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ABSTRACT 

    There are increasing evidences that genome-wide association (GWA) studies represent 

a powerful approach to the identification of genes involved in common human diseases [1]. 

Many studies had successfully performed the GWA study to identify novel susceptible loci. 

However, there is a lack of agreement about what constitutes an adequate analytic procedure. 

In this study, we review existing genome-wide association studies to identify such a 

procedure and implement the built procedure to real datasets from the Wellcome Trust 

case-control Consortium. Our procedure includes four steps: data management, preliminary 

analysis, association testing and result visualization. In order to get the true association 

between disease and SNP, we execute 2 preliminary processes, the quality control (QC) and 

population stratification. Furthermore, we can plot the quantile-quantile (Q-Q) plot and 

Manhattan plot to visualize association analysis results. At the end of the study, we have 

successfully (1) identified the necessary and important analyses for GWA, (2) identified 

currently available software for these analyses, (3) performed the analysis on the Wellcome 

Trust case-control Consortium data, and (4) provided general guidelines for performing 

GWA. 

Key words: genome-wide association study, GWA study, Manhattan plot, PLINK 
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一套關於全基因相關性分析 

的標準流程 

研究生：陳彥銘           指導教授：黃冠華 博士 

 

國立交通大學統計學研究所 

 

摘要 

 有越來越多的證據顯示，全基因相關性研究在找出與常見人類疾病相關的基因是

有效的方法。很多研究成功的利用全基因相關性研究找出新的致病位置。然而，目前

並沒有一套一致性的分析程序。在這個研究中，我們檢閱目前的全基因相關性研究去

整理出一套標準流程並利用 WTCCC 的真實資料去驗證。我們的流程包括四個部分：

資料處理、預處理分析、相關性檢定、以及視覺化結果呈現。為了得到疾病與單體核

苷酸多樣性的真實關係，我們做了兩個預處理程序，品質控制與母體分層。除此之外，

我們可以畫 Q-Q 圖及 Manhattan 圖去視覺化我們的相關性分析結果。在研究的最後，

我們成功的(1)確認必要且重要的分析程序(2)確認目前可用來做這些分析的軟體(3)利

用 WTCCC 的資料完成了分析(4)提供了執行全基因相關性研究的一般指導方針。 

 

 

關鍵字：全基因相關性研究、Manhattan圖、PLINK 
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1 Introduction 

  In genetic epidemiology, a genome-wide association study (GWAS) is an examination 

of genetic variation across the human genome, designed to identify genetic associations 

with observable traits, or why some people get a disease or condition. There is increasing 

evidence that genome-wide association (GWA) studies represent a powerful approach to the 

identification of genes involved in common human diseases. If genetic variations are more 

frequent in people with the disease, the variations are said to be "associated" with the 

disease. The associated genetic variations are then considered pointers to the region of the 

human genome where the disease-causing problem resides. We attempt to construct a 

standard GWA path flow for those who want to make a GWA study analysis.  

By reviewing a series of literatures (The Wellcome Trust Case Control Consortium 

(2007), Douglas F. Easton, et al (2007), Diabetes Genetics Initiative of Broad Institute of 

Harvard and MIT, Lund University, and Novartis Institutes of BioMedical Research: Richa 

Saxena, et al (2007)), we identify four main procedures for performing a GWA study; they 

are data management, preliminary analysis, association testing, and result visualization. 

After the recruitment, these individual will be hybridized to the Affymetrix 500K chip. For 

the chip, we can use a standard genotyping algorithm, BRLMM, developed by Affymetrix, 

to call the genotype from the chip. Another calling algorithm, CHIAMO, developed by 

Wellcome Trust Case Control Consortium (WTCCC), a collaboration of 24 leading human 

geneticists, who will analyze thousands of DNA samples from patients suffering with 

different diseases to identify common genetic variations for each condition, is applied to 

simultaneously call the genotypes from all individuals. Cross-platform comparison showed 

CHIAMO to outperform BRLMM by having an error rate under 0.2%, and comparison of 

108 duplicate genotypes in WTCCC study data gave a discordance rate of 0.12%. So our 

data is called by CHIAMO. We take data from WTCCC and convert them by a c++ program 
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to our analysis file format. 

For a case-control GWA study, there are two parts for the preliminary process before 

tests of association. First part is quality control (QC), and the second part is population 

stratification. For quality control, it can raise the DNA quality and reduce contamination. 

For population stratification, since some relatedness among samples may be cryptic, we 

may identify and exclude individuals whose GWA data reveal substantial differences in 

genetic background, and adjust for residual stratification. After preprocessing, data will be 

robust and reliable for the tests of association. With this, we can eventually find the true 

relatedness between SNPs and disease. For quality control, it contains Single Nucleotide 

Polymorphism (SNPs) call rate, sample call rate, minor allele frequency (M.A.F.) for SNPs, 

Hardy-Weinberg equilibrium for SNPs, heterozygosity for individuals, and cryptic 

relatedness for individuals. For population stratification, multidimensional scaling (MDS) 

and genome control (GC) are used to identify and exclude individuals whose GWA data 

reveal substantial differences in genetic background, and adjust for residual stratification.  

After quality control and population stratification, we take serial tests of association. 

We take allele-count test and genotype-count test for single SNP and haplotype-based test 

for multiple SNPs. We can verify our results by previously robustly replicated loci. In 

addition to show our results by tables, we can make a visualization display for plotting the 

quantile-quantile (Q-Q) plot and Genome-wide Manhattan plots to see the pattern. 

We use a real data, which is collected by WTCCC, to complement the 4 step procedure. 

This data is collect to study the association between SNP and CAD disease. 
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2 Literature Review 

2.1 Background of genome-wide association study (GWAS) 

(http://en.wikipedia.org/wiki/Genome-wide_association_study) 

In genetic epidemiology, a genome-wide association study (GWAS) is an examination 

of genetic variation across the human genome, designed to identify genetic associations 

with observable traits, such as blood pressure or weight, or why some people get a disease 

or condition. 

The completion of the Human Genome Project in 2003 made it possible to find the 

genetic contributions to common diseases and analyze whole-genome samples for genetic 

variations that contribute to their onset. 

These studies require two groups of participants: people with the disease and similar 

people without. After obtaining samples from each participant, the set of markers such as 

SNPs are scanned into computers. The computers survey each participant's genome for 

markers of genetic variation. 

