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Abstract

The source of ultra high energy cosmic ray (UHECR) has been a
mystery in astrophysics for years. It has been proposed that the plasma
wakefield acceleration could be a possible acceleration mechanism for
UHECR.

In this thesis, we present a numerical calculation of wakefield in the
magnetized plasma, taking into account the relativistic effects.
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Chapter 1

Introduction

The source of ultra high energy cosmic ray (UHECR) is still a mystery.
So far, the model for the source of UHECR can be divided into two cate-
gories, one is “top down” [1] scenario and the other is “bottom up” [2] scenario.

From results of several recent observations like HiRes [3] and Auger [4],
the “ankle”in energy spectrum of cosmic rays exhibit the Greisen-Zatepin-
Kuzmin suppression [5] [6] (Fig. 1.1). Hence the “bottom up”scenario seems
more favorable than the “top down”scenario. Therefore, it is desirable to
construct a theory for UHECR acceleration.

From the experience of terrestrial particle acceleration, one obtains im-
portant conditions for possible acceleration mechanism [8]: First, the trajec-
tories of the accelerated charged particles should have no bending otherwise
the effect of synchrotron radiation would reduce the energy of the particle.
Second, the system should be collision free or else the energy of the acceler-
ated particle would be transferred and spread out. To fulfill these conditions,
plasma wakefield acceleration has been proposed as a possible mechanism for
UHECR acceleration [7] [8].

When an EM wave packet injects into the plasma, the non-uniform elec-
tric field of the pulse imposes a longitudinal force (ponderomotive force) to
electrons. Thus an electrostatic wave with phase velocity close to the group
velocity of the driving pulse is excited behind this packet. We call this ex-
cited electric field as wakefield. When an electron has longitudinal velocity
close to the phase velocity of this wave, it can be accelerated by this excited

electric field [7] [10].

There are several methods to induce wakefield [10]. However, some of
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Figure 1.1: The energy spectrum of cosmic ray.

them are not available in the astrophysical settings. In astrophysical set-
tings, the “magnetowave”induced wakefield seems more possible.

The simulation of magnetowave induced wakefield has been carried out
[9]. However, the behavior of wakefield induced by a strong driven pulse is
still unclear. Although we can derive theoretical approximation of wakefield
in the weak field case (Section 4.2), it is difficult to extend this result to
the strong field limit because relativistic dynamics makes the problem much
more complicated. Therefore, we directly solve differential equations govern-
ing the wakefield by the numerical method.

Before jumping to the main theme of the thesis, we verify our numerical
methods with well-studied cases.

In Chapter 2, we discuss the wakefield induced in non-magnetized
plasma in the weak field case. We present the analytical derivation in Sec-
tion 2.2 [11]. Our numerical method is presented in Section 2.3. The
comparison of analytical and numerical solution is given in Section 2.4.

In Chapter 3, we present the numerical method in Section 3.2. We
then compare our result with previous works in Section 3.3 [12].

In Chapter 4, we derive the wakefield induced by the whistler pulse [9]



in the weak field case, as presented in Section 4.2. We then verify this
result by our numerical approach.

The main result of this thesis is presented in Section 4.3 and 4.4, which
is the calculation of wakefield induced by right-handed circularly polarized

pulse in arbitrary strength.

Chapter 5 is the conclusion.



Chapter 2

Wakefield in Non-Magnetized
Plasma - Weak Field Case

2.1 Introduction

To make sure that our numerical method is reliable, we apply this
method to several well-studied cases.

In this chapter, we present the analytical expression of plasma wakefield
[11] in Section 2.2 and demonstrate our numerical method in Section 2.3.
The comparison of both approaches are presented in Section 2.4.

2.2 Analytical Solution

First of all, we consider the simplest case: an EM pulse with small am-
plitude sent into the plasma. In this limit, the electric field of the pulse is so
small that velocities of the expelled electrons are much less than the speed
of light. Therefore,we do not need to consider relativistic effects here. Fur-
thermore, the plasma is not subject to any external field.

Following the above conditions, we shall derive the longitudinal electric
field (wakefield) analytically in this section [11], and show the numerical re-
sult in the next section.

Lorentz force equation

The equation of motion of an electron in an electromagnetic field is



dpP

dt
where P is the momentum of the electron, and E, B are electric and magnetic
field respectively.

