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ABSTRACT

There are increasing evidences that genome-wide association (GWA) studies represent
a powerful approach to the identification of genes involved in common human diseases [1].
Many studies had successfully performed the GWA study to identify novel susceptible loci.
However, there is a lack of agreement about what constitutes an adequate analytic procedure.
In this study, we review existing -genome-wide association studies to identify such a
procedure and implement the built procedure to.real datasets from the Wellcome Trust
case-control Consortium. Our procedure includes four steps: data management, preliminary
analysis, association testing and result visualization. In order to get the true association
between disease and SNP, we execute 2 preliminary processes, the quality control (QC) and
population stratification. Furthermore, we can plot the quantile-quantile (Q-Q) plot and
Manhattan plot to visualize association analysis results. At the end of the study, we have
successfully (1) identified the necessary and important analyses for GWA, (2) identified
currently available software for these analyses, (3) performed the analysis on the Wellcome
Trust case-control Consortium data, and (4) provided general guidelines for performing
GWA.
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1 Introduction

In genetic epidemiology, a genome-wide association study (GWAS) is an examination
of genetic variation across the human genome, designed to identify genetic associations
with observable traits, or why some people get a disease or condition. There is increasing
evidence that genome-wide association (GWA) studies represent a powerful approach to the
identification of genes involved in common human diseases. If genetic variations are more
frequent in people with the disease, the variations are said to be "associated" with the
disease. The associated genetic variations are then considered pointers to the region of the
human genome where the disease-causing problem resides. We attempt to construct a
standard GWA path flow for those who want to make a GWA study analysis.

By reviewing a series of literatures (The Wellcome Trust Case Control Consortium
(2007), Douglas F. Easton, et al (2007), Diabetes<Genetics Initiative of Broad Institute of
Harvard and MIT, Lund University,-and Novartis Institutés of BioMedical Research: Richa
Saxena, et al (2007)), we identify four main procedures for performing a GWA study; they
are data management, preliminary analysis, association testing, and result visualization.
After the recruitment, these individual will be hybridized to the Affymetrix 500K chip. For
the chip, we can use a standard genotyping algorithm, BRLMM, developed by Affymetrix,
to call the genotype from the chip. Another calling algorithm, CHIAMO, developed by
Wellcome Trust Case Control Consortium (WTCCC), a collaboration of 24 leading human
geneticists, who will analyze thousands of DNA samples from patients suffering with
different diseases to identify common genetic variations for each condition, is applied to
simultaneously call the genotypes from all individuals. Cross-platform comparison showed
CHIAMO to outperform BRLMM by having an error rate under 0.2%, and comparison of
108 duplicate genotypes in WTCCC study data gave a discordance rate of 0.12%. So our

data is called by CHIAMO. We take data from WTCCC and convert them by a c++ program



to our analysis file format.

For a case-control GWA study, there are two parts for the preliminary process before
tests of association. First part is quality control (QC), and the second part is population
stratification. For quality control, it can raise the DNA quality and reduce contamination.
For population stratification, since some relatedness among samples may be cryptic, we
may identify and exclude individuals whose GWA data reveal substantial differences in
genetic background, and adjust for residual stratification. After preprocessing, data will be
robust and reliable for the tests of association. With this, we can eventually find the true
relatedness between SNPs and disease. For quality control, it contains Single Nucleotide
Polymorphism (SNPs) call rate, sample call rate, minor allele frequency (M.A.F.) for SNPs,
Hardy-Weinberg equilibrium for SNPs, heterozygosity for individuals, and cryptic
relatedness for individuals. For population stratification, multidimensional scaling (MDS)
and genome control (GC) are used-to identify and exclude individuals whose GWA data
reveal substantial differences in genctic background, and adjust for residual stratification.

After quality control and population stratification, we take serial tests of association.
We take allele-count test and genotype-count test for single SNP and haplotype-based test
for multiple SNPs. We can verify our results by previously robustly replicated loci. In
addition to show our results by tables, we can make a visualization display for plotting the
quantile-quantile (Q-Q) plot and Genome-wide Manhattan plots to see the pattern.

We use a real data, which is collected by WTCCC, to complement the 4 step procedure.

This data is collect to study the association between SNP and CAD disease.



2 Literature Review

2.1 Background of genome-wide association study (GWAS)

(http://en.wikipedia.org/wiki/Genome-wide_association_study)

In genetic epidemiology, a genome-wide association study (GWAS) is an examination
of genetic variation across the human genome, designed to identify genetic associations
with observable traits, such as blood pressure or weight, or why some people get a disease
or condition.

The completion of the Human Genome Project in 2003 made it possible to find the
genetic contributions to common diseases and analyze whole-genome samples for genetic
variations that contribute to their onset.

These studies require two groups of participants: people with the disease and similar
people without. After obtaining samples frommeach. participant, the set of markers such as
SNPs are scanned into computers.:The computers sury€y each participant's genome for
markers of genetic variation.

If genetic variations are more frequent in people with the disease, the variations are said
to be "associated" with the disease. The associated genetic variations are then considered

pointers to the region of the human genome where the disease-causing problem resides.

2.1.1  Single nucleotide polymorphism (SNP)

(http://en.wikipedia.org/wiki/Single nucleotide polymorphism)

A single nucleotide polymorphism (SNP) is a DNA
sequence variation occurring when a single nucleotide - A, T, C,
or G - in the genome (or other shared sequence) differs between

members of a species (or between paired chromosomes in an

individual). For example, two sequenced DNA fragments from


http://en.wikipedia.org/wiki/Genome-wide_association_study
http://en.wikipedia.org/wiki/Single_nucleotide_polymorphism

different individuals, AAGCCTA to AAGCTTA, contain a difference in a single nucleotide.
In this case we say that there are two alleles: C and T. Almost all common SNPs have only
two alleles. For a variation to be considered a SNP, it must occur in at least 1% of the
population.

Variations in the DNA sequences of humans can affect how humans develop diseases
and respond to pathogens, chemicals, drugs, etc. Technologies from Affymetrix and
[llumina allow for genotyping hundreds of thousands of SNPs for typically under $1,000.00

in a couple of days.

2.1.2  Analysis Software- PLINK, R, and Haploview

PLINK (http://pngu.mgh.harvard.edu/~purcell/plink/index.shtml)

PLINK is a free, open-source whole genome association analysis toolset, designed to
perform a range of basic, large-scale-analyses in a computationally efficient manner.

The focus of PLINK is purely ‘on analysis-of genotype/phenotype data, so there is no
support for steps prior to this (e.g. study design and planning, generating genotype calls
from raw data).

PLINK (one syllable) is being developed by Shaun Purcell at the Center for Human
Genetic Research (CHGR), Massachusetts General Hospital (MGH), and the Broad Institute

of Harvard & MIT, with the support of others.

HaploView (http://www.broad.mit.edu/mpg/haploview/)

Haploview is designed to simplify and expedite the process of haplotype analysis by
providing a common interface to several tasks relating to such analyses. Haploview
currently supports the following functionalities:

® LD & haplotype block analysis
® haplotype population frequency estimation

4
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® single SNP and haplotype association tests

® permutation testing for association significance

® implementation of Paul de Bakker's Tagger tag SNP selection algorithm.

