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Abstract

In this thesis, we examine the spontaneous emission of a two-level
emitter, quantum dot exciton, into surface plasmons propagating on the
surface of a cylindrical nanowire. The numerically obtained dispersion
relations are found to strongly influence the spontaneous emission rate.
At certain values of the exciton bandgap, the emission rates can go to
infinity due to the band-edge feature of the dispersion relations.
Borrowing the idea from the photonic crystals, we model the
quantum-dot exciton dynamics with a non-Markovian way and

demonstrate that the decay can undergo an oscillatory behavior. In



addition, we theoretically study coherent single surface-plasmon transport
in a nanowire strongly coupled to two quantum dots. Using a real-space
Hamiltonian we find analytical expressions for the transmission and
reflection coefficients and dot-dot entanglement. Our results show that
remotely entangled states can be created if there is no out-going surface
plasmons detected at both ends of the wire. We further use two small
wires evanescently coupled to a dielectric waveguide instead of a long
wire to minimize the dissipations during propagation, and introduce the
Lindblad form master equation to include the dissipations and calculate

the concurrence dynamics.
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Chapter 1

Introduction

Surface plasmons, generated by collective vibrations of the local charge
densities on the metallic surface, are propagating electromagnetic waves along
the metal-dielectric interface (See Fig. 1.1). In 1957, Ritchie pioneeringly
predicted the existence of the collective excitations of conduction electrons in
a thin foil by calculating the energy losses of a fast electron passing through
the thin foil [2]. In 1959, Powell an Swan experimentally showed the ex-
istence of the collective excitations [3], and the quanta of these excitations
are first called ”surface plasmons” in 1960 [4]. Since then, surface plasmons
have been extensively studied both in theoretical and experimental investi-
gations. Recently, the concept of plasmonics, in analogy to photonics, has
received great attention since surface plasmons reveal strong analogies to

light propagation in conventional dielectric components [5]. For examples, it
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Figure 1.1: Schematic diagram of the surface plasmons [1].

is now possible to confine them to subwavelength scales [1] leading to novel
approaches for waveguiding below the diffraction limit [6]. The combination
of subwavelength confinement, single mode operation [7], and relatively low
power propagation loss [8] of surface plasmon polaritons could be used to
miniaturize existing photonic circuits [9], or implement plasmon-based com-
putational logic in the THZ regime. In addition, high surface plasmon field
confinement was also used to demonstrate an all-optical modulator [10].
Plasmon induced modification of the spontaneous emission (SE) is nat-
urally an extended issue [11]. Sun et al. recently calculated the Lamb shift
of a hydrogen atom due to the surface plasmon polariton [12]. Strong en-
hancement of fluorescence due to surface plasmons was also observed [13].
Coherent coupling between individual optical emitters and guided plasmon

excitations in conducting nanowires at optical frequencies was also pointed



out [14]. In chapter 2, we will therefore investigate the spontaneous emission
(SE) rate of a quantum dot (QD) exciton into the surface plasmons in a metal
nanowire. SE of a QD exciton into different modes of surface plasmons is
considered separately. The emission rate is found to approach infinity at cer-
tain values of QD exciton bandgap, which is similar to the band-edge effect
in photonic crystals. This enhancement has been experimentally observed by
Akimov et al. [15] with an enhanced Purcell factor (I'y;/I"), which is about
2.5 at room temperature.

In 2007, D. E. Chang et al. proposed a novel approach [16] to form a
"optical transistor” through the scattering of surface plasmons propagating
on the surface of a metal wire. In a related context, advances in quantum
information science (QIS) has promoted an experimental drive for physical
realizations of highly entangled states [17]. Some success has been found
within quantum-optical and atomic systems [18]. However, due to scalabil-
ity requirements, solid-state realizations of such phenomena are the favored
choices [19]. Furthermore, while initial success has been found by concen-
trating on coupling nearby qubits with local interactions [20], entangling
arbitrary remote qubits is now an important goal. Circuit quantum elec-
trodynamics (QED), for example, is one of the few promising candidates to
couple two distant qubits via a cavity bus [21]. Motivated by these recent

developments, we will in chapter 3 propose a scheme that can achieve the



entanglement between two remote QD qubits coupled to the same metal wire.

To increase the efficiency of optical transmission, Pyayt et al. [22] pro-
posed that the nanowires lay perpendicular to the polymer waveguide with
one end inside the polymer. They theoretically predicted and experimen-
tally demonstrated the control over the degree of coupling by changing the
light polarization. Furthermore, B. Dayan et al. [23] proposed a ”photon
turnstile” to demonstrate an efficient mechanism for the regulated transport
of photons one by one by using a microscopic optical resonator evanescently
coupled to a fiber. From these, we propose to use two small wires evanescently
coupled to a dielectric wave guide instead of using a long wire to increase
the transmission efficiency of the surface plasmons in chapter 4. This also
enables us to minimize the Ohmic losses during propagation.

More recently, surface plasmon is discovered to be a new dimension to
store information [24]. And the basic quantum mechanical property for a
quantum particle, that is the duality of surface plasmons, has been also ex-
amined [25]. Moreover, in stead of using the conventional far-field optical
detection, Falk et al. [26] proposed a new all-electrical surface plasmon po-
laritons detection techniques based on the near-field coupling between guided
plasmons and a nanowire field-effect transistor to detect the plasmon emis-
sion from an individual colloidal quantum dot coupled to a surface plasmon
polaritons waveguide. In this way, one could not only preserve the better ef-

4



ficiency and miniaturization of photonic circuits but also have the advantage
of electrically near-field detection.

In the last chapter, we will summarize this thesis and propose a future
work on the simulation of quantum phase transition [27, 28] by considering
one QD coupled to a small nanowire as a site of a one-dimensional array.
Bose-Hubbard model can then be simulated if each site is coupled to its

nearest neighbors.



Chapter 2

Spontaneous emission of

excitons into surface plasmons

2.1 Dispersion relations of surface plasmons

Consider now a colloidal CdSe/ZnS quantum dot (QD) near a cylindri-
cal silver nanowire with radius a. The QD and nanowire are assumed to be
separated by a GaN layer [29] as shown in Fig. 2.1. One of the main rea-
sons to choose a CdSe/ZnS QD exciton as the two-level emitter is that it is
now possible to isolate single colloidal QD and measure its exciton lifetime
[30]. The other reason is that its exciton bandgap is around 2eV to 2.5¢V/,
depending on the size and environment of the dot [31]. The plasmon en-

ergy hw, of bulk silver is 3.76 eV with the corresponding saturation energy

6



hw,/\/2 ~ 2.66eV in the dispersion relation [32]. As we shall see below, vari-
ations of the dispersion relations in energy just match the exciton bandgap

of colloidal CdSe/ZnS QDs.

GaN

Figure 2.1: Schematic view of the model: Spontaneous emission of a two-
level emitter (QD exciton) into nanowire surface plasmons, which act like

photons in a cavity.

Surface plasmon modes are created due to the nonzero local charge density
on the surface of a nanowire. The n-th surface plasmon mode’s components of
the electromagnetic field at the surface can be obtained by solving Maxwell’s

equations in a cylindrical geometry (p and ¢ denote the radial and azimuthal



coordinates, respectively) with the appropriate boundary conditions [33]:

By = [k p)Ai—"‘[‘gjdqu}f;f) £Jon
= [V (Kep) AL on,

Hp=[—i:;k2)wf< /) f+%%§ﬁf)3ﬂ¢m

i (U AUS(Rep) j ke e

pewKe  d(Kep) " K2

= [V5.(Kep) BEl o, (2.1)
with

K = wee(w)/? = k2 (£=1or O),
Un(Kip) = Ju(K1p), ¥f (Kor) = HP (Kop),

On = exp(ing + ik,z — iwt),

where J,(Kp) and HT(LI)(KOp) are Bessel and Hankel functions, respectively.
I (O) stands for the component inside (outside) the wire. The dielec-

2

tric function is assumed as €(w) = e[l — )], where €5, = 9.6 (for

Ag) and €5, = 5.3 (for GaN). The plasma energy (hw,) of bulk silver is
3.76 eV, and 7 = 3.1 x 107! s is the relaxation time due to ohmic metal
loss [34], which has been taken into account in the following calculations.