= —¢(E+ (v x B) /o), (2.1)

Relating EM field to the scalar and vector potentials,

_ _10A
E=—2% Vo (2.2)
B=VxA
we can rewrite the equation of motion as
dpP 10A

If the given pulse is propagating in z direction, we may assume that the
scalar and vector potentials (®;A) are only a function of z and t. Therefore,
the right hand side of equation (2.3) is just

0A, . 0A,
—e(—o g — ¥ gt
1 6%@ Uy 8Ay 2 (2 4)
—6(—57&? - F 5 )8t '
=1 (_la o o 8@)’*
ATcor T 92/%
here we expend the vector form to three components. Focusing on x and y

components, we have

dp Oa Oa

- —(—a - Uz@)y
where a = (ay,a,) = e(Ay, A,)/mc? is the normalized vector potential and
P = (ps,py) = (Ps, Py)/mc is the normalized momentum. We note that

(2.5)

d 0
- -2 2.6
-tV (2:6)
which means p 9
a a
T +v-Va. (2.7)
Since a is function of z and t only, the above could be rewritten as
da  Oa Oa
—. 2.
@ o T"as (2:8)
Therefore, equation (2.7) becomes
dp da
w72 2.
dt  dt’ (2:9)



which implies
p =a+ (h. (2.10)
At (z,t) = (0,0), ais zero, hence p = Cy. However, the momentum of the

electron should be zero since we are considering the cold plasma. Therefore,
Co = 0. Thus we have p = a.

Concerning the z-component of equation (2.3), we have

U = —olBet (0B, — v, B0
— (=92 4 (o a;) (%) o)
Since (vy,vy) = e(A,, Ay)/me by equation (2.10), we can rewrite the above
equation as
d B 0P 04z 8A
& T g g ala T AE)

(2.12)
= —e(= %%T(%L»

Since we are dealing with non-relativistic motion, we have p, = mv,. With
d/dt = 0/0t 4+ v,0/0z we rewrite equation (2.12) as
dp 10|al?

d8. PO
Tt TR T P
where ¢ = e®/mc? and 3, = v./c.

(2.13)

Continuity equation

Knowing how electrons are affected by the EM pulse, we further study
the collective effect on plasma.

In the following derivation, we consider only two species of particles in
the plasma: electrons and ions. Since ions are much heavier than electrons,
we assume ions are almost motionless in comparison with electrons. Thus
we ignore the dynamics of ions.

Furthermore, we assume collisions between particles can be neglected,
thus there are no abrupt change for the path of moving particles. Therefore,
the total number of particles in unit volume should conserve. In other words,
the number density of electrons obey the continuity equation given by

dn  On
=g PV (v) =0, (2.14)



where n is the number density of the electrons and v is the velocity of elec-
trons.

Let us denote the electron density n as n = (ng + én), where ng is the
density in the equilibrium state(the density when the electrons are not per-
turbed) and én is the perturbation. By replacing n with (ng + on) and
ignoring the quadratic terms in perturbations, the continuity equation be-
comes

oon

Again we only consider the case where v is a function of (z,t) ( v = v(z,t)
). Therefore, the continuity equation becomes

o6 0.
cot i 0z

=0, (2.16)
where 3, = v, /c.
Poisson equation

The electrostatic potential in the plasma is governed by the Poisson equa-
tion
V2® = 4me(n — no). (2.17)
Again we assume ® = ®(z,¢) and take ¢ = e®/m.c*. This leads to
Po  wy

022  c3ny

where w, = /4me?ny/m, is the plasma frequency.

Let us now return to equation (2.13). In the current limit, one may ignore
the term v,00,/0z. Taking one more derivative, 9/0z, on both sides of this
equation, we obtain

(n — no), (2.18)

P52 18

c0z0t (822 2 022 )
In this equation, we can replace 9°¢/dz* by w?(n — ng)/c*ng from equation
(2.18), and replace 9203, /9z0t by —0%dn/cngdt?, which can be derived from
equation (2.16). We then arrive at the following equations for the plasma
oscillation

(2.19)
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Figure 2.1: The plot of the pulse. We set the pulse moving toward positive
z direction with speed v,, the group velocity. Since we send the pulse into
the system at z = 0 and ¢ = 0, the position of the front point of the pulse is
always zero in the co-moving frame [12].

0%n noc® 0%|al*
S i

For convenience, we change the coordinate to the co-moving frame (Fig. 2.1)

(2.20)

with the pulse, & = %(2 — vyt), where v, is the group velocity of the pulse
in the plasma. Then the above equation can be recasted into
2on  ~ & 9?al?

g T 2o

(2.21)

where én = én/ny .
We note that equation (2.21) appears as an equation of oscillation, and
the term a on the right hand side is determined by the pulse.

