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Incorporating Covariates into Linkage-Disequilibrium

Mapping Using the Case-Parent Trio Design

Student: Yu-Wei Lee  Advisor: Dr. Yen-Feng Chiu

Institute of Statistics
National Chiao Tung University

ABSTRACT

Case-parant trio design is commonly used in genetic epidemiological family
studies. It is more suitable for rare disorders than other conventional designs for
family studies, such as affected-sib-pair (ASP) designs. Liang et al. (2001b) proposed
a multipoint linkage disequilibrium (l.P)/mapping approach to localize disease genes
based on a preferential-transmi$sion statistic in the case-parent trio design. They
found that their approach was more powerful and could accommodate a wider variety
of data than the conventional FDT “approach. An addition, instead of conducting
hypothesis testing to search for a disease locus, it provided a precise estimate for a
postulated disease locus along with its standard error, so that one can make inference
for the disease locus. Most complex diseases involve both genetic and environmental
components, incorporating genetic or environmental factors into the LD mapping may
be helpful in localizing the disease locus. We therefore incorporated trait-related
covariates into the LD mapping to estimate the disease locus through parametric and
nonparametric models in the case-parent trio design in the present study. Simulation
studies and the example of oral cleft study both suggested that incorporating
covariates into the LD mapping approach helps a great deal to improve efficiency in

localizing the disease locus.

Key words: Multipoint; Linkage disequilibrium; Case-parent trio design; Covariates;
Parametric approaches; Nonparametric approaches.
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1. Introduction

Case-parent trio design is commonly used in present genetic epidemiology. It is
more suitable for rare disorders than other conventional designs, such as
affected-sib-pair (ASP) designs. In addition, the trio design does not require multiplex
siblings needed in ASP designs. For trio data, the method named
Transmission/disequilibrium test (TDT) (Spielman et al. 1993) was proposed to detect
linkage when a disease-susceptibility locus is found to be associated with a marker in
family triads, including two parents and one affected child. Risch and Merikangas
(1996) proved that TDT is more powerful statistically to test genes of modest effect
than ASP designs, even in the presence of population stratifications.

Many extended methods of TDT were proposed in recent year to deal with more
complex situations. For example, (i). TDT without parents marker data—Sib-ship
disequilibrium test (SDT) (Horvath and Laird, 1998):and Sib
transmission/disequilibrium (S-TDT) (Spielman et al.’1998). These two methods
exploited one or more unaffected siblings’ marker data instead of parents’ marker data
that may be absent. The defect is that these methods are not as powerful as TDT, so
they are only adaptable when lacking parents data; (i1)) TDT with pedigree data—
pedigree disequilibrium test (PDT) (Martin et al. 2000) can catch extra information
from general pedigrees out of original trio data regardless of their size and obtains a
valid TDT even when there is misclassification of unaffected individuals, especially
with a high-prevalence model; (iii) TDT with multi-allele markers. (Bickeboller and
Clerget-Darpoux 1995, Sham and Curtis 1995; Terwilliger 1995; Schaid 1996;
Spielman and Ewens 1996; Cleves et al. 1997; Kaplan et al. 1997; Lazzeroni and
Landge 1998), Sham and Curtis (1995) proposed an extension of
transmission/disequilibrium test for dealing with multi-allele problem, but the

approach has good power only when linkage disequilibrium is strong and the disease



is recessive. On the other hand, Spielman and Ewens (1996) also revised their biallelic
TDT to muiltiallelic TDT; and (iv) TDT with multiple markers (Terwilliger 1995;
Lazzeroni and Landge 1998; Clayton and Jones 1999; Clayton 1999; Dudbridge et al.
2000). Zhao et al. (2000) also proposed a new approach about multiple markers and
corrected the disadvantage of prior approaches. (E.g. Lazzeroni and Landge’s
approach ignores the dependence of marker, Clayton’s approach is not robust to
population stratification, and for Dudbridge’s approach, ambiguous haplotypes have
to be discarded.) In solving the problem of unknown haplotype frequency, it is
important and bounden to know the information of parents’ genotype. Besides,
although haplotype with multimarker is more informative than single marker, it also
results in a larger number of degrees of freedom and reduces the power of these tests
simultaneously. The new approach== Haplotype-sharing TDT (HS-TDT) (Zhang et al.
2003), not only remains informative.as traditional haplotype-based tests, but decreases
the degrees of freedom. HS-TD'T is applicable-to both qualitative and quantitative
traits, arbitrary size of nuclear family with or without ambiguous phase information,
and whatever number of alleles at each marker. However, Knapp et al. (2004)
declared that if the genotyping error exists, even the probability of genotyping errors
is low, HS-TDT cannot have a precise type I error.

Although the original TDT was powerful and robust, it could not include the
informative trait or covariate. In earlier research, Haseman and Elston (1972) used sib
pairs’ data, not trios’ data we required in TDT, to estimate linkage between a known
marker with m alleles and a susceptibility disease locus which governs a quantitative
trait with biallelic genotype. Many other researchers developed a lot of extended
methods for dealing with quantitative-covariate with IBD (e.g. Sham et al. 2002).
Recently, some researches devoted on connecting TDT and a quantitative or

qualitative covariate and then proposed some effective tests (Allison 1997; Abecasis
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et al. 2000, 2002; Liang et al. 2001; Wheeler and Cordell, 2007), such as QTDT
(Rabinowitz 1997; Lunetta et al. 2000). QTDT makes use of quantitative phenotype
as a dependent variable, which improved and redefined quantified genotype as an
independent variable to generate linear regression. In addition, Hierarchical QTDT
(HQTDT) (Fulker et al., 1999) separates genotype (independent variable) by different
mating-type-- QTDT ,, (Gauderman, 2003) utilized the information of mating-type
instead of the intercept of original regression model, and in Retrospective QTDT
(RQTDT), the genotype is modeled as a function according to their phenotype and the
parental genotypes (Liu et al. 2002). Gauderman (2003) employed above tests to
detect three effect, genetic main effect, gene-environment interaction effect, and
gene-gene interaction effect. After that, he found QTDT ,, is more efficient (i.e.
required less sample size) than other tests under the necessary condition that the all
genotypes of markers of trios data should be known, but it is not realistic.

In multipoint linkage analysis using.affected sibpairs, Liang et al. (2001a)
capitalized upon IBD information of multiple markers around a susceptibility gene
and then obtained a simple formula between the expected numbers of allele-sharing of
these markers and the susceptibility gene by careful assumption and complicated
calculation. According to the formula, they applied generalized estimating equation
(GEE) method (Liang and Zeger 1986) to estimate all parameters (including the
disease location 7 ) in the model and variances of the estimates at the same time. The
parameter C represents estimated expected number of allele-sharing of 7, and the
range of value is from -1 to 1. The magnitude (absolute value) of parameter C in
their method indicates the ability of estimating the true location of susceptibility gene.
The advantage of this approach is that it did not require specification of penetrance or
a mode of inheritance.

On the side, based on the conception of TDT, Liang et al. (2001b) also used

3



allele-transmitted information of trio data instead of allele-sharing information of
sibling data, and rewrote the formula between information of markers and the
parameter C for case-parent trios data. In the traditional TDT method, only
heterozygous parent data are informative and could be included, but in Liang et al.’s
model, homozygous parent data could be recruited simultaneously. Furthermore, they
could test if there is linkage or linkage disequilibrium between a disease gene and
multiple genetic markers over the region at the same time, which is not like the
conventional TDT where each marker— 1is tested separately resulting in a multiple
testing problem. Specially, the method is not restricted to trio designs only, it can also
be extended for other types of data. On the other hand, the approach of Liang et al. is
usually more powerful than the traditional TDT approach (Liang et al. 2001b).
Glidden et al. (2003) quoted Liang’s formula‘for ASP designs (2001a) and added
age-at-onset information as a covariate to support the-estimation of parameter C. The
information of covariates can yield substantial-efficiency gains on finding the location
of susceptibility gene. Chiou et al. (2005) also-adopted Liang’s formula in ASP
designs (2001a), they utilized nonparametric approach to model and estimate C as a
function of covariates at first, and then applied the GEE method to estimate the
location of 7. By an iterative process, the estimation of C and 7z could be
obtained until convergence was reached. According to Chiou et al. (2005), the
nonparametric method is better than the quadratic and linear models, because the
nonparametric method avoids the flaw of using misspecified parametric regression
models. Under case-parent trio designs, we propose a new multipoint approach for
estimating the location of a susceptibility gene, 7 . The proposed approach is based
on transmission information of markers near an unobserved disease gene and a
quantitative or a qualitative covariate associated with the disease gene. We model C

as a function of covariates through parametric and nonparametric approaches, so as to
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incorporating covariates into the association mapping in estimating the location of

susceptibility locus 7.




2. Literature Review
2.1 Transmission/Disequilibrium Test (TDT)

The transmission/disequilibrium test (TDT) can be utilized if a heterozygous
parent transmits his or her target allele and alternative allele to affected child with
equal frequency. It only requires affected children of trio data rather than multiple
affected or unaffected family members. Besides, it detects the linkage between
susceptibility gene and marker locus when association is present.

Consider two bi-allelic (a target allele D, and a normal allele D,) markers
M, and M,, and suppose there have n trio families which have two parents and

an affected child. After collecting this type of data, researchers arrange 2n parents

of trio data intoa 2x2 table shown in the Table 2 in Spielman et al. 1993.

Nontransmitted Allele

Transmitted Allele M, M, Total
M, a b a+b
M, C d c+d
Total a+C b+d 2n

The above table shows every parent’s genotype and the alleles which he or she

transmits and does not transmit to affected child. Then, they assume a coefficient &
represents linkage disequilibrium (- freq(M;D;)—~ mp, m and p are the
population frequency of allele M, and D,),and @ represents the recombination

fraction between marker M and locus D. With these coefficients, the Table can be

rewritten as the Table 3 in Spielman et al. 1993:

Nontransmitted Allele

Transmitted

Allele M, M, Total
M, m?+(mé&/ p) ma-m)+[1-6-m)s/p] m+[A-6)5/p]
M, m-m)+[(@-m)s/ p] (1-m)*+[(1-m)S/ p] 1-m-[(1-6)5/ p]
Total m+(65/ p) 1-m—(65/ p) 1

The null hypothesis is that there is no linkage (€ =1/2), it also represents
E(b)= E(c) whatever the value of m and p, but the necessary condition is that

the value, ¢, should not be zero. On the other word, a heterozygous parent transmits
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target allele and normal allele with equal frequency. Under the null hypothesis, we
suppose b is distributed in binomial distribution with b+c sample sizes, which are
the total numbers of heterozygous parents, and the probability is 1/2.

b~ Binomial(b+c,%):> E(b)z%,VN(b)z% .

Under this hypothesis, the z* statistic has the form (McNemar’s test, Sokal and

> [ b+c b+c2_(b—C)2
Z“[(b 2)/\/4J_ b+c

The TDT is often more powerful than other conventional linkage tests and it is

Rohlf, 1969)

not affected by population structure which can lead association in the absence of
linkage, since it exploits within-family comparisons only. Although TDT is much
more sensitive than traditional haplotype Shating test (Risch and Merikangas 1996),
and only requires a single affected childj it should bé.utilized under the existence of

population association, even thé linkage is Strong.

2.2 Extension of TDT from one marker to multiple markers

Since the Human Genome Project is progressing rapidly, the genetic marker can
be identified and genotyped easily and that can help us to acquire more information.
After the information of multiple markers is obtained easily, many researchers
proposed relative tests. We will introduce some existing and known methods below.

Lazzeroni and Lange (1998) analyzed each marker separately and obtained the
adjusted P -value which is the minimum of P -values under the null hypothesis that
there is no linkage between the region over each markers, but it ignored the
dependence which may result in linkage between markers.

