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摘要 

 
 

  本研究的主要目的是建構一個自動化流程的三維果蠅嗅覺影像的分類器。此

次研究的資料是來自國立清華大學腦科學中心江安世博士所提供的 125張高解

析度LSM影像檔，這些影像皆是以果蠅的嗅覺腦區(Antennal Lobe)的方位來命名

分成六種類別，分別是DA1、DL1、DL3、DM1、DM2和VL2a。經由扣除可能是實驗

染色錯誤的神經影像，剩餘113張影像。由於影像資料有太多雜訊，在此我們藉

由對每張神經影像裡的每個物件做標記來達到影像分割的自動化，取出我們需要

的神經來達到去雜訊的目的。之後我們針對神經影像取出數種較穩健的特徵值，

藉由這些特徵值來區別各種神經影像在空間上的分佈情形。對影像取完特徵值之

後，我們對這些特徵值使用逆分層回歸（Sliced inverse regression）可以幫

助我們提升分類的正確率。最後使用Weka及R中的SVM,J48,IBk,OneR做統計分類

及預測。在此各種分類器的分類結果皆以leave-one-out的cross-validation正

確率當做評估的標準。 

 

關鍵詞：去雜訊、擷取特徵值、逆分層回歸、Weka。 
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Abstract 
 

The goal of our research is to construct an automated process to classify 3D Drosophila 

calyx images. The 125 high resolution LSM images were administered by Ann-Shyn Chiang 

from the Department of Life Science at National Tsing Hua University. Those images are 

classified into six categories that are named by their position in the Antennal Lobe. The six 

categories are named DA1,DL1,DL3,DM1,DM2 and VL2a. By removing some wrong images 

that may be caused by experimental errors, there remain 113 images, so we just do a 

classification on those 113 images. Because the images have too much noise, here we use 

volume filter to extract useful neurons from images to remove noise automatically. 

Furthermore, we calculate many robust features based those neuron images. Then we can 

distinguish different spatial circumstances relative to their dissemination by using those 

features. After extracting features from images, we use sliced inverse regression on feature 

data which can help us to increase accuracy. Finally, we use SVM, J48, IBk, and OneR 

classifiers in Weka and R. Here are different ways to classify results all use leave-one-out 

cross-validation to evaluate correctness.  

Key Words : Remove noise; Features extraction; Sliced inverse regression; Weka. 
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1.Introduction 

  An organism’s sensory system must pass through three procedures: (1) Sensory receptors 

are stimulated externally and then send information; (2) Information passes through nerves to 

the cerebrum; (3) The cerebrum accepts information from nerves and analyzes the 

information. Generally speaking, the hardest part to understand sensory system is the 

mechanism of central brain. But regarding the olfactory system, there has been no exact 

conclusion for many years as to the procedure of how the sensory receptors are stimulated 

externally and then send information. The mechanism of a sensory system has always been a 

mystery. Not until Richard Axel and Linda B. Buck used their accomplished molecular 

biology technique in neuroscience did they discover that the sensory receptor on a cell bound 

the odor, and they finally solved the mystery and won the Nobel Prize in Physiology or 

Medicine in 2004.  

  The Life Science Department of National Tsing Hua University uses FocusClearTM, 

invented by the department, to make the cerebral organization easily observable. Additionally, 

they use a special genetic engineering technique to pigment the projection neuron fluorescent 

green in a fly cerebrum. It uses a confocal microscope to scan the organization slice by slice, 

then uses those slice data to reconstruct a 3D image. Finally, they complete the olfactory 

neuron circuit of a fly cerebrum, understand the mechanisms how the cerebrum analyzes an 

olfactory signal and smells odors. They complement the region that was unknown previously. 
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Figure 1. Organization of the Drosophila olfactory system. 

 

1.1 Olfactory sensory receptors to antenna lobes 

In a fly’s olfactory system, odors detected by the receptor distributed on the olfactory 

sensory nerve ending on the Antenna(Ant) and Maxillary Palp(MP). The Ant and MP have 

three different types of receptors：club-shaped basiconic sensilla, spine-shaped trichoid 

sensilla, and small cone-shaped coeloconic sensilla [Stocker, 1994; Couto et al., 2005]. When 

olfactory receptors bind odors, they first activate a couple of G-proteins (heterotrimeric 

G-protein), promote to generate the cyclic adenosine monophosphate(cyclic AMP, cAMP), 

and then open an ion channel to activate the whole olfactory cell [Firestein, 2001;Buck et. al, 

1991]. The information sent by the receptor on the MP will be received by ciliated endings of 

a nerve called the Labial nerve (LN), and the axon will converge to the ipsilateral antennal 

lobe (AL) (like the olfactory bulb in the mammalians); similarly, the olfactory receptor on the 

antenna sends information to the glomerulus through the Antennal nerve (AN).  

The Ant and MP have about 1200 and 120 olfactory sensory neurons, respectively 

[Hallem et al., 2004] and have about 62 types of olfactory receptors. Almost one olfactory 

nerve expresses just one type of olfactory receptor [Hallem et al., 2004; Couto et al., 2005], 
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but there are still some tiny exceptions [Goldman et al., 2005]. When olfactory sensory 

neuron dendrites receive information of odor, the axon expressing the same olfactory receptor 

will converge to a single or a few glomeruli in the AL [Kreher et al., 2005; Marin et al., 2002; 

Jefferis et al., 2001]. From this pattern, the fly’s olfactory system has a high degree of 

specificity. 

