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ABSTRACT

This thesis is a preliminary study on the CESE methods in momentum
space. We examined the examples of linear wave equation, a quantum

mechanical problem, and a nonlinear KdV equation.
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Chapter 1

Introduction

The space-time conservation element and solution element method, or the CESE method
for short, originally developed by Dr. Sin-Chung Chang and then developed by Chang
and co-workers, is a numerical framework with conservation law. The CESE method has
many nontraditional features, such as, a unified treatment of space and time, enforced
both local and global flux conservation, and so on. However, the application of CESE
method in momentum space has nevey touched to our knowledge.

Development of the CESE niethod, m momentum space (p-space) is motivated by
a goal to avoid the troubles m boundar*y reﬂectlen like methods in coordinate space,

and to preserve information completely for scattermg states. In order to get data more

completely, some numerical computatlons need to eonstruct large computational domains
in coordinate space, but in momentqm space such a large box is not necessary. The
troubles of boundary conditions can easily be overcome in momentum space. Because the
value of momentum relates to the kinetic energy and physically vanishing at large value.

However, we retain the original advantages of CESE method, such as, wide applica-
tion possibility, easy in implementing efficient parallel computing, compatible to complex
geometries, and so on.

In this thesis, we will first briefly introduce the core ideas of CESE, and then for-
mulate the p-space CESE method. We apply the new development to solve the simple
wave equation, the convection-advection equation, a quantum mechanical problem and
a nonlinear KdV equation. We found that the new method will be potentially useful in

solving general time-dependent problems.



Chapter 2

Review of the CESE Method

2.1 Brief Review of the a-Scheme

In this section, we shall briefly introduce the 1D a-scheme described in Ref.[1]. Consider

the PDE
ou ou B

o or

where the wave speed, a # 0, is a constamt., Let x and ¢ be the coordinates of a two-

0, (2.1)

dimensional Euclidean space Ej. By using G-ausé“- divergence theorem in Fjy

]{ 7 A 0. (2.2)
Lo ]

where S(V') is the boundary of-éln arbltrary -spa(.;e‘—time region V' in Ey, h = (au,u) is a
current density vector in Fjs, and the surface élément ds = don with do and n being the
area and the outward unit normal of a surface element on S(V'), respectively.

As depicted in Fig. 2.1, let F5 be divided into non-overlapping rectangular regions and
are referred as conservation elements (CEs). The CEs with the mesh point (j,n) € Q are
denoted by CE_(j,n) and CE, (j,n), respectively. Each mesh point (j,n) is associated
with a cross-shaped solution element.

Note that the conservation law given in Eq. (2.2) is formulated in which space and
time are unified treated on equal footing. This unity of space and time is also a tenet in
the following numerical development.

For any (z,t) € SE(j,n), u(z,t), and h(x,t) are approximated by wu(z,t;j,n) and
h(z,t; j,n), respectively. Using the first order Taylor’s expansion of u(x,t) at (x;,t"), we
define

u(z,t;j,n) = uj + (ug) (v — x5) + (ue)j(t —¢"). (2.3)

We identify u?, (u.)}, and (u;)} with the values of u, du/dx, and Ju/0t at (x;,t"),
and (u;)? are constants in SE(j,n). Requiring that

respectively. Note that uf, (u,)} f
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Figure 2.1. Definitions of the space-time staggered mesh, CE, and SE in FE,.



u = u(x,t; j,n) satisfies Eq. (2.1) within SE(j,n), one has
(ut);1 = —a(ux)?. (2.4)
Substituting Eq. (2.4) into Eq. (2.3), one has
u(z,t;j,n) = uj + (v —x5) —a(t —")](u.)]. (2.5)

Note that the expansion coefficients u} and (u,)} in Eq. (2.5) are treated as independent

variables. In addition, h is approximated by
h(z,t;5,n) = (au(x,t; j,n),u(x, t;j,n)). (2.6)
With the approximation, the total flux leaving the boundary of CEL(j,n) is
Fi(j,n) = 7{ h-.ds=0 (2.7)
S(CE+(j,n))

As depicted in Fig. 2.1 for CE_, the outward unit normal vectors 7 at AD, AE, BE,
and BD are (1,0), (0,1), (—1,0), and (0, —1), respectively; and for CEy, the outward
unit normal vectors n at AD, ﬁ,@?, and @ are (—1,0), (0,1), (1,0), and (0, —1),

respectively. By using Eqs. (2.5) and (216),, 11: cati-be shown that Eq. (2.7) is equivalent

1 =& [ = 1 n—3
(1Fv) [u + Z(L":I: I/)u,—q]'?('FZFJ/) {u F Z(l + V)ugg} : (2.8)
i ¥ i*3
where v = a At/Ax. h i
Choose 1 —v # 0 and 1+ v # 0. Eq. (2.8) reduce to
_1
1 " 1 "2
ut—-(1xv)uz| = |luF-(1E£v)uz . (2.9)
1 . 1 -
J J=E3

By using Eq. (2.9), u} and (uz)} can be solved in term of u;;l//; and (ui)?;ll//; The

time-marching is then arrived by explicit iterations.

2.2 Brief Review of the a-u-Scheme

Refer to Ref.[2], consider the dimensionless form of the one- dimensional convection-
diffusion equation
ou  Ou

% Mo

where the wave velocity a, and the viscosity coefficient p are constants. By using Gauss

j{ h-ds =0,
S(V)

4

=0, (2.10)

divergence theorem in FEj,



where h = (au — pu,u).
Let u = u(x,t;j,n) be defined by Eq. (2.3), it satisfies Eq. (2.10). Within SE(j,n),
one has

(ue)j = —a(u,)j. (2.11)
Substituting Eq. (2.11) into Eq. (2.3), one has
u(z, t;j,n) = uf +[(x — ;) — a(t —")](us)}. (2.12)
In addition, we have the approximation

h(z,t;j,n) = (au(z,t;j,n) — pua(z,t; 5, n), u(x, t; j,n)). (2.13)

The approximation defined by Eq. (2.7) of the total flux leaving the boundary of
CE4(j,n) is

4 1 n—l
o Pelim) = 5 (L= V2 + )] + (1= v* = ()} o
+ —2<1.:.E Kl (u"—r uni%) =0 |
B TG T

where v = a At/Ax, £ = 4pu At/A:U2 i-” ) -
By Eq. (2.14), u} and (ug)f can _pfé:né'olyed ins term of u;;l//; and (um);;l//; The
time-marching is then arrived by explicit Herations.

o ne



Chapter 3

The 1D CESE Method in
Momentum Space

3.1 1D a-Scheme in Momentum Space

Eq. (2.1) can be transformed into

Py
| 6_1; :"jinc%pﬂ, (3.1)
by marking the Fourier transformation; r ; :
| A ‘ 3
Equivalently, it can be written as s 1
AV = o pa, (3.2)

where the operator V = (9/dp,d/0t).” Consider p and t as the coordinates of a two-

dimensional Euclidean space Fy. Apply the Gauss divergence theorem to Fs

7{ h~ds:—ia/pﬁd7, (3.3)
S(V) v

where h = (0, %) and (—iapa) is the net flux per unit volume.