The magnetic permeabilities p; o are unity everywhere since we consider

8



nonmagnetic materials here. A$ and BS are constants to be determined
by normalizing the electromagnetic field to the vacuum fluctuation energy,
[e(|E,? +|E,|° +|E.|")dr = hw(k), and matching the boundary conditions.
According to the experiment [35], the length of a nanowire is very long com-
paring to the size of the QD. Therefore, it’s legitimate to treat the length of
the nanowire as effectively infinite. In this case, the dispersion relations of
the surface plasmons with a continuum spectrum can be obtained by solving

the following transcendental equation numerically [33]:

S(k,,w) =
p y(Kra) w0 Hi'(Koa), (w/e)(w) J,(Kra)
Kia J,(Kja) Koa HS)(KOQ) urKra  J,(Kja)

| W/efeo(w) Hi"(Koa)y  byor 1 1 g
roKoa  HY(Kpa) “(Koa)*  (Kja)?

[

Fig. 2.2(a) shows the dispersion relations of the n = 0 mode for different
radii. Here, one unit of the effective radii R (= wpa/c) is roughly equal to
53.8 nm. As can be seen, the behavior of these curves is very similar to the
two-dimensional case [17], i.e. Q(= w/w,) gradually saturates with increasing

wave vector K (= k,c/w,). This is because the fields for the n = 0 mode are
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Figure 2.2: (a), (b), and (c) represent the dispersion relations of surface
plasmons for the modes n = 0, 1, and 2, respectively. The non-solid (solid)
lines represent the bound (non-bound) modes. The units for vertical and
horizontal lines are Q = w/w, and K = k,c/w,, and R = wya/c. The inset
in (c) represents the real part, imaginary part, and intensity of the electric
field for n = 1 non-bounded mode as a function of distance away from the

wire surface.
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independent of the azimuthal angle . However, the behaviors for the n # 0
modes are quite different as shown in Fig. 2.2(b) and (c). The first interesting
point is the discontinuities around w/c ~ k,. Further analysis shows that
the solutions of w are "almost real” [36] as k, > Re|w]/c. In this case, the
first kind Hankel function of order n, Hr(Ll)(Kgp), decays exponentially. This
means the surface plasmons in this regime are confined on the surface (bound
modes). For k, < Relw]/c, however, the solutions of w are complex. The
form of HT(Ll)(Kfp) in this case is like a traveling wave (non-bound modes),
for which its lifetime is finite. One might think that the reason for the finite
lifetime is totally from the ohmic metal loss. However, as shown in the inset
of Fig. 2.2(b), the frequency is still complex (the solid line) even without the
metal loss 7. We thus conclude that the finite lifetime in the regime of k,

< Relw]/c is actually influenced by both metal and radiation loss.

2.2 Rate enhancement due to band-edge ef-

fect

To calculate the SE rate of a QD or atom within a structured reservoir, one
in general considers the contributions from the scattered fields for different

surface geometry of surrounding scatters. There are some well-developed

11



methods to deal with such calculations. For instance, making use of the
Green’s tensors, one can calculate the scattered fields and obtain the local
density of states for an atomic dipole [37]. Once the surfaces of scatters are
metallic, the presence of surface plasmons are expected to dominate the SE
rate due to the strong coupling between surface plasmons and QD [14]. A
simple explanation why the coupling is so strong is that the density of energy
stored in the electric fields of surface-plasmon modes must be equal to half
the vacuum fluctuation energy, 3 [ €(|B, > +|E, | + | E.[)dr = +hw(k). Since
the volume of the wire is very small, the electric field is supposed to be very
strong. In our case, we would like to focus on the decay into surface plasmons
on the SE rate, since other contributions of the scattering fields are much
smaller than that of the surface plasmons.

The general decay rate of a QD or atom coupled to multi-mode electro-

magnetic fields can be directly obtained from Fermi’s golden rule [38] within

the dipole approximation:

_27T

P =2 [ dF |dy - E(k)S(wey — wp). (23)

where w;: and k are the frequency and wave vector of the field E (E), respec-
tively. cfo is the dipole moment of the QD exciton, and we, is the exciton
bandgap of the QD. Once the electromagnetic fields are determined, the SE

rate, I'y,, of the QD excitons into bound surface plasmons can be obtained

12



via Eq. (2.3). Since the surface plasmons are confined on the surface [39] of
the cylindrical nanowire, the integral of k in Eq. (2.3) stands for the summa-
tion of the contributions from all possible final states, i.e. a two-dimensional
integral of k, and k.. Because n is the quantum number governing the ¢-
component of the wavefunction, summing over all n-mode is equivalent to
integrate over all k,. For convenience, we assume the dipole moment dg is
along the p-direction. By transforming the argument of the delta function

from wi(= wn.) to k. as

1
O(weg — wp) = Y ooy Ok — k2,),

ke, | dk.,

i

the SE rate can then be written as

> Py Zkz. |CZ£) ) Ep(kZ¢) 2
Ly = ZF” (o |d(weg*wn,kz)| ’ (2.4)
n=0 n=0 dk., k?zl-

where I'), is the SE rate into the n-th mode, and k,, stands for the values
of k. that make the argument in the ¢ function vanish. For the purpose
of discussion, we display the SE rate into the first few modes (I';,, n =
0,1,2,3) as shown in Fig. 2.3 and 2.4 for R = 0.1 and 0.5, respectively.
In plotting Fig. 2.3 and 2.4, the distance between the dot and the wire
surface is fixed as ¢ = 10.76 nm. We find that the latter modes (n >
3) contribute much less to the decay rate. For certain ranges of w.,, the
contributions to the decay rate I'y, mainly come from the first few modes.

For example, if we set w., = 0.74647, which is the minimum point of the

13



n = 1 mode dispersion curve, the decay rate (for R = 0.1 case) is mainly
from n = 0 and n = 1 modes as seen from Fig. 2.3. In addition, the novel
feature here is that the SE rate approaches infinity at certain values of the
exciton bandgap we,. Mathematically, one might think that at these values
the corresponding slopes of the dispersion relation are zero [40]. Physically,
however, this infinite rate is not reasonable since it’s based on perturbation
theory. Therefore, one has to treat the dynamics of the exciton around these
values more carefully, i.e. the Markovian SE rate is not enough. One has to
consider the non-Markovian behavior around the band-edge, which means

the band abruptly appears/disappears across certain values of w;, . .

2.3 Non-Markovian dynamics of QD excitons

When a open quantum system interacts with a structured reservoir,
there exists non-Markovian memory effect in the form of oscillatory behav-
ior of decay dynamics which reflects the exchanges of information back and
forth between system and reservoir. Recently, J. Piilo et al developed a
non-Markovian Quantum Jumps method [41] which generalized the proved
Monte Carlo wave function method for the Markovian system in order to deal
with the non-Markovian problems. Here, we will numerically solve the time-

dependent Schrodinger equation to obtain the time-dependent population on

14



the excited state.
To obtain the non-Markovian dynamics of the exciton, we first write down
the Hamiltonian of the system in the interaction picture (with the rotating

wave approximation),

_ o
Heysp = E Bl k.G, g G .

n,kz
+h Z(gn,kzageait,kz + g;kb,kzo-eganykz)7 (25)
n,kz
where o;; = [i) (j|(1,7 = e, g) are the atomic operators; @, and ZL\L’kz are

the radiation field (surface plasmon) annihilation and creation operators;

)

Ay k, = Wni, — Weg is the detuning of the radiation mode frequency wy, k.

. . - H .
from the excitonic resonant frequency wey, and g, = do - E,p, is the
atomic field coupling.

Assuming there is an exciton in the dot with no plasmon excitation in

the wire initially, the wavefunction of the system then has the form

(1)) = be(t) [e:0) + D bup.(£)1g: L) €/ 3n". (2.6)

n,kz

The state vector |e,0) describes an exciton in the dot and no plasmons
present, whereas |g,1,x.) describes the exciton recombination and a sur-
face plasmon emitted into mode k,. With the time-dependent Schrodinger
equation, the solution of the coefficient b.(t) in z-space is straightforwardly
given by

15



be(2) = [z + Z /gn,kzg:,kzz i
n=0

We use the dispersion relations obtained from Eq. (2.2) to numerically cal-

dk,

Wnk, — weg)

L. (2.7)

culate the integral over the whole spectrums of n and k, in Eq. (2.7). Con-
sequently, b.(t) can be obtained by performing a numerical inverse Laplace
Transformation to Eq. (2.7).