If genetic variations are more frequent in people with the disease, the variations are said 

to be "associated" with the disease. The associated genetic variations are then considered 

pointers to the region of the human genome where the disease-causing problem resides. 

 

2.1.1 Single nucleotide polymorphism (SNP) 

(http://en.wikipedia.org/wiki/Single_nucleotide_polymorphism) 

A single nucleotide polymorphism (SNP) is a DNA 

sequence variation occurring when a single nucleotide - A, T, C, 

or G - in the genome (or other shared sequence) differs between 

members of a species (or between paired chromosomes in an 

individual). For example, two sequenced DNA fragments from 
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different individuals, AAGCCTA to AAGCTTA, contain a difference in a single nucleotide. 

In this case we say that there are two alleles: C and T. Almost all common SNPs have only 

two alleles. For a variation to be considered a SNP, it must occur in at least 1% of the 

population.  

Variations in the DNA sequences of humans can affect how humans develop diseases 

and respond to pathogens, chemicals, drugs, etc. Technologies from Affymetrix and 

Illumina allow for genotyping hundreds of thousands of SNPs for typically under $1,000.00 

in a couple of days. 

 

2.1.2 Analysis Software- PLINK, R, and Haploview 

PLINK (http://pngu.mgh.harvard.edu/~purcell/plink/index.shtml) 

PLINK is a free, open-source whole genome association analysis toolset, designed to 

perform a range of basic, large-scale analyses in a computationally efficient manner.  

The focus of PLINK is purely on analysis of genotype/phenotype data, so there is no 

support for steps prior to this (e.g. study design and planning, generating genotype calls 

from raw data). 

PLINK (one syllable) is being developed by Shaun Purcell at the Center for Human 

Genetic Research (CHGR), Massachusetts General Hospital (MGH), and the Broad Institute 

of Harvard & MIT, with the support of others. 

 

HaploView (http://www.broad.mit.edu/mpg/haploview/) 

Haploview is designed to simplify and expedite the process of haplotype analysis by 

providing a common interface to several tasks relating to such analyses. Haploview 

currently supports the following functionalities:  

 LD & haplotype block analysis  

 haplotype population frequency estimation  
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 single SNP and haplotype association tests  

 permutation testing for association significance  

 implementation of Paul de Bakker's Tagger tag SNP selection algorithm.  

 automatic download of phased genotype data from HapMap  

 visualization and plotting of PLINK whole genome association results including 

advanced filtering options  

Haploview is fully compatible with data dumps from the HapMap project and the 

Perlegen Genotype Browser. It can analyze thousands of SNPs (tens of thousands in 

command line mode) in thousands of individuals. 

 

R (http://www.r-project.org/) 

R is a free software environment for statistical computing and graphics. It compiles 

and runs on a wide variety of UNIX platforms, Windows and MacOS. It is convenient for 

statistic analysis with R. It contains distributions, tests, plots and other about statistic. 

 

2.2 Wellcome Trust Case Control Consortium (WTCCC)  

(http://www.wtccc.org.uk/) 

The Wellcome Trust Case Control Consortium (WTCCC) is a collaboration of 24 

leading human geneticists, who will analyze thousands of DNA samples from patients 

suffering with different diseases to identify common genetic variations for each condition. It 

is hoped that by identifying these genetic signposts, researchers will be able to understand 

which people are most at risk, and also produce more effective treatments. 

The WTCCC has now searched for the genetic variation associated with tuberculosis, 

coronary heart disease, type 1 diabetes, type 2 diabetes, rheumatoid arthritis, Crohn's 

disease, bipolar disorder and hypertension. The research was conducted at a number of 

institutes throughout the UK, including the Wellcome Trust Sanger Institute, Cambridge 
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University and Oxford University. 

Researchers will have analyzed over 19,000 DNA samples - two thousand patients for 

each disease and three thousand control samples - searching for important genetic 

differences between people who do and don't have each disease. 

 

2.2.1 CHIAMO vs. BRLMM 

CHIAMO is a program for calling genotypes from the Affymetrix 500K Mapping chip. 

The program allows for multiple cohorts which have potentially different intensity 

characteristics that can lead to elevated false-positive rates in genome-wide studies. The 

underlying model has a hierarchical structure that allows for correlation between the 

parameters of each cohort. CHIAMO is developed by WTCCC to replace BRLMM, the 

standard genotype calling algorithm, to calling genotype accuracy. The large number of 

misclassification will reduce the power of analysis (See Figure 1). 

 

2.3 Study Population 

The CAD individuals recruited by WTCCC and control from 1958 British Birth Cohort 

(58C) and UK Blood Services (UKBS) are hybridized to Affymetrix 500K chip 

subsequently. They are living within England, Scotland and Wales (‘Great Britain’) and the 

vast majority had self-identified themselves as white Europeans.The standard algorithm 

BRLMM developed by Affymetrix is used to called the genotype from the chip. WTCCC 

developed another algorithm, CHIAMO, to call the chip. Cross-platform comparison 

showed CHIAMO to outperform BRLMM by having an error rate under 0.2%, and 

comparison of 108 duplicate genotypes in WTCCC study data gave a discordance rate of 

0.12%. Our data is called by CHIAMO. 

 

2.3.1 Data conversion 
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When we get the genotype raw data, we convert the data by a c++ program to our data 

format, pedigree and map format. Since the number of SNP is large, we can’t convert them 

all at a time. We convert the data chromosome by chromosome and merge them by software 

PLINK to single one file. For the .ped file, the pedigree format file, each row represent a 

individual and each column represent Family ID, Individual ID, Paternal ID, Maternal ID, 

Sex, Phenotype, SNP1, SNP2, ... in turn. For the .map file, the map format file, each row 

represent a SNP and each column represent chromosome, rs# or SNP identifier, genetic 

distance, base-pair position in turn. 

 

2.4 Quality control 

   For a raw data, if we analysis it directly without remove low DNA quality SNPs or 

individuals, then the analysis results won’t be robust and reliable. For a restrained analysis, 

we must do the following procedures. For each SNP, we check for call rate (or missingness), 

minor allele frequency (M.A.F.), and Hardy-Weinberg disequilibrium. For each individual, 

we check for call rate (or missingness), heterozygosity, and cryptic relatedness. 

