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ABSTRACT
In the semiconductor industry, a yield rate will affect the cost of business and the

competitive power the company. Therefore, promoting a yield rate contributes to each
company's profitable target. However, not only is the technical progress undoubtedly
important, but a company’s guarantee that its product will have a standard yield rate is
also important. Because the semicanductor industry’s system regulation is quite
complex, a product must pass through hundreds of process stations to completely
manufacture the product. After completing.a system of ownership regulation, the
product will be able to detect its'yield.rate:-Fherefore when the yield rate varies, it is
an enormous challenge for engineers.

In current literature, there is no good way to solve the process of detecting
whether to have variation and to discover a correct position. Therefore it is very
important to develop an automatic system to detect the variation of the yield rate. In
this paper, we will establish a model using mathematics, provide a way to detect the

yield rate, and provide engineers a more effective solution to find the problem station.
The main ideal of this paper comes from CART (Classification And Regression

Tree). This paper improves on it and then applies this method to the semiconductor
industry. In the manufacturing process in the semiconductor industry, the regular
session presents the outlier, and it is confusing to use mathematics in the model.
Therefore the appearance of an outlier also provides a way to solve it.

Also, in this paper, our method will compare the accuracy rate with CPD
(statistical Change-Point Detection), which was proposed by Dr. Wayne A. Taylor
(2000a). Using a simulation, we set up models of the mean shift to simulate situations
of changing product yield rates and use the detection of its varying position to
compare its accuracy.
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Chapter 1: Introduction

1. 1 Motivation and objectives

In the semiconductor industry, a better wafer yield is equivalent not only to the
quality of the products in the company but also to operation costs and completion. In a
good company, high quality is good and often increases its competitive power.
Therefore each company's management promotes yield as its production profit target.

But a semiconductor's system is quite complex, frequently passing through
hundreds of process stations to be able to completely manufacture the product. And
after completing a system of ownership regulation, the product will be able to detect
its yield rate. Therefore when the yield rate varies, it is an enormous challenge for
engineers.

If some system regulation takes place the problem at time t, there will occur two
distributions of yield rates around time t (Figure 1). According to the product in this
station's production order, engineers draw-the-trend chart of a product's yield rate. He
will find that the trend shifts the mean‘if'there is a problem at the time t. An engineer
would think that the problem which influenced the yield rate is at time t and need to
check it.

The traditional SPC method is not suitable for this question. There are two
primary causes: first, the product must be able to get the yield rate detection through
hundreds of system regulation stations and then obtain the product's yield rate. Second,
the semiconductor industry's production pattern is not necessarily in accordance with
FIFO (first-in and first-out), such that the first product produced may not necessarily
complete the whole manufacturing process first and detect its yield rate. Hence, we

must find a new way to monitor the yield rate in the process.



On different fields, there are many methods to solve the mean-shift problem. CPD
(statistical Change-Point Detection) is used widely. For example, CPD may be used to
discover the nerve where the fission in biosphere appears [11]; it also applied to
monitor the semiconductor yield rate in semiconductor industry. [15]

Moreover, we can use CART (Classification And Regression Tree) to detect the
mean-shift problem. However, it is difficult to select the cost-complexity, which
describes the order of complexity of the model. In Statistics, we will use
cross-validation (Seymour Geisser, 1929 — 2004) to determine the cost-complexity,
but its shortcoming lies in the its complex computation, and it results in small samples,
which is bad.

Because in the semiconductor industry, manufacturing processes are quite
complex, people sometimes avoid.some outlier materials that are produced because of
artificial mistakes. Engineers hoped.to understand.a regulation system with an overall
tendency to exclude the effect of outliers..As-a.result of the outliers' appearance, the
outcome usually changes tremendously. Thus; there needs to be a method to deal with
outliers. In Figure 2, and Figure 3 we can find that the outliers affect the outcomes.

Finally, in the semiconductor field, the components are often measured by
different instruments, so methods must be effective to detect the location of the mean
shift suitably in different situations for engineers and be able not to influence the unit

of measurement.
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1. 2 The procedure of research
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1. To understand the problem TR

In the semiconductor field, solving the mean-shift problem most often involves
using CPD, which is a method Taylor proposed in 2000 to find a change-point, mainly
using a cumulated sum (CUSUM) method. However, the simulated yield rate was
unable to satisfy the expectations of an engineer. Therefore we need to research and
develop a method to get a high simulated yield rate for the mean-shift problem and

widely to apply it to different places.

2. To understand the regression tree
A regression tree is a fast calculating method which uses dichotomy to quickly
divide data. In this way, it will clearly understand the whole properties of data. But,

there is no good way in literature to choose the size of model. Moreover, we discover



that the result of partitioning is very easily wrong if outliers exist. Thus, to deal with
outliers is also an important link.
3. To improve the regression tree
We propose a method to improve the regression tree. The main quotation of the

new method is Bayesian, and the concept of an influence point in regression analysis
is to choose the infection of outliers.
4. To check ideal by simulation

Using the different models, we discuss the simulated classification rate of the new
method. Then from simulation results, the new method's simulated classification rate
is high. And it does not affect unbalanced data, different units, and less affect the

outliers.

1. 3 Organization

This thesis is organized as follows. Chapter 1 outlines the procedure of this
research, motivation and objective. In Chapter 2, we describe literature review, which
contains two methods to detect the location of mean-shift. In Chapter 3, we propose
our new method, which is improved by CART and deals with outliers by the view of
influence point. In addition, we verify our method by using simulation result in

Chapter 4 and conclude the thesis in Chapter 5.



Chapter 2: Literature review

2. 1 Using CPD to detect the mean-shift problem
CPD (statistical Change-Point Detection) was proposed by Dr. Wayne A. Taylor

(2000a). This method can detect the change-point problem. Refer to this homepage:

http://www.variation.com/cpa/tech/changepoint.html. In this paper, it was introduced

by an example for US trade deficit data.
Taylor (2000a) uses the procedure to find out the location of change for

execution change analysis. It mainly uses the tools cumulative sum chart (CUSUM)

and permutation test.

In this paper, the significant level for permutation tests is 95%. If the test result

was significant, Taylor would use.CUSUM;to_find out the location of mean-shift.

