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摘 要       

近年，旋轉束縛在簡諧位能加四次方位能中的玻色－愛因思坦凝結是

一個很熱門的題目，並且目前的研究指出：在這樣的系統中，當旋轉速度

夠快時，會一種新型態的漩渦產生，就是「巨形漩渦」。在這篇論文中，我

們研究這種巨形漩渦的一些基本性質，包括它的基態能量和激發能階。最

後，我們發現這種巨形漩渦並不穩定。它可能只是某種不穩定的平衡態，

而不是真正的基態。 
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Ground State and Excitation Spectrum of Giant Vortex in Rotating Bose－

Einstein Condensates 
 
student：Shih-Da Jheng                     Advisors：Tsin-Fu Jiang 

                                    Szu-Cheng Cheng 

Institute of Physics 
National Chiao Tung University 

ABSTRACT 
Rapidly rotating BEC in harmonic plus quartic potential is a popular 

subject recently, and giant vortex is a new anticipated phenomenon in this 

system when rotation frequency is high enough. In this thesis, we study some 

basic properties of the giant vortex, including ground state energy and excitation 

spectrum. Finally, we find that the giant vortex is not stable. It may be just a 

metastable state rather than a real ground state. 
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Chapter 1：Introduction 

 

After the realization of BEC on dilute gaseous atoms in experiment in 1995, the study on 

BEC becomes energetic. (In the following, we will use the word “BEC” to stand for rotating 

dilute, atomic, gaseous BEC for simplicity.) And both the theoretical research and 

experimental technique promote rapidly. 

Recently, rotating BEC becomes one of the most popular subjects in the field of ultracold 

atoms. Because rotating BEC has a special property analogous to the superfluid under rotation. 

That is the appearance of vortices. The mechanism for their similar phenomena is that they 

both condensate to the BEC state. The only different is that superfluid has much stronger 

interactions between atoms than the gases atomic BEC. The stronger interactions cause the 

theoretical study on superfluid more difficult. However, the dilute atomic gases are relatively 

easy to deal with theoretically and even experimentally. Thus, physicists expect to use dilute 

atomic BEC to simulate the more difficult superfluid. 

On the other hand, the Hamiltonian of the rotating BEC has the form analogous to the 

electron moving in the magnetic field known as the "quantum hall effect". Rotation here plays 

a role as the magnetic field in Quantum Hall effect. So, people anticipate that there shall be 

some phenomena occurring in rotating BEC analogous to the Quantum Hall effect, and they 

are devoted to find it. 

Quantum Hall effect is a purely two dimensional effect. In order to reach this regime, we 

need to increase the rotating speed. Particles under rotation will experience a centrifugal force, 

and will be pushed out. As a result, the distribution of the condensate will spread out, 

becomes a shape like pancake, and finally achieves a quasi-two dimensional regime which 

also calls the "Quantum Hall regime". 

Experimentally, we confine the particles with a harmonic potential. But, the particles will 
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become unbounded and fly out when the rotation frequency exceed the frequency of the 

harmonic potential which is caused by the centrifugal force. So, we need an additional 

potential. The potential of the quartic form is one of the choices, and has been produced 

experimentally. Thus, harmonic plus quartic trap become the basic trap to explore the rapidly 

rotating BEC. Since the confined potential changes, from original harmonic trap to harmonic 

plus quartic trap, one can anticipate some new phenomena occur in this kind of potential. And, 

giant vortex is the new phenomena existing in this new trap. 

In this thesis, we study the ground state and the excitations of the giant vortex, and this 

thesis is organized as follows. In part two, Gross–Pitaevskii equation will be introduced 

simply, because GP equation is the main tool to study the BEC. In part three, there is a simple 

argument to see why vortices occur. In part four, I will show the phenomena occur in the 

harmonic plus quartic trap by other group’s simulation result. In part five, we calculate the 

ground state of the giant vortex. In part six, we calculate the excitations of the giant vortex. 

Finally, make some discussion about the result of calculations. 
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Chapter 2：Gross – Pitaevskii Equation 

 

( )rψ is the field operator describing a many-particles system. Of course, we discuss 

bosons here. ( )rψ can be expanded in terms of a complete set of single particle 

wavefunctions. 

