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加入共變數於三元體資料分析 

以估計疾病基因位置 

 

研究生：李昱緯    指導教授：邱燕楓 博士 

國立交通大學統計學研究所 

摘要 

 Case-parent trio design 常被用在遺傳流行病學研究中，相較於其他的傳

統方法，例如：affected-sib-pair (ASP) sign，case-parent trio design 更

適合應用在罕見疾病。Liang 等人在 2001 年時根據 case-parent trio design

提出一種疾病基因相關定位的方法，他們利用偏好傳遞統計量(expected 

preferential-transmission statistic)估計疾病基因的位置。相較於傳統的

TDT 方法，他們指出，這個方法不但較有效力，且可以應用於更廣泛的資料。此

外，除了利用假設檢定去尋找疾病基因的位置，這個方法還能對疾病基因位點，

提供準確的估計值及其相對應的標準差，以對這疾病位置作推論。因為許多複雜

的疾病是由基因和環境因素的交互作用所造成，因此，加入這些基因或環境因素

於三元體的資料分析，應能對疾病基因位點，做更精準的定位。在本研究中，我

們用 case-parent trios 的資料，分別利用有母數和無母數的方法，將相關的

共變數併入模型中，以幫助我們估計疾病基因的位置。模擬結果和兔唇資料分析

均顯示，估計疾病基因位置時，加入共變數，會使得估計值更有效率。 

 

關鍵詞：多點檢定; 連鎖不平衡; 三元體資料; 連續型變數; 有母數方法; 無母

數方法。 
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Incorporating Covariates into Linkage-Disequilibrium 

Mapping Using the Case-Parent Trio Design 
 

Student: Yu-Wei Lee   Advisor: Dr. Yen-Feng Chiu 
Institute of Statistics 

National Chiao Tung University 
 

ABSTRACT 
 

Case-parant trio design is commonly used in genetic epidemiological family 

studies. It is more suitable for rare disorders than other conventional designs for 

family studies, such as affected-sib-pair (ASP) designs. Liang et al. (2001b) proposed 

a multipoint linkage disequilibrium (LD) mapping approach to localize disease genes 

based on a preferential-transmission statistic in the case-parent trio design. They 

found that their approach was more powerful and could accommodate a wider variety 

of data than the conventional TDT approach. In addition, instead of conducting 

hypothesis testing to search for a disease locus, it provided a precise estimate for a 

postulated disease locus along with its standard error, so that one can make inference 

for the disease locus. Most complex diseases involve both genetic and environmental 

components, incorporating genetic or environmental factors into the LD mapping may 

be helpful in localizing the disease locus. We therefore incorporated trait-related 

covariates into the LD mapping to estimate the disease locus through parametric and 

nonparametric models in the case-parent trio design in the present study. Simulation 

studies and the example of oral cleft study both suggested that incorporating 

covariates into the LD mapping approach helps a great deal to improve efficiency in 

localizing the disease locus. 

Key words: Multipoint; Linkage disequilibrium; Case-parent trio design; Covariates; 
Parametric approaches; Nonparametric approaches. 
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1. Introduction 
Case-parent trio design is commonly used in present genetic epidemiology. It is 

more suitable for rare disorders than other conventional designs, such as 

affected-sib-pair (ASP) designs. In addition, the trio design does not require multiplex 

siblings needed in ASP designs. For trio data, the method named 

Transmission/disequilibrium test (TDT) (Spielman et al. 1993) was proposed to detect 

linkage when a disease-susceptibility locus is found to be associated with a marker in 

family triads, including two parents and one affected child. Risch and Merikangas 

(1996) proved that TDT is more powerful statistically to test genes of modest effect 

than ASP designs, even in the presence of population stratifications.  

Many extended methods of TDT were proposed in recent year to deal with more 

complex situations. For example, (i) TDT without parents marker data—Sib-ship 

disequilibrium test (SDT) (Horvath and Laird, 1998) and Sib 

transmission/disequilibrium (S-TDT) (Spielman et al. 1998). These two methods 

exploited one or more unaffected siblings’ marker data instead of parents’ marker data 

that may be absent. The defect is that these methods are not as powerful as TDT, so 

they are only adaptable when lacking parents data; (ii) TDT with pedigree data—

pedigree disequilibrium test (PDT) (Martin et al. 2000) can catch extra information 

from general pedigrees out of original trio data regardless of their size and obtains a 

valid TDT even when there is misclassification of unaffected individuals, especially 

with a high-prevalence model; (iii) TDT with multi-allele markers. (Bickeböller and 

Clerget-Darpoux 1995, Sham and Curtis 1995; Terwilliger 1995; Schaid 1996; 

Spielman and Ewens 1996; Cleves et al. 1997; Kaplan et al. 1997; Lazzeroni and 

Landge 1998), Sham and Curtis (1995) proposed an extension of 

transmission/disequilibrium test for dealing with multi-allele problem, but the 

approach has good power only when linkage disequilibrium is strong and the disease 
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is recessive. On the other hand, Spielman and Ewens (1996) also revised their biallelic 

TDT to muiltiallelic TDT; and (iv) TDT with multiple markers (Terwilliger 1995; 

Lazzeroni and Landge 1998; Clayton and Jones 1999; Clayton 1999; Dudbridge et al. 

2000). Zhao et al. (2000) also proposed a new approach about multiple markers and 

corrected the disadvantage of prior approaches. (E.g. Lazzeroni and Landge’s 

approach ignores the dependence of marker, Clayton’s approach is not robust to 

population stratification, and for Dudbridge’s approach, ambiguous haplotypes have 

to be discarded.) In solving the problem of unknown haplotype frequency, it is 

important and bounden to know the information of parents’ genotype. Besides, 

although haplotype with multimarker is more informative than single marker, it also 

results in a larger number of degrees of freedom and reduces the power of these tests 

simultaneously. The new approach-- Haplotype-sharing TDT (HS-TDT) (Zhang et al. 

2003), not only remains informative as traditional haplotype-based tests, but decreases 

the degrees of freedom. HS-TDT is applicable to both qualitative and quantitative 

traits, arbitrary size of nuclear family with or without ambiguous phase information, 

and whatever number of alleles at each marker. However, Knapp et al. (2004) 

declared that if the genotyping error exists, even the probability of genotyping errors 

is low, HS-TDT cannot have a precise type I error. 

Although the original TDT was powerful and robust, it could not include the 

informative trait or covariate. In earlier research, Haseman and Elston (1972) used sib 

pairs’ data, not trios’ data we required in TDT, to estimate linkage between a known 

marker with m alleles and a susceptibility disease locus which governs a quantitative 

trait with biallelic genotype. Many other researchers developed a lot of extended 

methods for dealing with quantitative-covariate with IBD (e.g. Sham et al. 2002). 

Recently, some researches devoted on connecting TDT and a quantitative or 

qualitative covariate and then proposed some effective tests (Allison 1997; Abecasis 
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et al. 2000, 2002; Liang et al. 2001; Wheeler and Cordell, 2007), such as QTDT 

(Rabinowitz 1997; Lunetta et al. 2000). QTDT makes use of quantitative phenotype 

as a dependent variable, which improved and redefined quantified genotype as an 

independent variable to generate linear regression. In addition, Hierarchical QTDT 

(HQTDT) (Fulker et al., 1999) separates genotype (independent variable) by different 

mating-type-- QTDT M (Gauderman, 2003) utilized the information of mating-type 

instead of the intercept of original regression model, and in Retrospective QTDT 

(RQTDT), the genotype is modeled as a function according to their phenotype and the 

parental genotypes (Liu et al. 2002). Gauderman (2003) employed above tests to 

detect three effect, genetic main effect, gene-environment interaction effect, and 

gene-gene interaction effect. After that, he found QTDT M is more efficient (i.e. 

required less sample size) than other tests under the necessary condition that the all 

genotypes of markers of trios data should be known, but it is not realistic. 

In multipoint linkage analysis using affected sib pairs, Liang et al. (2001a) 

capitalized upon IBD information of multiple markers around a susceptibility gene 

and then obtained a simple formula between the expected numbers of allele-sharing of 

these markers and the susceptibility gene by careful assumption and complicated 

calculation. According to the formula, they applied generalized estimating equation 

(GEE) method (Liang and Zeger 1986) to estimate all parameters (including the 

disease location τ ) in the model and variances of the estimates at the same time. The 

parameter C  represents estimated expected number of allele-sharing of τ , and the 

range of value is from -1 to 1. The magnitude (absolute value) of parameter C  in 

their method indicates the ability of estimating the true location of susceptibility gene. 

The advantage of this approach is that it did not require specification of penetrance or 

a mode of inheritance. 

On the side, based on the conception of TDT, Liang et al. (2001b) also used 
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allele-transmitted information of trio data instead of allele-sharing information of 

sibling data, and rewrote the formula between information of markers and the 

parameter C  for case-parent trios data. In the traditional TDT method, only 

heterozygous parent data are informative and could be included, but in Liang et al.’s 

model, homozygous parent data could be recruited simultaneously. Furthermore, they 

could test if there is linkage or linkage disequilibrium between a disease gene and 

multiple genetic markers over the region at the same time, which is not like the 

conventional TDT where each marker－ is tested separately resulting in a multiple 

testing problem. Specially, the method is not restricted to trio designs only, it can also 

be extended for other types of data. On the other hand, the approach of Liang et al. is 

usually more powerful than the traditional TDT approach (Liang et al. 2001b).  

Glidden et al. (2003) quoted Liang’s formula for ASP designs (2001a) and added 

age-at-onset information as a covariate to support the estimation of parameter C . The 

information of covariates can yield substantial efficiency gains on finding the location 

of susceptibility gene. Chiou et al. (2005) also adopted Liang’s formula in ASP 

designs (2001a), they utilized nonparametric approach to model and estimate C  as a 

function of covariates at first, and then applied the GEE method to estimate the 

location of τ . By an iterative process, the estimation of C  and τ  could be 

obtained until convergence was reached. According to Chiou et al. (2005), the 

nonparametric method is better than the quadratic and linear models, because the 

nonparametric method avoids the flaw of using misspecified parametric regression 

models. Under case-parent trio designs, we propose a new multipoint approach for 

estimating the location of a susceptibility gene, τ. The proposed approach is based 

on transmission information of markers near an unobserved disease gene and a 

quantitative or a qualitative covariate associated with the disease gene. We model C  

as a function of covariates through parametric and nonparametric approaches, so as to 
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incorporating covariates into the association mapping in estimating the location of 

susceptibility locus τ. 
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2. Literature Review 
2.1 Transmission/Disequilibrium Test (TDT) 

The transmission/disequilibrium test (TDT) can be utilized if a heterozygous 

parent transmits his or her target allele and alternative allele to affected child with 

equal frequency. It only requires affected children of trio data rather than multiple 

affected or unaffected family members. Besides, it detects the linkage between 

susceptibility gene and marker locus when association is present. 

Consider two bi-allelic (a target allele 1D  and a normal allele 2D ) markers 

1M  and 2M , and suppose there have n  trio families which have two parents and 

an affected child. After collecting this type of data, researchers arrange 2n  parents 

of trio data into a 2 2×  table shown in the Table 2 in Spielman et al. 1993. 

1 2

1

                                            Nontransmitted  Allele                 
Transmitted Allele                   M               M                Total

M                                        

2

                                             
M                                                                                    
Total                                                   

a b a b
c d c d

a c

+

+

+                   2      b d n+

 

The above table shows every parent’s genotype and the alleles which he or she 

transmits and does not transmit to affected child. Then, they assume a coefficient δ  

represents linkage disequilibrium (- freq( 1 1M D )−  mp , m  and p  are the 

population frequency of allele 1M  and 1D ), and θ  represents the recombination 

fraction between marker M and locus D. With these coefficients, the Table can be 

rewritten as the Table 3 in Spielman et al. 1993: 

 

                                                  Nontransmitted   Allele                                                      

Transmitted                                                              

1 2

                                
    Allele                            M                                           M                                    Total

                                            

[ ] [ ]2
1

2

                                                                                                            
M                              ( / )             (1 ) (1 ) /        (1 ) /

M   

m m p m m m p m pδ θ δ θ δ+ − + − − + −

[ ] [ ] [ ]2                (1 ) ( ) /         (1 ) (1 ) /        1 (1 ) /  

Total                            ( / )                     1 ( / )                                1                   

m m m p m m p m p

m p m p

θ δ δ θ δ

θδ θδ

− + − − + − − − −

+ − −

 

The null hypothesis is that there is no linkage ( 1/ 2θ = ), it also represents 

( ) ( )E b E c=  whatever the value of m  and p , but the necessary condition is that 

the value, δ , should not be zero. On the other word, a heterozygous parent transmits 
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target allele and normal allele with equal frequency. Under the null hypothesis, we 

suppose b  is distributed in binomial distribution with b+c sample sizes, which are 

the total numbers of heterozygous parents, and the probability is 1/2. 

 1
2 2 4

~ ( , ) ( ) , ( )  .b c b cb Binomial b c E b Var b+ +
+ ⇒ = =  

Under this hypothesis, the 2χ  statistic has the form (McNemar’s test, Sokal and 

Rohlf, 1969) 

( )2 2
2

2 4
( ) .

b cb c b cb
b c

χ
⎛ ⎞ −+ +

= − =⎜ ⎟⎜ ⎟ +⎝ ⎠
 

The TDT is often more powerful than other conventional linkage tests and it is 

not affected by population structure which can lead association in the absence of 

linkage, since it exploits within-family comparisons only. Although TDT is much 

more sensitive than traditional haplotype sharing test (Risch and Merikangas 1996), 

and only requires a single affected child, it should be utilized under the existence of 

population association, even the linkage is strong. 

 

2.2 Extension of TDT from one marker to multiple markers 

Since the Human Genome Project is progressing rapidly, the genetic marker can 

be identified and genotyped easily and that can help us to acquire more information. 

After the information of multiple markers is obtained easily, many researchers 

proposed relative tests. We will introduce some existing and known methods below. 