Suppose the data is Y; »4=1 .., N, and the significant level is «. At first

Taylor calculates the cumulative sums.
S,=S,,+(Y,-Y), S,=0 (2.1)

Then he calculates the value S) , where

S, = Maxs,

max
i=0, .., N

S® =S —S . and )
diff max min an Smin —min Si
i=0, .., N

Taylor repeats the above movement B times by permuting the data, and gets the

, Sy BY calculating the counts of Sy, >S;., he gets its

valuesS,, Sy -
count . ]
% > « , he will conclude the trend is

count o, 1£ 100x

confidence level: 100x


http://www.variation.com/cpa/tech/changepoint.html

changed in some position. Then he will find out the location of mean-shift by

CUSUM and separate the data into two sections.

Sy, = max|s| (2.2)

m

At last, he finds out all the changes in this trend repeatedly for each section. The

algorithm is as follows.

10.

11.

12.

Given the significant level «, all data are named resource data.

Take resource data to input data0.

Calculate Sy. =S, —S,,,  Wwhere S, =S _ +Y,-Y.

min !

By permuting the input data.B times; get-B. sequences of the new input data.

Repeat step 4 ~ step 5to gt Syq Sgiirar -1 Saitie -

Calculate the counts S, > Sy -

count

The significant level is 100x %.

If 100x SoUNt

% >a, go to step 11 ~ step 12. Else conclude that there is no shift

in this section and break.

By CUSUM chartS, = max|S], to find out the location of mean-shift.

Record the location of mean-shift, and partitioned the two input datal and input
data 2.

Take input data 1 and input data 2 individually to input data 0, and go to step 3 ~
step 12.

Get all of the locations of mean-shift.



2. 2 Using reqgression trees to detect the mean-shift problem

2. 2.1 Introduction of regression trees

In 1963, Morgan and Sonquist proposed Automatic Interaction Detection (AID)
to get the optimum model by minimizing the mean square error. The regression tree
was a development traced back to Morgan (1964), Sonquist (1970), Sonquist, Morgan
(1973), Fielding (1977), Van Eck (1980), and Leo Breiman, Jerry Friedman, Charles
J, .Stone, Richard Olshen, who proposed CART in 1984.

CART is an algorithm to separate data by using a binary decision tree. The
algorithm for the material divides the parental node to two child nodes, using
recursive partitioning from top to down to establish a complete tree. The following
figure, Figure 5, makes an introduction using a graphical representation to construct

the tree.

Root : The top node

Miejght<2087 & Branch

node

o« leaf

Leaf : A terminal node

Figure 5 Construction of a tree



Suppose (X, V,), i=1, ..., N,with x =(X,, X,, ..., X;,). The algorithm needs
to automatically decide the split points. Suppose we have a partition of K regions

R, R,, ... R¢.Then our response model is denoted by

K
f(x)=> c,l(xeR) (2.3)
k=1
where c_ isaconstant in each region.

If we adopt minimization of the sum of squares as the criterion for the split rule,

we will use €. toestimate c_,where € isthe average of vy, intheregion R .
ém =average (y,|x ;€R,,) (2.4)

We will illustrate the regression tree in three sections. We will say how to find

the best point to split the data in 2.2.2 and how to select the tree size in 2.2.3.

2. 2. 2 Partition

We find the best binary partition by minimizing:the sum of squares. The goal of
the partition is to decrease the error in each group. We seek the splitting variable j and

split point s by solving as follows below.

R (J,s)={X| X;<s}and R,(],s) ={X|X,>s} (2.5)
argmin[min - > (y;—c)’+min > (y;—c,)’] (2.6)
iss %R, (J,5) 2 xeRy(j,5)

For any choice j and s, the solution of ¢, and c, are estimated by ¢ and ¢,,

where ¢ and ¢, are as follows below.

¢, = average (Y, |x, €R (], s)) 2.7)
¢, = |

average (% <R, (], ))

We partition the data into two resulting regions and repeat the splitting process
on each of the two regions. Then the process will split the data into individual

sections.



2. 2.3 Pruning

How large should we grow the tree? A large tree might over-fit the data; on the
contrary, a small tree might not describe the important structure. Tree size will be a
parameter to control the model’s complexity, so how do we choose the tree size?

Traditionally, there are two ways to prune trees for choosing a tree size. One is
pre-pruning, and the other is post-pruning. The algorithm of pre-pruning is setting
some criteria to determine how to stop the tree from growing, and the algorithm of
post-pruning is pruning a tree by some criteria after growing a complete tree. The
criteria of pre-pruning are too short-sighted, however, since a seemingly worthless
split might lead to a good split below it. So, we will use post-pruning to choose the

tree size in this paper.

Venables and Ripley proposed,to choose the terminal node by these two criteria:

1.  maxAR(s, t) <0.006R(t) ,i.e-the-sum of squares after a spilt is smaller

than the original data by 0.006 times.

2.  The size of terminal node is at least 5.

Then this large tree is pruned by using cost-complexity pruning. Suppose T isa
subtree of T,, and with [T| terminal nodes, where [T| is the number of terminal

nodes in T. We index terminal nodes by k, and we represent a region by R,.

Suppose
~ 1
SN DY (2.8)
k X eRy
1 "
Qk (T)ZN_ Z (yi_Ck)Z’ (2.9)
k X eRyg

10



the cost complexity criterion is represented by

Tl

C,(T) =;Nka(T)+ax|T| (2.10)
where
N, is the number of the observation data falling in the region R, .
k is the index of terminal nodes on the binary tree T .
[T| is the number of terminal nodes in T, and.
a is the cost-complexity (a >0).
For given a cost-complexity o, we can get a subtree T to minimizeC,(T).

From this formula, we can find the larger value « gets, the smaller subtree T, gets.

For given each value o, we can get a unique smallest subtreeT, . If o =0, we can get

a full tree.

2. 2. 4 The challenge of using regression trees to detect mean-shift

In Figure 6, we can find the relation between the mean-shift trend chart and
regression tree. We can detect the mean-shift by this way, but there are many
challenges in this question.

