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Statistical Analysis and Classification for 3D Structure

of Drosophila Calyx Images

Student : Yu-Da Chen Advisor : Horng-Shing Lu

Institute of Statistics

National Chiao Tung University

Abstract

The goal of our research is to construct an-automated process to classify 3D Drosophila
calyx images. The 125 high resolution LSM images were administered by Ann-Shyn Chiang
from the Department of Life Science at National Tsing-Hua University. Those images are
classified into six categories that are named by their position in the Antennal Lobe. The six
categories are named DA1,DL1,DL3,DM1,DM2 and VL2a. By removing some wrong images
that may be caused by experimental errors, there remain 113 images, so we just do a
classification on those 113 images. Because the images have too much noise, here we use
volume filter to extract useful neurons from images to remove noise automatically.
Furthermore, we calculate many robust features based those neuron images. Then we can
distinguish different spatial circumstances relative to their dissemination by using those
features. After extracting features from images, we use sliced inverse regression on feature
data which can help us to increase accuracy. Finally, we use SVM, J48, IBk, and OneR
classifiers in Weka and R. Here are different ways to classify results all use leave-one-out
cross-validation to evaluate correctness.

Key Words : Remove noise; Features extraction; Sliced inverse regression; Weka.
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1.Introduction

An organism’s sensory system must pass through three procedures: (1) Sensory receptors
are stimulated externally and then send information; (2) Information passes through nerves to
the cerebrum; (3) The cerebrum accepts information from nerves and analyzes the
information. Generally speaking, the hardest part to understand sensory system is the
mechanism of central brain. But regarding the olfactory system, there has been no exact
conclusion for many years as to the procedure of how the sensory receptors are stimulated
externally and then send information. The mechanism of a sensory system has always been a
mystery. Not until Richard Axel and Linda B. Buck used their accomplished molecular
biology technique in neuroscience did they discover that the sensory receptor on a cell bound
the odor, and they finally solved the mystery and won the Nobel Prize in Physiology or
Medicine in 2004.

The Life Science Department-of National Tsing, Hua University uses FocusClearTM,
invented by the department, to make:the cerebral organization easily observable. Additionally,
they use a special genetic engineering technique to-pigment the projection neuron fluorescent
green in a fly cerebrum. It uses a confocal microscope to scan the organization slice by slice,
then uses those slice data to reconstruct a 3D image. Finally, they complete the olfactory
neuron circuit of a fly cerebrum, understand the mechanisms how the cerebrum analyzes an

olfactory signal and smells odors. They complement the region that was unknown previously.



Figure 1. Organization of the Drosophila olfactory system.

1.1 Olfactory sensory receptors to antenna Iobes

In a fly’s olfactory system, odors detected by the receptor distributed on the olfactory
sensory nerve ending on the Antenna(Ant)r anxld II\AIa.quary Palp(MP). The Ant and MP have
three different types of receptors * clublsﬁaped baSIconlc sensilla, spine-shaped trichoid
sensilla, and small cone-shaped coeloconlc sensilla [Stocker, 1994; Couto et al., 2005]. When
olfactory receptors bind odors, they first activate a couple of G-proteins (heterotrimeric
G-protein), promote to generate the cyclic adenosine monophosphate(cyclic AMP, cAMP),
and then open an ion channel to activate the whole olfactory cell [Firestein, 2001;Buck et. al,
1991]. The information sent by the receptor on the MP will be received by ciliated endings of
a nerve called the Labial nerve (LN), and the axon will converge to the ipsilateral antennal
lobe (AL) (like the olfactory bulb in the mammalians); similarly, the olfactory receptor on the
antenna sends information to the glomerulus through the Antennal nerve (AN).

The Ant and MP have about 1200 and 120 olfactory sensory neurons, respectively

[Hallem et al., 2004] and have about 62 types of olfactory receptors. Almost one olfactory

nerve expresses just one type of olfactory receptor [Hallem et al., 2004; Couto et al., 2005],



but there are still some tiny exceptions [Goldman et al., 2005]. When olfactory sensory
neuron dendrites receive information of odor, the axon expressing the same olfactory receptor
will converge to a single or a few glomeruli in the AL [Kreher et al., 2005; Marin et al., 2002;
Jefferis et al., 2001]. From this pattern, the fly’s olfactory system has a high degree of

specificity.

1.2 Antenna lobes to mushroom body and to lateral horn

Antenna lobes have about 50 glomeruli [Marin et al., 2002; Jefferis et al., 2001] and have
about 150 projection neurons peripherally. Each glomerulus sends odor information to about
3-7 projection neurons (equivalent to mammalian mitral/tufted cells), and here one projection
neuron just receives information from one glomerulus [Lin et al., 2007]. Then, the axon
through three different tracts projects to the Lateral Horn(LH), the inner antenna-cerebrum
track(iIACT), the medial ACT(mACT), and the outer ACT(0ACT) [Marin et al., 2002; Wong
et al., 2002]. The majority of the projection._neurons- project through the iACT to the
Mushroom body(MB) calyx and then to.the Lateral-Horn, and few projection neurons project
to the Lateral Horn through the mACT or oACT directly. Even if different projection neurons
receive information from the same glomerulus, the patterns of different tracks in the Lateral

Horn are very different [Wong et al., 2002].