Lazzeroni and Lange (1998) analyzed each marker separately and obtained the 

adjusted P -value which is the minimum of P -values under the null hypothesis that 

there is no linkage between the region over each markers, but it ignored the 

dependence which may result in linkage between markers. 

Some researchers use the haplotype instead of the information of multiple 

markers, and assume the haplotype of parents and affected child are known. Clayton 
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(1999) estimated the frequency of haplotype and calculated the likelihood after 

considering all possible solutions, but it is not robust when population stratification is 

present. Dudbridge et al. (2000) proposed an unbiased TDT for individual haplotype, 

they calculated the correct variance of the transmission count within family, and used 

extra information from multiple siblings if they are available. Similar to Clayton’s 

work, they utilized missing data techniques to estimate the uncertain haplotype, so 

this method is also not robust when population stratification is present. To avoid this 

kind of problem, some family data with equivocal haplotype should be discarded, but 

it discards a part of information simultaneously. 

Under knowing all haplotype information of each parent, Zhao et al. (2000) 

displayed a h h×  transmission/nontransmission table T as 

 
11 12 1

21 22 2

1 2

    1   2    
1     
2     

              
    

h

h

h h hh

h
t t t
t t t

h t t t

"
"
"

# # # # #
"

, 

where ijt  is the number of parents with haplotypes i jH H  and they transmit Hγ  to 

the affected child but not transmit Hδ , where h  is the total number of possible 

haplotype. After completing this table, they can calculate a statistic: 

 
( )2

. .

1 . .

1 .
2

h t thT
h t t t

γ γ

γ γ γ γγ=

−−
=

+ −∑  

The statistic is a marginal homogeneity test, since it may not approximate a 2χ  

distribution with 1h−  degree of freedom, we can use simulation methods to assess 

the P -value. With ambiguous parents’ haplotype, they detected mlT  (estimating 

haplotype frequency by assuming that parents are random samples of individuals from 

population under Hardy-Weinberg equilibrium), which has the highest power than uT  

(estimating haplotype frequency by making use of unambiguous families) and cT  



 9

(estimating haplotype frequencies by making use of both unambiguous families and 

ambiguous families, and assigning each compatible haplotype group equal probability 

for each ambiguous family). Furthermore, testing each marker separately and 

discarding the ambiguous families have lower power. 

Although the approach using multiple markers is more informative than using a 

single marker, there exists some difficulties. For example, if we consider each 

haplotype as an allele in TDT, the degree of freedom will increase rapidly according 

to the number of markers and then result in lower power. On the other hand, the 

haplotype of parents are not always unequivocal. Zhang et al. (2003) proposed a 

haplotype-sharing TDT (HS-TDT) which utilized the similarity of haplotype as the 

information. Let , ( )
i jH HS l  be the distance between the leftmost and the rightmost 

markers with identical alleles l  (See figure 1 of Zhang et al.). For any haplotype H , 

the score of l th marker is defined as 

 
4

,
1 1

1( ) ( ),
4 ij

n

H H H
i j

X l S l
n = =

= ∑∑  

where ijH  is four kinds of parental haplotypes in the i th family. Then let 

4

1
( )ik ijk ijj

x X lξ
=

=∑  be the difference of the haplotype-sharing score between the 

transmitted parental haplotypes and non-transmitted parental haplotypes, ijkξ = 1 

means the haplotype ( )ijX l  transmitted to k th child and ijkξ = -1 means the 

haplotype ( )ijX l  is not transmitted to k th child. They estimated the covariance 

between the value of trait iky  (for the qualitative case, iky = 1 means the child is 

affected, and iky = 0 means the child is not affected, for the quantitative case, iky  

can represent the quantitative value directly.) and the transmitted score ikx , 

 
1

( ) ( ) ( ),
it

i ik ik
k

U l y c x l
=

= −∑  
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where c  can be arbitrary constant, Zhang et al. (2003) set it as the average of trait 

value over all children. Under the null hypothesis of no linkage and association, 

[ ]( )iE U l  is equal to zero for any value of c . We can find that if the disease 

mutation causes high trait value, the value of ( )iU l  should be positive. Similarly, if 

the disease mutation causes low trait value, the value of ( )iU l  should be negative. 

Let 
1

( ) ( )n
i ii

U l w U l
=

= ∑ , where 0iw >  is a weight function over each family and 

the statistic of HS-TDT is defined by 

 
1
max ( ) ,

l L
U U l

≤ ≤
=  

where L is the total number of markers. It is noticeable that the choice of c  and iw  

will influence the power of test. Finally, they utilized the permutation procedure to 

evaluate the P -value of test. 

HS-TDT is applicable to both qualitative and quantitative traits, it decreases the 

degree of freedom with traditional haplotypes method, it has correct false-positive 

error rate, and it is more powerful than single-marker TDTs and haplotype-based 

TDTs. 

 

2.3 Extension of TDT from bi-alleles marker to multiallele marker 

A biallelic marker is assumed under traditional TDT method, but sometimes 

many markers over chromosome of human have more than two alleles, such as blood 

type which has A, B, and O, three alleles basically. So when TDT is introduced and 

popular over the world, some researchers devoted to extending TDT to multiallele 

marker. The original approach, generalized TDT (Bickeböller and Clerget-Darpoux, 

1995), is to combine HHRR (haplotype-based haplotype relative risk) statistic 

(Terwilliger and Ott, 1992) and TDT: 
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( )2

ij ji
c

i j ij ji

t t
T

t t<

−
=

+∑ , 

where ijt  is the number of parents who transmitted allele i  and not transmitted 

allele j . The statistic has asymptotically a 2χ  distribution with ( 1) 2m m −  D.F. 

under the absence of linkage. But under the null hypothesis ( 1 2θ = ) and the 

presence of linkage disequilibrium, the statistic is invalid and has lower power, since 

the transmitted and non-transmitted allele are not independent. In addition to the test 

cT  described above, they also proposed another statistic, 

 
( )
( )

2

1
,

t
i i

m
i i i

t t
T

t t
⋅ ⋅

= ⋅ ⋅

−
=

+∑  

where it ⋅  and  it⋅  are the row and column marginal totals. The statistic is an 

extension of the discussion of Ewens and Spielman (1995) for biallelic markers. 

Sham and Curtis (1995) proposed an extended method of TDT. First, they 

calculated the probability ( ijP ) of each type of transmitted and non-transmitted alleles 

conditional on parental genotype. Under θ = 0, ln( )ij ji i jP P b b= − , so there are 

1m −  independent parameter ib  which related to the marker alleles iM . For 

convenience, mb  is set to zero, and then they define a likelihood ratio statistic by 

 20

1

2 ln*( ) ~ ( 1),l
L

T m
L

χ= − −  

where 0L  is the likelihood under null hypothesis that ib = 0 for all i , and 1L  is 

the maximized likelihood with respect to ib . Then, they utilize the statistic to test if 

there is linkage in the presence of linkage disequilibrium. They pointed out this 

approach has good power when linkage disequilibrium is strong if the disease is 

recessive. 

Spielman and Ewens (1996) also proposed a new statistic for multi-allelic 
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marker: 

 
( )2

2

1

1 ~ ( 1).
2

m
i i

mhet
i i i ii

t tmT m
m t t t

χ⋅ ⋅

= ⋅ ⋅

−−
= −

+ −∑  

Kaplan et al. (1997) compared these tests mentioned above and applied Monte 

Carlo test to guarantee valid tests and then concluded that cT  has the lowest power 

than other three tests ( mT , mhetT , and lT ), and the three tests almost have similar 

power over all situations (the variation of recombination fraction θ , and the different 

disease model) and population they classified. 

 

2.4 Extension of TDT from trio data to affected sib pair data 

When considering the case of families with two affected children, Spielman et al. 

(1993) provided three categories to define the information from heterozygous parents 

by 

 
1

2

2 2

                   
                   

            ,

i number of parents who transmit M to both children
j number of parents who transmit M to both children

h i j number of parents who transmit M to one child and M to the other

=

=

− − =

 

where h  is the number of heterozygous parents, and then they rewrote the 

parameters b  and c  of TDT as 

 
2 ( )

.
2 ( )

b i h i j
c j h i j
= + − −⎧

⎨ = + − −⎩
 

By this definition, the TDT statistic could be written as 

 
22( ) .i jTDT

h
−

=  

They also proposed other statistics for families with more than two affected offspring. 

Martin et al. (1997) devised a statistic with ASP data, and called the statistic spT . 

Among children of heterozygous parents, let 11n  be the number of ASPs who all 

accepted target allele 1M , let 22n  be the number of ASPs who all accepted referent 
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allele 2M , and let 12n  be the number of ASPs who one accepted 1M  and the other 

accepted 2M . Then, the statistic would be 

 ( )2
11 22

11 22

.sp

n n
T

n n
−

=
+

 

Wicks (2000) simulated two tests (TDT and spT ) and pointed out that spT  is valid 

when testing for both linkage and linkage disequilibrium, while TDT is only valid 

when testing for linkage, but not linkage disequilibrium. However, TDT is more 

powerful than spT  since TDT utilizes excess sharing—that is the tendency for 

11 22n n+  exceeding 12n  as linkage is present. Wicks also defined a general TDT-like 

statistics for ASPs as 

 ( )
( )

2
11 22

11 22 12

( ) ,0 1.
(1 )

n n
T

n n n
α α

α α
−

= ≤ ≤
− + +

 

We can observe that spT  and TDT are the special case for α = 0 and α = 1 2 , 

respectively. He found (1)T  is most powerful test for detecting linkage and it has the 

correct asymptotic false-positive error rate under the null hypothesis, since the 

statistic (1)T  exploits excess sharing to the fullest extent possible. 

 

2.5 Extension of TDT without parents’ data 

Traditional TDT method required marker information of trio data, included an 

affected child and his or her parent, but in some late onset, such as cardiovascular, 

non-insulin-dependent diabetes, and other age related diseases, it’s difficult to know 

that. To handle this form of problem, some researchers tried to reform TDT method, 

for example, sib transmission/disequilibrium (S-TDT) (Spielman et al. 1998) and 

sibship disequilibrium test (SDT) (Horvath and Laird, 1998). They all utilized the 

marker data of unaffected sibs instead of parents.  
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The S-TDT determines if the marker allele frequency is different between 

affected offspring and their unaffected sibs significantly. It has two procedures, one is 

the permutation procedure, it can calculate the P -value that tests if the number of 

interested allele 1M  is randomly arrange in affected and unaffected groups, but it 

needs sufficiently large number of replicates to keep a precise P -value . The other 

one is a Z-score procedure; it utilizes the hypergeometric distribution to estimate the 

expected mean U  and variance V  of interested allele 1M , and calculates the Z 

score,          

( )Y UZ
V
−

= , 

where Y  is the observed number of 1M , or the Z score with a continuity correction 

as 

 
1( )2Y U

z
V

− −
′ = , 

and then the P -value can be calculated by normal distribution approximation. They 

also combine the TDT and the S-TDT by assuming the expected mean and variance of 

TDT, 2
n  and 4

n , respectively, and adding them with expected mean and variance 

of S-TDT. Lastly, we can calculate the combined Z score and corresponding 

P -value. 

The formula of S-TDT is similar with the Mantel-Haenszel test (Laird et al. 

1998). It is noticeable that if we have the information of parent, we should choose 

TDT rather than S-TDT, because under such circumstance, TDT is more powerful 

than S-TDT. Although S-TDT is useful when the parent data are missed, it has some 

restriction: (1) the sibship must have at least one affected and one unaffected member; 

and (2) in the sibship, all members should not have the same genotype. Another 

method, SDT, is a nonparametric sign test. First, it denoted the mean number of target 
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allele among affected ( 1
Am ) and unaffected ( 1

Um ) siblings as 

 A

U

(total number of target alleles among the affecteds)/n

(total number of target alleles among the unaffecteds)/n

T
A

T
U

m

m

=

=
, 

where An  and Un  are the total number of affected and unaffected members in the 

sibship. They denoted the difference of T
Am  and T

Um  by Td , let b  be the number 

of Td > 0, and let c  be the number of Td < 0, so the statistic of SDT can be defined 

by the form of TDT. The two tests have similar power in most situations, but SDT is 

better than S-TDT, because it avoids accounting for correlation between the siblings, 

and it’s relatively simple. Similar to S-TDT, SDT can also combine with TDT by 

SDT TDTb b b= + , and SDT TDTc c c= + . 

 

2.6 Extension of TDT from qualitative traits to quantitative traits 

Due to the increasing availability of genetic data, many quantitative traits are 

noticed and related with susceptibility gene. At the start of research, one might related 

the phenotype and genotype with linear regression model: 

 ,i i iG eα βϒ = + +  

where iϒ  is the quantitative phenotype and iG  is marker’s genotypes, and then we 

can test if the value of β  equals to zero.  

QTDT is proposed by Rabinowitz (1997), the linear regression model was 

revised as 

 i i iZ eα βϒ = + +  

where ( 1 2) ( 1 2)i im im if ifZ H T H T= − + − , ( )im ifH H  is an indicator of 

heterozygosity in the mother (father), and ( )im ifT T  is an indicator of that if the 

mother (father) transmits a target allele to affected child. Furthermore, Lunetta et al. 

(2000) rewrote the QTDT, 
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 ( )| , .i i i im if iG E G g g eα βϒ ⎡ ⎤= + − +⎣ ⎦  

Fulker et al. expanded the linear model to partition the covariate into between- 

and within- mating type information, two variables. They called the approach 

hierarchical QTDT (HQTDT) which has the form 

 ( ) ,i B M W i M M iG G G e eα β βϒ = + + − + +  

where Me  is a mating-type specific residual and it is assumed to be 20( , )N τ , MG  

is some average genotype for mating type M . The test of association is based on an 

LRT of Wβ . 