( ) 0 0
0

i i
i

r a aψ φ
≠

= + φ∑                                （1）         

ia and are annihilation and creation operators of a particle in the state
†
ia iφ , and they obey the 

commutation relations 

†
,i j ija a δ⎡ ⎤ =⎢ ⎥⎣ ⎦

   , 0i ja a⎡ ⎤ =⎣ ⎦    
† †
,i ja a⎡ ⎤ 0=⎢ ⎥⎣ ⎦

                   （2） 

If there are a large number of particles in the ground state, we can replace 0a ,
†
0a with the 

c-number 0N . This is the Bogoliubov approximation which is equivalent to ignore the 

noncommutativity of the operators. Since 

†
0 00 1N a a=                                   （3） 

So, 

† † †
0 0 0 0 0 0,a a a a a a⎡ ⎤ 1 0= − =⎢ ⎥⎣ ⎦

≈                    （4） 

Bogoliubov approximation is a good approximation for describing the BEC. Under this 

approximation, the field operator is replaced by the classical field, and eqn (1) can be 

rewritten as  

( ) ( ) ( )0r r rψ ψ δφ= +                              （5） 

( ) ( )0 0 0r N rψ φ=                                  （6） 

( )0 rψ  is called the condensate wavefunction. 
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Next, we investigate the matrix element of ( ,r t )ψ  between N particles state and N-1 

particles state 

( )
( )

( )
( )

( )
1

01 , 1
iE N t iE N t i t

N r t N N e r e N r e
μ

ψ ψ
− − −

− = − =ψ           

（7） 

( ) ( )1E N E Nμ ≈ − −  is the chemical potential. 

We find that condensate wavefunction evolve in time with 
i t

e
μ−

. 

 

Now, we find the equation which governing the field operator for a dilute, trapped BEC 

system. The Hamiltonian operator of the system can be written as 

( )
2 † † † †1 ' ' '

2 2extH dr V dr V r r
M

ψ ψ ψ ψ ψ ψ ψψ
⎛ ⎞

= ∇ ∇ + + −⎜ ⎟
⎝ ⎠
∫ ∫ ∫ 'dr dr            

（8） 

The first term of the Hamiltonian operator is the kinetic energy term, second term is the 

external trapped potential, and the last term is the interaction between two particles. 

From the Heisenberg’s equation of motion 

( ) ( ), , ,i r t r t
t
ψ ψ∂ H⎡ ⎤= ⎣ ⎦∂

                          （9） 

We get the time-dependent Schrodinger equation for the field operator, 

( ) ( ) ( ) ( ) (
2 †

, ', ' ',
2 exti r t V r t V r r r t dr r

t M
ψ ψ ψ

⎡ ⎤∂ − ∇
= + + −⎢ ⎥∂ ⎣ ⎦

∫ )' , tψ

)

         

                                                                      （10） 

At very low temperature, a large number of particles condense to ground state, as discuss 

above, we can replace the field operator ( ,r tψ  with the classical field (0 ,r t )ψ . Also, at 

very low temperature, only s-wave scattering between two particles is important, so the 
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interaction between two particles can be specified by the s-wave scattering length . Under 

the diluteness condition, , the average distance between particles is larger than the 

scattering length . Thus the actual form of the potential becomes not important. Potentials 

that give the same value of the s-wave scattering length have the same physical property 

macroscopically. Then we can change the potential to a smooth one, so that 

Sa

( ,r t

1Sna

Sa

Sa

)0ψ  varies 

slowly on distances of order of the range of the interatomic force. So, Eqn (10) simplify to the 

form 

( ) ( ) ( )
2

0 0, ,
2 extV g r t r t

t M
ψ ψ ψ

⎡ ⎤∂ − ∇
= + +⎢ ⎥
⎣ ⎦

r

2
0 ,i r t

=

∂
                （11） 

( )effg V r d∫                                    （12） 

According to scattering theory, 

4 ag
M
π

=                                       （13） 

and 

( ) ( )0 0,
i t

r t r e
μ

ψ
−

=                               （14） ψ

Finally, we obtain the equation of motion describing the dilute, trapped BEC. 