Table 1-1. The biological terminologies and the corresponding abbreviations used in this

study are listed.

OSR Olfactory Sensory Receptor
Ant Antenna
MP Maxillary Palp

cAMP cyclic Adenosine MonoPhosphate

LN Labial Nerve

AN Antennal nerve

AL Antennal Lobe

OB Olfactory Bulb

IACT inner Antenna-Cerebrum Track

mACT medial Antenna-Cerébrum Track

0ACT outer Antenna-Cerebrum Track
MB Mushroom Body
LH Lateral Horn

1.3 Data description

In our research, the LSM images administered by Ann-Shyn Chiang of the Department
of Life Science at National Tsing Hua University show projection neuron dendrites receiving
information from the glomerulus in the antennal lobe, then converging upon axons and
passing through the iACT to the Mushroom body, and finally arriving at the Lateral horn.
Because those images do not have information on which projection neurons receive
information from which glomeruli, we wish to find some robust features that can represent the

pattern of those projection neurons and use those features to do statistical classification.



Table 1-2. The numbers of flies and after removing wrong images in 6 categories are listed,

which can be combined as 2 or 3 categories.

6 categories 3 categories 2 categories Number of flies | After removing

wrong images
DL1 ab ab 40 35
VL2a ac ac-or-at 25 24
DM1 ab ab 22 20
DM2 ab ab 13 10
DL3 at ac-or-at 13 13
DAl at ac-or-at 12 11
Total 125 113




2.Methodology

The goal of our research is to find a statistical method. Then we can utilize different
patterns of projection neurons in the Lateral Horn of flies to calculate some features that are
able to represent the character of an image and use statistical classification to classify our
LSM images. The images are classified into six categories that are named by their position in
the Antennal Lobe. The six categories are named DA1,DL1,DL3,DM1,DM2 and VL2a. By
removing some wrong images which may be caused by experimental errors, there remain 113
images, so we just do a classification on those 113 images.

Because we hope our method can be utilized to classify any type of neuron, and because
we can easily see the colors of projection neuron from the green channel, therefore in this
research, our analysis just depends on the green channel and does not consider the respective
spatial position in red channel simultaneously. Using the green channel and the red channel
simultaneously, we can see the projection neuron dendrites via MB and LH with different
spatial circumstances relative to theirdissemination.

Because we need to calculate some features-that are able to represent the pattern of
spread spatially, we must to do preprocessing of those images, otherwise noise will influence
the accuracy of the features. Here we use RST-invariant features and sliced inverse regression
to preprocess our data features and then utilize SVM and classification trees or some other

method to do statistical classification. Then we use leave-one-out cross-validation to evaluate

accuracy.

Feature Sliced inverse Statistical

. . g e .
extraction regression classification

LSMimage

Preprocessing

A 4
A

input

Figure 2. The overall flowchart of our process.



2.1 Image Pre-Processing

Image preprocessing usually includes spatial quantization (or size reduction), gray level
quantization ( reduce the nymber of bits per pixel), and spatial filter to remove noise or
transform color space. Here, we use the flowchart below to do a spatial filter on 3D fly images
directly. In conclusion, the projection neuron’s axon and dendrites of fly images may be too
thin, so if we use a 3x3x3 structure element to do 3D median filter, we can find a fly
projection neuron axon cut into many pieces, while we denoise and simultaneously amputate
the axon which we do not wish to delete (Figure 4). 3D median filters are not applicable to
our fly images. Then we try another method. We use a mean filter to replace the median filter.
In images with less noise, it seems suitable (Figure 5). But most images do not alter for the
better after the 3D mean filter. Furthermore, in the median filter, we can change to use any
quantile to replace the median, or in the mean filter,.we can change weight of the 3x3x3

structure element, but all of those changes ameliorate restrictedly, so we don’t amplify here.

Median Filter Mean Filter

\/

Closing Filter

A 4
Gaussian
Smoothing Filter

A 4

Thresholding

Figure 3. The flowchart of denoising and morphological operations.



Figure 4(A). The conclusion after the median filter, closing filter, and Gaussian smooth filter,
having a threshold at DA1 GH146-singlePN80calyx image.
Figure 4(B). Zoom in of projection neuron passed through the Mushroom body in Figure

4(A), we can see dendrite cut off in many pieces.

Figure 5(A). The conclusion after the mean filter, closing filter, and Gaussian smooth filter,
having a threshold at DA1 GH146-singlePN80calyx image.
Figure 5(B). Zoom in of projection neuron passed through Mushroom body in Figure 5(A),

we can see that dendrites are still connected. This result is good than using

median filter.