For a given data, and we can plot its trend chart (Figure 7). If using different
cost-complexity « in this data, the results of regression tree will different as in
Figure 8. Given the same « using different scales to change the data, we can find
different results of regression trees in Figure 9. If the number of mean-shifts is more
than one, a major mean-shift would dominate the decision of a minor mean-shift if the
major mean-shift is large. The challenge of a regression tree is how to give an

adequate cost-complexity value for the data.

11
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Figure 10 A major mean-shift would dominate the decision of a minor mean-shift.

2. 2.5 Cross-Validation

Cross-validation (Stone, 1974, Stone 1977, and Allen 1977) is the most widely
used method for estimating prediction errors in machine learning. Also, it is used in
regression trees to choose the optional model.

Suppose Y is a target variable, X is a vector of inputs, and a prediction
model f (X) has been estimated from a training sample. Then this method estimates

the extra sample error
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Err = E[L(Y, f(X))] (2.11)
where L(Y, f(X)) is the loss function for measuring errors between Y and

f(X) , and is described as follows:

(Y — f (X)) squared error

L(Y, f(X)) = .
(v, 1(X)) ‘Y—f(X)‘ absolute error

Suppose we split the data into K equal-sized parts. For the k —th part, we fit

the model with the other K —1 parts of the data and then calculate the prediction err-

or of the k —th part of the data, where k=1, ..., K. Let x:{1, .., N} > {1, .., K}

be an indexing function, and let f‘k(x) denote the fitted function for removing the
k —th part of the data. Then the cross-validation estimate of prediction error is
1 R e i
CcVv :WZ Ley,, F50(x)). (2.12)
i=1

If K =N, itequals leave-one-out cross-validation.

Given a set of models f(x, @) indexed by a tuning parameter «, we denote
the fitted function for removing the k —th part of the data as f’k(x, a) . Then the
cross-validation estimate of prediction error is

CV(@) =+ DL, 0, @), (2.13)

Then we find the tuning parameter & to minimize it and choose the model f(x, a)

to fit the data. Traditionally, tools like five-fold cross-validation or ten-fold
cross-validation are widely used to estimate the error. The algorithm is as follows

below.
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Algorithm of Cross-Validation Tree

1. Suppose Y is a target variable, X is a vector of inputs, and « is a tuning
parameter.

2. Splitthe data into K groups by random chance.

3. TakeK —1 groups as training set, and groupK as testing set.

4. Set up the model by the K -1 groups.

5. Predict the group k by the model from step 4.

6. Repeat from the step 3 to step 5 to calculate CV(a) , where

V(@) =t DL 00 @) . kil N LK) and

(Y — f(X))? squared error

L Y’ 'F X = ~
(¥, 1(X)) ‘Y— f(X)‘ absoluteserror

7. Find a tuning parameter & ‘and minimize it.

8. In program, repeat r times from step 1 to step 7 to get {al*, e O } :

Ak

ok
R * 0{1 + ...+ O!r

9. Use A =

to set up the model.

2.3 Outlier

In general, an outlier is an observed value that is numerically distant from the
rest of the data.

However, an outlier appearance will create many puzzles. First, you must suspect
whether this outlier is there because of some kind of mistakes, perhaps such as
external factors. And maybe we can consider giving up this outlier, according to the
least squares error method principle, as the outlier will change the model if it exists.

But the outlier could also possibly be directed to contain some important information,
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such as perhaps some key points existing in this discovery. Therefore we suggest
deleting it when we were certain the outlier is due to other reasons.

In regression analysis, there are some points called high leverage points [12], if
they have the influence to change the model. We can find that the model has a large

change if point A existed in Figure 11.

Figure 11 Example of an influential point
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Chapter 3: New Method

3. 1 Introduction of a new method

The new method is an improvement on the Bayesian method for pruning in the
algorithm of CART. By this method, it will be easy to choose the cost-complexity for
data.

Let Y be a piecewise stationary mean process and be as follows according to

mathematical symbols.
Y =u+¢&, L<i<N, g~ N(O, ng)’ (3.1)

where 4 is the mean of i-th component
N is the sample size, and
o’ is Within-variance

Suppose the data has K .steps, and the Jocation of mean-shift are at
t, oot oty =1, =N, and 1=t <t <. <t <..<t,=N. The data is
split into these k-1 points, t, ..t ...t , the mean in each section is

6, ... 6, .. 6 inorder,and is as follows according to mathematical symbols.
u =6 fort <i<(t,,-1) (3.2)
In this question, Kand t are a random variables, because we don’t know how

many times the mean shifted in the data or where the locations of mean-shift are.
We suppose that there exists a binary sequence R with length N to represent

the data, where

(3.3)

[Lifi=t, forl<k <K, 1<i<N
“|oifizt, fori<k<K,1<i<N’

Then we can say that the number of times of mean-shift equals the sum of the
sequence R, and the mean-shift happens when R, =1. Therefore we will want to

find the most probable sequence R to describe the trend of the data. If the sequence
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is established, then 2 (u= (1), =0(0), where 8 = (6,, 6, ..., 6;)) become

parameters.
We can suppose that R is a Bernoulli sequence with probability A,

0< A <1. Given the data Y, we can find the prior probability P(R|Y), which is the

most probable mean-shift model.

P(Rw)—w P(Y |R)P(R) (3.4)
(y Hk)
I A% (L= )N K (3.5)

k 0 i= tk «/27[0'

And the most probable mean-shift model is

M%X(P(R|Y))oc Max x A (L= (3.6)

K 1*1(y -6

o Min| Y ik Lk logtEA
AL ey i=t, 20-2
&

< tl”rl()/i _Hk)z 1-4
_l\ﬂln(z T+2|Og( 7 )XKJ

L(ff(y, 0, + 2% x log(:= )XK] (3.8)

, Where K is the number of segments.
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To compare this equation with the formula of cost-complexity pruning (CCP),

Max(P(R|Y))

Kt 2 1-1
o Min| > > (y,-6,) +207log( 2 Yx K |,
k=0 i=t,

where K is the number of segements

‘Tv‘ nj
D,(T)=2.2(¥;-¥,)" +ax[T]|

=1 =1
, Where ‘T‘ is the number of terminal nodes of T .