On the other hand, the value of ϒ  in the original QTDT model is restricted to 

α , regardless of the mating type, so Gauderman (2003) proposed a reformatory 

method, MQTDT , 

 .i M i iG eα βϒ = + +  

The difference from other models is that the extra term Mα  considers the different 

effect of 6 mating type. 

The models described above are all prospective, but there are some other models 

that are retrospective, such as retrospective QTDT (RQTDT) (Liu et al. 2002), which 

lets the genotype of affected children be modeled as a function conditional on their 

phenotype and their parental genotypes. Then, by Bayes rule, the likelihood becomes 

 ( ) ( )
( )1

* *

*| ,

| , , , Pr( | , )
, ,

| , , , Pr( | , )
im if

N
i i i im if

i i im if
g g g

f G g g g
L

f G g g g
α β σ

α β σ
α β σ=

ϒ
=

ϒ
∏ ∑

, 

where 2σ  is the residual variance. The summation in the denominator includes four 

genotype ( *g ) and it could be transmitted to a child conditional on parental 

genotypes. 

Gauderman (2003) compared these models under genetic main effects, 

gene-environment interaction, and gene-gene interaction, and then pointed out 
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MQTDT  needs less sample size than other models for testing these effects, i.e. 

MQTDT  is the most efficient approach. 

 

2.7 Localization of disease locus in case-parent trio designs 

Liang et al. (2001b) applied the conception of TDT and developed a new statistic 

( )Y t , called the preferential- transmission statistic (It would be described in more 

detailed in Chapter 3). Through complicated calculation, they showed the relationship 

between ( )Y t  and ( )Y τ , the preferential-transmission statistic with arbitrary marker 

and susceptibility gene’s locus, respectively is: 

[ ] [ ] [ ]{ }1 2 1, ,( ) | ( ) ( ) | ( ) Pr ( ) | ( )N
t tE Y t E Y h t hτ τθ τ θ τΦ = − Φ − , 

where Φ  represents the event that the offspring of trio is affected, ,t τθ  is the 

recombination fraction between marker locus t  and the postulated disease gene 

location τ , and N  is the number of generations since the introduction, into the 

population, of a disease-causing mutation at location τ . 

Finally, they applied the generalized-estimating-equation (GEE) (Liang and 

Zeger, 1986) to estimate the parameter δ = ( , , )C Nτ .      

The approach can test the null hypothesis that there is no linkage or linkage 

disequilibrium (LD) to the region R  by testing if 0C ≡ . In contrast to TDT, Liang 

et al.’s approach simultaneously uses all the markers’ information, so it is more 

powerful than TDT. The approach uses the data of every marker over the specific 

region regardless of whether the parent’s genotype is heterozygous or homozygous, 

and also provides valid standard-error estimates of parameter through GEE. Most of 

all, there is no need to assume the genetic model of the disease in this approach. 
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2.8 Multipoint approach with covariate data 

Liang et al. (2001a) also proposed a multipoint approach with affected sib pair 

(ASP) data by the model as follows. 

{ } { }21 1 2 1,( ) | ( )  ,  ( ) | ,tE S t C C E Sτθ τΦ = + − = Φ −  

where ( )S t  and ( )S τ  represent the number of alleles shared identical-by-descent 

(IBD) at a marker locus t  and a susceptibility locus τ , respectively. Glidden et al. 

(2003) incorporated age as a covariate X  into the model of Liang et al. and assume 

C  is a function of covariate X . Their model has the form 

{ }
( )

21 1 2

1 0 04
,( | ) ( ) | , ( ) ( )

                                              exp . ( ).
tt x E S t X x C x

t C x
τμ θ

τ

= = Φ = + −

= + − −
 

Furthermore, since the value of C is -1 to 1, it could be transformed and postulated as 

a logistic formula: 

{ }1 2logit ( ) / TC x xα β⎡ ⎤+ = +⎣ ⎦  

Then, we could utilize GEE method to estimate the parameters, 1( , , , ..., )pδ τ α β β= . 

Conclusively, they find incorporating covariate data could provide more 

information, increase precision in localizing susceptibility gene and other parameters, 

and minimize the effect of the unknown heterogeneity process, even when it is 

mismodelled. 

 

2.9 Multipoint approach with covariate data and non-parametric approaches 

Although multipoint linkage analysis using sibpair designs is a popular approach 

to test the location of interested trait, some issues, such as genetic heterogeneity, 

gene-gene, and gene-environment interaction, should be addressed properly. Chiou et 

al. (2005) proposed an approach which assumes trait locus’ genetic effect is a function 

of covariate, and the function represents the probability of a sibpair sharing the same 
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allele at the trait locus. Then, they estimated the susceptibility gene locus with GEE 

method and the genetic effect with a nonparametric approach iteratively. 

    For the j th marker and i th sibpair, they applied Liang et al.’s (2001a) 

model and rewrote it as 

 { } 2
1 21 1 2 ,( ) | ( ) ( , )

ji j t i iE S t C x xτθΦ = + −  

Let 1 1 2 2 1 2( ( , ), ( , ))g g x x g x x=  be some transformed predictor of covariate pair 

1 2( , )x x  which is in relation to C , and estimate C  and τ  iteratively between 

equation (1) and (2). 

( ) ( )( )
2

* 1
0 1 1 1 2 2 2 2

1

( ) 1 ( ) ( )           (1)
n

i i i i
i

S g g g g K H g Gτ β β β −

=

⎡ ⎤− − − − − − −⎣ ⎦∑ �  

where *( )iS τ�  is the imputed IBD sharing at τ� , 1 2( , )i i iG g g=  with 

( )1 2,ik k i ig g x x= , 2K  is a bivariate kernel function, and H  is a nonsingular 

square bandwidth matrix; and 

 *

1

( ) ( ) ( )
M

i j i j
j

S w S tτ τ
=

= ∑� � , 

where ( )jw τ�  is the weight function centering at τ� . It may depend on the distance of 

jt  and τ�  or the average of the two nearest IBD sharing at two markers. 

When we obtain the estimates τ� , we can calculate *( )iS τ�  and the covariate 

data iG , and then get the estimate 0
ˆ ˆ( )C g β=  for the function C , then plug the 

estimate ˆ ( )C g  into the estimating equation to estimate the parameter of interest 

( )δ τ=  again. This procedure is repeated until convergence is met. 

 

 1

1

( )
( )( ( )) 0                              (2)

n
i

i i i
i

Cov S S
μ τ

μ τ
τ

−

=

′∂⎛ ⎞ − =⎜ ⎟∂⎝ ⎠
∑  
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This approach not only keeps the preciseness when using Liang et al.’s model 

(2001), it does not need to assume the relation between C and covariates and avoids 

mis-specifying the function C by an invalid model. 

 

2.10 Interpreting analyses of continuous covariates in ASP 

Schmidt et al. (2007) discussed three plausible models for the relationship 

between continuous covariate and disease risk or linkage heterogeneity. First, the 

covariate distribution is determined by a quantitative trait locus (QTL). Second, the 

covariate affects the disease risk through statistical interaction with a disease 

susceptibility locus. Third, the covariate distribution is different in families linked or 

unlinked to a particular disease susceptibility locus. Then, they utilize three 

approaches, a regression-based QTL analysis, a nonparametric analysis of the binary 

affection status, and the ordered subset analysis (OSA), to analysis above three 

relations. 

They used a prospective logistic regression model as the penetrance function to 

generate binary disease outcomes in their simulation studies as follows. 

 
( )
( )

1 2
0 1 1 2 2 3 1 2

1 2

1 2 3

1 | ,
ln

1 1 | ,

ln( ( )), ln( ( )), ln( ( )),

P D x x
x x x x

P D x x

OR G OR E OR G E

β β β β

β β β

⎛ ⎞=
= + + +⎜ ⎟⎜ ⎟− =⎝ ⎠

= = = ×

 

where D =1 for affected, D =0 for unaffected individuals, 1x =1 for the 

susceptibility genotype(s), 1x =0 for the referent genotype(s), and 2x  is the value of 

a normally distributed continuous covariate represents environmental factor. 

Among the three approaches, QTL analysis is useful to detect G E×  interaction 

between the covariate and a disease susceptibility locus when the data included 

unaffected sib pair that can provide information only in the QTL analysis, but not 

other two approaches. But the data analyzed by the QTL analysis should be dealt with 
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by a standardized process. OSA has a significant result when a gene influences 

variability in the population distribution of a continuous disease risk factor, rather 

than a disease susceptibility locus influencing the disease risk directly. Finally, the 

NPL is more powerful then other two analyses when the ( )OR G E×  is high, 

whether the data included unaffected sib pair or not. 
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3. The Proposed Method 
3.1 Notation and Preferential-Transmission Statistic 

Apply the approach of Liang et al. (2001b), consider n case-parent trios are 

sampled for an association study, and let R  be a chromosomal region of length T  

cM (centimorgan) which contains no more than one susceptibility gene at unknown 

location τ  over region R . Denote M  markers framed region R  with locations 

of 1 20 ... Mt t t T≤ < < < ≤ . For simplicity, we suppose there are two alleles per 

marker and define ( )Y t  as the paternal preferential-transmission statistic 

1 2( ) ( ) ( ),Y t Y t Y t= −  

where t  is one of M  markers and 

1

2

1,   if the transmitted paternal allele 
     at t is target allele ( )

( )
0,  if the transmitted paternal allele 
     at t is nontarget allele ( )                 ,

1,   if the nontrans

( )

H t
Y t

h t

Y t

⎧
⎪
⎪= ⎨
⎪
⎪⎩

=

mitted paternal
     allele at t is target allele ( )
0,  if the nontransmitted paternal
     allele at t is nontarget allele ( )       .

H t

h t

⎧
⎪
⎪
⎨
⎪
⎪⎩

 

Similarly, maternal preferential-transmission statistic also can be defined as 

1 2( ) ( ) ( )X t X t X t= − , accordingly. From now on, we only discuss the property and 

extension of ( )Y t , since it applies to ( )X t  completely as well. 

    The expected number of preferential-transmission statistic of Liang et al.’s model 

has the form 

, ,

( ) ( ) | ( ) |

         (1 2 ) (1 ) ,
j i j i j

N
t t j

t E Y t E X t

Cτ τ

μ

θ θ π

⎡ ⎤ ⎡ ⎤= Φ = Φ⎣ ⎦ ⎣ ⎦
= − −

 

where [ ] [ ]( ) | ( ) |C E Y E Xτ τ= Φ = Φ , ,t τθ  is the recombination fraction between 

t  and τ , N  is the number of generations when a disease-causing mutation at τ  

was introduced into the generation, 1, ...,i n= , n  is the number of trios, and 
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Pr ( ) | ( ) ,j jh t hπ τ⎡ ⎤= ⎣ ⎦ 1, ...j M= . 

Since some diseases are associated with covariates like hypertension, BMI, fat in 

the blood, age, or the level of disease, and some notable recent researches showed that 

incorporating covariates information can amplify the signals of linkage (Glidden et al. 

2003; Chiou et al. 2005), we rewrote the formula and added a covariate Z  

associated with an affected child into C (assuming the recombination does not depend 

on Z ) as 

[ ] , ,( ) ( ) | , (1 2 ) ( )(1 ) ,                    (3)N
t t jt E Y t Z z C zτ τμ θ θ π= = Φ = − −  

where ( )C z  is [ ]( ) | ,E Y Z zτ = Φ . We expect the covariate Z  will be helpful to 

estimate the location of the susceptibility gene more accurately. Equation (3) 

represents the transmitted number at t  as a function of recombination ,t τθ , the 

number of generations N , and the expected transmitted number at susceptibility 

locus τ  and covariates Z . Assuming the Haldane (1919) map function, 

, (1 exp( 0.02 )) / 2.                                           (4)t tτθ τ= − − −  

On the other hand, jπ  represents the probability of the non-target allele is 

carried at marker jt  upon the normal allele at susceptibility locus τ , as it is difficult 

to be observed among collected data, we replace it with ˆ jπ  by 

2 2
1

1 ( ) 1 ( )
ˆ .                                              (5)

2

n

i j i j
i

j

Y t X t

n
π =

⎡ ⎤− + −⎣ ⎦
=
∑

 

The parameter ( )C z  plays an important role in our approaches, it measures the 

degree of overall linkage to R, and decides how precise the estimation of the disease 

locus τ  is. If the absolute value of ( )C z  is close to 1, the magnitude of linkage is 

more strong, and the estimation of τ  is more precise, in other words, the variance is 
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smaller. We will illustrate it in the next Chapter. By the same token, if the absolute 

value of ( )C z  is close to 0, there is little linkage over the region and has minimal 

information about the estimation of τ . Some complex diseases may involve 

interactions of gene and environment factors, or different patients may have different 

genetic effects from the same disease-locus, or the phenocopies may result from 

environment factors…etc. The complexities of the underlying genetic mechanism of a 

disease may weaken the signal of linkage, if a covariate Z  is associated with the 

underlying mechanism of a disease, by incorporating the covariate into the linkage 

mapping, one may obtain more precise estimation of τ  (Glidden et al. 2003).  

Now, we introduce two approaches to estimate τ  by incorporating a covariate 

Z  through parametric and nonparametric methods. 

 

3.2 The Parametric Approach with Covariates 

There are multiple parametric methods that could be utilized to model C  as a 

function of the covariates, we employed the logistic type models to establish the 

relation of a covariate Z  and ( )C z  as a dependent variable Glidden et al. (2003). 

First, since the range of ( )C z  is [ ]1,1− , we must transform its range into [ ]0,1 , 

hence, the model takes the form 

{ } { }( ) | ( ) 1 / 2

1 ( )                               
1 ( )

                               Z                    .T

logit E S Z z logit C z

C zlog
C z

τ

α β

⎡ ⎤ ⎡ ⎤= = +⎣ ⎦ ⎣ ⎦
⎡ ⎤+

= ⎢ ⎥−⎣ ⎦
= +

 

( )( ) 1 / 2C z +  characterizes the probability that an affected child received a target 

allele at τ  from his or her heterozygous parent. Thus, 

( )
( )

exp 1
( ) .                                          (6)

exp 1

T

T

z
C z

z

α β

α β

+ −
=

+ +
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The vector of parameters 1( , , , , ..., )pNδ τ α β β= , p  is the dimension of covariates. 