Figure 6(A). The conclusion after the median filter, closing filter, and Gaussian smooth filter,
having a threshold at DL1 GH146-singlePN37calyx image.

Figure 6(B). The conclusion after the mean filter, closing filter, and Gaussian smooth filter,
having a threshold at DL1 GH146-singlePN37calyx image. Here we can see that

denoise methods are usually helpless.

g

L o

[ -
| o= [

Because common methods are helpless llh}obp 3D LSM images, we utilize a gut concept

(which calculates effectively) to denmse o‘f QULLSM |mdges We call this method a volume
p T

filter, which is based on object Iabehﬁg a,n(; seg_;nentaﬂon The main idea of our method is to
do object labeling when an image is inputted. When every object in the image is labeled , then
we can easily calculate the area or volume of each object. After we calculate the volume, we
can keep the maximum-volume object, or we can set a threshold, just keep objects with
volume greater than the threshold. We interpret our method at length below. Before account
for volume filter, we introduce two fundmental definitions about how two objects are

connected. In our application, if any two pixels have 26-adjacency relationship, then we

consider that the two pixels are connected.

2.1.1 Definition : Neighbors of a pixel
Assume p is a pixel at coordinate (X,y). In a two-dimension plane, p has two horizontal
and two vertical neighbors, whose coordinates are (x+1,y), (x-1,y), (x,y+1), and (x,y-1). The

9



set is assembled of four neighbors of p, represented by N,(p). Observe that the pixels around
p still have other four diagonal neighbors whose coordinates are (x+1,y+1), (x-1,y+1),
(x-1,y-1), and (x+1,y-1). The set assembled by four diagonal neighbors of p is represented by
N, (p). AssemblimgN,(p)and N (p)is called 8-neighbor and it can be represented by

Ng(p), which contains the 8 pixels except p in the 3x 3 structure.

2.1.2 Definition : Adjacency of a pixel
Consider the 3x 3 structure in a 2D plane with p at the center of the structure element. If
there exists a g whose intensity is not zero, and ¢ belongs toN,(p), then we can say q and p

are 4-adjacency. Similarity, if g belongs toNg(p), g and p are 8-adjacency.

Figure 7(A).  “» "'l':—"igu-ré“7(B):.r Figure 7(C)..

Figure 7(A)(B)(C) are sketch of N,(p),N,(p) and N,(p) respectively.

2.1.3 Algorithm of connected components ( Object labeling )

Here we make a example of 8-adjacency.

W
o

Figure 8. The structure element of connected components algorithm. In each pixel, we just

need to check target pixelspq, r, s, and t.
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1.1f p =0, check next point.

if all {q,r,s,t}=0, set p a new label,

if only one of {q,r,s,t}= 0, assume q = 0, set label of p = label of q,

if more than one of {q,r,s,t}= 0, assume g, r =0, set label of p = label of g orr,
and mark label of others is equal to label of p.

3. merge the same label object.

2.ifp=0,

LA ]

2
5

Figure 9. (A)(B)(C)(D)(E)(F) are images that after object labeling, have just kept maximum-
volume object: GH114-singlePN37calyx in DAL, GH146-singlePN37calyx in
DL1, GH193- singlePN37calyx in DM1, GH146-singlePN73calyx in DM2,
GH118-singlePN37calyx in VVL2a, GH146-singlePN139calyx in DL3 respectively.
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3 Feature Extraction

In general in image analysis, we need to extract some high-level important information
from an abundance of low-level pixel data. Those procedures are called feature extraction,
and sometimes also called data reduction. In our research, the goal is to develop a statistical
classification to classify fly calyx images. But every image is not standardized, so they have
different size, direction and position. So we have to use more robust statistics to spatially
represent the spread of projection neuron. Those features we need are called RST-invariant

features. RST means rotation, size, and translation..

3.1 Relative frequency vector of histogram

Here we utilize a histogram to calculate the relative frequency vector (first order
probability) [Umbaugh et al., 1997]. Because we focus on the green channel, we can take
green channel as gray-level image. In usual gray-level image, each pixel needs one byte, so
each pixel has 2° combinations and-ranges from 0 to 255. If a pixel has 0 intensity, then this
pixel seem a black point. If intersity get.inerease, then the pixel get more bright, and become
white point until intensity achieves 255. Here, an image size is about 1024x1024x80, and
every image slice may be different, so most of the relative frequency vectors will be close to
zero. This will make features between images not have flair and be hard to classify them into
six categories. So we take a log transform at the relative frequency vector to help us increase

accuracy.

Relative frequency is computed as following:

N ( X
P (x)= (x) (3.1-1)
where M is number of pixels. In this research, it is about 1024x1024x80, and N (x) IS

numbers of gray-level pixel at x intensity.

12



3.2 Histogram features

After we calculate the relative frequency vector we can compute eight features based on

the relative frequency vector. These eight features are mean, standard deviation , coefficient of

variation (CV), skewness, kurtosis, energy, entropy, and volume. We can utilize the relative
frequency vector to calculate mean efficiently.