 

1.2 Antenna lobes to mushroom body and to lateral horn 

Antenna lobes have about 50 glomeruli [Marin et al., 2002; Jefferis et al., 2001] and have 

about 150 projection neurons peripherally. Each glomerulus sends odor information to about 

3-7 projection neurons (equivalent to mammalian mitral/tufted cells), and here one projection 

neuron just receives information from one glomerulus [Lin et al., 2007]. Then, the axon 

through three different tracts projects to the Lateral Horn(LH), the inner antenna-cerebrum 

track(iACT), the medial ACT(mACT), and the outer ACT(oACT) [Marin et al., 2002; Wong 

et al., 2002]. The majority of the projection neurons project through the iACT to the 

Mushroom body(MB) calyx and then to the Lateral Horn, and few projection neurons project 

to the Lateral Horn through the mACT or oACT directly. Even if different projection neurons 

receive information from the same glomerulus, the patterns of different tracks in the Lateral 

Horn are very different [Wong et al., 2002]. 
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Table 1-1. The biological terminologies and the corresponding abbreviations used in this 

study are listed. 

OSR Olfactory Sensory Receptor 

Ant Antenna 

MP Maxillary Palp 

cAMP cyclic Adenosine MonoPhosphate 

LN Labial Nerve 

AN Antennal nerve 

AL Antennal Lobe 

OB Olfactory Bulb 

iACT inner Antenna-Cerebrum Track 

mACT medial Antenna-Cerebrum Track 

oACT outer Antenna-Cerebrum Track 

MB Mushroom Body 

LH Lateral Horn 

 

1.3 Data description 

In our research, the LSM images administered by Ann-Shyn Chiang of the Department 

of Life Science at National Tsing Hua University show projection neuron dendrites receiving 

information from the glomerulus in the antennal lobe, then converging upon axons and 

passing through the iACT to the Mushroom body, and finally arriving at the Lateral horn. 

Because those images do not have information on which projection neurons receive 

information from which glomeruli, we wish to find some robust features that can represent the 

pattern of those projection neurons and use those features to do statistical classification. 
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Table 1-2. The numbers of flies and after removing wrong images in 6 categories are listed,  

which can be combined as 2 or 3 categories. 

6 categories 3 categories 2 categories Number of flies After removing 
wrong images 

DL1 ab ab 40 35 
VL2a ac ac-or-at 25 24 
DM1 ab ab 22 20 
DM2 ab ab 13 10 
DL3 at ac-or-at 13 13 
DA1 at ac-or-at 12 11 
Total   125 113 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 5



2.Methodology 

The goal of our research is to find a statistical method. Then we can utilize different 

patterns of projection neurons in the Lateral Horn of flies to calculate some features that are 

able to represent the character of an image and use statistical classification to classify our 

LSM images. The images are classified into six categories that are named by their position in 

the Antennal Lobe. The six categories are named DA1,DL1,DL3,DM1,DM2 and VL2a. By 

removing some wrong images which may be caused by experimental errors, there remain 113 

images, so we just do a classification on those 113 images.  

Because we hope our method can be utilized to classify any type of neuron, and because 

we can easily see the colors of projection neuron from the green channel, therefore in this 

research, our analysis just depends on the green channel and does not consider the respective 

spatial position in red channel simultaneously. Using the green channel and the red channel 

simultaneously, we can see the projection neuron dendrites via MB and LH with different 

spatial circumstances relative to their dissemination.  

Because we need to calculate some features that are able to represent the pattern of 

spread spatially, we must to do preprocessing of those images, otherwise noise will influence 

the accuracy of the features. Here we use RST-invariant features and sliced inverse regression 

to preprocess our data features and then utilize SVM and classification trees or some other 

method to do statistical classification. Then we use leave-one-out cross-validation to evaluate 

accuracy. 

 

Statistical 

classification

Sliced inverse 

regression 

Feature 

extraction 
PreprocessingLSM image 

input 

 

Figure 2. The overall flowchart of our process. 
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2.1 Image Pre-Processing 

Image preprocessing usually includes spatial quantization (or size reduction), gray level 

quantization ( reduce the nymber of bits per pixel), and spatial filter to remove noise or 

transform color space. Here, we use the flowchart below to do a spatial filter on 3D fly images 

directly. In conclusion, the projection neuron’s axon and dendrites of fly images may be too 

thin, so if we use a 3x3x3 structure element to do 3D median filter, we can find a fly 

projection neuron axon cut into many pieces, while we denoise and simultaneously amputate 

the axon which we do not wish to delete (Figure 4). 3D median filters are not applicable to 

our fly images. Then we try another method. We use a mean filter to replace the median filter. 

In images with less noise, it seems suitable (Figure 5). But most images do not alter for the 

better after the 3D mean filter. Furthermore, in the median filter, we can change to use any 

quantile to replace the median, or in the mean filter, we can change weight of the 3x3x3 

structure element, but all of those changes ameliorate restrictedly, so we don’t amplify here. 

 

Median Filter  

Closing Filter 

Gaussian 
Smoothing Filter 

Mean Filter   

Thresholding 

Figure 3. The flowchart of denoising and morphological operations. 
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Figure 4(A). The conclusion after the median filter, closing filter, and Gaussian smooth filter, 

having a threshold at DA1 GH146-singlePN80calyx image. 

 Figure 4(B). Zoom in of projection neuron passed through the Mushroom body in Figure 

            4(A), we can see dendrite cut off in many pieces. 

 

   

Figure 5(A). The conclusion after the mean filter, closing filter, and Gaussian smooth filter, 

having a threshold at DA1 GH146-singlePN80calyx image. 