® automatic download of phased genotype data from HapMap

® visualization and plotting of PLINK whole genome association results including

advanced filtering options
Haploview is fully compatible with data dumps from the HapMap project and the

Perlegen Genotype Browser. It can analyze thousands of SNPs (tens of thousands in

command line mode) in thousands of individuals.

R (http://www.r-project.org/)

R is a free software environment for statistical computing and graphics. It compiles
and runs on a wide variety of UNIX platforms, Windows and MacOS. It is convenient for

statistic analysis with R. It contains distributions,.tests, plets and other about statistic.

2.2 Wellcome Trust Case Control Consortium (WTCCC)

(http://www.wtccc.org.uk/)

The Wellcome Trust Case Control Consortium (WTCCC) is a collaboration of 24
leading human geneticists, who will analyze thousands of DNA samples from patients
suffering with different diseases to identify common genetic variations for each condition. It
is hoped that by identifying these genetic signposts, researchers will be able to understand
which people are most at risk, and also produce more effective treatments.

The WTCCC has now searched for the genetic variation associated with tuberculosis,
coronary heart disease, type 1 diabetes, type 2 diabetes, rheumatoid arthritis, Crohn's
disease, bipolar disorder and hypertension. The research was conducted at a number of
institutes throughout the UK, including the Wellcome Trust Sanger Institute, Cambridge

5
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University and Oxford University.
Researchers will have analyzed over 19,000 DNA samples - two thousand patients for
each disease and three thousand control samples - searching for important genetic

differences between people who do and don't have each disease.

2.2.1 CHIAMO vs. BRLMM

CHIAMO is a program for calling genotypes from the Affymetrix 500K Mapping chip.
The program allows for multiple cohorts which have potentially different intensity
characteristics that can lead to elevated false-positive rates in genome-wide studies. The
underlying model has a hierarchical structure that allows for correlation between the
parameters of each cohort. CHIAMO is developed by WTCCC to replace BRLMM, the
standard genotype calling algorithm, to calling genotype accuracy. The large number of

misclassification will reduce the power of analysis.(See Figure 1).

2.3 Study Population

The CAD individuals recruited by WTCCC and control from 1958 British Birth Cohort
(58C) and UK Blood Services (UKBS) are hybridized to Affymetrix 500K chip
subsequently. They are living within England, Scotland and Wales (‘Great Britain’) and the
vast majority had self-identified themselves as white Europeans.The standard algorithm
BRLMM developed by Affymetrix is used to called the genotype from the chip. WTCCC
developed another algorithm, CHIAMO, to call the chip. Cross-platform comparison
showed CHIAMO to outperform BRLMM by having an error rate under 0.2%, and
comparison of 108 duplicate genotypes in WTCCC study data gave a discordance rate of

0.12%. Our data is called by CHIAMO.

2.3.1 Data conversion



When we get the genotype raw data, we convert the data by a c++ program to our data
format, pedigree and map format. Since the number of SNP is large, we can’t convert them
all at a time. We convert the data chromosome by chromosome and merge them by software
PLINK to single one file. For the .ped file, the pedigree format file, each row represent a
individual and each column represent Family ID, Individual ID, Paternal ID, Maternal ID,
Sex, Phenotype, SNP1, SNP2, ... in turn. For the .map file, the map format file, each row
represent a SNP and each column represent chromosome, rs# or SNP identifier, genetic

distance, base-pair position in turn.

2.4 Quality control

For a raw data, if we analysis it directly without remove low DNA quality SNPs or
individuals, then the analysis results won’t be robust and reliable. For a restrained analysis,
we must do the following procedures. For each SNP, we check for call rate (or missingness),
minor allele frequency (M.A.F.), and Hardy-Weinberg disequilibrium. For each individual,

we check for call rate (or missingness), heterozygosity; and cryptic relatedness.

24.1 Callrate
For each individual, call rate is the proportion of non-missing SNPs per sample. For
each SNP, call rate is the proportion of non-missing data over all samples. The missing data

rate per sample acts as an indicator of low DNA quality.

2.4.2  Minor allele frequency (M.A.F)

For introducing the minor allele frequency (M.A.F.), we may speak of allele frequency
first. For each SNP, there are two alleles. For each allele, allele frequency is the proportion
of this allele in this SNP over all samples. And for each SNP, the smaller one allele
frequency is called minor allele frequency (M.A.F.).
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2.4.3  Heterozygosity

For introducing the heterozygosity, we may speak of homozygous and heterozygous.
For a SNP, each allele may be P or p, so the genotype is PP, Pp or pp. Homozygous
represent genotype PP or pp, and heterozygous represent genotype Pp. For each individual,
heterozygosity is the proportion of SNPs that are heterozygous or are a heterozygote (i.e.,
SNPs with different alleles in the homologous chromosome pair) among all typed SNPs.
Excess heterozygosity may indicate contamination. Low heterozygosity can result in the

lack of the mechanism that maintains polymorphism and helps to explain some kinds of

genetic variability. For each SNP, heterozygosity ZI—Z p’ , where p; is the frequency of

i=1

the ith allele, and n=2 is the total number, of alleles. The higher the value, the more

polymorphic the SNP is.

2.4.4  Hardy-Weinberg equilibrium (HWE)

For combined control samples, we check the'Hardy-Weinberg equilibrium. HWE holds
at a locus in a population when the two alleles are not statistically associated. Deviations
from HWE can be due to inbreeding, population stratification, selection, deletion
polymorphism, or a segmental duplication that could be important in disease causation. So
far, researchers have tested for HWE primarily as a data quality check and have discarded
SNPs, for example, deviate from HWE among controls at certain significance level a (e.g.,
=10"0r10™"). For HWE testing, suppose that parents have the following inheritable rule

for passing their features to their offspring.



Mother

A (p)

a(q)

Father

A (p)

AA (p?)

Aa (pg)

a(q)

Aa (pqg)

aa (q°)

The final three possible

genotypic  frequencies

Pr(AA) = p*,Pr(Aa) =2pq,Pr(aa) =q°.

in

the

offspring become:

For n samples, if the frequency of the observed genotype is the following.

Genotype

AA

Aa

ada

total

Observed
number

Naa

nAa

naa

g

From which allele frequencies can be estimated as:

2N, +Ny,

ﬁ:

2(nAA + nAa + naa)

G=1-p

So the Hardy-Weinberg expectation is:
E(AA)=p°n,E(Aa)=2pgn,E(aa)=q°n

So the Pearson's chi-square test statistic is:

O — E)? HoHWE
Sy ©ERn

AA,Aa,aa E

7* with d.f.

=1

When there are low genotype count, and it is better to use a Fisher exact test.