 

2.4.1 Call rate 

For each individual, call rate is the proportion of non-missing SNPs per sample. For 

each SNP, call rate is the proportion of non-missing data over all samples. The missing data 

rate per sample acts as an indicator of low DNA quality. 

 

2.4.2 Minor allele frequency (M.A.F.) 

For introducing the minor allele frequency (M.A.F.), we may speak of allele frequency 

first. For each SNP, there are two alleles. For each allele, allele frequency is the proportion 

of this allele in this SNP over all samples. And for each SNP, the smaller one allele 

frequency is called minor allele frequency (M.A.F.). 
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2.4.3 Heterozygosity 

For introducing the heterozygosity, we may speak of homozygous and heterozygous. 

For a SNP, each allele may be P or p, so the genotype is PP, Pp or pp. Homozygous 

represent genotype PP or pp, and heterozygous represent genotype Pp. For each individual, 

heterozygosity is the proportion of SNPs that are heterozygous or are a heterozygote (i.e., 

SNPs with different alleles in the homologous chromosome pair) among all typed SNPs. 

Excess heterozygosity may indicate contamination. Low heterozygosity can result in the 

lack of the mechanism that maintains polymorphism and helps to explain some kinds of 

genetic variability. For each SNP, heterozygosity = 2

1
1

n

i
i

p
=

−∑ , where pi is the frequency of 

the ith allele, and n=2 is the total number of alleles. The higher the value, the more 

polymorphic the SNP is. 

 

2.4.4 Hardy-Weinberg equilibrium (HWE) 

For combined control samples, we check the Hardy-Weinberg equilibrium. HWE holds 

at a locus in a population when the two alleles are not statistically associated. Deviations 

from HWE can be due to inbreeding, population stratification, selection, deletion 

polymorphism, or a segmental duplication that could be important in disease causation. So 

far, researchers have tested for HWE primarily as a data quality check and have discarded 

SNPs, for example, deviate from HWE among controls at certain significance level α (e.g., 

). For HWE testing, suppose that parents have the following inheritable rule 

for passing their features to their offspring. 

310 10or−= 　 4−
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The final three possible genotypic frequencies in the offspring become: 

.  2 2Pr( ) ,Pr( ) 2 ,Pr( )AA p Aa pq aa q= = =

For n samples, if the frequency of the observed genotype is the following. 

 
From which allele frequencies can be estimated as: 

2 , 1
2( )

AA Aa

AA Aa aa

n np q p
n n n

+
= =

+ +
−　  

So the Hardy-Weinberg expectation is: 

2 2( ) , ( ) 2 , ( )E AA p n E Aa pqn E aa q n= = =  

So the Pearson's chi-square test statistic is: 

2 :
2 2

, ,

( ) ~ .
oH HWE

AA Aa aa

O E with d f
E

χ χ−
= =∑ 　 　 . 1 

When there are low genotype count, and it is better to use a Fisher exact test. 

 

2.4.5 Cryptic relatedness 

For identify cryptic relatedness, first we may speak of identical-by-state (IBS). The 
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IBS is sum of the number of IBS alleles at each locus divided by twice the number of loci. 

For example, two unrelated individuals each with blood group AB share two alleles IBS. 

There is Evidence that, despite allowance for known family relationships, individuals in the 

study sample have residual, non-trivial degrees of relatedness, which can violate the 

independence assumptions of standard statistical techniques. So we select a set of SNPs, 

within which no pair was correlated with . This can be done by compute 

pairwise for 50 SNPs each other per time and delete SNPs until no one pairwise 

 and shift 5 SNPs for the next time and go on. Note that two SNPs with different 

chromosome will not be computed. For this set of nearly independent SNPs, we computed 

genome-wide average identity by state (IBS) between each pair of individuals. Individuals 

with too much IBS sharing will be exclude, likely duplicates (IBS>99%) or relatives 

(IBS>86%). 

2 0.2r >

2r
2 0.2r >

 

2.5 Population stratification 

The presence of population stratification may result by different ancestral and 

demographic histories in the study samples. If cases and controls differ with respect to these 

features, markers that are informative for them might be confounded with disease status and 

lead to spurious associations. Cryptic population structure that is not recognized by 

investigators is potentially more problematic. If there is population stratification to exist, we 

may identify and exclude individuals whose GWA data reveal substantial differences in 

genetic background, and adjust for residual stratification. 

 

2.5.1 Genome control (GC) 

For genome control, recall that the Armitage-test statistics  under H0 

(a test for the single SNP association, will discuss later). At the first, we require a number 

2 2~ (1Gχ χ )
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(preferably >100) of widely spaced null SNPs (i.e., it is unlikely that any one SNP is tightly 

linked to a disease-susceptibility gene) that have been genotyped in cases and controls in 

addition to the candidate SNPs. When there exists population stratification, 
2
Gχ  will no 

longer follow a chi-squared distribution under H0, but instead follow a scaled chi-squared 

distribution, i.e.,  under H0, where λ is a constant termed “variance 

inflation factor”. The estimation of variance inflation factor can be made by the following 

step: Genotype a number of null SNPs, and then the following can serve as an estimate ofλ. 

For theλ, there are two ways to estimate it. One is compute the mean of the Armitage-test 

statistics across these null SNPs (recall that

2 2~ (Gχ λχ 1)

{ }2 (1) 1E χ = ). And another one is to find the 

median of the Armitage-test statistics across these null SNPs, divided by the predicted 

median for the distributions (i.e., = 0.456). Estimated variance inflation factor λ by 

median is robust than mean. In a GWA study, it is difficult to identify the null SNPs. 

However, because the bulk of the tested loci in a GWA will naturally be null, it provided 

that a robust estimator is chosen. Therefore, the SNPs used in making estimates of λ are 

those that pass the filter for quality control. Then the Armitage test is applied at the 

candidate SNPs, and if  the test statistics are divided by 

2 (1)χ

ˆ 1λ > λ̂ (i.e.,
2

ˆ
Gχ
λ ). 

