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Chinese Abstract 
改良的迴歸樹在半導體良率提升之應用 

 
研究生：賴政言                                  指導教授：盧鴻興  博士 

 

國立交通大學統計學所   碩士班 

摘 要       

 在半導體產業中，產品之良率高低將影響公司之營運成本與競爭力，故提升

良率是每一間公司的重要目標，然而技術的進步固然重要，確保其產品之良率維

持在應有之水準更為重要。由於半導體產業製程相當複雜，產品中之檢驗站往往

是需經過數百個製程站才可執行，若其良率發生變異，要從中找出有問題的製程

站，對於工程師而言為一大挑戰。 

在現有文獻中，對於解決檢驗良率是否發生變異並找出其正確位置，尚未有

一較佳的方式，因此開發偵測良率之自動化系統極為重要。在本篇論文中，將利

用數學方式建立模型，提供偵測良率之方式，使工程師更有效率的解決有問題的

製程站。 

 本篇論文所提供之方式，主要想法是來自於 CART (Classification And 
Regression Tree)中之迴歸樹作法，並對其做一改良，進而將此應用至半導體產業

界上。由於半導體產業中製造過程，常會出現離群值，其對於數學上建立模型為

一困擾，因此在本文中對於離群值之出現，亦提供一方式來解決離群值對所建立

之模型影響。 

而在本文中，將會與 2000 年 Wayne A. Taylor 博士所發表的方法作比較。利

用模擬的方式，建立均值平移之模型，模擬產品良率變動之情形，並且以偵測出

其變異所發生之位置來比較其正確率。 
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English Abstract 
Modified Regression Tree 

and their Applications in Semiconductor Yield Improvement 
 

 
student：Zheng-Yan Lai               Advisors：Dr. Horng-Shing Lu 

Institute of Statistics 
National Chiao Tung University 

ABSTRACT 
In the semiconductor industry, a yield rate will affect the cost of business and the 

competitive power the company. Therefore, promoting a yield rate contributes to each 
company's profitable target. However, not only is the technical progress undoubtedly 
important, but a company’s guarantee that its product will have a standard yield rate is 
also important. Because the semiconductor industry’s system regulation is quite 
complex, a product must pass through hundreds of process stations to completely 
manufacture the product. After completing a system of ownership regulation, the 
product will be able to detect its yield rate. Therefore when the yield rate varies, it is 
an enormous challenge for engineers. 

 In current literature, there is no good way to solve the process of detecting 
whether to have variation and to discover a correct position. Therefore it is very 
important to develop an automatic system to detect the variation of the yield rate. In 
this paper, we will establish a model using mathematics, provide a way to detect the 
yield rate, and provide engineers a more effective solution to find the problem station. 

The main ideal of this paper comes from CART (Classification And Regression 
Tree). This paper improves on it and then applies this method to the semiconductor 
industry. In the manufacturing process in the semiconductor industry, the regular 
session presents the outlier, and it is confusing to use mathematics in the model. 
Therefore the appearance of an outlier also provides a way to solve it. 

Also, in this paper, our method will compare the accuracy rate with CPD 
(statistical Change-Point Detection), which was proposed by Dr. Wayne A. Taylor 
(2000a). Using a simulation, we set up models of the mean shift to simulate situations 
of changing product yield rates and use the detection of its varying position to 
compare its accuracy. 
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Chapter 1: Introduction 

1. 1 Motivation and objectives 

 In the semiconductor industry, a better wafer yield is equivalent not only to the 

quality of the products in the company but also to operation costs and completion. In a 

good company, high quality is good and often increases its competitive power. 

Therefore each company's management promotes yield as its production profit target. 

 But a semiconductor's system is quite complex, frequently passing through 

hundreds of process stations to be able to completely manufacture the product. And 

after completing a system of ownership regulation, the product will be able to detect 

its yield rate. Therefore when the yield rate varies, it is an enormous challenge for 

engineers. 

If some system regulation takes place the problem at time t, there will occur two 

distributions of yield rates around time t (Figure 1). According to the product in this 

station's production order, engineers draw the trend chart of a product's yield rate. He 

will find that the trend shifts the mean if there is a problem at the time t. An engineer 

would think that the problem which influenced the yield rate is at time t and need to 

check it. 

The traditional SPC method is not suitable for this question. There are two 

primary causes: first, the product must be able to get the yield rate detection through 

hundreds of system regulation stations and then obtain the product's yield rate. Second, 

the semiconductor industry's production pattern is not necessarily in accordance with 

FIFO (first-in and first-out), such that the first product produced may not necessarily 

complete the whole manufacturing process first and detect its yield rate. Hence, we 

must find a new way to monitor the yield rate in the process. 
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On different fields, there are many methods to solve the mean-shift problem. CPD 

(statistical Change-Point Detection) is used widely. For example, CPD may be used to 

discover the nerve where the fission in biosphere appears [11]; it also applied to 

monitor the semiconductor yield rate in semiconductor industry. [15] 

Moreover, we can use CART (Classification And Regression Tree) to detect the 

mean-shift problem. However, it is difficult to select the cost-complexity, which 

describes the order of complexity of the model. In Statistics, we will use 

cross-validation (Seymour Geisser, 1929 – 2004) to determine the cost-complexity, 

but its shortcoming lies in the its complex computation, and it results in small samples, 

which is bad. 

Because in the semiconductor industry, manufacturing processes are quite 

complex, people sometimes avoid some outlier materials that are produced because of 

artificial mistakes. Engineers hoped to understand a regulation system with an overall 

tendency to exclude the effect of outliers. As a result of the outliers' appearance, the 

outcome usually changes tremendously. Thus, there needs to be a method to deal with 

outliers. In Figure 2, and Figure 3 we can find that the outliers affect the outcomes. 

Finally, in the semiconductor field, the components are often measured by 

different instruments, so methods must be effective to detect the location of the mean 

shift suitably in different situations for engineers and be able not to influence the unit 

of measurement. 
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Figure 1 Some system regulation takes place the problem at time t. 
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Figure 2 The outliers affect the outcomes.(1) 
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Figure 3 The outliers affect the outcomes.(2) 
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1. 2 The procedure of research 

 

 
Figure 4 The procedure of research 

 

 

1. To understand the problem 

In the semiconductor field, solving the mean-shift problem most often involves 

using CPD, which is a method Taylor proposed in 2000 to find a change-point, mainly 

using a cumulated sum (CUSUM) method. However, the simulated yield rate was 

unable to satisfy the expectations of an engineer. Therefore we need to research and 

develop a method to get a high simulated yield rate for the mean-shift problem and 

widely to apply it to different places. 