2.4.5  Cryptic related

ness

For identify cryptic relatedness, first we may speak of identical-by-state (IBS). The



IBS is sum of the number of IBS alleles at each locus divided by twice the number of loci.
For example, two unrelated individuals each with blood group AB share two alleles IBS.
There is Evidence that, despite allowance for known family relationships, individuals in the
study sample have residual, non-trivial degrees of relatedness, which can violate the
independence assumptions of standard statistical techniques. So we select a set of SNPs,

within which no pair was correlated with r’>0.2. This can be done by compute

pairwise I'* for 50 SNPs each other per time and delete SNPs until no one pairwise
r’>0.2 and shift 5 SNPs for the next time and go on. Note that two SNPs with different
chromosome will not be computed. For this set of nearly independent SNPs, we computed
genome-wide average identity by state (IBS) between each pair of individuals. Individuals
with too much IBS sharing will be exclude,, likely duplicates (IBS>99%) or relatives

(IBS>86%).

2.5 Population stratification

The presence of population stratification: may result by different ancestral and
demographic histories in the study samples. If cases and controls differ with respect to these
features, markers that are informative for them might be confounded with disease status and
lead to spurious associations. Cryptic population structure that is not recognized by
investigators is potentially more problematic. If there is population stratification to exist, we
may identify and exclude individuals whose GWA data reveal substantial differences in

genetic background, and adjust for residual stratification.

2.5.1  Genome control (GC)

) . 2 2
For genome control, recall that the Armitage-test statistics ¥g ~ X (1) under Hj

(a test for the single SNP association, will discuss later). At the first, we require a number

10



(preferably >100) of widely spaced null SNPs (i.e., it is unlikely that any one SNP is tightly

linked to a disease-susceptibility gene) that have been genotyped in cases and controls in

addition to the candidate SNPs. When there exists population stratification, ¥g will no

longer follow a chi-squared distribution under HO, but instead follow a scaled chi-squared

e . 2 2 . .
distribution, i.e., £g ~ /1}( (1) under Hy, where X is a constant termed ‘“variance

inflation factor”. The estimation of variance inflation factor can be made by the following
step: Genotype a number of null SNPs, and then the following can serve as an estimate ofA.

For the), there are two ways to estimate it. One is compute the mean of the Armitage-test
statistics across these null SNPs (recall that E { 7 (l)} =1). And another one is to find the
median of the Armitage-test statistics across these null SNPs, divided by the predicted
median for the z”(1)distributions (i.e% = 0.456). Estimated variance inflation factor A by

median is robust than mean. In a :GWA study; it is difficult to identify the null SNPs.
However, because the bulk of the tested doct in-atGWA:will naturally be null, it provided
that a robust estimator is chosen. Therefore, the:SNPs used in making estimates of A are

those that pass the filter for quality control. Then the Armitage test is applied at the

2
candidate SNPs, and if A4 >1 the test statistics are divided by 4 (i.e., Z% ).

2.5.2  Multidimensional scaling (MDS)

We use MDS for detecting individuals with different ancestry. MDS is a set of related
statistical techniques often used in data visualisation for exploring similarities or
dissimilarities in data. An MDS algorithm starts with a matrix of item-item similarities, and
then assigns a location of each item in a low-dimensional space, suitable for graphing or 3D

visualisation. For detecting individuals with different ancestry using MDS, at the first we

select a set of SNPs, within which no pair were correlated with > > 0.2 . This can be done

11



by compute pairwise r’ for 50 SNPs each other per time and delete SNPs until no one

pairwise I* > 0.2 and shift 5 SNPs for the next time and go on. Note that two SNPs with

different chromosome will not be computed. For this set of nearly independent SNPs, we
computed genome-wide average identity by state (IBS) between each pair of individuals
along with the 270 HapMap samples. Convert these IBS-relationships to distances by
subtracting them from 1, and the matrix is used as input to MDS. The projection onto the
two multi-dimensional scaling axes is shown. Since the 270 HapMap samples are composed

of three races, so we can clearly identify those who with different cryptic ancestral. When

we make Armitage-test, the statistic ;(é ~ 77> (1)under Ho.When there exist population
stratification, y Z will no longer follow a chi-squared distribution under Hy, but instead

follow a scaled chi-squared distribution; 1.e. %o~ A%~ (1) under Hy, where X is a constant
termed “variance inflation factor”. For estimate of A, both the mean of the Armitage-test
statistics across these null SNPs (recall*'that—E { ;(2 (1)} =1 and the median of the
Armitage-test statistics across these null SNPs, divided by the predicted median for
the y°(1) distributions (i.e., = 0.456) can make it, and the later is more robust. And then the

statistic can be divided by A.

2.6 Tests of association

There are several tests for association between SNP and disease. For single SNP, we
take genotype-count and allele-count tests. Analyzing SNPs one at a time can neglect
information in their joint distribution, so we take the multiple SNPs test. For multiple SNPs,

haplotype-based method is used.

2.6.1  Genotype-count test
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For genotype-count test, the most natural

aa ad AA Total
analysis of SNP genotypes and case-control status at
Cases I " I R
a single SNP is to test the null hypothesis of no Controls 51 5 S
Total g " 1 N

association between rows and columns of the 2 x 3
matrix that contains the counts of the three genotypes (the two homozygotes and the
heterozygote) among cases and controls. Users have a choice between, among others, a
Pearson test (2 d.f.) or a Fisher exact test. For lower count number, Fisher exact test
performs better. If we consider a dominant / recessive model, if A is dominant, one can
assign genotypes (aa,aA,AA) with score x=(0,1,1), and then test for association between
case-control status and x; if A is recessive, one can assign genotypes (aa,aA,AA) with score
x=(0,0,1), and then test for association between case-control status and x. And we can make

the test similar to genotype-count test for dominant /recessive model.

2.6.2  Allele-count test

For complex traits, it is widely ‘thoeught that  contributions to disease risk from
individual SNPs will often be roughly additive — that is, the heterozygote risk will be
intermediate between the two homozygote risks. One way to improve power to detect
additive risks is to count alleles rather than genotypes so that each individual contributes
twice to a 2 x 2 table and a Pearson 1-df test can be applied. However, this procedure is not
recommended because it requires an assumption of HWE in cases and controls combined
and does not lead to interpretable risk estimates. The Cochran-Armitage test (also known as
just the Armitage test and called within R the proportion trend test) is similar to the

allele-count test. It is more conservative and

g
ﬁ 0.64
. (%]
does not rely on an assumption of HWE. %
‘*r-l-?__ 0.62
L
The dots indicate the proportion of g | e
+ e
) \
o e
':_"_ 0.58 "\\H
S T
13 = 0.56 -
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cases, among cases and controls combined, at each of three SNP genotypes (coded as 0, 1
and 2), together with their least-squares line. The Armitage test corresponds to testing the
hypothesis that the line has zero slopes.