 

2.5.2 Multidimensional scaling (MDS) 

We use MDS for detecting individuals with different ancestry. MDS is a set of related 

statistical techniques often used in data visualisation for exploring similarities or 

dissimilarities in data. An MDS algorithm starts with a matrix of item-item similarities, and 

then assigns a location of each item in a low-dimensional space, suitable for graphing or 3D 

visualisation. For detecting individuals with different ancestry using MDS, at the first we 

select a set of SNPs, within which no pair were correlated with . This can be done 2 0.2r >
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by compute pairwise for 50 SNPs each other per time and delete SNPs until no one 

pairwise and shift 5 SNPs for the next time and go on. Note that two SNPs with 

different chromosome will not be computed. For this set of nearly independent SNPs, we 

computed genome-wide average identity by state (IBS) between each pair of individuals 

along with the 270 HapMap samples. Convert these IBS-relationships to distances by 

subtracting them from 1, and the matrix is used as input to MDS. The projection onto the 

two multi-dimensional scaling axes is shown. Since the 270 HapMap samples are composed 

of three races, so we can clearly identify those who with different cryptic ancestral. When 

we make Armitage-test, the statistic under H0.When there exist population 

stratification,

2r
2 0.2r >

2 2~ (1Gχ χ )

2
Gχ will no longer follow a chi-squared distribution under H0, but instead 

follow a scaled chi-squared distribution, i.e. under H0, where λ is a constant 

termed “variance inflation factor”. For estimate of λ, both the mean of the Armitage-test 

statistics across these null SNPs (recall that 

2 2~ (Gχ λχ 1)

{ }2 (1) 1E χ =  and the median of the 

Armitage-test statistics across these null SNPs, divided by the predicted median for 

the distributions (i.e., = 0.456) can make it, and the later is more robust. And then the 

statistic can be divided by λ. 

2 (1)χ

 

2.6 Tests of association 

There are several tests for association between SNP and disease. For single SNP, we 

take genotype-count and allele-count tests. Analyzing SNPs one at a time can neglect 

information in their joint distribution, so we take the multiple SNPs test. For multiple SNPs, 

haplotype-based method is used. 

 

2.6.1 Genotype-count test 
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For genotype-count test, the most natural 

analysis of SNP genotypes and case-control status at 

a single SNP is to test the null hypothesis of no 

association between rows and columns of the 2 × 3 

matrix that contains the counts of the three genotypes (the two homozygotes and the 

heterozygote) among cases and controls. Users have a choice between, among others, a 

Pearson test (2 d.f.) or a Fisher exact test. For lower count number, Fisher exact test 

performs better. If we consider a dominant / recessive model, if A is dominant, one can 

assign genotypes (aa,aA,AA) with score x=(0,1,1), and then test for association between 

case-control status and x; if A is recessive, one can assign genotypes (aa,aA,AA) with score 

x=(0,0,1), and then test for association between case-control status and x. And we can make 

the test similar to genotype-count test for dominant / recessive model. 

 

2.6.2 Allele-count test 

For complex traits, it is widely thought that contributions to disease risk from 

individual SNPs will often be roughly additive － that is, the heterozygote risk will be 

intermediate between the two homozygote risks. One way to improve power to detect 

additive risks is to count alleles rather than genotypes so that each individual contributes 

twice to a 2 × 2 table and a Pearson 1-df test can be applied. However, this procedure is not 

recommended because it requires an assumption of HWE in cases and controls combined 

and does not lead to interpretable risk estimates. The Cochran-Armitage test (also known as 

just the Armitage test and called within R the proportion trend test) is similar to the 

allele-count test. It is more conservative and 

does not rely on an assumption of HWE. 

The dots indicate the proportion of 
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cases, among cases and controls combined, at each of three SNP genotypes (coded as 0, 1 

and 2), together with their least-squares line. The Armitage test corresponds to testing the 

hypothesis that the line has zero slopes. 

The Cochran-Armitage test: 
( )

( ) ( ){ }
2

2
22

i i i i
G

i i i i
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, where  under H0: no association,x i,  i 0,1,i = = 2 )2 2~ ( . . 1G d fχ χ =  

The Cochran-Armitage test is equivalent to the score test for testing 0 :H 0β = in the 

logistic regression model (assuming additive effect) 

( ) ( )
( )

0
0

0

exp
Pr | ; , , where d 0( ),  1(case); x =i, i=0, 1, 2

1 exp
i

i i
i

d x
D d x control

x
β β

β β
β β
+

= = =
+ +

 

There is no generally accepted answer to the question of which single-SNP test to use. An 

intermediate choice is to take the maximum test statistic from those designed for additive, 

dominant or recessive effects. 

 

2.6.3 Haplotype-based method 

A popular strategy, suggested by the block like structure of the human genome, is to 

use haplotypes to try to capture the correlation structure of SNPs in regions of little 

recombination. This approach can lead to analyses with fewer degrees of freedom, but this 

benefit is minimized when SNPs are ascertained through a tagging strategy. Perhaps more 

importantly, haplotypes can capture the combined effects of tightly linked cis-acting causal 

variants.  

An immediate problem is that haplotypes are not observed; instead, they must be 

inferred. It can be hard to account for the uncertainty that arises in phase inference when 

assessing the overall significance of any finding. However, when LD between markers is 

high, the level of uncertainty is usually low. Given haplotype assignments, the simplest 
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analysis involves testing for independence of rows and columns in a 2 × k contingency table, 

where k denotes the number of distinct haplotypes. Alternative approaches can be based on 

the estimated haplotype proportions among cases and controls, without an explicit 

haplotype assignment for individuals (Schaid 2004). 

One problem with both these approaches is reliance on assumptions of HWE and of 

near-additive disease risk. Including rare haplotypes in analyses can lead to loss of power 

because there are too many degrees of freedom. One common but unsatisfactory solution is 

to combine all haplotypes that are rare among controls into a “dustbin” category.  

Another problem with defining haplotypes is that block boundaries can vary according 

to the population sampled, the sample size, the SNP density and the block definition. In 

software Haploview, the haplotype block can be defined by the software and we can take 

them to make test of association. But in software PLINK; we may compute all block size 2, 

3, 4, 5 haplotype for making test of association. 