Some researchers use the haplotype instead of the information of multiple

markers, and assume the haplotype of parents and affected child are known. Clayton



(1999) estimated the frequency of haplotype and calculated the likelihood after
considering all possible solutions, but it is not robust when population stratification is
present. Dudbridge et al. (2000) proposed an unbiased TDT for individual haplotype,
they calculated the correct variance of the transmission count within family, and used
extra information from multiple siblings if they are available. Similar to Clayton’s
work, they utilized missing data techniques to estimate the uncertain haplotype, so
this method is also not robust when population stratification is present. To avoid this
kind of problem, some family data with equivocal haplotype should be discarded, but
it discards a part of information simultaneously.
Under knowing all haplotype information of each parent, Zhao et al. (2000)
displayed a hxh transmission/nontransmission table T as
12 -h

1 L0 R,

P8 P S

hoty t, L
where t; is the number of parents with haplotypes H;H, and they transmit H, to

the affected child but not transmit H, where h is the total number of possible

haplotype. After completing this table, they can calculate a statistic:

T “‘li (ty.—t.,)2

h &t +t -2t °

The statistic is a marginal homogeneity test, since it may not approximate a z’
distribution with h—1 degree of freedom, we can use simulation methods to assess
the P -value. With ambiguous parents’ haplotype, they detected T, (estimating
haplotype frequency by assuming that parents are random samples of individuals from

population under Hardy-Weinberg equilibrium), which has the highest power than T,

(estimating haplotype frequency by making use of unambiguous families) and T,



(estimating haplotype frequencies by making use of both unambiguous families and
ambiguous families, and assigning each compatible haplotype group equal probability
for each ambiguous family). Furthermore, testing each marker separately and
discarding the ambiguous families have lower power.

Although the approach using multiple markers is more informative than using a
single marker, there exists some difficulties. For example, if we consider each
haplotype as an allele in TDT, the degree of freedom will increase rapidly according
to the number of markers and then result in lower power. On the other hand, the
haplotype of parents are not always unequivocal. Zhang et al. (2003) proposed a

haplotype-sharing TDT (HS-TDT) which utilized the similarity of haplotype as the

information. Let S, (I) be the distance between the leftmost and the rightmost

markers with identical alleles | .(See figure l'of Zhang et al.). For any haplotype H,

the score of | th marker is defined as

1 n 4
XH(I):_ZZSH,H”(I)’

an 54

where H; is four kinds of parental haplotypes in the i ™ family. Then let

Xy = 2; & X (1) be the difference of the haplotype-sharing score between the
transmitted parental haplotypes and non-transmitted parental haplotypes, &; =1
means the haplotype X;(l) transmitted to k ™ child and &ix = -1 means the

haplotype X;(I) is not transmitted to k ™ child. They estimated the covariance

between the value of trait Yy, (for the qualitative case, Y, = 1 means the child is
affected, and Yy, = 0 means the child is not affected, for the quantitative case, Y,

can represent the quantitative value directly.) and the transmitted score X,
tI
U|(I) = Z(yik _C)Xik(l)a
k=1

9



where C can be arbitrary constant, Zhang et al. (2003) set it as the average of trait

value over all children. Under the null hypothesis of no linkage and association,
E [U (1 )] is equal to zero for any value of c. We can find that if the disease

mutation causes high trait value, the value of U, (l) should be positive. Similarly, if

the disease mutation causes low trait value, the value of U,(l) should be negative.
Let U()= Zin:l w,U,(l), where w, >0 isa weight function over each family and
the statistic of HS-TDT is defined by

U =max
1<I<L

ua,
where L is the total number of markers. It is noticeable that the choice of ¢ and w,
will influence the power of test. Finally, they utilized the permutation procedure to
evaluate the P -value of test.

HS-TDT is applicable to both qualitative and quantitative traits, it decreases the
degree of freedom with traditional haplotypes method, it has correct false-positive

error rate, and it is more powerful than single-marker TDTs and haplotype-based

TDTs.

2.3 Extension of TDT from bi-alleles marker to multiallele marker

A biallelic marker is assumed under traditional TDT method, but sometimes
many markers over chromosome of human have more than two alleles, such as blood
type which has A, B, and O, three alleles basically. So when TDT is introduced and
popular over the world, some researchers devoted to extending TDT to multiallele
marker. The original approach, generalized TDT (Bickebdéller and Clerget-Darpoux,
1995), is to combine HHRR (haplotype-based haplotype relative risk) statistic

(Terwilliger and Ott, 1992) and TDT:
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T = Z(t_t)’

i G+

where t; is the number of parents who transmitted allele i and not transmitted

allele j. The statistic has asymptotically a g’ distribution with m(m—1)/2 D.F.
under the absence of linkage. But under the null hypothesis (€ =1/2) and the

presence of linkage disequilibrium, the statistic is invalid and has lower power, since
the transmitted and non-transmitted allele are not independent. In addition to the test

T, described above, they also proposed another statistic,

_ i (t=t)
& (t+t)]
where t, and t, are the row and column marginal totals. The statistic is an

extension of the discussion of Ewens and Spielman. (1995) for biallelic markers.

Sham and Curtis (1995) preposed an extended method of TDT. First, they

calculated the probability ( P; ) of each type-of transmitted and non-transmitted alleles

conditional on parental genotype. Under '@ =0, In(P; / P;)=Db,—b; , so there are

m—1 independent parameter b, which related to the marker alleles M, . For

convenience, b, is setto zero, and then they define a likelihood ratio statistic by

Ly 2
T, ==-2In*(—)~ x"(m-1),
n L X

where L, is the likelihood under null hypothesis that b,=0forall i,and L, is
the maximized likelihood with respect to b, . Then, they utilize the statistic to test if
there is linkage in the presence of linkage disequilibrium. They pointed out this
approach has good power when linkage disequilibrium is strong if the disease is
recessive.

Spielman and Ewens (1996) also proposed a new statistic for multi-allelic

11



marker:

-~z (m-1).

Kaplan et al. (1997) compared these tests mentioned above and applied Monte
Carlo test to guarantee valid tests and then concluded that T, has the lowest power

than other three tests (T ,T ..., and T,), and the three tests almost have similar

het >
power over all situations (the variation of recombination fraction @, and the different

disease model) and population they classified.

2.4 Extension of TDT from trio data to affected sib pair data
When considering the case of families with two affected children, Spielman et al.

(1993) provided three categories to define the information from heterozygous parents

by

I =number of parents who transmit M, to both children

j =number of parents who transmitiM, to both children
h—i—j=number of parents whe transmit M .to one child and M, to the other,

where h is the number of heterozygous parents, and then they rewrote the

parameters b and ¢ of TDT as

b=2i+(h-i-j)
c=2j+(h—-i—j)

By this definition, the TDT statistic could be written as

o
ToT = 20207
h

They also proposed other statistics for families with more than two affected offspring.

Martin et al. (1997) devised a statistic with ASP data, and called the statistic T,.

S|

Among children of heterozygous parents, let n,; be the number of ASPs who all

accepted target allele M,, let n,, be the number of ASPs who all accepted referent

12



allele M, ,andlet n, be the number of ASPs who one accepted M, and the other

accepted M, . Then, the statistic would be

_ (nu _n22)2 .

sp
nll + n22

S|

Wicks (2000) simulated two tests (TDT and T)) and pointed out that T, is valid

when testing for both linkage and linkage disequilibrium, while TDT is only valid

when testing for linkage, but not linkage disequilibrium. However, TDT is more

powerful than T, since TDT utilizes excess sharing—that is the tendency for

n, +n,, exceeding n,, as linkage is present. Wicks also defined a general TDT-like
statistics for ASPs as

_ (nn _nzz)2
a _a)(nu +Nn,, ) +an,,

T(a)

,0<a<l.

We can observe that T, and TDTiare the special case for ¢ =0and a= 1/2,

respectively. He found T(1) is mostpowerfultest for detecting linkage and it has the

correct asymptotic false-positive error rate under the null hypothesis, since the

statistic T (1) exploits excess sharing to the fullest extent possible.

2.5 Extension of TDT without parents’ data

Traditional TDT method required marker information of trio data, included an
affected child and his or her parent, but in some late onset, such as cardiovascular,
non-insulin-dependent diabetes, and other age related diseases, it’s difficult to know
that. To handle this form of problem, some researchers tried to reform TDT method,
for example, sib transmission/disequilibrium (S-TDT) (Spielman et al. 1998) and
sibship disequilibrium test (SDT) (Horvath and Laird, 1998). They all utilized the

marker data of unaffected sibs instead of parents.
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The S-TDT determines if the marker allele frequency is different between
affected offspring and their unaffected sibs significantly. It has two procedures, one is
the permutation procedure, it can calculate the P -value that tests if the number of
interested allele M, is randomly arrange in affected and unaffected groups, but it
needs sufficiently large number of replicates to keep a precise P -value . The other
one is a Z-score procedure; it utilizes the hypergeometric distribution to estimate the

expected mean U and variance V ofinterested allele M, , and calculates the Z

score,

where Y is the observed number of M, , or the Z score with a continuity correction

as

Z’_(|Y—U|—%)
\/\7 >

and then the P -value can be calculated-by-normal distribution approximation. They

also combine the TDT and the S-TDT by-assuming the expected mean and variance of

TDT, % and y , respectively, and adding them with expected mean and variance

of S-TDT. Lastly, we can calculate the combined Z score and corresponding
P -value.

The formula of S-TDT is similar with the Mantel-Haenszel test (Laird et al.
1998). It is noticeable that if we have the information of parent, we should choose
TDT rather than S-TDT, because under such circumstance, TDT is more powerful
than S-TDT. Although S-TDT is useful when the parent data are missed, it has some
restriction: (1) the sibship must have at least one affected and one unaffected member;
and (2) in the sibship, all members should not have the same genotype. Another

method, SDT, is a nonparametric sign test. First, it denoted the mean number of target

14



allele among affected (m}, ) and unaffected (m/, ) siblings as

m), = (total number of target alleles among the affecteds)/n

mlTJ = (total number of target alleles among the unaffecteds)/n, ’

where n, and n, are the total number of affected and unaffected members in the
sibship. They denoted the difference of m, and m] by d',let b be the number

of d">0,andlet ¢ be the number of d' <0, so the statistic of SDT can be defined
by the form of TDT. The two tests have similar power in most situations, but SDT is
better than S-TDT, because it avoids accounting for correlation between the siblings,

and it’s relatively simple. Similar to S-TDT, SDT can also combine with TDT by

bepr =b+bypr,and Copp =C+Cpr

2.6 Extension of TDT from qualitative traits to quantitative traits
Due to the increasing availability of genetic data, many quantitative traits are
noticed and related with susceptibility gene:-At-the start of research, one might related

the phenotype and genotype with linear regression model:

Y, =a+ G, +e,
where Y, isthe quantitative phenotype and G, is marker’s genotypes, and then we
can test if the value of S equals to zero.

QTDT is proposed by Rabinowitz (1997), the linear regression model was

revised as

Y, =a+pZ +e
where Z =H, (T. —1/2)+H, (T, —1/2), H._(H,) isan indicator of
heterozygosity in the mother (father), and T, (T,) is an indicator of that if the

mother (father) transmits a target allele to affected child. Furthermore, Lunetta et al.
(2000) rewrote the QTDT,
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Y, :oc+,B(Gi —E[Gy1Gin» Gy |)+e1-

Fulker et al. expanded the linear model to partition the covariate into between-
and within- mating type information, two variables. They called the approach
hierarchical QTDT (HQTDT) which has the form

Y, =a+ B;G, + B, G, -G, )+e, +¢,
where e,, is a mating-type specific residual and it is assumed to be N (0,7%), G,,

is some average genotype for mating type M . The test of association is based on an
LRT of B, .
On the other hand, the value of Y in the original QTDT model is restricted to

a , regardless of the mating type, so Gauderman (2003) proposed a reformatory
method, QTDT,,,
Y = a;+ 06, +€.

The difference from other models is that the-€xtra term «,, considers the different
effect of 6 mating type.

The models described above are all prospective, but there are some other models
that are retrospective, such as retrospective QTDT (RQTDT) (Liu et al. 2002), which
lets the genotype of affected children be modeled as a function conditional on their

phenotype and their parental genotypes. Then, by Bayes rule, the likelihood becomes

N f (Yi |Gi,a,ﬂ,O')Pl’(gi | Qim> 9i¢ )
L a,p, = * * ’
( B 0') 1,:1[ Z f(Yi |G ,a,ﬂ,a)Pr(g | Oim» Oi¢ )

9% 9im »Yif

where o is the residual variance. The summation in the denominator includes four
genotype (g") and it could be transmitted to a child conditional on parental
genotypes.

Gauderman (2003) compared these models under genetic main effects,

gene-environment interaction, and gene-gene interaction, and then pointed out
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QTDT,, needs less sample size than other models for testing these effects, i.e.