2. To understand the regression tree 

A regression tree is a fast calculating method which uses dichotomy to quickly 

divide data. In this way, it will clearly understand the whole properties of data. But, 

there is no good way in literature to choose the size of model. Moreover, we discover 
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that the result of partitioning is very easily wrong if outliers exist. Thus, to deal with 

outliers is also an important link. 

3. To improve the regression tree 

 We propose a method to improve the regression tree. The main quotation of the 

new method is Bayesian, and the concept of an influence point in regression analysis 

is to choose the infection of outliers. 

4. To check ideal by simulation 

Using the different models, we discuss the simulated classification rate of the new 

method. Then from simulation results, the new method's simulated classification rate 

is high. And it does not affect unbalanced data, different units, and less affect the 

outliers. 

 

1. 3 Organization 

 This thesis is organized as follows. Chapter 1 outlines the procedure of this 

research, motivation and objective. In Chapter 2, we describe literature review, which 

contains two methods to detect the location of mean-shift. In Chapter 3, we propose 

our new method, which is improved by CART and deals with outliers by the view of 

influence point. In addition, we verify our method by using simulation result in 

Chapter 4 and conclude the thesis in Chapter 5. 
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Chapter 2: Literature review 

2. 1 Using CPD to detect the mean-shift problem 

 CPD (statistical Change-Point Detection) was proposed by Dr. Wayne A. Taylor 

(2000a). This method can detect the change-point problem. Refer to this homepage: 

http://www.variation.com/cpa/tech/changepoint.html. In this paper, it was introduced 

by an example for US trade deficit data. 

Taylor (2000a) uses the procedure to find out the location of change for 

execution change analysis. It mainly uses the tools cumulative sum chart (CUSUM) 

and permutation test. 

In this paper, the significant level for permutation tests is 95%. If the test result 

was significant, Taylor would use CUSUM to find out the location of mean-shift. 

 Suppose the data is iY ， 1,  ...,  i N= , and the significant level is α . At first 

Taylor calculates the cumulative sums. 

1 ( )i i iS S Y Y−= + − , 0 0S =                     (2.1) 

Then he calculates the value 0
diffS , where 

0
max mindiffS S S= − , and 

max
0, ..., 

min
0, ..., 

max

min

i
i N

i
i N

S S

S S
=

=

=

=
 

Taylor repeats the above movement B times by permuting the data, and gets the 

values 1,  diffS 2 ,diffS  ...,  diff BS . By calculating the counts of 0
diff i diffS S> , he gets its 

confidence level: count100 %
B

× . If count100 %
B

α× > , he will conclude the trend is 

http://www.variation.com/cpa/tech/changepoint.html
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changed in some position. Then he will find out the location of mean-shift by 

CUSUM and separate the data into two sections. 

 maxm iS S=                           (2.2) 

 At last, he finds out all the changes in this trend repeatedly for each section. The 

algorithm is as follows. 

1. Given the significant level α , all data are named resource data. 

2. Take resource data to input data0. 

3. Calculate 0
max mindiffS S S= − , where 1i i iS S Y Y−= + − . 

4. By permuting the input data B times, get B sequences of the new input data. 

5. Repeat step 4 ~ step 5 to get 1 2,  ,  ...,  diff diff diff BS S S . 

6. Calculate the counts 0
diff i diffS S> . 

7. The significant level is count100 %
B

× . 

8. If count100 %
B

α× ≥ , go to step 11 ~ step 12. Else conclude that there is no shift 

in this section and break. 

9. By CUSUM chart   maxm iS S= , to find out the location of mean-shift. 

10. Record the location of mean-shift, and partitioned the two input data1 and input 

data 2. 

11. Take input data 1 and input data 2 individually to input data 0, and go to step 3 ~ 

step 12. 

12. Get all of the locations of mean-shift. 
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2. 2 Using regression trees to detect the mean-shift problem 

2. 2. 1 Introduction of regression trees 

 In 1963, Morgan and Sonquist proposed Automatic Interaction Detection (AID) 

to get the optimum model by minimizing the mean square error. The regression tree 

was a development traced back to Morgan (1964), Sonquist (1970), Sonquist, Morgan 

(1973), Fielding (1977), Van Eck (1980), and Leo Breiman, Jerry Friedman, Charles 

J, .Stone, Richard Olshen, who proposed CART in 1984. 

CART is an algorithm to separate data by using a binary decision tree. The 

algorithm for the material divides the parental node to two child nodes, using 

recursive partitioning from top to down to establish a complete tree. The following 

figure, Figure 5, makes an introduction using a graphical representation to construct 

the tree. 

 

 

 

Figure 5 Construction of a tree 
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Suppose ( ,  ),  1,  ...,  ,i ix y i N= with 1 2( ,  ,  ...,  )i i i inx x x x= . The algorithm needs 

to automatically decide the split points. Suppose we have a partition of K  regions 

1 2,  ,  ...,  KR R R . Then our response model is denoted by  

1
( ) ( )

K

m k
k

f x c I x R
=

= ∈∑                       (2.3) 

where mc  is a constant in each region. 

 If we adopt minimization of the sum of squares as the criterion for the split rule, 

we will use ˆmc  to estimate mc , where ˆmc  is the average of iy  in the region kR . 

m
ˆ average( | )i i mC y x R= ∈                     (2.4) 

 We will illustrate the regression tree in three sections. We will say how to find 

the best point to split the data in 2.2.2 and how to select the tree size in 2.2.3. 

 

2. 2. 2 Partition 

 We find the best binary partition by minimizing the sum of squares. The goal of 

the partition is to decrease the error in each group. We seek the splitting variable j and 

split point s by solving as follows below. 

1 2( , ) { | } and ( , ) { | }j jR j s X X s R j s X X s= ≤ = >            (2.5) 

1 2
1 2

2 2
1 2

, ( , ) ( , )
arg min[min ( ) min ( ) ]

i i

i ic cj s x R j s x R j s
y c y c

∈ ∈

− + −∑ ∑          (2.6) 

For any choice j and s, the solution of 1c  and 2c  are estimated by 1̂c  and 2ĉ , 

where 1̂c  and 2ĉ  are as follows below. 

1 1

2 2

ˆ average( | ( ,  ))
ˆ average( | ( ,  ))

i i

i i

c y x R j s
c y x R j s
= ∈
= ∈

                  (2.7) 

 We partition the data into two resulting regions and repeat the splitting process 

on each of the two regions. Then the process will split the data into individual 

sections. 
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2. 2. 3 Pruning 

 How large should we grow the tree? A large tree might over-fit the data; on the 

contrary, a small tree might not describe the important structure. Tree size will be a 

parameter to control the model’s complexity, so how do we choose the tree size? 