(3.2-2)
where c, r, and s are column, row and slice, respectively. M is the numbers of pixels in the

image. Mean tells us the overall brightness of the image. If the mean is big, it represents the

image is more bright; similarily, if mean is small, then the image is more dark.

Mean of each categories Mean of each categories
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Figure 3-1. Mean of raw (left) and revised (right) data of six categories.

o, \/jiz(x - %) P(x) (3.2-3)

The standard deviation o, is root of variance. It can tell us the contrast of image. If the s.d.

is big, it represents the contrast is big, the foreground has more difference with background,
and the object can be recognized easily.
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Figure 3-2. Standard deviation of raw (left) and revised (right) data of six categories.

(3.2-4)

Coefficient of variation (CV) is a standard measurementto calculate the spread of data.

CV of each categories CV of each categories
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Figure 3-3. CV of raw (left) and revised (right) data of six categories.
1 255 _\3
SKEW = — > (x - X) P (x) (3.2-5)

O-X x=0

Skew can help us to measure the asymmetry of the gray-level distribution. If skew = 0, then

the distribution is symmetric. If skew > 0, then the distribution is skewed to the right and has

14



more extreme values on right side. If skew < 0, then the distribution is skewed to the left and

has more extreme values on left side. There are two other methods to measure skew, provided

by Pearson that calculate more efficiently.
SKEW' =

X —mode

Skew of each categories

(3.2-6)

(3.2-7)

Shew

Skew of each categories

Shew
g
/

(3.2-8)
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Figure 3-4. Skew of raw (left) and revised (right) data of six categories.

Kurtosis helps us to measure the peakedness of gray-level distribution. Higher kurtosis tell us

KURTOSIS = £4
O_X

that more of the variance is due to infrequent extreme deviations.
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Kurtosis of each categories

Kurtosis of each categories
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Energy reaches the maximum value-1 when whole image just has one intensity. If energy is

Figure 3-5. Kurtosis of raw (left) and revised (right) data of six categories.

ENERGY.=.>" [ p(x)]

255 2

x=0

(3.2-9)

high, it means pixels value just center,at _some.intensity, and the image can easily be

compressed. If gray-level pixels spread widely, then-energy decreases rapidly.
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Figure 3-6. Energy of raw (left) and revised (right) data of six categories.
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255

ENTROPY =-> P (x)log, [P (x)] (3.2-10)

Entropy is a measure that tells us how many bits we need to code the image data. If gray-level

pixels spread more wildly, entropy gets bigger, contrary to energy.

Entropy of each categories Entropy of each categories

2000
\"1.
0

2000
-
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1000
.\\
o

500

Categories Categories

Figure 3-7. Entropy of raw (left) andrevised (right) data of six categories.

3.3 skeleton

Skeleton neurons can help us to see the nerve networks clearly. Furthermore, extracting
features on skeleton neurons can help us to improve the accuracy. Therefore, we calculate
RST-invariant features and end points on skeleton neurons. We tried two kinds of skeleton
algorithms. One is an improved fully parallel 3D thinning algorithm [Wang], and another is

parameter controlled skeletonization of 3D objects [Gagvani et al., 1997].

3.3.1 An improved fully parallel 3D thinning algorithm

The improved fully parallel 3D thinning algorithm which was proposed by Tao Wang is
like a Z-S algorithm in 2 dimensions [Zhang, 1984]. It’s like excoriating target objects layer
by layer. Then we can get skeleton neuron finally. The paper defines four classes of about 52

templates to delete every non tail-point simultaneously. The following is a sketch of one of

17



the deleting templates. P is target pixel ,“ » ” is a an object point, and “ - "is a background

point. The unmarked point is arbitrary.

Figure 10. A sketch of a deleting template.

3.3.2 Parameter Controlled Skeletonization of 3D Objects
Parameter Controlled Skeletonization is also a method that helps us to create skeleton
neurons [Nikhil et al., 1997]. Furthermore, the method, has more flexibility. It can control the

thickness of neurons by selecting a thresheld.

[é& | ;)‘)
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Figure 11. Sketch of Parameter Controlled Skeletonization on a cylinder with threshold = 0,

0.5, 0.6, 0.8.
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4. Sliced inverse regression

In ordinary regression, given a response variable Y and explanatory variables X with p
dimensions, we usually want to find a function of X that can estimate Y well. But if X’s
dimensions are too large, then we may fall into the curse of dimensionality. To avoid this
problem, usually have to do variable selection (feature selection) or dimension reduction. A
commonly used method of dimension reduction is PCA. PCA is based on choosing eigenv-
alues to help us compress variable to a few variables which are linear combination of ordinary
variables. Furthermore, PCA can also help us to visualize our data by using factor scores.

After feature extraction and before statistical classification, we use slice inverse regress-
ion (SIR) to preprocess our feature data which was proposed by Ker-Chau Li (1991). SIR is
not focus on estimating the regression function, but effectively reducting dimensions. SIR can
help us get information from our high-dimension data.by low-dimension projection without
losing information. This is different from PCA.