( ) ( ) ( )
2

extV g
⎡

+ +⎢
2

0 0 0r r r
M

ψ ψ μψ
⎤− ∇

=⎥
⎣ ⎦2

                      （15） 

This is the famous GP equation. 
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Chapter 3：Circulation Quantized and vortex 

 

In this section, we introduce the interesting phenomenon of the rotating superfluid and 

the rotating BEC due to their coherent property of condensate wavefunction. 

Assume the condensate wavefunction has the form, 

0
ine θψ =                                       （16） 

Insert to the current density 

(1
2

j
i )ψ ψ ψ ψ∗ ∗= ∇ − ∇                             （17） 

We get  

j n θ= ∇                                         （18） 

And  by definition j nV=

Obviously,  

V θ= ∇                                         （19） 

Notice that the velocity field is the gradient of the phase of the condensate wavefunction, 

so the velocity field of the condensate is also called “potential flow”. This velocity field has 

two properties. First, it is irrotational. 

0V θ∇× = ∇×∇ =                                 （20） 

Second, the circulation of the velocity around a singularity, a vortex for example, is quantized. 

c c

hds V ds m
M M

θ θ⋅ = ⋅∇ = Δ =∫ ∫                   （21） 

M is the mass of the individual particle, m is integer. 
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             Figure 3-1 Rotate a bucket of superfluid 

 

If we rotate a bucket of superfluid, the velocity of the fluid should be zero due to the 

irrotational property of the condensate velocity field. 

( ) 0
c s
ds V V dσ⋅ = ∇× ⋅ =∫ ∫    ⇒   V=0              （22） 

This means that if we rotate a bucket of superfluid, it is impossible to have a macroscopic 

flow without some singularity points such as "vortices". In another word, if we can let the 

superfluid have a definitely circular flow, the vortices will be produced. 
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Chapter 4：Rotating BEC in a harmonic plus quartic trap 

 

 The harmonic plus quartic trap has the form 
4

2 2 2
0 0 22 2ext

M M rV r
d

ω ω λ= +                          （23） 

The first term is harmonic term, and the last term is quartic term. d is the harmonic length 

0Mω .λ is the parameter characterized the quartic potential strength. Let the angular 

velocity direct along the z axis, and the equation of motion of the system can be expressed as 

( ) ( ) (
2

2
0 0, ,

2 ext zi r t V g r t L r
t M
ψ ψ

⎡ ⎤∂ − ∇
= + + −Ω⎢ ⎥∂ ⎣ ⎦

)0 , tψ           （24） 

The numerical works done by Fetter’s group are shown as follow 

 

                 Ω=2.0             Ω=2.1           Ω=2.25 

 

 

 

 

 

 

 

 

                 Ω=2.5            Ω=3.0             Ω=3.5 

                 Figure 4-1 Density distribution of rotating BEC confined 

                 in a harmonic plus quartic trap for g=80 
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                  Ω=2.0             Ω=3.0            Ω=3.5 

 

 

 

 

 

 

 

 

                  Ω=4.0             Ω=4.5            Ω=5.0 

Figure 4-2 Density distribution of rotating BEC confined 

                  in a harmonic plus quartic trap for g=1000 

 

For g=80, when Ω=2, (our unit is 0 1M d ω= = = = ), there is a singly quantized vortex 

locating at the center of the condensate. Other six singly quantized vortices are surrounding 

the center ones. The vortices form a vortex lattice. When Ω=2.1 there is an additional singly 

quantized vortex appearing. When Ω=2.5, the center vortex becomes doubly quantized. We 

call this state "the vortex lattice with a hold". Keeping increasing the rotation speed, all 

vortices merge to form a multiple quantized vortex at the center, and other vortices disappear. 

We call this kind of vortex "giant vortex". For g=1000, the condensate has the same tendency, 

transition from vortex lattice to vortex lattice with a hold. However, in the g=1000 case, they 

can not find the giant vortex even when Ω =7. Exceeding Ω=7, the numerical work becomes 

difficult to go on. It is believe that vortex lattice with a hold should be transition to a giant 

vortex at some greater rotation speed. 
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Figure 4-3 phase diagram of rotating BEC with  

angular velocity versus interaction strength g,  

          withλ=0.5. 