Traditionally, there are two ways to prune trees for choosing a tree size. One is 

pre-pruning, and the other is post-pruning. The algorithm of pre-pruning is setting 

some criteria to determine how to stop the tree from growing, and the algorithm of 

post-pruning is pruning a tree by some criteria after growing a complete tree. The 

criteria of pre-pruning are too short-sighted, however, since a seemingly worthless 

split might lead to a good split below it. So, we will use post-pruning to choose the 

tree size in this paper. 

 

Venables and Ripley proposed to choose the terminal node by these two criteria: 

1. max ( ,  ) 0.006 ( )
s

R s t R tΔ ≤ , i.e. the sum of squares after a spilt is smaller 

than the original data by 0.006 times. 

2. The size of terminal node is at least 5. 

 

Then this large tree is pruned by using cost-complexity pruning. Suppose T  is a 

subtree of 0T , and with T  terminal nodes, where T  is the number of terminal 

nodes in T . We index terminal nodes by k , and we represent a region by kR . 

Suppose  

1ˆ
i k

k i
x Rk

c y
N ∈

= ∑                          (2.8) 

21 ˆ( ) ( )
i k

k i k
x Rk

Q T y c
N ∈

= −∑ ,                    (2.9) 
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the cost complexity criterion is represented by 
| |

1
( ) ( )

T

k k
k

C T N Q T Tα α
=

= + ×∑                      (2.10) 

where  

kN  is the number of the observation data falling in the region kR . 

k   is the index of terminal nodes on the binary tree T . 

T  is the number of terminal nodes in T , and. 

α   is the cost-complexity ( 0α ≥ ). 

 For given a cost-complexity α , we can get a subtree Tα  to minimize ( )C Tα . 

From this formula, we can find the larger value α  gets, the smaller subtree Tα  gets. 

For given each valueα , we can get a unique smallest subtreeTα . If 0α = , we can get 

a full tree.  

 

2. 2. 4 The challenge of using regression trees to detect mean-shift 

In Figure 6, we can find the relation between the mean-shift trend chart and 

regression tree. We can detect the mean-shift by this way, but there are many 

challenges in this question. 

For a given data, and we can plot its trend chart (Figure 7). If using different 

cost-complexity α  in this data, the results of regression tree will different as in 

Figure 8. Given the same α  using different scales to change the data, we can find 

different results of regression trees in Figure 9. If the number of mean-shifts is more 

than one, a major mean-shift would dominate the decision of a minor mean-shift if the 

major mean-shift is large. The challenge of a regression tree is how to give an 

adequate cost-complexity value for the data. 
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Figure 6 The relation between the mean-shift trend chart and regression tree 
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Figure 7 Trend chart of row data 

 

 
Figure 8 The results of tree with different cost-complexity values are different. 
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Figure 9 The results of tree with different scales are different. 
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Figure 10 A major mean-shift would dominate the decision of a minor mean-shift. 

 

 

2. 2. 5 Cross-Validation 

 Cross-validation (Stone, 1974, Stone 1977, and Allen 1977) is the most widely 

used method for estimating prediction errors in machine learning. Also, it is used in 

regression trees to choose the optional model.  

 Suppose Y  is a target variable, X  is a vector of inputs, and a prediction 

model ˆ ( )f X  has been estimated from a training sample. Then this method estimates 

the extra sample error  
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( )ˆErr ,  ( )E L Y f X⎡ ⎤= ⎣ ⎦ ,                      (2.11) 

where ( )ˆ,  ( )L Y f X  is the loss function for measuring errors between Y  and 

ˆ ( )f X , and is described as follows: 

2ˆ( ( ))   squared error ˆ( ,  ( )) ˆ ( )      absolute error

Y f X
L Y f X

Y f X

⎧ −⎪= ⎨
−⎪⎩

 

 Suppose we split the data into K  equal-sized parts. For the thk −  part, we fit 

the model with the other 1K −  parts of the data and then calculate the prediction err- 

or of the thk − part of the data, where 1,  ...,  k K= . Let { } { }: 1,  ...,  1,  ...,  N Kκ 6  

be an indexing function, and let ˆ ( )kf x−  denote the fitted function for removing the 

thk −  part of the data. Then the cross-validation estimate of prediction error is  

( )

1

1 ˆ( ,  ( ))
N

i
i i

i
CV L y f x

N
κ−

=

= ∑ .                   (2.12) 

If K N= , it equals leave-one-out cross-validation. 

Given a set of models ( ,  )f x α  indexed by a tuning parameter α , we denote 

the fitted function for removing the thk −  part of the data as ˆ ( ,  )kf x α− . Then the 

cross-validation estimate of prediction error is  

( )

1

1 ˆ( ) ( ,  ( ,  ))
N

i
i i

i
CV L y f x

N
κα α−

=

= ∑ .                (2.13) 

Then we find the tuning parameter α̂  to minimize it and choose the model ˆ ˆ( ,  )f x α  

to fit the data. Traditionally, tools like five-fold cross-validation or ten-fold 

cross-validation are widely used to estimate the error. The algorithm is as follows 

below. 
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Algorithm of Cross-Validation Tree  

1. Suppose Y  is a target variable, X  is a vector of inputs, and α  is a tuning 

parameter. 

2. Split the data into K  groups by random chance. 

3. Take 1K −  groups as training set, and group k as testing set. 

4. Set up the model by the 1K −  groups. 

5. Predict the group k  by the model from step 4. 

6. Repeat from the step 3 to step 5 to calculate ( )CV α , where 

( ) ( )

1

1 ˆ( ,  ( ,  ))
N

i
i i

i
CV L y f x

N
κα α−

=

= ∑ , { } { }: 1,  ...,  1,  ...,  N Kκ 6 , and  

2ˆ( ( ))   squared error ˆ( ,  ( )) ˆ ( )      absolute error

Y f X
L Y f X

Y f X

⎧ −⎪= ⎨
−⎪⎩

 

7. Find a tuning parameter α̂  and minimize it. 

8. In program, repeat r times from step 1 to step 7 to get { }*
1ˆ ˆ,  ...,  rα α∗

. 

9. Use 

*
* 1ˆ ˆ ...  ˆ r

r
α α∗ + +

α =  to set up the model. 

 

 

2.3 Outlier 

 In general, an outlier is an observed value that is numerically distant from the 

rest of the data. 

However, an outlier appearance will create many puzzles. First, you must suspect 

whether this outlier is there because of some kind of mistakes, perhaps such as 

external factors. And maybe we can consider giving up this outlier, according to the 

least squares error method principle, as the outlier will change the model if it exists. 