SIR is considered a more general mogdel:

Y = (B BX0, B X, €) (4-1)
where, fA,,..., B, are unknown projection vectors called effective dimension reduction
directions (EDR-directions) [Li, 1991], k is unknown and less then p, Y is six categories of
neurons named by positions in antenna lobe, and X is our features extracted from images. In
this general model, it needn’t assume & ~ N(O, o®) and f might be any function of X. The
relationship of X and Y just through p linear combinations g, X, g,X, ..., B, X . So the goal
of SIR is to estimate f,,..., B, and then we can project our feature data into k dimensions.

SIR divides Y into k slices and use those slices to estimate a centered regression curve
E(Z|Y), where Z is standardized of X. Then we transform (4-1) to a new model (4-2), and this

new model help us to estimate EDR-directions easily.

Y =f(nZ,n,2,....0Z,¢) (4-2)
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Where 7,,7,,...,7, are called standardized EDR-directions. Afterwards, it utilizes the prop-
erty that E(Z|Y) is spanned by standardized EDR-directions to perform weighed principle
component analysis on Cov[E(Z]Y)]. Because Cov[E(Z]|Y)] degenerates in any direction that is
orthogonal to the standardized EDR-directions, the largest K eigenvectors corresponding to
largest k eigenvalues of cov[E(Z|Y)] are the standardized EDR-directions. Finally, we can

estimate EDR-directions by transforming standardized EDR-directions to the original scale.

4.1 Algorithm of Sliced inverse regression

1. Arrange our data in the form as shown below, where Y in our data are neuron categories,
and X are features extracted from fly calyx images. In our data, n is 113 and p is number
of features (histogram 256 + RST-invariant 7 + volume 1 + skeleton neuron (RST-

invariant 7 + volume 1) = 272).

Y, X, = (X Xypier X, )
Y, X = (Xone Xanreos Xap )
Y, Xy = (Xogs Xozreves X )

Table 4.1 Data frame
2. Standardize x.
2z, =3%(x, -x) (i=1,...,n) (4-1
3. Divide Y into k non-overlapping slices according to categories of neurons and compute the
proportion of Y; in slice s; denote p,, that

B _#of Y in slice s

S L]

n

s=1,...,k 4-2
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Let I, be the indicate function for slice s. Then P, can be rewritten as

~ 13
== I.(Y.), s=1,...,k
ps n ; S ( |)
4. Compute the sample mean z, within each slice.

- 1
Z, == zl,(Y;)) s=1..k

n
s i=1

—~

5. Form the weighted covariance matrix V .

k
~ ~— -
V_Zpszs s
s=1

(4-3)

4-4)

4-5)

6. Find the eigenvalue in and eigenvector 7, of V. 77, are the standardized EDR-directi-

ons. The maximum numbers of eigenvalues unequal to zero are just dependent on the number

of slices-1.

—~

7. Transform 7, back to the original scale:
Pr= 35T,

8. Product B,,..., B, withX.

5. Results

22
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Table 7-1~7-16 in appendix are predicted and classification results using WEKA and R.
SVM is one of the classifier functions in WEKA called SMO. J48 is one of the classifier trees
in WEKA which is used the C4.5 decision tree algorithm. IBk and OneR are lazy learners and
rule learners in WEKA that are also utilized frequently.

First, we find that features extracted from skeleton neurons on revised images can help
us to improve accuracy by observing table 7-1~7-16. Second, if we extract RST-invariant on
red channel, it can also help us to improve accuracy. By observing table 7-2, it receives 59.29
% accuracy which is bigger than table 7-4 55.75 %. In table 7-2 and table 7-4, we can
conclude that if we just want to classifer neuron images and don’t need analysis of 3d
structures, then we can only use ordinary image without noise removal. So, when we remove
noise, we might also remove useful informations. Nonetheless, our noise removal filter can

help us to visualize neuron clearly.
We use B, X , B,X and £, X to plot:2D and 3D‘scatter-plots of six categories. We can find

that DL1, DAL and VL2a are so close. Therefore,-we combine them into one group. After that,
we classify new data into about four groeups. By combining groups, we can get higher

accuracy. We can see at length in appendix table 7-9~7-16.
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Figure 13. 3D scatter plots of combined four categories using ﬁlx , ﬁZX and ﬁ3x . Here

we combine DL1, DA1 and VL2a into a new group and call the new group VLAL.
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6. Conclusion

By observing table 7-1 ~ table 7-16, we find the accuracies after our noise removal
method are sometimes lower than using raw image directly. But in table 7-6 and table 7-8, if
we also consider red channel and skeleton neuron, then our predicted result have a better
behaviors about 58.4071 % and 59.292 % respectively. In table 7-9 ~ table 7-16, the highest
accuracy of revised data is 70.8 % and it’s lower than 77.8761 % of raw data. If we use sir on
extracted features can help us to increase the accuracy but not on raw data.