Let E5 be divided into non-overlapping rectangular regions referred to as conservation
elements (CEs). The CEs with the mesh point (j,n) € € are denoted by CE_(j,n) and
CE, (j,n), respectively. Let SE(j,n) be the rhombus shaped area DEGF depicted in Fig.
3.1. The function value at the center of CEL can be approximated by expanding about
uﬁll //22 or using arithmetic mean of u/ and uzzll //22 .

For any (p,t) € SE(j,n), u(p,t) and h(p,t) are approximated by a(p,t;j,n) and
h(p,t;j,n), respectively. We define

w(p,t;g,n) = uj + (@p)j (p = py) + (@)j (¢ = 1"), (3.4)
where (p;,t") are the coordinates of the mesh point (7, n).

6
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Figure 3.1, b‘eﬁnitionsn of €E and SE in Es.

Note that u}, (1,)} and (’&t);‘ are‘const‘"afl”ts in SE(], n). We also have

N0 t;j,nh)z"ro,a(p,i;j, n)). (3.5)

Requiring that @ = a(p,t;j,n) satisfios Eq. (3.1) within SE(j,n), one has
()} = —iap;uj. (3.6)

The approximation of the total flux leaving the boundary of CEL(j,n) is

Fi(j,n):% h~ds:—ia/ pudr. (3.7)
S(CE4 (j,n)) CE+(j,n)

By Egs. (3.5) and (3.7), the total flux leaving CEL (j,n) can be derived as

. Ap (., 1, -t 1 il
Fi(j,n) = —- {Uj + Z(uﬁ)j - [Uji; + Z(“p)ji;]}

2
n—s 1 n—

(3.9)
B TR U
= _ijzl:% [U]i% + Z(uﬁ)ji% + Z(ut)j:l:

where we use Taylor expansion to estimate the function value at the center of CEL,

in order to prepare for nonlinear situation (in Chapter 5). With the aid of Egs. (3.6)

and (3.8), @} and (@)} can be solved in terms of ﬂ?;ll//s and (7113)?;11//22, and for further
iterations,

SO R -1 1, -1 , 1/, -1\ At

e gl - |00 7 ] =iy (o i) 5 69

7



We can check the convergence of @7. Eq. (3.9) can also be derived from Eq. (3.7) by
approximating the source term to the arithmetic mean of u/ and u' i+l //22 Here the index
¢ is the number of times that Eq. (3.9) has been iterated, and 4} solved by Eq. (3.8) can

be denoted by u},. Using the Cauchy criterion, we define the convergence as

!ﬂ?,m - ﬂ?z’ <€ (3.10)

3.2 a-p-Scheme in Momentum Space

In the momentum space, Eq. (2.10) can be transformed into

815 + (iap+pp?) @ =0, (3.11)

by marking the Fourier transformation. By using Gauss divergence theorem in Fj

% h-ds:—/(iap+up2) udr, (3.12)
S(V)

where h is defined by the same as Eq (353).s .
Requiring that @ = a(p, t,j, ) defined by Eq (3.4) satisfies Eq. (3.11) within SE(j,n),
one has = if J\ ;'.,n W -

)7 = iap, + pp)) . (3.13)

The approximation of the tc;i;"a] flik leavmg t"l",le boundary of CEL(j,n) is

Fi(j}n)zjf h~ds%—/ (iap+pp?) adr. (3.14)
S(CEx(j,n)) CE+(jn)

By Eqs.(3.4) and (3.14), the total flux leaving CE, (j,n) can be derived as

. Ap -n 1, . n n—— 1 n—%
Fi(j,n) = by {Uj + Z(uﬁ)j - { Jil + 4( )Jié}}
ApAt
=5 5 (zap]il —|—Iupi > (3.15)

ol 1 _ ol At 1

With the aid of Eqs. (3.15) and (3.13), @7 and (i)} can be solved iteratively in terms

~n— n—1/2
of uji1/2 and (i), -

3.3 Numerical Results

Consider the model problem Eq. (3.1)

ou .
5 = lerd, (3.1)



and the calibrating exact solution
P
Ue(p,t) :exp(—g —iapt) . (3.16)

The initial values are given by Eq. (3.16) at ¢ = 0. The numerical results of a = 1 at
t = 8 are shown in Figs. 3.2 and 3.3.

Hereafter, the numerical errors will be measured by the root-mean-square form

N-—-1
1 o 2
E=,|—— n_ n)|2, 1
N1 2 i = el ) (3.17)

where s is the spatial index, and the p-domain is divided into N cells, and Eq. (3.17) does

not consider the points of the boundaries, namely s = 1 and N

real part of @

0.8 b

0.6 B

041 R

0.2 i

imaginary part of @

Figure 3.2. Computational results @ at ¢ = 8 obtained with p € [—4,4], Ap = 0.1, and
At = 0.08. dot: numerical results. line: exact solution.
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Before going no to the next case, we compare Fig. 3.2 with the coordinate space
numerical result of Eq. (2.1) shown in Fig. 3.4. The wave in Fig. 3.4 will flow out the
boundary gradually with the non-reflecting boundary condition, but Fig. 3.2 shows the
momentum space wave function will not leak out at all. It is the one of advantages of

momentum space method mentioned in Sec.Introduction.

041 -

0.2 1

0.8

0.4

0.2

Figure 3.4. Computational results at ¢t = 1 and 5 obtained with = € [—5,5]. Notice that
u will low out the boundary as time goes on.
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Consider next the model problem Eq. (3.11)

and an exact solution

ou

ot

+ (tap+pup?) @ =0,

te(p, t) = exp [—p* — (iap+pp®) t].

(3.11)

(3.18)

The initial values are given by Eq. (3.18) at t = 0. The numerical results of « = 1 and

i =1at t =8 are shown in Figs. 3.5 and 3.6.

1.2

1

0.8

0.6

0.4

0.2

real part of u
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04
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imaginary part of @

000000000000000000000000,

o
0000000000000 0000000000

Figure 3.5. Computational results of u at ¢

and At = 0.32.