The dashed, dotted, and dash-dotted lines in Fig. 2.5(a) represent the
decay dynamics of the QD excitons for different detunings: 6 = —0.4~y, 0.4,
and 0.8y, respectively. Here, § = wy — wp=1, is the detuning from the local
minimum of the n = 1 mode, and 7y is the decay rate of the QD exciton into
free space. The radius of the wire and the wire-dot separation are R = 0.1
and ¢ = 0.34, respectively. Apparently, there exists oscillatory behavior in
the decay profile, demonstrating that decay dynamics is non-Markovian. If
one considers only the contribution from the n = 1 mode and set the detuning
0 = 0, the probability amplitude would saturate to a steady limit as shown
by the solid line. This quasi-dressed state is an analogy of Rabi-oscillation in
cavity quantum electrodynamics, and also appears in the systems of photonic
crystals [42]. In the investigations for SE of a two-level atom near the edge
of a photonic band gap, the density of states becomes singular, and the

dispersion relation near the band edge can be approximated as a parabolic
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curve [42]. The oscillatory behavior during the decay can be then obtained
by treating the transition from the excited state to the intermediate state
as the other decay channel. The oscillatory behavior in the photonic crystal
case is a direct consequence of strong interaction between the atom and its
own localized radiation. In our case, the coupling between the QD exciton
and surface plasmons can be very strong as well, resulting from a similar
feature of local extremum in the dispersion curve. So, the oscillations in
decay dynamics shown in Fig. 2.5(a) can be understood as the SE near a
band-edge.

Another interesting discovery is shown in Fig. 2.5(b) if one sets the
detuning 6 = 0 and plots the dynamics of the exciton for different dot-wire
separations: ¢ = 0.2 (dotted line), ¢ = 0.3 (solid line), and ¢ = 0.35 (dashed
line). As can be seen, the oscillatory behavior is diminished when decreasing
the dot-wire separation. This is because, as w,, is chosen to be close to
the local minimum of the dispersion relation of the n = 1 mode, the decay
dynamics is mainly dominated by the contributions from n = 0 and n = 1
modes. Since the non-Markovian oscillatory behavior is mainly from the
local minimum of n = 1 mode, the contribution from the n = 1 mode can be
overwhelmed by that from the n = 0 mode if the dot is put close enough to

the wire surface. This leads to a degradation of the oscillatory behavior.
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2.4 Conclusion

In this chapter, we have numerically calculated the dispersion relations
of nanowire surface plasmons propagating on the surface of a silver nanowire
and have shown that SE of QD excitons into surface plasmons can be greatly
enhanced at certain values of the exciton bandgap. The enhancement is due
to the strong coupling between QDs and the surface plasmons, and also the
band-edge effect [28] in dispersion relation. A non-Markovian way has been
used to treat the unreasonable infinitely-enhanced SE rate around the band
edge. With this treatment, we observe the oscillatory decay dynamics of QD
excitons. This band-edge effect can be analogous to the case that when a
two-level atom near the edge of photonic band gap: the density of state is
singular and the dispersion curves can be approximated as a parabolic curve
coinciding with the local minimum point in our dispersion relations for n > 1

modes.
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Figure 2.5: (a) Non-Markovian decay dynamics of QD excitons for § =
—0.47y (dashed line), 0.4, (dotted line), and 0.8y (dash-doted line). As
0 = 0, the solid line represents the result for the contribution from n = 1
mode. (b) By setting § = 0, the dotted, solid, and dashed lines represent the
results for dot-wire separation d = 0.2, 0.3, and 0.35, respectively. Here, one

unit of d is wya/c = 53.8 nm.
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Chapter 3

Coherent single surface

plasmon transport

3.1 Scattering of surface plasmons

We propose in this chapter a novel scheme that can entangle two remote
QD qubits coupled to a metal nanowire. The idea is inspired by recent
experiments showing single surface plasmons in metallic nanowires coupled to
QDs [15]. We will use a real-space Hamiltonian to treat the coherent surface-
plasmon transport in the wire coupled to two dots. It will be found maximally
entangled states can be created if the separation between the two dots is
equal to multiple half-wavelength of the optical plasmon. Furthermore, we

will show the entangled state can also be stored in the metastable states,
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Figure 3.1: Schematic view of a metal nano-wire coupled with two QDs. A
single surface plasmon injected from the left is coherently scattered by the

dots.

which are decoupled from the surface plasmons, by applying classical laser
pulses to each QD separately. The storage efficiency of the entangled states
is equal to 1 — 1/P, where P is the Purcell factor of the QD excitons.
When a semiconductor QD is put close to a metal nanowire, strong cou-
pling between the QD exciton and surface plasmons can occur [14], as in
traditional cavity QED. In the following, we consider two QDs, separated by
a distance of d, near a cylindrical metal nanowire with radius a as shown in
Fig. 3.1. The Hamiltonian of the two-level QDs (with energy spacing hw,,)

and the surface plasmons can be written as [16]
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Y + Do
5 )]0e;e;

H= hweg — i(

’70(061762 + 062,61)
—hg/dk [(Oey,g0 + 0627926"’7“‘1)@C + h.c.]

—i—/dk hwg|klal ax, (3.1)

where o¢, 0. (0c,4,)= |e;)(e;](|ej)(g;]) represents the diagonal (off-diagonal)
element of the j-th QD operator, and aL is the creation operator of the
surface plasmon. Here, 7y and 'y denote the decay rates into free space and
other non-radiative channels, respectively. v, is the velocity of the surface
plasmon, ky = wey/vy, and g is the coupling constant between the excitons
and surface plasmons. The third term in the first line of Eq. (3.1) represents
the effect of collective decay (super-radiance) [44]. Transforming Eq. (3.1)

into real space, one obtains

: 0 , 0
H= h/dx{—wgc;(x)%cjg(x) + wgcz(a:)%c,;(x)

+hg Y 0z — (j — Dd)[ch(x)0g,.e, + cr(x)oe, 4
j=1,2

e (€)0g,.c; + cL(2)0e4,]}

. + T
+ Z [Ee - Zh(fyo 0)]Uej,6]’

: 2
7=1,2
., sin(kod)
- h—Zkod Y0(Terer + Ocger) + Egagj,gja (3.2)
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where E, — E, = hwe, and ch(z) [c}(2)] is a bosonic operator creating a

right-going (left-going) photon at z. Assuming that a photon is coming from
the left with energy Ej = v k. The stationary state of the system is written

as

B = / d2(6] a(@)ch(@) + 6] 1 (@) ()91, 92,0)

+ Z ekjgej,gj|gla92a0>7 (33)

=12

where |g1, g2, 0) means that both QD-1 and -2 are in the ground state with
zero photon and ey, is the probability amplitude of the j-th QD in the excited

state. For a photon incident from the left, qu’ r(2) and gbL’ 1 (x) takes the form

&} p(x) = exp(ikz)[0(—z) + a O(2)0(d — z) + t O(x — d)], )

o}, (x) = exp(—ikz)[r O(—z) + b 0(2)0(d — )], |
where ¢ and r are the transmission and reflection amplitudes, respectively.
a exp(ikx)0(z)0(d — x) and b exp(—ikz)0(x)0(d — x) represent the wave-

function of the photon between 0 and d. From the eigenvalue equation

H|Ey) = Ey|Ey), we obtain the following relations for the coefficients

g(2ae™? + 2be= k) — %%%ekl = (Eg/h — Weg)er,,

gl+a+r+0b)— %%%% = (Er/h — weg)er,, (3.5)

ger, =wg(la—1), a=r—>b+1,

ger, = ivy(t —a)e™ and t = a + be 2kd,
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The transmission and reflection amplitudes can then be determined alge-
braically.