We can estimate o by 207 Iog(l_Tﬂ) And the way to choose A is by using

the probability for the normal distribution shift. In this paper, we use the probability
over three standard deviations to estimate A . In the data, if we choose a larger A , the

amount of subgroups becomes more complex.

N(O, 1)

0.4

0.3

0.2

0.1

0.0

Figure 12 The probability of the sequence that happened

And we use §° to estimate o2,
£

K N

ZZ(XU _Y.j)z
where §° =KL (3.9)
N -K

N is the number of data

K denotes it has K steps, and
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n is the number of the terminal node.

If we suppose the prior probability of A is the probability over three standard

1-0.0027

) =11.8236x &2,
0.0027

deviations (0.0027), then & = 2o~ log(

3. 2 The influence of outliers

If some are outliers existing in the data, it would maybe be a mistake to estimate
the model. For example, if the location of mean-shift is at 80, we will find the
result changed for outliers added in Figure 13 and Figure 14. Because of adding
outliers, in Figure 13, the change-point changes from 80 to 72; and in Figure 14,

the result shows more variation.

0 _o®
s ° SO
C?U Lo
>
0 o o
0 20 40 60 80 100

time

Figure 13 The location for mean-shift is shifted when the outlier exists.

Y-value

-15

0 20 40 60 80 100

time
Figure 14 The model is more complex when the outlier exists.
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By this viewpoint, we will know that we should examine first whether the data
have the appearance of outliers. In this section, we will illustrate a method to deal

with outliers. First we define the outlier, which satisfies the below:

1. Any data observation which lies more than 1.5*IQR lower than the first quartile or
1.5*IQR higher than the third quartile is considered an outlier.

2. Any data observation is an influence point.

In this paper, we will make the symbol to the outliers (Figure 15). Then it will be

easy to see the trend of the data without losing any information.

n
o © %QO"""O’A é)Q)o
3 w0
<
>

Lo

-

&
0 20 40 60 80 100
time

Figure 15 We will make a symbol to the outliers.

3. 3 Finding different level mean shifted by Multi-resolution

Because we need to estimate the variation within groups, but §* contains

variation within groups and variation between groups, and the estimator $* may be

larger than &2, so we would use multi-resolution to adjust the estimator until no new

mean-shift is found.

We will show our new method’s flow as follows bellow.
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The algorithm of new method

1.

2.

Take resource data to input data

Calculate the S of input data

Grow the tree and to prune the tree by estimator « .

Record every terminal node

Find whether this section has observations more than 1.5*IQR lower than the first
quartile or 1.5*1QR higher than the third quartile. If true, go to step 6, else go to 7.
Delete the point which is recorded in step 5 to set up a new tree from step 1 to step
4 to get the new terminal node * step by step.

If the terminal nodes * are different from the terminal nodes, then we will delete
them and go to step 1. Else go to step 8.

If we get new terminal nodes, take each terminal node to input data, and repeat

from step 2 to step 7. Else break.

The process flow of new method is as follows-below. (Figure 16 and Figure 17)
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Grow tree&Prune tree

|
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Figure 16 The.process flow of the new method

Outlier detection flow

Any data observation
. which lies more than
Delete observation 1.5¥IQR lower than
l the first quartile or
Delete outlier then Calculate 5., tlh:?:g? ;ﬁ;l:ﬂlm
return to resource l
data Grow tree&Prune tree
. I Compare with
different Stp e
original input data l
Return to next
terminal node

Figure 17 The process flow of the outlier detection
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Chapter 4: Experiment

In this chapter, we will discuss many cases by simulation results. In each case,

the data is simulated by the joint distribution of several distributions (M;, M,, ...),
where M, is a normal distribution with &2, and M,, M,, ... have different means.

The main cases we want to discuss follow below, and in the table’s last row, we

also show the simulated classification rate of all the main cases.
1. Noshift, if k=0

2. Shifted one time, if k=1
3. Shifted several times, if k >1

4. The influence of different scales

In detail, we will discuss-different levels for shifting, including one standard

deviation, two standard deviations, three standard deviations, and five standard
deviations. In our experiment, we take o =1 for every variation. We will discuss

balanced data and unbalanced data. In addition, we will discuss the influence of an
outlier, so we will replace two outliers from the data whose values are 5 and 6 times

IQR lower than the first quartile.

Because the data size in the semiconductor industry is about of 50-200 units, our
experiment is designed around 50-200, and in each case we simulate 50 times to get
the simulated classification rate. In the result of simulation, we will compare three
methods: CPD (bootstrap 1000 times, 95% confidence level), Cross-Validation tree,
and a new method. We define the simulated classification rate by four results. First,
we discuss the simulated classification rate of detecting the number of times of

mean-shift; then we discuss the simulated classification rate of detecting the location
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of mean-shift. The rules follow below:

=

2. Result 2: The location of the mean-shift in the simulation result is same as the

setting. (Appendix 4.1)

Result 1: The number of mean-shifts in the simulation result is same as the setting.

3. Result 3: The location of the mean-shift in the simulation result and the setting are

close, within 3.

4. Result 4: The location of the mean-shift in the simulation result and the setting are

close, within 5. (Appendix 4.2)

5. Result 5: Change the scale larger in the same data.

6. Result 6: Change the scale smaller in the same data.

4.1 No shift

Table 1 Resultl of no shift

Result 1: The number of mean-shiftsiin the simulation result is same as the setting.

No.adding outlier Adding outliers
Case mean | size CPD Cvtree New CPD Cvtree New
1 0 30 94% 52% 100% 96% 62% 100%
2 0 50 94% 68% 100% 90% 70% 100%
3 0 100 94% 90% 100% 92% 84% 100%
4 0 200 98% 96% 100% 98% 92% 100%
95% 76.5% 100% 94% 77% 100%
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Table 2 Result3 of no shift

Result 3: The location of the mean-shift in the simulation result is same as the setting.