QTDT,, is the most efficient approach.

2.7 Localization of disease locus in case-parent trio designs

Liang et al. (2001b) applied the conception of TDT and developed a new statistic

Y (1), called the preferential- transmission statistic (It would be described in more
detailed in Chapter 3). Through complicated calculation, they showed the relationship

between Y (t) and Y (7), the preferential-transmission statistic with arbitrary marker

and susceptibility gene’s locus, respectively is:

E[Y(®)|®]=01-26,)E[Y(@)|®](1-6,)" {Pr[h®)|h(x)]},
where @ represents the event that the offspring of trio is affected, 6, is the

recombination fraction between marker-locus 't. and the postulated disease gene
location 7,and N is the number of generations since the introduction, into the
population, of a disease-causing mutation atlocation 7 .

Finally, they applied the generalized-estimating-equation (GEE) (Liang and
Zeger, 1986) to estimate the parameter 6= (7,C,N).

The approach can test the null hypothesis that there is no linkage or linkage
disequilibrium (LD) to the region R by testing if C =0. In contrast to TDT, Liang
et al.’s approach simultaneously uses all the markers’ information, so it is more
powerful than TDT. The approach uses the data of every marker over the specific
region regardless of whether the parent’s genotype is heterozygous or homozygous,
and also provides valid standard-error estimates of parameter through GEE. Most of

all, there is no need to assume the genetic model of the disease in this approach.
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2.8 Multipoint approach with covariate data

Liang et al. (2001a) also proposed a multipoint approach with affected sib pair
(ASP) data by the model as follows.

E{S(t)|®}=1+(1-26,,)°C, C=E{S(¢)| D} -1,
where S(t) and S(7) represent the number of alleles shared identical-by-descent
(IBD) at a marker locus t and a susceptibility locus 7, respectively. Glidden et al.
(2003) incorporated age as a covariate X into the model of Liang et al. and assume
C is a function of covariate X . Their model has the form
u(t]x)=E{S(t)| X = x,®} =1+(1-26,,)’C(X)
=1+ exp(—0.04[t - z[) C(x).

Furthermore, since the value of C is -1 to 1, it could be transformed and postulated as

a logistic formula:

logit[{C(0*1}/2 = a+ B x
Then, we could utilize GEE method to estimate the parameters, 6 =(7,a,8,,....5,) -

Conclusively, they find incorporating covariate data could provide more
information, increase precision in localizing susceptibility gene and other parameters,
and minimize the effect of the unknown heterogeneity process, even when it is

mismodelled.

2.9 Multipoint approach with covariate data and non-parametric approaches
Although multipoint linkage analysis using sibpair designs is a popular approach
to test the location of interested trait, some issues, such as genetic heterogeneity,
gene-gene, and gene-environment interaction, should be addressed properly. Chiou et
al. (2005) proposed an approach which assumes trait locus’ genetic effect is a function

of covariate, and the function represents the probability of a sibpair sharing the same
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allele at the trait locus. Then, they estimated the susceptibility gene locus with GEE
method and the genetic effect with a nonparametric approach iteratively.

For the | " marker and i ™ sibpair, they applied Liang et al.’s (2001a)

model and rewrote it as

E{S/(t)|@}=1+(01-26, ,)’C(X;>X;,)

Let g=1(9,(X;»X,),9,(X,,X,)) be some transformed predictor of covariate pair
(X;»X,) whichisinrelationto C,andestimate C and 7 iteratively between
equation (1) and (2).

n 2

Z[(Sr(f)_l)_ﬂo _ﬂl(gil - g1)_ﬂz(gi2 - gz):l Kz ( H™ (g _Gi )) @

i=1
where S;(7) is the imputed IBD sharing at, 7, G, =(9,,,0,,) with
Ji = 9 (Xm Xiz) , K, i1s a bivariate kernel function, and H is a nonsingular
square bandwidth matrix; and
M
S ()= ;Wj(f)si(tj),

where W, () is the weight function centering at 7 . It may depend on the distance of
t; and 7 or the average of the two nearest IBD sharing at two markers.

When we obtain the estimates 7, we can calculate S; (7) and the covariate
data G,, and then get the estimate é(g) = ,30 for the function C , then plug the

estimate é(g) into the estimating equation to estimate the parameter of interest

0 =(r) again. This procedure is repeated until convergence is met.

n

op () ~
(%j Cov™(S,)(S, — (7)) = 0 2)
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This approach not only keeps the preciseness when using Liang et al.’s model
(2001), it does not need to assume the relation between C and covariates and avoids

mis-specifying the function C by an invalid model.

2.10 Interpreting analyses of continuous covariates in ASP

Schmidt et al. (2007) discussed three plausible models for the relationship
between continuous covariate and disease risk or linkage heterogeneity. First, the
covariate distribution is determined by a quantitative trait locus (QTL). Second, the
covariate affects the disease risk through statistical interaction with a disease
susceptibility locus. Third, the covariate distribution is different in families linked or
unlinked to a particular disease susceptibility locus. Then, they utilize three
approaches, a regression-based QTL analysis, a nonparametric analysis of the binary
affection status, and the ordered-subset analysis (OSA), to analysis above three
relations.

They used a prospective logistic tegression model as the penetrance function to

generate binary disease outcomes in their simulation studies as follows.

ln( P(D=11%%,) }=,B + B X, + B, X, + B X, X
1-P(D=1]x,x,) ) ~° "0t T
B, =In(OR(G)), B, =In(OR(E)), B, =In(OR(G x E)),

where D=1 for affected, D=0 for unaffected individuals, x,=1 for the
susceptibility genotype(s), X,=0 for the referent genotype(s), and X, is the value of
a normally distributed continuous covariate represents environmental factor.

Among the three approaches, QTL analysis is useful to detect Gx E interaction
between the covariate and a disease susceptibility locus when the data included

unaffected sib pair that can provide information only in the QTL analysis, but not

other two approaches. But the data analyzed by the QTL analysis should be dealt with
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by a standardized process. OSA has a significant result when a gene influences
variability in the population distribution of a continuous disease risk factor, rather
than a disease susceptibility locus influencing the disease risk directly. Finally, the
NPL is more powerful then other two analyses when the OR(Gx E) is high,

whether the data included unaffected sib pair or not.
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3. The Proposed Method

3.1 Notation and Preferential-Transmission Statistic

Apply the approach of Liang et al. (2001b), consider n case-parent trios are
sampled for an association study, and let R be a chromosomal region of length T
cM (centimorgan) which contains no more than one susceptibility gene at unknown
location 7 overregion R.Denote M markers framed region R with locations
of 0<t, <t,<..<t,, <T.Forsimplicity, we suppose there are two alleles per
marker and define Y (t) as the paternal preferential-transmission statistic

Y () =Y, (D)-Y, (1),

where t isone of M markers and

1, if the transmitted paternal allele
Y.t at t is targetallele H (1)

=3
! 0, if the transmitted paternal allele

at tis nontarget allele h(t) ,
1, ifthe nontransmitted paternal
allele at tis target allele H (t)

Y, =1 . :
0, if the:nontransmitted paternal

allele at t is nontarget allele h(t)

Similarly, maternal preferential-transmission statistic also can be defined as
X(t)= X,(t)— X, (1), accordingly. From now on, we only discuss the property and
extension of Y (1), since it applies to X(t) completely as well.

The expected number of preferential-transmission statistic of Liang et al.’s model
has the form

pt)=E[Y,t)|@]=E[X(t)| @]
=(1-26,,)C1-6,) ",

where C=E [Y ()] d)] =E [ X(7)| CD] , 6, is the recombination fraction between

t and 7, N isthe number of generations when a disease-causing mutation at 7
was introduced into the generation, 1 =1,...,n, N is the number of trios, and
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7, =Pr[h(t)|h@) ], j=1,..M.

Since some diseases are associated with covariates like hypertension, BMI, fat in
the blood, age, or the level of disease, and some notable recent researches showed that
incorporating covariates information can amplify the signals of linkage (Glidden et al.
2003; Chiou et al. 2005), we rewrote the formula and added a covariate Z
associated with an affected child into C (assuming the recombination does not depend

on Z)as

p)=E[Y(®)|Z=20]=01-26_,)C()1-6,)" 7, 3)
where C(z2) is E [Y ()| Z= Z,CI)] . We expect the covariate Z will be helpful to

estimate the location of the susceptibility gene more accurately. Equation (3)

represents the transmitted numberat t as a function of recombination &, _, the

number of generations N , and-the expected transmitted number at susceptibility

locus 7 and covariates Z . Assuming.the Haldane(1919) map function,

6,, = (1—exp(=0.02[t —z|))/ 2. 4)
On the other hand, 7; represents the probability of the non-target allele is
carried at marker t; upon the normal allele at susceptibility locus 7, as it is difficult

to be observed among collected data, we replace it with frj by

n

Z[I_Yiz(tj)+1_ Xi2(tj):|
# == n .

C))
The parameter C(z) plays an important role in our approaches, it measures the

degree of overall linkage to R, and decides how precise the estimation of the disease

locus 7 is. If the absolute value of C(z) is close to 1, the magnitude of linkage is

more strong, and the estimation of 7 is more precise, in other words, the variance is
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smaller. We will illustrate it in the next Chapter. By the same token, if the absolute
value of C(z) is close to 0, there is little linkage over the region and has minimal
information about the estimation of 7. Some complex diseases may involve
interactions of gene and environment factors, or different patients may have different
genetic effects from the same disease-locus, or the phenocopies may result from
environment factors...etc. The complexities of the underlying genetic mechanism of a
disease may weaken the signal of linkage, if a covariate Z is associated with the
underlying mechanism of a disease, by incorporating the covariate into the linkage
mapping, one may obtain more precise estimation of 7 (Glidden et al. 2003).

Now, we introduce two approaches to estimate = by incorporating a covariate

Z through parametric and nonparametric methods.

3.2 The Parametric Approach-with Covariates
There are multiple parametric methods-that.could be utilized to model C asa
function of the covariates, we employed.the logistic type models to establish the

relation of a covariate Z and C(z) as a dependent variable Glidden et al. (2003).
First, since the range of C(z) is [—1,1] , we must transform its range into [0,1] ,

hence, the model takes the form

logit[ E{S(r)| Z =z} | = logit[{C(2)+1} /2]

1o 1+C(2)
10 1-C(2)

=a+p'Z

(C(Z) + 1) /2 characterizes the probability that an affected child received a target

allele at 7 from his or her heterozygous parent. Thus,

_ exp(a+ﬂTz)—1
c@= exp(a+,BTz)+1'

()
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The vector of parameters & =(z, N, @, B;,...,8,), P is the dimension of covariates.

By replacing C(z) with a logistic regression model,

E[Y()|Z=2,0]=01-26,)|1-
[ (012 =2,0]=( ’)[ exp(a+ﬂTZ +1

2 N
) }(1—61’,) 7. (7

We then apply the Generalized Estimating Equation (GEE) (Liang and Zeger,

1986) approach to solve the parameters. That is, estimating 6 =(z,N, @, B,,..., 5,)

by solving
50)= 3| PED cor () (Y, - uo i} +
aﬂ(a;;,ﬁ.)cov_](xi){xi —ﬂ(5,7%)}:| =0,
where
Yi :[Yil(t])_Yiz(tl)"“’YiI(tM)_YiZ(tM )j[
X =|:Xi1(tl)_ Kip(t)seees X5, (1) — X (ty ):[
and

H(O57) = (65 B3R ooy it 365 70) ] -

A

The parameter estimates ¢ are consistent estimates, hence, have the asymptotic

property. Based on the asymptotic property, we could calculate the variance estimates

of & by
Var(8) = A"BA™
where
& (0uB,R) i [ 0u(B,7)
A'gl( ) covton %57
+(au(5,fr)] Cov-! (Xi)[ay(a,;e))]
06 o8 .
5=6
and

25



B-=3 [Mj Cov (V)Y ~ u(G. (Y, - (5. )Y Cov"m)(a“(‘s’f”]
2| es 56
+[a”(5”})) Cov' (X){X, ~ &, A} { X, — (6.7} CoV"(xi)[a”(g”})
06 06 5o g

This approach allows one to make inferences for the parameters of interest. In

addition, we could test if the covariates z, on allele transmitting is significant by

testing the null hypothesis: 8, =0.