Figure 5(B). Zoom in of projection neuron passed through Mushroom body in Figure 5(A), 

           we can see that dendrites are still connected. This result is good than using 

           median filter. 
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Figure 6(A). The conclusion after the median filter, closing filter, and Gaussian smooth filter,  

  having a threshold at DL1 GH146-singlePN37calyx image.  

Figure 6(B). The conclusion after the mean filter, closing filter, and Gaussian smooth filter, 

           having a threshold at DL1 GH146-singlePN37calyx image. Here we can see that  

          denoise methods are usually helpless. 

  

Because common methods are helpless in our 3D LSM images, we utilize a gut concept 

(which calculates effectively) to denoise of our LSM images. We call this method a volume 

filter, which is based on object labeling and segmentation. The main idea of our method is to 

do object labeling when an image is inputted. When every object in the image is labeled , then 

we can easily calculate the area or volume of each object. After we calculate the volume, we 

can keep the maximum-volume object, or we can set a threshold, just keep objects with 

volume greater than the threshold. We interpret our method at length below. Before account 

for volume filter, we introduce two fundmental definitions about how two objects are 

connected. In our application, if any two pixels have 26-adjacency relationship, then we 

consider that the two pixels are connected. 

 

2.1.1 Definition : Neighbors of a pixel 

Assume p is a pixel at coordinate (x,y). In a two-dimension plane, p has two horizontal 

and two vertical neighbors, whose coordinates are (x+1,y), (x-1,y), (x,y+1), and (x,y-1). The 
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set is assembled of four neighbors of p, represented by . Observe that the pixels around 

p still have other four diagonal neighbors whose coordinates are (x+1,y+1), (x-1,y+1), 

(x-1,y-1), and (x+1,y-1). The set assembled by four diagonal neighbors of p is represented by 

. Assemblimg and is called 8-neighbor and it can be represented by 

, which contains the 8 pixels except p in the3

4( )N p

( )DN p 4( )N p ( )DN p

8( )N p 3× structure. 

  

2.1.2 Definition : Adjacency of a pixel 

Consider the3 3× structure in a 2D plane with p at the center of the structure element. If 

there exists a q whose intensity is not zero, and q belongs to , then we can say q and p 

are 4-adjacency. Similarity, if q belongs to , q and p are 8-adjacency.  

4( )N p

8( )N p

 

             
      Figure 7(A).        Figure 7(B).        Figure 7(C)..           

      Figure 7(A)(B)(C) are sketch of ,  and  respectively. 4( )N p ( )DN p 8( )N p

 

2.1.3 Algorithm of connected components ( Object labeling ) 

Here we make a example of 8-adjacency. 

 

 
Figure 8. The structure element of connected components algorithm. In each pixel, we just 

need to check target pixels p q, r, s, and t. 
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1. If 0, check next point.
if all { , , , }=0, set  a new label,
if only one of { , , , } 0, assume 0, set label of  = label of ,

2. if 0, 
if more than one of { , , , } 0, assume ,  0, set label of

p
q r s t p

q r s t q p q
p

q r s t q r

=

≠ ≠
≠

≠ ≠  = label of  or , 
   and mark label of others is equal to label of .

3. merge the same label object.

p q r
p

⎧
⎪
⎪
⎨
⎪
⎪⎩

 

  

  

  

Figure 9. (A)(B)(C)(D)(E)(F) are images that after object labeling, have just kept maximum- 

       volume object: GH114-singlePN37calyx in DA1, GH146-singlePN37calyx in  

       DL1, GH193- singlePN37calyx in DM1, GH146-singlePN73calyx in DM2, 

       GH118-singlePN37calyx in VL2a, GH146-singlePN139calyx in DL3 respectively. 
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3 Feature Extraction 

In general in image analysis, we need to extract some high-level important information 

from an abundance of low-level pixel data. Those procedures are called feature extraction, 

and sometimes also called data reduction. In our research, the goal is to develop a statistical 

classification to classify fly calyx images. But every image is not standardized, so they have 

different size, direction and position. So we have to use more robust statistics to spatially 

represent the spread of projection neuron. Those features we need are called RST-invariant 

features. RST means rotation, size, and translation.. 

  

3.1 Relative frequency vector of histogram 

Here we utilize a histogram to calculate the relative frequency vector (first order 

probability) [Umbaugh et al., 1997]. Because we focus on the green channel, we can take 

green channel as gray-level image. In usual gray-level image, each pixel needs one byte, so 

each pixel has combinations and ranges from 0 to 255. If a pixel has 0 intensity, then this 

pixel seem a black point. If intersity get increase, then the pixel get more bright, and become 

white point until intensity achieves 255. Here, an image size is about , and 

every image slice may be different, so most of the relative frequency vectors will be close to 

zero. This will make features between images not have flair and be hard to classify them into 

six categories. So we take a log transform at the relative frequency vector to help us increase 

accuracy. 

82

1024 1024 80× ×

 

Relative frequency is computed as following: 

( ) ( )
. . (3.1-1)r f

N x
P x

M
=  

where  is number of pixels. In this research, it is about M 1024 1024 80× × , and ( )N x is 

numbers of gray-level pixel at  intensity. x
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3.2 Histogram features 

After we calculate the relative frequency vector we can compute eight features based on 

the relative frequency vector. These eight features are mean, standard deviation , coefficient of 

variation (CV), skewness, kurtosis, energy, entropy, and volume. We can utilize the relative 

frequency vector to calculate mean efficiently.  

( ) ( )255

. .
0

, ,
(3.2-2)r f

x s r c

I c r s
x xP x

M=

= =∑ ∑∑∑  

where c, r, and s are column, row and slice, respectively. M is the numbers of pixels in the 

image. Mean tells us the overall brightness of the image. If the mean is big, it represents the 

image is more bright; similarily, if mean is small, then the image is more dark. 