 

2.7 Visualization display and previous evidence 

After all procedures are finished, in addition to show our result by tables, we can even 

make a visualization display for plotting the quantile-quantile (Q-Q) plot and Genome-wide 

Manhattan plots. Q-Q plot provide a visual summary of the distribution of the observed test 

statistics generated by a GWA study. Typically, a single test statistic (for case–control 

studies, a chi-squared ( 2χ ) comparison of absolute genotype counts) is calculated for each 

variant passing quality control. And Manhattan plots display GWA findings with respect to 

their genomic positions, highlighting signals of particular interest. This can help us to see 

the pattern of our result clearly. We can construct a table for previous robustly replicated 

loci and verify our analysis. 
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3 Method 

3.1 Review of 3 GWA studies 

3.1.1 Genome-wide association study of 14,000 cases of seven common diseases and 

3,000 shared controls 

WTCCC made GWA studies on British population by 2,000 individuals for each of 

7 major diseases and a shared set of 3,000 controls. These diseases are bipolar disorder 

(BD), coronary artery disease (CAD), Crohn’s disease (CD), hypertension (HT), rheumatoid 

arthritis (RA), type 1 diabetes (T1D), and type 2 diabetes (T2D). They are human diseases 

of major public health importance. Controls are composed of 1958 Birth Cohort Controls 

(58BC) and UK Blood Services Controls (UKBS). People in study were living within 

England, Scotland and Wales (‘Great Britain’) and the vast majority had self-identified 

themselves as white Europeans. These individuals were genotyped 500568 SNPs. 

They found it necessary to normalize the Affymetrix probe intensity data to minimize 

chip-to-chip variability. A C++ program, CHIAMO, was written to carry out this 

normalization efficiently. CHIAMO is a new genotype calling algorithm, implemented in 

C++. It uses a hierarchical statistical model, which allows it to simultaneously call 

genotypes at all data samples. 

For these 500,568 SNPs and 17000 individuals, they do quality control filter for (1) 

SNP call rate < 97% (missingness), (2) Heterozygosity > 30% or < 23% across all SNPs, (3) 

External discordance with genotype or phenotype data, (4) Individuals identified as having 

recent non-European ancestry by the Multidimensional Scaling analysis, (5) Duplicates, and 

(6) Individuals with too much IBS sharing (>86%); likely relatives. There are 16179 

individuals and 469557 SNPs (93.8%) pass QC filter. 

For the remaining SNPs and individuals, they do association assess for classical and 

bayesian statistical approaches. They performed trend tests (1 degree of freedom) and 
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general genotype tests (2 degrees of freedom) between each case collection and the pooled 

controls, and calculated analogous Bayes factors. They also do sex-differentiated test. 

Sex-differentiated test is sensitive to associations of a different magnitude and/or direction 

in the two sexes. They also did the combined diseases association test with potential 

aetiological overlap, and multilocus method by simulate, or impute, genotype data at 

2,193,483 HapMap SNPs not on the Affymetrix chip and then tested for association. For 

test of association, they used snpMatrix and SNPTEST. Both quantitative and qualitative 

phenotypes can be analyzed using snpMatrix and flexible association testing functions are 

provided that control for potential confounding by quantitative and qualitative covariates. 

SNPTEST is a standalone C++ program that implements both frequentist tests and bayesian 

analysis of association and allows the user to include quantitative or qualitative covariates. 

 

3.1.2 Genome-wide association study identifies novel breast cancer susceptibility 

loci 

Breast cancer is about twice as common in the first-degree relatives of women with the 

disease as in the general population. In 1990s, two major susceptibility genes for cancer, 

BRCA1 and BRCA2, were identified. Large case-control association studies have identified 

variants in the DNA repair genes CHEK2, ATM, BRIP1 and PALB2 that confer an 

approximately twofold risk of breast cancer, but these variants are rare in the population. A 

recent study has shown that a common coding variant in CASP8 is associated with a 

moderate reduction in breast cancer risk. After accounting for all the known breast cancer 

loci, more than 75% of the familial risk of the disease remains unexplained. They perform a 

three-stage association study. 

At stage Ⅰ, they recruited 408 cases (family history score ≥ 2, diagnosed  under age 

60, excluded BRCA1 & BRCA2 cases) and 400 controls (age ≥50, free of cancer at entry) 

and genotyped 266722 SNPs (m.a.f. ≥ 5%). SNPs and individuals were check if call rate ≤ 

 17 



80%. For first stage, there were 390 cases and 364 controls, 227876 SNPs left. These SNPs 

did the stage Ⅰ filter, (1) call rate ≤ 90%, (2) HWE with p-value < 10-5, and there were 

205568 SNPs left. From stage , 12711 (about 5%) SNPs selected on the basis of Ⅰ

significance of the difference in genotype frequency between cases and controls (P-trend < 

0.052 or weighted P-trend < 0.01 or P < 0.01 under dominant/recessive model), then 

genotyped in 3990 cases and 3916 controls from the SEARCH study, using a 

custom-designed oligonucleotide array. SNPs were check if call rate ≤ 80% and filter. These 

remain SNPs did the stage Ⅱ filter, (1) call rate ≤ 95 %, (2) HWE with p-value < 10-5, and 

there were 10405 SNPs left. For stage Ⅲ, 22714 cases of invasive breast cancer and 1020 

cases of carcinoma in situ (CIS) and 23369 controls from 22 case-control study are 

collected. These individuals were genotyped on 10405 SNPs and check if call rate ≤ 80% 

and there were 21860 cases of invasive breast cancer and 988 cases of carcinoma in situ 

(CIS) and 22578 controls left for stage Ⅲ. They tested 31 of the most significant SNPs (P 

trend of P(2d.f.)< 0.00002) on these individuals. Those test statistics for stage Ⅰand stage 

Ⅱ were adjusted by genome control. 

For tests of association, they performed Cochran-Armitage trend test (1 degree of 

freedom) for single SNP and stratified Cochran-Armitage trend test (1 degrees of freedom) 

where stage 1 was given a weight of 4 for stage1+2 combined SNPs. For stage 3, each study 

was treated as a separate stratum. P-value < 10-7 level has been proposed as appropriate for 

genome-wide studies. And they performed fine-scale mapping for the region significance 

SNP located by tag SNPs which r2>c, then use Haplotype analysis to find the possible 

causable allele. For significance SNPs, perform a multiple logistic regression analysis of 

these variates to find the odds ratios and confidence intervals. And the databases are from 

dbSNP, HapMAp, Perlegen. 