Analytical solution

Solving equation (2.21), we obtain

(€)= o (2P ~ [“la@)Psn(e ~€)dg),  (222)



under the boundary condition that a = 0 for £ — oco. Using
V- E = —4redn, (2.23)

and assuming that the electric field E is only a function of (z,t), we obtain

oF,

5 —4medn. (2.24)
Changing the coordinate and normalizing all the quantities, we have
OE.  —
=—0 2.25

where E, = ¢E, /mecw, . Finally, by combining equation (2.22) and (2.25),
we obtain the wakefield £ :
E, = [ond¢
2 7 _
=~ [([a(€)* = [ 1a(e")P sin(€" — £")dg")de'-

9

(2.26)

2.3 Numerical Method

Linearly polarized pulse

For convenience, we assume the pulse is linearly polarized in z direction
and propagating toward positive Z direction. First of all, the equations of
motion for electrons are

m @z —

Jh = —e(E, + ¢(v,B. —v.B,)),
j + L (0. B, —v.B.)), (2.27)
“Ln-E+1(%—%&»

Since, E,, B, and B, vanish here, the second equation is trivial and we need
only consider the first and third equations. Setting the pulse as E(z,t) =
Eycos(kz — wt)é,, we have

du,

me = —eEy(1 — ?)(cos(k:z —wt)), (2.28)
dv, (o
m—- = —e(E, + Eo(? cos(kz — wt)). (2.29)



Again, we need to consider the collective effect of plasma as in the last
section. Therefore, we apply the continuity equation as before (equation
(2.16))

ooén 03.
Also, we apply the Gauss law for the electric field
OF,
5 —4me(n — ng). (2.31)

Applying partial derivative on t to equation (2.31) and combining with equa-
tion (2.30), we obtain

0’F, _ 4 Ov,
otox gL

Now we have three differential equations (2.28), (2.29), (2.32) and three un-
known quantities v,, v, E,, where E. is the wakefield to be determined.

(2.32)

Focusing on equations (2.28) and (2.29), we rewrite the time derivative
d/dt = 0/0t 4+ v,0/0z on the left hand side

dv 61) v
megE = m(=gE + v 5 t),
5 ? (2.33)
g m(T TV 7 ):

Changing the coordinate to the co-moving frame of the pulse £ = “p (2 —vyt)
as before, equations (2.28) and (2.29) are recasted into

mi(—w G + kv, Gp2) = —eEo(1 = B.)(cos(kS)),

ov,

o ) (2.34)
m(— wpyé +k UZ_@?) = —e(E. + EyfB, cos(kf)),

where 3., 3, and k equal to v, /c,v,/c and kc/w, respectively. Taking E =
el /mc.cw, as the normalized electric field, we finally obtain

0,08, n ﬁz 3 = —FEy(1 — 8.) cos(kE),

) 55 5 R ) (2.35)
235 + B8:%5¢ = —E. — EoBu(cos(kf)).
With the new variables, equatlon (2.32) is converted into
O*E, 0,00,
— 9.

10



or

OFE,

23
where 3, = v,/c. Combining equation (2.35) and (2.37), we are now ready
to solve the plasma wakefield numerically.

= —040., (2.37)

Boundary conditions

Since we assume the plasma is cold, the wakefield and the velocities of
electrons are zero for { — oo. Thus the boundary conditions for various
quantities are: § =0 and E, = 0 for £ — oo.

2.4 Comparison

In this section, we compare results of Sections (2.2) and (2.3).
Gaussian pulse
Originally, the input pulse is
oo
E(z,t) = 2By / o (h=ho)?/2u? ik —w(h)0) g (2.38)

where F); is the maximum amplitude of the pulse, and ko is the average
wave number of the pulse and w(k) is the frequency of the pulse given by the
dispersion relation

w’ =k + w2 (2.39)

For k*c¢? >> w?, the phase velocity and group velocity are approximately

equal to c. That is,
w dw
T = U (2.40)
Therefore, we have kz — w(k)t = k(z — v,t) = k€. Thus equation (2.38)
becomes - ~
E(¢) = Ey / o (k=ho)?/210% gihE ;. (2.41)

In our calculation, we do not integrate the Fourier transform but simply set
the Gaussian pulse as

E(¢&) = 2 Eye”€8007/29 cog(k€). (2.42)

11
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Figure 2.2: This is the plot of wakefield, where E,;, = mcw,/e is the normal-
ization factor and a = eFE/mcw. The x-axis represents the co-moving frame
where the unit length is ¢/w,. The amplitude of the pulse is ay = 0.05, the
wave number is & = 20 and o = 3¢/w,.

Result

Here we introduce two important parameters. One is called the “strength

parameter”, defined as
eEM

mcw

is the normalized factor for the pulse. The other parameter is called the
“cold wavebreaking field” [7], defined as

(2.43)

ag =

ek

mcwy,

Ewb =

(2.44)

is the normalized factor for the wakefiled. The reason we use this normaliza-
tion is that the maximum amplitude which the plasma wakefield can support
is Enar =~ agEwp [8].

