA 41.48 52.68 43.53 27.24 42.83 56.85 53.34 25.38 20 INDONESIA 16.90 28.00 6.11 9.58 29.96 28.11 9.32 10.04 21 IRELAND 67.38 67.06 75.61 48.08 68.92 61.82 73.44 49.39 22 ISRAEL 21.68 48.33 60.47 47.86 43.93 55.74 63.87 23 ITALY 33.85 46.89 44.25 43.90 18.06 44.16 21.64 41.60 24 JAPAN 43.69 47.07 41.48 76.42 42.22 53.24 46.10 75.23 25 KOREA 43.24 39.32 42.07 50.00 47.75 42.48 49.21 59.88 26 LUXEMBOURG 80.20 80.43 74.01 55.88 66.5 77.22 60.84 58.27 28 MEXICO 43.72 42.2	18	ICELAND	73 33	27.94	81.03	77.26	72.91	54.22	86.46	69.98				
District	19	INDIA	41.48	52.68	43 53	27.24	42.83	56.85	53 34	25.38				
10 10.20 10	20	INDONESIA	16.90	28.00	6 11	9.58	29.96	28.11	932	10.04				
1 1	21	IRFLAND	67.38	67.06	75.61	48.08	68.92	61.82	73 44	49 39				
123 17130 1	22	ISRAFI	21.68	07.00	48.33	60.47	47.86	43.93	55 74	63.87				
24 JABAN 43.69 47.07 41.48 76.42 42.02 53.24 46.10 75.23 25 KOREA 43.24 39.32 42.07 50.00 47.57 42.48 49.21 59.88 26 LUXEMBOURG 80.20 80.43 74.01 55.88 66.5 77.22 60.84 58.87 27 MALAYSIA 78.02 63.51 69.79 60.51 51.22 59.53 51.11 43.69 28 MEXICO 43.72 42.23 26.11 21.32 33.70 41.11 17.98 15.32 29 NETHERLANDS 53.32 99.68 67.28 69.48 56.22 58.40 67.93 69.22 30 NEW-ZEALAND 69.07 47.27 61.44 52.53 72.61 54.61 63.44 53.36 31 NORWAY 59.14 62.32 54.95 70.10 64.17 50.26 60.50 71.88 32 PHILIPPINES </td <td>23</td> <td></td> <td>33.85</td> <td>46.89</td> <td>44.25</td> <td>43.90</td> <td>18.06</td> <td>44 16</td> <td>21.64</td> <td>41.60</td>	23		33.85	46.89	44.25	43.90	18.06	44 16	21.64	41.60				
25 KOREA 43.24 39.32 42.07 50.00 47.57 42.48 49.21 59.88 26 LUXEMBOURG 80.20 80.43 74.01 55.88 66.5 77.22 60.84 58.87 27 MALAYSIA 78.02 63.51 69.79 60.51 51.22 59.53 51.11 43.69 28 MEXICO 43.72 42.23 26.11 21.32 33.70 41.11 17.98 15.32 29 NETHERLANDS 53.32 99.68 67.28 69.48 56.22 58.40 67.93 69.22 30 NEW-ZEALAND 69.07 47.27 61.44 52.53 72.61 54.61 63.44 53.36 31 NORWAY 59.14 62.32 54.95 70.10 64.17 50.26 60.50 71.88 32 PHILIPPINES 41.12 38.83 37.24 29.32 36.99 43.07 43.42 23.11 33 POLAND </td <td>24</td> <td>IAPAN</td> <td>43.69</td> <td>47.07</td> <td>41.48</td> <td>76.42</td> <td>42.22</td> <td>53 24</td> <td>46.10</td> <td>75.23</td>	24	IAPAN	43.69	47.07	41.48	76.42	42.22	53 24	46.10	75.23				
25 ROREA 41.27 37.32 42.30 47.37 42.43 47.21 37.83 26 LUXEMBOURG 80.20 80.43 74.01 55.86 66.5 77.22 60.84 58.87 27 MALAYSIA 78.02 63.51 69.79 60.51 51.22 59.53 51.11 43.69 28 MEXICO 43.72 42.23 26.11 21.32 33.70 41.11 17.98 15.32 29 NEW-ZEALAND 69.07 47.27 61.44 52.53 72.61 54.61 63.44 53.36 31 NORWAY 59.14 62.32 54.95 70.10 64.17 50.26 60.50 71.88 32 PHILIPPINES 41.12 38.83 37.24 29.32 36.99 43.07 43.42 23.11 33 POLAND 15.00 23.37 17.09 30.13 21.22 35.49 11.47 30.06 34 PORTUGAL 46.77	25	KORFA	43.07	30.32	42.07	50.00	42.22	12.48	40.10	50.88				