N(ND X —RZnixi)2
R(N - R){NZnixf ~(Xnx )2}

,wherex;, =1, 1=0,1,2 under Hy: no association, 7& ~ y>(d.f.=1)

The Cochran-Armitage test: ;(é =

The Cochran-Armitage test is equivalent to the score test for testing H,: £ =0in the

logistic regression model (assuming additive effect)

,where d = 0(control), 1(case); x,=i, =0, 1, 2

B ' _expd (S, + %)
Pr(D=d|x;4,/)= L+ oxp(B, + %)

There is no generally accepted answer, torthe quéstion of which single-SNP test to use. An
intermediate choice is to take the maximum test statistic: from those designed for additive,

dominant or recessive effects.

2.6.3  Haplotype-based method

A popular strategy, suggested by the block like structure of the human genome, is to
use haplotypes to try to capture the correlation structure of SNPs in regions of little
recombination. This approach can lead to analyses with fewer degrees of freedom, but this
benefit is minimized when SNPs are ascertained through a tagging strategy. Perhaps more
importantly, haplotypes can capture the combined effects of tightly linked cis-acting causal
variants.

An immediate problem is that haplotypes are not observed; instead, they must be
inferred. It can be hard to account for the uncertainty that arises in phase inference when
assessing the overall significance of any finding. However, when LD between markers is

high, the level of uncertainty is usually low. Given haplotype assignments, the simplest
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analysis involves testing for independence of rows and columns in a 2 x k contingency table,
where k denotes the number of distinct haplotypes. Alternative approaches can be based on
the estimated haplotype proportions among cases and controls, without an explicit
haplotype assignment for individuals (Schaid 2004).

One problem with both these approaches is reliance on assumptions of HWE and of
near-additive disease risk. Including rare haplotypes in analyses can lead to loss of power
because there are too many degrees of freedom. One common but unsatisfactory solution is
to combine all haplotypes that are rare among controls into a “dustbin” category.

Another problem with defining haplotypes is that block boundaries can vary according
to the population sampled, the sample size, the SNP density and the block definition. In
software Haploview, the haplotype block can be defined by the software and we can take
them to make test of association. But in:software PLINK; we may compute all block size 2,

3, 4, 5 haplotype for making test of association.

2.7 Visualization display and previous evidence

After all procedures are finished, in addition to show our result by tables, we can even
make a visualization display for plotting the quantile-quantile (Q-Q) plot and Genome-wide
Manhattan plots. Q-Q plot provide a visual summary of the distribution of the observed test

statistics generated by a GWA study. Typically, a single test statistic (for case—control

studies, a chi-squared ( ){2 ) comparison of absolute genotype counts) is calculated for each

variant passing quality control. And Manhattan plots display GWA findings with respect to
their genomic positions, highlighting signals of particular interest. This can help us to see
the pattern of our result clearly. We can construct a table for previous robustly replicated

loci and verify our analysis.
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3 Method

3.1 Review of 3 GWA studies
3.1.1  Genome-wide association study of 14,000 cases of seven common diseases and
3,000 shared controls

WTCCC made GWA studies on British population by 2,000 individuals for each of
7 major diseases and a shared set of 3,000 controls. These diseases are bipolar disorder
(BD), coronary artery disease (CAD), Crohn’s disease (CD), hypertension (HT), rheumatoid
arthritis (RA), type 1 diabetes (T1D), and type 2 diabetes (T2D). They are human diseases
of major public health importance. Controls are composed of 1958 Birth Cohort Controls
(58BC) and UK Blood Services Controls (UKBS). People in study were living within
England, Scotland and Wales (‘Great Britain’) and the vast majority had self-identified
themselves as white Europeans. Theseindividuals were genotyped 500568 SNPs.

They found it necessary to normalize the Affymetrix probe intensity data to minimize
chip-to-chip variability. A C++ program, CHIAMQO; was written to carry out this
normalization efficiently. CHIAMO is a new genotype calling algorithm, implemented in
C++. It uses a hierarchical statistical model, which allows it to simultaneously call
genotypes at all data samples.

For these 500,568 SNPs and 17000 individuals, they do quality control filter for (1)
SNP call rate < 97% (missingness), (2) Heterozygosity > 30% or < 23% across all SNPs, (3)
External discordance with genotype or phenotype data, (4) Individuals identified as having
recent non-European ancestry by the Multidimensional Scaling analysis, (5) Duplicates, and
(6) Individuals with too much IBS sharing (>86%); likely relatives. There are 16179
individuals and 469557 SNPs (93.8%) pass QC filter.

For the remaining SNPs and individuals, they do association assess for classical and

bayesian statistical approaches. They performed trend tests (1 degree of freedom) and
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general genotype tests (2 degrees of freedom) between each case collection and the pooled
controls, and calculated analogous Bayes factors. They also do sex-differentiated test.
Sex-differentiated test is sensitive to associations of a different magnitude and/or direction
in the two sexes. They also did the combined diseases association test with potential
aetiological overlap, and multilocus method by simulate, or impute, genotype data at
2,193,483 HapMap SNPs not on the Affymetrix chip and then tested for association. For
test of association, they used snpMatrix and SNPTEST. Both quantitative and qualitative
phenotypes can be analyzed using snpMatrix and flexible association testing functions are
provided that control for potential confounding by quantitative and qualitative covariates.
SNPTEST is a standalone C++ program that implements both frequentist tests and bayesian

analysis of association and allows the user to include quantitative or qualitative covariates.

3.1.2  Genome-wide association study ‘identifies.novel breast cancer susceptibility
loci

Breast cancer is about twice as common in thefirst-degree relatives of women with the
disease as in the general population. In 1990s, two major susceptibility genes for cancer,
BRCAT1 and BRCA2, were identified. Large case-control association studies have identified
variants in the DNA repair genes CHEK2, ATM, BRIP1 and PALB2 that confer an
approximately twofold risk of breast cancer, but these variants are rare in the population. A
recent study has shown that a common coding variant in CASPS8 is associated with a
moderate reduction in breast cancer risk. After accounting for all the known breast cancer
loci, more than 75% of the familial risk of the disease remains unexplained. They perform a
three-stage association study.

At stage I, they recruited 408 cases (family history score > 2, diagnosed under age
60, excluded BRCA1 & BRCA2 cases) and 400 controls (age >50, free of cancer at entry)
and genotyped 266722 SNPs (m.a.f. > 5%). SNPs and individuals were check if call rate <
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80%. For first stage, there were 390 cases and 364 controls, 227876 SNPs left. These SNPs
did the stage 1 filter, (1) call rate < 90%, (2) HWE with p-value < 107, and there were
205568 SNPs left. From stage 1, 12711 (about 5%) SNPs selected on the basis of
significance of the difference in genotype frequency between cases and controls (P-trend <
0.052 or weighted P-trend < 0.01 or P < 0.01 under dominant/recessive model), then
genotyped in 3990 cases and 3916 controls from the SEARCH study, using a
custom-designed oligonucleotide array. SNPs were check if call rate < 80% and filter. These
remain SNPs did the stage 11 filter, (1) call rate < 95 %, (2) HWE with p-value < 10, and
there were 10405 SNPs left. For stage IIl, 22714 cases of invasive breast cancer and 1020
cases of carcinoma in situ (CIS) and 23369 controls from 22 case-control study are
collected. These individuals were genotyped on 10405 SNPs and check if call rate < 80%
and there were 21860 cases of invasive breast caneer.and 988 cases of carcinoma in situ
(CIS) and 22578 controls left for stage III. They tested 31 of the most significant SNPs (P
trend of P(2d.f.)< 0.00002) on these individuals. Those test statistics for stage I and stage
I were adjusted by genome control.