But the outlier could also possibly be directed to contain some important information, 
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such as perhaps some key points existing in this discovery. Therefore we suggest 

deleting it when we were certain the outlier is due to other reasons. 

In regression analysis, there are some points called high leverage points [12], if 

they have the influence to change the model. We can find that the model has a large 

change if point A existed in Figure 11. 
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Figure 11 Example of an influential point 
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Chapter 3: New Method 

3. 1 Introduction of a new method 

 The new method is an improvement on the Bayesian method for pruning in the 

algorithm of CART. By this method, it will be easy to choose the cost-complexity for 

data. 

Let Y be a piecewise stationary mean process and be as follows according to 

mathematical symbols. 

2,  1 ,  ~ (0,  )i i i iY i N N εμ ε ε σ= + ≤ ≤ ,                    (3.1) 

where is the mean of i-th componentiμ  

is the sample sizeN , and 

2 is Within-varianceεσ  

Suppose the data has K  steps, and the location of mean-shift are at 

1 1,  ...,  ,  ...,  k Kt t t − , 0 1t = , Kt N= , and 0 11 ... ...k Kt t t t N= < < < < < = .  The data is 

split into these 1k −  points, 1 1,  ...,  ,  ...,  k Kt t t − , the mean in each section is 

1,  ...,  ,  ...,  k Kθ θ θ  in order, and is as follows according to mathematical symbols. 

i 1for ( 1)k k kt i tμ θ += ≤ ≤ −                      (3.2) 

In this question, K and t  are a random variables, because we don’t know how 

many times the mean shifted in the data or where the locations of mean-shift are. 

We suppose that there exists a binary sequence R  with length N  to represent 

the data, where 

1 if ,  for 1 ,  1
0 if ,  for 1 ,  1

k
i

k

i t k K i N
R

i t k K i N
= ≤ ≤ ≤ ≤⎧

= ⎨ ≠ ≤ ≤ ≤ ≤⎩
.                (3.3) 

 Then we can say that the number of times of mean-shift equals the sum of the 

sequence R , and the mean-shift happens when 1iR = . Therefore we will want to 

find the most probable sequence R  to describe the trend of the data. If the sequence 
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is established, then μ
JK

 ( 1,..., 0 1( ) ( ),  where   ( ,  ,  ...,  )i i N Kμ μ μ θ θ θ θ θ== = =
JK K ) become 

parameters. 

We can suppose that R  is a Bernoulli sequence with probability λ , 

0 1λ< < . Given the data Y , we can find the prior probability ( | )P R Y , which is the 

most probable mean-shift model. 

( | ) ( )( | ) ( | ) ( )
( )

P Y R P RP R Y P Y R P R
P Y

= ∝              (3.4) 

       

2

2
1

( )
1 2

2
0

(1 )
2

i k

k

k

y
tK

K N K

k i t

e ε

θ
σ

ε

λ λ
πσ

+

−
−

−
−

= =

⎡ ⎤
⎢ ⎥

∝ × −⎢ ⎥
⎢ ⎥
⎣ ⎦

∏∏           (3.5) 

And the most probable mean-shift model is  

( )

2

2
1

( )
1 21

2, , , 0

( | ) (1 )
2

i k

k

k

y
tK

K N K

k k R k i t

eMax P R Y Max
ε

θ
σ

θ θ
ε

λ λ
πσ

+

−
−

−−
−

= =

⎛ ⎞⎡ ⎤
⎜ ⎟⎢ ⎥

∝ × −⎜ ⎟⎢ ⎥
⎜ ⎟⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠

∏∏             (3.6) 

2

2
1

( )
1 21

2, 0

log (1 )
2

i k

k

k

y
tK

K N K

k k i t

eMin
ε

θ
σ

θ
ε

λ λ
πσ

+

−
−

−−
−

= =

⎛ ⎞⎛ ⎞⎡ ⎤
⎜ ⎟⎜ ⎟⎢ ⎥

∝ − × −⎜ ⎟⎜ ⎟⎢ ⎥
⎜ ⎟⎜ ⎟⎢ ⎥⎜ ⎟⎜ ⎟⎣ ⎦⎝ ⎠⎝ ⎠

∏∏  

2
1 2

( )11
2

2, 0

1log
1 2

i kk

k

Ny KtK

k k i t

Min e ε

θ
σ

θ
ε

λ λ
λ πσ

+
−−− −

= =

⎧ ⎫⎛ ⎞⎛ ⎞−⎪ ⎪⎛ ⎞⎜ ⎟⎜ ⎟= − × ×⎨ ⎬⎜ ⎟⎜ ⎟⎜ ⎟−⎝ ⎠⎜ ⎟⎪ ⎪⎝ ⎠⎝ ⎠⎩ ⎭
∏∏  (3.7) 

1 1

, 0

2( ) 1log( )22

k

k

tK

k k i t

yi kMin K
θ

θ λ
λσε

+ −

= =

⎛ ⎞− −⎜ ⎟∝ +⎜ ⎟⎜ ⎟
⎝ ⎠
∑ ∑  

 
1 1 2

2, 0

( ) 12log( )
k

k

tK
i k

k k i t

yMin K
θ

ε

θ λ
σ λ

+ −

= =

⎛ ⎞− −
= + ×⎜ ⎟

⎝ ⎠
∑ ∑  

1 1
2 2

, 0

1( ) 2 log( )
k

k

tK

i kk k i t
Min y Kεθ

λθ σ
λ

+ −

= =

⎛ ⎞−
= − + × × ×⎜ ⎟

⎝ ⎠
∑ ∑          (3.8) 

, where K  is the number of segments. 
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To compare this equation with the formula of cost-complexity pruning (CCP),  

( )

( )
1

21
2

0

( | )

12 log( ) ,

where K the number of segements

k

k

tK

i k
k i t

Max P R Y

Min y Kε
λθ σ

λ

+ −

= =

⎛ ⎞−
∝ − + ×⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑

is 

 

'

2 '
.

1 1
( ') ( - )  

jT n

ij j
j i

D T y y Tα α
= =

= + ×∑∑  

, ' 'where  is the number of terminal nodes of TT . 

We can estimate α  by 2 12 log( )ε
λσ

λ
− .And the way to choose λ  is by using 

the probability for the normal distribution shift. In this paper, we use the probability 

over three standard deviations to estimateλ . In the data, if we choose a largerλ , the 

amount of subgroups becomes more complex. 
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Figure 12 The probability of the sequence that happened 

And we use 2ŝ  to estimate 2
εσ , 

where 

2

2 1 1
( )

ˆ

knK

ij j
k i

x x
s

N K
= =

−
=

−

∑∑ i

                             (3.9) 

                             N  is the number of data 

K  denotes it has K steps, and 
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n  is the number of the terminal node. 