27 MALAYSIA 78.02 63.51 69.79 60.51 51.22 59.53 51.11 43.69 28 MEXICO 43.72 42.23 26.11 21.32 33.70 41.11 17.98 15.32 29 NETHERLANDS 53.32 99.68 67.28 69.48 56.22 58.40 67.93 69.22 30 NEW-ZEALAND 69.07 47.27 61.44 52.53 72.61 54.61 63.44 53.36 31 NORWAY 59.14 62.32 54.95 70.10 64.17 50.26 60.50 71.88 32 PHILIPPINES 41.12 38.83 37.24 29.32 36.99 43.07 43.42 23.11 33 POLAND 15.00 23.37 17.09 30.13 21.22 35.49 11.47 30.06 34 PORTUGAL 46.77 43.92 6.47 20.14 42.20 42.40 25.12 42.16 35 RUSSIA <td>26</td> <td>LUXEMBOURG</td> <td>80.20</td> <td>80.43</td> <td>74.01</td> <td>55.88</td> <td>66.5</td> <td>77 22</td> <td>60.84</td> <td>58.87</td>	26	LUXEMBOURG	80.20	80.43	74.01	55.88	66.5	77 22	60.84	58.87				
28 MEXICO 43.72 42.23 26.11 21.32 31.22 51.31 41.05 28 MEXICO 43.72 42.23 26.11 21.32 33.70 41.11 17.98 15.32 29 NETHERLANDS 53.32 99.68 67.28 69.48 56.22 58.40 67.93 69.22 30 NEW-ZEALAND 69.07 47.27 61.44 52.53 72.61 54.61 63.44 53.36 31 NORWAY 59.14 62.32 54.95 70.10 64.17 50.26 60.50 71.88 32 PHILIPPINES 41.12 38.83 37.24 29.32 36.99 43.07 43.42 23.11 33 POLAND 15.00 23.37 17.09 30.13 21.22 35.49 11.47 30.06 34 PORTUGAL 46.77 43.92 6.47 20.14 42.20 42.40 25.12 42.16 35 RUSSIA 23.23	20	MALAYSIA	78.02	63 51	69.79	60.51	51.22	59.53	51.11	43.69				
Like The second state The second state <ththe second="" state<="" th=""> <ththe second="" state<="" th=""> <</ththe></ththe>	28	MEXICO	43 72	42.23	26.11	21.32	33.70	41 11	17.98	15 32				
2.1 DETENDATION 53.32 72.30 61.20 60.30 60.40 60.40 61.22 60.40 61.22 60.42 60.42 60.42 60.42 60.42 60.42 60.42 60.42 60.42 60.42 60.42 60.42 60.42 60.42 60.44 53.36 60.44 53.36 60.44 53.36 60.50 71.88 53.36 60.50 71.88 53.36 60.50 71.88 53.36 60.50 71.88 32 PHILIPPINES 41.12 38.83 37.24 29.32 36.99 43.07 43.42 23.11 33 POLAND 15.00 23.37 17.09 30.13 21.22 35.49 11.47 30.06 34 PORTUGAL 46.77 43.92 6.47 20.14 42.20 42.40 25.12 42.16 35 RUSSIA 23.23 27.67 13.19 33.73 37.29 32.33 15.33 31.60 36 SINGAPORE	29	NETHERI ANDS	53 32	99.68	67.28	69.48	56.22	58.40	67.93	69.22				
30 10.0 12.1 01.91 12.10 12.00 12.01 <th12.01< th=""> 12.01 12.01</th12.01<>	30	NEW-ZEALAND	69.07	47.27	61.44	52 53	72.61	54 61	63.44	53.36				