   

Figure 3-1. Mean of raw (left) and revised (right) data of six categories. 

 

( ) ( )σ
=

= −∑
255

2

0

(3.2-3)x
x

x x P x  

The standard deviation xσ  is root of variance. It can tell us the contrast of image. If the s.d. 

is big, it represents the contrast is big, the foreground has more difference with background, 

and the object can be recognized easily.  
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Figure 3-2. Standard deviation of raw (left) and revised (right) data of six categories. 

 

(3.2-4)CV
σ
μ

=  

Coefficient of variation (CV) is a standard measurement to calculate the spread of data. 

   

Figure 3-3. CV of raw (left) and revised (right) data of six categories. 

 

( ) ( )
255

3

0

1
(3.2-5)

xx

SKEW x x P x
σ =

= −∑  

Skew can help us to measure the asymmetry of the gray-level distribution. If skew = 0, then 

the distribution is symmetric. If skew > 0, then the distribution is skewed to the right and has 
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more extreme values on right side. If skew < 0, then the distribution is skewed to the left and 

has more extreme values on left side. There are two other methods to measure skew, provided 

by Pearson that calculate more efficiently.  

mode
(3.2-6)

x

x
SKEW

σ
−′ =  

( )3 median
(3.2-7)

x

x
SKEW

σ
−

′′ =  

   

Figure 3-4. Skew of raw (left) and revised (right) data of six categories. 

 

4
4 (3.2-8)
x

KURTOSIS
μ
σ

=  

Kurtosis helps us to measure the peakedness of gray-level distribution. Higher kurtosis tell us 

that more of the variance is due to infrequent extreme deviations. 
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Figure 3-5. Kurtosis of raw (left) and revised (right) data of six categories. 

 

( )
2255

0

(3.2-9)
x

ENERGY p x
=

⎡ ⎤= ⎣ ⎦∑  

Energy reaches the maximum value 1 when whole image just has one intensity. If energy is 

high, it means pixels value just center at some intensity, and the image can easily be 

compressed. If gray-level pixels spread widely, then energy decreases rapidly.  

   

Figure 3-6. Energy of raw (left) and revised (right) data of six categories. 
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( ) ( )
255

2
0

log (3.2-10)
x

ENTROPY P x P x
=

⎡ ⎤= − ⎣ ⎦∑  

Entropy is a measure that tells us how many bits we need to code the image data. If gray-level 

pixels spread more wildly, entropy gets bigger, contrary to energy. 

   

Figure 3-7. Entropy of raw (left) and revised (right) data of six categories. 

 

3.3 skeleton 

Skeleton neurons can help us to see the nerve networks clearly. Furthermore, extracting 

features on skeleton neurons can help us to improve the accuracy. Therefore, we calculate 

RST-invariant features and end points on skeleton neurons. We tried two kinds of skeleton 

algorithms. One is an improved fully parallel 3D thinning algorithm [Wang], and another is 

parameter controlled skeletonization of 3D objects [Gagvani et al., 1997]. 

 

3.3.1 An improved fully parallel 3D thinning algorithm 

The improved fully parallel 3D thinning algorithm which was proposed by Tao Wang is 

like a Z-S algorithm in 2 dimensions [Zhang, 1984]. It’s like excoriating target objects layer 

by layer. Then we can get skeleton neuron finally. The paper defines four classes of about 52 

templates to delete every non tail-point simultaneously. The following is a sketch of one of 
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the deleting templates. P is target pixel ,“‧” is a an object point, and “。”is a background 

point. The unmarked point is arbitrary. 

 

Figure 10. A sketch of a deleting template. 

 

3.3.2 Parameter Controlled Skeletonization of 3D Objects 

Parameter Controlled Skeletonization is also a method that helps us to create skeleton 

neurons [Nikhil et al., 1997]. Furthermore, the method has more flexibility. It can control the 

thickness of neurons by selecting a threshold. 
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Figure 11. Sketch of Parameter Controlled Skeletonization on a cylinder with threshold = 0, 

       0.5, 0.6, 0.8. 
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4. Sliced inverse regression 

In ordinary regression, given a response variable Y and explanatory variables X with p 

dimensions, we usually want to find a function of X that can estimate Y well. But if X’s 

dimensions are too large, then we may fall into the curse of dimensionality. To avoid this 

problem, usually have to do variable selection (feature selection) or dimension reduction. A 

commonly used method of dimension reduction is PCA. PCA is based on choosing eigenv- 

alues to help us compress variable to a few variables which are linear combination of ordinary 

variables. Furthermore, PCA can also help us to visualize our data by using factor scores. 

After feature extraction and before statistical classification, we use slice inverse regress- 

ion (SIR) to preprocess our feature data which was proposed by Ker-Chau Li (1991). SIR is 

not focus on estimating the regression function, but effectively reducting dimensions. SIR can 

help us get information from our high-dimension data by low-dimension projection without 

losing information. This is different from PCA.  

SIR is considered a more general model: 

( )1 2, , , , (4 1kY f X X Xβ β β ε )= … −  

where, 1,..., kβ β  are unknown projection vectors called effective dimension reduction 

directions (EDR-directions) [Li, 1991], k is unknown and less then p, Y is six categories of 

neurons named by positions in antenna lobe, and X is our features extracted from images. In 

this general model, it needn’t assume 2~ (0, )Nε σ  and f might be any function of X. The 

relationship of X and Y just through p linear combinations 1 2, , , kX X Xβ β β… . So the goal 

of SIR is to estimate 1,..., kβ β , and then we can project our feature data into k dimensions.  