If we suppose the prior probability of λ  is the probability over three standard 

deviations (0.0027), then 2 21 0.0027ˆ ˆ2 log( ) 11.8236 .
0.0027

sεα σ −
= = ×  

 

3. 2 The influence of outliers 

If some are outliers existing in the data, it would maybe be a mistake to estimate 

the model. For example, if the location of mean-shift is at 80, we will find the 

result changed for outliers added in Figure 13 and Figure 14. Because of adding 

outliers, in Figure 13, the change-point changes from 80 to 72; and in Figure 14, 

the result shows more variation. 
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Figure 13 The location for mean-shift is shifted when the outlier exists. 
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Figure 14 The model is more complex when the outlier exists. 
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By this viewpoint, we will know that we should examine first whether the data 

have the appearance of outliers. In this section, we will illustrate a method to deal 

with outliers. First we define the outlier, which satisfies the below: 

 

1. Any data observation which lies more than 1.5*IQR lower than the first quartile or 

1.5*IQR higher than the third quartile is considered an outlier. 

2. Any data observation is an influence point. 

In this paper, we will make the symbol to the outliers (Figure 15). Then it will be 

easy to see the trend of the data without losing any information. 
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Figure 15 We will make a symbol to the outliers. 

 

 

3. 3 Finding different level mean shifted by Multi-resolution 

Because we need to estimate the variation within groups, but 2ŝ  contains 

variation within groups and variation between groups, and the estimator 2ŝ  may be 

larger than 2
εσ , so we would use multi-resolution to adjust the estimator until no new 

mean-shift is found.  

We will show our new method’s flow as follows bellow. 
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The algorithm of new method 

1. Take resource data to input data 

2. Calculate the ŝ  of input data 

3. Grow the tree and to prune the tree by estimator α̂ . 

4. Record every terminal node 

5. Find whether this section has observations more than 1.5*IQR lower than the first 

quartile or 1.5*IQR higher than the third quartile. If true, go to step 6, else go to 7. 

6. Delete the point which is recorded in step 5 to set up a new tree from step 1 to step 

4 to get the new terminal node * step by step. 

7. If the terminal nodes * are different from the terminal nodes, then we will delete 

them and go to step 1. Else go to step 8. 

8. If we get new terminal nodes, take each terminal node to input data, and repeat 

from step 2 to step 7. Else break. 

The process flow of new method is as follows below. (Figure 16 and Figure 17) 
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Process flow 

 

Figure 16 The process flow of the new method 

 

Outlier detection flow 

 

Figure 17 The process flow of the outlier detection 
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Chapter 4: Experiment 

 In this chapter, we will discuss many cases by simulation results. In each case, 

the data is simulated by the joint distribution of several distributions ( 1 2,  ,  ...M M ), 

where  kM is a normal distribution with 2
εσ , and 1 2,  ,  ...M M  have different means.  

 The main cases we want to discuss follow below, and in the table’s last row, we 

also show the simulated classification rate of all the main cases. 

1. No shift, if 0k =  

2. Shifted one time, if 1k =  

3. Shifted several times, if 1k >  

4. The influence of different scales 

In detail, we will discuss different levels for shifting, including one standard 

deviation, two standard deviations, three standard deviations, and five standard 

deviations. In our experiment, we take 2 1εσ =  for every variation. We will discuss 

balanced data and unbalanced data. In addition, we will discuss the influence of an 

outlier, so we will replace two outliers from the data whose values are 5 and 6 times 

IQR lower than the first quartile. 

Because the data size in the semiconductor industry is about of 50-200 units, our 

experiment is designed around 50-200, and in each case we simulate 50 times to get 

the simulated classification rate. In the result of simulation, we will compare three 

methods: CPD (bootstrap 1000 times, 95% confidence level), Cross-Validation tree, 

and a new method. We define the simulated classification rate by four results. First, 

we discuss the simulated classification rate of detecting the number of times of 

mean-shift; then we discuss the simulated classification rate of detecting the location 



 25

of mean-shift. The rules follow below: 

1. Result 1: The number of mean-shifts in the simulation result is same as the setting. 

2. Result 2: The location of the mean-shift in the simulation result is same as the 

setting. (Appendix 4.1) 

3. Result 3: The location of the mean-shift in the simulation result and the setting are 

close, within 3. 

4. Result 4: The location of the mean-shift in the simulation result and the setting are 

close, within 5. (Appendix 4.2) 

5. Result 5: Change the scale larger in the same data. 

6. Result 6: Change the scale smaller in the same data. 

 

4. 1 No shift 

Table 1 Result1 of no shift 

Result 1: The number of mean-shifts in the simulation result is same as the setting. 

   No adding outlier Adding outliers 

Case mean size CPD Cvtree New CPD Cvtree New 

1 0 30 94% 52% 100% 96% 62% 100% 

2 0 50 94% 68% 100% 90% 70% 100% 

3 0 100 94% 90% 100% 92% 84% 100% 

4 0 200 98% 96% 100% 98% 92% 100% 

   95% 76.5% 100% 94% 77% 100% 
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Table 2 Result3 of no shift 

Result 3: The location of the mean-shift in the simulation result is same as the setting. 

   No adding outlier Adding outliers 

Case mean size CPD Cvtree New CPD Cvtree New 

1 0 30 94% 52% 100% 96% 62% 100% 

2 0 50 94% 68% 100% 90% 70% 100% 

3 0 100 94% 90% 100% 92% 84% 100% 

4 0 200 98% 96% 100% 98% 92% 100% 

   95% 76.5% 100% 94% 77% 100% 

 

 

 

4. 2 Shifted one time 

Table 3 Result1 of mean-shift one time 

Result 1: The number of mean-shifts in the simulation result is same as the setting. 

   No adding outlier Adding outliers 

Case mean size CPD Cvtree New CPD Cvtree New 

5 (5, 0) (50, 50) 94% 90% 98% 94% 86% 100% 

6 (3, 0) (50, 50) 86% 84% 100% 80% 78% 100% 

7 (2, 0) (50, 50) 84% 82% 96% 90% 84% 100% 

8 (1, 0) (50, 50) 98% 90% 94% 76% 58% 70% 

9 (5, 0) (90, 10) 88% 84% 94% 68% 92% 100% 

10 (3, 0) (90, 10) 60% 86% 100% 48% 88% 100% 

11 (2, 0) (90, 10) 52% 94% 92% 32% 60% 74% 

12 (1, 0) (90, 10) 24% 30% 50% 18% 16% 8% 

13 (2, 0) (15, 15) 96% 62% 100% 46% 46% 24% 

14 (2, 0) (20, 10) 86% 62% 98% 30% 36% 8% 

15 (2, 0) (25, 25) 92% 68% 100% 92% 56% 92% 

   78.18% 75.64% 92.91% 61.27% 63.64% 70.55%
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Table 4 Result3 of mean-shift one time 

Result 3: The location of the mean-shift in the simulation result and the setting are within 3.