31 INRALI 37.14 02.32 37.24 29.32 36.99 43.07 43.42 23.11 32 PHILIPPINES 41.12 38.83 37.24 29.32 36.99 43.07 43.42 23.11 33 POLAND 15.00 23.37 17.09 30.13 21.22 35.49 11.47 30.06 34 PORTUGAL 46.77 43.92 6.47 20.14 42.20 42.40 25.12 42.16 35 RUSSIA 23.23 27.67 13.19 33.73 37.29 32.33 15.33 31.60 36 SINGAPORE 90.78 71.80 79.58 75.00 79.25 69.15 78.61 73.88 37 SOUTH-AFRICA 49.30 30.40 52.33 32.30 46.00 42.58 41.77 19.63 38 SPAIN 63.21 59.54 50.97 52.61 47.81 50.82 34.31 46.96 39 SWEDEN	31	NORWAY	59.14	62 32	54.95	70.10	64.17	50.26	60.50	71.88				
32 INLE 10.02 17.02 10.02 10.07 <th10.07< th=""> 10.07 10.0</th10.07<>	32	PHILIPPINES	41 12	38.83	37.24	29.32	36.99	43.07	43.42	23.11				
35 FOLTRE 13.00 21.31 11.00 30.10 21.22 23.47 11.47 30.00 34 PORTUGAL 46.77 43.92 6.47 20.14 42.20 42.40 25.12 42.16 35 RUSSIA 23.23 27.67 13.19 33.73 37.29 32.33 15.33 31.60 36 SINGAPORE 90.78 71.80 79.58 75.00 79.25 69.15 78.61 73.88 37 SOUTH-AFRICA 49.30 30.40 52.33 32.30 46.00 42.58 41.77 19.63 38 SPAIN 63.21 59.54 50.97 52.61 47.81 50.82 34.31 46.96 39 SWEDEN 62.84 68.21 67.36 84.56 57.95 49.21 67.61 72.46 40 SWITZERLAND 74.43 70.15 60.52 86.40 72.75 54.07 68.04 77.46 41 TAIWAN	33	POLAND	15.00	23 37	17.09	30.13	21.22	35.40	11 47	30.06				
34 FORTOGRE 40.77 40.77 40.77 20.14 42.20 42.40 20.12 42.10 35 RUSSIA 23.23 27.67 13.19 33.73 37.29 32.33 15.33 31.60 36 SINGAPORE 90.78 71.80 79.58 75.00 79.25 69.15 78.61 73.88 37 SOUTH-AFRICA 49.30 30.40 52.33 32.30 46.00 42.58 41.77 19.63 38 SPAIN 63.21 59.54 50.97 52.61 47.81 50.82 34.31 46.96 39 SWEDEN 62.84 68.21 67.36 84.56 57.95 49.21 67.61 72.46 40 SWITZERLAND 74.43 70.15 60.52 86.40 72.75 54.07 68.04 77.46 41 TAIWAN 63.32 52.71 74.77 64.17 60.19 54.19 77.19 63.89 42 THAILAND <td>34</td> <td>PORTUGAI</td> <td>46 77</td> <td>43.92</td> <td>6.47</td> <td>20.14</td> <td>42.20</td> <td>42.40</td> <td>25.12</td> <td>42.16</td>	34	PORTUGAI	46 77	43.92	6.47	20.14	42.20	42.40	25.12	42.16				
35 ROBBIT 23.23 24.07 13.12 33.13 34.25 12.13 13.13 14.05 36 SINGAPORE 90.78 71.80 79.58 75.00 79.25 69.15 78.61 73.88 37 SOUTH-AFRICA 49.30 30.40 52.33 32.30 46.00 42.58 41.77 19.63 38 SPAIN 63.21 59.54 50.97 52.61 47.81 50.82 34.31 46.96 39 SWEDEN 62.84 68.21 67.36 84.56 57.95 49.21 67.61 72.46 40 SWITZERLAND 74.43 70.15 60.52 86.40 72.75 54.07 68.04 77.46 41 TAIWAN 63.32 52.71 74.77 64.17 60.19 54.19 77.19 63.89 42 THAILAND 70.86 66.85 53.49 34.29 64.51 59.69 50.58 31.45 43 TURKEY	35	RUSSIA	23.23	27.67	13 19	33 73	37.20	32 33	15 33	31.60				