For tests of association, they performed Cochran-Armitage trend test (1 degree of
freedom) for single SNP and stratified Cochran-Armitage trend test (1 degrees of freedom)
where stage 1 was given a weight of 4 for stagel+2 combined SNPs. For stage 3, each study
was treated as a separate stratum. P-value < 107 level has been proposed as appropriate for
genome-wide studies. And they performed fine-scale mapping for the region significance
SNP located by tag SNPs which r*>c, then use Haplotype analysis to find the possible
causable allele. For significance SNPs, perform a multiple logistic regression analysis of
these variates to find the odds ratios and confidence intervals. And the databases are from

dbSNP, HapMAp, Perlegen.

3.1.3  Genome-Wide Association Analysis Identifies Loci for Type 2 Diabetes and
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Triglyceride Levels

Type 2 diabetes, obesity, and cardiovascular risk factors are caused by a combination
of genetic susceptibility, environment, behavior, and chance. Whole-genome association
studies (WGAS) offer a new approach to gene discovery unbiased with regard to presumed
functions or locations of causal variants. New strategies for prevention and treatment of
type 2 diabetes (T2D) require improved insight into disease etiology. Patients with T2D,
geographically matched controls, and discordant sib-ships were selected from Finland and
Sweden. To avoid admixture with type 1 diabetes, patients had an age at onset > 35 years
and no detectable glutamic acid decarboxylase antibodies (GAD Ab). Members from
families with carriers of mutations causing maturity onset diabetes of the young (MODY;
HNF4A, GCK, TCF1, IPF1, TCF2) were excluded, except for Skara where no screening for
MODY mutations had been performedi Control subjects were defined as normal glucose
tolerant. They recruited 1,022 cases.and 1,075 controls for unrelated matched population
and 442 cases and 392 controls for discordant. sib-ships data. And 10,850 individuals
(European ancestry) were used to replicate original T2D findings in this study. These
samples were genotyped 500,568 SNPs.

For individual inclusion criteria, they do the following check: (1) passing the
fingerprint quality checks, (2) Genotyping call rates > 95%, (3) Gender call from X
chromosome genotype data was discrepant with the gender obtained from medical records
were excluded from the analysis, and (4) in order to verify the existing known familial
relationships identity-by-descent (IBD) analysis was performed using the PLINK analysis
software package. After these processes, there are 2,931 individuals left. For SNP quality
control, they do the following check: (1) did not map to multiple locations in the genome
(3,605 markers excluded), (2) showed a >95% genotype call rate (34,532 markers excluded)
and a >90% genotype call rate in both population and familial subsets of data (229 markers
excluded), (3) MAF >1% 2,931 individuals (66,787 markers excluded) and >1% in both
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population and familial subsets of the data (2,909 markers excluded), and (4) demonstrated
Hardy Weinberg equilibrium with a P > 10 in controls (5,775 markers excluded). After
these processes, there are 386,731 SNPs left. EIGENSTRAT was used to evaluate
population structure in the samples. And they also adjusted population structure by using
genome control to estimate a genomic inflation factor based on the median chi-squared test
in the matched population-based case/control sample.

To extend the set of putative causal alleles tested for association, we developed
284,968 additional multimarker (haplotype) tests based on these SNP genotypes. The
671,699 allelic tests capture (correlation coefficient 12 > 0.8) 78% of common SNPs in
HapMap CEU. Each SNP and haplotype test was assessed for association to T2D and each
of 18 traits with the software package PLINK. For T2D, a weighted meta-analysis was used
to combine results for the population-based and family-based subsamples. For quantitative
traits, multivariable linear or logistic regression with or without covariates was performed.
To perform association testing- in j.the __populaton sample, we performed a
Cochran-Mantel-Haenszel (CMH) stratified test.-To perform association testing in the
familial sample, we used the DFAM procedure in PLINK.

For replication data, 107 SNPs was tested. SNPs were tested for association using a
simple Chi-square analysis in each of the three T2D replication samples. Combined
analyses of replication samples or of all DGI samples was performed using Mantel Haenzel
meta-analysis of the odds ratio. For this study, they use EIGENSTRAT to evaluate

population structure and PLINK to test association.

3.2 Summarized Procedures for a GWA Study

For above three literatures, we arrange the procedures for a GWA study. Our procedure
includes four steps: data management, preliminary analysis, association testing and result
visualization.
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3.2.1  Data Management
3.2.1.1 Genotype Calling

Instead of use BRLMM, WTCCC develop a new algorithm, CHIAMO to call the
Signal intensity on the raw chip and turn it into genotype data. CHIAMO can
simultaneously call the genotypes from all individuals. Cross-platform comparison showed
CHIAMO to outperform BRLMM by having an error rate under 0.2%, and comparison of
108 duplicate genotypes in WTCCC study data gave a discordance rate of 0.12%.
3.2.1.2 Data Conversion

CAD case control genotype data obtained from WTCCC were converted by a c++
program to our study format, pedigree and map format (See Figure2, Figure 3). Since the
number of SNP is large, we can’t convert them all at a time. We convert the data
chromosome by chromosome and merge them by-software PLINK to single one file. For
the .ped file, the pedigree format file, each row.represent a individual and each column
represent Family ID, Individual ID, Patetnal 1D, Maternal ID, Sex, Phenotype, SNPI,
SNP2, ... in turn. For the .map file, the map format file, each row represents a SNP and each
column represent chromosome, rs# or SNP identifier, genetic distance, and base-pair

position in turn.

3.2.2  Quality Control

There are several steps for data quality control. For each individual, we may check for
call rate (or missingness), heterozygosity, and cryptic relatedness. For each Single
Nucleotide Polymorphism (SNP), we may check for call rate (or missingness), minor allele

frequency (M.A.F.), and Hardy-Weinberg disequilibrium.

3.2.2.1 cCall rate
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For each individual, sample call rate is the proportion of non-missing SNPs per sample.
We exclude individuals with Call rate < 97% (or missingness > 3%). For each SNP, SNP
call rate is the proportion of non-missing data over all samples. We exclude individuals with

Call rate < 95% (or missingness > 5%).

3.2.2.2 Minor allele frequency (M.A.F)

For each SNP, the smaller one allele frequency is called minor allele frequency

(M.A.F.). We exclude SNPs with M.A.F. < 1%, and we exclude 68444 SNPs from our data.

3.2.2.3 Heterozygosity
For each individual, genome-wide heterozygosity is the proportion of SNPs that are

heterozygous or are a heterozygote (i.e., SNPs with-different alleles in the homologous

chromosome pair) among all typed SNPs. For each- SNP, heterozygosity =1— z p’ where pj

i=1

is the frequency of the ith allele, and-n=2"1s the total number of alleles. We exclude SNPs

with genome-wide heterozygosity < 30% or genome-wide heterozygosity >35%.