No adding outlier Adding outliers
Case mean | size CPD Cvtree New CPD Cvtree New
1 0 30 94% 52% 100% 96% 62% 100%
2 0 50 94% 68% 100% 90% 70% 100%
3 0 100 94% 90% 100% 92% 84% 100%
4 0 200 98% 96% 100% 98% 92% 100%
95% 76.5% 100% 94% 771% 100%

4. 2 Shifted one time

Table 3 Resultl of mean-shift one’time

Result 1: The number of mean-shifts.in the simulation result is same as the setting.

No adding outlier Adding outliers

Case | mean size CPD Cvtree New CPD Cvtree New
5 (5,0) (50, 50) 94% 90% 98% 94% 86% 100%
6 (3,0) (50, 50) 86% 84% 100% 80% 78% 100%
7 (2,0) (50, 50) 84% 82% 96% 90% 84% 100%
8 (1,0) (50, 50) 98% 90% 94% 76% 58% 70%
9 (5,0) (90, 10) 88% 84% 94% 68% 92% 100%
10 (3,0) (90, 10) 60% 86% 100% 48% 88% 100%
11 (2,0) (90, 10) 52% 94% 92% 32% 60% 74%
12 (1,0 (90, 10) 24% 30% 50% 18% 16% 8%
13 | (2,0) | (15,15) | 96% 62% | 100% | 46% 46% 24%
14 | (2,0) | (20,10) | 86% 62% 98% 30% 36% 8%
15 (2,0) (25, 25) 92% 68% 100% 92% 56% 92%

78.18% | 75.64% | 92.91% | 61.27% | 63.64% | 70.55%
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Table 4 Result3 of mean-shift one time

Result 3: The location of the mean-shift in the simulation result and the setting are within 3.

No adding outlier

Adding outliers

Case | mean size CPD Cvtree New CPD Cvtree New
5 (5,0) | (50,50) 94% 90% 98% 94% 86% 98%
6 (3,0) (50, 50) 86% 84% 100% 74% 76% 100%
7 | 2,00 | (50,50) | 80% 76% 94% 78% 74% 94%
8 (1,0) | (50,50) 62% 50% 54% 46% 36% 50%
9 (5,0) | (90, 10) 86% 84% 100% 64% 92% 96%
10 (3,0) (90, 10) 56% 86% 100% 28% 80% 96%
11 (2,0) | (90, 10) 32% 92% 88% 14% 48% 70%
12 (1,0) | (90, 10) 6% 24% 26% 4% 14% 8%
13 | (2,0) | (15,15) | 88% 60% 84% 40% 30% 24%
14 | (2,0) | (20,10) | 82% 62% 80% 26% 24% 8%
15 (2,0) | (25, 25) 92% 68% 100% 76% 48% 86%

69.45% | 70.55% | 84% | 49.45% | 55.27% | 66.36%
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4. 3 Shifted several times

Table 5 Resultl of mean-shift several times

Result 1: The number of mean-shifts in the simulation result is same as the setting.

No adding outlier

Adding outliers

Case mean size CPD |Cvtree | New | CPD | Cvtree | New
16 (6, 3, 0) (40, 40, 40) 36% | 84% | 96% | 44% | 84% | 96%
17 (15, 10, 5, 0) (30, 30, 30, 30) 86% | 82% | 96% | 84% | 66% | 98%
18 9,6,3,0) (30, 30, 30, 30) 88% | 84% | 96% | 76% | 70% | 100%
19 (6,4,2,0) (30, 30, 30, 30) 80% | 68% | 96% | 86% | 76% | 98%
20 | (20,15,10,5,0) | (25,25, 25,25,25) | 14% | 100% | 96% | 16% | 70% | 100%
21 (12,9, 6, 3,0) (25, 25,25,25,25) | 20% | 60% | 86% | 28% | 74% | 94%
22 (8,6,4,2,0) (25, 25, 25,25,25) | 34% | 60% | 86% | 46% | 56% | 92%
23 | (25, 20, 15, 10, 5, 0) | (20,20,20,20,20,20) | 8% | 100% | 96% | 20% | 74% | 98%
24 | (15,12,9,6,3,0) |(20,20,20,20,20,20) | 26% | 82% | 96% | 36% | 54% | 100%
25 (10, 8,6,4,2,0) |(20,20,20,20,20,20)| 38% | 50% | 90% | 42% | 36% | 84%
26 (10, 3,0) (40, 40, 40) 86% | 78% | 96% | 80% | 84% | 100%
27 (10, 2,0) (40, 40, 40) 80% |.74% | 92% | 88% | 74% | 98%
28 (10, 1, 0) (40, 40, 40) 84% | 72% | 92% | 74% | 56% | 76%
29 (10,5, 2,0) (30, 30, 30, 30) 2% | 72% | 98% | 78% | 70% | 98%
30 (10,5, 1, 0) (30, 30, 30, 30) 70% | 64% | 68% | 50% | 26% | 62%
31 (10, 2,0) (50, 40, 30) 92% | 72% | 96% | 88% | 74% | 98%
32 (10,5, 2,0) (50, 35, 25, 10) 72% | 78% | 86% | 68% | 58% | 82%
33 (10, 6, 4, 2, 0) (40, 30, 25,15,10) | 38% | 64% | 72% | 60% | 40% | 74%
34 (5,0,5) (40, 40, 40) 92% | 84% | 98% | 94% | 80% | 98%
35 (3,0,3) (40, 40, 40) 88% | 88% | 100% | 90% | 74% | 100%
36 (2,0,2) (40, 40, 40) 88% | 68% | 88% | 82% | 82% | 92%
37 (5,0,5) (20,60,40) 84% | 82% | 100% | 86% | 86% | 100%
38 2,0,2) (20,60,40) 82% | 76% | 94% | 78% | 78% | 100%
39 (5,2,0,2,4,6) (20,30,20,30,20,20) | 54% | 56% | 74% | 62% | 66% | 72%

63% |74.92%]91.17%64.83%| 67% |92.08%

28




Table 6 Result3 of mean-shift several times

Result 3: The location of the mean-shift in the simulation result and the setting are within 3.