30 Diricit Orde 20.76 71.80 72.80 72.20 07.12 70.81 72.80 37 SOUTH-AFRICA 49.30 30.40 52.33 32.30 46.00 42.58 41.77 19.63 38 SPAIN 63.21 59.54 50.97 52.61 47.81 50.82 34.31 46.96 39 SWEDEN 62.84 68.21 67.36 84.56 57.95 49.21 67.61 72.46 40 SWITZERLAND 74.43 70.15 60.52 86.40 72.75 54.07 68.04 77.46 41 TAIWAN 63.32 52.71 74.77 64.17 60.19 54.19 77.19 63.89 42 THAILAND 70.86 66.85 53.49 34.29 64.51 59.69 50.58 31.45 43 TURKEY 16.96 11.96 45.19 34.86 31.70 37.10 50.91 27.64 44 UNITED-KINGDOM	36	SINGAPORE	90.78	71.80	79.58	75.00	79.25	69.15	78.61	73.88				
37500 III AI RICA 42.30 30.40 32.33 32.30 40.00 42.33 41.77 17.30 38SPAIN 63.21 59.54 50.97 52.61 47.81 50.82 34.31 46.96 39SWEDEN 62.84 68.21 67.36 84.56 57.95 49.21 67.61 72.46 40SWITZERLAND 74.43 70.15 60.52 86.40 72.75 54.07 68.04 77.46 41TAIWAN 63.32 52.71 74.77 64.17 60.19 54.19 77.19 63.89 42THAILAND 70.86 66.85 53.49 34.29 64.51 59.69 50.58 31.45 43TURKEY 16.96 11.96 45.19 34.86 31.70 37.10 50.91 27.64 44UNITED-KINGDOM 61.53 71.39 58.17 60.54 51.03 56.50 51.01 57.72 45USA 78.20 99.78 92.66 100.00 62.72 100.00 84.00 95.46	37	SOUTH-AFRICA	19 30	30.40	52.33	32.30	16.00	42.58	/1.77	10.63				
39 SWEDEN 62.84 68.21 67.36 84.56 57.95 49.21 67.61 72.46 40 SWITZERLAND 74.43 70.15 60.52 86.40 72.75 54.07 68.04 77.46 41 TAIWAN 63.32 52.71 74.77 64.17 60.19 54.19 77.19 63.89 42 THAILAND 70.86 66.85 53.49 34.29 64.51 59.69 50.58 31.45 43 TURKEY 16.96 11.96 45.19 34.86 31.70 37.10 50.91 27.64 44 UNITED-KINGDOM 61.53 71.39 58.17 60.54 51.03 56.50 51.01 57.72 45 USA 78.20 99.78 92.66 100.00 62.72 100.00 84.00 95.46	38	SPAIN	63 21	50.40	50.07	52.50	47.81	50.82	34.31	46.06				
39 SWEDER 02.84 08.21 07.30 34.90 57.25 47.21 07.01 72.40 40 SWITZERLAND 74.43 70.15 60.52 86.40 72.75 54.07 68.04 77.46 41 TAIWAN 63.32 52.71 74.77 64.17 60.19 54.19 77.19 63.89 42 THAILAND 70.86 66.85 53.49 34.29 64.51 59.69 50.58 31.45 43 TURKEY 16.96 11.96 45.19 34.86 31.70 37.10 50.91 27.64 44 UNITED-KINGDOM 61.53 71.39 58.17 60.54 51.03 56.50 51.01 57.72 45 USA 78.20 99.78 92.66 100.00 62.72 100.00 84.00 95.46 46 VENEZUELA 1.00 5.15 8.11 26.87 0.00 29.08 12.07 22.16	30	SWEDEN	62.84	68 21	67.36	94.56	57.05	40.21	67.61	72.46				
41 TAIWAN 63.32 52.71 74.77 64.17 60.19 54.19 77.19 63.89 42 THAILAND 70.86 66.85 53.49 34.29 64.51 59.69 50.58 31.45 43 TURKEY 16.96 11.96 45.19 34.86 31.70 37.10 50.91 27.64 44 UNITED-KINGDOM 61.53 71.39 58.17 60.54 51.03 56.50 51.01 57.72 45 USA 78.20 99.78 92.66 100.00 62.72 100.00 84.00 95.46	10	SWITZERI AND	7/ /2	70.15	60.52	86 /0	70 75	54.07	68.04	77.40				
42 THAILAND 70.86 66.85 53.49 34.29 64.51 59.69 50.58 31.45 43 TURKEY 16.96 11.96 45.19 34.86 31.70 37.10 50.91 27.64 44 UNITED-KINGDOM 61.53 71.39 58.17 60.54 51.03 56.50 51.01 57.72 45 USA 78.20 99.78 92.66 100.00 62.72 100.00 84.00 95.46 46 VENEZUELA 1.00 51.15 8.11 26.87 0.00 29.08 12.07 22.16	/1	TAIWAN	63 27	52 71	74 77	6/ 17	60.10	5/ 10	77 10	63.80				