 

3.1.3 Genome-Wide Association Analysis Identifies Loci for Type 2 Diabetes and 
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Triglyceride Levels 

Type 2 diabetes, obesity, and cardiovascular risk factors are caused by a combination 

of genetic susceptibility, environment, behavior, and chance. Whole-genome association 

studies (WGAS) offer a new approach to gene discovery unbiased with regard to presumed 

functions or locations of causal variants. New strategies for prevention and treatment of 

type 2 diabetes (T2D) require improved insight into disease etiology. Patients with T2D, 

geographically matched controls, and discordant sib-ships were selected from Finland and 

Sweden. To avoid admixture with type 1 diabetes, patients had an age at onset > 35 years 

and no detectable glutamic acid decarboxylase antibodies (GAD Ab). Members from 

families with carriers of mutations causing maturity onset diabetes of the young (MODY; 

HNF4A, GCK, TCF1, IPF1, TCF2) were excluded, except for Skara where no screening for 

MODY mutations had been performed. Control subjects were defined as normal glucose 

tolerant. They recruited 1,022 cases and 1,075 controls for unrelated matched population 

and 442 cases and 392 controls for discordant sib-ships data. And 10,850 individuals 

(European ancestry) were used to replicate original T2D findings in this study. These 

samples were genotyped 500,568 SNPs. 

For individual inclusion criteria, they do the following check: (1) passing the 

fingerprint quality checks, (2) Genotyping call rates ≥ 95%, (3) Gender call from X 

chromosome genotype data was discrepant with the gender obtained from medical records 

were excluded from the analysis, and (4) in order to verify the existing known familial 

relationships identity-by-descent (IBD) analysis was performed using the PLINK analysis 

software package. After these processes, there are 2,931 individuals left. For SNP quality 

control, they do the following check: (1) did not map to multiple locations in the genome 

(3,605 markers excluded), (2) showed a >95% genotype call rate (34,532 markers excluded) 

and a >90% genotype call rate in both population and familial subsets of data (229 markers 

excluded), (3) MAF >1% 2,931 individuals (66,787 markers excluded) and >1% in both 
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population and familial subsets of the data (2,909 markers excluded), and (4) demonstrated 

Hardy Weinberg equilibrium with a P > 10-6 in controls (5,775 markers excluded). After 

these processes, there are 386,731 SNPs left. EIGENSTRAT was used to evaluate 

population structure in the samples. And they also adjusted population structure by using 

genome control to estimate a genomic inflation factor based on the median chi-squared test 

in the matched population-based case/control sample. 

To extend the set of putative causal alleles tested for association, we developed 

284,968 additional multimarker (haplotype) tests based on these SNP genotypes. The 

671,699 allelic tests capture (correlation coefficient r2 ≥ 0.8) 78% of common SNPs in 

HapMap CEU. Each SNP and haplotype test was assessed for association to T2D and each 

of 18 traits with the software package PLINK. For T2D, a weighted meta-analysis was used 

to combine results for the population-based and family-based subsamples. For quantitative 

traits, multivariable linear or logistic regression with or without covariates was performed. 

To perform association testing in the populaton sample, we performed a 

Cochran-Mantel-Haenszel (CMH) stratified test. To perform association testing in the 

familial sample, we used the DFAM procedure in PLINK. 

For replication data, 107 SNPs was tested. SNPs were tested for association using a 

simple Chi-square analysis in each of the three T2D replication samples. Combined 

analyses of replication samples or of all DGI samples was performed using Mantel Haenzel 

meta-analysis of the odds ratio. For this study, they use EIGENSTRAT to evaluate 

population structure and PLINK to test association. 

 

3.2 Summarized Procedures for a GWA Study 

For above three literatures, we arrange the procedures for a GWA study. Our procedure 

includes four steps: data management, preliminary analysis, association testing and result 

visualization. 

 20 



 

3.2.1 Data Management 

3.2.1.1 Genotype Calling 

Instead of use BRLMM, WTCCC develop a new algorithm, CHIAMO to call the 

Signal intensity on the raw chip and turn it into genotype data. CHIAMO can 

simultaneously call the genotypes from all individuals. Cross-platform comparison showed 

CHIAMO to outperform BRLMM by having an error rate under 0.2%, and comparison of 

108 duplicate genotypes in WTCCC study data gave a discordance rate of 0.12%. 

3.2.1.2 Data Conversion 

CAD case control genotype data obtained from WTCCC were converted by a c++ 

program to our study format, pedigree and map format (See Figure2, Figure 3). Since the 

number of SNP is large, we can’t convert them all at a time. We convert the data 

chromosome by chromosome and merge them by software PLINK to single one file. For 

the .ped file, the pedigree format file, each row represent a individual and each column 

represent Family ID, Individual ID, Paternal ID, Maternal ID, Sex, Phenotype, SNP1, 

SNP2, ... in turn. For the .map file, the map format file, each row represents a SNP and each 

column represent chromosome, rs# or SNP identifier, genetic distance, and base-pair 

position in turn. 

 

3.2.2 Quality Control 

There are several steps for data quality control. For each individual, we may check for 

call rate (or missingness), heterozygosity, and cryptic relatedness. For each Single 

Nucleotide Polymorphism (SNP), we may check for call rate (or missingness), minor allele 

frequency (M.A.F.), and Hardy-Weinberg disequilibrium. 

 

3.2.2.1 Call rate 
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For each individual, sample call rate is the proportion of non-missing SNPs per sample. 

We exclude individuals with Call rate ≤ 97% (or missingness ≥ 3%). For each SNP, SNP 

call rate is the proportion of non-missing data over all samples. We exclude individuals with 

Call rate ≤ 95% (or missingness ≥ 5%). 

 

3.2.2.2 Minor allele frequency (M.A.F.) 

For each SNP, the smaller one allele frequency is called minor allele frequency 

(M.A.F.). We exclude SNPs with M.A.F. < 1%, and we exclude 68444 SNPs from our data. 

 

3.2.2.3 Heterozygosity 

For each individual, genome-wide heterozygosity is the proportion of SNPs that are 

heterozygous or are a heterozygote (i.e., SNPs with different alleles in the homologous 

chromosome pair) among all typed SNPs. For each SNP, heterozygosity = 2

1

1
n

i
i

p
=

−∑ where pi 

is the frequency of the ith allele, and n=2 is the total number of alleles. We exclude SNPs 

with genome-wide heterozygosity ≤ 30% or genome-wide heterozygosity ≥35%. 

 

3.2.2.4 Hardy-Weinberg equilibrium 

For combined control samples, we check the Hardy-Weinberg equilibrium (HWE). 