No adding outlier Adding outliers

Case mean size CPD | Cvtree | New | CPD | Cvtree | New
16 (6, 3, 0) (40, 40, 40) 20% | 78% | 90% | 24% | 76% | 86%
17 (15, 10,5, 0) (30, 30, 30, 30) 86% | 82% | 96% | 74% | 64% | 92%
18 9,6,3,0) (30, 30, 30, 30) 86% | 82% | 94% | 66% | 56% | 90%
19 (6,4,2,0) (30, 30, 30, 30) 66% | 56% | 74% | 54% | 40% | 74%
20 (20, 15,10,5,0) | (25,25,25,25,25) | 8% | 98% | 96% | 6% | 66% | 94%
21 (12,9,6, 3,0) (25, 25, 25,25,25) | 18% | 56% | 80% | 14% | 58% | 76%
22 (8,6,4,2,0) (25,25,25,25,25) | 6% | 34% | 34% | 6% | 18% | 46%
23 | (25, 20, 15, 10, 5, 0) | (20,20,20,20,20,20) | 8% | 90% | 94% | 16% | 70% | 92%
24 (15, 12,9,6,3,0) |(20,20,20,20,20,20) | 14% | 68% | 82% | 16% | 36% | 86%
25 (10,8,6,4,2,0) |(20,20,20,20,20,20)'| 8% 30% | 42% | 10% | 16% | 40%
26 (10, 3,0) (40, 405 40) 84% |-78% | 94% | 76% | 78% | 98%
27 (10, 2, 0) (40, 40, 40) 78% | 72% | 86% | 80% | 68% | 92%
28 (10,1, 0) (40, 40, 40) 46% | 38% | 54% | 34% | 24% | 46%
29 (10,5, 2,0) (30, 30, 30, 30) 64% | 68% | 92% | 58% | 56% | 88%
30 (10,5, 1, 0) (30, 30, 30, 30) 50% | 38% | 42% | 32% | 16% | 32%
31 (10, 2, 0) (50, 40, 30) 90% | 64% | 86% | 82% | 62% | 88%
32 (10, 5, 2, 0) (50, 35, 25, 10) 68% | 76% | 66% | 58% | 52% | 62%
33 (10, 6, 4, 2,0) (40, 30, 25,15,10) | 18% | 46% | 56% | 14% | 22% | 46%
34 (5,0,5) (40, 40, 40) 92% | 84% | 98% | 86% | 76% | 98%
35 (3,0,3) (40, 40, 40) 78% | 80% | 86% | 74% | 62% | 88%
36 (2,0,2) (40, 40, 40) 80% | 60% | 68% | 60% | 52% | 74%
37 (5,0,5) (20,60,40) 80% | 82% | 100% | 82% | 84% | 98%
38 (2,0,2) (20,60,40) 64% | 64% | 76% | 56% | 56% | 84%
39 (5,2,0,2,4,6) |(20,30,20,30,20,20) | 34% | 32% | 32% | 22% | 28% | 30%
51.92%|64.83%|75.75%|45.83%| 51.5% | 75%
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4. 4 The influence of different scales

In this main case, we expand the no shift data to see the result, and we take the

data from the Case 1.

Table 7 Result5 of scales changed

No adding outlier | Adding outliers

Case | data New New
1 *1 100% 100%
40 *1.5 100% 100%
41 *2 100% 100%
42 *5 100% 100%
43 | *10 100% 100%
44 *20 100% 100%
100% 100%

In this main case, we contract the shifted data to see the result, and we take the
data from Case 6. The location of ‘the mean-shift in the simulation result and the

setting are within 3.

Table 8 Result6 of scales changed

No adding outlier | Adding outliers

Case data New New
6 *1 100% 98 %
45 *0.5 100% 98 %
46 *0.2 100% 98 %
47 *0.1 100% 98 %
48 *0.05 100% 98 %
49 *0.01 100% 98 %
100% 98 %
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Chapter 5: Conclusions

In this paper, we used a regression tree to set up the model and apply it in the
semiconductor industry to detect where the yield rate changed. From chapter 4, we
can find that our new method is efficient in detecting the mean-shift problem, and we
can conclude that

1. The new method has the highest simulated classification rate among

these three methods.

2. When adding some outliers, the result of the simulation is less affected.

3. For the different scales, the result of the simulation is also less affected.

4. For the unbalanced data, the result of the simulation is also less
affected.

5. The new method must reduce the.time.

Therefore we may say that the.new-method is a useful application in the
semiconductor industry to determine whether in detecting yield rates helps to find

where the process has variation.

The new method may be applied in other fields. For example:

1. We can use the new method to set up a model for classification.
2. We can also use the new method to solve problems that used CPD
before.

In future work:
1. Because this article solves problem of the detecting semiconductor

yield rates, so we just discuss one dimension by this method. Therefore
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we may study the new method to apply to other problems with high
dimensions in this way.

In this paper, our condition is laid in normal distribution with
unchanged variance; therefore, in the future, we may discuss the
classification of random assignment material. If the variance has
changed, we need to discuss how to detect the position of its changed
variance.

Because of the semiconductor industry's demand, the size of its
detection rate material is approximately 50-200. Therefore in this
article, we mainly simulate small samples. It is adaptable to have a

sample size larger than 50 in this new method.

32



References

[1] Abu-Taleb, A.A., Alawneh, A.J., and Smadi, M.M., Statistical analysis of recent

changes in relative humidity in Jordan. American Journal of Environmental Sciences

3 (2), 2007, 75-77.

[2] Bergeret, F. and Le Gall, C., Yield Improvement using Statistical Analysis of

Process Dates, IEEE Transactions on Semiconductor Manufacturing, Vol. 16, No. 3,

2003, 535-542.

[3] Besse P., Le Gall, C., Application and reliability of change-point analyses for

detecting a defective in intragated circut manufacturing series, Communication in

Statistics, Simulation and Computation , 2006.

[4] Breiman, L., Friedman, J.H.; Olshen;-R.A..and Stone, C.J., Classification and

Regression Trees, Wadsworth, Belmont, California, 1984.

[5] Carslaw, D.C., Ropkins, K., and Bell, M.C., Change-Point Detection of Gaseous

and Particulate Traffic-Related Pollutants at a Roadside Location, Environmental

Science and Technology, Vol. 40. Issue 22, 2006, 6912-6918.