43 TURKEY 16.96 11.96 45.19 34.86 31.70 37.10 50.91 27.64 44 UNITED-KINGDOM 61.53 71.39 58.17 60.54 51.03 56.50 51.01 57.72 45 USA 78.20 99.78 92.66 100.00 62.72 100.00 84.00 95.46 46 VENEZUELA 1.00 51.5 8.11 26.87 0.00 29.08 12.07 22.16	42		70.96	66.85	53.40	3/ 20	6/ 51	50.60	50.50	21 /5				
45 10.50 11.50 45.19 34.60 51.70 57.10 50.91 27.64 44 UNITED-KINGDOM 61.53 71.39 58.17 60.54 51.03 56.50 51.01 57.72 45 USA 78.20 99.78 92.66 100.00 62.72 100.00 84.00 95.46 46 VENEZUELA 1.00 5.15 8.11 26.87 0.00 20.08 12.07 22.16	42		16.06	11.06	45 10	31.06	31.70	37.10	50.01	27.64				
44 ONTED-KINODOM 01.33 /1.39 36.17 00.34 51.05 50.50 51.01 57.72 45 USA 78.20 99.78 92.66 100.00 62.72 100.00 84.00 95.46 46 VENEZUELA 1.00 5.15 8.11 26.87 0.00 20.08 12.07 22.16	43	UNITED KINGDOM	61 52	71.20	4J.19 50 17	54.00 60.54	51.02	56.50	51.01	57.72				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	44		78.20	00.79	02.66	100.00	62.72	100.00	84.00	05.46				
	43	VENEZIJELA	1.00	5 15	92.00 8 11	26.97	02.72	20.00	12.07	22.40 22.16				

	Notions		2003		2005					
	INations	х	у	Z	х	у	Z			
1	ARGENTINA	-0.6572305	0.5637897	-0.5001892	-0.5261705	0.7468129	-0.4067125			
2	AUSTRALIA	0.09157093	0.9610521	-0.2607557	0.2885919	0.8992801	-0.3286487			
3	AUSTRIA	0.2462744	0.9452799	-0.2139973	0.1862301	0.8246496	0.3863444			
4	BELGIUM	0.2585903	0.7992823	0.5424749	0.3443919	0.78848	0.3679042			
5	BRAZIL	-0.3454365	0.6381996	-0.6880224	-0.745025	0.60707	-0.2764125			
6	CANADA	0.1367149	0.9758315	-0.1704756	0.2850063	0.9230719	-0.2582821			
7	CHILE	-0.3704571	0.9258821	0.07418797	0.08464952	0.7568797	0.5526248			
8	MAINLAND CHINA	-0.3906579	0.8974119	0.2050323	-0.3894844	0.7528272	0.628413			
9	COLOMBIA	-0.5311116	0.8403087	0.1086365	-0.7578207	0.5074652	-0.410106			
10	CZECH-REPUBLIC	-0.56091	0.7881293	0.2534406	-0.5639094	0.7994895	0.4131095			
11	DENMARK	0.1736907	0.9697886	-0.1712944	0.3353658	0.8889409	-0.3119515			
12	FINLAND	0.05729335	0.9429484	-0.3279722	0.344036	0.8854371	-0.3124744			
13	FRANCE	0.3319612	0.8722968	0.3590266	-0.5771191	0.6684961	0.5562589			
14	GERMANY	0.3044131	0.8762769	0.3734588	0.3517075	0.8028373	0.3206938			
15	GREECE	-0.4685574	0.6281605	-0.621183	-0.6937431	0.6205844	-0.3655073			
16	HONG KONG	0.3415583	0.9346637	-0.09870023	0.06999692	0.9285804	-0.3644706			
17	HUNGARY	-0.5980036	0.7744642	0.2063899	-0.5752986	0.8093132	0.3808428			
18	ICELAND	0.1899344	0.9016449	-0.3885373	0.2632078	0.9103639	-0.3193105			