0
p

12

= 8 obtained with p

€ [-3,3] at Ap = 0.1,
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Chapter 4

Multidimensional Paradigm

4.1 2D a-Scheme in momentum space

Refer to [3], let’s consider a regularly shaped spatial domain formed by congruent triangles
(see Fig. 4.1). The center of each triangle is marked by either a hollow circle or a solid
circle. As an example, point G, the center of the triangle ABDF, is marked by a solid
circle while points A, C and E, the centers of the triangles AFMB, ABJD and ADLF,
respectively, are marked by hollow (nrcles These centers are the spatial projections of the
space-time mesh points used in “the 2D CESE Solvers

In the 2D CESE development assume that the mesh points are located at the time
levels n = 0,£1/2,+1, £3/2,. .'.‘Wlth t:w Eurthermore, each mesh point is assigned
a pair of spatial indices (7, k) aceording to_the Tocation of its spatial projection. Let ()
denote the subset of mesh points (7, k:,n) with J,k=0,£1,£2,...,and n =0,+1,4+2,....
Let 5 denote the subset of mesh points (7, k,n) with j,k =1/3,1/3+1,1/3£2,..., and
n==+1/2,43/2,£5/2,.... The set 2 is the union of the subsets € and .

Suppose that the points A, B, C, D, E, F, and G are at time level ¢ = t", points
A B, O D, E, F/, and G’ are the corresponding points at ¢ = " — At/2, and
points A", B, C”, D", E" F” and G” are the corresponding points at ¢t = " + At/2.
The conservation elements associated with point G are defined to be the space-time
quadrilateral cylinders GFABG'F'A’B’, GBCDG'B’C'D’, and GDEFG'D'E’F’ that are de-
picted in Fig. 4.2. Assume that the points O, P, Q, O’, P/, and Q' are centroids of
ABGFA'B'G'F’', BCDGB'C'D’'G’, GDEFG'D'E'F’, ABGFA"B"G"F”, BCDGB"C"D"G”,
and GDEFG"D"E"F”, respectively. The SE associated with point G is defined as the
space-time icosikaitetra-hedron G”O'P'Q’ABCDEFOPQG’

In this section, we consider a dimensionless form of the 2D wave equation, i.e.

ou ou ou

Ou  Ou Ou_. 41
gt T egy Ty, =0 (4.1)

14



Py

Figure 4.1. Spatial mesh in F32 The spatial projections of the mesh points (j, k,n) €
are marked by solid cireles; the 6thers marked by hollow circles belong to €25.

Figure 4.2. Definitions of CE in FEj.
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By marking Fourier transformation, Eq. (4.1) can be transformed into
ou
ot

Let p,, p, and t be considered as the coordinates of a 3D Euclidean space E3 and j

—1 (ax Pzt ay py)' (4'2)

and k be spatial mesh indices. By repeating the above-mentioned method and using the
first order Taylor’s expansion of @(p,, py, t),
+ (), (8 —17).

(4.3)

at (Duj, Pyr, t"), one can solved a7, (up, )}, and (ty, )},

The marching variables at any (j,k,n) € € are determined in terms of those as-
sociated with the mesh points (j —2/3,k +1/3,n —1/2), (j + 1/3,k —2/3,n — 1/2),
and (j +1/3,k +1/3,n — 1/2). The three CEs, as the quadrilaterals ABGF, CDGB,
and EFGD depicted in Fig. 4.2, associated with the mesh points mentioned above are
denoted by CE,., r = 1,2, 3, respectively. The approximations of the total flux leaving

the boundaries of these CEs are
, K 4 ERE S 1. 1 "3
FCE1 (]7 ka TL) AV { |: upac + 64 'Py] B Y l:u + guﬁx - _upy:| }
I ] 6 )
At -~ & -
= —Z AV [ax pmj__;"—a’gpy k+li| (44)

U+ SUp, — ZUpy o ut )
3 0 ol

] B 1. 11" B 1._ 1 1"z
Feg,(j,k,n) = AV q |4+ g — 3Up, iy — |t Gl t+ 3,

VAN
= — AV7 [ax P jyl T ay py,k,%} (4.5)

N

1 At _

X a——a,,ﬁ—apﬁ—ut} ,

and

1
) 1. 11" 5 1. |
Feg,(J, k,n) = AV { {U + g p: + éupy:| . - {“ U T gupy} }

j7 -]+ ’k+3
, At
= AV7 [axperé + a, py,mé} (4.6)
1 1. A
X |8 = glp, — £lp, + I(Ut)
j+ik+l,

Similarly, The marching variables at any (j, k,n) € € are determined in terms of those

associated with the mesh points (j —1/3,k+2/3,n—1/2), (j—1/3,k—1/3,n—1/2), and

16



(j+2/3,k—1/3,n—1/2). The approximations of the total flux leaving the boundaries
of these CEs, as the quadrilaterals IJCB, KDCJ, and GBCD depicted in Fig. 4.2, are

NI

1 1 " 1 1 "
Feg, (j, k, n) = AV { {11 — —Up, + —ﬂpy} — [71 + -y — —&py] }
6 j—3.k+2

3 J.k 6™ 3
, At
= —q AV7 [axpm,% + ay py,k%} (4.7)
Xl~+1~ 1. +At~]”5
U lp, — QUp. T T U ,

1
_ _ 1. 1. 1" _ 1 1. ]"®
PEEJ%AUH)Z:Avf{{u—‘gum'—gum} _'k“+6umf+6uw}‘ }

gk J—3.k—3
, At
= —q AV7 [axpm,% + ay py,k,%} (4.8)
y ~+1~ +1~ +At~ "2
U+ =y + —=U —1
6 Px 6 Pz 4 t j_l 1 )
37 37
and
i 1
_ O N L B o1 I
FCE3<]7 kv n) =AV { |:u + g'"uﬁz - auy] . [u - guﬁz =+ gupy:| }
S =0 e i+5k—3
=—i AV n[axpxﬁ%"ﬂ—:aypy,k_%ﬂ (4.9)

4.2 3D a-Scheme in momentum space

Refer to [4] and [5], let’s consider the tetrahedron ABCD in Fig. 4.3. Points G and H
are the centroids of ABCD and ABCP, respectively. The two tetrahedrons share the face
ABC. Suppose that the points G, H, A, B, C and D are at time level ¢ = ", points
G, H', A’, B', C' and D’ are the corresponding points at ¢ = t" — At/2, and points G”,
H”, A”, B”, C" and D" are the corresponding points at ¢ = " + At/2. The cylinder
GABCHG’A'B'C'H’ is defined as one CE associated with the space-time mesh point G,
with GABCH as its spatial base.

In a similar fashion, three additional CEs associated with the mesh point G(j,n) can be
constructed by considering in turn the three tetrahedrons that share with ABCD one of its
other three surfaces. Assume points E, F and I are the centroids of the other three neigh-
boring tetrahedrons sharing BCD, ABD and CDA, respectively. The points E’, F’ and I
are the corresponding points at time level ¢ = ¢ — At/2. Then the other three CEs are
defined as the cylinder GBCDEG'B'C’'D'E/, GABDFG'A’'B'D’F’ and GCDAIG'C'D’A'T,
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Figure 4.3. Definitions of 3D CE. G and H are the centroids of tetrahedrons ABCD and
ABCP, respectively. They are the spatial projections of mesh points at a
whole-integer and half-integer time level, respectively. The triangular bi-
pyramid GABCH is one of the spatial projections of CEs associated with
mesh point G.

respectively, i.e., the polyhedrons GBCDE, GABDF and GCDALI are the spatial projec-
tions of the other three CEs associated with mesh point G(j,n).