[6] Esposito, F., Malerba, D., and Semeraro, G., A Comparative Analysis of Methods

for Pruning Decision Trees, IEEE Transactions on Pattern Analysis and Machine

Intelligence, VOL. 19, NO. 5, 1997, 476-491

[7] Esposito, F., Malerba, D. and Semeraro, G., A Comparative Analysis of Methods

for Pruning Decision Trees, IEEE Transactions on Pattern Analysis and Machine

33



Intelligence, Vol. 19, No. 5, May 1997, 476-491.

[8] Kucera, J., Barbosa, P., Strobl, P., Cumulative sum charts - A novel technique for

processing daily time series of MODIS data for burnt area mapping in Portugal, IEEE

Proceedings Multitemp2007, Leuven, Belgium.

[9] Lai, T.L. Sequential change point detection in quality control and dynamical

systems, J. Royal Statistical Society Soc. Ser. B 57, 1995, 613-658.

[10] Lavielle, M., Optimal segmentation of random processes, IEEE Transactions on

signal processing 46, May 1998, 1365-1373.

[11] Neretti, N., Remondini, D., Tatar, M., Sedivy,-J.M., Pierini, M., Mazzatti, D.,

Powell, J., Franceschi, C., and Castellani.—-G.C../ Correlation analysis reveals the

emergence of coherence in the: gene expression dynamics following system

perturbation, BMC Bioinformatics 2007, 8(Suppl 1):S16 (8 March 2007).

[12] Neter, J., Wasserman, W., and Kutner, M.H., Applied Linear Regression Models,

Second Edition, Richard D. Irwin. Inc., Boston, Massachusetts, 1989.

[13] Smadi, M.M., Zghoul, A.A., A Sudden Change In Rainfall Characteristics In

Amman, Jordan During The Mid 1950s, American Journal of Environmental Sciences

2 (3), 2006, 84-91.

[14] Taylor, W.A. Change-Point analysis: A powerful new tool for detecting changes,

2000. http://www.variation.com/cpa/tech/changepoint.html

34


http://www.variation.com/cpa/tech/changepoint.html

[15] Williams, D., Kuhn, A., Kupsch, A., Tijssen, M., van Bruggen, G., Speelman, H.,

Hotton, G., Yarrow, K., and Brown, P., Behavioural cues are associated with

modulations of synchronous oscillations in the human subthalamic nucleus. Brain,

September 1, 2003; 126(9): 1975-1985.

[16] Windeatt T., Ardeshir G, An empirical comparison of pruning methods for

ensemble classifiers, Proc. of Int. Conf Intelligent Data Analysis, Sept 13-15, 2001,

Lisbon, Portugal, Lecture notes in computer science, Springer-\Verlag, 208-217

35



Table 9 Result2 of no shift

Appendix 4.1

Result 2: The location of the mean-shift in the simulation result is same as the setting.

No adding outlier Adding outliers
Case mean | size CPD Cvtree New CPD Cvtree New
1 0 30 94% 52% 100% 96% 62% 100%
2 0 50 94% 68% 100% 90% 70% 100%
3 0 100 94% 90% 100% 92% 84% 100%
4 0 200 98% 96% 100% 98% 92% 100%
95% 76.5% 100% 94% 77% 100%

Table 10 Result2 of mean-shift one time

Result 2: The location of the mean-shift in the simulation result is same as the setting.
No adding outlier Adding outliers
Case| mean | size CPD Cvtree New CPD Cvtree New
5 |(50)](50,50) | 92% 88% 96% 88% 80% 92%
6 |(3,0)(50,50) 66% 64% 76% 60% 58% 76%
7 1(2,0)](50,50) | 60% 58% 66% 56% 54% 66%
8 [(1,0)|(50,50) | 24% 16% 22% 20% 16% 22%
9 |(50)((90,10)| 58% 84% 98% 42% 86% 90%
10 [(3,0) | (90,10) | 30% 66% 80% 14% 62% 72%
11 | (2,0) | (90,10) | 22% 66% 62% 10% 30% 50%
12 | (1,0)|(90,10) | 4% 16% 20% 2% 6% 4%
13 | (2,0) | (15,15)| 56% 30% 52% 20% 14% 14%
14 | (2,0) | (20,10) | 58% 40% 60% 18% 10% 8%
15 [ (2,0) | (25,25) | 54% 40% 62% 42% 30% 48%
47.64% | 51.64% | 63.09% | 33.82% | 40.55% | 49.27%
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Table 11 Result?2 of mean-shift several times

Result 2: The location of the mean-shift in the simulation result is same as the setting.

No adding outlier Adding outliers
Case Mean size CPD |Cvtree | New | CPD | Cvtree | New
16 (6, 3, 0) (40, 40, 40) 6% | 56% | 60% | 12% | 44% | 52%
17 (15, 10, 5, 0) (30, 30, 30, 30) 82% | 80% | 94% | 58% | 52% | 68%
18 9,6, 3,0) (30, 30, 30, 30) 60% | 54% | 68% | 44% | 34% | 60%
19 (6,4,2,0) (30, 30, 30, 30) 20% | 16% | 28% | 16% | 12% | 22%
20 | (20,15,10,5,0) | (25,25, 25, 25, 25) 6% | 78% | 78% | 0% | 46% | 74%
21 (12,9,6, 3,0) (25, 25, 25, 25, 25) 4% 26% | 30% 0% 26% | 28%
22 (8,6,4,2,0) (25, 25, 25, 25, 25) 0% 8% 8% 0% 2% 6%
23 | (25,20,15,10,5, 0) | (20, 20, 20, 20, 20,20) | 4% 2% | 70% 2% 40% | 48%
24 | (15,12,9,6, 3,0) (20,20,20,20,20,20) 4% 24% | 24% 2% 8% 22%
25| (10,8,6,4,2,0) | (20, 20, 20, 20, 20,.20) 0% 4% 4% 0% 0% 4%
26 (10, 3, 0) (40, 40, 40) 64% |- 72% | 90% | 54% | 68% | 86%
27 (10, 2, 0) (40, 40,-40) 64% | 56% | 74% | 56% | 46% | 66%
28 (10, 1, 0) (40, 40, 40) 22% 16% | 22% 16% 8% 20%
29 (10,5, 2,0) (30, 30, 30, 30) 28% | 28% | 38% | 34% | 24% | 44%
30 (10,5, 1, 0) (30, 30, 30, 30) 14% 8% 12% 6% 0% 6%
31 (10, 2, 0) (50, 40, 30) 66% | 46% | 64% | 52% | 34% | 58%
32 (10, 5, 2, 0) (50, 35, 25, 10) 38% | 46% | 54% | 26% | 26% | 28%
33 (10,6, 4, 2,0) (40, 30, 25, 15, 10) 6% 16% | 20% 2% 6% 20%
34 (5,0, 5) (40, 40, 40) 86% | 70% | 84% | 78% | 58% | 78%
35 (3,0,3) (40, 40, 40) 60% | 54% | 60% | 50% | 44% | 56%
36 (2,0, 2) (40, 40, 40) 38% | 24% | 28% | 30% | 20% | 28%
37 (5,0,5) (20,60,40) 72% | 82% | 100% | 64% | 76% | 90%
38 2,0,2) (20,60,40) 22% | 38% | 42% | 16% | 24% | 38%
39| (5,2,0,2,4,6) (20,30,20,30,20,20) 4% 6% 6% 0% 2% 4%
32.089%0|40.83%|48.25% (25.75%(29.17%|41.92%
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Table 12 Result4 of no shift