3.2.2.4 Hardy-Weinberg equilibrium

For combined control samples, we check the Hardy-Weinberg equilibrium (HWE).
HWE holds at a locus in a population when the two alleles are not statistically associated.
When there are low genotype count, and it is better to use a Fisher exact test. We exclude

SNPs with HWE testing p-value threshold 5.7%107.

3.2.2.5 Cryptic relatedness
The IBS is sum of the number of IBS alleles at each locus divided by twice the number

of loci. We select a set of SNPs, within which no pair were correlated with r* > 0.2. This can
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be done by compute pairwise r* for 50 SNPs each other per time and delete SNPs until no
one pairwise r° > 0.2 and shift 5 SNPs for the next time and go on. For this set of nearly
independent SNPs, we computed genome-wide average identity by state (IBS) between
each pair of individuals. Individuals with too much IBS sharing will be exclude, likely

duplicates (IBS>99%) or relatives (IBS 86-99%).

3.2.3  Population stratification

For the SNPs passing quality control, they are check for population stratification.
Population stratification is the presence in study samples of individuals with different
ancestral and demographic histories. If cases and controls differ with respect to these
features, markers that are informative for them might be confounded with disease status and
lead to spurious associations. We should identify and exclude individuals whose GWA data
reveal substantial differences in genetic background, and adjust for residual stratification.
We attempt to identify population stratification ‘by genome control (GC) and

multidimensional scaling (MDS).

3.2.3.1 Genome control (GC)
The SNPs used in making estimates of A are those that pass the filter for quality control.

We can estimate A by find the median of the Armitage-test statistics across these null SNPs,

divided by the predicted median for the (1) distributions (i.e., = 0.456). The adjusted test

statistics are divided by 4 .

3.2.3.2 Multidimensional scaling (MDS)
At the first we select a set of SNPs, within which no pair were correlated with r* > 0.2.

This can be done by compute pairwise 1* for 50 SNPs each other per time and delete SNPs
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until no one pairwise r* > 0.2 and shift 5 SNPs for the next time and go on. For this set of
nearly independent SNPs, we computed genome-wide average identity by state (IBS)
between each pair of individuals along with the 270 HapMap samples. Convert these
IBS-relationships to distances by subtracting them from 1, and the matrix is used as input to

MDS. The projection onto the two multi-dimensional scaling axes is shown.

3.2.4  Test of association

We check the association by test for single SNP and multiple SNPs. For single SNP, we
test the association for using genotype-count test and allele-count test. For multiple SNPs,

we just talk about the haplotype-based method.

3.2.4.1 Single SNP
Genotype count test

The most natural analysis of SNP genotypes-and case-control status at a single SNP is
to test the null hypothesis of no association. between rows and columns of the 2 x 3 matrix
that contains the counts of the three genotypes (the two homozygotes and the heterozygote)
among cases and controls. Users have a choice between, among others, a Pearson test (2 d.f.)

or a Fisher exact test.

Dominant / recessive model

If we consider a dominant / recessive model, if A is dominant, one can assign
genotypes (aa,aA,AA) with score x=(0,1,1), and then test for association between
case-control status and x; if A is recessive, one can assign genotypes (aa,aA,AA) with score
x=(0,0,1), and then test for association between case-control status and x. And we can make

the test similar to genotype-count test for dominant / recessive model.
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Allele count test
We count alleles rather than genotypes so that each individual contributes twice to a 2

x 2 table and a Pearson 1-df test can be applied.

Cochran-Armitage test

N(ND rx —RZnixi)2
R(N —R){NZnixf—(Znixi)z}

The Cochran-Armitage test: y2 =

where x, =1, i=0,1,2 Under H, : no association, yg ~ y*(d.f.=1)

There is no generally accepted answer to the question of which single-SNP test to use.
An intermediate choice is to take the maximum test statistic from those designed for

additive, dominant or recessive effects.

3.2.4.2 Multiple SNPs

The procedure of haplotype-baséd method -is'‘that given haplotype assignments, the
simplest analysis involves testing for independence of rows and columns in a 2 X k
contingency table, where k denotes the number of distinct haplotypes. Alternative
approaches can be based on the estimated haplotype proportions among cases and controls,
without an explicit haplotype assignment for individuals (Schaid 2004).

We can define the haplotype block by the software Haploview and take them to make
test of association. But this software has SNP number limitation. So we can perform the
haplotype tests in software PLINK. For PLINK, we can’t define the haplotype block;
instead, we take all block size 2, 3, 4, 5 haplotypes for making test of association. For
example, a size 2 haplotype for two SNPs with genotype Aa, Pp may be AP, aP, Ap, and ap.

And we take all 4 haplotype for haplotype test.
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3.2.5  Visualization display and previous evidence

We can construct a table for previous robustly replicated loci and verify our analysis. In
addition, we can even make a visualization display for plotting the quantile-quantile (Q-Q)
plot and Genome-wide Manhattan plots. Q-Q plot provide a visual summary of the
distribution of the observed test statistics generated by a GWA study. And Manhattan plots
display GWA findings with respect to their genomic positions, highlighting signals of
particular interest. This can help us to see the pattern of our result clearly. Q-Q can be done

by software R, and Manhattan plot can be done by software haploview.
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4  Analysis of the CAD data from WTCCC

4.1 Study Population

1988 CAD individuals included in the Wellcome Trust Case Control Consortium
(WTCCC) study were living within England, Scotland and Wales (‘Great Britain’) and the
vast majority had self-identified themselves as white Europeans. Coronary Artery Disease
(CAD) is common familial disease of major public health importance both in the UK and
globally, and for which suitable nationally representative sample sets were available. The
control individuals came from two sources: 1,504 individuals from the 1958 British Birth
Cohort (58C) and 1,500 individuals selected from blood donors recruited as part of this
project (UK Blood Services (UKBS) controls). All 4992 samples were genotyped with the
GeneChip 500K Mapping Array Set (Affymetrix 500K chip), which comprises 490032

SNPs.

4.2 Data management

Instead of use BRLMM, WTCCC develop a new algorithm, CHIAMO to call the Signal
intensity on the raw chip and turn it into genotype data. CHIAMO can simultaneously call
the genotypes from all individuals. Cross-platform comparison showed CHIAMO to
outperform BRLMM by having an error rate under 0.2%, and comparison of 108 duplicate
genotypes in WTCCC study data gave a discordance rate of 0.12%. CAD case control
genotype data obtained from WTCCC were converted by a c++ program to our study format,
pedigree and map format (See Figure2, Figure 3). For the .ped file, the pedigree format file,
each row represent a individual and each column represent Family ID, Individual ID,
Paternal ID, Maternal ID, Sex, Phenotype, SNP1, SNP2, ... in turn. For the .map file, the
map format file, each row represents a SNP and each column represent chromosome, rs# or

SNP identifier, genetic distance, and base-pair position in turn.
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4.3 Quality control

For sample call rate we exclude individual if call rate < 97%, and we exclude 0
individual since our data may be imputed. For SNP call rate we exclude SNP if call rate <
95%, and we exclude 0 SNP since our data may be imputed.