By replacing ( )C z  with a logistic regression model, 

[ ] ( ), ,
2( ) | , (1 2 ) 1 (1 ) .       (7)

exp 1
N

t t jT
E Y t Z z

zτ τθ θ π
α β

⎛ ⎞
⎜ ⎟= Φ = − − −
⎜ ⎟+ +⎝ ⎠

 

We then apply the Generalized Estimating Equation (GEE) (Liang and Zeger, 

1986) approach to solve the parameters. That is, estimating 1( , , , , ..., )pNδ τ α β β=  

by solving      

{ }

{ }

1

1

1 0

ˆ( , ) ˆ( ) ( ) ( , )

ˆ( , ) ˆ                ( ) ( , )  ,

n

i i
i

i i

S Cov Y Y

Cov X X

μ δ πδ μ δ π
δ

μ δ π μ δ π
δ

−

=

−

∂⎡= − +⎢ ∂⎣
∂ ⎤− =⎥∂ ⎦

∑
 

where 

1 1 2 1 1 2

1 1 2 1 1 2

( ) ( ), ..., ( ) ( )

( ) ( ), ..., ( ) ( )

i i i i M i M

i i i i M i M

Y Y t Y t Y t Y t

X X t X t X t X t

′= − −⎡ ⎤⎣ ⎦
′= − −⎡ ⎤⎣ ⎦

 

and 

 1 1ˆ ˆ ˆ( , ) ( ; , ), ..., ( ; , ) .M Mt tμ δ π μ δ π μ δ π ′= ⎡ ⎤⎣ ⎦  

The parameter estimates δ̂  are consistent estimates, hence, have the asymptotic 

property. Based on the asymptotic property, we could calculate the variance estimates 

of δ̂  by 

n 1 1ˆ( )Var A BAδ − −=  

where 

1

1

1

ˆ ˆ( , ) ( , )( )

ˆ ˆ( , ) ( , )        ( )
ˆ

            

n

i
i

i

A Cov Y

Cov X

μ δ π μ δ π
δ δ

μ δ π μ δ π
δ δ

δ δ

−

=

−

⎡ ′∂ ∂⎛ ⎞ ⎛ ⎞⎢= ⎜ ⎟ ⎜ ⎟∂ ∂⎢⎝ ⎠ ⎝ ⎠⎣

⎤′∂ ∂⎛ ⎞ ⎛ ⎞⎥+ ⎜ ⎟ ⎜ ⎟∂ ∂ ⎥⎝ ⎠ ⎝ ⎠⎦ =

∑

 

and 
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{ }{ }

{ }{ }

1 1

1

1 1

ˆ ˆ( , ) ( , )ˆ ˆ( ) ( , ) ( , ) ( )

ˆ ˆ( , ) ( , )ˆ ˆ    ( ) ( , ) ( , ) ( )
ˆ

n

i i i i
i

i i i i

B Cov Y Y Y Cov Y

Cov X X X Cov X

μ δ π μ δ πμ δ π μ δ π
δ δ

μ δ π μ δ π
μ δ π μ δ π

δ δ
δ δ

− −

=

− −

⎡ ′∂ ∂⎛ ⎞ ⎛ ⎞′⎢= − −⎜ ⎟ ⎜ ⎟∂ ∂⎢⎝ ⎠ ⎝ ⎠⎣

⎤′∂ ∂⎛ ⎞ ⎛ ⎞′ ⎥+ − −⎜ ⎟ ⎜ ⎟∂ ∂ ⎥⎝ ⎠ ⎝ ⎠⎦ =

∑
. 

This approach allows one to make inferences for the parameters of interest. In 

addition, we could test if the covariates pz  on allele transmitting is significant by 

testing the null hypothesis: 0pβ = . 

One minor modification is necessary when applying the GEE method, since the 

variable ˆ( , )μ δ π  is not differentiable with respect to τ  (strictly speaking) through 

t τ−  in the Haldane mapping function (1919). This concern could be fixed by 

replacing t τ−  by 

2

                      if 
,                                             (8)1 1( )     if 

2 2

t t

t t

τ τ ε

τ ε τ ε
ε

⎧ − − ≥
⎪
⎨

− + − >⎪⎩

 

where ε  is a positive number. We will discuss the effect of the value of ε  in the 

next Chapter. 

 

3.3 The Nonparametric Approach with Covariates 

A criticism of multiple parametric modeling is that the approaches imposed may 

not reflect the underlying mechanism properly. Here, we refer to a nonparametric 

method proposed by Chiou et al. (2005) who estimated the function C  by spline and 

kernel smoothing methods as local polynomial regression (Fan and Gijbels, 1996). 

Before estimating ( )C z , we need the information about imputed allele transmitting at 

τ̂ , *( )iY τ� , we utilize the allele transmitting information at markers, ( )i jY t , near τ� , 

to impute *( )iY τ�  with an weighted average, i.e., 
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*

1
( ) ( ) ( ),                                               (9)

M

i j i j
j

Y w Y tτ τ
=

= ∑� �  

where ( )jw τ�  is the weight function of nearby markers centering at τ� . The weight 

function we employ here is to take allele transmitting at two nearest markers, ( )i kY t  

and ( )i kY t  with kt tτ< < A�  such that 

*( ) ( ) (1 ) ( )i i k iY wY t w Y tτ = + − A� , 

where ( ) / kw t t tτ= − −A A� . When the location of gene falls between two reasonably 

close marker loci, this weight function could work well. 

Next, we could obtain ˆ ( )C z  by minimizing the following kernel weighted least 

squares function 

( ) ( )
2

*
0

1
( ) 1 ( ( )) ( ) ,   1, ,               (10)

n

i j H
i

Y G g z K G g z j pτ β β
=

⎡ ⎤− − − − − =⎣ ⎦∑ � "  

where G  could be covariates z , or other transformation of z , like exp( )z , log( )z  

and so on; H  is a p p×  symmetric positive definite matrix depending on sample 

size n ; K  is a p -variate and ( ) 1K u du =∫ ; 1/ 2 1/ 2( ) ( )HK u H K H u− −= , and we 

called 1/ 2H  the bandwidth matrix; and 0β̂  is the estimate of C  (Ruppert and 

Wand, 1994). Here, we choose the kernel function K  and the bandwidth matrix 

1/ 2H  to be 
2

1/ 2( ) (2 ) exp( ),
2
uK u uπ −= − −∞ < < ∞ , 

and 

1/ 2 max( ) min( )
, 1, ,

3
i iZ Z

H i n
−

= = " , 

and then we could solve equation (10) by 
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( )
0

1
1 *1

ˆ
1   ( )ˆ

( ),    where          
 

1   ( )ˆ

T

T T
z z z z z z

T
n

p

Z z
Z W Z Z W Y Z

Z z

β

β
τ

β

−

⎡ ⎤
⎢ ⎥ ⎡ ⎤−
⎢ ⎥ ⎢ ⎥

= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦⎢ ⎥
⎣ ⎦

� # #
#

, 

where  

* * *
1 , ,

T

nY Y Y⎡ ⎤= ⎣ ⎦… ,  

and 

{ }1( ), , ( )z H H nW diag K Z z K Z z= − −… . 

Then we employ ˆ ( )C z  and put it in the equation below to update the estimate 

of τ  by solving this equation (GEE), 

{ }

{ }

1

1

1 0

ˆ( , ) ˆ( ) ( ) ( , )

ˆ( , ) ˆ                 ( ) ( , )  ,

n

i i
i

i i

S Cov Y Y

Cov X X

μ δ πδ μ δ π
δ

μ δ π μ δ π
δ

−

=

−

∂⎡= − +⎢ ∂⎣
∂ ⎤− =⎥∂ ⎦

∑
 

where ( , )Nδ τ= . 

Through the iterative process between updating ˆ ( )C z  in the nonparametric 

model and τ̂  in the GEE method, the estimate ( )C z  and τ  could be obtained 

when convergence is reached. 
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4. Simulation Studies 

4.1 Disease models 

4.1.1 Logistic regression models 

    In the simulation study, we carry out three different disease models to assess the 

performance of the two proposed methods for quantitative trait-related covariates. 

First, we assume a prospective logistic regression model (See Figure 1) as the 

penetrance function to generate binary disease outcomes for a case-parent trio data: 

0 1 2
( 1 | , )ln

1 ( 1 | , )
P D g e g e

P D g e
β β β

⎛ ⎞=
= + +⎜ ⎟− =⎝ ⎠

, 

where 1D =  for affected and 0D =  for unaffected individuals, 1g = for the 

susceptible genotype(s), 0g =  for the referent genotype(s) (For dominant model, 

1g =  when genotype is HH  or Hh , 0g =  when genotype is hh , for recessive 

model, 1g =  when genotype is HH , 0g =  when genotype is Hh  or hh , and 

for additive model, we separate g  into 1g  and 2g , 1β  into 11β  and 12β , and 

then 1 1g =  when genotype is HH , 1 0g =  when genotype is Hh  or hh , 

2 1g =  when genotype is Hh , and 2 0g =  when genotype is HH  or hh .), e  is 

a value of environmental effect, E , which follows a standard normally distribution, 

and the parameter vectorβ  are the natural logarithm of the odds ratio (ORs). By the 

logistic regression model, we set up the relative risk β  according to the inheritance 

mode, and then we can calculate the penetrance 0f , 1f , and 2f  for genotype HH , 

Hh , and hh , respectively. On the other hand, we generate the trait depending on the 

genotype of affected individual: 

                 ,   ~ (0,1)i i i iz g e e Nμ= + +  (Haseman and Elston, 1972) 

( ig a=  when genotype is homozygous HH , ig d=  when genotype is 

heterozygous Hh , ig a= −  when genotype is homozygous hh . For dominant 

models, 0d > ; for recessive models, 0d < ; and for additive models, 0d = ). 
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Figure 1. Graphical illustration of logistic regression disease models 

 

4.1.2 Threshold models 

Second, we decided whether an individual is affected or not by a threshold model 

(See Figure 2). For a start, we generate trait iz  for each individual directly, 

, 1, ,i i iz g e i nμ= + + = … , 

where μ  is the mean of quantitative traits for all individual, ig  is genetic effect and 

the value is determined by personal genotype ( ig a=  when genotype is HH , 

ig d=  when genotype is Hh , ig a= −  when genotype is hh . For dominant 

model 0d > , for recessive model 0d < , and for additive model 0d = ), and ie  is 

the environmental effect with a standard normal distribution. After knowing the value 

of traits, we take a threshold (T ) depends on the prevalence of population (See 

Equation (11) and Figure 3) under the simulation, and if a trait of person exceeds the 

threshold, he or she will be diagnosed to be affected. 

[ ]
[ ]

[ ]

2

2

Pr | ( ,1),

                     2 (1 )Pr | ( ,1),

                     (1 ) Pr | ( ,1),                     (11)

prevalence p Z T Z N a HH

p p Z T Z N d Hh

p Z T Z N a hh

= >

+ − >

+ − > −

∼

∼

∼
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Figure 2. Graphical illustration of threshold disease models 

  

Figure 3. Disease allele frequencies and the probability density function for a covariate in the 

threshold models (P=disease allele frequency, a=1, d=0) 

 

4.1.3 Fixed penetrance models   

The last and simplest one is fixed penetrance models (See Figure 4), the  

probability for an individual being affected depends on predetermined penetrance 0f , 

1f , and 2f  for genotype HH , Hh , and hh , respectively, and we generate the 

traits (covariates) in the same way as that in the logistic regression model. 
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Figure 4. Graphical illustration of fixed penetrance disease models 

4.2 Genotype Data 

    We assume the joint probability of target alleles ( )H t  and ( )H τ  at marker t  

and disease locus τ  at present generation N  as 

(0)
,Pr( ( ), ( )) Pr( ( ))Pr( ( )) (1 )N

t tH t H H t H ττ τ θ= + − Δ , 

where (0)
tΔ  represent the degree of LD between marker t  and disease locus τ  at 

0N = . Here, we apply the equation (3) of Liang et al. (2001b), 

[ ] [ ]( ) ( ) | ( ) ( ) | ( )d t P H t H P H t hτ τ= − , 

and the related formula of ( )d t  proposed by Devlin and Risch (1995), 

[ ],( ) (1 ) ( ) | ( )N
td t P h t hτθ τ= − . 

We set the value of  (0)
tΔ  to be 0.009 for all markers, and then we can calculate two 

important probabilities ( ( ) | ( ))P H t H τ  and ( ( ) | ( ))P h t h τ . In the simulation work, 

we have set the number of trios at 200 and a region with 10 fully polymorphic 

markers that are equally spaced between 0 cM and 0.9 cM (0.1 cM between adjacent 

markers) and the disease locus τ  at 0.45 cM. Then, we provide the genotype at τ  

of parents with a disease allele probability p , then utilize these genotypes, and the 

conditional probabilities ( ( ) | ( ))P H t H τ  and ( ( ) | ( ))P h t h τ  to generate genotypes 

for markers.  

After completing the genotypes of parents, we use the information of 

recombination ,t τθ  to generate their child’s genotypes at τ  and markers, and then 
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determine if the child is affected through the logistic regression, threshold, or fixed 

penetrance disease models. 

 

4.3 Simulation Results 

    In the following simulation results, we simulate 1,000 replicates including 200 

case-parent trios, and compare the relative efficiency (R.E.= { }2
2 1ˆ ˆ( ) /( ( )SE SEτ τ ) in 

between our parametric and nonparametric procedures where covariates were 

incorporated with the original approach where no covariates were incorporated (Liang 

et al., 2001b). In addition, we examined the performance of the approaches when the 

disease models were logistic regression models, threshold models, and fixed 

penetrance models in our simulation. 