Similar to that in one and two..;s'p'aﬁia'l' ‘dimensions, there is only one solution ele-
ment (SE) associated with eaclh:‘rnhéshu Dpoint. .I‘.féije the SE associated with point G is
defined as the union of G’A’B’G”A”B";I'd}’illS-’-:C’G’;B’:’C”, G'A'C'G"A"C", G'D'C'G"D"C”,
G'D'B'G"D"B”, G’A’D’G”A”D:’-,’,'-AHBEQM@nd their immediate neighborhoods.

In this section, we consider adlmensmnless form of the 3D wave equation, i.e.

ou  ONTTOu  du

Ou g, G O 4 9% o, 41
ot Tlegy T g, tag, =0 (4.10)

By marking Fourier transformation, Eq. (4.10) can be transformed into

ot .
E = —Z(axpx _'_ aypy + azpz)- <411)
Let ps, py, p. and t be considered as the coordinates of a 4D Euclidean space F4. Further-
more, each mesh point is assigned a set of spatial indices (j, k, h) according to the location

of its spatial projection. By using the first order Taylor’s expansion of @(py, py, p, t)

ﬂ/(px,py,pz, t> - azk,h + (apz)?,k,h@m - pm,j) + (apy)Zk,h(py - pch)
+ (T, );‘kh(pz — Pen) + (fbt)?,hh(t —t"),

(4.12)

at (Pajs Pyks Pans 1), one can solved ajy . (tp, )5k py (Upy) g ps (Up.)7 -

In this section, we construct a regularly shaped spatial mesh formed by the tetrahe-
drons defined by Fig. 4.4, and let the vector (Ap,, Ap,, Ap,) be denoted by the indices
(1,1,1). In a unit of building blocks including six forms depicted in Fig. 4.5 — 4.10, as-

suming that a reference point is denoted by (j4, k4, ha), we assign the spatial projections
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Figure 4.4. The tetrahedron ABCD is embedded inside the cube (gray line). Each vertex
of ABCD is a vertex of the cube, and each edge is a diagonal of one of the
cube’s faces. One of four other tetrahedrons inside the cube combines with
its neighboring one in another cube to the tetrahedron ABCP.

of the twelve mesh points at time level ng .to‘(jd — 3 kg ha — 3), (Ja— 3, ka ha — 1),

(a— 3§ ka=1 ha—3), Ga— 1. kar, B ha=ph st G ka— 5, ha— 3), (Ja+ 5, ka+ 3, ha—3),

(Ja+ Y kaha+ 1), Ga+ 2 katha + 8 Gat & ka1, ha+32), (Ga+ 3. ka — 1, ha + 1),
(ja— 3. ka— 3, ha+ 1), and (ja —"'»%, ka+ 3 ha+ %),'"and assign the spatial projections of the

other mesh points at time index nd—% to (Ja 4—'%, ka+1,hg—32), (a+ 2, ka+1,hg— 1),
(Ja + 3> kas ha — 1), Ga + 3, kas ha — )5 (Ja — 5, ka + 5. ha — 5), Ua — 5, ka — 5.ha — 3),
(Ja— 2 ka+ Lha+ 1Y), Ga— Y ka+ Lha+2), (Ja— 2, ka,ha+ 3), (ja— 3 kas ha + 1),
(Ja+ 3, ka+ 3, ha+ 3), and (ja + 3,ks — 5, hg + 3), respectively. The units of building
blocks can fill whole space with 7y, ky, hy = 0, £2, 44, . . ..

(a) The CEs according to the mesh point (j; — %, kq, hg — %,nd), or (ja + i, kq, hg +
i,nd), or (ja + i,kd + 1, hg — %,nd — %), or (ja — %,kd +1,hg + %,nd — %), denoted by
G(j, k,h) are shown in Fig. 4.5. Hereafter points E, F, G, H, and I are the centroids
of tetrahedrons BCDR, ABDO, ABCD, ABCP and ACDQ), respectively. Consider the
spatial projections of CEs GBCDE, GABDF, GABCH and GACDI in Fig. 4.5, in which
the spatial projections of mesh points E, F, H, I can be denoted by (j— %, k,h), (j, k, h— %),
(j+ i, k+ %, h+ i), (j+ %, k— %, h+ i), respectively, and the spatial centroids of these CEs
are denoted by (j—+,k, h+55), (+35. %, h—1), (G+15. k+55, ht55), G+15. k— 5, h+15),
respectively.

Thus the approximations of the total flux leaving the boundaries of CEs GBCDE
(denoted by CE;), GABDF (denoted by CE,), GABCH (denoted by CE3) and GACDI
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Dz

Figure 4.5. Spatial building block (a) in Ej.

(denoted by CE,) in Fig. 4.5 are

‘ ‘ 1
: s Ay . 1. 1 n—3
FCE1 (j, k, h, n) = AV { |:u — ZU@E > 2—0%2} . - |:’U/ + Z’U/pz QOUPZ} }

1
S Jok, I —5.k,h

= — (al, Prj—1 HOypy i 45 pz;h+%> (4.13)

1 1 AVR At
X {u + 7 U + 20upz + Zut} - AV —,

, o 1" T T
FCE2 (j? k? h? n) - AV u 20upar Zuﬁz j’kh - u + %uﬁl + Zuﬁz )

jikh—1/2
= —1 (am Py jil + Oy Pys + Qs pz,h—%) (4.14)
1
1 1 At_ "2 At
X —1U AV —
[ a0ttt ut] 2
-]7 b 2

1 3 L]
Feg,(j,k, h,n) = AV{ {ﬁ 10Upgr + 1—O?~Lﬁy + 10Upz}j’k7h
S ] }
i QOUPI 5upy 20“})2 P (4.15)
=4 (ax Pz jt L +ay Py e+ T, pz’h+1_10>
1

X [ﬂ, 3 upz — lﬁﬁ — S apz + gat] o Avg
20 5% 20 4 j+ik+1h+d 2

20



and

Feerir) = 7 i S, =, +
__[~ 3. 1. 3 }”‘5 }
AT 20“ﬁ2j+iﬁf%ﬁ+% (4.16)
= —1 (ax Pyt T QyPyp-3 + 0z pz,h-i—l%)
3 1 3 At_1vE At
X {u — 50U + =, — 55 Up. + Iut] e AV?’
respectively.
(b) The CEs accordlng to the mesh point (jg— 1, ka, ha—1, na), or (Ja+3, ka, ha+3, ng),

or (jd+4,kd+1 ha—3,m4— 1) or (Ja 4,k:d+1 hd+4,nd ) denoted by G(j, k, h) are
shown in Fig. 4.6. Con81der the spatial projections of CEs GBCDE, GABDF, GABCH
and GACDI in Fig. 4.6, in which the spatial projections of mesh points E, F, H, I can
be denoted by (j + %, k,h), (4. k,h + 1), U—jk—;h—@,(—lk+lh—%
respectively. And then the spatial ceiifiroids 6f; these CEs are denoted by (j + Jk,h— )