One minor modification is necessary when applying the GEE method, since the

variable u(J8,7) is not differentiable with respectto 7 (strictly speaking) through

|t - z'| in the Haldane mapping function (1919). This concern could be fixed by

replacing |t—z'| by
|t—r| if|t—r|2£

1
2¢

®

1 ,
(t—z')2+Es if |t—7{>¢
where & is a positive number. We will discuss the-effect of the value of & in the

next Chapter.

3.3 The Nonparametric Approach with Covariates

A criticism of multiple parametric modeling is that the approaches imposed may
not reflect the underlying mechanism properly. Here, we refer to a nonparametric
method proposed by Chiou et al. (2005) who estimated the function C by spline and
kernel smoothing methods as local polynomial regression (Fan and Gijbels, 1996).

Before estimating C(z), we need the information about imputed allele transmitting at

T, Yi*({') , we utilize the allele transmitting information at markers, Y(t;), near 7,

to impute Y, () with an weighted average, i.e.,
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M
Y (@)= 2wt ©)
j=1
where W, (7) is the weight function of nearby markers centering at 7 . The weight

function we employ here is to take allele transmitting at two nearest markers, Y, (t,)

and Y;(t,) with t <7 <t, such that
Y, (F) =wY,(t)+ A -wW)Y,(t,),
where w=(t,—7)/t,—t,. When the location of gene falls between two reasonably

close marker loci, this weight function could work well.
Next, we could obtain é(z) by minimizing the following kernel weighted least

squares function
(Y @-1)-8,- B,G20D) | Ki(G-92), j=1,p (10)

where G could be covariates :Z, ‘or other transformation of z, like exp(z), log(z)

andsoon; H isa pxp symmetric positive-definite matrix depending on sample

size n; K isa p-variate and IK(u)du=1; KH(u)=‘H'”2‘K(H'”2u),andwe

called H"? the bandwidth matrix; and f, is the estimate of C (Ruppert and

Wand, 1994). Here, we choose the kernel function K and the bandwidth matrix

HY* tobe

2
Ku)=Q2xz)™"? exp(—u?),—oo <u<ow,
and

max(Z,)-min(Z,) -
3 T

HY? =

1’...’n ,

and then we could solve equation (10) by
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s
N 1 @Z,-2)
Pilo(zwz) z7wy @), wherez,=|: i |,
. 1 Z,-2)
B

where

v =y, T
and

W, =diag{K,(Z, - 2),...,K,(Z, - 2)}.

Then we employ é(z) and put it in the equation below to update the estimate
of 7 by solving this equation (GEE),
L[ ou(o, 7z _ A
$(6)= Z[%COV O]Y —u@, D)} +
i=1

ou(3,7)

Py COV_I(xi){xi_ﬂ(éaﬁ')}]=Oa

where 6 =(z,N).
Through the iterative process betweenupdating é(z) in the nonparametric

model and 7 in the GEE method, the estimate C(z) and 7z could be obtained

when convergence is reached.
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4. Simulation Studies
4.1 Disease models
4.1.1 Logistic regression models

In the simulation study, we carry out three different disease models to assess the
performance of the two proposed methods for quantitative trait-related covariates.
First, we assume a prospective logistic regression model (See Figure 1) as the

penetrance function to generate binary disease outcomes for a case-parent trio data:

m[ P(D=1|g,e)

1—P(D=1| g’e)]=ﬂo+ﬂ1g+ﬂzea

where D=1 foraffected and D =0 for unaffected individuals, ¢ =1"for the
susceptible genotype(s), g =0 for the referent genotype(s) (For dominant model,
g=1 when genotype is HH or.sHh, g=0"when genotype is hh, for recessive
model, g=1 when genotype is. HH , g =0 when genotype is Hh or hh,and
for additive model, we separate =g into_g,.and ¢,; G, into B,, and B,,,and
then g, =1 when genotype is HH ;..g, = 0..when genotype is Hh or hh,
g, =1 when genotypeis Hh,and g, =0 when genotypeis HH or hh.), e is
a value of environmental effect, E, which follows a standard normally distribution,
and the parameter vector f are the natural logarithm of the odds ratio (ORs). By the
logistic regression model, we set up the relative risk f according to the inheritance
mode, and then we can calculate the penetrance f,, f,,and f, for genotype HH,
Hh, and hh, respectively. On the other hand, we generate the trait depending on the
genotype of affected individual:

Z,=u+9,+¢€, e ~N(0,1) (Haseman and Elston, 1972)
(9, =a when genotype is homozygous HH, g, =d when genotype is
heterozygous Hh, g.=-a when genotype is homozygous hh. For dominant

models, d > 0; for recessive models, d <0 ; and for additive models, d =0).
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Model 1: Logistic regression

- OR(GXE)
OR(G) ORE)

Figure 1. Graphical illustration of logistic regression disease models

4.1.2 Threshold models

Second, we decided whether an individual 1s‘affected or not by a threshold model

(See Figure 2). For a start, we generate trait- Z; for each individual directly,

= pu+9+e,l=1,..50,
where u is the mean of quantitative traits forall individual, g, is genetic effect and
the value is determined by personal genotype (g, =a when genotype is HH ,
g, =d when genotypeis Hh, g, =-a when genotype is hh. For dominant
model d >0, for recessive model d <0, and for additive model d =0), and e, is
the environmental effect with a standard normal distribution. After knowing the value
of traits, we take a threshold (T ) depends on the prevalence of population (See
Equation (11) and Figure 3) under the simulation, and if a trait of person exceeds the
threshold, he or she will be diagnosed to be affected.

prevalence = p*Pr[Z >T | Z ~ N(a,1),HH ]
+2p(1—-p)Pr[Z >T|Z ~ N(d,1),Hh]
+(1-p)*Pr[Z>T|Z ~ N(-a,1),hh] a1
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Model 2. Threshold.
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Figure 3. Disease allele frequencies and the probability density function for a covariate in the

threshold models (P=disease allele frequency, a=1, d=0)

4.1.3 Fixed penetrance models
The last and simplest one is fixed penetrance models (See Figure 4), the
probability for an individual being affected depends on predetermined penetrance f,,

f,,and f, for genotype HH, Hh,and hh, respectively, and we generate the

traits (covariates) in the same way as that in the logistic regression model.
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Model 3: Fixed penetrance

Figure 4. Graphical illustration of fixed penetrance disease models

4.2 Genotype Data

We assume the joint probability of target alleles H(t) and H(z) at marker t

and disease locus 7 at present generation N as

Pr(H(t),H(z)) = Pr(H(t) Pr(H(z))+ (1-6,,)" A",

where A" represent the degree of LD between marker t and disease locus 7 at
N = 0. Here, we apply the equation (3) of Liang et al. (2001b),
d(t)=P[HM®IHE]=P[H® )],

and the related formula of d(t): proposed by Devlin-and Risch (1995),
dO=056,,)" P[h@®)| ()]
We set the value of A" to be 0.009 for all markers, and then we can calculate two

important probabilities P(H(t)|H(z)) and P(h(t)|h(7)). In the simulation work,
we have set the number of trios at 200 and a region with 10 fully polymorphic
markers that are equally spaced between 0 cM and 0.9 ¢cM (0.1 cM between adjacent
markers) and the disease locus 7 at 0.45 cM. Then, we provide the genotype at 7
of parents with a disease allele probability p, then utilize these genotypes, and the
conditional probabilities P(H(t)|H(z)) and P(h(t)|h(r)) to generate genotypes
for markers.

After completing the genotypes of parents, we use the information of

recombination 6, to generate their child’s genotypes at 7 and markers, and then
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determine if the child is affected through the logistic regression, threshold, or fixed

penetrance disease models.

4.3 Simulation Results

In the following simulation results, we simulate 1,000 replicates including 200
case-parent trios, and compare the relative efficiency (R.E.= {SE(‘EZ)/(SE(fl)}Z) in

between our parametric and nonparametric procedures where covariates were
incorporated with the original approach where no covariates were incorporated (Liang
et al., 2001b). In addition, we examined the performance of the approaches when the
disease models were logistic regression models, threshold models, and fixed
penetrance models in our simulation.

For the logistic regression disease model; we assume the inheritance mode is

additive, that is,

m[ P(D=1]1;0,-¢)

I_P(D=1| glagzae)J:ﬂo_'_ﬂ]gl+ﬂ292+ﬂse=

where S, =1n(0.01), 8, =In(9), B, =In(5), B, =In(2), and
~ {1, if HH {1, if Hh

= . 0, = : ,e~N(0,1).
0, if Hhor hh 0, if HHor hh

Weset a=1,d =0 (See the definition in section 4.1). Figure 7 illustrates the true,
observed, and three fitted curves in one of these models.

For the threshold model, we generated a trait based on the logistic model, and
used the threshold with prevalence of 0.05, the threshold was 1.022636. Those with a
trait greater than 1.022636 were affected. We will show the estimating results of
different prevalences in the following simulation studies.

In Tables 1-5, we display scenarios with different numbers of generation,

different disease allele frequencies at 7, sample sizes, frequencies of a targeted allele
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of markers, and numbers of markers over the same region. From the five Tables, we
summarize results as follows: In Table 1, smaller standard errors for estimates of 7
were found in larger generations. In Table 2, it shows that the higher the value of C,
the transmitted probability of the targeted allele, the more precise and efficient of the
estimate for 7. The magnitude of C depends on many factors including the disease
allele frequency, we plot two simple diagrams (Figure 5 & 6) to display the

association of them.

C
0Ooo 010 020 0320

| | | | | |
0.0 0.2 0.4 0.6 0s8 1.0

F[H{taLi]

Figure 5. The curves of the transmitted probability C at 7 depend on the disease allele
frequency P[H®)] with penetrance rates f =0.491, f =0.153,and f,=0.022 in the logistic

regression disease model.
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10 0.0

end on the disease allele frequency

Additionally, we compare the relati\}e efficiency among different underlying
disease models including logistic regression and threshold models in Table 2. The
estimates for 7 from the phenotype data generated by the logistic regression model
are more efficient than those from those generated by the threshold model regardless
of parametric or nonparametric approaches for a specific C . Apparently, the larger
the C wvalue, the more efficient of the estimate for ¢ and A in both parametric
and non-parametric approaches. As demonstrated in Table 3, the precision of
estimates will be improved by enlarging the sample sizes. It is notable that our
proposed approaches were more efficient with a smaller sample size compared to the
estimate without incorporating a trait (covariate) when the disease model is the

threshold model, and it maintained accurate estimation of susceptibility locus 7
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even if there were only 50 trios when the underlying genetic model was the logistic
regression model. From Table 4, we found that if the frequency of the targeted allele
at marker is more deviant from the frequency of the disease allele at 7, the variance
estimate will be much larger for 7, and the p-value oftesting 8=0 became not
as significant, our proposed approach was quite robust in terms of efficiency
compared to the original approach (without a covariate). Table 5 illustrates the results
from the scenarios with 10 markers and 20 markers on the same region of length 0.9
cM. Apparently, denser marker could make the estimates more precise (less bias), but
the difference between the results from approaches with and without a covariate
remained similar.

In Table 6, we have tried three different values (smaller than the distance of two
adjacent markers) of & in equation (6) to find the.most optimum one and to study
the robustness of various & . The results were.similar-except for the convergence rate
of the 1,000 replicates. It is quite obvious-that-when the value of ¢ equal to 0.05 cM,
the convergence rate is the highest, 1.e;-half of distance between two adjacent markers
(0.1 cM) was an optimum choice.

Tables 7 ~ 9 reveal the influence from different relative risks g,, f,, fB,,and
p; in the underlying disease models. The value of C varied according to these risks,
and it’s again showed that a larger value of C made the estimates more precise.
Moreover, estimates from our proposed approaches were more efficient than the
original approach when C was small. In Table 10, we changed the value of a, the
genotypic effect at 7 when simulating the covariate. We found that the results were
different in the two models. For the logistic regression disease model, apparently,
increasing value of a can keep the estimate more accurate and more efficient unti] —
a exceeding 5, but for the threshold model, since C changed corresponding to a,
the comparison was hard to make. It is expected that the estimate of £ decreased
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with an increased value of a. The result from changes of prevalence rates are
displayed in Table 11, which depended on the magnitude of C . After checking the
results from a variety of disease models including logistic regression and threshold
models, we simulated the fixed penetrance models as shown in Table 12, we examine

if it has the same performance as other two models. Basically, it is mostly affected by

C , but we observed that recessive model ( f, =0.67, f =0.05,and f,=0.007)is
more efficient and more significant (referring to testing for £ ) compared to the
dominant model ( f, =0.95, f =0.9,and f,=0.01) with the similar average C
values.