Setting ag = 0.05, k = ck/w, = 20 and o = 3¢/w, , we present the wake-
field in Fig. 2.2. One can see that the wakefield behave smoothly in €.

12
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Figure 2.3: The comparison of wakefield obtained numerically and analyti-
cally.

In Fig. 2.3, we varying the maximum amplitude of the pulse and taking
the maximum value of wakefield. One can see the wakefield obtained numer-
ically agrees very well with the analytical result. From equation (2.26), one
can see that EM% « q2. This is also seen in Fig. 2.3.

13



Chapter 3

Wakefield in Non-Magnetized
Plasma - Strong Field Case

3.1 Introduction

After checking how the numerical methods work in the weak field case,
we consider strong field case. When the amplitude of the pulse becomes
stronger, the speeds of driven electrons would be close to the speed of light.
Thus the relativistic effect (P = ymv) shall be taken into consideration.

In Section 3.2, we demonstrate how we derive and solve the system of
differential equations which are the equations of motion for electrons, the con-
tinuity equation and the Poisson equation. Since wakefield in non-magnetized
plasma with relativistic effects have been well studied [12], we use these re-
sults to check the numerical method. One can find the comparison in Section
3.3.

3.2 Numerical Solution

By increasing the amplitude of the pulse, the speed of the driven electron
also increase. When the speed of electron is close to ¢, the speed of light,
one has to consider the relativistic dynamics for solving the equation of
motion for the electron.

~ factor

To derive the Lorentz force equation, we start from dP/dt. Here the
momentum P is no longer mv but ymv with v = 1/,/1 — |v|?/c2. Therefore,

14



the Lorentz force equation should be modified as

dP — mvdy n ymdv
. dt dt

=—e(E+ (vxB)/c), (3.1)
since 7 is also a function of time.

Furthermore, since the kinetic energy of the electrons is given by

Ey = (v — 1)mdé, (3.2)
we have & p
aby oy 2.
= mc (3.3)

The left hand side of this equation is just the increasing rate of the electron
kinetic energy, which is obviously —ev - E. Therefore, we have

dy —ev-E
= ) 3.4
dt mc? (34)
Rewriting dvy/dt in equation (3.1), we arrive at
_e(v-E d
(TN . ) /4 (3.5)

mc? dt
Changing to the co-moving frame variable £ and normalizing all quantities
as before, we have

_(Eg)ﬂz+7( ﬁg%ﬁi_'_ﬁzagx = E +ﬁyB - (.B )
—(E - 5)3, +1( 6g7"+ﬁz é = (B, +0.B, - 5,B), (36)
)

%EﬂWﬁﬁ(@@*+@ = —(E. + 3.B, — 8,B.),

where § = v/c and By = vy/c.
The continuity equation (2.14)

on
SV () =0 (3.7)

can be written as

o(i.)
“Prge t o

=0, (3.8)

15



where 1. = n/ny.

Finally the Poisson equation can be written as

OF, Wy

5 . (n—1), (3.9)
0.
~ 2 = (n—1). (3.10)

Combining equations (3.6), (3.8) and (3.10), we have five equations and five
unknown quantities 3;, 3y, 8., and E,. We can solve the system of differ-
ential equations to find F..

Boundary conditions

Again we take the wakefield and velocities of electrons as zero for & — oo.
Furthermore, we have n = 1 for £ — oo.

3.3 Verifying Numerical Methods

The solution of wakefield including relativistic effect is well-studied.
Here we refer to the result by Sprangle, Esarey and Ting [12] and com-
pare our calculation with their results . For simplicity, we just show their
equations and present the solution. One can find the derivation of equation
in Appendix A. The equation they derived (see Appendix A) is

8¢ 1 1+ |a?
o¢2 5((1 +0)?

1), (3.11)

where |a|?> and ¢ is defined in equations (2.5) and (2.13) respectively.

The term a is determined by the given pulse, and the wakefield to be

determined is E, = —0¢/0¢. Let E, have a maximum value at &, then

OF, %
e le=¢0 = —8752&:50 =0,

(3.12)

which implies that
1+ |al?

(1+¢)

—1e—e, = 0. (3.13)

16
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Figure 3.1: The plot of wakefield and normalized density in the co-moving
frame, where we set ap = 7.5, k = 40 and 0 = 3¢/w,,.

Hence [15]

—~ Mazx CL(Q)

z K\/ﬁ

which implies EZMM is proportional to ag for ag >> 1.