G-k h+1), (1— 5.k — S0h = 10‘) ('Tllo,kr+130,h &), respectively. Thus the

Pz

Py

Q

Figure 4.6. Spatial building block (b) in Ej.

approximations of the total flux leaving the boundaries of CEs GBCDE (denoted by CE;),
GABDF (denoted by CEy), GABCH (denoted by CE3) and GACDI (denoted by CE4) in

21



Fig. 4.6 are

. ) 1 ) 1 n B 1 ~ 1 R n—y
Fog, (j. k. h,n) = AV { [“ . 20“7”] e {“ VR 20“’”] L }

43 kb
= —g (ax Pajit + 0y Dy + a. pm_%) (4.17)
1
1 1 At "2 At
X | U — —up, — —=Up, + —ut] AV —,
[ 420" 4 j+g.kh 2

Feg, (i, k,hyn) = AV ! +1 n i- L, - La ]
n) = — Uy Up U T oq e T 4 U
CEL\J, K, I, 20 Pz p= ik 20 b 4 bz

=—1 (ampm] L "'_aypyk"'_azpthr ) (418)

1 1 At_ 1"z At
X U= —=Up, — —~Up, + _ﬂt:| AV —
{ 207 4T 4 T

1 3 [
I i koh =AV — T5lp, — TUp
CE3<j7 y ,n) { |: 1Oupz 10Upy 1Oup2:|jkh

o+ 2 +-'1'~" £ 3u
20 B 5 20 | (4.19)

1 1
J=gk—3.h=

N

; k- 1
(ampwmf S ayjby k=3 + aapz h7—>
U+ —s U U
20%“5% S}

and

n—y
sl

3 I 3 At 1"z At
5

respectively.

(c¢) The CEs according to the mesh point (j, 4, kq—1, hg— 4, Ng), OT (jd+4, kq—1, hg+
3 na), or (ja+ 1, ka, ha—1,na—3%), or (ja— 3, ka, ha+3,nq — 1), denoted by G(j, k, h,n)
are shown in Fig. 4.7. Consider the spatial projections of CEs GBCDE, GABDF, GABCH
and GACDI in Fig. 4.7, in which the spatial projections of mesh points E, F, H, I can
be denoted by (] - %7kah)a (jvkah + %)7 (] + iak + %7h - i)) (] + iak - %7h - i)a
respectively. And then the spatial centroids of these CEs are denoted by (7 — i, k,h— %),
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Figure 4.7. Spatial building block (c) in Ej.

G+ .k h+ 1), G+ 55,k + 259k = ) (% 5ok — =, h — 55), respectively. Thus the
approximations of the total flux leavmg the boundaries of CEs GBCDE (denoted by CE;),
GABDF (denoted by CE,), GABCH (denoted by CE?,) and GACDI (denoted by CE,) in
Fig. 4.7 are H | |

: o1 ‘1~ " o1 1 n—3
FCEl (j? k? h?”) = AV { |:u - Zuﬁz - 2_0upz:| - |:'U/ + Zupz - 20upz:| }

4.k,h —1.kh
=1 (am Pyj—1+ QyPyk + az pz,h—%) (4.21)
1
1 1 At "2 At
04—, — — AV —
[u%— 4upz QOupz + 1 ut} . R
.] 27 K

1
. - 1 1 " - 1 . 1. 1"
FCE2 (j? k? h? n) = AV { [u 20upz + 4upz:| - |:'U/ + %uﬁz - Zupz:| }

J,k,h Jiksht3
= — (axper% + ay py +azpz7h+i> (4.22)
1
o1 1. At "2 At
X Upz — < Up, + _Ut:| AV—,
[ 20 4 4 ik L 2
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1 3 1 "
FCE (j,k h n) AV |:U—|— —ﬁ*x + _Ia’y - _Iaz:|
: 1077 710" 107,
{a iﬂ lﬂ +3a ]n2
20 Px 5 Py 20 Pz j+%7k+%’h_i (423)
—1 (aajperi +ay Py g2 +azpzh_i>
3 1 3 At " At
N 2 2 AV =
X [u 50 P 5upy+ 50 - + 1 Ut:|j+1’k+l - 9
and
Feg,(3,k, h,n) = AV {~+1~ 5 1~r
CE4\ L, R, N, ) = Uu T Up, — TRUG, — T Up,
4 10" 10" 10",
l~ 3~+1~+3~r‘5 }
U T SR Upe T Upy, T 5 Up,
20 D 20 j+dk—L -1 (4.24)
= —1 (axpx]_,_L + Ay Py -3 ‘|‘azpzh—i>
3 1 3 At_ 1"z At
X | — —p, + iz, + —Up, + —1 AV —,
l“ 207 B2 " a ”] s 2

respectively. " |=HE %

(d) The CEs according to th'é‘inesh poinf (]d 411’}‘;01 1, hg— %, Ng), O (jd+%, kq—1, hq+
T.na), o (Ja+3, ka, ha—3,nq ) ot (]d‘—4,—/€a“ hd+4,nd 1), denoted by G(j, k, h,n) are
shown in Fig. 4.8. Consider the spa}tlal prOJegtlons of CEs GBCDE, GABDF, GABCH
and GACDI in Fig. 4.8, in which the spat"ial‘projections of mesh points G, E, F, H, I
can be denoted by (j + 3,k,h), (j,k,h—3), G—1.k—3,h+7), G —1.k+3.h+7),
respectively. And then the spatial centroids of these CEs are denoted by (j + i, k,h—+ %),
(G—5.kh—3), G — 15,k — 5. h+15), ( — 15,k + 15, h + ), respectively.

Thus the approximations of the total flux leaving the boundaries of CEs GBCDE
(denoted by CE;), GABDF (denoted by CE,), GABCH (denoted by CE3) and GACDI
(denoted by CE,) in Fig. 4.8 are

. _ 1 1" 1. 1 1
Feg, (j,k,h,n) = AV { {U + U %Upz}jkh - [U =l T %Upz} | }

:—z(axpxﬁl+aypyk+azpzh+2i> (4.25)
1
1 1 At _ "2 At
U — —Usp U —1 AV —
X [u 4upx + 20upz + 1 utL o 5
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Figure 4.8. Spatial building block (d) in Ej.