Our volume filter might still not good enough. So, when we remove noise, we might also
remove useful informations that make our accuracies are sometimes lower than using raw
images. Nonetheless, our noise removal filter can help us to visualize neurons clearly. Besides,
we can try more other features and methods to improve accuracy in the future.

Every animal’s behavior is controlled by its central nervous system. Neuroscientists
believe that much of mankind’s abnormal behavior ‘is caused by genetic errors. Modern rese-
arch in this area has improved to the point Where_scientists can construct an olfactory nerve
network. Furthermore, we can learn more-about how nerve networks express which genes.
Although current research in olfactory systems have been done only on Drosophila and focus
on only parts of the cells, the brain’s olfactory nerve network can already be constructed, and
this technology can later be utilized to construct taste, visual, auditory, or higher-level images,
or even on mammals. Hopefully these research results can be used to cure humanity’s sickn-

esses one day.
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7. Appendix

Table 7- 1. Classification results in R/WEKA without using sliced inverse regression and
without using leave-one-out cross-validation to evaluate correctness.

SVM J48 IBK OneR

Raw data 75 103 113 66
(take log) 66.3717 % 91.1504 % 100 % 58.4071 %

Raw data 72 91 113 66
(no log) 63.7168 % | 80.531 % 100 % 58.4071 %

Revised data 80 103 113 64
(take log) 70.7965 % 91.1504 % 100 % 56.6372 %

Revised data 75 95 113 64
(no log) 66.3717 % 84.0708 % 100 % 56.6372 %

Revised data 86 104 113 66
(take log + skeleton) | 76.1062 % 92.0354 % 100 % 58.4071 %

Revised data 75 98 113 66
(no log + skeleton) 66.3717 % 86.7027 % 100 % 58.4071 %

Table 7-2. Predicted results in R/AWEKAwithout using sliced inverse regression and using

leave-one-out cross-validationito-évaluate correctness.

SVM J48 IBK OneR

Raw data 65 58 67 47
(take log) 57.5221% | 51.3274% | 59.292% | 41.5929 %

Raw data 65 46 63 47
(no log) 57.5221 % 40.708 % 55.7522 % 41.5929 %

Revised data 37 59 20 37
(take log) 32.7434% | 52.2124% | 17.6991% | 32.7434 %

Revised data 51 56 55 39
(no log) 45.1327 % 49.5575 % 48.6726 % 34.5133 %

Revised data 38 51 27 56
(take log + skeleton) | 33.6283 % 45.1327 % 23.8938 % 49.5575 %

Revised data 58 55 54 56
(no log + skeleton) 51.3274 % 48.6726 % 47.7876 % 49.5575 %
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Table 7-3. Classification results in R-WEKA using sliced inverse regression and without using

leave-one-out cross-validation to evaluate correctness.

SVM J48 IBk OneR
Raw data 109 108 113 75
(take log) 96.4602 % 95.5752 % 100 % 66.3717 %
Raw data 60 89 113 55
(no log) 53.0973 % 78.7611 % 100 % 48.6726 %
Revised data 113 113 113 113
(take log) 100 % 100 % 100 % 100 %
Revised data 61 100 113 57
(no log) 53.9823 % 88.4956 % 100 % 50.4425 %
Revised data 113 113 113 113
(take log + skeleton) 100 % 100 % 100 % 100 %
Revised data 74 95 113 63
(no log + skeleton) 65.4867 % 84.0708 % 100 % 55.7522 %

Table 7-4. Predicted results in R/WEKA using-shiced-inverse regression and using leave-one

-out cross-validation to evaluate correctness.

SVM J48 IBk OneR

Raw data 47 43 54 38
(take log) 4159292 % | 38.0531% | 47.78761 % | 33.62832 %

Raw data 47 53 53 44
(no log) 41.59292 % | 46.90265 % | 46.90265 % | 38.93805 %

Revised data 33 22 35 17
(take log) 29.20354 % | 19.46903 % | 30.97345% | 15.04425 %

Revised data 59 43 47 43
(no log) 52.21239 % | 38.0531% | 41.59292 % | 38.0531 %

Revised data 30 22 33 18
(take log + skeleton) | 26.54867 % | 19.46903 % | 29.20354 % | 15.92920 %

Revised data 61 49 63 43
(no log + skeleton) 53.9823 % | 43.36283 % | 55.75221 % | 38.0531 %
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Table 7-5. Classification results added red channel in R/WEKA and without using sliced
inverse regression and without using leave-one-out cross-validation to evaluate

correctness.
SVM J48 IBK OneR

Raw data 76 106 113 66
(take log) 67.2566 % 93.8053 % 100% 58.4071 %

Raw data 72 95 113 66
(no log) 63.7168 % 84.0708 % 100% 58.4071 %

Revised data 87 106 113 64
(take log) 76.9912 % 93.8053 % 100% 56.6372 %

Revised data 99 110 113 72
(no log) 87.6106 % 97.3451 % 100 % 63.7168 %

Revised data 92 106 113 66
(take log + skeleton) | 81.4159 % 93.8053 % 100 % 58.4071 %

Revised data 80 104 113 66
(no log + skeleton) 70.7965 % 92.0354 % 100 % 58.4071 %

Table 7-6. Predicted results added red channelin RAWEKA and without using sliced inverse

regression and using leave-one-out cross-validation to evaluate correctness.