 

By collecting the data, they get a g-Ω phase diagram which separate the three kinds of 

state. The triangles are the numerical result of Fetter’s group. The circles are analytic result done by 

Baym’s group, while lines are Fetter’s analytic result. VL means vortex lattice. VLH means vortex 

lattice with a hold. GV means giant vortex. Here, we employ the numerical result done by Fetter’s 

group to define the region where the giant vortex exists. And, we study the giant vortex in this 

region. 
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Chapter 5：Ground state of Giant Vortex 

 

5.1 Giant Vortex Wavefunction 

Start from the circulation quantized condition 

c

hV dr m
M

⋅ =∫                                    （25） 

V
M

= ∇S                                       （26） 

For the giant vortex, it is natural to assume the velocity field is symmetry about the rotating 

axis. Then the velocity field is independent of variable θ. Eqn (25) becomes 

2
c c

hV dr V rd rV m
M

θ π⋅ = ⋅ = =∫ ∫                    （27） 

So the velocity field has the form 

mV
Mr

=                                         （28） 

Insert the velocity field back to eqn (26) and integrate it, we get the phase of the condensate 

wavefunction S = mθ. So the condensate wavefunction for the giant vortex can be taken the 

form 

( ) im
g r ne θφ =                                    （29） 

 

5.2 Thomas -Fermi density profile 

Hamiltonian of the rotating, trapped bosons system is  

( ) 22
2

1 1
2 2ext D zH P V g r
M

φ= + + − LΩ                 （30） 

4
2 2 2

0 2

1 1
2 2ext

rV M r M
d

ω λ ω= + 0

E

                      （31） 

Write down the free energy 

G Nμ= − +                                     （32） 
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2
g gE d r Hφ φ∗= ∫                                              （33） 

22 42 2 42 20
2

1( )
2 2 2g g g g z

M rd r r g L
M d

ω λ
gφ φ φ φ∗⎡ ⎤

= ∇ + + + −Ω⎢ ⎥
⎣ ⎦

∫ φ     （34） 

22
gN d r φ= ∫                                               （35） 

Insert the giant vortex wavefunction 

( )G u n r d= − ∫ r ( ) ( )
2 2 42

2 2 2
0 02 22 2 2

m M M rn r n r r m dr
Mr d

ω λω
⎛ ⎞

+ ∇ + + + −Ω⎜ ⎟
⎝ ⎠

∫  

( )22

2
Dg n r dr⎤+ ⎦∫                                          （36） 

If the system contains sufficiently large number of particles and the interactions between the 

particles are large, the density of the condensate will varies slowly over the whole condensate, 

excluding the boundaries. The condition can be wrote mathematically as 

                              1Na
d

                                  （37） 

As a result, the quantum pressure term ( )
2

n r∇ in the free energy functional can be 

neglected. This is the so called "Thomas–Fermi approximation". So the free energy becomes 

( )G u n r d= − ∫ r ( )
2 2 4

2 2 2
0 02 22 2 2

m M M rn r r m dr
Mr d

ω λω
⎛ ⎞

+ + + −Ω⎜ ⎟
⎝ ⎠

∫  

( )22

2
Dg n r dr+ ∫                                          （38） 

Variation of free energy with respect to n(r), we get Thomas–Fermi density profile 

0G
n

δ
δ

=  

⇒  ( )
4 2 2

2 2 2
0 0 2

2

1 '
2 2 2D

M M r mn r r
g d

μ ω λω 2Mr
⎡ ⎤

= − − −⎢ ⎥
⎣ ⎦

               （39） 

                      
2 2

40
2

2 0

2 '
2 D

m
g
ω λ μ ρ ρ

λ ω λ λρ
⎡ ⎤

= − − −⎢ ⎥
⎣ ⎦

                      （40） 
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                      ' mμ μ= + Ω     r
d

ρ =                             （41） 

 

5.3 calculation of the ground state energy of the giant vortex 

First, find the boundary of the condensate. Let n(r) = 0 when r = R. 