1 enibas]” 1 1 2
Fe (i —A i— —aetMMBES, |G 5 4 Cq
CE2 (.]7 k? h? n) V { |:'LL 20upz 4upz:| k‘h |:'U/ Qoupz + 4upz:| ) }
— =i (0 Py sy P ) (4.26)
P

.1 =
X |:u — %Uﬁm + ZU;—;Z 25! *4—Ut] AV —

n—

, U B LLL: o I
Fogs (5, k, h,n) = AV{ [u T 10Y T gt + l—oupz}

N 3 - 3. 1" 2
_ |:’U, + 2—0”&51 + g’U/py — 2—0Up2:| 7k7%7h+% } (427)

and

[~ E TS M r‘%
— |lu —u—z — _u,y — —U’z
207 5T 20 g (4.28)



respectively.

P C
/7\
s ! \
a4 \
st \
HQ/ / A \‘ Q
v // \ O1
7 \
Re o \
o~ /0 ¢ \
p- | / \E\ \
’ ~ < \
I s ~ _ \
(/ FO \\\
B~_"~"~"~"~""---- -~ D
Pz Py

Figure 4.9. Spatial building block (e) in Ej.

3 ka =
%,hd+2,nd) r (Ja k:d+2,hd ng — 1) or (]d+§,kd+%,hd+%,nd—%),denoted
by G(j,k, h,n) are shovvn in Fig. 4.9. @énsider the spatial projections of CEs GBCDE,
GABDF, GABCH and GACDE in Fig 4.9“, i‘n“‘which fhe spatial projections of mesh points
G, E, F, H, I can be denoted by ( , L h=tch=1) i+ k+ 1 h—1), (G+3 k=1 h+d),
(j— i, k+ 5, h+ Z>v respectively. And then the sp“zitial centroids of these CEs are denoted
by (= k=3 h=55), Gta k+5,h=55), (G +5.k—5.h+5), (=5, k+5.h+5),
respectively.

Thus the approximations of the total flux leaving the boundaries of CEs GBCDE
(denoted by CE;), GABDF (denoted by CE,), GABCH (denoted by CE3) and GACDI

(denoted by CE,) in Fig. 4.9 are

(e) The CEs accordlng to the mesh point (jq + 2. ka — 5, ha — 3,n4a), or (g —

. 3 1. 31"
FCE1(]7 ka hv TL) = AV{ |: 20upx guﬁy - 2_0upz:| -
Rl
[ﬂ—i- L + s + L }n_a }
- _upz upy upz
077710 10y (4.29)

, At
= — AV7 <axpm,% +ayp, -1 +a; pzﬁ,%)

y _ 3 1 At 1"
X |u + _upac + 10 pl/ + 10upz + Iut ) )
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. .3 1. 3. 1"
FCE2 (j, k, h, n) = AV{ |:u + Q_OUM —+ gupy — %Upzj|jkh
[~ 1 3, 1 ]”5 }
— U — pr Up Upz
10 107 10 s gt (4.30)
, At
[ 3. 1. AL s
U — —Up. — —Up Uu —U
10" 10" gt T jrhirda-d
Feg, (4, k, h,n) = AV +3~ 1~+3~ "
n U+ —Up, — —Up, + —Up
CE3\J, Ky I, 20 Pz 5 Py 20 Pz ik
[~ 1 n 3 . 1 ]n_5
— |u — upz Uﬁ Upz
10 10710 7t et ned (4.31)
, At
= AV7 (axpx,ﬁ% + Gy Py 1 + azpz7h+%)
XlN L PO +At~r%
U — —Us, + U5 — —Up, + ——Us
107710 107" 4 AL kLt
and . .
- = j S 3 1"
FCE4(j,k‘ h n) AV{ |:U 2—0 ;5 +"5 By +.‘E%Upz:|j7k’h
[ A NEET F 1
e ema g )
L sl 10 121 (4.32)
At |
= — AV7 (axpw,fO +ayp, htd +a,p, h+%)
MR 1 At
u —Up — U5 — —Us —U 5
07 10 10 4 i—t ki htd
respectively.

(f) The CEs according to the mesh point (j; + %, kg + %, hg — %,nd), or (ja — %, kg +
%7 hd + %7 nd)’ or (]d - %7 k:d - %7 hd - %7nd - %)7 or (]d + %7 kd - %7 hd + %7 Ng — %)7 denoted
by G(j, k,h,n) are shown in Fig. 4.10. Consider the spatial projections of CEs GBCDE,
GABDF, GABCH and GACDI in Fig. 4.10, in which the spatial projections of mesh points
G, E, F, H, I can be denoted by (7 — ,k—%, h—i), (j+i, k‘+%, h—i), (j+i, k—%, h+i),
(j—= k: + 5, h -+ Z)’ respectively. And then the spatial centroids of these CEs are denoted
bY( Qoak_%ah_%) ( 2?67k+ h— ) ( 2307]{: é7h+2%))a (j_%7k+%ah+§_o)a
respectively.

Thus the approximations of the total flux leaving the boundaries of CEs GBCDE
(denoted by CE;), GABDF (denoted by CE,), GABCH (denoted by CE3) and GACDI
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Figure 4.10. Spatial building block (f) in Ej.

(denoted by CEy) in Fig. 4.10 are

Few, (j, b, hyn) = AV{ [ 230% ~ iip, + 230upz} »
o i et
S oS PR, ) =t k=1 hid (4.33)
- s, ‘
= — AV? (szx,j—% =+ Py L + (lzpz,h-f—%)
H | 1
X [ . T iﬂﬁ & ~—p, —i—g’&t} o ;
10 1020510 T P
Feg, (4, k, hyn) = AV{ {a 230upz + ;upy 230upz] "
1. 3. 1%
B {u T 10T 10T TOUPZLJF%,WF%,H% } (4.34)
At
= — AV7 (czggpgwr 8+ Ay Pyl +azp, h+%>
1. 3. 1. At
X {u — 1gte — 7ot — ot T Iut:|j+ rbhed
Fory (j, k, hyn) = AV{ [u + %am - %apy - %{LPZLM
1. 3 I
- {“ ~ 1ot T gt T TO“’”L%,k_%,h_i } (4.35)

, At
= — AV? (alm pa),j-i—% + Ay pch_% +a, pz,h—%)

{~ 1 3 1 At _
X

U — —Up, + ——Up, + —=Up_ + _Ut} )
10 10 ™ 10 4 [T

1
n—3
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and

. . 3. 1. 3. 1"
FCE4(.]7 k? h” n) = AV{ [U; - %uﬁz + guf)y - Q_Oupz:|jkh
{~+1~ 3~+1~]"2 }
U T T U, T T Upy T T Upe
10771077 2107k (4.36)
t
= —zAV7 <a$pmj 3+ Ay Py gl +azpzh_i>
X{~+1~ 3. L. +At~r_%
U S Upy, — TaUpy T TR U T U ;
10 10 10 4
respectively.
4.3 Numerical Results
Eq. (4.1)
ou ou ou
g — — =0 4.1
8t+a8:c+ay6y (4.1)
has an exact solution 1 o
T eaEne%, . o
U, = EXp {— $E q ) er (y 1) } : (4.37)
= | '1:
By marking Fourier transformation, Eqii(4:37) can be transformed into
Ue = €xXp [_@27?%/) —1 (aar Dx + ay py) t:| ) (438)

in this section, we take a, = 1 and a, = 1.
Consider the model problem Eq. (4.2) with the initial values given by Eq. (4.37) at

t = 0, the numerical results at ¢ = 5 are shown in Figs. 4.11 and 4.12.