   No adding outlier Adding outliers 

Case mean size CPD Cvtree New CPD Cvtree New 

5 (5, 0) (50, 50) 94% 90% 98% 94% 86% 98% 

6 (3, 0) (50, 50) 86% 84% 100% 74% 76% 100% 

7 (2, 0) (50, 50) 80% 76% 94% 78% 74% 94% 

8 (1, 0) (50, 50) 62% 50% 54% 46% 36% 50% 

9 (5, 0) (90, 10) 86% 84% 100% 64% 92% 96% 

10 (3, 0) (90, 10) 56% 86% 100% 28% 80% 96% 

11 (2, 0) (90, 10) 32% 92% 88% 14% 48% 70% 

12 (1, 0) (90, 10) 6% 24% 26% 4% 14% 8% 

13 (2, 0) (15, 15) 88% 60% 84% 40% 30% 24% 

14 (2, 0) (20, 10) 82% 62% 80% 26% 24% 8% 

15 (2, 0) (25, 25) 92% 68% 100% 76% 48% 86% 

   69.45% 70.55% 84% 49.45% 55.27% 66.36%

 

 

 

 

 

 

 

 

 

 

 

 



 28

4. 3 Shifted several times 

Table 5 Result1 of mean-shift several times 

Result 1: The number of mean-shifts in the simulation result is same as the setting. 

   No adding outlier Adding outliers 

Case mean size CPD Cvtree New CPD Cvtree New 

16 (6, 3, 0) (40, 40, 40) 36% 84% 96% 44% 84% 96% 

17 (15, 10, 5, 0) (30, 30, 30, 30) 86% 82% 96% 84% 66% 98% 

18 (9, 6, 3, 0) (30, 30, 30, 30) 88% 84% 96% 76% 70% 100%

19 (6, 4, 2, 0) (30, 30, 30, 30) 80% 68% 96% 86% 76% 98% 

20 (20, 15, 10, 5, 0) (25, 25, 25, 25, 25) 14% 100% 96% 16% 70% 100%

21 (12, 9, 6, 3, 0) (25, 25, 25, 25, 25) 20% 60% 86% 28% 74% 94% 

22 (8, 6, 4, 2, 0) (25, 25, 25, 25, 25) 34% 60% 86% 46% 56% 92% 

23 (25, 20, 15, 10, 5, 0) (20,20,20,20,20,20) 8% 100% 96% 20% 74% 98% 

24 (15, 12, 9, 6, 3, 0) (20,20,20,20,20,20) 26% 82% 96% 36% 54% 100%

25 (10, 8, 6, 4, 2, 0) (20,20,20,20,20,20) 38% 50% 90% 42% 36% 84% 

26 (10, 3, 0) (40, 40, 40) 86% 78% 96% 80% 84% 100%

27 (10, 2, 0) (40, 40, 40) 80% 74% 92% 88% 74% 98% 

28 (10, 1, 0) (40, 40, 40) 84% 72% 92% 74% 56% 76% 

29 (10, 5, 2, 0) (30, 30, 30, 30) 72% 72% 98% 78% 70% 98% 

30 (10, 5, 1, 0) (30, 30, 30, 30) 70% 64% 68% 50% 26% 62% 

31 (10, 2, 0) (50, 40, 30) 92% 72% 96% 88% 74% 98% 

32 (10, 5, 2, 0) (50, 35, 25, 10) 72% 78% 86% 68% 58% 82% 

33 (10, 6, 4, 2, 0) (40, 30, 25, 15, 10) 38% 64% 72% 60% 40% 74% 

34 (5, 0, 5) (40, 40, 40) 92% 84% 98% 94% 80% 98% 

35 (3, 0, 3) (40, 40, 40) 88% 88% 100% 90% 74% 100%

36 (2, 0, 2) (40, 40, 40) 88% 68% 88% 82% 82% 92% 

37 (5, 0, 5) (20,60,40) 84% 82% 100% 86% 86% 100%

38 (2, 0, 2) (20,60,40) 82% 76% 94% 78% 78% 100%

39 (5, 2, 0, 2, 4, 6) (20,30,20,30,20,20) 54% 56% 74% 62% 66% 72% 

   63% 74.92% 91.17% 64.83% 67% 92.08%
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Table 6 Result3 of mean-shift several times 

Result 3: The location of the mean-shift in the simulation result and the setting are within 3. 