For the logistic regression disease model, we assume the inheritance mode is 

additive, that is, 

1 2
0 1 1 2 2 3

1 2

( 1 | , , )
ln

1 ( 1 | , , )
P D g g e

g g e
P D g g e

β β β β
⎛ ⎞=

= + + +⎜ ⎟− =⎝ ⎠
, 

where 0 ln(0.01)β = , 1 ln(9)β = , 2 ln(5)β = , 3 ln(2)β = , and 

1 2

1,     HH 1,     Hh
, , e ~ (0,1)

0,     Hh  hh 0,     HH  hh
if if

g g N
if or if or

⎧ ⎧
= =⎨ ⎨
⎩ ⎩

. 

We set 1, 0a d= =  (See the definition in section 4.1). Figure 7 illustrates the true, 

observed, and three fitted curves in one of these models. 

    For the threshold model, we generated a trait based on the logistic model, and 

used the threshold with prevalence of 0.05, the threshold was 1.022636. Those with a 

trait greater than 1.022636 were affected. We will show the estimating results of 

different prevalences in the following simulation studies. 

    In Tables 1-5, we display scenarios with different numbers of generation, 

different disease allele frequencies at τ , sample sizes, frequencies of a targeted allele 
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of markers, and numbers of markers over the same region. From the five Tables, we 

summarize results as follows: In Table 1, smaller standard errors for estimates of τ  

were found in larger generations. In Table 2, it shows that the higher the value of C , 

the transmitted probability of the targeted allele, the more precise and efficient of the 

estimate for τ . The magnitude of C depends on many factors including the disease 

allele frequency, we plot two simple diagrams (Figure 5 & 6) to display the 

association of them. 

 
Figure 5. The curves of the transmitted probability C  at τ  depend on the disease allele 
frequency [ ]( )P H τ  with penetrance rates 

0 0.491f = , 1 0.153f = , and 2 0.022f =  in the logistic 

regression disease model. 
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Figure 6. The curves of the transmitted probability at τ  depend on the disease allele frequency 

[ ]( )P H τ  and the chosen threshold in the threshold model. 

 

Additionally, we compare the relative efficiency among different underlying 

disease models including logistic regression and threshold models in Table 2. The 

estimates for τ  from the phenotype data generated by the logistic regression model 

are more efficient than those from those generated by the threshold model regardless 

of parametric or nonparametric approaches for a specific C . Apparently, the larger 

the C  value, the more efficient of the estimate for τ  and β  in both parametric 

and non-parametric approaches. As demonstrated in Table 3, the precision of 

estimates will be improved by enlarging the sample sizes. It is notable that our 

proposed approaches were more efficient with a smaller sample size compared to the 

estimate without incorporating a trait (covariate) when the disease model is the 

threshold model, and it maintained accurate estimation of susceptibility locus τ  
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even if there were only 50 trios when the underlying genetic model was the logistic 

regression model. From Table 4, we found that if the frequency of the targeted allele 

at marker is more deviant from the frequency of the disease allele at τ , the variance 

estimate will be much larger for τ̂ , and the -p value  of testing 0β =  became not 

as significant, our proposed approach was quite robust in terms of efficiency 

compared to the original approach (without a covariate). Table 5 illustrates the results 

from the scenarios with 10 markers and 20 markers on the same region of length 0.9 

cM. Apparently, denser marker could make the estimates more precise (less bias), but 

the difference between the results from approaches with and without a covariate 

remained similar. 

    In Table 6, we have tried three different values (smaller than the distance of two 

adjacent markers) of ε  in equation (6) to find the most optimum one and to study 

the robustness of various ε . The results were similar except for the convergence rate 

of the 1,000 replicates. It is quite obvious that when the value of ε  equal to 0.05 cM, 

the convergence rate is the highest, i.e. half of distance between two adjacent markers 

(0.1 cM) was an optimum choice. 

    Tables 7 ~ 9 reveal the influence from different relative risks 0β , 1β , 2β , and 

3β  in the underlying disease models. The value of C  varied according to these risks, 

and it’s again showed that a larger value of C  made the estimates more precise. 

Moreover, estimates from our proposed approaches were more efficient than the 

original approach when C  was small. In Table 10, we changed the value of a , the 

genotypic effect at τ  when simulating the covariate. We found that the results were 

different in the two models. For the logistic regression disease model, apparently, 

increasing value of a  can keep the estimate more accurate and more efficient until－

a  exceeding 5, but for the threshold model, since C  changed corresponding to a , 

the comparison was hard to make. It is expected that the estimate of β  decreased 
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with an increased value of a . The result from changes of prevalence rates are 

displayed in Table 11, which depended on the magnitude of C . After checking the 

results from a variety of disease models including logistic regression and threshold 

models, we simulated the fixed penetrance models as shown in Table 12, we examine 

if it has the same performance as other two models. Basically, it is mostly affected by 

C , but we observed that recessive model ( 0 0.67f = , 1 0.05f = , and 2 0.007f = ) is 

more efficient and more significant (referring to testing for β ) compared to the 

dominant model ( 0 0.95f = , 1 0.9f = , and 2 0.01f = ) with the similar average C  

values. 

    From Table 13 to Table 18, we compare the difference in bias and relative 

efficiency of estimating τ  when the covariate is controlled by a locus near the 

disease locus rather than the locus τ  itself. With an exception for the nearest marker 

at 0.5 cM in some cases, the farther distance between a locus controlling the covariate 

and τ  was, the smaller the estimates of β  was. When the covariate was controlled 

by an unlinked locus, in spite of the estimate was better than that without a covariate, 

the corresponding -p value  of testing 0β =  is almost near 1, which was as 

expected. We found the bias of the estimate for τ  was a useful index to distinguish 

whether the covariate’s locus is actually τ  itself or it is near but not τ , since the 

loci close to τ  induced more serious bias (See Table 13 ~ Table18), if we want to 

make sure whether the covariate is controlled by τ , in addition to evaluate the 

estimate for β , we could also check if the estimate for τ  is similar from that 

obtained from the mapping without incorporating the covariate. Although sometimes, 

we won’t be able to obtain the estimate without incorporating a covariate due to the 

lack of statistical power. 

    In addition, a covariate (quantitative trait) with a dominant genetic model mostly 

provided a more efficient estimate for τ  than that under an additive or recessive 
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model regardless of the parametric or nonparametric approaches, and regardless of the 

disease models of logistic regression, threshold models, or inheritance modes. Finally, 

we added the genotype at τ , two qualitative variable faZ  and moZ , into the 

equation (6) of the proposed parametric method, and let β , faβ , and moβ  be the 

regression coefficients for the covariate Z , genotypes faZ  and moZ , respectively. 

We compared the results with the original results from the parametric method, we 

found that β  becomes non-significant because the estimate of β  was close to 0, 

on the contrary, faβ  and moβ  were all significant when the two covariates were 

added (see column 1 and column 2 of Table 19). The reason is that the covariate Z  

no longer carries any additional information on τ , when the genotype of 1Z  and 

2Z  were incorporated. 
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5. A Data Example 

We applied our proposed approaches to a case-parent trios study of oral cleft 

from four population (Korea, Maryland, Singapore, and Taiwan) reported in Sull et al. 

(2008). In this international study, they recruited 383 case-parent trios of oral cleft 

(see Table 20) and gathered their genotypes at 635 SNPs spanning about 175 cM on 

chromosome 4p16. 

Figure 8 shows the plot of the empirical transmitted statistic over the region 

ranging from 2.7 cM to 175 cM. We found the leftmost region was most informative, 

so we focused on this region as displayed in Figure 9. It is clear that the most 

informative region is from 4 cM to 6 cM as shown in Figure 10 so we plotted the 

narrower region from 4.5 cM to 5cM in Figure 11, this smaller region includes only 

one highest peak which meets our model assumption. 

Further, since the SNPs markers are in LD, we selected some of the tag SNPs to 

conduct the linkage mapping. The SNPs around 4.7cM (see Figure 12) include: (1) 

rs9995063, rs4689885, rs11728302, rs10027615, rs10012509, rs10428352, rs6446666, 

rs11733672, rs11725796,and rs10937875--the ten markers located from 4.674158 cM 

to 4.731674 cM for the Taiwanese and all populations; (2) SNPs rs9995063, 

rs4689885, rs11728302, rs10027615, rs10012509, rs10428352, rs6446666, 

rs11725796, and rs10937875--the nine markers located from 4.674158 cM to 

4.731674 cM for the Korean population; (3) SNPs rs7682040, rs9654059, rs12504020, 

rs7681821, rs3910659, rs7437213, rs9995063, rs4689885, rs11728302, rs10027615, 

and rs10012509--the eleven markers located from 4.634028 cM to 4.700255 cM for 

the Marylander population; (4) SNPs rs11728302, rs10027615, rs10012509, 

rs10428352, rs6446666, rs11733672, rs11725796, rs10937875, rs2165431, rs4689907, 

rs838958, rs6840368, rs6826063, and rs6824609--the fourteen markers from 

4.683682 cM to 4.771068 cM for Singaporean population. We estimated the disease 
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locus τ  for oral cleft, the corresponding standard errors for the estimates, the 

p -value of β  and the 95% coverage probability for τ  by incorporating different 

covariates through the proposed parametric and nonparametric models. 

We applied three methods in estimating τ . One is the original model without a 

covariate proposed by Liang et al. (2001b), the other two are our proposed parametric 

and nonparametric approaches with covariates incorporated. The estimated results 

were listed in Table 21 ~ Table 25 for the four combined population, Korea, Maryland, 

Singapore, and Taiwan, respectively. The data and the fitted curves were also 

demonstrated in Figure 13 ~ Figure 26. 

Since the data did not include any quantitative covariates, we employed the 

following 5 qualitative covariates in localizing of the disease locus: GENDER (gender 

of proband, male=1, female=2,), CLF_(father) (condition of father, affected=1, 

unaffected=0) , CLF_(mother) (condition of mother, affected=1, unaffected=0), 

SMOKE and DRINK (yes=1, no=0) (The data from Singapore also include 

information of having taken vitamin or not). Some of the drinking and smoking data 

were missing in Taiwanese population, hence, there were only 104 out of 172 

Taiwanese were included in the analyses when the incorporated covariate was 

drinking or smoking status. 

The results showed that our proposed approaches were mostly more efficient 

than the original approach where no covariate was incorporated. In addition, the 

estimates from our approaches were more precise (bias was smaller) unless the 

covariate is not associated with the oral cleft syndromes in a specific population. 

Besides, the nonparametric approach seemed to be more efficient than the parametric 

approach. Sometimes an irrelevant covariate not only makes the estimate less efficient, 

but also induces higher bias for the estimate of τ. For example, the factor, SMOKE, in 

populations of Taiwan and Singapore was not helpful in estimating the disease locus.  
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It is worth noting that the covariate POPULATION helped improved the disease 

localization greatly in the combined (four) populations (see Table 21 and Figure 17). 

The result suggested that the genetic effects in the four separate populations were 

different. The estimate for τ was at around 4.7 cM, and Korea has the substantial 

linkage effect than other populations. The order of significance magnitudes of β  

(the population difference on the effect from the estimated disease locus) was Korea, 

Taiwan, Maryland, and Singapore as illustrated in Figure 12. Moreover, Table 21 

revealed that adding POPULATION as a covariate increased the efficiency of 

estimating the disease locus (also see Figure 17). 

Finally, we find the patterns of the transmitted targeted alleles were similar in 

Korea and Taiwan, but different from the other two populations, so we tried to 

combine the data of Korea and Taiwan to see if the efficiency gets improved (Table 

26). The real data and the fitted transmitted frequencies of the targeted alleles from 

the original and the proposed approaches were illustrated in Figure 27 ~ 29. 

Comparing the results from Table 26 to Table 21, we found the relative efficiency of 

estimating τ  did get improved when including the data of two populations--Korea 

and Taiwan only than including all populations. 
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6. Discussions 

In the modern society, many families have only one child, so case-parent trios 

data are easier to collect than affected sibling pairs data except for some late onset 

diseases. Using case-parent trios data, one can estimate the disease susceptibility locus 

τ  precisely and robustly by the preferential-transmission statistic ( )Y t  proposed by 

Liang et al. (2001b) through the generalized estimating equation approach (GEE, 

Liang and Zeger, 1986). But when the number of sample size is small (rare disorder) 

or when the preferential-transmission statistic at τ  (empirical C ) is near 0, the 

estimation may not be accurate, sometimes it does not converge due to the 

heterogeneous genetic effects at τ  even. Most complex diseases are induced by 

interactions between multiple genetic and environmental factors, incorporating those 

factors into the LD mapping can add more information into the mapping and therefore 

is very likely to increase the efficiency in estimating the disease locus. In the present 

study, we proposed two multipoint fine-mapping methods that incorporate covariates 

into the LD fine-mapping approach proposed by Liang et al. (2001b). The expected 

preferential-transmission statistic at τ  (denoted by C ) is modeled as a parametric 

or nonparametric function of covariates, and all the parameters were estimated 

through the GEE approach. By testing whether the covariate is associated with the 

estimated disease locus, we can explore the underlying genetic mechanism and 

etiology of the disease. This information is very helpful on disease preventions and 

controls for public health. 