SVM J48 IBk OneR

Raw data 66 57 66 47
(take log) 58.4071% 50.4425% 58.4071% 41.5929%

Raw data 64 45 62 47
(no log) 56.6372% 39.823 % 54.8673% 41.5929%

Revised data 39 54 29 37
(take log) 34.5133 % 47.7876 % 25.6637 % 32.7434 %

Revised data 63 60 54 39
(no log) 55.7522 % 53.0973 % 47.7876 % 34.5133 %

Revised data 42 48 32 56
(take log + skeleton) 37.1681 % 42.4779 % 28.3186 % 49.5575 %

Revised data 66 60 51 56
(no log + skeleton) 58.4071 % 53.0973 % 45.1327 % 49.5575 %
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Table 7-7. Classification results added red channel in R/WEKA and using sliced inverse
regression and without using leave-one-out cross-validation to evaluate correct-

ness.
SVM J48 IBK OneR
Raw data 109 111 113 75
(take log) 96.4602 % 98.2301 % 100 % 66.3717 %
Raw data 68 98 113 52
(no log) 60.177 % | 86.7257 % 100 % 46.0177 %
Revised data 113 113 113 89
(take log) 100 % 100 % 100 % 78.7611 %
Revised data 71 101 113 58
(no log) 62.8319 % 89.3805 % 100 % 51.3274 %
Revised data 113 113 113 106
(take log + skeleton) 100 % 100 % 100 % 93.8053 %
Revised data 84 106 113 69
(no log + skeleton) 74.3363 % 93.8053 % 100 % 61.0619 %

Table 7-8. Predicted results added: red channel in R/WEKA and using sliced inverse

regression and using leave-one-out cross-validation to evaluate correctness.

SVM J48 IBk OneR

Raw data 54 41 49 33
(take log) 47.78761 % | 36.28319 % | 43.36283 % | 29.20354 %

Raw data 54 51 51 51
(no log) 47.78761 % | 45.13274 % | 45.13274 % | 29.20354 %

Revised data 30 27 27 19
(take log) 26.54867 % | 23.89381 % | 23.89381% | 16.81416 %

Revised data 56 48 47 33
(no log) 49.55752 % | 42.47788 % | 47.78761 % | 29.20354 %

Revised data 34 30 33 26
(take log + skeleton) | 30.08850 % | 26.54867 % | 29.20354 % | 23.00885 %

Revised data 67 59 59 50
(no log + skeleton) 59.29204 % | 52.21239 % | 52.21239 % | 44.24779 %
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Table 7-9. Classification results on combined groups in R/WEKA without using sliced inverse
regression and without using leave-one-out cross-validation to evaluate correct-

ness.
SVM J48 IBk OneR
Raw data 89 108 113 90
(take log) 78.7611 % 95.5752 % 100 % 79.646 %
Raw data 76 99 113 90
(no log) 67.2566 % 87.6106 % 100 % 79.646 %
Revised data 94 111 113 90
(take log) 83.1858 % 98.2301 % 100 % 79.646 %
Revised data 88 98 113 90
(no log) 77.8761 % 86.7257 % 100 % 79.646 %
Revised data 97 112 113 90
(take log + skeleton) | 85.8407 % 99.115% 100 % 79.646 %
Revised data 92 107 113 90
(no log + skeleton) 81.4159 % 94.6903 % 100 % 79.646 %

Table 7-10. Predicted results on combined-groups in.R/WEKA without using sliced inverse

regression and using leave-one-out cross-validation to evaluate correctness.

SVM J48 IBk OneR

Raw data 87 81 88 86
(take log) 76.9912 % 71.6814 % 77.8761 % 76.1062 %

Raw data 76 73 81 86
(no log) 67.2566 % 64.6018 % 71.6814 % 76.1062 %

Revised data 69 71 49 79
(take log) 61.0619 % 62.8319 % 43.3628 % 69.9115 %

Revised data 76 79 77 80
(no log) 67.2566 % 69.9115 % 68.1416 % 70.7965 %

Revised data 73 69 57 79
(take log + skeleton) 64.6018 % 61.0619 % 50.4425 % 69.9115 %

Revised data 80 80 76 80
(no log + skeleton) 70.7965 % 70.7965 % 67.2566 % 70.7965 %
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Table 7-11. Classification results on combined groups in R/WEKA using sliced inverse
regression and without using leave-one-out cross-validation to evaluate correct-

ness.
SVM J48 IBK OneR
Raw data 111 112 113 104
(take log) 98.2301 % 99.115 % 100 % 92.0354 %
Raw data 70 91 113 80
(no log) 61.9469 % 80.531 % 100 % 70.7965 %
Revised data 113 113 113 113
(take log) 100 % 100 % 100 % 100 %
Revised data 80 93 113 84
(no log) 70.7965 % 82.3009 % 100 % 74.3363 %
Revised data 113 113 113 113
(take log + skeleton) 100 % 100 % 100 % 100 %
Revised data 86 98 113 93
(no log + skeleton) 76.1062 % 86.7257 % 100 % 82.3009 %

Table 7-12. Predicted results on combined groups in R/MWEKA using sliced inverse regression

and using leave-one -out cross-validation to evaluate correctness.