From Table 13 to Table 18, we compare the difference in bias and relative
efficiency of estimating 7 when the covariate is controlled by a locus near the
disease locus rather than the locus. 'z -itself. With-an exception for the nearest marker
at 0.5 cM in some cases, the farther. distance between-a locus controlling the covariate
and 7 was, the smaller the estimates of _£._was. When the covariate was controlled
by an unlinked locus, in spite of th¢estimate was better than that without a covariate,
the corresponding p-value oftesting B =0 is almost near 1, which was as
expected. We found the bias of the estimate for 7 was a useful index to distinguish
whether the covariate’s locus is actually 7 itself or it is near but not 7, since the
loci close to 7 induced more serious bias (See Table 13 ~ Table18), if we want to
make sure whether the covariate is controlled by 7, in addition to evaluate the
estimate for £, we could also check if the estimate for 7 is similar from that
obtained from the mapping without incorporating the covariate. Although sometimes,
we won’t be able to obtain the estimate without incorporating a covariate due to the
lack of statistical power.

In addition, a covariate (quantitative trait) with a dominant genetic model mostly

provided a more efficient estimate for 7 than that under an additive or recessive
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model regardless of the parametric or nonparametric approaches, and regardless of the

disease models of logistic regression, threshold models, or inheritance modes. Finally,

we added the genotype at 7, two qualitative variable Z, and Z__, into the

mo ?

equation (6) of the proposed parametric method, and let B, B, ,and B ,6 be the

regression coefficients for the covariate Z, genotypes Z, and Z_ , respectively.

mo ?

We compared the results with the original results from the parametric method, we

found that B becomes non-significant because the estimate of f was close to 0,

on the contrary, B, and S, were all significant when the two covariates were

added (see column 1 and column 2 of Table 19). The reason is that the covariate Z
no longer carries any additional information on 7, when the genotype of Z, and

Z, were incorporated.
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5. A Data Example

We applied our proposed approaches to a case-parent trios study of oral cleft
from four population (Korea, Maryland, Singapore, and Taiwan) reported in Sull et al.
(2008). In this international study, they recruited 383 case-parent trios of oral cleft
(see Table 20) and gathered their genotypes at 635 SNPs spanning about 175 ¢cM on
chromosome 4p16.

Figure 8 shows the plot of the empirical transmitted statistic over the region
ranging from 2.7 cM to 175 cM. We found the leftmost region was most informative,
so we focused on this region as displayed in Figure 9. It is clear that the most
informative region is from 4 cM to 6 cM as shown in Figure 10 so we plotted the
narrower region from 4.5 ¢cM to 5¢M in Figure 11, this smaller region includes only
one highest peak which meets our model assumption.

Further, since the SNPs markers are in LD, we selected some of the tag SNPs to
conduct the linkage mapping. The SNPs-around.4.7¢M (see Figure 12) include: (1)
1$9995063, rs4689885, rs11728302,: 1810027615, 1s10012509, rs10428352, 1564466606,
rs11733672, rs11725796,and rs10937875--the ten markers located from 4.674158 cM
to 4.731674 cM for the Taiwanese and all populations; (2) SNPs rs9995063,
rs4689885, rs11728302, rs10027615, rs10012509, rs10428352, rs6446666,
rs11725796, and rs10937875--the nine markers located from 4.674158 cM to
4.731674 cM for the Korean population; (3) SNPs rs7682040, rs9654059, rs12504020,
rs7681821, rs3910659, rs7437213, 1s9995063, rs4689885, rs11728302, rs10027615,
and rs10012509--the eleven markers located from 4.634028 cM to 4.700255 cM for
the Marylander population; (4) SNPs rs11728302, rs10027615, rs10012509,
rs10428352, rs6446666, rs11733672, rs11725796, rs10937875, rs2165431, rs4689907,
rs838958, rs6840368, rs6826063, and rs6824609--the fourteen markers from

4.683682 cM to 4.771068 cM for Singaporean population. We estimated the disease
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locus 7 for oral cleft, the corresponding standard errors for the estimates, the
p -value of B and the 95% coverage probability for 7 by incorporating different
covariates through the proposed parametric and nonparametric models.

We applied three methods in estimating 7 . One is the original model without a
covariate proposed by Liang et al. (2001b), the other two are our proposed parametric
and nonparametric approaches with covariates incorporated. The estimated results
were listed in Table 21 ~ Table 25 for the four combined population, Korea, Maryland,
Singapore, and Taiwan, respectively. The data and the fitted curves were also
demonstrated in Figure 13 ~ Figure 26.

Since the data did not include any quantitative covariates, we employed the
following 5 qualitative covariates in localizing of the disease locus: GENDER (gender
of proband, male=1, female=2,), CLF (father) (condition of father, affected=1,
unaffected=0) , CLF_(mother) (condition of mother, affected=1, unaffected=0),
SMOKE and DRINK (yes=1, no=0) (Fhe.data-from Singapore also include
information of having taken vitamin ornot). Seme of the drinking and smoking data
were missing in Taiwanese population, hence, there were only 104 out of 172
Taiwanese were included in the analyses when the incorporated covariate was
drinking or smoking status.

The results showed that our proposed approaches were mostly more efficient
than the original approach where no covariate was incorporated. In addition, the
estimates from our approaches were more precise (bias was smaller) unless the
covariate is not associated with the oral cleft syndromes in a specific population.
Besides, the nonparametric approach seemed to be more efficient than the parametric
approach. Sometimes an irrelevant covariate not only makes the estimate less efficient,
but also induces higher bias for the estimate of t. For example, the factor, SMOKE, in

populations of Taiwan and Singapore was not helpful in estimating the disease locus.
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It is worth noting that the covariate POPULATION helped improved the disease
localization greatly in the combined (four) populations (see Table 21 and Figure 17).
The result suggested that the genetic effects in the four separate populations were
different. The estimate for T was at around 4.7 ¢cM, and Korea has the substantial
linkage effect than other populations. The order of significance magnitudes of g
(the population difference on the effect from the estimated disease locus) was Korea,
Taiwan, Maryland, and Singapore as illustrated in Figure 12. Moreover, Table 21
revealed that adding POPULATION as a covariate increased the efficiency of
estimating the disease locus (also see Figure 17).

Finally, we find the patterns of the transmitted targeted alleles were similar in
Korea and Taiwan, but different from the other two populations, so we tried to
combine the data of Korea and Taiwan to see if the.efficiency gets improved (Table
26). The real data and the fitted transmitted frequencies of the targeted alleles from
the original and the proposed approaches-were-illustrated in Figure 27 ~ 29.
Comparing the results from Table 26 to.Table 21, we found the relative efficiency of
estimating 7 did get improved when including the data of two populations--Korea

and Taiwan only than including all populations.
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6. Discussions

In the modern society, many families have only one child, so case-parent trios
data are easier to collect than affected sibling pairs data except for some late onset
diseases. Using case-parent trios data, one can estimate the disease susceptibility locus
7 precisely and robustly by the preferential-transmission statistic Y (t) proposed by
Liang et al. (2001b) through the generalized estimating equation approach (GEE,
Liang and Zeger, 1986). But when the number of sample size is small (rare disorder)
or when the preferential-transmission statistic at 7 (empirical C ) is near 0, the
estimation may not be accurate, sometimes it does not converge due to the
heterogeneous genetic effects at 7 even. Most complex diseases are induced by
interactions between multiple genetic and environmental factors, incorporating those
factors into the LD mapping can add more information into the mapping and therefore
is very likely to increase the efficiency in estimating the disease locus. In the present
study, we proposed two multipomnt fihe-mapping methods that incorporate covariates
into the LD fine-mapping approach proposed. by Liang et al. (2001b). The expected
preferential-transmission statistic at = (denoted by C ) is modeled as a parametric
or nonparametric function of covariates, and all the parameters were estimated
through the GEE approach. By testing whether the covariate is associated with the
estimated disease locus, we can explore the underlying genetic mechanism and
etiology of the disease. This information is very helpful on disease preventions and
controls for public health.

Further, we illustrated this approach by applying the proposed methods to real
data of a case-parent trios study of oral cleft and found significant covariate effects on
the locus identified at 4.7 cM on chromosome 4p16 in populations of Korea and
Taiwan. Hence, incorporating covariates associated with the disease did improve the

efficiency in estimating the disease locus. These results showed that the proposed
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approaches can not only help researchers to estimate the disease locus more efficiently,

but also to identify risk factors associated with diseases.
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Table 1. Impact of number of generations on estimating a disease locus

Gene-Environment disease model: C=0.1879

Number of 95% Coverage
Generation (N) T Bias R.E. p P-value  Probability

100 Parametric 0.45+0.044 0.0008 1.56 0.29444+0.0533 <1.0e-6 0.96
Nonparametric 0.45+0.044 0.0005 1.55 0.95
Original 0.45+0.055 -0.0018 0.95
150 Parametric 0.45+0.034 0.0010 1.61 0.2929+0.0551 <1.0e-6 0.96
Nonparametric 0.45+0.035 0.0008 1.50 0.96
Original 0.45+0.043 -0.0021 0.95
200 Parametric 0.45+0.028 0.0012 1.67 0.2918+0.0568 <1.0e-6 0.96
Nonparametric 0.45+0.029 0.0010 1.62 0.96
Original 0.454+0.036 -0.0010 0.95

Threshold disease model: C=0.2744

Number of 95% Coverage
Generation (N) T Bias RIE. B P-value  Probability

100 Parametric 0.45+0.031 -0.0003 1:03 0.4873£0.1802 0.006835 0.96
Nonparametric 0.45+0.032 -0.0003 0.98 0.97
Original 0.45+0.032 -0.0007 0.97
150 Parametric 0.45+0.024 0.0008 1.05 0.4850+0.1831 0.008081 0.98
Nonparametric 0.45+0.025 0.0007 0.99 0.97
Original 0.45+0.025 0.0004 0.97
200 Parametric 0.45+0.021 -0.0002 1.05 0.4838+0.1858 0.009200 0.97
Nonparametric 0.45+0.021 -0.0003 0.98 0.98
Original 0.454+0.021 -0.0004 0.97

Original: without incorporating a covariate

R.E.: Relative efficiency from approaches with a covariate vs. without
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Table 2. Impact of disease allele frequency on estimating a disease locus

Gene-Environment disease model:

95% Coverage

Pr(H-) C T Bias R.E. B P-value Probability
0.05 Parametric 0.1262 0.45+0.044 0.0021 2.18 0.2214+0.0457  0.000001 0.95
Nonparametric 0.45+0.048 0.0026 1.78 0.000091 0.91
Original 0.45+£0.064 -0.0008 0.94
0.1 Parametric 0.1879 0.45+0.034 0.0010 1.61 0.2929+0.0551 <1.0e-6 0.96
Nonparametric 0.45+0.035 0.0008 1.50 0.000003 0.96
Original 0.45+0.043 -0.0021 0.95
0.2 Parametric 0.2331 0.45+0.027 <1.0e-4 1.12 0.3579+0.0794  0.000002 0.96
Nonparametric 0.45+0.028 -0.0002 1.09 0.000008 0.96
Original 0.45+0.030  0.0006 0.97

Threshold disease model:
95% Coverage

Pr(H-) C T Bias R.E. B P-value Probability
0.05 Parametric 0.1683 0.45+0.046 = 0.0004.- 1.09 '0.3565+0.1412 0.011575 0.94
Nonparametric 0.45+0.046 -0.0002 .'1.10 0.94
Original 0.45+0.048  0:0009 0.94
0.1 Parametric 0.2744 0.45+0.024 0.0008 " "1.05 0.4850+0.1831  0.008081 0.98
Nonparametric 0.45+0.025 0.0007 0.99 0.97
Original 0.45+0.025 0.0004 0.97
0.2 Parametric 0.3851 0.45+0.016 -0.0005 1.04 0.6527+0.2972  0.028058 0.99
Nonparametric 0.45+0.016 -0.0005 1.00 0.99
Original 0.45+0.016 -0.0004 0.99