Further, we illustrated this approach by applying the proposed methods to real 

data of a case-parent trios study of oral cleft and found significant covariate effects on 

the locus identified at 4.7 cM on chromosome 4p16 in populations of Korea and 

Taiwan. Hence, incorporating covariates associated with the disease did improve the 

efficiency in estimating the disease locus. These results showed that the proposed 
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approaches can not only help researchers to estimate the disease locus more efficiently, 

but also to identify risk factors associated with diseases. 
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Table 1. Impact of number of generations on estimating a disease locus 
Gene-Environment disease model: C=0.1879          

Number of 
Generation (N)   τ  Bias R.E. β  P-value

95% Coverage
Probability 

100 Parametric 0.45±0.044 0.0008 1.56 0.2944±0.0533 <1.0e-6 0.96 
 Nonparametric 0.45±0.044 0.0005 1.55   0.95 
 Original 0.45±0.055 -0.0018    0.95 

150 Parametric 0.45±0.034 0.0010 1.61 0.2929±0.0551 <1.0e-6 0.96 
 Nonparametric 0.45±0.035 0.0008 1.50   0.96 
 Original 0.45±0.043 -0.0021    0.95 

200 Parametric 0.45±0.028 0.0012 1.67 0.2918±0.0568 <1.0e-6 0.96 
 Nonparametric 0.45±0.029 0.0010 1.62   0.96 
  Original 0.45±0.036 -0.0010      0.95 

 
Threshold disease model: C=0.2744          

Number of 
Generation (N)   τ  Bias R.E. β  P-value

95% Coverage
Probability 

100 Parametric 0.45±0.031 -0.0003 1.03 0.4873±0.1802 0.006835 0.96 
 Nonparametric 0.45±0.032 -0.0003 0.98   0.97 
 Original 0.45±0.032 -0.0007    0.97 

150 Parametric 0.45±0.024 0.0008 1.05 0.4850±0.1831 0.008081 0.98 
 Nonparametric 0.45±0.025 0.0007 0.99    0.97 
 Original 0.45±0.025 0.0004    0.97 

200 Parametric 0.45±0.021 -0.0002 1.05 0.4838±0.1858 0.009200 0.97 
 Nonparametric 0.45±0.021 -0.0003 0.98    0.98 
  Original  0.45±0.021 -0.0004      0.97 

Original: without incorporating a covariate 
R.E.: Relative efficiency from approaches with a covariate vs. without 
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Table 2. Impact of disease allele frequency on estimating a disease locus 
Gene-Environment disease model:         

Pr(Hτ)   C τ  Bias R.E. β  P-value 
95% Coverage 

Probability 
0.05 Parametric 0.1262 0.45±0.044 0.0021 2.18 0.2214±0.0457 0.000001 0.95 

 Nonparametric  0.45±0.048 0.0026 1.78  0.000091 0.91 
 Original  0.45±0.064 -0.0008    0.94 

0.1 Parametric 0.1879 0.45±0.034 0.0010 1.61 0.2929±0.0551 <1.0e-6 0.96 
 Nonparametric  0.45±0.035 0.0008 1.50  0.000003 0.96 
 Original  0.45±0.043 -0.0021    0.95 

0.2 Parametric 0.2331 0.45±0.027 <1.0e-4 1.12 0.3579±0.0794 0.000002 0.96 
 Nonparametric  0.45±0.028 -0.0002 1.09  0.000008 0.96 
  Original   0.45±0.030 0.0006      0.97 

 
Threshold disease model:         

Pr(Hτ)   C τ  Bias R.E. β  P-value 
95% Coverage 

Probability 
0.05 Parametric 0.1683 0.45±0.046 0.0004 1.09 0.3565±0.1412 0.011575 0.94 

 Nonparametric  0.45±0.046 0.0002 1.10    0.94 
 Original  0.45±0.048 0.0009    0.94 

0.1 Parametric 0.2744 0.45±0.024 0.0008 1.05 0.4850±0.1831 0.008081 0.98 
 Nonparametric  0.45±0.025 0.0007 0.99    0.97 
 Original  0.45±0.025 0.0004    0.97 

0.2 Parametric 0.3851 0.45±0.016 -0.0005 1.04 0.6527±0.2972 0.028058 0.99 
 Nonparametric  0.45±0.016 -0.0005 1.00    0.99 
  Original   0.45±0.016 -0.0004      0.99 

Original: without incorporating a covariate 
R.E.: Relative efficiency from approaches with a covariate vs. without 
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Table 3. Impact of sample sizes on estimating the disease locus 
Gene-Environment disease model: C=0.1879          
Sample Size   τ  Bias R.E. β  P-value 95% Coverag Probability 

50 Parametric 0.45±0.071 -0.0025 1.37 0.3149±0.1222 0.009969 0.93 
 Nonparametric 0.45±0.068 -0.0006 1.46   0.89 
 Original 0.45±0.083 -0.0073    0.91 

200 Parametric 0.45±0.034 0.0010 1.61 0.2929±0.0551 <1.0e-6 0.96 
 Nonparametric 0.45±0.035 0.0008 1.50   0.96 
 Original 0.45±0.043 -0.0021    0.95 

400 Parametric 0.45±0.022 0.0003 1.63 0.2917±0.037 <1.0e-6 0.97 
 Nonparametric 0.45±0.023 <1.0e-4 1.59   0.97 
 Original 0.45±0.028 0.0004    0.97 

1000 Parametric 0.45±0.013 -0.0002 1.48 0.2920±0.0251 <1.0e-6 0.98 
 Nonparametric 0.45±0.013 -0.0002 1.53   0.98 
  Original 0.45±0.016 0.0006      0.97 

Threshold disease model: C=0.2744          
Sample Size   τ  Bias R.E. β  P-value 95% Coverage Probability

50 Parametric 0.45±0.058 0.0008 1.15 0.5187±0.3964 0.190659 0.94 
 Nonparametric 0.45±0.058 0.0007 1.16    0.92 
 Original 0.45±0.062 -0.0004    0.94 

200 Parametric 0.45±0.024 0.0008 1.05 0.4850±0.1831 0.008081 0.98 
 Nonparametric 0.45±0.025 0.0007 0.99   0.97 
 Original 0.45±0.025 0.0004    0.97 

400 Parametric 0.45±0.017 0.0005 1.04 0.4753±0.1287 0.000222 0.98 
 Nonparametric 0.45±0.017 0.0005 0.99    0.98 
 Original 0.45±0.017 0.0007    0.98 

1000 Parametric 0.45±0.010 0.0004 1.03 0.4719±0.0806 <1.0e-6 0.97 
 Nonparametric 0.45±0.010 0.0004 1.01    0.97 
  Original 0.45±0.010 0.0003      0.97 

Original: without incorporating a covariate 
R.E.: Relative efficiency from approaches with a covariate vs. without 
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Table 4. Impact of markers’ targeted allele frequencies on estimating a disease locus 
Gene-Environment disease model: C=0.1879    Pr(Hτ)=0.1     

Pr(Ht)   τ  Bias R.E. β  P-value 95% Coverage Probability
0.1 Parametric 0.45±0.034 0.0010 1.61 0.2929±0.0551 <1.0e-6 0.96 

 Nonparametric 0.45±0.035 0.0008 1.50   0.96 
 Original 0.45±0.043 -0.0021    0.95 

0.2 Parametric 0.45±0.044 0.0011 1.80 0.2956±0.0627 0.000002 0.96 
 Nonparametric 0.45±0.043 0.0015 1.88   0.95 
 Original 0.45±0.060 -0.0015    0.95 

0.3 Parametric 0.45±0.054 0.0002 1.90 0.3010±0.0718 0.000027 0.94 
 Nonparametric 0.45±0.056 -0.0003 1.71   0.93 
 Original 0.45±0.074 0.0002    0.94 

random Parametric 0.45±0.042 0.0012 1.64 0.2942±0.0614 0.000002 0.96 
 Nonparametric 0.45±0.043 0.0014 1.60   0.94 
  Original 0.45±0.054 -0.0021      0.93 

Threshold disease model: C=0.2744    Pr(Hτ)=0.1     
Pr(Ht)   τ  Bias R.E. β  P-value 95% Coverage Probability

0.1 Parametric 0.45±0.024 0.0008 1.05 0.4850±0.1831 0.008081 0.98 
 Nonparametric 0.45±0.025 0.0007 0.99    0.97 
 Original 0.45±0.025 0.0004    0.97 

0.2 Parametric 0.45±0.034 -0.0007 1.09 0.4913±0.2018 0.014905 0.95 
 Nonparametric 0.45±0.036 -0.0007 1.03   0.96 
 Original 0.45±0.036 -0.0012    0.96 

0.3 Parametric 0.45±0.045 0.0004 1.09 0.4958±0.2170 0.022336 0.94 
 Nonparametric 0.45±0.047 -0.0003 1.01    0.94 
 Original 0.45±0.047 0.0003    0.95 

random Parametric 0.45±0.032 0.0006 1.06 0.4865±0.1923 0.011391 0.97 
 Nonparametric 0.45±0.033 0.0014 0.99    0.97 
  Original 0.45±0.032 0.0004      0.97 

Original: without incorporating a covariate 
R.E.: Relative efficiency from approaches with a covariate vs. without 
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Table 5. Impact of markers’ density on estimating a disease locus (τ=0.45 with 10 markers, τ=0.475 with 
20 markers)  
Gene-Environment disease model: C=0.1879          

No. marker   τ  Bias R.E. β  P-value 
95% Coverage 

Probability 
10 Parametric 0.45±0.034 0.0010 1.61 0.2929±0.0551 <1.0e-6 0.96 
 Nonparametric 0.45±0.035 0.0008 1.50   0.96 
 Original 0.45±0.043 -0.0021    0.95 

20 Parametric 0.475±0.022 -0.0003 1.66 0.2933±0.0495 <1.0e-6 0.96 
 Nonparametric 0.475±0.022 -0.0004 1.64   0.96 
  Original 0.476±0.029 0.0010      0.96 

        
Threshold disease model: C=0.2744          

No. marker   τ  Bias R.E. β  P-value 
95% Coverage 

Probability 
10 Parametric 0.45±0.024 0.0008 1.05 0.4850±0.1831 0.008081 0.98 
 Nonparametric 0.45±0.025 0.0007 0.99    0.97 
 Original 0.45±0.025 0.0004    0.97 

20 Parametric 0.475±0.017 -0.0004 1.08 0.4747±0.1794 0.008132 0.96 
 Nonparametric 0.475±0.017 -0.0004 1.05    0.97 
  Original 0.475±0.018 -0.0004      0.97 

Original: without incorporating a covariate 
R.E.: Relative efficiency from approaches with a covariate vs. without 
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Table 6. Impact of ε  on estimating a disease locus 
Gene-Environment disease model: C=0.1879           

ε    τ  Bias R.E. β  P-value 
95% Coverage 

Probability times
0.01 Parametric 0.45±0.034 0.0007 1.53 0.2934±0.0553 <1.0e-6 0.95  974 

 Nonparametric 0.45±0.033 0.0011 1.65   0.95  987 
 Original 0.45±0.042 -0.0020    0.95  959 

0.05 Parametric 0.45±0.034 0.0010 1.61 0.2929±0.0551 <1.0e-6 0.96 998 
 Nonparametric 0.45±0.035 0.0008 1.50   0.96 999 
 Original 0.45±0.043 -0.0021    0.95 997 

0.09 Parametric 0.45±0.041 0.0008 0.99 0.2927±0.0551 <1.0e-6 1.00  963 
 Nonparametric 0.45±0.038 0.0008 1.56   1.00  827 
  Original 0.45±0.050 -0.0020      1.00  945 

 
Threshold disease model: C=0.2744           

ε    τ  Bias R.E. β  P-value 
95% Coverage 

Probability times
0.01 Parametric 0.45±0.024 0.0009 1.07 0.4870±0.1829 0.007741 0.96  990 

 Nonparametric 0.45±0.025 0.0009 0.98    0.97  993 
 Original 0.45±0.024 0.0005    0.96  989 

0.05 Parametric 0.45±0.024 0.0008 1.05 0.4850±0.1831 0.008081 0.98 1000
 Nonparametric 0.45±0.025 0.0007 0.99    0.97 1000
 Original 0.45±0.025 0.0004    0.97 1000

0.09 Parametric 0.45±0.025 0.0006 1.05 0.4846±0.1828 0.008035 1.00  990 
 Nonparametric 0.45±0.025 0.0005 1.00    1.00  876 
  Original 0.45±0.025 0.0004      1.00  983 

Original: without incorporating a covariate 
R.E.: Relative efficiency from approaches with a covariate vs. without 
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Table 7. Impact of 0β (the risk of referent population) on estimating a disease locus 

Gene-Environment disease model:         

Beta0   C τ  Bias R.E. β  P-value 
95% Coverage

Probability 
ln(0.001) Parametric 0.1986 0.45±0.032 0.0006 1.43 0.2974±0.0551 <1.0e-6 0.96 

 Nonparametric  0.45±0.034 0.0005 1.31   0.95 
 Original  0.45±0.038 0.0005    0.96 

ln(0.01) Parametric 0.1879 0.45±0.034 0.0010 1.61 0.2929±0.0551 <1.0e-6 0.96 
 Nonparametric  0.45±0.035 0.0008 1.50   0.96 
 Original  0.45±0.043 -0.0021    0.95 

ln(0.1) Parametric 0.1343 0.45±0.041 -0.0002 2.27 0.2743±0.0540 <1.0e-6 0.96 
 Nonparametric  0.45±0.044 0.0014 1.96   0.93 
  Original   0.45±0.062 0.0007      0.95 

Original: without incorporating a covariate 
R.E.: Relative efficiency from approaches with a covariate vs. without 

Table 8. Impact of 1β  and 2β  (genetic effect) on estimating a disease locus 

Gene-Environment disease model:         

Beta1,Beta2   C τ  Bias R.E. β  P-value 
95% Coverage

Probability 
ln(9),ln(5) Parametric 0.1879 0.45±0.034 0.0010 1.61 0.2929±0.0551 <1.0e-6 0.96 

 Nonparametric  0.45±0.035 0.0008 1.50   0.96 
 Original  0.45±0.043 -0.0021    0.95 

ln(29),ln(15) Parametric 0.3031 0.45±0.022 0.0006 1.10 0.2775±0.0582 0.000002 0.97 
 Nonparametric  0.45±0.023 0.0007 1.01   0.97 
 Original  0.45±0.023 0.0004    0.98 

ln(49),ln(25) Parametric 0.3375 0.45±0.019 0.006 1.09 0.2542±0.0607 <1.0e-6 0.96 
 Nonparametric  0.45±0.020 0.0008 1.03   0.93 
  Original   0.45±0.020 0.0005      0.95 