Fig. 3.2(a) numerically displays the transmission coefficients |t|* (dashed
lines) and reflection coefficients |r|* (solid lines) for different inter-dot dis-
tance. It is evident that the peak positions of the reflection coefficients
deviate from the center (6 = 0). The inset in Fig. 3.2(a) shows the peak
positions as a function of kd. The green (blue) line represents the result with
(without) super-radiant effect. As can be seen, not only the interference from
the inter-dot separation, but also the super-radiance affects the positions of
the peaks. Fig. 3.2(b) shows that the amplitude of reflection coefficients is
suppressed when increasing metal loss I'g. Another interesting point is that
the reflection coefficients have minimum points in the regime of 4 < 0. In
the limit of large d, the super-radiant effect can be neglected. By setting
[V = v9+ Ty, the positions of the minimum points, di,, can be deduced from

Eq. (3.5) and satisfy the following relation:

: I
— tan?(kd) = —4(6mm)2 ~- (=

T, )2 (3.6)

pl
If there is no reflection (r = 0), one can say that Eq. (3.6) is the resonant
tunneling condition for a photon travelling through two QDs, as an electron

tunnel through a barrier.
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Figure 3.2: Transmission probabilities |t|2 (dashed lines) and reflection prob-
abilities |r|*(solid lines) for a single surface plasmon incident on two QDs,
as a function of detuning §. In plotting the figures, we have assumed that
v = L'y = 0.025I'y; in (a), and kd = /4 in (b). The inset in (a) shows
the peak positions of the reflection probabilities as a function of kd. The
green (blue) line represents the result with (without) super-radiant effect.
The inset in (b) is the result of a surface plasmon incident on a single dot
[16].
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3.2 Entanglement creation and storage

Eq. (3.3) and Eq. (3.5) also tell us that if there is no transmission or
reflection photon detected at the two ends of the wire, the wavefunction col-
lapses into the state: ijlﬂ €k, 0c;.g;191, g2,0). This means that it is possible
to create entanglement between the two dots. Two special cases are that if
kd = 2nm or (2n + 1)7 with n being an integer, the amplitude e is equal to
exa O —egs, respectively. In this case, the two-dot qubits become triplet or
singlet entangled if no photon is detected. Fig. 3.3(a) shows the concurrence
C of the two-dot qubits as functions of inter-dot distance and detuning 4. In
addition to the special cases mentioned above, there is another oblique line
satisfying the condition of maximum entanglement (C' = 1). In the limit of

large d, we find that the equation of this line is give by

§ = — (T +I") tan(kd). (3.7)

The physical meaning is that even the energy of the incident photon is not res-
onant with the qubit energy hweg, it is still possible to achieve the maximum
entangled states, only if the two dots are put at the right positions. The price
to pay is that the entangled state now becomes ey, |ey, go) + €% - ex,|g1, €2), i.e.
there is an extra phase 0 between |e1, go) and |gy,e2). Fig. 3.3(b) shows the

variations of the phase 6 as a function of detuning ¢. In the limit of vy — 0,
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black, red, and blue lines represent the results of I'y = 0, 0.025, and 0.125I",,
respectively. As can be seen, once the metal loss, I'g, appears, the phase in-
stantaneously changes from m(black line) to O(red and blue lines) at the point
0 = 0. In Fig. 3.4, we show the density plot of the Concurrence versus kd
and 0. The two different cases of maximal entanglement can be clearly seen.
One might argue that the created entangled states are irrelevant since the
QDs are still coupled to the surface plasmons. The entanglement would even-
tually disappear due to radiative or non-radiative loss. To overcome this, one
can consider multilevel emitters, such as the three-level configuration shown
in Fig. 3.5. Metastable states, |s;) and |s3), are decoupled from the sur-
face plasmons, but are resonantly coupled to |e;) and |es), respectively, via
a classical optical control field with Rabi frequencies §2;(t) and s(?).
Instead of transforming Eq. (3.1) into real space, the Hamiltonian is
now represented under the bases of singlet, |S) = \%(|61, g2) — |g1,€2)), and

triplet, |T7) = %5(“%92) + g1, €2), states:

/

H = B —ig)(IT) (T]+ 1) (S)

_hg / i {[%(1 ¢ [T) (g1, g2 a

+%(1 — e*|9Y (g1, go| az] + h.c.}

—I—/dk hwglklalax, (3.8)
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where IV = 79+ 'y again is from the approximation that super-radiant effect
can be neglected in the limit of large d. We now consider the general time-

dependent wave function

T T
) = / Ok{cr () + cru(t)ay 4] |1, g2; vac)
+or(t) | T;vac) + cs(t) |S; vac) (3.9)

+en () |Mr; vac) 4+ eprg(t) | Ms; vacy

where [Ms)[= J5(Is1,g2) — lg1, 52))] and [Mr)[= 5 (Is1,92) + |91, 52))] de-

note the singlet and triplet metastable states, respectively. From H |¢) =

—%% |1}, the state amplitudes evolve according to

g

éR,k(L,—k:) (t) = —iéch,k(L,_k) (t) + \/§<1 + €7ikd)CT(t)
+2L (1 — ey (t), (3.10)

V2

where 0, = vk — weg. If Q1(t) = Qa(t) and kd = 2n7, where n is an integer,

Eq. (3.10) can be substituted into the equation of motion for cr(t)

/

or(t) = —%CT(t)—l—in(t)cMT(t)

+19 / dkl:CRJg(t) + CL7,k(t)], (3.11)
which yields integral-differential equation involving cz(t). Imposing a reason-

able constraint that in the photon storage process, there is no outgoing field
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at the end, such that cgpr,—r)(00) = 0, one can obtain an implicit expres-
sion for the required pulse shape Q(¢) and the following equation relating

the population in the state |Mr)

d

dt |CMT(t)‘2 = —Ug/(Qﬂ'gQ)(% ‘ET(t)‘Q _

e

5 Er(t)]), (3.12)

where Er(t) = —v/2miger(t) /vy With the normalizing condition, [*°_dt |Ep(t)]” =
1/(2v,), and assuming that the incoming field vanishes at ¢ = +oo [Er(£o00) =
0] [16], Eq. (3.12) can be integrated to yield |cas, (£00)]> = 1 — 1/P,
where P = I');/T" is the effective Purcell factor. Similarly, it can be eas-
ily shown that the storage efficiency into |Mg) state is also equal to 1 —1/P
if Q1(t) = —Qs(t) and kd = (2n + 1)m. Note that the metal and radiative
losses on the qubits are taken into account in the above derivation. There-
fore, the entangled states can be stored with a high efficiency only if the
Purcell factor is high enough. Furthermore, the two qubits can be separated
in a remote sense, such that one can address a lone qubit without affecting

another.

3.3 Remark on experimental realization

Once the entangled state is prepared, how can one verify it? One possible
procedure is to inject plasmons from one end and measuring the output sig-
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nals. For example, if the entangled state |s1, ga) + | g1, S2) is created, we then
inject a plasmon from the left-side. As the plasmon arrives dot-1, pumping it
with a energy-selected laser pulse, which only excites dot-1 from ” g;” state to
7e1” state (but can not excite it from ”s;” to "e;”). The state now becomes
|51, g2) + |e1, s2). Put two detectors at both ends of the wire. If we get a sig-
nal from the right-end, we know that the wave-function collapses into |eq, s2)
(note that the injected plasmon connects the states ”e¢” and ”¢”). Driving
the state goes back to |gi, s2) with an appropriate pulse. Then, injecting a
surface plasmon again, but with a pulse on dot-2. This time the surface plas-
mon will be scattered by |g1, $2) since dot-1 is in ”¢” state and one observes
a signal at the left-end. However, if one observes a signal from the left-end
initially, we know that the state collapses into |s1, g2). When the last pulse
is shined on dot-2, the state becomes |s1, e5). This time the second plasmon
will pass through the two dots without reflection, and one observes a signal
at the right-end. As for the non-entangled state, for example: |s1, s2)/|g1, g2)

state, the above procedure gives two transmitted /reflected photons at at the

right /left end.
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3.4 Conclusion

In summary, we have examined the scattering properties of the surface
plasmons in a metal nanowire coupled with two QDs. Not only the metal
loss, but also the super-radiant effect is found to influence the reflection prop-
erties. A scheme to create remote entangled state is proposed in the presence
of metal and radiative losses. We discover that there are two different cases
that the maximal entanglement can be achieved. One is when kd is multiple
of w, and the other one is when kd and ¢ satisfy the condition Eq. (3.7).
Furthermore, the proposal can also be applied to other physical system. For
example, one can easily extend this to the transmission lines (photons) cou-
pled with Cooper pair boxes (qubits). The Hamiltonian is identical to that
in Eq. (3.1) [45]. We therefore believe that it could be tested with current

technologies.
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Figure 3.3: (a) Concurrence C' of the two-dot qubits as functions of inter-
dot distance and detuning §. (b) The phase factor 6 of the entangled state
ex, le1, g2) + € - en,|g1, e2) in the limit of 49 — 0. Black, red, and blue lines

represent the results of I'y = 0, 0.025, and 0.125I";, respectively.
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Figure 3.4: The density plot of the concurrence
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Figure 3.5: Schematic diagram of the storage process into metastable entan-
gled states, |s1,¢g2) £ |91, $2) , with classical optical pulses Q;(t) and Q(t).
To avoid the possible losses in metal nano-wire, a dielectric waveguide is

introduced to achieve remote entanglement.
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Chapter 4

Entanglement dynamics

The surface plasmons inevitably experience losses as they propagate along
the nanowire. It could limit the feasibility in creating remote entanglement.
To avoid this, instead of using a infinite long silver nanowire, we consider
in this chapter two separate wires with finite length (in the order of 10 nm)
evanescently coupled to a phase-matched dielectric waveguide [23]. We also
assume the two QDs are coupled to these two wires as shown in Fig. 4.1.
In this case, one can have both the advantages of strong coupling from the
surface plasmons and long-distance transport by the dielectric waveguide.