SIR divides Y into k slices and use those slices to estimate a centered regression curve 

E(Z|Y), where Z is standardized of X. Then we transform (4-1) to a new model (4-2), and this 

new model help us to estimate EDR-directions easily. 

( )1 2, , , , (4 2kY f Z Z Zη η η ε )= … −  
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Where 1 2, , , kη η … η are called standardized EDR-directions. Afterwards, it utilizes the prop- 

erty that E(Z|Y) is spanned by standardized EDR-directions to perform weighed principle 

component analysis on Cov[E(Z|Y)]. Because Cov[E(Z|Y)] degenerates in any direction that is 

orthogonal to the standardized EDR-directions, the largest K eigenvectors corresponding to 

largest k eigenvalues of cov[E(Z|Y)] are the standardized EDR-directions. Finally, we can 

estimate EDR-directions by transforming standardized EDR-directions to the original scale. 

 

4.1 Algorithm of Sliced inverse regression 

1. Arrange our data in the form as shown below, where Y in our data are neuron categories, 

and X are features extracted from fly calyx images. In our data, n is 113 and p is number 

of features (histogram 256 + RST-invariant 7 + volume 1 + skeleton neuron (RST- 

invariant 7 + volume 1) = 272).  

1Y  ( )1 11 12 1, , , pX X X X ′= …

2Y  ( )2 21 22 2, , , pX X X X ′= …

. 

. 

. 

. 

. 

. 

nY  ( )1 2, , ,n n n nX X X X p
′= …

Table 4.1 Data frame 

2. Standardize x. 

( ) ( )1/2ˆ 1, , (4 1)i xx iz x x i n−= Σ − = −…  

3. Divide Y into k non-overlapping slices according to categories of neurons and compute the 

proportion of  in slice s; denote , that  iY ŝp

#     ˆ ,    1, ,             (4 2)s

of Y in slice s
p s k

n
= = … −  
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   Let  be the indicate function for slice s. Then can be rewritten as   sI ŝp

( )
1

1ˆ ,    1, ,                  (4 3)
n

s S i
i

p I Y s k
n =

= = … −∑  

4. Compute the sample mean iz  within each slice.  

( )
1

1
   1, ,              (4 4)

n

s i s i
is

z z I Y s k
n =

= = … −∑  

5. Form the weighted covariance matrix . V̂

1

ˆ ˆ                                (4 5)
k

s s s
s

V p z z
=

′= −∑  

6. Find the eigenvalue λ i
ˆ  and eigenvector îη  of . V̂ îη  are the standardized EDR-directi- 

ons. The maximum numbers of eigenvalues unequal to zero are just dependent on the number 

of slices-1.  

7. Transform îη  back to the original scale. 

β η= Σ −1/2ˆ ˆ                                (4 6)ˆi xx i  

8. Product β β −1̂
ˆ,..., k 1  with X. 

 

 

 

 

 

 

 

 
 
 
 
 

5. Results 
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Table 7-1~7-16 in appendix are predicted and classification results using WEKA and R. 

SVM is one of the classifier functions in WEKA called SMO. J48 is one of the classifier trees 

in WEKA which is used the C4.5 decision tree algorithm. IBk and OneR are lazy learners and 

rule learners in WEKA that are also utilized frequently.   

    First, we find that features extracted from skeleton neurons on revised images can help 

us to improve accuracy by observing table 7-1~7-16. Second, if we extract RST-invariant on 

red channel, it can also help us to improve accuracy. By observing table 7-2, it receives 59.29 

% accuracy which is bigger than table 7-4 55.75 %. In table 7-2 and table 7-4, we can 

conclude that if we just want to classifer neuron images and don’t need analysis of 3d 

structures, then we can only use ordinary image without noise removal. So, when we remove 

noise, we might also remove useful informations. Nonetheless, our noise removal filter can 

help us to visualize neuron clearly. 

We use 1̂Xβ , 2̂Xβ and 3̂Xβ to plot 2D and 3D scatter plots of six categories. We can find 

that DL1, DA1 and VL2a are so close. Therefore, we combine them into one group. After that, 

we classify new data into about four groups. By combining groups, we can get higher 

accuracy. We can see at length in appendix table 7-9~7-16. 
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Figure 12. 2D and 3D scatter plots of six categories using 1̂Xβ , 2̂Xβ  and 3̂Xβ . 

  

Figure 13. 3D scatter plots of combined four categories using 1̂Xβ , 2̂Xβ  and 3̂Xβ . Here 

         we combine DL1, DA1 and VL2a into a new group and call the new group VLA1. 
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6. Conclusion  

By observing table 7-1 ~ table 7-16, we find the accuracies after our noise removal 

method are sometimes lower than using raw image directly. But in table 7-6 and table 7-8, if 

we also consider red channel and skeleton neuron, then our predicted result have a better 

behaviors about 58.4071 % and 59.292 % respectively. In table 7-9 ~ table 7-16, the highest 

accuracy of revised data is 70.8 % and it’s lower than 77.8761 % of raw data. If we use sir on 

extracted features can help us to increase the accuracy but not on raw data. 

Our volume filter might still not good enough. So, when we remove noise, we might also 

remove useful informations that make our accuracies are sometimes lower than using raw 

images. Nonetheless, our noise removal filter can help us to visualize neurons clearly. Besides, 

we can try more other features and methods to improve accuracy in the future. 