   No adding outlier Adding outliers 

Case mean size CPD Cvtree New CPD Cvtree New

16 (6, 3, 0) (40, 40, 40) 20% 78% 90% 24% 76% 86% 

17 (15, 10, 5, 0) (30, 30, 30, 30) 86% 82% 96% 74% 64% 92% 

18 (9, 6, 3, 0) (30, 30, 30, 30) 86% 82% 94% 66% 56% 90% 

19 (6, 4, 2, 0) (30, 30, 30, 30) 66% 56% 74% 54% 40% 74% 

20 (20, 15, 10, 5, 0) (25, 25, 25, 25, 25) 8% 98% 96% 6% 66% 94% 

21 (12, 9, 6, 3, 0) (25, 25, 25, 25, 25) 18% 56% 80% 14% 58% 76% 

22 (8, 6, 4, 2, 0) (25, 25, 25, 25, 25) 6% 34% 34% 6% 18% 46% 

23 (25, 20, 15, 10, 5, 0) (20,20,20,20,20,20) 8% 90% 94% 16% 70% 92% 

24 (15, 12, 9, 6, 3, 0) (20,20,20,20,20,20) 14% 68% 82% 16% 36% 86% 

25 (10, 8, 6, 4, 2, 0) (20,20,20,20,20,20) 8% 30% 42% 10% 16% 40% 

26 (10, 3, 0) (40, 40, 40) 84% 78% 94% 76% 78% 98% 

27 (10, 2, 0) (40, 40, 40) 78% 72% 86% 80% 68% 92% 

28 (10, 1, 0) (40, 40, 40) 46% 38% 54% 34% 24% 46% 

29 (10, 5, 2, 0) (30, 30, 30, 30) 64% 68% 92% 58% 56% 88% 

30 (10, 5, 1, 0) (30, 30, 30, 30) 50% 38% 42% 32% 16% 32% 

31 (10, 2, 0) (50, 40, 30) 90% 64% 86% 82% 62% 88% 

32 (10, 5, 2, 0) (50, 35, 25, 10) 68% 76% 66% 58% 52% 62% 

33 (10, 6, 4, 2, 0) (40, 30, 25, 15, 10) 18% 46% 56% 14% 22% 46% 

34 (5, 0, 5) (40, 40, 40) 92% 84% 98% 86% 76% 98% 

35 (3, 0, 3) (40, 40, 40) 78% 80% 86% 74% 62% 88% 

36 (2, 0, 2) (40, 40, 40) 80% 60% 68% 60% 52% 74% 

37 (5, 0, 5) (20,60,40) 80% 82% 100% 82% 84% 98% 

38 (2, 0, 2) (20,60,40) 64% 64% 76% 56% 56% 84% 

39 (5, 2, 0, 2, 4, 6) (20,30,20,30,20,20) 34% 32% 32% 22% 28% 30% 

   51.92% 64.83% 75.75% 45.83% 51.5% 75%
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4. 4 The influence of different scales 

 In this main case, we expand the no shift data to see the result, and we take the 

data from the Case 1. 

 

Table 7 Result5 of scales changed 

  No adding outlier Adding outliers 

Case data New New 

1 *1 100% 100% 

40 *1.5 100% 100% 

41 *2 100% 100% 

42 *5 100% 100% 

43 *10 100% 100% 

44 *20 100% 100% 

  100% 100% 

  

In this main case, we contract the shifted data to see the result, and we take the 

data from Case 6. The location of the mean-shift in the simulation result and the 

setting are within 3. 

 

Table 8 Result6 of scales changed 

  No adding outlier Adding outliers 

Case data New New 

6 *1 100% 98 % 

45 *0.5 100% 98 % 

46 *0.2 100% 98 % 

47 *0.1 100% 98 % 

48 *0.05 100% 98 % 

49 *0.01 100% 98 % 

  100% 98 % 
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Chapter 5: Conclusions 

 In this paper, we used a regression tree to set up the model and apply it in the 

semiconductor industry to detect where the yield rate changed. From chapter 4, we 

can find that our new method is efficient in detecting the mean-shift problem, and we 

can conclude that 

1. The new method has the highest simulated classification rate among 

these three methods. 

2. When adding some outliers, the result of the simulation is less affected. 

3. For the different scales, the result of the simulation is also less affected. 

4. For the unbalanced data, the result of the simulation is also less 

affected. 

5. The new method must reduce the time. 

 

Therefore we may say that the new method is a useful application in the 

semiconductor industry to determine whether in detecting yield rates helps to find 

where the process has variation. 

 

The new method may be applied in other fields. For example: 

1. We can use the new method to set up a model for classification. 

2. We can also use the new method to solve problems that used CPD 

before. 

 

In future work: 

1. Because this article solves problem of the detecting semiconductor 

yield rates, so we just discuss one dimension by this method. Therefore 
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we may study the new method to apply to other problems with high 

dimensions in this way. 

2. In this paper, our condition is laid in normal distribution with 

unchanged variance; therefore, in the future, we may discuss the 

classification of random assignment material. If the variance has 

changed, we need to discuss how to detect the position of its changed 

variance. 

3. Because of the semiconductor industry's demand, the size of its 

detection rate material is approximately 50-200. Therefore in this 

article, we mainly simulate small samples. It is adaptable to have a 

sample size larger than 50 in this new method. 
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Appendix 4.1 
Table 9 Result2 of no shift 

Result 2: The location of the mean-shift in the simulation result is same as the setting. 

   No adding outlier Adding outliers 

Case mean size CPD Cvtree New CPD Cvtree New 

1 0 30 94% 52% 100% 96% 62% 100% 

2 0 50 94% 68% 100% 90% 70% 100% 

3 0 100 94% 90% 100% 92% 84% 100% 

4 0 200 98% 96% 100% 98% 92% 100% 

   95% 76.5% 100% 94% 77% 100% 

 

 

Table 10 Result2 of mean-shift one time 

Result 2: The location of the mean-shift in the simulation result is same as the setting.

   No adding outlier Adding outliers 

Case mean size CPD Cvtree New CPD Cvtree New 

5 (5, 0) (50, 50) 92% 88% 96% 88% 80% 92% 

6 (3, 0) (50, 50) 66% 64% 76% 60% 58% 76% 

7 (2, 0) (50, 50) 60% 58% 66% 56% 54% 66% 

8 (1, 0) (50, 50) 24% 16% 22% 20% 16% 22% 

9 (5, 0) (90, 10) 58% 84% 98% 42% 86% 90% 

10 (3, 0) (90, 10) 30% 66% 80% 14% 62% 72% 

11 (2, 0) (90, 10) 22% 66% 62% 10% 30% 50% 

12 (1, 0) (90, 10) 4% 16% 20% 2% 6% 4% 

13 (2, 0) (15, 15) 56% 30% 52% 20% 14% 14% 

14 (2, 0) (20, 10) 58% 40% 60% 18% 10% 8% 

15 (2, 0) (25, 25) 54% 40% 62% 42% 30% 48% 

   47.64% 51.64% 63.09% 33.82% 40.55% 49.27%
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Table 11 Result2 of mean-shift several times 

Result 2: The location of the mean-shift in the simulation result is same as the setting. 