By using density matrix treatment and Lindblad form master equations,
we will investigate the dynamics of the QD excitons and the corresponding

entanglement in this chapter.
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Figure 4.1: Schematic diagram of the two quantum dots coupled to two

separate wires with finite length.

4.1 Open quantum system

Let us assume a system S in a superposition of its two basis states, and
a second system S’ is in a initial state |¢g). If there is no interactions (i.e.
no correlations) between S and §’; the composite state can be written as
0) = (a|A) + 3|B)) @ |po), where|al]® + [f]° = 1. If we represent this
separable state as a density matrix pgg = |[¥) (¥|, and trace out the second
system S’ (i.e. ps = Trepss = (¢o|V) (¥]|pg)), we obtain a pure state

reduced density matrix of system S

o)* aB
Og —

* 2

a3 18]

But if the system S interacts with the second system S’, we say that

now the system S is "open”, which causes the evolution of S’. Therefore,
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the state of S’ would no longer be in |¢g) and the composite state is not
separable anymore. We can thus write the interacting composite state as
W) = a|A)|p1) + B|B) |¢p2). After tracing out the second system S’, we

again obtain the reduced density matrix og,

’04’2 af* (¢2|¢1)
o* 3 (d1]¢2) 16/°

Ps

The off-diagonal elements (coherence) is smaller than those in non-interacting
case since (Pa|d1) < (¢o|po) = 1. This means that the coherence is decreased
due to the interactions between systems S and S’, and the state goes from
pure to mixed. In other words, some information of the total system is stored
in the entanglement between S and S’ resulting from the coupling [46].

In the third section of this chapter, we will treat the surface plasmon
modes as the second system S’, and the two QDs as the system S. From
previous discussions, one realizes that the coherence will be decreased due to
the QD-plasmon interactions, and the reduced density matrix will become
mixed. To investigate the evolution of the reduced density matrix, in the
next section, we will introduce the Lindblad form master equation approach,

which is widely used to study time-dependent behaviors.
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4.2 Lindblad form master equation

Surface plasmons, propagating electromagnetic waves on the surface of
metal nanowires in our model, must be damped due to Ohmic losses or the
leakages during transmission (see Fig. 4.1). For two QDs, if they are initially
in the ground state, each of them is possible to be excited by the surface plas-
mons. But meanwhile, they are coupled to the vacuum as well. Therefore,
besides decaying into surface plasmons modes, they may also decay into the
free space. Since now we consider small nanowires with finite length, the
Ohmic losses could be minimized. And, from our previous discussions in
chapter 2, the pheonmenon of large Purcell factors due to the strong cou-
pling between dots and surface plasmons should still hold. Thus, we can take
these two decay channels : field dampings and spontaneous emissions into
free space, as dissipations in our model. Instead of using the quantum jump
effective Hamiltonian, we introduce in this section the Lindblad form master
equation approach [47], in which the two dissipations are both included.

We start out with a general Hamiltonian, H = Hg + Hy + Hgg, where
Hg and Hy are Hamiltonian for S and R respectively, Hg is the interaction
between system S and reservoir R. The density matrix corresponding to the
total system S @ R reads psg = ps ® pg, while the reduced density matrix of

the system is written as ps = T'rgpg.
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The Schrodinger equation of pgg is

. 1
Psr = %[PL pSR]» (4-1)

we can transform this Schrédinger equation into the interaction picture and
get
2 1 = .
pse = — [Hs(t), Psal, (4.2)
g
with peg = e/MHsHHRE por (1) e~/ MHsHHRE and Heg(t) = e/ MHsHHR)E Fop () o=/ MHs+Hr)t

Setting the starting point of interaction is ¢ = 0 and integrating Eq. (4.2),

we directly obtain

pan(®) = fan(0) + 5 [ AU 0), )] (43)

Substituting this back to Eq. (4.2) for psg(t) inside the commutator gives

1

Psp = ﬁ[ﬁsn(t)yﬁsn(o)] - —/0 dt'[Hsa(t), [Hsa(t'), psa(t)]], (4.4)

where, pgr(0) = psr(0) = ps(0)pr(0). Because the system S is what we are
interested in, after tracing out R, Eq. (4.4) becomes

fs = %TTR{[ﬁSR(t):ﬁsR(O)]} - %/0 dt' Tra{[Hsa(t), [Hsa(t'), psa(t')]]}-

(4.5)
Since one could always write Hgr as a sum of products of operators s; of

system S and operators R; of reservoir R,

lf[sa(t) =N Z §i(t)éz'(t)a (4.6)
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we assume that the mean value of the observable R; in state py is zero ( i.e.
Tr(paR;] = 0). We can then eliminate the leading term %TTR{[E’SR@), psr(0)] }
with the cyclic property of trace Tr[ABC| = Tr[BCA| = Tr|[C AB]. Finally,
we have

. 1/t N N

o= =3 [ AT (0). ). ()] (@7
If the interaction between the system and reservoir is very weak and the
reservoir is relatively large, one can expect the reservoir is virtually unaffected
(stay in initial state) during the interaction. Thus, the density matrix of the

total system can be expanded as

pse(t) = ps(t)pr(0) + O(Hsr), (4.8)

The Born approximation can be made here to neglect the higher order terms

in Eq. (4.7) and give

o = =3 [ ATr{l(0). ). s(OROT}. (49)

We can now substitute Eq. (4.6) into Eq. (4.9) and obtain

where,

(Bi(t)Ri(t))n = Tra[pw(0)R; (") Ri(1)). (4.11)



Now, we can use this master equation, i.e. Eq. (4.10), to discuss the two
dissipations taking place in our model separately. First, we focus on the field
damping dissipation and ignore two QDs for present discussion. Considering
the surface plasmon modes as a system, and the modes which damp the

surface plasmon fields as a reservoir. The Hamiltonian can be written as

Hs = Zhwkalak,
k

Hy = > hwidlb,
J

Hen = Zh(’ﬁ,kakb} + rjkab;), (4.12)
k.

where wy, is the energy of the surface plasmons, az(ak) denotes the creation
(annihilation) operators for each k& mode; b} and b; represent the modes of
reservoir with frequencies wé; r;, denotes the coupling constant between the
surface plasmons and reservoir. In our model, these j modes play the role
of transmission losses from Ohmic losses and the leakages between dielectric
waveguide and nanowires. From Egs. (4.6) and (4.12), we can specify §; and

R; respectively as

5 = E ape "kt
k
59 = E aLe“‘”“t,
k
D, _ pt_ * 1T dw't
R, = R'= Kb,
J

RQ == PL = Z Iij,kbjeiiw;t. (413)
J
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Substitute Eq. (4.13) into Eq. (4.10), we obtain

ps=— Y /0 "t {apan(t) — ands(E)aple— O (RO R () + hec
+ [:Lalﬁs@’) — af s (t)a ] R R(E))n + hec.
+ laraps(t') — alps(t)arle O (R R(E))n + hec.
+ [alarps(t') — anps(t)al e N R R (t))g + h.c.}, (4.14)

where we take the reservoir S to be a thermal equilibrium mixture of states,

- b b Hw! .
=[le hwibibi/keT (1 — e=hw3/ksT)  Then, we can easily have

(RI ORI = 0

(RORE))a = 0
(RI(ORE))e = Z\H; Pets = On(w], T),

(RORI(t))e = Z\/fj,klze_’“f (W, T) + 1], (4.15)

’
7hwj/k'BT

with n(w), T) = TTR(ﬁRb;.bj) = is the mean photo number for a

) —hw'. )
] e hw]/kBT

1

oscillator with frequency w; at temperature T. Here, kp is the Boltzmann’s
constant. We can make a change of variable 7 = t — ¢/, Eq. (4.14) then

becomes
s = — > /0 t dr{laralps(t — ) — alps(t — T)agle “* (RO R(t — 7))p + h.c.
k
+ alarps(t — 7) — apps(t — T)al e N RERT(t — 7))s + hc.}.  (4.16)
For a large reservoir containing infinite modes, we can also change the sum-

mation in Eq. (4.15) to an integration by introducing the density of state
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g(w), that is, 3. — [¥ dw'g(w’). The remaining terms of Eq. (4.15) reads