Original: without incorporating a covariate

R.E.: Relative efficiency from approaches with a covariate vs. without
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Table 3. Impact of sample sizes on estimating the disease locus

Gene-Environment disease model:  C=0.1879

Sample Size T Bias R.E. B P-value  95% Coverag Probability

50 Parametric 0.45+0.071  -0.0025 1.37 0.3149+0.1222  0.009969 0.93

Nonparametric 0.45+0.068  -0.0006 1.46 0.89

Original 0.45+0.083  -0.0073 0.91

200 Parametric 0.45+0.034  0.0010 1.61 0.29294+0.0551  <I1.0e-6 0.96

Nonparametric 0.45+0.035  0.0008 1.50 0.96

Original 0.45+0.043  -0.0021 0.95

400 Parametric 0.45+0.022  0.0003 1.63 0.2917+0.037 <1.0e-6 0.97

Nonparametric 0.45+0.023  <1.0e-4 1.59 0.97

Original 0.45+0.028  0.0004 0.97

1000 Parametric 0.45+0.013  -0.0002 1.48 0.2920+0.0251  <I1.0e-6 0.98

Nonparametric 0.45+0.013  -0.0002 _1:53 0.98

Original 0.45+0.016  0.0006 0.97

Threshold disease model: C=0.2744

Sample Size T Bias R.E. B P-value 95% Coverage Probability

50 Parametric 0.45+0.058  0.0008 « 1:15° .0.5187+0.3964  0.190659 0.94

Nonparametric 0.45+0.058  0.0007 "*1.16 0.92

Original 0.45+0.062  -0.0004 0.94

200 Parametric 0.45+0.024  0.0008 1.05 0.4850+0.1831 0.008081 0.98

Nonparametric 0.45+0.025  0.0007 0.99 0.97

Original 0.45+0.025  0.0004 0.97

400 Parametric 0.45+0.017  0.0005 1.04 0.4753+0.1287 0.000222 0.98

Nonparametric 0.45+0.017  0.0005 0.99 0.98

Original 0.45+0.017  0.0007 0.98

1000 Parametric 0.45+0.010  0.0004 1.03 0.4719+0.0806  <I1.0e-6 0.97

Nonparametric 0.45+0.010  0.0004 1.01 0.97

Original 0.45+0.010  0.0003 0.97

Original: without incorporating a covariate

R.E.: Relative efficiency from approaches with a covariate vs. without
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Table 4. Impact of markers’ targeted allele frequencies on estimating a disease locus

Gene-Environment disease model: C=0.1879 Pr(H-)=0.1

Pr(Hy) T Bias R.E. B P-value 95% Coverage Probability

0.1 Parametric 0.45+0.034 0.0010 1.61 0.2929+0.0551 <1.0e-6 0.96

Nonparametric  0.45+0.035 0.0008 1.50 0.96

Original 0.45+0.043 -0.0021 0.95

0.2 Parametric 0.45+0.044 0.0011 1.80 0.2956+0.0627  0.000002 0.96

Nonparametric  0.45+0.043 0.0015 1.88 0.95

Original 0.45+0.060 -0.0015 0.95

0.3 Parametric 0.45+0.054 0.0002 1.90 0.3010+0.0718  0.000027 0.94

Nonparametric  0.45+0.056 -0.0003 1.71 0.93

Original 0.45+0.074 0.0002 0.94

random Parametric 0.45+0.042 0.0012 1.64 0.2942+0.0614  0.000002 0.96

Nonparametric  0.45+0.043 0.0014 1.60 0.94

Original 0.45+0.054 -0.0021 0.93

Threshold disease model: C=0.2744 Pr(H-)=0.1

Pr(Hy) T Bias R.E. B P-value 95% Coverage Probability

0.1 Parametric 0.45+0.024 0.0008 1:05 *"0.4850+0.1831  0.008081 0.98

Nonparametric  0.45+0.025 0.0007 0.99 0.97

Original 0.45+0.025 0.0004 0.97

0.2 Parametric 0.45+0.034 -0.0007 1.09 0.4913+0.2018  0.014905 0.95

Nonparametric  0.45+0.036 -0.0007 1.03 0.96

Original 0.45+0.036 -0.0012 0.96

0.3 Parametric 0.45+0.045 0.0004 1.09 0.4958+0.2170  0.022336 0.94

Nonparametric  0.45+0.047 -0.0003 1.01 0.94

Original 0.45+0.047 0.0003 0.95

random Parametric 0.45+0.032 0.0006 1.06 0.4865+0.1923  0.011391 0.97

Nonparametric  0.45+0.033 0.0014 0.99 0.97

Original 0.45+0.032 0.0004 0.97

Original: without incorporating a covariate

R.E.: Relative efficiency from approaches with a covariate vs. without
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Table 5. Impact of markers’ density on estimating a disease locus (t=0.45 with 10 markers, t=0.475 with

20 markers)

Gene-Environment disease model: C=0.1879
95% Coverage
No. marker T Bias R.E. B P-value Probability
10 Parametric 0.45+0.034 0.0010 1.61 0.2929+0.0551 <1.0e-6 0.96
Nonparametric  0.45+0.035 0.0008 1.50 0.96
Original 0.45+0.043 -0.0021 0.95
20 Parametric 0.475+0.022  -0.0003 1.66 0.2933+0.0495 <1.0e-6 0.96
Nonparametric 0.475+0.022  -0.0004 1.64 0.96
Original 0.476+0.029 0.0010 0.96
Threshold disease model: C=0.2744
95% Coverage
No. marker T Bias_+" R.E. B P-value Probability
10 Parametric 0.45+0.024 0.0008 . 1.05  0.4850+0.1831  0.008081 0.98
Nonparametric  0.45+0.025 0.0007  0.99 0.97
Original 0.45+0.025 0.0004 0.97
20 Parametric 0.475+0.017  -0.0004 ; 1:08' -0.4747+0.1794  0.008132 0.96
Nonparametric 0.475+0.017  -0.0004 .1.05 0.97
Original 0.475+0.018  -0.0004 0.97

Original: without incorporating a covariate

R.E.: Relative efficiency from approaches with a covariate vs. without

52



Table 6. Impact of &£ on estimating a disease locus

Gene-Environment disease model: C=0.1879
95% Coverage
g T Bias R.E. B P-value Probability times
0.01 Parametric 0.45+0.034  0.0007 1.53  0.2934+0.0553 <1.0e-6 0.95 974
Nonparametric 0.45+0.033  0.0011 1.65 0.95 987
Original 0.45+0.042  -0.0020 0.95 959
0.05 Parametric 0.45+0.034  0.0010 1.61 0.2929+0.0551 <1.0e-6 0.96 998
Nonparametric 0.45+0.035  0.0008 1.50 0.96 999
Original 0.45+0.043  -0.0021 0.95 997
0.09 Parametric 0.45+0.041  0.0008 0.99 0.2927+0.0551 <1.0e-6 1.00 963
Nonparametric 0.45+0.038  0.0008 1.56 1.00 827
Original 0.45+0.050 -0.0020 1.00 945
Threshold disease model: C=0.2744
95% Coverage
g T Bias ©~ R.E. B P-value Probability times
0.01 Parametric 0.45+0.024  0.0009 . 1.07»"0:4870+£0.1829  0.007741 0.96 990
Nonparametric 0.45+0.025  0.0009 098 0.97 993
Original 0.45+0.024  0.0005 0.96 989
0.05 Parametric 0.45+0.024  0.0008 1.05 0.4850+0.1831  0.008081 0.98 1000
Nonparametric 0.45+0.025  0.0007 0.99 0.97 1000
Original 0.45+0.025  0.0004 0.97 1000
0.09 Parametric 0.45+0.025 0.0006 1.05 0.4846+0.1828  0.008035 1.00 990
Nonparametric 0.45+0.025  0.0005 1.00 1.00 876
Original 0.45+0.025  0.0004 1.00 983

Original: without incorporating a covariate

R.E.: Relative efficiency from approaches with a covariate vs. without
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Table 7. Impact of S, (the risk of referent population) on estimating a disease locus

Gene-Environment disease model:

95% Coverage

Betal C T Bias R.E. B P-value Probability
In(0.001) Parametric 0.1986  0.45+0.032  0.0006 1.43  0.2974+0.0551 <1.0e-6 0.96
Nonparametric 0.45+0.034  0.0005 1.31 0.95
Original 0.45+0.038  0.0005 0.96
In(0.01) Parametric 0.1879  0.45+£0.034 0.0010 1.61 0.2929+0.0551 <1.0e-6 0.96
Nonparametric 0.45+0.035  0.0008 1.50 0.96
Original 0.45+£0.043  -0.0021 0.95
In(0.1) Parametric 0.1343  0.45+0.041 -0.0002 2.27 0.27434£0.0540 <1.0e-6 0.96
Nonparametric 0.45+0.044 0.0014 1.96 0.93
Original 0.45+0.062  0.0007 0.95

Original: without incorporating a covariate

R.E.: Relative efficiency from approaches with a covariate vs. without

Table 8. Impact of S, and f, (genetic effect) on estimating a disease locus

Gene-Environment disease model:

95% Coverage

Betal,Beta2 C T Bias ""R.E. B P-value Probability
In(9),In(5) Parametric 0.1879 0.45+0.034 0.0010 1.61 0.2929+0.0551 <1.0e-6 0.96
Nonparametric 0.45+0.035 0.0008 1.50 0.96
Original 0.45+0.043 -0.0021 0.95
In(29),In(15) Parametric 0.3031 0.45+0.022 0.0006 1.10 0.2775+0.0582  0.000002 0.97
Nonparametric 0.45+0.023  0.0007 1.01 0.97
Original 0.45+0.023  0.0004 0.98
In(49),In(25) Parametric 0.3375 0.45+0.019 0.006 1.09 0.2542+0.0607 <1.0e-6 0.96
Nonparametric 0.45+0.020 0.0008 1.03 0.93
Original 0.45+0.020  0.0005 0.95

Original: without incorporating a covariate

R.E.: Relative efficiency from approaches with a covariate vs. without
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Table 9. Impact of S, (environment effect) on estimating a disease locus

Gene-Environment disease model:

95% Coverage

Beta3 C T Bias R.E. B P-value Probability
In(2) Parametric 0.1879  0.45+0.034  0.0010 1.61 0.2929+0.0551 <1.0e-6 0.96
Nonparametric 0.45+0.035  0.0008 1.50 0.96
Original 0.45+0.043  -0.0021 0.95
In(5) Parametric 0.1472  0.45+£0.039 -0.0019 2.06 0.2808+0.0555 <1.0e-6 0.95
Nonparametric 0.45+0.041 -0.0018 1.89 0.94
Original 0.45+0.056  0.0014 0.94
In(10) Parametric 0.1059  0.45+0.045 -0.0001 2.70 0.2642+0.0528 0.000001 0.95
Nonparametric 0.45+0.050  0.0006 2.16 0.92
Original 0.45+0.074  0.0037 0.93

Original: without incorporating a covariate

R.E.: Relative efficiency from approaches with a covariate vs. without

55



Table 10. Impact of the additive genetic effect “a” on estimating a disease locus

Gene-Environment disease model: C=0.1879
95% Coverage
a T Bias R.E. B P-value Probability
1 Parametric 0.45+0.034 0.0010  1.61 0.2929+0.0551 <1.0e-6 0.96
Nonparametric 0.45+0.035 0.0008 1.50 0.96
Original 0.45+0.043 -0.0021 0.95
5 Parametric 0.45+0.024 0.0007  3.18  0.21324+0.0215 <1.0e-6 0.97
Nonparametric 0.45+0.024 0.0006  3.16 0.97
10 Parametric 0.45+0.023 0.0004 3.53  0.1156+0.0105 0.000001 0.95
Nonparametric 0.45+0.024 0.0005  3.21 0.92
Threshold disease model:
95% Coverage
a C T Bias. R.E. B P-value  Probability
0.5 Parametric 0.1217  0.45+0.064 -0.0021"1:.12 0.2143+0.1809 0.236275 0.93
Nonparametric 0.45+0.063 -0:0029 :1.14 0.90
Original 0.45+0.067 -0.0023 0.94
1 Parametric 0.2744  0.45+0.024 ".0.0008- 1.05: 0.4850+0.1831 0.008081 0.98
Nonparametric 0.45+02025"+0.0007 0.99 0.97
Original 0.45+0.025 0:0004 0.97
1(d=0.5) Parametric 0.3529  0.45+0.019 0.0003 1.02 0.3000+0.1622 0.064350 0.98
Nonparametric 0.45+0.020 0.0002 0.94 0.99
Original 0.45+0.019 0.0003 0.98
2 Parametric 0.4672 0.45+0.014 0.0003 0.97 0.5727+0.1418 0.000054 0.99
Nonparametric 0.45+0.014 0.0003 0.98 0.99
Original 0.45+0.014 0.0002 0.99