Result

Setting ag = 7.5, k =40 and 0 = 3c/w,, one can see the wakefield in
Fig. 3.1. When the pulse amplitude increases, the ponderomotive force acts
on the driven electrons becomes larger. Thus the longitudinal momentum
of the driven electrons become larger, too. Such large longitudinal momen-
tum allows electrons to “squeeze”in small region while oscillating (Fig. 3.1).
Therefore, the electric field would goes down sharply during the crowds of
electrons. Hence the behavior of the wakefield is no longer sinusoidal but
saw-tooth-like.

(3.14)

In Fig. 3.2, we compare the results from two different methods. One
can see that the numerical solution agrees well with the solution of equation

17
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Figure 3.2: The plot of maximum wakefield versus pulse amplitude.

settings of the driving pulse are k=40 and o = 3\/§c/wp.

(3.11). We can also see that E. o ag when ag >> 1.
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Chapter 4

Wakefield in Magnetized
Plasma

4.1 Introduction

In this chapter, we will present our main result : the wakefield induced
by right-handed circularly polarized pulse in the magnetized plasma. The
strength of the pulse will be taken as arbitrary.

In the magnetized plasma, there are four modes of EM waves. Here we
focus on the right-handed circularly polarized wave, which is described by
the dispersion relation

wa

k*c? — w? + L =0 (4.1)
W — W

in the non-relativistic limit where w. = eB/mc is the cyclotron frequency.
There are two solutions to this dispersion equation (Fig. 4.1), one is called
R wave (the upper branch) and the other is called whistler wave ( the lower
branch).

Since the ponderomotive force in the magnetized plasma in the non-
relativistic limit has been well studied [13], we can use this result to de-
rive analytical approximation of wakefield in this case. Furthermore, we can
use this approximation to check the numerical method in the non-relativistic
limit. The derivation of the analytical approximation is given in Section 4.2.

In Section 4.3, we analyze the wakefield induced by the whistler pulse.
We compare numerical solutions with analytical approximation (Fig. 4.2).
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Figure 4.1: The plot of dispersion relation of right-handed circularly polarized
EM wave in the magnetized plasma without considering relativistic effects.
The upper branch is called R wave while the lower branch is called whistler
wave.
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Since there exist simulation results (Particle In Cell simulation) of wake-
field in the magnetized plasma [9], we also compare our numerical solutions
with the simulation results. Furthermore, we will consider the case of strong
whistler pulse and calculate the wakefield.

In Section 4.4, we take the driving pulse as the R wave with arbitrary
amplitude and analyze ~ factors of the driven electrons and the wakefield .

4.2 The Analytical Solutions in Weak Field
Case

In chapters 2 and 3, we dealt with unmagnetized plasma. However,
in many physical systems, the external magnetic field should be taken into
consideration. Here we focus on the particular situation that a circularly po-
larized EM pulse is propagating along the external magnetic field direction.
For convenience, this direction is taken to be the z-axis.

Derivation of wakefield

To derive the wakefield, let us first rewrite the z component of Lorentz
force,
dP,
dt
In the non-relativistic limit, we can approximate the last term on the right
hand side by f (see Appendix B). That is, we have

= —e(E, + %(vay — v, B,)). (4.2)

Te(vay —v,B,) = fj, (4.3)

where
-1.0 kw. 0 e?E?

= 2 (8z w(w — we) (%)
where k and w are the wave number and angular frequency of the pulse
respectively, w., = eBy/mec is the cyclotron frequency of the electron, and
Ey is the electric field amplitude of the pulse. Thus equation (4.4) can be
written as

mw(w — w,)’ (44)

dP,
dt

= —eb, + fj. (4.5)

Noting that
dP, 0P 0P,

a - o Ve

(4.6)
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and assuming that the quadratic term (the last term in the right hand side)
is negligible in the non-relativistic limit, equation (4.5) can be written as

Ov,
mea = —eE, + f|, (4.7)

where we just replace P, by muv,.

Equations (2.16) and (2.18) are still valid in this case.

on v,
a + ng 92 = O, (48)
D*d
52 = dme(n — ny). (4.9)
Since 09 /0z = —E,, equation (4.9) becomes
OF,
I dme(n —ny). (4.10)

Taking 0/0t on both sides of equation (4.10), we have

O o 920
e e

Also, by taking 0d/0z on both sides of equation (4.9), we arrive at

0. (4.11)

9%, o] =F N.)
v\l oB" Lon

=i 4.12

" ozot “oz 0z (4.12)
Combining equations (4.13) and (4.14), we acquire
m aQTl 8EZ 8f||

—=5 E B e 4.13

ngy Ot? i 0z - 0z ( )