29



-4 -3 -2 1 0 1 2 3 4 5

5

5
Dz
5 -4 -3 -2 -1 0 1 2 3 4 5 0
Pz

Figure 4.11. Contour plots of the real part, imaginary part of @, and |& — .| with respect
to the p, — p, plane. Numerical results at ¢ = 5 are obtained with the number
of cells of mesh 10* in the domain with p, € [-5,5] and p, € [-5,5].
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Figure 4.12. Numerical errors with At = 0.025 and 0.05. (¢ = 1079)
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For 3D case, consider Eq. (4.10)

ou ou ou ou
E—i_az%—i_ay@_y—i_az_ =0 (4.10)

with an exact solution

o mt 2 _ t 2 _ zt 2
Ue = eXp |:— (r=a,t) +(y zay S H(zat) ] . (4.39)
By marking the Fourier transformation, Eq. (4.39) can be transformed into
2 | 2 2
> TP, + ,
Tl = exp [— (v pzy %) — i (ay ps +aypy, +a.p.) t] : (4.40)

we take a, =1, a, = 1 and a, = 1 in this section.
For the model problem Eq. (4.11) with the initial values are given by Eq. (4.39) at

t = 0, the numerical results at ¢ = 5 are shown in Fig. 4.13.

107"

F —
k. i 4=
K 10° h*
o
"
10
107 107 107 107
1/N
Figure 4.13. Numerical errors with At = 0.1, assuming p, € [-5,5], p, € [-5,5], and

p. € [—5,5]
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Chapter 5

A Quantum Mechanical Problem

5.1 Harmonic Oscillating Charge Interacts with Elec-
tromagnetic Wave

The time dependent Schrodinger equation for a simple harmonic oscillated charge ¢, in-

teracting with electromagnetic wave is written as

Ou p2,~1 2,2
za— 3 2Qn — A(t) - p| u. (5.1)

Throughout this chapter, we take hi= 1; m“‘é"l, and ¢ = 1. The relationship between the

electric field and vector potentiaJ 1S given‘ by j
DE() = —aA< y/ot.

The transition probability from the ground state |0 > to the excited state |n > is

given by the Poisson distribution

n

.0
PO*)']’L = e H, (52)
where )
1 o 4
_ E iQt . X
0=55 ’/OO (t)e™™ - dt (5.3)
Recast Eq. (5.1) into p-space we obtain
1 2

i+ 5 Oy = {% — A(t) -p} i (5.4)

Requiring that @ = @(p, t; j,n) defined by Eq. (3.4) satisfies Eq. (5.4) within SE(j, n),

one has
g =i [5 - 4wy ) (5.5
and
(i)} = 0. (5.6)
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Furthermore, for (z,t) € SE(j,n) , designate
h(z,t:j,n) = (1/2Q% @y(x, t; j,n), i d(x, £ 5,n)) (5.7)

The approximation of the total flux leaving the boundary of CEL(j,n) is
2

ﬂ@m:f n%:/ [%—Mmpam (5.8)
S(CE4 (j,n)) CE+(j,n) .

By Egs. (5.8), the total flux leaving CEL (j,n) can be derived as

. AP “-n 1 . n n—2 1, . n—%-
Fi(j,n) = 27 {Uj + Z(uﬁ)j - {Uji% + Z(uﬁ)jil }

¥ 105, (@)~ @)
(5.9)

i n—1
5 — At 4)'pj:|:i

n—3 1 _ \n—1 At _ \n—2
With the aid of Egs. (5.5) and (5.9), uy ‘ar.ld (t1p)% can be solved in terms of ﬂ?;ll//s and
~ \n—1/2 ~al Y
(uﬁ)jﬂ//Q'

5.2 Numerical Results "{_-J' £ 1=

s ]

Consider the model problem Eq(54) 1896
- 1 ’ §.~ hp? “ )
g ey = __A(t)'p]“ (5.4)

Choose a practical Sin? pulse,

o Tt

E(t) = Eqmp sin T cos wt, (5.10)

O0<t<T.

Assume E,,, = 0.002, the frequency of the electric field w = 0.057 (wavelength 800 nm)
and the total time of pulse 7" is 8 optical cycles of the carrier wave . Furthermore, we
assume the near resonance case, ) = 0.058 and the initial values are given by ground

state

1 p?
Uy = exp | —=—= 1. 5.11
" Y ( 2 Q) o
The results of the transition probability from the ground state to the excited states are

shown in Table 5.1. The transition probabilities Fy_.y from the ground state to the N-th

excited states @y are derived from

2

POHN: ’/ ﬂ&Ndp (512)
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Assuming that the computational region of p is defined by from —1.5 to 1.5, the results

of Py_,n are shown in Table 5.1.

Table 5.1. Numerical results of Py_ n

POHN

computation result with ¢ = 1076

N exact solution 4 x 1074 0.01 8x 1074, 0.02 8 x 107*,0.04 8 x 107%, 0.08
0 0.1951894 0.1950211 0.1948923 0.1940719 0.1916537
1 0.3188975 0.3185901 0.3183566 0.3168929 0.3130507
2 0.2605050 0.2604394 0.2603970 0.2602243 0.2612223
3 0.1418697 0.1420396 0.1421716 0.1430856 0.1462422
4 0.0579461 0.0581371 0.0582811 0.0591675 0.0609044
5 0.0189343 0.0190470 0.0191296 0.0195836 0.0198997
6 0.0051558 0.0052025 0.0052353 0.0053896 0.0053358
7 0.0012033 0.0012183 43! 0.0'0"12287 0.0012640 0.0012595

noted - 4 5 1074, 0.01 denote At =4 x 10]4‘,311"91 Ap ‘— 0.01 etc.
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Chapter 6

A Nonlinear Problem

6.1 Example of the KdV Equation

In this chapter, we consider the Korteweg-de Vries equation as an example of the nonlinear

systems,
10u a Ou 1 0%

o Ty "er T o

,where «, § and v are real (non- zero) goustants. The system contains both nonlinearity

=0, (6.1)

and dispersion. This is a general form of the KdV equation. For convenience, we study

in this chapter . | el

. ut+uux+uxxxﬁ£0 (6.2)

By marking the Fourier transformatlon the equatlon can be transformed into the mo-

mentum representation

[e.9]

i(q.t)a(p — q.t)dg +ip’ (6.3)