( ) 0n R =                                        （42） 

⇒
4 2

6 2

0

2 ' 0mρ μρ ρ
λ λ ω λ

+ − + =                      （43） 

⇒
2 2

3

0

2 ' 0x mx xμ
λ λ ω λ

+ − + =    2x ρ=               （44） 

⇒ 3 2
1 2 3 0x a x a x a+ + + =                           （45） 

1
1a
λ

=    2
0

2 'a μ
λ ω

= −    
2

3
ma
λ

=                 （46） 

Use Carden’s formula to find the three root of eqn (44). 

2
2 1

2
0

3 2 ' 1
9 3 9

a aq μ
λ ω λ

⎛ ⎞−
= = − +⎜

⎝ ⎠
⎟                     （47） 

3 2
1 2 3 1

2 3
0

9 27 2 1 2 ' 3 1
54 6 27

a a a a mr μ
λ ω λ λ

⎛ ⎞− −
= = − +⎜ ⎟

⎝ ⎠
−      （48）

  condition for existence of two real solutions                     （49） 3 2 0Q q r= + <

1
3

1Z r Q⎡ ⎤= +⎣ ⎦                                   （50） 

1
3

2Z r Q⎡ ⎤= −⎣ ⎦                                   （51） 

( )1 1 2
1

3
x Z Z

λ
= + −                                （52） 

( ) ( )2 1 2 1 2
1 3
2 2

ix Z Z Z Z 1
3λ

= − + + − −                （53） 

( ) ( )3 1 2 1 2
1 3
2 2

ix Z Z Z Z 1
3λ

= − + − − −                 （54） 

After some testing, we find 3x  and 1x  are the two real, positive roots we want. And 1x > 3x , 

so 1x  is the outer radius of the annulus while 3x  is the inner radius of the annulus. 
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Let  R+ = 1x    R− = 3x                          （55） 

The ground state energy of the giant vortex is 

2R

g gR
E d r Hφ φ+

−

∗= ∫                                                （56） 

( ) ( )
2 2 4

2 2 2 2 2
0 02 22 2 2 2

R
D

R

gm M M rd r n r r m n r
Mr d

ω λω+

−

⎛ ⎞
= ⋅ + + −Ω +⎜ ⎟

⎝ ⎠
∫ 2  

（57） 

Insert eqn (39) to above equation, we can express E as 

⇒  
2

2

22 2
2

0 0 0

2 '
32

R

R

E x mx dx
N x

μ λ μ
ω ω σ λ ω λ λ

+

−

⎛ ⎞
= − − − −⎜

⎝ ⎠
∫ ⎟                 （58） 

 

5.4 result 

For a given angular frequency, the ground state energy varies with m, the angular 

momentum or circulation quantum number of the giant vortex. We find the lowest energy for 

some angular frequencies for g=1000, λ=0.5. The results are listed below, we also show the 

plot of m corresponding to the lowest energy versus Ω, and a table listed some characteristic 

value of the giant. Here, we take 0d Mω= , the harmonic oscillator length, as the length 

scale, and take 0N ω  as the unit of energy. 
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               Ω=5                               Ω=6 

 

 

               Ω=7                               Ω=8 

 

 

                Ω=9                              Ω=10 

Figure 5-1 diagrams of Eg-Ω, show that we actually 

find the lowest energy of giant vortex. 
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         m 

 

 

 

                                   Ω 

                          Figure 5-2 diagram of m-Ω 

 

 

Ω ( 0ω ) m ( ) μ’ ( 0N ω ) E ( 0N ω ) r (d) R (d) 

5 120 -108.6569 -122.8039 1.3718 4.9162 

6 210 -271.0368 -285.1269 1.1432 5.9257 

7 336 -540.8592 -554.9181 0.9793 6.9342 

8 504 -957.1537 -971.1937 0.8564 7.9412 

9 720 -1564.9 -1579.0 0.7608 8.9470 

10 990 -2145.2 -2429.2 0.6844 9.9519 

Table5-1 Numerical value of the calculation result.Ωis the rotation frequency,  

m is the angular momentum of the system in the rotation direction.μ’ is the 

effective chemical potential, E is the energy of the condensate, r is the difference 

between the outer and inner radius of the condensate, R is the mean radius of the 

outer and inner radius of the condensate . 
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Finally, compare the energy with the numerical result done by Fetter’s group. 