HWE holds at a locus in a population when the two alleles are not statistically associated. 

When there are low genotype count, and it is better to use a Fisher exact test. We exclude 

SNPs with HWE testing p-value threshold 5.7*10-7. 

 

3.2.2.5 Cryptic relatedness 

The IBS is sum of the number of IBS alleles at each locus divided by twice the number 

of loci. We select a set of SNPs, within which no pair were correlated with r2 > 0.2. This can 
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be done by compute pairwise r2 for 50 SNPs each other per time and delete SNPs until no 

one pairwise r2 > 0.2 and shift 5 SNPs for the next time and go on. For this set of nearly 

independent SNPs, we computed genome-wide average identity by state (IBS) between 

each pair of individuals. Individuals with too much IBS sharing will be exclude, likely 

duplicates (IBS>99%) or relatives (IBS 86-99%). 

 

3.2.3 Population stratification 

For the SNPs passing quality control, they are check for population stratification. 

Population stratification is the presence in study samples of individuals with different 

ancestral and demographic histories. If cases and controls differ with respect to these 

features, markers that are informative for them might be confounded with disease status and 

lead to spurious associations. We should identify and exclude individuals whose GWA data 

reveal substantial differences in genetic background, and adjust for residual stratification. 

We attempt to identify population stratification by genome control (GC) and 

multidimensional scaling (MDS). 

 

3.2.3.1 Genome control (GC) 

The SNPs used in making estimates of λ are those that pass the filter for quality control. 

We can estimate λ by find the median of the Armitage-test statistics across these null SNPs, 

divided by the predicted median for the  distributions (i.e., = 0.456). The adjusted test 

statistics are divided by

2 (1)χ

λ̂ . 

 

3.2.3.2 Multidimensional scaling (MDS) 

At the first we select a set of SNPs, within which no pair were correlated with r2 > 0.2. 

This can be done by compute pairwise r2 for 50 SNPs each other per time and delete SNPs 
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until no one pairwise r2 > 0.2 and shift 5 SNPs for the next time and go on. For this set of 

nearly independent SNPs, we computed genome-wide average identity by state (IBS) 

between each pair of individuals along with the 270 HapMap samples. Convert these 

IBS-relationships to distances by subtracting them from 1, and the matrix is used as input to 

MDS. The projection onto the two multi-dimensional scaling axes is shown. 

 

3.2.4 Test of association 

We check the association by test for single SNP and multiple SNPs. For single SNP, we 

test the association for using genotype-count test and allele-count test. For multiple SNPs, 

we just talk about the haplotype-based method. 

 

3.2.4.1 Single SNP 

Genotype count test 

The most natural analysis of SNP genotypes and case-control status at a single SNP is 

to test the null hypothesis of no association between rows and columns of the 2 × 3 matrix 

that contains the counts of the three genotypes (the two homozygotes and the heterozygote) 

among cases and controls. Users have a choice between, among others, a Pearson test (2 d.f.) 

or a Fisher exact test. 

 

Dominant / recessive model 

If we consider a dominant / recessive model, if A is dominant, one can assign 

genotypes (aa,aA,AA) with score x=(0,1,1), and then test for association between 

case-control status and x; if A is recessive, one can assign genotypes (aa,aA,AA) with score 

x=(0,0,1), and then test for association between case-control status and x. And we can make 

the test similar to genotype-count test for dominant / recessive model. 
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Allele count test 

We count alleles rather than genotypes so that each individual contributes twice to a 2 

× 2 table and a Pearson 1-df test can be applied. 

 

Cochran-Armitage test 

The Cochran-Armitage test: ( )
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There is no generally accepted answer to the question of which single-SNP test to use. 

An intermediate choice is to take the maximum test statistic from those designed for 

additive, dominant or recessive effects. 

 

3.2.4.2 Multiple SNPs 

The procedure of haplotype-based method is that given haplotype assignments, the 

simplest analysis involves testing for independence of rows and columns in a 2 × k 

contingency table, where k denotes the number of distinct haplotypes. Alternative 

approaches can be based on the estimated haplotype proportions among cases and controls, 

without an explicit haplotype assignment for individuals (Schaid 2004).  

We can define the haplotype block by the software Haploview and take them to make 

test of association. But this software has SNP number limitation. So we can perform the 

haplotype tests in software PLINK. For PLINK, we can’t define the haplotype block; 

instead, we take all block size 2, 3, 4, 5 haplotypes for making test of association. For 

example, a size 2 haplotype for two SNPs with genotype Aa, Pp may be AP, aP, Ap, and ap. 

And we take all 4 haplotype for haplotype test. 
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3.2.5 Visualization display and previous evidence 

We can construct a table for previous robustly replicated loci and verify our analysis. In 

addition, we can even make a visualization display for plotting the quantile-quantile (Q-Q) 

plot and Genome-wide Manhattan plots. Q-Q plot provide a visual summary of the 

distribution of the observed test statistics generated by a GWA study. And Manhattan plots 

display GWA findings with respect to their genomic positions, highlighting signals of 

particular interest. This can help us to see the pattern of our result clearly. Q-Q can be done 

by software R, and Manhattan plot can be done by software haploview. 
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4 Analysis of the CAD data from WTCCC 

4.1 Study Population 

1988 CAD individuals included in the Wellcome Trust Case Control Consortium 

(WTCCC) study were living within England, Scotland and Wales (‘Great Britain’) and the 

vast majority had self-identified themselves as white Europeans. Coronary Artery Disease 

(CAD) is common familial disease of major public health importance both in the UK and 

globally, and for which suitable nationally representative sample sets were available. The 

control individuals came from two sources: 1,504 individuals from the 1958 British Birth 

Cohort (58C) and 1,500 individuals selected from blood donors recruited as part of this 

project (UK Blood Services (UKBS) controls). All 4992 samples were genotyped with the 

GeneChip 500K Mapping Array Set (Affymetrix 500K chip), which comprises 490032 

SNPs. 