Every animal’s behavior is controlled by its central nervous system. Neuroscientists 

believe that much of mankind’s abnormal behavior is caused by genetic errors. Modern rese- 

arch in this area has improved to the point where scientists can construct an olfactory nerve 

network. Furthermore, we can learn more about how nerve networks express which genes. 

Although current research in olfactory systems have been done only on Drosophila and focus 

on only parts of the cells, the brain’s olfactory nerve network can already be constructed, and 

this technology can later be utilized to construct taste, visual, auditory, or higher-level images, 

or even on mammals. Hopefully these research results can be used to cure humanity’s sickn- 

esses one day. 
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7. Appendix 
 
Table 7- 1. Classification results in R/WEKA without using sliced inverse regression and 
         without using leave-one-out cross-validation to evaluate correctness. 

 SVM J48 IBk OneR 
Raw data 
(take log) 

75      
66.3717 % 

103     
91.1504 % 

113     
100 % 

66      
58.4071 % 

Raw data 
(no log) 

72      
63.7168 % 

91      
80.531  % 

113     
100 % 

66      
58.4071 % 

Revised data 
(take log) 

80      
70.7965 % 

103     
91.1504 % 

113     
100 % 

64      
56.6372 % 

Revised data 
(no log) 

75      
66.3717 % 

95      
84.0708 % 

113     
100 % 

64      
56.6372 % 

Revised data 
(take log + skeleton) 

86 
76.1062 % 

104 
92.0354 % 

113     
100 % 

66 
58.4071 % 

Revised data 
(no log + skeleton) 

75 
66.3717 % 

98 
86.7027 % 

113 
100 % 

66 
58.4071 % 

 

Table 7-2. Predicted results in R/WEKA without using sliced inverse regression and using 

         leave-one-out cross-validation to evaluate correctness. 
 SVM J48 IBk OneR 

Raw data 
(take log) 

65      
57.5221 % 

58      
51.3274 % 

67      
59.292 % 

47      
41.5929 % 

Raw data 
(no log) 

65      
57.5221 % 

46      
40.708 % 

63      
55.7522 % 

47      
41.5929 % 

Revised data 
(take log) 

37      
32.7434 % 

59      
52.2124 % 

20      
17.6991 % 

37      
32.7434 % 

Revised data 
(no log) 

51      
45.1327 % 

56      
49.5575 % 

55      
48.6726 % 

39      
34.5133 % 

Revised data 
(take log + skeleton) 

38     
33.6283 % 

51      
45.1327 % 

27      
23.8938 % 

56      
49.5575 % 

Revised data 
(no log + skeleton) 

58      
51.3274 % 

55      
48.6726 % 

 54     
47.7876 % 

56      
49.5575 % 
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Table 7-3. Classification results in R/WEKA using sliced inverse regression and without using 

         leave-one-out cross-validation to evaluate correctness. 

 SVM J48 IBk OneR 
Raw data 
(take log) 

109     
96.4602 % 

108     
95.5752 % 

113 
100 % 

75      
66.3717 % 

Raw data 
(no log) 

60      
53.0973 % 

89      
78.7611 % 

113 
100 % 

55      
48.6726 % 

Revised data 
(take log) 

113     
100 % 

113     
100 % 

113     
100 % 

113     
100 % 

Revised data 
(no log) 

61      
53.9823 % 

100     
88.4956 % 

113     
100 % 

57      
50.4425 % 

Revised data 
(take log + skeleton) 

113     
100 % 

113     
100 % 

113     
100 % 

113     
100 % 

Revised data 
(no log + skeleton) 

74      
65.4867 % 

95      
84.0708 % 

113     
100 % 

63      
55.7522 % 

 
 

Table 7-4. Predicted results in R/WEKA using sliced inverse regression and using leave-one  

-out cross-validation to evaluate correctness. 
 SVM J48 IBk OneR 

Raw data 
(take log) 

47 
41.59292 %

43 
38.0531 % 

54 
47.78761 % 

38 
33.62832 %

Raw data 
(no log) 

47 
41.59292 %

53 
46.90265 %

53 
46.90265 % 

44 
38.93805 %

Revised data 
(take log) 

33 
29.20354 %

22 
19.46903 %

35 
30.97345 % 

17 
15.04425 %

Revised data 
(no log) 

59 
52.21239 %

43 
38.0531 % 

47 
41.59292 % 

43 
38.0531 % 

Revised data 
(take log + skeleton) 

30 
26.54867 %

22 
19.46903 %

33 
29.20354 % 

18 
15.92920 %

Revised data 
(no log + skeleton) 

61 
53.9823 % 

49 
43.36283 %

63 
55.75221 % 

43 
38.0531 % 
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Table 7-5. Classification results added red channel in R/WEKA and without using sliced 

inverse regression and without using leave-one-out cross-validation to evaluate 
correctness. 

 SVM J48 IBk OneR 
Raw data 
(take log) 

76      
67.2566 % 

106     
93.8053 % 

113     
100% 

66      
58.4071 % 

Raw data 
(no log) 

72      
63.7168 % 

95      
84.0708 % 

113     
100% 

66      
58.4071 % 

Revised data 
(take log) 

87      
76.9912 % 

106     
93.8053 % 

113     
100% 

64      
56.6372 % 

Revised data 
(no log) 

99      
87.6106 % 

110     
97.3451 % 

113     
100 % 

72      
63.7168 % 

Revised data 
(take log + skeleton) 

92 
81.4159 % 

106 
93.8053 % 

113 
100 %    

66 
58.4071 % 

Revised data 
(no log + skeleton) 

80 
70.7965 % 

104 
92.0354 % 

113 
100 % 

66 
58.4071 % 

 
 