19	INDIA	-0.2823032	0.719731	-0.6342651	-0.4130363	0.9013866	0.4235596			
20	INDONESIA	-0.5595774	0.7134025	-0.4218175	-0.6041083	0.5303078	-0.5948334			
21	IRELAND	0.08414	0.9440161	0.3189891	0.2042338	0.8962	-0.3938453			
22	ISRAEL				0.2757363	0.8296223	0.3131161			
23	ITALY	-0.6104489	0.782709	0.121321	-0.6258356	0.6896589	-0.3642805			
24	JAPAN	-0.6535853	0.7542793	-0.06236187	0.3751869	0.8018456	0.2961202			
25	KOREA	-0.593876	0.8013543	0.07171204	-0.6129484	0.7803701	0.3702867			
26	LUXEMBOURG	0.301206	0.9513805	-0.06442118	0.1036893	0.9393901	-0.3267948			
27	MALAYSIA	0.1230456	0.9562889	0.2652759	-0.4580393	0.8218026	0.4999124			
28	MEXICO	-0.3645716	0.7534457	-0.547181	-0.6763596	0.5226432	-0.51902			
29	NETHERLANDS	0.2703884	0.9592568	0.08195455	0.3473483	0.9185222	-0.1888549			
30	NEW-ZEALAND	0.1634185	0.9676746	0.1920947	0.1078082	0.8233171	0.4182776			
31	NORWAY	0.277824	0.9115898	0.3030146	0.1856751	0.8533636	0.3027366			
32	PHILIPPINES	-0.3537547	0.7016286	-0.6185265	-0.7729034	0.5138644	-0.3722415			
33	POLAND	-0.5519935	0.6357766	-0.5395287	-0.5982569	0.6455617	-0.4746987			
34	PORTUGAL	-0.3958973	0.80583	-0.4403446	-0.6225334	0.7062649	0.4619567			
35	RUSSIA	-0.5235797	0.6771713	-0.5170138	-0.6520786	0.5734609	-0.4959194			
36	SINGAPORE	0.1249795	0.9695915	-0.2104101	0.1797798	0.9489459	-0.2591929			
37	SOUTH AFRICA	-0.5004563	0.8540775	0.1417572	-0.7885693	0.4557103	-0.4129003			
38	SPAIN	-0.4844516	0.8742718	-0.03091253	-0.5411012	0.7619742	0.4926721			
39	SWEDEN	0.235003	0.9623271	-0.1367481	0.3919433	0.8937901	-0.2179902			
40	SWITZERLAND	0.226548	0.9614085	-0.1561079	0.3176676	0.9130052	-0.255947			
41	TAIWAN	0.2232414	0.951489	0.2117355	0.3527142	0.9035925	-0.2431321			
42	THAILAND	-0.3830562	0.9237239	-0.00144001	-0.3656246	0.8588725	0.5255369			
43	TURKEY	-0.4913716	0.5350697	-0.6872076	-0.7805634	0.5361609	-0.321329			
44	UNITED KINGDOM	0.206657	0.9137979	0.3496659	0.2889694	0.7896665	0.4101328			
45	USA	0	1	0	0	11	0			
46	VENEZUELA	-0.6679537	0 5680158	-0.4808283	-0 4843282	0 6940127	-0 5327049			

Table E.2: Coordinators of nations

References

- Adams, F. G., Gangnes B. and Shachmurove Y., Why is China so competitive? measuring and Explaining China's competitiveness, The World Economy, Vol. 29, No. 2 (2006), pp. 95-122
- Au, K. F., Wong, W. K., and Zeng, X. H., Decision model for country site selection of overseas clothing plants, International Journal of Advanced Manufacturing Technology, Vol. 29, SpringerLink, (London, 2006), pp. 408–417.