For Genome-wide heterozygosity we exclude individual if genome-wide
heterozygosity > 35% or < 30%, and we exclude 29 individuals from the analysis (See
Figure 4).

For cryptic relatedness we sieve out 82,686 SNPs for calculating the genome-wide
average IBS, then we exclude individual with IBS > 99% (duplicated) or IBS 86-99%
(relatives). Finally, we exclude 16 (duplicated) + 43 (relatives) individuals from the
analysis.

For Minor allele frequency (M.A.F.) we exclude SNP with M.A.F. < 1% and we
exclude 68,444 SNPs from the analysis.

For Hardy-Weinberg equilibrium“(HWE) we  exclude SNP for HWE testing with
p-value threshold 5.7%107 and we exclude 5,915 SNPs from the analysis.

For quality control, we show it by figure (See Figure 5) for a clear display. It shows the

criteria for each check and exclusion number for this check.

4.4 Population stratification

For the population stratification, we compute A = 1.087280702 by the median of
Armitage-test statistics. This can be used to adjust the Armitage test statistic for the
deviation of null hypothesis.

We sieve out 82,686 nearly independent SNPs for Multidimensional scaling (MDS),
and plot MDS for the first two dimensions. For a threshold for first dimension axes value >
0.5, we exclude 23 individuals from MDS (See Figure 6).
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So far, we exclude 111 individuals and 74359 SNPs from quality control and MDS

from our analysis data, and we have 4881 individuals and 415673 SNPs left.

4.5 Tests of Association

For single SNP, we do the tests of allele count test, genotype count test, dominant and
recessive model, and Armitage trend test. For multiple SNPs, we do the haplotype-based
tests for haplotype block size 2, 3, 4, and 5. For these tests, we set a p-value threshold by
5%107. The results are showed by Q-Q plots and Manhattan plots. We also show the result

by table for previous robust replication loci. (See Figure 7 — Figure 14, Table. 1).
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5 Conclusion and Discussion

5.1 Conclusion

There is increasing evidence that genome-wide association (GWA) studies represent a
powerful approach to the identification of genes involved in common human diseases. We
attempt to construct a standard GWA flow path. First stage, we may arrange our data to our
analysis format. Then we do the quality control to ensure high DNA quality. The third stage
is to identify and exclude individuals whose GWA data reveal substantial differences in
genetic background, and adjust for residual stratification. We can do genome control and
MDS for this stage. The data passing our preliminary processes can be used to test the
associations. For testing the association between SNP and disease, there are single SNP
method and multiple SNPs method. And we built up an overall flow path for GWA study

(See Figure 15, Table 2).

5.2 Discussion

Although the tests of association have large number of significant SNPs, most of them
are significant just because they are highly correlated with disease SNPs. The next step is to
do the fine mapping to find the causal SNP and verify it by biological explanation. And
since the number of individuals is smaller than the number of SNPs, so the power may be an
issue for us to resolve. There are increasing researchers devoted to GWA study. Thousand of
method and theory are develop to resolve the problem they meet at the study. Our purpose is
to construct a standard flow path such that everyone who wants to do the GWA study has
accidence for knowing what GWA study is. Of course, there are many method and theory
we do not mention, anyone who make the GWA study can extend it by search information

from the internet.
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Figure 1. Calling algorithm influence Genotype accuracy. Three colors represent
different genotypes. The ideal genotype cluster will be separated clearly (panel e).
Panel f has a good cluster, but a mistake calling algorithm. In panel g and h,
significant overlap between clusters is likely to result in failure to call certain

genotypes
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=i Individual ID Genotype Score
rs3315677 WTCCCR3313 GG 1.0000
rs915677 WTCCZa3321 GG 0.9957
rs3315677 WTCCCAa3330 GG 1.0000
rs915677 WTCCCZa3za9 GG 0.99z23
rs3315677 WTCCCa3297 GG 1.0000
rs3915677 WTCCCZa330s GG 1.0000
Es215e77 WTCCCe3514d G 1.0000
rs3915677 WTCCCE332:2 GG 0.9935
rs215e77 WTCCCe3331 G 0.9956
rs3915677 WTCCCe3z290 GG 1.0000
rs215e77 WTCCCE3295 G 1.0000
rs3915677 WTCCCe33na GG 1.0000
rs915877 WTCCCZe35315 G 1.0000
rs3315677 WTCCCR3323 GG 1.0000
rs915877 WTCCCE35332 G 1.0000
rs3315677 WTCCCe3291 GG 1.0000
rs915677 WTCCCZa3z299 GG 1.0000
rs3315677 WTCCCe3an? GG 1.0000
rs915677 WTCCCZe331la GG 1.0000
rs3315677 WTCCCA33ES GG 1.0000

#sample gender oohort  supplier well region ethnicity age_recruitment age_onset

WTCCC63289 1 CAD 1G 1162937 Southern unknown 5] 5
WTCCC63297 1 CAD IG 11629a8 Southwestern unknown 5 4
WTCCC63305 1 CAD IG 1162929  East + West Ridings  unknown & 5
WTCCC63313 1 CAD IG 11629a10 Wales unknown &) 5
WTCCC63321 1 CAD G 11629all Wales unknown 5 5
WTCCC63330 1 CaD IG 11629al2 Eastern unknown 6 2
WTCCC63290 1 CAD IG 1162967 London unknown 5 5
WTCCC63298 1 CAD IG 11629b3 Southwestern unknown 5 4
WTCCC63306 1 CAD IG 1162909 Northern unknown 5 4
WTCCC63314 2 CaD IG 11629b10 Eastern unknowm 6 5
WTCCC63322 2 CaD IG 11629b1 1 Northwestern unknown 4 3
WTCCC63331 1 CAD IG 11629bl2 East + West Ridings  unknowm & 5
WTCCC63291 1 CAD IG 116207 Naorthwestern unknown 6 5
WTCCC63299 1 CAD IG 11629¢8 Midlands unknown 4 4
WTCCCH3307 2 CaD IG 11629¢9  East + West Ridings unknown 5 4
WTCCC63315 1 CAD IG 11629¢10 Southwestern unknown 5 5
WTCCC63323 2 CaD IG 11629c11  East + West Ridings unknown 7 4
WTCCCA3332 1 CAD 1G 1162912 Southwestern unknown 5 4

Figure 2. Raw data format before convert
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Family ID
WTCCCE3313
WTCCCE3321
WTCCCE3330
WTCCCE3ZE9
WTCCCE3297
WTCCCE3305
WTCCCE3314
WTCCCE3322
WTCCCE3331
WTCCCE3Z250
WTCCCE3298
WTCCCE3306
WTCCCE3315
WTCCCE3323
WTCCCE3332
WTCCCE3291
WTCCCE3Z299
WTCCCE3307

Individual ID FID MID Sex Phenotype SNP1 SNF2 ....