Original: without incorporating a covariate 

R.E.: Relative efficiency from approaches with a covariate vs. without 
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Table 9. Impact of 3β  (environment effect) on estimating a disease locus 

Gene-Environment disease model:        

Beta3   C τ  Bias R.E. β  P-value 
95% Coverage 

Probability 
ln(2) Parametric 0.1879 0.45±0.034 0.0010 1.61 0.2929±0.0551 <1.0e-6 0.96 

 Nonparametric  0.45±0.035 0.0008 1.50   0.96 
 Original  0.45±0.043 -0.0021    0.95 

ln(5) Parametric 0.1472 0.45±0.039 -0.0019 2.06 0.2808±0.0555 <1.0e-6 0.95 
 Nonparametric  0.45±0.041 -0.0018 1.89   0.94 
 Original  0.45±0.056 0.0014    0.94 

ln(10) Parametric 0.1059 0.45±0.045 -0.0001 2.70 0.2642±0.0528 0.000001 0.95 
 Nonparametric  0.45±0.050 0.0006 2.16   0.92 
  Original   0.45±0.074 0.0037      0.93 

Original: without incorporating a covariate 
R.E.: Relative efficiency from approaches with a covariate vs. without 
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Table 10. Impact of the additive genetic effect “a” on estimating a disease locus 
Gene-Environment disease model:   C=0.1879   

a   τ  Bias R.E. β  P-value 
95% Coverage

Probability 
1 Parametric 0.45±0.034 0.0010 1.61 0.2929±0.0551 <1.0e-6 0.96 
 Nonparametric 0.45±0.035 0.0008 1.50   0.96 
 Original 0.45±0.043 -0.0021    0.95 
5 Parametric 0.45±0.024 0.0007 3.18 0.2132±0.0215 <1.0e-6 0.97 
 Nonparametric 0.45±0.024 0.0006 3.16   0.97 

10 Parametric 0.45±0.023 0.0004 3.53 0.1156±0.0105 0.000001 0.95 
  Nonparametric 0.45±0.024 0.0005 3.21   0.92 
Threshold disease model:         

a   C τ  Bias R.E. β  P-value 
95% Coverage

Probability 
0.5 Parametric 0.1217 0.45±0.064 -0.0021 1.12 0.2143±0.1809 0.236275 0.93  

 Nonparametric  0.45±0.063 -0.0029 1.14    0.90  
 Original  0.45±0.067 -0.0023    0.94  
1 Parametric 0.2744 0.45±0.024 0.0008 1.05 0.4850±0.1831 0.008081 0.98  
 Nonparametric  0.45±0.025 0.0007 0.99    0.97  
 Original  0.45±0.025 0.0004    0.97  

1(d=0.5) Parametric 0.3529 0.45±0.019 0.0003 1.02 0.3000±0.1622 0.064350 0.98  
 Nonparametric  0.45±0.020 0.0002 0.94    0.99  
 Original  0.45±0.019 0.0003    0.98  
2 Parametric 0.4672 0.45±0.014 0.0003 0.97 0.5727±0.1418 0.000054 0.99  
 Nonparametric  0.45±0.014 0.0003 0.98    0.99  
  Original   0.45±0.014 0.0002       0.99 

Original: without incorporating a covariate 
R.E.: Relative efficiency from approaches with a covariate vs. without 
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Table 11. Impact of prevalence rates on estimating a disease locus 
Threshold disease model:         

prevalence   C τ  Bias R.E. β  P-value 
95% Coverage

Probability 
0.01 Parametric 0.4072 0.45±0.017 0.0003 1.01 0.5532±0.2485 0.025994 0.98 

 Nonparametric  0.45±0.017 0.0004 0.95    0.98 
 Original  0.45±0.017 0.0004    0.98 

0.05 Parametric 0.2744 0.45±0.024 0.0008 1.05 0.4850±0.1831 0.008081 0.98 
 Nonparametric  0.45±0.025 0.0007 0.99    0.97 
 Original  0.45±0.025 0.0004    0.97 

0.1 Parametric 0.2117 0.45±0.035 0.0011 1.11 0.4339±0.1548 0.005060 0.96 
 Nonparametric  0.45±0.036 0.0016 1.03    0.97 
  Original   0.45±0.037 0.0005      0.95 

Original: without incorporating a covariate 
R.E.: Relative efficiency from approaches with a covariate vs. without 
Table 12. Fixed penetrance disease model 

f0,f1,f2 P(Hτ)   C τ  Bias R.E. β  P-value 
95% Coverage 

Probability 
0.67,0.05,0.007 0.05 Parametric 0.2678 0.45±0.023 0.0005  1.28 0.3701±0.0501 <1.0e-6 0.99 

  Nonparametric  0.45±0.023 0.0006  1.36   0.97 
  Original  0.45±0.026 0.0006     0.98 

0.67,0.05,0.007 0.1 Parametric 0.4241 0.45±0.015 -0.0005  1.12 0.5200±0.0690 <1.0e-6 0.98 
  Nonparametric  0.45±0.015 -0.0005  1.14   0.98 
  Original  0.45±0.016 -0.0002     0.98 

0.95,0.9,0.01 0.05 Parametric 0.4157 0.45±0.016 -0.0007  1.01 0.1388±0.0537 0.009811 0.97 
  Nonparametric  0.45±0.017 -0.0009  0.93   0.98 
  Original  0.45±0.016 -0.0008     0.97 

0.95,0.9,0.01 0.1 Parametric 0.4039 0.45±0.028 -0.0001  1.02 0.1235±0.0635 0.051736 0.98 
  Nonparametric  0.45±0.029 <1.0e-4 0.97   0.98 
    Original   0.45±0.036 -0.0001       0.98 

Original: without incorporating a covariate 

R.E.: Relative efficiency from approaches with a covariate vs. without
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Table 13. Impact of the QTL’s position on estimating a disease locus 
Gene-Environment disease 

model: C=0.1879    Additive model     

Covariate   τ  Bias R.E. β  P-value 
95% Coverage

Probability 
0.45(tau) Parametric 0.45±0.034 0.0010 1.61 0.2929±0.0551 <1.0e-6 0.96 

 Nonparametric 0.45±0.035 0.0008 1.50   0.96 
 Original 0.45±0.043 -0.0021    0.95 
        

0.5cM Parametric 0.46±0.026 0.0129 2.62 0.2804±0.0578 0.000001 0.97 
 Nonparametric 0.46±0.026 0.0137 2.63   0.92 
        

0.7cM Parametric 0.48±0.042 0.0297 1.04 0.2071±0.0517 0.000063 0.85 
 Nonparametric 0.48±0.043 0.0250 0.97   0.91 
        

0.9cM Parametric 0.48±0.054 0.0279 0.61 0.1518±0.0489 0.001891 0.93 
 Nonparametric 0.47±0.048 0.0195 0.80    0.92 
        

1.1cM Parametric 0.46±0.045 0.0076 0.88 0.1147±0.0503 0.022595 0.95 
 Nonparametric 0.46±0.042 0.0070 1.03   0.93 
        

1.3cM Parametric 0.45±0.040 -0.0006 1.11 0.0840±0.0543 0.122233 0.96 
 Nonparametric 0.45±0.042 -0.0002 1.05   0.95 
        

unlinked Parametric 0.45±0.041 -0.0026 1.10 -0.0014±0.0520 0.979139 0.95 
 Nonparametric 0.45±0.039 -0.0035 1.17    0.96 
        

Dominant:        
0.5cM Parametric 0.47±0.020 0.0156 4.62 0.3161±0.0522 <1.0e-6 0.96 

 Nonparametric 0.47±0.021 0.0164 3.95   0.95 
        

0.7cM Parametric 0.49±0.039 0.0425 1.17 0.2314±0.0436 0.000063 0.85 
 Nonparametric 0.49±0.043 0.0391 1.00   0.91  
        

Recessive:        
0.5cM Parametric 0.46±0.036 0.0057 1.43 0.1408±0.0584 0.015895 0.96  

 Nonparametric 0.46±0.031 0.0092 1.94    0.90  
        

0.7cM Parametric 0.46±0.043 0.0073 0.98 0.0954±0.0581 0.100280  0.94  
  Nonparametric 0.46±0.042 0.0106 1.02    0.92  

Original: without incorporating a covariate 
R.E.: Relative efficiency from approaches with a covariate vs. without 
QTL: quantitative trait locus, the quantitative trait refers to the covariate incorporated 
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Table 14. Impact of the QTL’s position on estimating a disease locus  
Threshold disease model: C=0.2744    Additive model     

Covariate   τ  Bias R.E. β  P-value 
95% Coverage

Probability 
0.45(τ ) Parametric 0.45±0.024 0.0008 1.05 0.4850±0.1831 0.008081  0.98 

 Nonparametric 0.45±0.025 0.0007 0.99    0.97 
 Original 0.45±0.025 0.0004 1.00   0.97 
        

0.5cM Parametric 0.46±0.020 0.0088 1.48 0.3194±0.620 <1.0e-6 0.97 
 Nonparametric 0.46±0.020 0.0096 1.47   0.95 
        

0.7cM Parametric 0.47±0.028 0.0163 0.80 0.2407±0.0583 0.000036 0.91 
 Nonparametric 0.46±0.028 0.0143 0.81   0.93 
        

0.9cM Parametric 0.46±0.029 0.0137 0.71 0.1782±0.0568 0.001705 0.95 
 Nonparametric 0.46±0.028 0.0109 0.77    0.95 
        

1.1cM Parametric 0.45±0.026 0.0046 0.91 0.1393±0.0553 0.011720  0.98 
 Nonparametric 0.45±0.025 0.0045 0.97   0.97 
        

1.3cM Parametric 0.45±0.025 0.0016 0.99 0.1042±0.0576 0.070589 0.98 
 Nonparametric 0.45±0.026 0.0014 0.93   0.97 
        

unlinked Parametric 0.45±0.025 0.0001 0.97 0.0012±0.025 0.983060  0.97 
 Nonparametric 0.45±0.026 -0.0001 0.94    0.98 
        

Dominant:        
0.5cM Parametric 0.46±0.018 0.0097 1.85 0.3358±0.0600 <1.0e-6 0.96 

 Nonparametric 0.46±0.020 0.0106 1.51   0.97 
        

0.7cM Parametric 0.47±0.027 0.0226 0.82 0.2504±0.0514 0.000001 0.86 
 Nonparametric 0.47±0.029 0.0205 0.75   0.92  
        

Recessive:        
0.5cM Parametric 0.46±0.024 0.0056 1.11 0.2051±0.0573 0.000340  0.98  

 Nonparametric 0.46±0.027 0.0075 0.86    0.93  
        

0.7cM Parametric 0.46±0.027 0.0061 0.84 0.1430±0.0604 0.017877  0.96  
  Nonparametric 0.46±0.026 0.0078 0.89    0.94  

Original: without incorporating a covariate 
R.E.: Relative efficiency from approaches with a covariate vs. without 
QTL: quantitative trait locus, the quantitative trait refers to the covariate incorporated 

 



 60

Table 15. Impact of the QTL’s position and genetic models of the quantitative trait on estimating a 
disease locus 
Gene-Environment disease 

model: C=0.1744    Dominant model     

Covariate   τ  Bias R.E. β  P-value 
95% Coverage

Probability 
Dominant Parametric 0.45±0.030 0.0014 2.42 0.3283±0.0468 <1.0e-6 0.94 

0.45(τ ) Nonparametric 0.45±0.034 0.0015 1.89   0.97 
 Original 0.45±0.046 -0.0013    0.95 
        

Dominant Parametric 0.47±0.020 0.0167 5.17 0.3051±0.0502 <1.0e-6 0.97 
0.5cM Nonparametric 0.47±0.022 0.0171 4.30   0.92 

        
Additive Parametric 0.46±0.027 0.0136 3.02 0.2610±0.0574 0.000005 0.96 

0.5cM Nonparametric 0.46±0.027 0.0143 2.89   0.93 
        

Recessive Parametric 0.46±0.038 0.0056 1.47 0.1105±0.0597 0.064213 0.96 
0.5cM Nonparametric 0.46±0.034 0.0094 1.87   0.91 

Original: without incorporating a covariate 
R.E.: Relative efficiency from approaches with a covariate vs. without 
QTL: quantitative trait locus, the quantitative trait refers to the covariate incorporated 

 

Table 16. Impact of the QTL’s position and genetic models of the quantitative trait on estimating a 
disease locus (with an underlying recessive model) 

Gene-Environment disease 
model: C=0.1910    Recessive model     

Covariate   τ  Bias R.E. β  P-value 
95% Coverage

Probability 
Recessive Parametric 0.45±0.028 0.0022 2.08 0.3972±0.0533 <1.0e-6 0.98 
0.45(τ ) Nonparametric 0.45±0.024 0.0017 2.75   0.97 

 without covariate 0.45±0.040 0.0012    0.96 
        

Recessive Parametric 0.46±0.026 0.0076 2.42 0.3727±0.0586 <1.0e-6 0.98 
0.5cM Nonparametric 0.46±0.022 0.0079 3.37   0.94 

        
Additive Parametric 0.46±0.020 0.0127 3.83 0.4411±0..0627 <1.0e-6 0.97 

0.5cM Nonparametric 0.46±0.019 0.0122 4.41   0.93 
        

Dominant Parametric 0.47±0.018 0.0156 5.19 0.4379±0.0670 <1.0e-6 0.95 
0.5cM Nonparametric 0.47±0.018 0.0153 4.85   0.93 

Original: without incorporating a covariate 
R.E.: Relative efficiency from approaches with a covariate vs. without 
QTL: quantitative trait locus, the quantitative trait refers to the covariate incorporated 

 

 



 61

Table 17. Impact of the QTL’s position and genetic models of the quantitative trait on estimating a 
disease locus (with an underlying dominant model) 