 

4.2 Data management 

Instead of use BRLMM, WTCCC develop a new algorithm, CHIAMO to call the Signal 

intensity on the raw chip and turn it into genotype data. CHIAMO can simultaneously call 

the genotypes from all individuals. Cross-platform comparison showed CHIAMO to 

outperform BRLMM by having an error rate under 0.2%, and comparison of 108 duplicate 

genotypes in WTCCC study data gave a discordance rate of 0.12%. CAD case control 

genotype data obtained from WTCCC were converted by a c++ program to our study format, 

pedigree and map format (See Figure2, Figure 3). For the .ped file, the pedigree format file, 

each row represent a individual and each column represent Family ID, Individual ID, 

Paternal ID, Maternal ID, Sex, Phenotype, SNP1, SNP2, ... in turn. For the .map file, the 

map format file, each row represents a SNP and each column represent chromosome, rs# or 

SNP identifier, genetic distance, and base-pair position in turn. 
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4.3 Quality control 

For sample call rate we exclude individual if call rate ≤ 97%, and we exclude 0 

individual since our data may be imputed. For SNP call rate we exclude SNP if call rate ≤ 

95%, and we exclude 0 SNP since our data may be imputed. 

For Genome-wide heterozygosity we exclude individual if genome-wide 

heterozygosity > 35% or < 30%, and we exclude 29 individuals from the analysis (See 

Figure 4). 

For cryptic relatedness we sieve out 82,686 SNPs for calculating the genome-wide 

average IBS, then we exclude individual with IBS > 99% (duplicated) or IBS 86-99% 

(relatives). Finally, we exclude 16 (duplicated) + 43 (relatives) individuals from the 

analysis. 

For Minor allele frequency (M.A.F.) we exclude SNP with M.A.F. < 1% and we 

exclude 68,444 SNPs from the analysis. 

For Hardy-Weinberg equilibrium (HWE) we exclude SNP for HWE testing with 

p-value threshold 5.7*10-7 and we exclude 5,915 SNPs from the analysis. 

 For quality control, we show it by figure (See Figure 5) for a clear display. It shows the 

criteria for each check and exclusion number for this check. 

 

4.4 Population stratification 

For the population stratification, we compute λ = 1.087280702 by the median of 

Armitage-test statistics. This can be used to adjust the Armitage test statistic for the 

deviation of null hypothesis.  

We sieve out 82,686 nearly independent SNPs for Multidimensional scaling (MDS), 

and plot MDS for the first two dimensions. For a threshold for first dimension axes value > 

0.5, we exclude 23 individuals from MDS (See Figure 6).  
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So far, we exclude 111 individuals and 74359 SNPs from quality control and MDS 

from our analysis data, and we have 4881 individuals and 415673 SNPs left. 

 

4.5 Tests of Association 

For single SNP, we do the tests of allele count test, genotype count test, dominant and 

recessive model, and Armitage trend test. For multiple SNPs, we do the haplotype-based 

tests for haplotype block size 2, 3, 4, and 5. For these tests, we set a p-value threshold by 

5*10-7. The results are showed by Q-Q plots and Manhattan plots. We also show the result 

by table for previous robust replication loci. (See Figure 7 － Figure 14, Table. 1). 
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5 Conclusion and Discussion 

5.1 Conclusion 

There is increasing evidence that genome-wide association (GWA) studies represent a 

powerful approach to the identification of genes involved in common human diseases. We 

attempt to construct a standard GWA flow path. First stage, we may arrange our data to our 

analysis format. Then we do the quality control to ensure high DNA quality. The third stage 

is to identify and exclude individuals whose GWA data reveal substantial differences in 

genetic background, and adjust for residual stratification. We can do genome control and 

MDS for this stage. The data passing our preliminary processes can be used to test the 

associations. For testing the association between SNP and disease, there are single SNP 

method and multiple SNPs method. And we built up an overall flow path for GWA study 

(See Figure 15, Table 2). 

 

5.2 Discussion 

Although the tests of association have large number of significant SNPs, most of them 

are significant just because they are highly correlated with disease SNPs. The next step is to 

do the fine mapping to find the causal SNP and verify it by biological explanation. And 

since the number of individuals is smaller than the number of SNPs, so the power may be an 

issue for us to resolve. There are increasing researchers devoted to GWA study. Thousand of 

method and theory are develop to resolve the problem they meet at the study. Our purpose is 

to construct a standard flow path such that everyone who wants to do the GWA study has 

accidence for knowing what GWA study is. Of course, there are many method and theory 

we do not mention, anyone who make the GWA study can extend it by search information 

from the internet. 
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Figure 1. Calling algorithm influence Genotype accuracy. Three colors represent 

different genotypes. The ideal genotype cluster will be separated clearly (panel e). 

Panel f has a good cluster, but a mistake calling algorithm. In panel g and h, 

significant overlap between clusters is likely to result in failure to call certain 

genotypes 
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Figure 2. Raw data format before convert 
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Figure 3.a. PLINK format data-ped format 

 

 

Figure 3.b. PLINK format data-map format 

 34 



 

Figure 4. Scatter plot for mean heterozygosity and fraction of missing genotype for 

individuals. We exclude individual by heterozygosity >0.35 or heterozygosity < 0.3. 
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Figure 5. Quality control flow path 
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Figure 6. MDS plot for CAD case and combined control. We exclude individuals by 

points with x-axis value>0.5. 

 

 

Figure 7. Genome-wide Manhattan plot for fisher’s exact test 
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Figure 8. QQ plot and Genome-wide Manhattan plot for genotype test 
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Figure 9. QQ plot and Genome-wide Manhattan plot for dominant model 
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Figure 10. QQ plot and Genome-wide Manhattan plot for recessive model 
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Figure 11. QQ plot and Genome-wide Manhattan plot for allele count test 
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Figure 12. QQ plot and Genome-wide Manhattan plot for Cochran-Armitage trend 

test 
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Figure 13. QQ plot and Genome-wide Manhattan plot for Cochran-Armitage trend 

test adjusted by GC 
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Figure 14.a. Genome-wide Manhattan plot for haplotype test block size = 2 
Chromosomes are divided by colors. 

 

 
Figure 14.b. Genome-wide Manhattan plot for haplotype test block size = 3 
Chromosomes are divided by colors. 
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Figure 14.c. Genome-wide Manhattan plot for haplotype test block size = 4 
Chromosomes are divided by colors. 

 

 
Figure 14.d. Genome-wide Manhattan plot for haplotype test block size = 5 
Chromosomes are divided by colors. 
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Figure 15. GWA study flow chart 
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Table 1. Previously robustly replicated loci 

 

Table 2. GWA procedures and software used in the paper 
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