WTCCCE3313
WTCCCE3321
WTCCCE3330
WTCCCE3289
WTCCCE3Z297
WTCCCE3305
WTCCCE3314
WTCCCEe3322
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WTCCCE3315
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WTCCCE3292
WTCCCEe3307

o

o T T o e T i

o I e e e e e T e e e e e e e e s [ e

1

L e . el i i o B S e

{ ST N T o T o T S o N I T o T o O TR o T o T % o I o T T ]

A

B e b b B b fee b b B b B b b B B e

Bt e fm e be b de e le b b b de e fe b 0e

Qe QO OOk R EREeoREOE

G e e 000000 Ee OO0

GO0 a0a0006000086
OO OO OO0 a0 naq
OO0 0000000000000 00
GO0 0000000000000 00
o e Q1 e b e e e e e e O e e O e e

D@D EOQOE QOO0 8000880

SO a O aEeeEeQREO00G600
OO0 a0 QEa0E0000G000-

OO0 OO0 000000000000

L I T = T e T T T TR T i O T T T T O T 0 T

Figure 3.a. PLINK format data-ped format
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rs4075116
139442385
rs10907175
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rs6603781
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Figure 3.b. PLINK format data-map format
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Fraction of missing genotypes
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o8 "

S RREC 5

0.25

0.30
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Figure 4. Scatter plot for mean heterozygosity: and fraction of missing genotype for

individuals. We exclude individual by heterozygosity >0.35 or heterozygosity < 0.3.
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SNPs analysed Samples analysed

Stage 1 SNP set n=490,032 Genotyped set 150441500 combined
1988 cases
] o 1 call rate s 95% 3004 confrois —|
v call rate < 97 % [ o
490,032 —
. M.AF.=1%
63,444 | e———— 492 |
+ Genome-wide heterozygosity |
) 29
42588 | Quality Control > 35% or < 30%
. HWE | 4963 | duplicated 16 |
| 5015 | s IBS > 9%
p-value < 5.7e-7 cryptic relatedness
v -
nearly independent SNPs . N .
415,673 | 82686 | 1 %
— 12<0.2 — [ 4004 IBS $6-99%
maultidimensional scaling | 3
. « g . L~ |
Population stratification _1
[ 4881
gEnome control A
1.055702
laises| lestof association g
| || =

p-value threshold 5e-7

Single SNP — Genotype-count test,Dominant / recessive model
— Allele-count test
— Cochran-Armitage test

Multiple SNPs— Haplotype-based method

Figure 5. Quality control flow path
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Figure 7. Genome-wide Manhattan plot for fisher’s exact test
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Genome-wide Manhattan plot for genotype count test
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Figure 8. QQ plot and Genome-wide Manhattan plot for genotype test
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Genome-wide Manhattan plot for dominant model
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Figure 9. QQ plot and Genome-wide Manhattan plot for dominant model
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Genome-wide Manhattan plot for recessive model
15.0 0 w

12.5 . .
10.0 s

75 . & e a . "

-log10(F)

| s B | 18 | .

|— Cht1 wess Chr2 s Chi3 e== Chrd mem Cht5 wess Chi6 wess Chi7 s ChiE m== Cht9 mess Chi10 s Chr11 mes Chr12
e Chr13 wessm Chirld s Chr15 e=n Chrl 6 wess Chrl7 s Chr18 mess Chr1Q s Chr20 s Chr21 s Chr22

QQ plot for recessive model

Observed test statistic
15 20 25 an

10

Quantile
-==--- 50

73
90

T T | | |
0 5 10 15 20

Expected chi-squared value

Figure 10. QQ plot and Genome-wide Manhattan plot for recessive model
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Genome-wide Manhattan plot for allele count test
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Figure 11. QQ plot and Genome-wide Manhattan plot for allele count test
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Figure 12. QQ plot and Genome-wide Manhattan plot for Cochran-Armitage trend

test
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Genome-wide Manhattan plot for trend test adjusted by genome control
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Figure 13. QQ plot and Genome-wide Manhattan plot for Cochran-Armitage trend

test adjusted by GC
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Genome-wide Manhattan plot for haplotype block size = 2
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Figure 14.a. Genome-wide Manhattau plot for haplotype test block size =2

Chromosomes are divided by colors:

Genome-wide Manhattan plot for haplotype block size =3
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Figure 14.b. Genome-wide Manhattan plot for haplotype test block size = 3

Chromosomes are divided by colors.
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Genome-wide Manhattan plot for haplotype block size = 4
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Figure 14.c. Genome-wide Manhattan plot-for hapletype test block size = 4

Chromosomes are divided by colors.

Genome-wide Manhattan plot for haplotype block size =5
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Figure 14.d. Genome-wide Manhattan plot for haplotype test block size = 5

Chromosomes are divided by colors.
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Figure 15. GWA study flow chart
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Previously robustly replicated loci

CHR SHP BF MAF  Case MAF Contral MAF  Trend Pvalue  Genatype F-value Dominant F-value Recessive P-value GC adjusted Fvalue
19 4420838 50114785 G 020835 0.1979 0.1983 02182 0.1084 0848 0.188026545
9 11333049 72115503 G 04436 0.5264 $.10E-15 S.94E-14 3.84E09 8.97E-12 4,83E-1%

1 rlT&72135 236771637 C 0.1071 0.1357 2.80E0% 1.55E-D8 1.43E-D8 0.3745 2H513ZE405
5 363830 9997AREL A 0.1824 07207 SOTE04 1.40EDS 00001212 00002056 4 BOED4
& re9IIIEY 151345099 A 02951 02529 4.28E04 1.00E-D3 0000298 401ED3 403512E04
16 rsB0SSZ36  B17498W T 0.1636 0.1973 249E0% 333605 00007287 00001195 2,36E-0%
19 7250581 34756235 A 01818 02192 745E04 2,17E0% 3,55E04 0.1127 TN5313E04
77 raBE03 25014189 T 0.3534 03115 144E05 5 A0E-06 0004067 4.15E04 1.36E03
Table 1. Previously robustly replicated loci
GENOME-WIDE ASSOCIATION STODY FLOW PATH
Procedme Critenia Software
M Genotype Calling NiA CHIAMO
Data Data Comwersion NiA C++ program
Sample Call Rake = 97%
SNP Call Rate =95%
HWE P-valoe < 577
y MAF. =1%
. Quality Hetemeypnsity > 35%or < 30%
Prelmmary Process Dok
Cryphc elaledness > 99% for
Typhe 86-09 % for Relatives
Neary Independent SNPs R-square > 02 PLINE
B T GC Medianof Anmitage stabishc
Fopulatim simiification MDS 15t dimensionvahe > 0.5
Genotype Count Test
N Allele Count Test
Testof . Single SNP DominantRecessive Model P-valne < 5e-7
¢ Cochran-Armitage Test
Multiple SHPs Haplotvpe-based Test
i snalizati o] Q-Q Plot R
v D Manhattan Flot Haplovew

Table 2. GWA procedures and software used in the paper
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