(RIOR(t—T)e = /0 " e g () )P, T),

(ROR(t — 7))y = /000 dw'e™™ @ g |k (W) 2[R, T) + 1]. (4.17)

From Eq. (4.17), we can easily see that if 7 is large enough, the oscillat-
ing exponential would average other ”slow-varying” functions, g(w’), k(w'),
n(w',T) to zero, which means, comparing to the evolution time of pg, the
correlations of reservoir survive only within a very short time scale 7. We
can therefore make an approximation to replace ps(t — 7) by ps(t). This is
called Markovian approximation, which states that the evolution of ps(t) de-
pends only on its present state and is independent of its past history. After
making this Markovian approximation, Eq. (4.16) turns out to be the master

equation in Born-Markovian approximation,

ps = lolarpsal, — afarps) + Blarpsal + alpsar — afarps — psaxal) + h.c]
k

(4.18)

with

t 00
a = /OdT/O dwe™ =907 g (W | k(W) ]2,
t e8]
g = / dr / dwe= =0 g (N w2, T).  (4.19)
0 0

Since the reservoir correlations, Eq. (4.17), vanish in the limit of large 7, we
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can therefore extend the 7 integration to infinity and obtain

t
o P
lim [ dre @ = 25(W — wy) + i - (4.20)
where, P is the Cauchy principal value. o and ( are then written as
a = 7wg(wp)|k(wp)* + i,
B = wg(wp)|k(wr) P R(wy, T) +iA), (4.21)
with
s = [Taser
0 wp —w
[e’¢) / 7\ |2
A = /O dw—g(‘::|i<z,)| 7w, T). (4.22)

By substituting a, 3, Ay, A} into Eq. (4.18) and setting 'y = 2mg(ws)|k(wi)|?,

and n(w', T)) = 7, we obtain the master equation,

- . - N 1 - 1.
Ps = Z{—ZAk[aLak, ps] + Fk(@kPSQL - §a2akps - §Psa2ak)
k
+ Fkﬁ(akﬁsaL + azﬁsak — alakﬁs — ﬁsakaz)}. (4.23)

Eq. (4.23) is still in the interaction picture, we can transform it back to
Schrodinger picture, and it reads

1 1

ps = Z{—i(wk + Ak)[&zak, ps] + Fk(akpsal - §@L@kﬂs - §Psa2ak)
k

+ Fkﬁ(akpsaL + aZpsak — azakps — psakaz)}. (4.24)
Here, the frequency shift A, is the so-called Lamb shift in quantum electro-

dynamics, which is generally very small and can be conventionally neglected.
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Furthermore, we assume that the total system is at temperature T=0, then
the mean photon number 7 is zero. The final master equation in Born-

Markovian approximation can be written as

1 1 1

ps = %[H& ps] + Z Fk(akpsa;i - 5“2%% - §Psa2ak)- (4.25)
k

Eq. (4.25) is the Lindblad form master equation with Lindblad operator ay
which governs the field damping of the surface plasmons due to Ohmic losses
and leakages. I'y in Eq. (4.25) is identified as the decay rate of each & mode
into this field-damping dissipation channel.

Our next step is to derive the Lindblad form master equation for the dis-
sipation due to the QD excitons decaying into free space. We can now ignore
the surface plasmons and start out with the Hamiltonian which describes the

interaction between the two dots and vacuum,

HS’ = § hweigiaeheﬂ
7

HR/ = Z hWJT;[Tj,
J

Hyp = Zh(nzja,ir;—i—m,jaﬂrj). (4.26)
1,]
where o¢, ., = |e;)(€i|, we;q; denotes the energy spacing for i-th QD with

¢ running from 1 to 2. In the Hamiltonian, Hy describes the vacuum as
harmonic oscillators with frequencies w; for each j mode. And Hgp is the
interaction between the two dots and the vacuum, o,y = |e;)(gi|(|g:) (€il),

and 7; ; is the coupling constant.
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The master equation for the reduced density matrix for the dots can now
be easily obtained since the calculation is exactly similar to how we derived
Eq. (4.25). Thus, we could have it only by replacing a; and aL by o_, and

o4, respectively

) 1 1 1
py = = [Hy. ps] + Z%‘(U—MS’Uﬂ = 50HO-iPs — 5Py 0+0—;),  (4.27)

1

where ~; is exactly the decay rate vy for the dot excitons into free space,

. w2 A
which can be exactly evaluated as v; = 79 = ﬁ WS;Lgcgp with ©; = e(gi|qle;)

denoting the dipole moment of the i-th dot.

Eq. (4.27) is the Lindblad form master equation for the reduced density
matrix of the two QDs. It describes the dissipation of spontaneous emission
into free space resulting from the coupling to vacuum.

Now, we would like to move back to our model Hamiltonian: H = Hg +
Hy + Hsy + Hy + Hyr + Hgg + Hgyr, which describes the two QDs couple
to multi-mode surface plasmons (see Fig. 4.1), and the two dissipations

discussed before. It can be written as a combination of Eqgs. (4.12) and
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(4.26) plus the do-surface plasmons interaction Hsg, which is

Hy = Zhwkalak,
k

HS’ = Zhweigiaei76i7
i

Hy = > hwiblb,
J

HR/ = Zhwjr;rj,
J

Hyy = Z h(ﬁ;;kakb; + /ﬁlj7kalt;bj),
k.j

Hgp = Z h(nzj‘o'ﬁr; + ni,jUJriTj)?
2%

Hsy = Z R(G140 ey g1 Ok + G240y g€ ar) + h.c.], (4.28)
k

where g;(2)x is the coupling strength between surface plasmon modes and the
first (second) QD, and d is the inter-dot distance. The equation of motion

for this total system can be written as

p= 1., (1.29)

we can exactly expand the H and rewrite Eq. (4.29) as
.1
p= ﬁ{[Hs + Hy + Hsg, p] + [Hy + Hy + Hgw, p] + [Hssr, p]},  (4.30)

from Eq. (4.30), we identify that the first commutator corresponds to our
discussions for deriving Eq. (4.25), and the second commutator corresponds
to Eq. (4.27). After tracing out the reservoirs R and R’, the remaining terms

in the commutator is Hg + Hy + Hgy, and the equation of motion for the
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reduced density matrix of a composite system y = S & S’ can be easily

obtained :

. 1
Px = E[Hxa Px]
P Lo L,
+ ZFk(akank ~ 5 kPx ~ prakak)
k
1 1
+ Z /yi(o-—ipxo-"ri - §J+io-_ipx - §pXU+iU—i)7 (431)

i=1,2
where p, = Trppp, and H, = Hs + Hy + Hsy .

Eq. (4.31) contains the two QDs, the surface plasmon modes, the inter-
actions between them, and two kinds of dissipations such as field damping
and spontaneous emission into free space. It is exactly the Lindblad form
master equation we need to calculate the reduced density matrix of the two
dots and to investigate the entanglement generation and its dynamics in the

next section by tracing out the surface plasmon modes (system ).