SVM J48 IBk OneR

Raw data 65 66 66 57
(take log) 57.52212 % | 58.40708 % | 58.40708 % | 50.44248 %

Raw data 70 66 73 52
(no log) 61.9469 % | 58.40708 % | 64.60177 % | 46.0177 %

Revised data 33 45 39 28
(take log) 29.20354 % | 39.82301 % | 34.51327 % | 24.77876 %

Revised data 75 83 72 78
(no log) 66.37168 % | 73.45133% | 63.71681 % | 69.02655 %

Revised data 32 44 38 22
(take log + skeleton) | 28.31858 % | 38.93805 % | 33.62832 % | 19.46903 %

Revised data 77 77 74 73
(no log + skeleton) 68.14159 % | 68.14159 % | 65.48673 % | 64.60177 %
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Table 7-13. Classification results on combined groups added red channel in R/WEKA and
without using sliced inverse regression and without using leave-one-out

cross-validation to evaluate correctness.

SVM J48 IBK OneR

Raw data 89 110 113 90
(take log) 78.7611 % 97.3451 % 100 % 79.646 %

Raw data 76 99 113 90
(no log) 67.2566 % 87.6106 % 100 % 79.646 %

Revised data 93 110 113 90
(take log) 82.3009 % 97.3451 % 100 % 79.646 %

Revised data 92 103 113 90
(no log) 81.4159 % 91.1504 % 100 % 79.646 %

Revised data 97 112 113 90
(take log + skeleton) | 85.8407 % 99.115 % 100 % 79.646 %

Revised data 93 110 113 90
(no log + skeleton) 82.3009 % 97.3451 % 100 % 79.646 %

Table 7-14. Classification results on‘combined groups-added red channel in R/WEKA and
without using sliced inverse regression and using leave-one-out cross-validation

to evaluate correctness.

SVM J48 IBK OneR

Raw data 87 74 87 86
(take log) 76.9912 % 65.4867 % 76.9912 % 76.1062 %

Raw data 85 80 84 72
(no log) 75.2212 % 70.7965 % 71.6814 % 63.7168 %

Revised data 70 77 55 79
(take log) 61.9469 % 68.1416 % 48.6726 % 69.9115 %

Revised data 78 83 77 80
(no log) 69.0265 % 73.4513 % 68.1416 % 70.7965 %

Revised data 70 70 59 79
(take log + skeleton) | 61.9469 % 61.9469 % 52.2124 % 69.9115 %

Revised data 79 70 76 80
(no log + skeleton) 69.9115 % 61.9469 % 67.2566 % 70.7965 %
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Table 7-15. Classification results on combined groups added red channel in R/WEKA and

using sliced inverse regression and without using leave-one-out cross-validation

to evaluate correctness.

SVM J48 IBK OneR

Raw data 110 111 113 94
(take log) 97.3451 % 98.2301 % 100 % 83.1858 %

Raw data 70 89 113 79
(no log) 61.9469 % 78.7611 % 100 % 69.9115 %

Revised data 113 111 113 107
(take log) 100 % 98.2301 % 100 % 94.6903 %

Revised data 77 101 113 80
(no log) 68.1416 % 89.3805 % 100 % 70.7965 %

Revised data 111 112 113 106
(take log + skeleton) | 98.2301 % 99.115 % 100 % 93.8053 %

Revised data 80 107 113 94
(no log + skeleton) 70.7965 % 94.6903 % 100 % 83.1858 %

Table 7-16. Classification results on combined groups added red channel in R/WEKA and
using sliced inverse regression and using leave-one-out cross-validation to
evaluate correctness.

SVM J48 IBk OneR

Raw data 69 65 73 61
(take log) 61.06195 % | 57.52212 % | 64.60177 % | 53.9823 %

Raw data 64 59 64 52
(no log) 56.63717 % | 52.21239 % | 56.63717 % | 46.0177 %

Revised data 37 37 42 25
(take log) 32.74336 % | 32.74336 % | 37.16814 % | 25.66372 %

Revised data 72 73 72 68
(no log) 63.71681 % | 64.60177 % | 63.71681 % | 60.17699 %

Revised data 49 47 50 37
(take log + skeleton) | 43.36283 % | 41.59292 % | 44.24779 % | 32.74336 %

Revised data 75 80 77 78
(no log + skeleton) 66.37168 % | 70.79646 % | 68.14159 % | 69.02655 %
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