Appendix 4.2

Result 4: The location of the mean-shift in the simulation result is same as the setting.

No adding outlier Adding outliers
Case mean | size CPD Cvtree New CPD Cvtree New
1 0 30 94% 52% 100% 96% 62% 100%
2 0 50 94% 68% 100% 90% 70% 100%
3 0 100 94% 90% 100% 92% 84% 100%
4 0 200 98% 96% 100% 98% 92% 100%
95% 76.5% 100% 94% 77% 100%

Table 13 Result4 of mean-shift one time

Result4: The location of the mean-shift in'the simulation.result and the setting are close, within 5.

No adding outlier Adding outliers

Case| mean size CPD Cvtree New CPD Cvtree New
5 | (50 (50, 50) 94% 90% 98% 94% 86% 100%
6 | (3,00 | (50,50) 86% 84% 100% 74% 76% 100%
7 (2,0) (50, 50) 84% 82% 100% 86% 80% 100%
8 | (1,0) | (50,50) 74% 62% 68% 54% 38% 58%
9 | (50) (90, 10) 88% 84% 100% 68% 92% 100%
10 | (3,0) (90, 10) 60% 86% 100% 36% 84% 96%
11 | (2,0) (90, 10) 38% 94% 92% 16% 54% 74%
12 | (1,0) (90, 10) 6% 26% 28% 6% 14% 8%
13 | (2,0) | (15, 15) 96% 62% 90% 44% 32% 24%
14 | (2,0) (20, 10) 86% 62% 82% 30% 34% 8%
15 | (2,0) (25, 25) 92% 68% 100% 82% 50% 90%

73.09% | 72.73% | 87.09% | 53.64% | 58.18% | 68.91%
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Table 14 Result4 of mean-shift several times

Result 4: The location of the -shift in the simulation result and the setting are close, within 5.

No adding outlier

Adding outliers

Case mean size CPD | Cvtree | New | CPD | Cvtree | New
16 (6, 3, 0) (40, 40, 40) 36% | 84% | 92% | 38% | 82% | 94%
17 (15, 10, 5, 0) (30, 30, 30, 30) 86% 82% 98% 82% 66% 96%
18 (9,6,3,0) (30, 30, 30, 30) 88% | 84% | 100% | 70% | 62% | 98%
19 (6,4,2,0) (30, 30, 30, 30) 78% | 66% | 98% | 70% | 52% | 88%
20 | (20, 15,10,5,0) | (25, 25, 25,25,25) | 14% | 100% | 100% | 14% 70% | 100%
21 | (12,9,6,3,0) (25, 25, 25, 25, 25) | 20% 60% 86% 24% 2% 86%
22 | (8,6,4,2,0) (25,25,25,25,25) | 14% | 46% | 56% 8% 28% | 62%
23 | (25,20,15,10,5,0) | (20,20,20,20,20,20) | 8% 96% | 88% | 20% | 74% | 96%
24 | (15,12,9,6,3,0) | (20,20,20,20,20,20) | 24% 82% 90% 28% 50% 98%
25 (10,8,6,4,2,0) (20,20,20,20,20,20) 1" '26% 46% 68% 20% 26% 68%
26 (10, 3,0) (40, 40, 40) 86% .| 78% | 98% | 80% | 84% | 100%
27 (10, 2, 0) (40, 40, 40) 80% | 74% | 94% | 84% | 70% | 96%
28 (10, 1, 0) (40, 40, 40) 68% 94% 72% 52% 38% 64%
29 (10,5, 2, 0) (30, 30, 30, 30) 2% 2% 98% 70% 64% 94%
30 (10,5,1,0) (30, 30, 30, 30) 56% | 46% | 52% | 34% | 16% | 46%
31 (10, 2,0) (50, 40, 30) 92% | 68% | 96% | 84% | 68% | 94%
32 (10,5, 2,0) (50, 35, 25, 10) 2% | 78% | 94% | 66% | 58% | 70%
33| (10,6,4,2,0) (40, 30, 25, 15, 10) | 28% 56% 68% 24% 32% 60%
34 (5,0,5) (40, 40, 40) 92% | 84% | 98% | 94% | 80% | 98%
35 (3,0,3) (40, 40, 40) 88% | 88% | 100% | 82% | 68% | 98%
36 2,0,2) (40, 40, 40) 88% | 64% | 78% | 64% | 54% | 80%
37 (5,0,5) (20,60,40) 84% 82% | 100% | 86% 86% | 100%
38 2,0,2) (20,60,40) 72% | 68% | 84% | 66% | 60% | 86%
39 | (5,2,0,2,4,6) | (20,30,20,30,20,20) | 48% | 44% | 58% | 32% | 42% | 54%

59.17%|70.92% | 86.08% |53.83%(58.42%|84.42%
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