4.3 Evolution of entanglement

In this section, we will use the Lindblad form master equation approach to
calculate the dynamics of reduced density matrix for some systems. We first
start out with a simplified model to see how the two kinds of dissipations (field
damping and spontaneous emission into free space) damp the populations of

the two dot states and the surface plasmon states.
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Consider the two QDs couple to only one surface plasmon mode k which
is incident from the left end of the first small wire. The schematic diagram
is the same as Fig. 4.1. The total system now is S & 8, and the master

equation can be written as

1
s _ Ly
p palely
P 1y L s
+ Tw(arpay, — SOaP — §pakak)
+ >l ! ! ) (4.32)
(o_.poy, — =0, 0_p— =poL o_), .
¢:127 iPO+; 57+ P 20 +:0—;
Where H = HS + HS’ + HSS’ Wlth
Hs = hwka,iak,
Hy = Zhweigio'ei,em
Hsy = R[(g140¢, g1k + G240cr g€ ar) + h.c.]. (4.33)

Here, all operators and parameters are identical to those we used in previous
section. Since there is only one excitation in the system, we expand the

density operator of the total system S @ S’ with the basis:

{|g17g27 1k>7 ‘gla €2, O>7 |€17g27 0>7 |917927 O)}

o1



For convenience we label the basis kets as

k) — 91,92, 1),
’2> - ‘9176270>7
|1> - |ela92a0>7

0) = lg1,92,0). (4.34)

le1, g2,0)(]g1, €2, 0)) denotes the first (second) QD is in the excited state, and
the other one is in the ground state; |g1, go, 1) denotes the two dots are both
in ground state, and the excitation is in the surface plasmon mode k. Since
we take the dissipations into account, we have to include the vacuum state
|0} = |g1, g2,0) in our basis. Thus, the matrix representation of the density

operator of the total system reads

> Im)nlplm)(m]

n,m=k,2,1,0
1

= > In)nlH, pllm)(m]

n,m=k,2,1,0

P Lo L

Y Indal(apal — Salaxp — S pafar)lm) (m

n,m=k,2,1,0

1 1
+ Z i Z |TL> <n’(0—_ip0—+i - Ea-h‘a—ip - §p0+ia—i) m> <m|
1=1,2 n,m=k,2,1,0
(4.35)
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Eq. (4.35) can be simplified as

1
'nm = T Hp — Hnm
(h) = (Hp— pH)a,

1 1
+ Tw(arpal — 5(12%0 - §Pa2ak)nm

1 1
+ Z ’yi(O'_ipO'_H - §O-+io-_ip - §po-+i0-—i>nm' (436)
i=1,2

Now we can calculate all elements of the matrices on both sides of Eq. (4.36).

These matrices can be flatted and rearranged as

Prek (1) Prk(t)
Pra(t) Pr2(t)
N (A) 16x16
por(t) por(t)
p00<t) 16x1 pOO(t) 16x1

Thus, the entire problem turns out to be a system of coupled differential
equations. All we need is to diagonalize the intermediate matrix A, and
obtain its eigenvalues and eigenvectors to do the linear transformation. In
this way, we can decouple the coupled differential equations and obtain the
solutions ppm(t)(n,m = k,2,1,0) with given initial conditions. In the den-
sity matrix of the total system S @ 8, the diagonal elements p,,(t) are the
probabilities in |n) and the off-diagonal elements p,,,(t)(n # m) are the co-
herences between |n) and |m). Now we set the two dots are both initially in
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Figure 4.2: Population dynamics without dissipations for each diagonal ele-

ment.
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the ground state with identical two-level spacing which is resonant with the
surface plasmon mode k incident from the left end of the first wire, and the
two dissipations have the same decay rate (i.e. I'y = v = 72 = 7). In last
chapter, we set the Purcell factor P = 20, for which the coupling strength
between QDs and surface plasmons is about 37,. We further assume that
the couplings of the two dots to the surface plasmon mode k are the same.
If we first ignore the dissipations (Fig. 4.2), it is similar to that of two iden-
tical dots are placed inside a high Q cavity with single mode. Therefore, the
populations are independent of inter-dot distance d and reveal the feature of
Rabi Oscillations in cavity Q.E.D: going back and forth between the surface
plasmon mode k& and the two dots [38]. With dissipations, the populations
are damped by the two channels individually as shown in Fig. 4.3 (a), (b),
(c). Since we assume that the coupling constant g is the same for two dots
(i.e. g1 = g2 = g), panels (b) and (c) of Fig. 4.2 and 4.3 demonstrate that
the two dots ’see’ the same surface plasmon mode k . Note that in plotting
the figure, the unit of time ¢ is normalized to the inverse of free-space decay
rate 7p.

One might argue that it is not sufficient to consider only a single-mode
since the QDs are coupled to infinite propagating modes. However, from our
discussions in Chapter 2, we realize that the energy spacing of QDs can be
tuned such that only the lowest n-mode is effective. In addition, the lengths
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of the wires considered here are finite. This means the dispersion relations
of the surface plasmons are discrete. Therefore, if the QD exciton energy
happens to be close to one of the discrete points of the dispersion relations,
it is plausible to assume a single-mode model. The difference to the original
cavity QED case is that the photon is assumed to be injected from one side
of the wire. Thus, one should also take into account the mode —k to denote
the reflecting surface plasmon from the other side.

Let us now consider two QDs resonantly coupled to the surface plasmon

mode k and its reflecting mode —k. The Hamiltonian H can be written as

H — HS+HS’ +HSS’

Hs = Z hw,;a%a,;,
k=k,—k
Hy = Z NWe, g, 0¢; ;4
Hsy = Z h[(gl,fgo-ehgl ap + 92,120627926ikda15> + h.cl], (4.37)
k=k,—k

and the corresponding Lindblad form master equation reads,

1
y = —[H
p m[ v

1 1
+ Z F,;:(a/,;paltC — éaj;a,;p - §pa£a,~€)

k=k,—k
1 1
+ Z 'Vi(o-—ipa+i - §O-+i0-_ip - §pa+ig—i)' (438)
i=1,2

The physical picture is similar to our discussions in Chapter 3: the surface

plasmon with wavevector k, is injected from the left end of the first wire. It
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would be either scattered or absorbed by the two QDs with certain possibil-
ities. If the surface plasmon is trapped between the two dots, it is possible

to create the entanglement between this two QDs. We now use the basis

k=) — 91,92, 1),
kv) = g1, 92, 1k),
2) — g1, €2,0),
1) — le1,92,0),

0) — |g1,92,0). (4.39)

as a complete set to expand Eq. (4.38), and assuming that, at the initial time
t = 0, only the state |g1, g2, 1) is populated. With these, the population
dynamics for each basis state can then be calculated.

In Figs. 4.4, 4.5 and 4.6, we show the population dynamics for three

different inter-dot distance kd = 7, 7 and 27 (or 7), respectively. Notes that

i
not only the coupling strengths are the same (¢g; = g2 = g), but also the

decay rates for dissipations are assumed to be identical. A very interesting

point in Fig. 4.4 (a) is that the excitation never goes to the |g1, g2, 1_x) state.

Now we can go further to study the entanglement dynamics of the two
dots by introducing the ”concurrence” [48] as a criterion to quantify the
entanglement. For a general state p of two qubits, the spin-flipped state is
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Figure 4.4: Population dynamics with dissipations (I'_y = 'y = 791 = 7 =

Yo) for kd = 5 for each diagonal element.
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written as
pr=(oy®ay)p"(0y ®0y). (4.40)

The concurrence is a positive value between 1 and 0, defined as

C(p) = max{& \/)‘_1 - \/)‘_2 - \/)‘_ - \/>‘_4}7 (4'41)

where o, is the y component of Pauli matrices, and {1, A2, A3, Ay} are eigen-
values of pp’ in decreasing order. If all eigenvalues of pp’ are all negative,
then the concurrence is zero, which means the state is not entangled at all.
For maximally entangled state, the concurrence is unity.

We can therefore use this criterion to quantify the entanglement. First
of all, we need to have two qubits, which means we have to trace out the

surface plasmons (the system S’):

Trep = (Lilp|le) + (1glp|l &) = ps.

Substituting this ps into Eqs. (4.40) and (4.41), we calculate the concurrence
for kd = w (n=0,1,2...), W (n=0,1,2...), even multiple of 7 and
odd multiple of 7 for the cases without (with) dissipations shown in Fig. 4.7
(4.8).  As see in Fig. 4.7 (a), for kd = w (n = 0,1,2...), we have
a periodically maximal entanglement, which is different from our results in

Chapter 3. This is because, in Chapter 3, we studied the stationary state

which is an average of many measurements. We assume that once there is
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no detection of any outgoing surface plasmons at the two ends of wire, the
total state would be projected into the state of two qubits. Here, however, we
include also the probabilities of surface plasmons by using the density matrix
p. Therefore, for the cases of kd = even multiple of 7 and odd multiple of
7, no maximal entanglement can be created. In addition, since we only take
into account two modes here (k and —k), some differences are expected if we
include more modes. One also notes, in Fig. 4.8, the concurrences decay with
time due to dissipations. If one can further reduce the dissipations,higher
entanglement can be achieved between the two dots.

In real experiment [15], the samples are prepared by spinning QDs onto a
glass substrate with a PMMA layer coverage above. Then, dry silver wires are
deposited on top of it. The coupling strength between the QDs and surface
plasmons would not be identical for each dot. Therefore, it is desirable to
investigate how the concurrence changes with different coupling strengths,
i.e. varying g, ; and g, in Eq. (4.37). For simplification, we turn off the
dissipations and show the concurrences for different coupling strength ratio
of the first dot to the second one (Fig. 4.9).