Furthermore, we can operate 9?/0t? on both sides of equation (4.10), which
gives
PE d0*n
—— =dne——. 4.14
ooz op (4.14)

Finally, combining equations (4.13) and (4.14), we obtain

m PE 0B o
Ameng Ot20z ¢ 0z 0z’

(4.15)

which is the differential equation for F.,.
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Solution
Changing the variables (z,t) to { = “2(z — v,t), equation (4.15) becomes

2 9
G+ V%

= 3o g+ s
2060 ¢ 06 " w(w— we) 0 mw(w — w,)
kwow, e O*E?
w(w — wc)>mw(w — W) 0&*7

kww, 9

(4.16)

where f| is given by equation (4.6). Finally, E. is solved as

B =

(e

2 v, (@ =)

1 S o el
5650 ) B cosle ~ &), (117)

&

where F = eE/mew,, @ = w/w, and &, = w./w,. We can further simplify
the solution to

~ c We 1

E.(&) = x(O(—+ )————E%, (4.18)

v, W —w) W@ — @)

where F); is the maximum amplitude of the pulse, and

MO =5 mr B oos(c - £). (1.19)

4.3 Numerical Solution of Wakefield Induced
by Whistler Wave

In the following sections, we do not restrict ourselves in the small field
limit. It is obvious that as the amplitude of the pulse increases, the motions
of the affected electrons might be relativistic. Hence the solution in the last
section might not be correct if the amplitude of the pulse is large.

We will show the numerical results by solving differential equations de-
rived in chapter 3 (equation (3.6), (3.8), (3.10)).

(B B)F +9(-6,3¢ + 6.3 = ~(B+ Fx B),

_gg%g n l(??%) o, (4.20)
OE — (1),
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Figure 4.2: This is the comparison of numerical solution with analytical
approximation (equation (4.20)) and PIC simulation. The x-axis is the am-
plitude of the pulse. Other settings of the pulse are k = ww,/c, w =~ 3wy,
o= 3\%0%. The setting of the external magnetic field is By = 12.
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Figure 4.3: The plot of EMaz for wakefield induced by whistler wave. We fix
w/w, =3 and By/ag = 9, and increase both ag and By. The Gaussian width
of the pulse is 0 = 3¢/w,,.

We note that these differential equations are derived without any approxi-
mation. They are also applicable to the current case.

Comparison with analytical approximation and PIC simulation

We set the pulse as E = Ege “k*=%%) where Ey(z,t) is taken to be a
Gaussian shape. Here the driving pulse is whistler pulse of which the fre-
quency is smaller than the cyclotron frequency. Other settings of the pulse

are kc/w, = m, and the Gaussian width of the pulse o = 3\%‘3 . We denote the
ot

external magnetic field as By, which can be normalized as By = eBy/mcw,.

In Fig. 4.2, we show the comparison of wakefield obtained by different
methods. One can see that the numerical solution agrees well with theoreti-
cal approximation (equation (4.20)) and “Particle In Cell” (PIC) simulation
in the weak field limit. As the amplitude gradually increases, the analytical
approximation fails. In other words, the relativistic effect becomes non-
negligible.

Having checked the numerical result in the weak field limit, we like to
study the behavior of wakefield in the strong field limit. It is to be noted
that, if we simply fix the frequency of the pulse and the external magnetic
field while verifying the amplitude ag of the pulse, the driving pulse would
not always stay as the whistler wave. The wave could become R wave when
ag >> 1.
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Figure 4.4: The plot of EMaz for wakefield induced by whistler wave. We
fix w/w, = 3 and By/ap = 12, and increase both ag and By. The Gaussian
width of the pulse is o = 3¢/w,,.

To ensure that the driving pulse is a whistler wave, we fix the ratio of
the external magnetic field to the amplitude of the pulse while allowing both
of them to grow. In Fig. 4.3, we fix w = 3w, and Bo/ao = 9 while in Fig.
4.4 we fix w = 3w, and Bo/ao = 12. Under this settings, we find that the
maximum value of the wakefield approaches to certain value as ag >> 1.
We note that the asymptotic value becomes smaller when the ratio of the
external magnetic field to the amplitude of the pulse becomes larger.

4.4 Numerical Solution of Wakefield Induced
by R Wave

In this section, we analyze the wakefield induced by the R wave, which
is seen to be the upper branch shown in Fig. 4.1.