Table 7-6. Predicted results added red channel in R/WEKA and without using sliced inverse 

regression and using leave-one-out cross-validation to evaluate correctness. 
 SVM J48 IBk OneR 

Raw data 
(take log) 

 66     
58.4071% 

57      
50.4425% 

66      
58.4071% 

47      
41.5929% 

Raw data 
(no log) 

64      
56.6372% 

45      
39.823 % 

62      
54.8673% 

47      
41.5929% 

Revised data 
(take log) 

39      
34.5133 % 

54      
47.7876 % 

29      
25.6637 % 

37      
32.7434 % 

Revised data 
(no log) 

63      
55.7522 % 

60      
53.0973 % 

54      
47.7876 % 

39      
34.5133 % 

Revised data 
(take log + skeleton) 

42 
37.1681 % 

48 
42.4779 % 

32 
28.3186 % 

56 
49.5575 % 

Revised data 
(no log + skeleton) 

66 
58.4071 % 

60 
53.0973 % 

51 
45.1327 % 

56 
49.5575 % 
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Table 7-7. Classification results added red channel in R/WEKA and using sliced inverse 

regression and without using leave-one-out cross-validation to evaluate correct- 
ness. 

 SVM J48 IBk OneR 
Raw data 
(take log) 

109     
96.4602 % 

111     
98.2301 % 

113 
100 % 

75      
66.3717 % 

Raw data 
(no log) 

68      
60.177  % 

98      
86.7257 % 

113 
100 % 

52      
46.0177 % 

Revised data 
(take log) 

113     
100 % 

113 
100 % 

113 
100 % 

89      
78.7611 % 

Revised data 
(no log) 

71      
62.8319 % 

101     
89.3805 % 

113 
100 % 

58      
51.3274 % 

Revised data 
(take log + skeleton) 

113 
100 % 

113 
100 % 

113 
100 % 

106 
93.8053 % 

Revised data 
(no log + skeleton) 

84 
74.3363 % 

106 
93.8053 % 

113 
100 % 

69 
61.0619 % 

 
 
 
Table 7-8. Predicted results added red channel in R/WEKA and using sliced inverse 

regression and using leave-one-out cross-validation to evaluate correctness. 
 SVM J48 IBk OneR 

Raw data 
(take log) 

54 
47.78761 %

41 
36.28319 %

49 
43.36283 % 

33 
29.20354 %

Raw data 
(no log) 

54 
47.78761 %

51 
45.13274 %

51 
45.13274 % 

51 
29.20354 %

Revised data 
(take log) 

30 
26.54867 %

27 
23.89381 %

27 
23.89381 % 

19 
16.81416 %

Revised data 
(no log) 

56 
49.55752 %

48 
42.47788 %

47 
47.78761 % 

33 
29.20354 %

Revised data 
(take log + skeleton) 

34 
30.08850 %

30 
26.54867 %

33 
29.20354 % 

26 
23.00885 %

Revised data 
(no log + skeleton) 

67 
59.29204 %

59 
52.21239 %

59 
52.21239 % 

50 
44.24779 %
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Table 7-9. Classification results on combined groups in R/WEKA without using sliced inverse 

regression and without using leave-one-out cross-validation to evaluate correct- 
ness. 

 SVM J48 IBk OneR 
Raw data 
(take log) 

89      
78.7611 % 

108     
95.5752 % 

113 
100 % 

90      
79.646 % 

Raw data 
(no log) 

76      
67.2566 % 

99      
87.6106 % 

113 
100 % 

90      
79.646 % 

Revised data 
(take log) 

94      
83.1858 % 

111     
98.2301 % 

113 
100 % 

90      
79.646 % 

Revised data 
(no log) 

88      
77.8761 % 

98      
86.7257 % 

113 
100 % 

90      
79.646 % 

Revised data 
(take log + skeleton) 

97 
85.8407 % 

112 
99.115 % 

113 
100 % 

90 
79.646 % 

Revised data 
(no log + skeleton) 

92 
81.4159 % 

107 
94.6903 % 

113 
100 % 

90 
79.646 % 

 
 
 

Table 7-10. Predicted results on combined groups in R/WEKA without using sliced inverse 

regression and using leave-one-out cross-validation to evaluate correctness. 

 SVM J48 IBk OneR 
Raw data 
(take log) 

87      
76.9912 % 

81      
71.6814 % 

88      
77.8761 % 

86      
76.1062 % 

Raw data 
(no log) 

76      
67.2566 % 

73      
64.6018 % 

81      
71.6814 % 

86      
76.1062 % 

Revised data 
(take log) 

69      
61.0619 % 

71      
62.8319 % 

49      
43.3628 % 

79      
69.9115 % 

Revised data 
(no log) 

76      
67.2566 % 

79      
69.9115 % 

77      
68.1416 % 

80      
70.7965 % 

Revised data 
(take log + skeleton) 

73 
64.6018 % 

69 
61.0619 % 

57 
50.4425 % 

79 
69.9115 % 

Revised data 
(no log + skeleton) 

80 
70.7965 % 

80 
70.7965 % 

76 
67.2566 % 

80 
70.7965 % 
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Table 7-11. Classification results on combined groups in R/WEKA using sliced inverse 

regression and without using leave-one-out cross-validation to evaluate correct- 
ness. 