   No adding outlier Adding outliers 

Case Mean size CPD Cvtree New CPD Cvtree New 

16 (6, 3, 0) (40, 40, 40) 6% 56% 60% 12% 44% 52% 

17 (15, 10, 5, 0) (30, 30, 30, 30) 82% 80% 94% 58% 52% 68% 

18 (9, 6, 3, 0) (30, 30, 30, 30) 60% 54% 68% 44% 34% 60% 

19 (6, 4, 2, 0) (30, 30, 30, 30) 20% 16% 28% 16% 12% 22% 

20 (20, 15, 10, 5, 0) (25, 25, 25, 25, 25) 6% 78% 78% 0% 46% 74% 

21 (12, 9, 6, 3, 0) (25, 25, 25, 25, 25) 4% 26% 30% 0% 26% 28% 

22 (8, 6, 4, 2, 0) (25, 25, 25, 25, 25) 0% 8% 8% 0% 2% 6% 

23 (25,20,15,10,5, 0) (20, 20, 20, 20, 20, 20) 4% 72% 70% 2% 40% 48% 

24 (15, 12, 9, 6, 3, 0) (20,20,20,20,20,20) 4% 24% 24% 2% 8% 22% 

25 (10, 8, 6, 4, 2, 0) (20, 20, 20, 20, 20, 20) 0% 4% 4% 0% 0% 4% 

26 (10, 3, 0) (40, 40, 40) 64% 72% 90% 54% 68% 86% 

27 (10, 2, 0) (40, 40, 40) 64% 56% 74% 56% 46% 66% 

28 (10, 1, 0) (40, 40, 40) 22% 16% 22% 16% 8% 20% 

29 (10, 5, 2, 0) (30, 30, 30, 30) 28% 28% 38% 34% 24% 44% 

30 (10, 5, 1, 0) (30, 30, 30, 30) 14% 8% 12% 6% 0% 6% 

31 (10, 2, 0) (50, 40, 30) 66% 46% 64% 52% 34% 58% 

32 (10, 5, 2, 0) (50, 35, 25, 10) 38% 46% 54% 26% 26% 28% 

33 (10, 6, 4, 2, 0) (40, 30, 25, 15, 10) 6% 16% 20% 2% 6% 20% 

34 (5, 0, 5) (40, 40, 40) 86% 70% 84% 78% 58% 78% 

35 (3, 0, 3) (40, 40, 40) 60% 54% 60% 50% 44% 56% 

36 (2, 0, 2) (40, 40, 40) 38% 24% 28% 30% 20% 28% 

37 (5, 0, 5) (20,60,40) 72% 82% 100% 64% 76% 90% 

38 (2, 0, 2) (20,60,40) 22% 38% 42% 16% 24% 38% 

39 (5, 2, 0, 2, 4, 6) (20,30,20,30,20,20) 4% 6% 6% 0% 2% 4% 

   32.08% 40.83% 48.25% 25.75% 29.17% 41.92%
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Appendix 4.2 
Table 12 Result4 of no shift 

Result 4: The location of the mean-shift in the simulation result is same as the setting. 

   No adding outlier Adding outliers 

Case mean size CPD Cvtree New CPD Cvtree New 

1 0 30 94% 52% 100% 96% 62% 100% 

2 0 50 94% 68% 100% 90% 70% 100% 

3 0 100 94% 90% 100% 92% 84% 100% 

4 0 200 98% 96% 100% 98% 92% 100% 

   95% 76.5% 100% 94% 77% 100% 

 

 

Table 13 Result4 of mean-shift one time 

Result4: The location of the mean-shift in the simulation result and the setting are close, within 5.

   No adding outlier Adding outliers 

Case mean size CPD Cvtree New CPD Cvtree New 

5 (5, 0) (50, 50) 94% 90% 98% 94% 86% 100% 

6 (3, 0) (50, 50) 86% 84% 100% 74% 76% 100% 

7 (2, 0) (50, 50) 84% 82% 100% 86% 80% 100% 

8 (1, 0) (50, 50) 74% 62% 68% 54% 38% 58% 

9 (5, 0) (90, 10) 88% 84% 100% 68% 92% 100% 

10 (3, 0) (90, 10) 60% 86% 100% 36% 84% 96% 

11 (2, 0) (90, 10) 38% 94% 92% 16% 54% 74% 

12 (1, 0) (90, 10) 6% 26% 28% 6% 14% 8% 

13 (2, 0) (15, 15) 96% 62% 90% 44% 32% 24% 

14 (2, 0) (20, 10) 86% 62% 82% 30% 34% 8% 

15 (2, 0) (25, 25) 92% 68% 100% 82% 50% 90% 

   73.09% 72.73% 87.09% 53.64% 58.18% 68.91%
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Table 14 Result4 of mean-shift several times 

Result 4: The location of the -shift in the simulation result and the setting are close, within 5. 

   No adding outlier Adding outliers 

Case mean size CPD Cvtree New CPD Cvtree New 

16 (6, 3, 0) (40, 40, 40) 36% 84% 92% 38% 82% 94% 

17 (15, 10, 5, 0) (30, 30, 30, 30) 86% 82% 98% 82% 66% 96% 

18 (9, 6, 3, 0) (30, 30, 30, 30) 88% 84% 100% 70% 62% 98% 

19 (6, 4, 2, 0) (30, 30, 30, 30) 78% 66% 98% 70% 52% 88% 

20 (20, 15, 10, 5, 0) (25, 25, 25, 25, 25) 14% 100% 100% 14% 70% 100%

21 (12, 9, 6, 3, 0) (25, 25, 25, 25, 25) 20% 60% 86% 24% 72% 86% 

22 (8, 6, 4, 2, 0) (25, 25, 25, 25, 25) 14% 46% 56% 8% 28% 62% 

23 (25,20,15,10,5,0) (20,20,20,20,20,20) 8% 96% 88% 20% 74% 96% 

24 (15,12,9,6,3,0) (20,20,20,20,20,20) 24% 82% 90% 28% 50% 98% 

25 (10,8,6,4,2,0) (20,20,20,20,20,20) 26% 46% 68% 20% 26% 68% 

26 (10, 3, 0) (40, 40, 40) 86% 78% 98% 80% 84% 100%

27 (10, 2, 0) (40, 40, 40) 80% 74% 94% 84% 70% 96% 

28 (10, 1, 0) (40, 40, 40) 68% 54% 72% 52% 38% 64% 

29 (10, 5, 2, 0) (30, 30, 30, 30) 72% 72% 98% 70% 64% 94% 

30 (10, 5, 1, 0) (30, 30, 30, 30) 56% 46% 52% 34% 16% 46% 

31 (10, 2, 0) (50, 40, 30) 92% 68% 96% 84% 68% 94% 

32 (10, 5, 2, 0) (50, 35, 25, 10) 72% 78% 94% 66% 58% 70% 

33 (10, 6, 4, 2, 0) (40, 30, 25, 15, 10) 28% 56% 68% 24% 32% 60% 

34 (5, 0, 5) (40, 40, 40) 92% 84% 98% 94% 80% 98% 

35 (3, 0, 3) (40, 40, 40) 88% 88% 100% 82% 68% 98% 

36 (2, 0, 2) (40, 40, 40) 88% 64% 78% 64% 54% 80% 

37 (5, 0, 5) (20,60,40) 84% 82% 100% 86% 86% 100%

38 (2, 0, 2) (20,60,40) 72% 68% 84% 66% 60% 86% 

39 (5, 2, 0, 2, 4, 6) (20,30,20,30,20,20) 48% 44% 58% 32% 42% 54% 

   59.17% 70.92% 86.08% 53.83% 58.42% 84.42%
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