In the last section, we need to increase both the amplitude of the pulse
and the external magnetic field to keep the driving pulse in the whistler
branch. In this section, we fix the external magnetic field and increase the
amplitude of the pulse. The frequency of the pulse remains larger than the
cyclotron frequency in this process. Hence the pulse stays as a R wave in the
magnetized plasma when we increase the amplitude of the pulse.
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Figure 4.5: This is the plot of velocities of electrons at different positions.
The upper graph is v, and the lower graph is v,, where v, = ,/v2 + vg. We

set By = 12. The settings of the driven pulse are ap = 0.6 and w/w, = 20,
the Gaussian width is o = 3cw,,.
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Figure 4.7: The plot of the maximum value of v versus ay.
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Figure 4.8: The plot of wakefield in the co-moving frame. The settings of the
driven pulse are ap = 4,w/w, = 20 and ¢ = 2c¢/w,. The external magnetic
field is By = 12.

~ factor

For the wakefield induced by R wave, it is desirable to know when we
need to consider relativistic motion of the driven electrons. Thus we focus
on the value of 7 factors of driven electrons, where v = 1/4/1 — |v|?/c2 .

Fig. 4.5 are plots of electron velocities in different positions. We present
v, = ,/vZ + v rather than v,, v, because electrons are in cyclotron motions
around the uniform magnetic field. Therefore, v, and v, oscillate in time
and v, is more suitable for presenting the transverse motions of the elec-
trons. From the velocities of electrons, we calculate v factors of the electrons
in different positions (Fig. 4.6). Taking the maximum value of 7 factors of
electrons driven by the pulse, we show the relation between vy, and ag. In
Fig 4.7, one can see the maximum value of 7y (yp74. ) increases linearly with ag.

Wakefield

We present the wakefield in Fig. 4.8. One can see the saw-tooth-like
shape again in the plot which is similar to Fig. 3.1. For larger values of ay,

29



60

50

M

EYIE,

8 s
||||||||||||||||||||||||||||||||

20

10

50 100 150 200 250 300 350 400

%

Figure 4.9: The plot of maximum value of wakefield versus ag in magnetized
plasma. The parameter settings are w/w, = 20, By = 12,0 = 2c/w,,.

we find that the relation between EM and aq is different from that in the
non-magnetized plasma case (Fig. 4.9).

In Fig. 4.9, we find that the growing rate of E¥%® reduces with ag when
ag < 50 but remains constant when ay becomes larger.
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Chapter 5

Conclusion

First of all, we have found that the maximum value of v factors of the
driven electrons increase linearly with ag in the magnetized plasma (Fig. 4.5).
According to this result, we expect there exists a simple relation between
and ag in the magnetized case.

Secondly, the plot of wakefield in the magnetized plasma (Fig. 4.8) is
similar to that in the non-magnetized plasma (Fig. 3.1). For wakefield in-
duced by the strong field pulse, we see the saw-tooth-like shape of wakefiled
in both non-magnetized case (Fig. 3.1) and magnetized case (Fig. 4.8). This
is because the uniform magnetic background does not affect the longitudinal
motions of the electrons. Therefore, the longitudinal waves in two different
cases have similar behavior.

Another interesting result is the relation between FM* and ay. If we
keep the driving pulse as the whistler pulse and increase both amplitudes
of the pulse and the external magnetic field, we find EM% approaches to a
certain value for ay >> 1. This asymptotic value is smaller when the ratio
of the external magnetic field to the amplitude of the pulse is larger.

Finally, for wakefield driven by the R wave, we find that EM%® grows
linearly with aq for a sufficiently larger ay < 50.

Although numerical solutions work well as seen from many comparisons,
there are still some limitations. First of all, we did not consider the dispersion
effect of the pulse. Since the pulse is not made of single wave length in real-
ity, it shall disperse in the plasma according to dispersion relation. However,
in our numerical analysis, we simply assume the pulse is solid. Secondly, we
did not consider the feed back effect of electrons to the pulse. This can only
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be taken into account in a self-consistent plasma simulations.
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Appendix A

Derivation of Equation (3.11)

First of all, we focus on the z component of the Lorentz force,

dP, 1
= —e(F, + E(vay — v, B,)). (A.1)

From Maxwell equations, we have

{ E —_00 . 04

0z oot (A.2)
B=VxA.

Let us rewrite equation (A.1)

g, & 0P ™ 0A, 1( 0A, r 8Ay))

i LAY E S K o

With d/dt = 0/0t + v.0/0z, we change the left hand side of equation (A.2)
such that

0P, 0P, 0D 0 Az it A,

bl JF p T - ) A4

ot T 0z o 0z A cot c(vx 0z Tt 0z ) (A4)

Using the relation between (A,, A,) and (P, P,) from equation (2.10),
we have

(A.3)

OP, OP. 0P ed
- P = e~ + ———|AJ? A.
ot T 0z el 0z + 27mc282| %) (A.5)
where v = 1/4/1 — |v|?/c2. Changing coordinates
§ =2 — g,
T =t. (A-6)
Equation (A.5) becomes
0 10
(1 — — = —=— A.
86 [7( ﬁgﬁz) ¢] c 87' (PYﬁz)a ( 7)
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where 8, = vy/c and 5, = v,/c.