Original: without incorporating a covariate
R.E.: Relative efficiency from approaches with a covariate vs. without
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Table 11. Impact of prevalence rates on estimating a disease locus

Threshold disease model:

95% Coverage

prevalence C T Bias R.E. B P-value Probability

0.01 Parametric 0.4072 0.45+0.017 0.0003 1.01 0.5532+0.2485  0.025994 0.98
Nonparametric 0.45+0.017 0.0004 0.95 0.98

Original 0.45+0.017 0.0004 0.98

0.05 Parametric 0.2744 0.45+0.024 0.0008 1.05 0.4850+0.1831  0.008081 0.98
Nonparametric 0.45+0.025 0.0007 0.99 0.97

Original 0.45+0.025 0.0004 0.97

0.1 Parametric 0.2117 0.45+0.035 0.0011 1.11 0.4339+0.1548  0.005060 0.96
Nonparametric 0.45+0.036 0.0016 1.03 0.97

Original 0.45+0.037 0.0005 0.95

Original: without incorporating a covariate
R.E.: Relative efficiency from approaches with a covariate vs. without

Table 12. Fixed penetrance disease model

95% Coverage

0,f1,12 P(H-) C % Bias - R.E. B P-value Probability
0.67,0.05,0.007 0.05 Parametric 0.2678 0.45+0.023—-0.0005" 1.28 0.3701+0.0501 <1.0e-6 0.99
Nonparametric 0.45£0.023  0.0006 1.36 0.97
Original 0.45+0.026 7" 0.0006 0.98
0.67,0.05,0.007 0.1 Parametric 0.4241 0.45+0.015 -0.0005 1.12  0.5200+0.0690 <1.0e-6 0.98
Nonparametric 0.45+0.015 -0.0005 1.14 0.98
Original 0.45+0.016  -0.0002 0.98
0.95,0.9,0.01 0.05 Parametric 0.4157 0.45+0.016 -0.0007 1.01 0.1388+0.0537  0.009811 0.97
Nonparametric 0.45+0.017 -0.0009 0.93 0.98
Original 0.45+0.016  -0.0008 0.97
0.95,0.9,0.01 0.1 Parametric 0.4039 0.45+0.028 -0.0001 1.02 0.1235+0.0635  0.051736 0.98
Nonparametric 0.45+0.029 <1.0e-4 0.97 0.98
Original 0.45+0.036  -0.0001 0.98

Original: without incorporating a covariate

R.E.: Relative efficiency from approaches with a covariate vs. without
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Table 13. Impact of the QTL’s position on estimating a disease locus

Gene-Environment disease

model: C=0.1879 Additive model
95% Coverage
Covariate T Bias R.E. B P-value  Probability

0.45(tau) Parametric 0.45+0.034 0.0010 1.61  0.2929+0.0551 <1.0e-6 0.96
Nonparametric 0.45+0.035 0.0008 1.50 0.96
Original 0.45+0.043 -0.0021 0.95
0.5cM Parametric 0.46+0.026 0.0129 2.62  0.2804+0.0578  0.000001 0.97
Nonparametric 0.46+0.026 0.0137 2.63 0.92
0.7cM Parametric 0.48+0.042 0.0297 1.04 0.2071+0.0517  0.000063 0.85
Nonparametric 0.48+0.043 0.0250 0.97 0.91
0.9cM Parametric 0.48+0.054 0.0279 0.61 0.1518+0.0489  0.001891 0.93
Nonparametric 0.47+0.048 0.0195 0.80 0.92
1.1cM Parametric 0.46+0.045 0.0076:1:10.88  0.1147+0.0503  0.022595 0.95
Nonparametric 0.46+0.042 .+0.0070, _1.03 0.93
1.3cM Parametric 0.45+0.040 -0.0006.“1.11- ' 0.0840+0.0543  0.122233 0.96
Nonparametric 0.45+0.042 " -0.0002__1.05 0.95
unlinked Parametric 0.45+0.041 -0.0026-+ 1.10 -0.0014+0.0520  0.979139 0.95
Nonparametric 0.45+0.039 -0.0035 1.17 0.96

Dominant:
0.5cM Parametric 0.47£0.020 0.0156 4.62 0.3161+0.0522 <1.0e-6 0.96
Nonparametric 0.47+0.021 0.0164 3.95 0.95
0.7cM Parametric 0.49+£0.039 0.0425 1.17 0.2314+0.0436  0.000063 0.85
Nonparametric 0.49+0.043 0.0391 1.00 0.91

Recessive:
0.5cM Parametric 0.46+0.036  0.0057 1.43  0.1408+0.0584  0.015895 0.96
Nonparametric 0.46+0.031 0.0092 1.94 0.90
0.7cM Parametric 0.46+0.043 0.0073 0.98  0.0954+0.0581  0.100280 0.94
Nonparametric  0.46+0.042 0.0106 1.02 0.92

Original: without incorporating a covariate

R.E.: Relative efficiency from approaches with a covariate vs. without

QTL: quantitative trait locus, the quantitative trait refers to the covariate incorporated
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Table 14. Impact of the QTL’s position on estimating a disease locus

Threshold disease model: C=0.2744 Additive model
95% Coverage
Covariate T Bias R.E. B P-value Probability

0.45(7) Parametric 0.45+0.024 0.0008 1.05 0.4850+0.1831  0.008081 0.98
Nonparametric 0.45+0.025 0.0007 0.99 0.97
Original 0.45+0.025 0.0004 1.00 0.97
0.5cM Parametric 0.46+0.020 0.0088 1.48  0.3194+0.620 <1.0e-6 0.97
Nonparametric 0.46+0.020 0.0096 1.47 0.95
0.7cM Parametric 0.47+0.028 0.0163 0.80 0.2407+0.0583  0.000036 0.91
Nonparametric 0.46+£0.028 0.0143 0.81 0.93
0.9cM Parametric 0.46+0.029 0.0137 0.71 0.1782+0.0568  0.001705 0.95
Nonparametric 0.46+0.028 0.0109 0.77 0.95
1.1cM Parametric 0.45+0.026  0.0046 0.91 0.1393+0.0553  0.011720 0.98
Nonparametric 0.45+0.025 0:0045 0.97 0.97
1.3cM Parametric 0.45+0.025 _0.0016"0.99- ' 0.1042+0.0576  0.070589 0.98
Nonparametric 0.45+0.026. 0.0014 0.93 0.97
unlinked Parametric 0.45+0.025 +,0.0001 0.97 " 0.0012+0.025 0.983060 0.97
Nonparametric 0.45+0.026 -0.0001"0.94 0.98

Dominant:
0.5cM Parametric 0.46+0.018 0.0097 1.85 0.3358+0.0600 <1.0e-6 0.96
Nonparametric 0.46£0.020 0.0106 1.51 0.97
0.7cM Parametric 0.47+0.027 0.0226 0.82 0.2504+0.0514  0.000001 0.86
Nonparametric 0.47+0.029 0.0205 0.75 0.92

Recessive:
0.5cM Parametric 0.46+0.024 0.0056 1.11 0.2051+0.0573  0.000340 0.98
Nonparametric 0.46+0.027 0.0075 0.86 0.93
0.7cM Parametric 0.46+0.027 0.0061 0.84 0.1430+0.0604  0.017877 0.96
Nonparametric  0.46+£0.026  0.0078 0.89 0.94

Original: without incorporating a covariate
R.E.: Relative efficiency from approaches with a covariate vs. without
QTL: quantitative trait locus, the quantitative trait refers to the covariate incorporated
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Table 15. Impact of the QTL’s position and genetic models of the quantitative trait on estimating a
disease locus

Gene-Environment disease

model: C=0.1744 Dominant model
95% Coverage

Covariate T Bias R.E. B P-value Probability
Dominant  Parametric 0.45+0.030 0.0014 2.42  0.3283+0.0468 <1.0e-6 0.94
0.45(z) Nonparametric 0.45+0.034 0.0015 1.89 0.97
Original 0.45+0.046 -0.0013 0.95
Dominant  Parametric 0.47+0.020 0.0167 5.17  0.3051+0.0502 <1.0e-6 0.97
0.5cM  Nonparametric 0.47+0.022 0.0171 4.30 0.92
Additive Parametric 0.46+0.027 0.0136 3.02  0.2610+0.0574  0.000005 0.96
0.5cM  Nonparametric 0.46+0.027 0.0143 2.89 0.93
Recessive Parametric 0.46+0.038 0.0056 1.47  0.1105+£0.0597  0.064213 0.96
0.5cM  Nonparametric 0.46+0.034 0.0094 1.87 0.91

Original: without incorporating a covariate
R.E.: Relative efficiency from approaches with a covariate vs. without
QTL: quantitative trait locus, the quantitative trait refers toithe covariate incorporated

Table 16. Impact of the QTL’s position and genetic models of the quantitative trait on estimating a
disease locus (with an underlying recessive model)

Gene-Environment disease

model: C=0.1910 Recessive model
95% Coverage

Covariate T Bias R.E. B P-value  Probability
Recessive Parametric 0.45+0.028 0.0022 2.08 0.3972+0.0533 <1.0e-6 0.98
0.45(r) Nonparametric 0.45+£0.024 0.0017 2.75 0.97
without covariate 0.45+0.040 0.0012 0.96
Recessive Parametric 0.46+0.026 0.0076 2.42 0.3727+0.0586 <1.0e-6 0.98
0.5cM Nonparametric 0.46+£0.022 0.0079 3.37 0.94
Additive Parametric 0.46+0.020 0.0127 3.83  0.4411+0..0627 <1.0e-6 0.97
0.5cM Nonparametric 0.46+0.019 0.0122 4.41 0.93
Dominant Parametric 0.47+£0.018 0.0156 5.19 0.4379+0.0670 <1.0e-6 0.95
0.5cM Nonparametric  0.47+£0.018 0.0153 4.85 0.93

Original: without incorporating a covariate
R.E.: Relative efficiency from approaches with a covariate vs. without
QTL: quantitative trait locus, the quantitative trait refers to the covariate incorporated
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Table 17. Impact of the QTL’s position and genetic models of the quantitative trait on estimating a
disease locus (with an underlying dominant model)

Threshold disease model: C=0.3951 Dominant model
95%
Coverage

Covariate T Bias R.E. B P-value Probability
Dominant Parametric 0.45+0.017 0.0004 1.00 0.1057+0.1305 0.417662 0.98
0.45(z) Nonparametric 0.45+0.018 0.0005 0.94 0.98
Original 0.45+0.017 0.0003 0.98
Dominant Parametric 0.45+0.016 0.0022 1.12 0.1287+0.0620 0.037859 0.98
0.5cM Nonparametric 0.45+0.017 0.0040 0.97 0.98
Additive Parametric 0.45+0.016  0.0024 1.10 0.1359+0.0603 0.024182 0.98
0.5cM Nonparametric 0.45+0.017 0.0035 1.04 0.97
Recessive Parametric 0.45+0.016  0.0021 1.07 0.109240.0520 0.035712 0.98
0.5cM Nonparametric 0.45+0.016 0.0042 1.13 0.95

Original: without incorporating a covariate
R.E.: Relative efficiency from approaches with a covariate vs, without
QTL: quantitative trait locus, the quantitative trait refers to'the covariate incorporated