 

 

 

 

 

 

 

 

 

 

Figure 5-3 diagram of Eg-Ω. Cross signs are the  

numerical result for the giant vortex, the red line  

is our analytical result. 
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Chapter 6：Excitations of Giant Vortex 

 

To obtain the excitations of the giant vortex, we allow the wavefunction of the giant 

vortex to oscillate about its equilibrium value. And, take the perturbed wavefunction as the 

form 

( ) ( ) ( )0, ( )
i t i t

i t i tr t r e u r e v r e e
μ μ

ω ωψ ψ
− −

− ∗⎡= + −⎣ ⎤⎦              （59） 

Insert eqn（59）into the time-dependent Schrodinger’s equation, 

( ) ( ) (2
0 2

,
, D

r t
i H r t g

t
ψ

ψ ψ ψ
∂

= +
∂

),r t                     （60） 

22
2 2 40

0 0
1

2 2 2 z
MPH M r r

M d
ωω λ= + + −ΩL                      （61） 

For unperturbed state,  

( )2
0 2 0 0DH g 0ψ ψ μψ+ =                                 （62） 

Colleting terms, we get the following two equations, 

( ) ( ) ( ) ( )2 2
0 2 0 2 02 D DH g u r g v r u rψ μ ψ ω− − + =              （63） 

( ) ( ) ( ) ( )2 2
0 2 0 2 02 D DH g v r g u r v rψ μ ψ ω+ ∗− − + = −            （64） 

In order to solve the two coupling equations, we try  

( ) 0
iku r ue θψ=                                    （65） 

( ) 0
ikv r ve θψ ∗=                                    （66） 

Insert into eqn(63) and eqn(64), we get 

2 2 2
2 20

2 0 0 2 0 0 02 22 D D
ik k k g u g v u
Mr Mr

ψ ψ ψ ψ ψ ω
θ

⎡ ⎤⎛ ⎞∂−
+ − Ω + − =⎢ ⎥⎜ ⎟∂ ⎝ ⎠⎣ ⎦

ψ  

（67） 

2 2 2
2 20

2 0 0 2 0 0 02 22 D D
ik k k g v g u v
Mr Mr

ψ ψ ψ ψ ψ ω
θ

∗

ψ∗ ∗⎡ ⎤⎛ ⎞∂−
+ + Ω + − = −⎢ ⎥⎜ ⎟∂ ⎝ ⎠⎣ ⎦

∗          
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（68） 

Let   ( )0
im

G n r e θψ ψ= =                                                 （69） 

( )
2 3 2 2

2 2 40
0 2

2

1 1
2 2 2D

M mn r M r r
g h

ωμ ω λ
Mr

⎡ ⎤
′= − − −⎢ ⎥

⎣ ⎦
                          （70） 

mμ μ′ = + Ω                                                  （71） 

Multiply eqn (67) and eqn (68) by Gψ ∗  and Gψ  respectively and integration. We get 

( ) ( ) ( ) ( )

( )

2 2 2
2

22 2

2
2

1 12 2
2

2

R R R

DR R R

R

D R

ik kim n r rdr n r rdr kN g n r rdr
M r M r

g n r rdrv Nu

π π

π ω

+ + +

− − −

+

−

⎡ ⎤−
+ − Ω +⎢ ⎥

⎣ ⎦

− =

∫ ∫ ∫

∫

2 uπ
          

（72） 

( ) ( ) ( ) ( )

( )