Threshold disease model: C=0.3951     Dominant model     

Covariate   τ  Bias R.E. β  P-value 

95% 
Coverage

Probability
Dominant Parametric 0.45±0.017 0.0004 1.00 0.1057±0.1305 0.417662 0.98 

0.45(τ ) Nonparametric 0.45±0.018 0.0005 0.94   0.98 
 Original 0.45±0.017 0.0003    0.98 
        

Dominant Parametric 0.45±0.016 0.0022 1.12 0.1287±0.0620 0.037859 0.98 
0.5cM Nonparametric 0.45±0.017 0.0040 0.97   0.98 

        
Additive Parametric 0.45±0.016 0.0024 1.10 0.1359±0.0603 0.024182 0.98 

0.5cM Nonparametric 0.45±0.017 0.0035 1.04   0.97 
        

Recessive Parametric 0.45±0.016 0.0021 1.07 0.1092±0.0520 0.035712 0.98 
0.5cM Nonparametric 0.45±0.016 0.0042 1.13   0.95 

Original: without incorporating a covariate 
R.E.: Relative efficiency from approaches with a covariate vs. without 
QTL: quantitative trait locus, the quantitative trait refers to the covariate incorporated 

 

Table 18. Impact of the QTL’s position and genetic models of the quantitative trait on estimating a 
disease locus (with an underlying recessive threshold model) 

Gene-Environment disease 
model: C=0.1031     Recessive model     

Covariate   τ  Bias R.E. β  P-value 

95% 
Coverage

Probability
Recessive Parametric 0.45±0.062 0.0003 1.81 0.5633±0.1777 0.001527 0.95 
0.45(τ ) Nonparametric 0.45±0.056 0.0017 2.19   0.91 

 Original 0.45±0.083 0.0044    0.92 
        

Recessive Parametric 0.46±0.043 0.0077 3.68 0.2809±0.0574 0.000001 0.97 
0.5cM Nonparametric 0.46±0.033 0.0090 6.23   0.91 

        
Additive Parametric 0.47±0.026 0.0181 10.12 0.3588±0.0589 <1.0e-6 0.97 

0.5cM Nonparametric 0.47±0.026 0.0170 10.27   0.87 
        

Dominant Parametric 0.47±0.020 0.0230 17.82 0.3620±0.0583 <1.0e-6 0.91 
0.5cM Nonparametric 0.47±0.021 0.0221 15.56   0.86 

Original: without incorporating a covariate 
R.E.: Relative efficiency from approaches with a covariate vs. without 
QTL: quantitative trait locus, the quantitative trait refers to the covariate incorporated 
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Table 19. Impact of the genotype  τ  on estimating β  
Gene-Environment disease model: C=0.1879 N=150             

  τ(0.45cM) parametric 0.5cM parametric 0.7cM parametric 0.9cM parametric unlinked parametric 
τ 0.4503  0.4510  0.4509 0.4629  0.4517  0.4797 0.4515 0.4779 0.4510 0.4474  

S.E.(τ) 0.0233  0.0335  0.0221 0.0263  0.0226  0.0417 0.0228 0.0544 0.0230 0.0405  
            

N 143.4489 158.6520 144.9560 187.0526 143.2264 154.3638 141.4642 130.4114 142.9235 163.4912  
S.E.(N) 25.2158 33.8415 26.1238 37.3240 25.7249 33.0865 26.0691 38.8114 25.6668 31.5500  

            
C 0.1969  0.2059  0.1967 0.2164  0.1960  0.2042 0.1953 0.1966 0.1965 0.2073  

S.E.(C) 0.0284  0.0307  0.0281 0.0303  0.0281  0.0292 0.0281 0.0294 0.0291 0.0324  
            
α -0.2237  0.5523  -0.2034 0.5470  -0.1984  0.5157 -0.1994 0.4856 -0.2274 0.4216  

S.E.(α) 0.0765  0.0708  0.0658 0.0682  0.0648  0.0669 0.0651 0.0663 0.0611 0.0682  
            
β 0.0014  0.2929  0.0294 0.2804  0.0348  0.2071 0.0328 0.1518 0.0029 -0.0014  

S.E.(β) 0.0457  0.0551  0.0413 0.0578  0.0392  0.0517 0.0374 0.0489 0.0379 0.0520  
P-value(β) 0.976083 <1.0e-6 0.476265 0.000001 0.373807 0.000063 0.379500 0.001891 0.938493 0.979139  

β1 1.1764   1.1596  1.1579   1.1598  1.1760  
S.E.(β1) 0.1388   0.1318  0.1313   0.1318  0.1236  

P-value(β1) <1.0e-6  <1.0e-6  <1.0e-6  <1.0e-6  <1.0e-6  
β2 1.1685   1.1549  1.1532   1.1552  1.1792  

S.E.(β2) 0.1334   0.1308  0.1302   0.1309  0.1295  
P-value(β2) <1.0e-6  <1.0e-6  <1.0e-6  <1.0e-6  <1.0e-6  

95% Coverage 0.98  0.96  0.98  0.97  0.98  0.85  0.98 0.93  0.97  0.95  
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Table 20. The proportions of each covariates’ category for probands recruited from four populations from the oral cleft study

  Korea Maryland  Singapore  Taiwan  Total 
Gender (Male) 57% 55% 55% 59% 57% 

Affected father (Y) 0% 2% 0% 1% 1% 
Affected mother (Y) 0% 3% 0% 0% 1% 

Mother Smoking (Y*) 0% 24% 8% 4% 10% 
Mother Drinking (Y*) 2% 16% 5% 3% 7% 

Vitamin 10% 81%    
Total 42 103 66 172 (104*) 383 (315*) 
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Table 21. Incorporating different covariates for four combined populations (Korea, Maryland, Singapore, and Taiwan) from the 
non-syndromic oral cleft study 

Covariate Method τ S.E. R.E. Ν S.E. C β P-value   
Sample Size: 383                 

 Original 4.706 0.0022  7122.33 3466.80 0.1065    
POPULATION parametric 4.707 0.0009 5.63 12966.68 3519.34 0.1633 1.1258 0.999993 Korea  

        0.4228 0.999997 Maryland 
        0.0558 1.000000 Singapore 
        0.5153 0.999996 Taiwan 

GENDER parametric 4.707 0.0022 1.00 7119.21 3481.56 0.1066 0.0357 0.801413  
 nonparametric 4.707 0.0019 1.39 8702.04 2437.74 0.1270    

CLP(mother) parametric 4.706 0.0022 0.97 6951.74 3438.09 0.1043 -0.1745 0.463335  
 nonparametric 4.707 0.0019 1.40 8782.35 2457.90 0.1276    

CLP(father) parametric 4.707 0.002 1.21 7856.95 3509.16 0.1145 -0.1473 0.903556  
 nonparametric 4.708 0.0014 2.60 13277.77 4476.98 0.1558    

Sample Size: 315                 
 Original 4.704 0.0038  4620.77 3912.21 0.0765    

SMOKE parametric 4.704 0.0037 1.10 4610.41 3922.03 0.0763 -0.0565 0.744450  
 nonparametric 4.704 0.0039 0.98 4318.15 1911.41 0.0752    

DRINK parametric 4.704 0.0039 0.99 4620.75 3910.38 0.0765 0.0030 0.985917   
Original: without incorporating a covariate 

R.E.: Relative efficiency from approaches with a covariate vs. without 
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Table 22. Incorporating different covariates for Korean population from the non-syndromic oral cleft study 
Covariate Method τ S.E. R.E. Ν S.E. C β P-value 

Sample Size: 42               
  Original 4.708 0.0012   12458.35 4095 0.4523     

GENDER parametric 4.708 0.0012 1.04 12608.6 4283.49 0.4563 0.2479 0.710034 
 nonparametric 4.708 0.0011 1.15 12327.15 3248.3 0.4437   

DRINK parametric 4.708 0.0012 1.01 12592.79 4149.29 0.456 -0.2123 0.505898 
  nonparametric 4.708 0.0011 1.13 12931.6 3293.52 0.4537     

Original: without incorporating a covariate 

R.E.: Relative efficiency from approaches with a covariate vs. without 
 
Table 23. Incorporating different covariates for population in Maryland from the non-syndromic oral cleft study 

Covariate Method τ S.E. R.E. Ν S.E. C β P-value 
Sample Size: 103                

  Original 4.663 0.0025   8285.22  3493.80 0.2830     
GENDER parametric 4.664 0.0026 0.89 8434.68  3390.84 0.2794 0.3610 0.373772 

 nonparametric 4.663 0.0017 2.10 9463.42  3020.97 0.3254   
SMOKE parametric 4.663 0.0028 0.79 6929.11  3390.84 0.2450 -0.4348 1.000000 

 nonparametric 4.662 0.0018 1.94 8967.58  3020.97 0.3218   
DRINK parametric 4.663 0.0025 0.97 8513.10  3612.09 0.2890 0.1531 0.800657 

 nonparametric 4.663 0.0017 2.07 9770.79  3037.28 0.3355   
VATAMIN parametric 4.663 0.0026 0.87 8094.21  3419.44 0.2778 -0.1636 1.000000 

  nonparametric 4.662 0.0018 1.88 9594.13  2991.27 0.3328     
Original: without incorporating a covariate 

R.E.: Relative efficiency from approaches with a covariate vs. without 
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Table 24. Incorporating different covariates for Singaporean population from the non-syndromic oral cleft study 
Covariate Method τ S.E. R.E. Ν S.E. C β P-value 

Sample Size: 66                 
 Original 4.727 0.0104  4487.01 1794.17 0.1295   

GENDER parametric 4.727 0.0114 0.84 3464.61 1868.28 0.2087 0.5249 0.204076 
  nonparametric 4.725 0.0065 2.61 4890.88 1211.29 0.2885     

Original: without incorporating a covariate 

R.E.: Relative efficiency from approaches with a covariate vs. without 
 
Table 25. Incorporating different covariates for Taiwanese population from the non-syndromic oral cleft study 

Covariate Method τ S.E. R.E. Ν S.E. C β P-value 
Sample Size: 172                

  Original 4.709 0.0039  7505.51 3856.9 0.1351    
GENDER parametric 4.708 0.0031 1.62 7787.11 3628.49 0.1391 -0.1017 1.000000 

 nonparametric 4.708 0.0021 3.53 8299.81 2147.92 0.1527   
Sample Size: 104         

   Original 4.712 0.0086  3813.78 2618.17 0.0955     
DRINK parametric 4.712 0.0082 1.09 3853.75 2689.63 0.0961 -0.0599 1.000000 

  nonparametric 4.711 0.0049 3.07 4545.06 1569.35 0.1104    
Original: without incorporating a covariate 

R.E.: Relative efficiency from approaches with a covariate vs. without 
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Table 26. Incorporating different covariates for Korean and Taiwanese population from the non-syndromic oral cleft study 
Covariate Method τ S.E. R.E. Ν S.E. C β P-value 

Sample Size: 214                
  Original 4.708 0.0014   10822.54 3198.38 0.2160     

GENDER parametric 4.708 0.0014  1.05 10750.36 3116.72 0.2147 -0.0728 1.000000  
 nonparametric 4.708 0.0012  1.41 11091.76 2412.58 0.2229   

Sample Size: 146                
  Original 4.707 0.0022   7802.33  2936.51 0.1836     

SMOKE parametric 4.708 0.0023  0.91 7708.71  2883.37 0.1821 0.1182 0.754960  
 nonparametric 4.707 0.0016  1.87 8724.44  1812.26 0.2114   

DRINK parametric 4.707 0.0019  1.36 8257.80  2908.89 0.1921 -0.2149 1.000000  
  nonparametric 4.707 0.0015  2.17 9078.12  1824.40 0.2117     

Original: without incorporating a covariate 

R.E.: Relative efficiency from approaches with a covariate vs. without 
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Figure 7. True, observed and fitted curves by the original approach, the proposed parametric approach and 

the proposed nonparametric approach 
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Figure 8. The transmitted statistic from 2.7 cM to 175 cM on chromosome 4p16 from oral clefts data (Sull et al. 

2008) 
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Figure 9. The transmitted statistic from 3 cM to 7 cM on chromosome 4p16 from oral clefts data (Sull et al. 

2008) 
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Figure 10. The transmitted statistic from 4 cM to 6 cM on chromosome 4p16 from oral clefts data (Sull et al. 

2008) 
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Figure 11. The transmitted statistic from 4.5 cM to 5 cM on chromosome 4p16 from oral clefts data (Sull et al. 

2008) 
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Figure 12. The transmitted statistic from 4.65 cM to 4.75 cM on chromosome 4p16 from oral clefts data (Sull 

et al. 2008) 
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Figure 13. Comparisons of three approaches by incorporating gender into the LD mapping 
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Figure 14. Comparisons of three approaches by incorporating affected father into the LD mapping 
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Figure 15. Comparisons of three approaches by incorporating affected mother into the LD mapping 
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Figure 16. Comparisons of three approaches by incorporating smoking into the LD mapping 
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Figure 17. Comparisons of differences in incorporating population types or drinking in the parametric 

approach 
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Figure 18. Comparisons of three approaches by incorporating gender into the LD mapping 
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Figure 19. Comparisons of three approaches by incorporating drinking into the LD mapping 
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Figure 20. Comparisons of three approaches by incorporating gender into the LD mapping 
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Figure 21. Comparisons of three approaches by incorporating smoking into the LD mapping 
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Figure 22. Comparisons of three approaches by incorporating drinking into the LD mapping 
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Figure 23. Comparisons of three approaches by incorporating vitamin into the LD mapping 
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Figure 24. Comparisons of three approaches by incorporating gender into the LD mapping 
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Figure 25. Comparisons of three approaches by incorporating gender into the LD mapping 
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Figure 26. Comparisons of three approaches by incorporating drinking into the LD mapping 

. 
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Figure 27. Comparisons of three approaches by incorporating gender into the LD mapping 
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Figure 28. Comparisons of three approaches by incorporating smoking into the LD mapping 
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Figure 29. Comparisons of three approaches by incorporating drinking into the LD mapping 
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