 SVM J48 IBk OneR 
Raw data 
(take log) 

111     
98.2301 % 

112     
99.115 % 

113 
100 % 

104     
92.0354 % 

Raw data 
(no log) 

70      
61.9469 % 

91      
80.531 % 

113 
100 % 

80      
70.7965 % 

Revised data 
(take log) 

113 
100 % 

113 
100 % 

113 
100 % 

113 
100 % 

Revised data 
(no log) 

80      
70.7965 % 

93      
82.3009 % 

113 
100 % 

84      
74.3363 % 

Revised data 
(take log + skeleton) 

113 
100 % 

113 
100 % 

113 
100 % 

113 
100 % 

Revised data 
(no log + skeleton) 

86 
76.1062 % 

98 
86.7257 % 

113 
100 % 

93 
82.3009 % 

 

 

Table 7-12. Predicted results on combined groups in R/WEKA using sliced inverse regression 

and using leave-one -out cross-validation to evaluate correctness. 

 SVM J48 IBk OneR 
Raw data 
(take log) 

65 
57.52212 %

66 
58.40708 %

66 
58.40708 % 

57 
50.44248 %

Raw data 
(no log) 

70 
61.9469 % 

66 
58.40708 %

73 
64.60177 % 

52 
46.0177 % 

Revised data 
(take log) 

33 
29.20354 %

45 
39.82301 %

39 
34.51327 % 

28 
24.77876 %

Revised data 
(no log) 

75 
66.37168 %

83 
73.45133 %

72 
63.71681 % 

78 
69.02655 %

Revised data 
(take log + skeleton) 

32 
28.31858 %

44 
38.93805 %

38 
33.62832 % 

22 
19.46903 %

Revised data 
(no log + skeleton) 

77 
68.14159 %

77 
68.14159 %

74 
65.48673 % 

73 
64.60177 %
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Table 7-13. Classification results on combined groups added red channel in R/WEKA and 
without using sliced inverse regression and without using leave-one-out 
cross-validation to evaluate correctness. 

 SVM J48 IBk OneR 
Raw data 
(take log) 

89      
78.7611 % 

110     
97.3451 % 

113 
100 % 

90      
79.646 % 

Raw data 
(no log) 

76      
67.2566 % 

99      
87.6106 % 

113 
100 % 

90      
79.646 % 

Revised data 
(take log) 

93      
82.3009 % 

110     
97.3451 % 

113 
100 % 

90      
79.646 % 

Revised data 
(no log) 

92      
81.4159 % 

103     
91.1504 % 

113 
100 % 

90      
79.646 % 

Revised data 
(take log + skeleton) 

97 
85.8407 % 

112 
99.115 % 

113 
100 % 

90 
79.646 % 

Revised data 
(no log + skeleton) 

93 
82.3009 % 

110 
97.3451 % 

113 
100 % 

90 
79.646 % 

 

Table 7-14. Classification results on combined groups added red channel in R/WEKA and 
without using sliced inverse regression and using leave-one-out cross-validation 
to evaluate correctness. 

 SVM J48 IBk OneR 
Raw data 
(take log) 

87 
76.9912 % 

74 
65.4867 % 

87 
76.9912 % 

86 
76.1062 % 

Raw data 
(no log) 

85 
75.2212 % 

80 
70.7965 % 

84 
71.6814 % 

72 
63.7168 % 

Revised data 
(take log) 

70      
61.9469 % 

77      
68.1416 % 

55      
48.6726 % 

79      
69.9115 % 

Revised data 
(no log) 

78      
69.0265 % 

83      
73.4513 % 

77      
68.1416 % 

80      
70.7965 % 

Revised data 
(take log + skeleton) 

70 
61.9469 % 

70 
61.9469 % 

59 
52.2124 % 

79 
69.9115 % 

Revised data 
(no log + skeleton) 

79 
69.9115 % 

70 
61.9469 % 

76 
67.2566 % 

80 
70.7965 % 
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Table 7-15. Classification results on combined groups added red channel in R/WEKA and 

using sliced inverse regression and without using leave-one-out cross-validation 

to evaluate correctness. 

 SVM J48 IBk OneR 
Raw data 
(take log) 

110     
97.3451 % 

111     
98.2301 % 

113 
100 % 

94      
83.1858 % 

Raw data 
(no log) 

70      
61.9469 % 

89      
78.7611 % 

113 
100 % 

79      
69.9115 % 

Revised data 
(take log) 

113 
100 % 

111     
98.2301 % 

113 
100 % 

107     
94.6903 % 

Revised data 
(no log) 

77      
68.1416 % 

101     
89.3805 % 

113 
100 % 

80      
70.7965 % 

Revised data 
(take log + skeleton) 

111 
98.2301 % 

112 
99.115 % 

113 
100 % 

106 
93.8053 % 

Revised data 
(no log + skeleton) 

80 
70.7965 % 

107 
94.6903 % 

113 
100 % 

94 
83.1858 % 

 
Table 7-16. Classification results on combined groups added red channel in R/WEKA and 

using sliced inverse regression and using leave-one-out cross-validation to 
evaluate correctness. 

 SVM J48 IBk OneR 
Raw data 
(take log) 

69 
61.06195 %

65 
57.52212 %

73 
64.60177 % 

61 
53.9823 % 

Raw data 
(no log) 

64 
56.63717 %

59 
52.21239 %

64 
56.63717 % 

52 
46.0177 % 

Revised data 
(take log) 

37 
32.74336 %

37 
32.74336 %

42 
37.16814 % 

25 
25.66372 %

Revised data 
(no log) 

72 
63.71681 %

73 
64.60177 %

72 
63.71681 % 

68 
60.17699 %

Revised data 
(take log + skeleton) 

49 
43.36283 %

47 
41.59292 %

50 
44.24779 % 

37 
32.74336 %

Revised data 
(no log + skeleton) 

75 
66.37168 %

80 
70.79646 %

77 
68.14159 % 

78 
69.02655 %
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