A surprising result is that if g;/go is a ratio between two odd integers,
the concurrence for kd = W(n =0,1,2...) becomes unity at some points
in time. To prove this, we first use Laplace transformation to analytically

solve Eq. (4.38). After tracing out the system S’ and obtain the state of the
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Figure 4.9: The concurrence dynamics for kd = W (n=0,1,2...) without

dissipations for the ratios g1/g; =(a) 5 (b) § (c) + and (d)
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two-dot excitons (qubits), we can derive an analytical form of the condition

for C'(p) = 1:

eiiﬂ(%ﬂ)t(—l + eQi‘/Qt)(—l + e%ﬁit) = +4.

This equation can be further simplified as

Sin(ﬁ?t}Sin(\/ﬁt) — 1.

One immediately finds that for the requirement of Sin(v/2t) = £1, the con-

ditions are

241

=—~=T"
2v/2

With the second requirement for Sz’n(x/?:g—;t) = =1, one obtains the ratio

t (£=0,1,2,3...).

must satisfy:

N n=0,1,2,3..), 4.42
b e ) (1.42)
to achieve maximum entanglement at some points in time (¢ = 225—\7;%)

Instead of setting the initial state is in |gq, g2, 1x), here, we would like to
study two special cases for different initial state. First, we consider that if

the state is prepared in a pure state of the two QDs initially:

p(0) = [6(0)) (0] = %Uel,gm n |g1,eg,o>>%<<e1,gz,0| T (g e2,0)).

We find that, for kd =odd multiple of 7, the state will stay in this triplet state

without evolving with time, and the concurrence is always unity as shown
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in Fig. 4.10 (a). This is because the triplet state is a eigenstate of the total
Hamiltonian [eq. (4.37)] with eigenvalue hwe,. So, it is straightforward that
an eigenstate will not evolve. But this only holds for two QDs with the same
energy spacing fiw.q. Similarly, if the initial state is prepared in the singlet
state p(0) = [1(0))(¥(0)] = Z5(le1, g2, 0)= g1, €2, 0)) 75 ((e1, g2, 0] = (g1, €2, 0]),
for kd =even multiple of 7, the state will not evolve as well with the same
reason, and the concurrence is also always unity as shown in Fig. 4.10
(b). Second, if the initial state is prepared in the mixed state p(0) =
s(le1, g2, 0)(e1, g2, 0] + |1, €2,0) (g1, €2,0[). As shown in Fig. 4.11, the con-
currences for different kd are calculated. Surprisingly, for kd = (2n + 1)7

(n = 0,1,2...), the concurrence is always zero. The condition for this is

written as
1+ ek 1+ ¢ikd
COS2<T> —cosh2( ——) =0.
etz etz
One can easily simplify it and obtain
1 + eikd ) 6ikd -1
T =43 kd
e 2 e’ 2

With this, one identifies that when kd = (2n + 1) (n = 0,1,2...), the

concurrence always vanishes as seen in Fig. 4.11(a).
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Figure 4.10: The concurrence dynamics for (a) kd=odd multiple of 7 with
|1)(0)) being the triplet state and (b) kd=even multiple of 7 with |¢/(0)) being

the singlet state.
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4.4 Conclusion

In this chapter, we keep the main configuration in chapter 3, but alter-
nate the mediator from the infinite long wire to two small wires which are
evanescently coupled to the same dielectric waveguide. In this way, one could
not only minimize the Ohmic losses resulting from propagating through the
metal wire, but also achieve the remote entanglement between the two QDs.

In section 4.1, we introduce the open quantum theory to show how a pure
composite density matrix of two systems goes to a mixed reduced density
matrix in the presence of interactions between two systems. In the second
section, we derive the Lindblad form master equation, which is the main
approach we used to study the time dependent behaviors of the system. In
the last section of this chapter, we first consider the two QDs coupled to
only one resonant surface plasmon mode and apply the master equation to
calculate the population dynamics for each basis state. We show that it
is legitimate to only take one surface plasmon mode into account because
one can tune the energy spacing of the QDs close to the discrete points in
the dispersion relations of surface plasmons. We therefore take one surface
plasmon mode k which is resonant with the dots plus its reflected mode —k
to investigate the entanglement dynamics without dissipations. We find that

if the inter-dot distance kd = 7, maximal entanglement can be achieved



at some points in time when g;/g> equals the ratios of odd integers. We
then study two special cases for the initial state prepared in pure and mixed
state. It is found that for pure state, the triplet and singlet states don’t
evolve with time and the maximal entanglement is hold for kd=odd multiple
of m and even multiple of 7 individually. For mixed state, we prove that the

concurrence is alwasy zero when kd = w (n=0,1,2...).
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Chapter 5

Summary and outlooks

In this thesis, we make use of the physical properties of surface plasmons
to study a series of problems essentially based on the strong interactions
between QDs and surface plasmons. In the first chapter, we introduce some
backgrounds of the surface plasmons and the motivations. In the second
chapter, we apply the Fermi’s golden rule to calculate the decay rate of a QD
exciton into the surface plasmon modes. We find that the decay rate is greatly
enhanced due to the strong coupling between surface plasmon and the QD.
The unreasonable infinite enhancement tells us that it is not legitimate to
use Markovian treatment around the band-edge . We thereby deal with the
problem with a non-Markovian way, and obtain the oscillatory behaviors of
decay dynamics. In the third chapter, we consider a surface plasmon incident

from the left end of a long wire to study the scattering resulting from the
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interactions with two QDs. We find that if there is no out-going surface
plasmon detected, the entire state collapses into the entangled state of the
two QDs. We also obtain two conditions for achieving maximal entanglement.
In the latter part of chapter 3, we propose a way to store the entangled
state and a experimental procedure to verify that if the entangled state has
been prepared or not. In the last chapter, we keep the main configuration
in chapter 3, but use two small wires to replace the original infinite long
one to minimize the ohmic losses during propagation. In stead of applying
the ”projection” concept we used in chapter 3, we use the density matrix
approach to obtain the population dynamics of each basis state and introduce
the Lindblad form master equation to include the dissipations. After tracing
out the surface plasmon modes, we obtain the reduced density matrix of
the two QDs, which is used to calculate the concurrence dynamics. We find
that when the inter-dot distance kd = w (n=0,1,2,3...), the maximal
entanglement can be achieved. We also investigate that when the ratio of
coupling strength of the two QDs equals a ration of two odd integers, the
concurrences recover to unity at some points in time for kd = 7. In addition,
for a triplet (singlet) initial state, the concurrence is always unity for kd =
odd (even) multiple of 7. For an initially mixed state, we prove that under
the condition of kd = w, the concurrence always vanishes. With the
advantage of the strong coupling between QDs and surface plasmons, we
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Figure 5.1: The schematic diagram for a one-dimensional array to simulate

Bose-Hubbard model.

propose a future work on the simulation of quantum phase transition [27, 28].
Consider a one-dimensional array, each site in this array contains a QD which
is put close to a small metal wire (See Fig. 5.1) and is thus coupled to the
surface plasmons with coupling strength g. Each site is also coupled to one
another with coupling strength J. So, once the surface-plasmonic polariton
is created, it can transport back and forth from one site to the next. The
Hamiltonian of each cell can be described by a atom-field Hamiltonian plus

one hopping term as [27, 49]

H = ZHzaf - Z Jiyj(lziakj - Z/’LZNZ7 (51)
7 1,5 %
with

HY =" hwpafay + hwegoee + Y hgi(oar + o_al). (5.2)
k k
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Where, H* denotes the atom-field Hamiltonian with g; denotes the coupling
strength between QD and surface plasmon. The second term in Eq. (5.1)
is the hopping term with J;; = J denotes the coupling strength for nearest
neighbors and J = 0 otherwise. a,ti (ax,) is the creation (annihilation) opera-
tor for k—mode surface plasmon at site i, o.. = |€)(e| with w,, is the energy
spacing of each dot. wy is the frequency of k—mode surface plasmon, and
o) =le){g] (|g)(e|]) denotes the atomic creation (annihination) operators;
N; is the total number of photonic and atomic excitations, and p; is the
chemical potential at site ¢ in the grand canonical ensemble.

In this way, we can regard this system as an analogy [27, 28] to a conven-

tional one-dimensional lattice in condensed matter physics and investigate

the Mott insulator-to-superfluid phase transition in our system.
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