2 2 2
2

22 2

2
2

1 12 2
2

2

R R R

DR R R

R

D R

ik kim n r rdr n r rdr kN g n r rdr
M r M r

g n r rdru Nv

π π

π ω

+ + +

− − −

+

−

⎡ ⎤−
− + + Ω +⎢ ⎥

⎣ ⎦

− = −

∫ ∫ ∫

∫

2 vπ

                                                                      （73） 

Let  

( )2

1 1 2
R

R
n r rdr A

N r
π

+

−
=∫                           （74） 

( )22 2
R

D
R

g n r rdr B
N

π
+

−
=∫                            （75） 

eqn (72) and eqn (73) can be expressed as 

2 2 2

2
k m kA A k B u Bv

M M
uω

⎡ ⎤
+ − Ω + − =⎢ ⎥

⎣ ⎦
                  （76） 

2 2 2

2
k m kA A k B v Bu
M M

vω
⎡ ⎤−

+ + Ω + − = −⎢ ⎥
⎣ ⎦

                （77） 

For the nontrivial solutions of u and v, the determinant of the coefficients of eqn (76) and eqn 

(77) must vanish, so 
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2 2 2

2 2 2

2
0

2

k k mA B A k B
M M

k k mB A B A
M M

ω

ω

⎛ ⎞⎛ ⎞ ⎛ ⎞
+ + − Ω − −⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎜ ⎟

k
=⎜ ⎟⎛ ⎞ ⎛ ⎞⎜ ⎟− + − −⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

Ω −

 

                                                                      （78） 

⇒  
2 22 2 2

2 0
2

k k mA B A k B
M M

ω
⎛ ⎞ ⎛ ⎞

+ − − Ω − − =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

                        （79） 

Finally, we get the dispersion relation  

22 2
21

2
k m kA k A B B
M M

ω±

⎛ ⎞
= −Ω ± + −⎜ ⎟

⎝ ⎠
                  （80） 

Because the small perturbations violate the rotational symmetry, the two solution should both 

take into account. 

Here is the numerical results for A and B versus Ω for g=1000, λ=0.5,         

 

 

B 

 

 

 

A 

 

Figure 6-1 Numerical value of A and B versus Ω 

for g=1000, λ=0.5. 

 

 

And, plot the spectrum of the excitations for k= ±1, ±2, ±3. 
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k=-1 

        

k=1 

 

            k=-1 

                        k=1 

 

 

Figure 6-2 w-Ω diagram for k=±1, g=1000, 

λ=0.5. 

 

                         

                             K=-2 

              K=2 

 

                  K=-2 

  

                       K=2 

 

Figure 6-3 w-Ω diagram for k=±2, g=1000, 

λ=0.5. 
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                        k=-3 

      k=3 

 

 k=-3 

                  k=3 

 

 

Figure 6-4 w-Ω diagram for k=±3, g=1000, 

λ=0.5. 

 

We find that, for each k, there is a positive energy spectrum companied with a negative 

energy spectrum. The excitations with negative energy will make the system unstable. Back to 

the results simulated by Fetter’s group, for g=1000, λ=0.5, they can not find the giant vortex 

even the angular frequency is increasing to 7, while the giant vortex has appeared before this 

frequency predicted by other analytic result. This means that the giant vortex may be a 

metastable state rather than a real ground state. Although, in the g=80, λ=0.5 case, they find 

the giant vortex, this may be just a local minimum rather than a real ground state. Giving 

some perturbation, the giant vortex may transition to an actual ground state which is likely to 

be a hole with a ring of singly quantized vortex surrounding it. This still needs to study 

further. 

Under other conditions, g=1000, λ=0.005, we find the energy spectrum both become 

positive for k=-1,-2,-3. 
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   Figure 6-5 w-Ω diagram for k=-1, g=1000, 

λ=0.005. 

 

 

   Figure 6-6 w-Ω diagram for k=-2, g=1000, 

λ=0.005. 
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  Figure 6-7 w-Ω diagram for k=-3, g=1000, 

λ=0.005. 

 

But, the energy spectrum both become negative for k=1, 2, 3. 

 

 

Figure 6-8 w-Ω diagram for k=1, g=1000, 

λ=0.005. 
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Figure 6-9 w-Ω diagram for k=2, g=1000, 

λ=0.005. 

 

 

Figure 6-10 w-Ω diagram for k=3, g=1000, 

λ=0.005. 

 

As a result, the giant vortex is still unstable. 
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Chapter 7：Conclusion 

 

According to our analysis, we find that giant vortex may not be the ground state of the 

rapidly rotating BEC in a harmonic plus quartic trap.  
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