Besides the electron equation of motion, we have Poisson equation and
continuity equation

V20 = —dre(n — ny), (A.8)
(ZZ +V(nv) = 0. (A.9)
With new coordinates (€, 7), we have
g?f - _33(:0 —1), (A.10)
5 5 n(8,— AN =0 (A11)

where k, = w,/v,.
Quasistatic approximation

Integrate € on both side of equation (A.11), we have

© On 0

However, when & > 0 (see Fig 2.1 ), 3, is zero and n is equal to ny. Therefore,
equation (A.12) can be written as
0 On
¢ k,O0r

d§ — (n(By — B2))[&" = 0. (A.13)

Furthermore, the first term on the left hand side is very small if w >> w,,.
That is, if the frequency of the pulse is very large, the growth rate of density
is very small. Therefore, we could drop out the first term of equation (A.12).

Hence
~(n(fh, ~ B =0
S gt (), — n(E). =0, (A.14)

Similarly, equation (A.6) could also be written as
V(L = Befz) = =1. (A.15)
Combining equation (A.10), (A.14), (A.15), we finally have

¢ 1 1+ |al?
oe =2\ Trop

(A.16)
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Appendix B

Derivation of Equation (4.4)

Let us begin with the electron equation of motion

dv
m— = —e(E+ (v xB)/c). (B.1)

In the x and y component form:

d—%——e v — 1) C
{m — —e(E, + (v,B: —v.B,)/0), 52)

m—g = —e(By + (v:B: — v.B.)/c).

Recall that B, is strong uniform magnetic field and B,, B, are just induced
by the F field. Besides, we assume v, is much smaller than v,, v, here. Hence

we may ignore the terms v,B, and v,B, on the right hand side of equation
(B.2). Then we have

o
= =75 Be — vy, (B.3)
% = —%Ey + VpWe.

where w. = eB,/mc is the cyclotron frequency.

Defining v = v, + vy, E =E, + ik, we can combine the above two
equations

dv _
di; - —%E + iw, D, (B.4)

For right-handed circularly polarized pulse,

E =E, +iE, = Eye k=t (B.5)

where FEjy is the amplitude of the pulse, which is a function of z and ¢.
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Therefore, v can be solved as

3z, to)eweto = — & [T gEemioet = _C [T gy pemikstitomwt (B g)

m Jitg m Jitg
Using integration by part, we arrive at

, e 1 _
— ¢ —iweto _ __ E —ikzti(w—we)t
v(z,to)e miw —w) %)[ o€

to;) . /to thOefikz+i(w7wc)t]’

(B.7)
where Ey = dEy/dt . For the first term on the right hand side, the value of
Ey vanishes as t goes to infinity. For the second term, we perform integration
by part again

@(z7t0)eiiWCto = _%W[E e —ikzt+i(w—we)to

_fto th efzkz—i-z(w we)t]]’

o —ikzti(w—we)t|oo
t(w—we) [E()e |t0

(B.8)
where Ey = d*Ep/dt>. Since Ep(z,t) represents the amplitude of the pulse,
the second derivative term Ey must be much smaller than (w — w.). This is
because the former represent the slow variation of the amplitude while the

later represent the fast oscillation. Hence we can ignore the third term on
the right hand side.

Assuming Ej is zero as t goes to infinity we conclude

1

= t) = —— E —ikz+iwt E —ikz+iwt ) B.9
oz 1) mi(w — wc)( o i(w—we) * ) (B9)
From the Maxwell equation
1 0B
VxE= B.10
. cot’ ( )
we have
D, . CaEO—zzw —i(kz—w 18E0—zzw
B = B,+i1B, = (5 (kz—wt) ik Fye~ilka=wt) 1 — . (kz—wt) =
(B.11)
In equation (4.3), we have defined
—e
fi = —(waBy — v, By). (B.12)
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Hence, by combining equation (B.9) and (B.11), we obtain

e? 0Ey k _, - k : 1 . OF,
= (—Ey— — —EyE EyEy — E .
hi mw(w—wc)( 9 W 0+w—wc 00 w(w —we) Oaz)
(B.13)

Again, the fourth term on the right hand side is very small since the second

derivative term 0F,/0z is negligible compare to (w — w,). Therefore, we
finally have

;1(2 kw0 e*F2
2 0z . wlw—w.)ot’ mw(w —w.)

fi =

(B.14)
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