. 1 .
Up = — i
WO =St

By using Gauss divergence theorem in FEs, Eq. (6.3) can be written as

1 [ee]
h-ds= / [— ip a(q, t)a(p — q,t)dg +ip*a| dr, (6.4)
%@(V) v 0 2V27 —0

where h = (0, ).
Requiring that u = u(p, t; j,n) defined by Eq. (3.4) satisfies Eq. (6.3) within SE(j, n),

one has

5\ 1 y OO -~ n\ 5 n . ~n

The approximation of the total flux leaving the boundary of CEL(j,n) is

Fy = % h(z,t;7,n) - ds
S(CE+(4,n))
1 . /°° . _
= — i P u(g,t) ulp — ¢,1) dq) dr 6.6
2V21 JCE4(im) ( —o0 o)

- / ip® udr,
CE4+(j,n)
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Figure 6.1. Definition of 97

where h(p,t;j,n) = (0, a(p, t; j, n)):

We now approach the subjeét of the integrand 6f the first term of the right side of Eq.
(6.6), i.e. ~
/ WGEYEP; < q.t) dg. (6.7)

o0

It can be approximated as
Z [@(gm, ) w(pj — G, 1)] - (6.8)
Let jo be the index of p = 0 and the index of its nearest mesh point that belongs to
the set at n — § be j'. Furthermore, we define that §j = j' — jo (see Fig. 6.1). Obviously,
1 s o1
—5 <0 < 3.
The integral of Eq. (6.6) within CE(j,n) is approximated as
< - Ap At
L ([ e =) ar=p,, 3
CE+(j,TL)

—00

6.9)
T | n—l At n—l] ,_1 (
~NTy T~ 2 =5 2| ~" 1
X Z { |:um 4(up)m + 4 (Ut)m } uj+im+j0} ’
in the above and hereafter, m belongs to the set of mesh points at n — %
n—1 .
If i <d7 < %, ﬁj+§_m+j0 can be approximated as
1 1 1
~N—y _ ~"matg
j+%—m+]o B um’+ %76])
s 3 . At 1 (6.10)
= Upy 2+ 1 - 6] Ap (up)m’ * 4+ Z(ut)m’ 2;



1
. 1 . 1 ~n—Z .
if —5 <45 <4, ujﬁimﬂ.o can be approximated as
1 1,1
~n—Z o ~n—§+z
it dmgo um/u(iwj)
et (1 ol ALt (6.11)
- '&/m//2 - -+ 5] Ap (up>m//2 + _<U‘t>m”2 .
4 4
in the above and hereafter m’ = j —m + j' — % andm’" =j—m+j + %
The approximation of the integral of Eq. (6.6) within CE_(j,n) is
R - Ap At
L ([ atanit - i) ar=p, 5
CE_(j,n) -0 6.12
n—1 n-t At _ Ll n-2 (6.12)
_n—1 - . .
X Z { [um + (Up)m + Z(Ut)m :| ujier]'o} ’
ol
It —i <95 < %, ﬂj_g_mﬂ, can be approximated as
1 1 1
~n—y _ ~n—5t3
uj—%—m-l—]o m/+(i75])
1 - L AL (6.13)
— i) g A 0,7+ S0
1 4=\
if -2 <6j < —1, ﬂ?__;_m " ce:tnf be applj(?;gimated éi;ms
1 = TN : ~
~n—y _ ~M=5ty T 0
uj—%—m-l—jo m"—(%lq—'ﬁj)
(6.14)

n—l At n—l

2

= Iam”Q — [ 6.] Ap (up)m”2 + _<ut)m” :
4 4
It must be noted that m, m’, and m” are in the computational domain we defined.

For example, assuming that spatial index belongs to [j;, jr| at =3,

(a) In Egs. (6.10) and (6.13), the index m must satisfy both of the restrictions (i) j; <

m < jr and (ii) j; <m' < jp.

1
_Z . .
. _in the interval
]+ifm+Jo

While j > j; + jr — j' + 1/2, we consider 4
. . ., 1 .
J=irti =3 <m < Jr;

while 7 < j; + jr — 7' + 1/2, we consider the interval
1

jISmSj—ijj’—é-

(b) In Egs. (6.11) and (6.14), the index m must satisfy both of the restrictions (i) j; <

m < jr and (ii) j; < m” < jp.

1
1 ) )
_in the interval
+1—m+jo

While j > jp + j; — j' — 1/2, we consider uj
. . 4/ 1 .
J—JF+J +§ <m < Jr;

38



while j < jr + j; —j' — 1/2, we consider the interval

jfgmgj—j1+j’+§-

In addition, one has

1 n—

3| pot 1At -1
3 ~ . n ~ ~\n
/CEi(jn)p udr = Ap At <pji%) {ujig ZF(up)ij%2 +I(ut)]i§} . (6.15)

Requiring that @ = a(p, t; j, n) satisfies Eq. (6.3) within SE(j,n), one has

~ nf% . 1 . > ~ n—1i\ ~ n—4% d . 3 ané
(@), 1 = “ovan Pt OOU(q,t 2) u(zvji% — ¢t 2) g+ Pty
1 ) ~n_% Nn_% n_§ (616)
o ) g
6.6), (6.9), (6.15), and (6.16), @7 and (%)} can be solved in

With the aid of Egs.
. This constitutes the time-marching scheme.

N’"—‘wlr—t/—\

1
terms of @ if and (up)

6.2 Numerical Resultsu

‘ u\“i LY
|

uqqi)ﬁﬁp—q, )dq—ip?’ﬂ:()-

Consider Eq. (6.3)
(6.3)

U + \/_zp ‘

It has an exact solution
(6.17)

- p .
Ue(p,t) = 6p/mcsch—=exp(—ipct).
(p,t) = 6pv/T NG p(—ipct)
It is the solitary wave solution that has behavior similar to the superposition principle

Despite the fact that the wave itself was highly nonlinear, it maintains the shape while

travelling mat constant speed c.
The initial values are given by Eq. (6.17) at t = 0. The numerical results of ¢ = 0.5

at t = 4 are shown in Figs. 6.2 and 6.3.
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Chapter 7

Conclusions

In this thesis, we developed the CESE method in momentum space. We investigated
the basic 1D wave equation, convection-diffusion equation, a driven quantum mechanical
problem and the nonlinear KdV equation. The scope is on the fundamental part. We
calibrate each system with known exact solution. We showed that the p-space CESE
method works well for the systems from classical wave equation, nonlinear equation to
quantum mechanical problem. The main advantages in addition to the superior CESE
method in coordinate space are, twofold Eirst, the boundary conditions can be handled
naturally, that is, for sufficient large momentum Value the function and its derivatives are

simply vanishing. Second, the Whole Wave functlon preserved inside the p-space without

flowing out from the boundary as coordmate space method. This is especially useful in
treating scattering problems.

Strictly speaking, the method used in this work is not regular a-scheme. But it is
still capable of generating highly accurate solution by using only the concept of flux
conservation and simple approximation techniques.

In the future, we will develop the p-space CESE method to practical useful in solving

realistic time-dependent problems.
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