Table 18. Impact of the QTL’s position and genetic models of the quantitative trait on estimating a
disease locus (with an underlying recessive threshold model)
Gene-Environment disease

model: C=0.1031 Recessive model
95%
Coverage

Covariate T Bias R.E. B P-value Probability
Recessive Parametric 0.45+0.062 0.0003 1.81 0.5633+0.1777 0.001527 0.95
0.45(z) Nonparametric 0.45+0.056 0.0017 2.19 091
Original 0.45+0.083 0.0044 0.92
Recessive Parametric 0.46+0.043 0.0077  3.68 0.2809+0.0574 0.000001 0.97
0.5cM  Nonparametric 0.46+0.033 0.0090 6.23 0.91
Additive Parametric 0.47+0.026 0.0181 10.12 0.3588+0.0589 <1.0e-6 0.97
0.5cM Nonparametric 0.47+£0.026 0.0170 10.27 0.87
Dominant Parametric 0.47+0.020 0.0230 17.82 0.3620+0.0583 <1.0e-6 0.91
0.5cM Nonparametric  0.47+£0.021 0.0221 15.56 0.86

Original: without incorporating a covariate
R.E.: Relative efficiency from approaches with a covariate vs. without
QTL: quantitative trait locus, the quantitative trait refers to the covariate incorporated
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Table 19. Impact of the genotype 7 on estimating £
Gene-Environment disease model: C=0.1879 N=150

7(0.45¢cM) parametric 0.5cM parametric 0.7cM parametric 0.9cM parametric unlinked parametric
T 0.4503 0.4510 0.4509 0.4629 0.4517 0.4797  0.4515 0.4779 0.4510 0.4474
S.E.(7) 0.0233 0.0335 0.0221 0.0263 0.0226 0.0417  0.0228 0.0544 0.0230 0.0405
N 143.4489  158.6520 144.9560 187.0526 143.2264 154.3638 141.4642 130.4114 142.9235 163.4912
S.E.(N) 25.2158 33.8415  26.1238 37.3240  25.7249 33.0865 26.0691 38.8114  25.6668 31.5500
C 0.1969 0.2059 0.1967 0.2164 0.1960 0.2042  0.1953 0.1966 0.1965 0.2073
S.E.(C) 0.0284 0.0307 0.0281 0.0303 0.0281 0.0292  0.0281 0.0294 0.0291 0.0324
a -0.2237 0.5523 -0.2034 0.5470 -0.1984  0.5157  -0.1994  0.4856 -0.2274 0.4216
S.E.(a) 0.0765 0.0708 0.0658 0.0682 0.0648 0.0669  0.0651 0.0663 0.0611 0.0682
B 0.0014 0.2929 0.0294 0.2804 0.0348 0.2071 0.0328 0.1518 0.0029 -0.0014
S.E.(B) 0.0457 0.0551 0.0413 0.0578 0.0392 0.0517  0.0374  0.0489 0.0379 0.0520
P-value(p) 0.976083 <1.0e-6  0.476265 0.000001 0.373807 0.000063 0.379500 0.001891 0.938493 0.979139
p1 1.1764 1.1596 1.1579 1.1598 1.1760
S.E.(B1) 0.1388 0.1318 0.1313 0.1318 0.1236
P-value(p1) <1.0e-6 <1.0e-6 <1.0e-6 <1.0e-6 <1.0e-6
B2 1.1685 1.1549 1.1532 1.1552 1.1792
S.E.(B2) 0.1334 0.1308 0.1302 0.1309 0.1295
P-value(p2) <1.0e-6 <1.0e-6 <1.0e-6 <1.0e-6 <1.0e-6
95% Coverage 0.98 0.96 0.98 0.97 0.98 0.85 0.98 0.93 0.97 0.95
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Table 20. The proportions of each covariates’ category for probands recruited from four populations from the oral cleft study

Korea Maryland Singapore Taiwan Total

Gender (Male) 57% 55% 55% 59% 57%
Affected father (Y) 0% 2% 0% 1% 1%
Affected mother (Y) 0% 3% 0% 0% 1%
Mother Smoking (Y*) 0% 24% 8% 4% 10%
Mother Drinking (Y*) 2% 16% 5% 3% 7%

Vitamin 10% 81%
Total 42 103 66 172 (104%) 383 (315%)
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Table 21. Incorporating different covariates for four combined populations (Korea, Maryland, Singapore, and Taiwan) from the

non-syndromic oral cleft study

Covariate Method T S.E. R.E. N S.E. C B P-value
Sample Size: 383
Original 4.706  0.0022 7122.33  3466.80 0.1065
POPULATION parametric 4.707  0.0009 5.63 12966.68 3519.34 0.1633 1.1258 0.999993 Korea
0.4228 0.999997 Maryland
0.0558  1.000000 Singapore
0.5153  0.999996  Taiwan
GENDER parametric 4.707 0.0022 1.00 7119.21  3481.56 0.1066 0.0357 0.801413
nonparametric 4707 0.0019 139 8702:04. 2437.74 0.1270
CLP(mother) parametric 4706  0.0022 2097 + 6951.74 @ .3438.09 0.1043 -0.1745 0.463335
nonparametric 4707 0.0019 = 1.40 8782:35"  2457.90 0.1276
CLP(father) parametric 4.707  0.002 = .1.21"-7856.95 3509.16 0.1145 -0.1473 0.903556
nonparametric 4708 0.0014 "2.60+ 13277.77 + 4476.98 0.1558
Sample Size: 315
Original 4.704 0.0038 4620.77  3912.21 0.0765
SMOKE parametric 4704 0.0037 1.10 461041 3922.03 0.0763 -0.0565 0.744450
nonparametric 4704 0.0039 098 4318.15 1911.41 0.0752
DRINK parametric 4704 0.0039 099 4620.75 3910.38 0.0765 0.0030 0.985917

Original: without incorporating a covariate

R.E.: Relative efficiency from approaches with a covariate vs. without

64



Table 22. Incorporating different covariates for Korean population from the non-syndromic oral cleft study

Covariate Method T S.E. R.E. N S.E. C B P-value
Sample Size: 42
Original 4.708  0.0012 12458.35 4095 0.4523
GENDER parametric 4.708  0.0012 1.04 12608.6  4283.49 0.4563 0.2479 0.710034
nonparametric 4708 0.0011 1.15 12327.15 32483  0.4437
DRINK parametric 4.708  0.0012 1.01 12592.79  4149.29 0456 -0.2123 0.505898

nonparametric 4708 0.0011 1.13 12931.6  3293.52 0.4537

Original: without incorporating a covariate

R.E.: Relative efficiency from approaches with a covariate vs. without

Table 23. Incorporating different covariates for population in Maryland from the non-syndromic oral cleft study

Covariate Method T S.E. R.E. N S.E. C B P-value
Sample Size: 103

Original 4.663 0.0025 8285.22  3493.80  0.2830

GENDER parametric 4.664 0.0026 0.89 8434.68  3390.84 0.2794 03610  0.373772
nonparametric 4.663 0.0017 2.10 9463.42 302097 0.3254

SMOKE parametric 4.663 0.0028 0.79 6929.11 3390.84 0.2450 -0.4348  1.000000
nonparametric 4.662 0.0018 1.94 8967.58 302097 0.3218

DRINK parametric 4.663 0.0025 0.97 8513.10  3612.09 0.2890 0.1531  0.800657
nonparametric 4.663 0.0017 2.07 9770.79  3037.28 0.3355

VATAMIN parametric 4.663 0.0026 0.87 8094.21 3419.44 0.2778 -0.1636  1.000000

nonparametric 4.662 0.0018 1.88 9594.13  2991.27 0.3328

Original: without incorporating a covariate

R.E.: Relative efficiency from approaches with a covariate vs. without
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Table 24. Incorporating different covariates for Singaporean population from the non-syndromic oral cleft study

Covariate Method T S.E. R.E. N S.E. C B P-value
Sample Size: 66
Original 4.727 0.0104 4487.01  1794.17  0.1295
GENDER parametric 4.727 0.0114 0.84  3464.61 1868.28 0.2087 0.5249  0.204076
nonparametric 4.725 0.0065 2.61 4890.88  1211.29  0.2885

Original: without incorporating a covariate

R.E.: Relative efficiency from approaches with a covariate vs. without

Table 25. Incorporating different covariates for Taiwanese population from the non-syndromic oral cleft study

Covariate Method T S.E. R.E. N S.E. C p P-value
Sample Size: 172
Original 4.709 0.0039 7505.51% 38569  0.1351
GENDER parametric 4.708 0.0031 1.62°__7787.1F 362849 0.1391 -0.1017 1.000000
nonparametric 4.708 0.0021 353 8299.81 214792 0.1527
Sample Size: 104
Original 4.712 0.0086 3813.78  2618.17  0.0955
DRINK parametric 4.712 0.0082 1.09  3853.75 2689.63 0.0961 -0.0599 1.000000
nonparametric 4.711 0.0049 3.07 4545.06 156935 0.1104

Original: without incorporating a covariate

R.E.: Relative efficiency from approaches with a covariate vs. without
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Table 26. Incorporating different covariates for Korean and Taiwanese population from the non-syndromic oral cleft study

Covariate Method T S.E. R.E. N S.E. C B P-value
Sample Size: 214
Original 4.708 0.0014 10822.54 3198.38 0.2160
GENDER parametric 4.708 0.0014 1.05 10750.36 3116.72 0.2147  -0.0728 1.000000
nonparametric 4.708 0.0012 1.41 11091.76 2412.58 0.2229
Sample Size: 146
Original 4.707 0.0022 7802.33 2936.51 0.1836
SMOKE parametric 4.708 0.0023 0.91 7708.71 2883.37 0.1821 0.1182 0.754960
nonparametric 4.707 0.0016 1.87 8724.44 1812.26 0.2114
DRINK parametric 4.707 0.0019 1.36 8257.80 2908.89 0.1921  -0.2149 1.000000
nonparametric 4.707 0.0015 2.17 9078.12 1824.40 0.2117

Original: without incorporating a covariate

R.E.: Relative efficiency from approaches with a covariate vs. without
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Figure 7. True, observed and fitted curves by the original approach, the proposed parametric approach and

the proposed nonparametric approach
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Figure 8. The transmitted statistic from 2.7 ¢cM to 175 ¢cM on chromosome 4p16 from oral clefts data (Sull et al.
2008)

68



All
— — Korea

Maryland
-—- Singapore

Taiwan

0g’0

T
ra

T T T
0co0 STO 0T'0

9a||e pajabie) jo Aouanbay papiwsuen

S00

000

position(cM)

Figure 9. The transmitted statistic from 3 ¢cM to 7 ¢cM on chromosome 4p16 from oral clefts data (Sull et al.

2008)

All
— — Korea

Maryland
-—- Singapore

Taiwan

0g’0

T
ra

T T T
0c0 STO 0T'0

93| pajabire) jo Aouanbay papiwsuen

S00

6.0

55

5.0

4.5

4.0

position(cM)

Figure 10. The transmitted statistic from 4 cM to 6 ¢cM on chromosome 4p16 from oral clefts data (Sull et al.

2008)
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Figure 11. The transmitted statistic from 4.5 ¢cM to 5 cM on chromosome 4p16 from oral clefts data (Sull et al.

2008)
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Figure 12. The transmitted statistic from 4.65 ¢cM to 4.75 ¢cM on chromosome 4p16 from oral clefts data (Sull
et al. 2008)
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Figure 13. Comparisons of three approaches by incorporating gender into the LD mapping
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Figure 14. Comparisons of three approaches by incorporating affected father into the LD mapping
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Figure 15. Comparisons of three approaches by incorporating affected mother into the LD mapping
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Figure 16. Comparisons of three approaches by incorporating smoking into the LD mapping
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Combined Four Populations
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Figure 17. Comparisons of differences in incorporating population types or drinking in the parametric

approach
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Figure 18. Comparisons of three approaches by incorporating gender into the LD mapping
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Figure 19. Comparisons of three approaches by incorporating drinking into the LD mapping
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Figure 20. Comparisons of three approaches by incorporating gender into the LD mapping
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Figure 21. Comparisons of three approaches by incorporating smoking into the LD mapping
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Figure 22. Comparisons of three approaches by incorporating drinking into the LD mapping
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Figure 23. Comparisons of three approaches by incorporating vitamin into the LD mapping
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Figure 24. Comparisons of three approaches by incorporating gender into the LD mapping
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Figure 25. Comparisons of three approaches by incorporating gender into the LD mapping
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Figure 26. Comparisons of three approaches by incorporating drinking into the LD mapping
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Korea and Taiwan
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Figure 27. Comparisons of three approaches by incorporating gender into the LD mapping
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Figure 28. Comparisons of three approaches by incorporating smoking into the LD mapping
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Figure 29. Comparisons of three approaches by incorporating drinking into the LD mapping
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