- Feldstein, M., Argentina's fall lessons from the latest financial crisis, Foreign Affairs, Vol. 81 Issue 2 (2002), p8-14.
- 4. Garelli, S., Competitiveness of nations: the fundamentals, World Competitiveness Yearbook, IMD, Lausanne Switzerland, 2003.
- Han, J., Cluster Analysis. Data mining concept and techniques. Morgan Kaufmann Publishers, San Francisco, (2001), pp.349–351.
- International Institute for Management Development (IMD). World Competitiveness Yearbook, 2001.
- International Institute for Management Development (IMD). World Competitiveness Yearbook, 2003.
- International Institute for Management Development (IMD). World Competitiveness Yearbook, 2005.
- Kruskal, J. B., By optimizing goodness-of-fit to a non-metric hypothesis, Psychometrica Vol. 29 (1964), pp. 1-27
- Kruskal, J. B., Nonmetric multidimensional scaling: A numerical method, Psychometrica Vol. 29 (1964), pp. 115-129.
- 11. Li, H. L. and Chen, M. H., Induction of multiple criteria optimal classification rules

for biological and medical data, Vol. 38 (2007), Computers in Biology and Medicine, pp.42-52.

- Mak, B. and Munakata T., Rule extraction from heuristics: A comparative study of rough sets with neural networks and ID3, European Journal of Operational Research, Vol. 136 (2002), pp.221-229.
- Mascitelli, B. and Gerstman, J., Italy's readiness for the 1998 Euro in view of the country's declining competitiveness, European Review, Vol. 16, no. 1 (Feb 2008), pp. 5-22.
- Oral, M. and Chabchoub, H., Theory and methodology on the methodology of the World Competitiveness Report, European Journal of Operational Research, Vol. 90 (1996), pp. 514–535.
- 15. Pawlak, Z., Rough set approach to knowledge-based decision support, European Journal of Operational Research, Vol. 99 (1997), pp. 48–57.
- Pistorius, C. W., Has South Africa fallen into a competitiveness trap, South African Journal of Science, Vol. 97 (2001), pp. 9–15.
- Porter, M. E., Building the microeconomic foundations of prosperity: finding from the business competitiveness indicators. The Global Competitiveness Report 2005-2006, 2005.
- Quinlan, J.R., Induction of decision trees, Machine Learning, Vol. 1, (1986), p81–106.
- Quinlan, J.R., C4.5: Programs for machine learning. Morgan Kaufmann Publishers. CA, 1993.
- Sheng, L., China and the United States: asymmetrical strategic partners, Washington, Quarterly, Vol. 22 (1999), pp. 147–164.
- 21. Sikder, I. U. and Munakata T., Application of rough set and decision tree for characterization of premonitory factors of low seismic activity, Expert System with

Applications, Vol. 36 (2009), pp.102-110.

- 22. Wang, D. and Jiang, L., An improved attribute selection measure for decision tree induction, Fourth International Conference on Fuzzy Systems and Knowledge Discovery (IEEE), 2007.
- Ulengin, F., Ulengin, B., and Onsel, S., A power-based measurement approach to specify macroeconomic competitiveness of countries, Socio-Economic Planning Sciences, Vol. 36 (2002), pp. 203–226.
- Zanakis, S. H. and Becerra-Fernandez, I., Competitiveness of nations: A knowledge discovery examination, European Journal of Operational Research, Vol. 166 (2005), pp. 185–211.

