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量子光學中的表面電漿子問題 

 

 

學生:陳光胤               指導教授:江進福  

褚德三  

 

國立交通大學物理研究所 

摘要 

在本論文中，我們首先計算二能階單量子點激子耦合到量子線上的

表面電漿子之衰變率，我們發現該衰變率因為其與表面電漿子的耦合

非常強而被大大的提升。在色散曲線的相對極小值附近，衰變率甚至

會被提昇至無窮大，這告訴我們在這一範圍內使用馬可夫近似是不恰

當的，於是我們借用了在光子晶體中能隙附近的處理方式，以非馬可

夫來重新計算量子點激子的衰變率之時間演化，並得到相對應的振盪

行為。我們並提出藉由量子線上的表面電漿子的散射來達到雙量子點

的糾纏態的想法，實際運算後發現，假使我們在量子線的兩端並沒有

偵測到表面電漿子的訊號，這表示雙量子點的糾纏態已經產生。為了

避免表面電漿子在傳播中耗散，我們提出使用兩個同時耦合到完美波

導的小量子線來取代原有的長量子線，並介紹了 Lindblad 形式的
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master 方程來涵蓋耗散的效應且進一步計算 concurrence 的時間演

化。 
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Abstract 

 

In this thesis, we examine the spontaneous emission of a two-level 

emitter, quantum dot exciton, into surface plasmons propagating on the 

surface of a cylindrical nanowire. The numerically obtained dispersion 

relations are found to strongly influence the spontaneous emission rate. 

At certain values of the exciton bandgap, the emission rates can go to 

infinity due to the band-edge feature of the dispersion relations. 

Borrowing the idea from the photonic crystals, we model the 

quantum-dot exciton dynamics with a non-Markovian way and 

demonstrate that the decay can undergo an oscillatory behavior. In 
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addition, we theoretically study coherent single surface-plasmon transport 

in a nanowire strongly coupled to two quantum dots. Using a real-space 

Hamiltonian we find analytical expressions for the transmission and 

reflection coefficients and dot-dot entanglement. Our results show that 

remotely entangled states can be created if there is no out-going surface 

plasmons detected at both ends of the wire. We further use two small 

wires evanescently coupled to a dielectric waveguide instead of a long 

wire to minimize the dissipations during propagation, and introduce the 

Lindblad form master equation to include the dissipations and calculate 

the concurrence dynamics.  
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Chapter 1

Introduction

Surface plasmons, generated by collective vibrations of the local charge

densities on the metallic surface, are propagating electromagnetic waves along

the metal-dielectric interface (See Fig. 1.1). In 1957, Ritchie pioneeringly

predicted the existence of the collective excitations of conduction electrons in

a thin foil by calculating the energy losses of a fast electron passing through

the thin foil [2]. In 1959, Powell an Swan experimentally showed the ex-

istence of the collective excitations [3], and the quanta of these excitations

are first called ”surface plasmons” in 1960 [4]. Since then, surface plasmons

have been extensively studied both in theoretical and experimental investi-

gations. Recently, the concept of plasmonics, in analogy to photonics, has

received great attention since surface plasmons reveal strong analogies to

light propagation in conventional dielectric components [5]. For examples, it

1



 

Figure 1.1: Schematic diagram of the surface plasmons [1].

is now possible to confine them to subwavelength scales [1] leading to novel

approaches for waveguiding below the diffraction limit [6]. The combination

of subwavelength confinement, single mode operation [7], and relatively low

power propagation loss [8] of surface plasmon polaritons could be used to

miniaturize existing photonic circuits [9], or implement plasmon-based com-

putational logic in the THZ regime. In addition, high surface plasmon field

confinement was also used to demonstrate an all-optical modulator [10].

Plasmon induced modification of the spontaneous emission (SE) is nat-

urally an extended issue [11]. Sun et al. recently calculated the Lamb shift

of a hydrogen atom due to the surface plasmon polariton [12]. Strong en-

hancement of fluorescence due to surface plasmons was also observed [13].

Coherent coupling between individual optical emitters and guided plasmon

excitations in conducting nanowires at optical frequencies was also pointed
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out [14]. In chapter 2, we will therefore investigate the spontaneous emission

(SE) rate of a quantum dot (QD) exciton into the surface plasmons in a metal

nanowire. SE of a QD exciton into different modes of surface plasmons is

considered separately. The emission rate is found to approach infinity at cer-

tain values of QD exciton bandgap, which is similar to the band-edge effect

in photonic crystals. This enhancement has been experimentally observed by

Akimov et al. [15] with an enhanced Purcell factor (Γpl/Γ
′), which is about

2.5 at room temperature.

In 2007, D. E. Chang et al. proposed a novel approach [16] to form a

”optical transistor” through the scattering of surface plasmons propagating

on the surface of a metal wire. In a related context, advances in quantum

information science (QIS) has promoted an experimental drive for physical

realizations of highly entangled states [17]. Some success has been found

within quantum-optical and atomic systems [18]. However, due to scalabil-

ity requirements, solid-state realizations of such phenomena are the favored

choices [19]. Furthermore, while initial success has been found by concen-

trating on coupling nearby qubits with local interactions [20], entangling

arbitrary remote qubits is now an important goal. Circuit quantum elec-

trodynamics (QED), for example, is one of the few promising candidates to

couple two distant qubits via a cavity bus [21]. Motivated by these recent

developments, we will in chapter 3 propose a scheme that can achieve the

3



entanglement between two remote QD qubits coupled to the same metal wire.

To increase the efficiency of optical transmission, Pyayt et al. [22] pro-

posed that the nanowires lay perpendicular to the polymer waveguide with

one end inside the polymer. They theoretically predicted and experimen-

tally demonstrated the control over the degree of coupling by changing the

light polarization. Furthermore, B. Dayan et al. [23] proposed a ”photon

turnstile” to demonstrate an efficient mechanism for the regulated transport

of photons one by one by using a microscopic optical resonator evanescently

coupled to a fiber. From these, we propose to use two small wires evanescently

coupled to a dielectric wave guide instead of using a long wire to increase

the transmission efficiency of the surface plasmons in chapter 4. This also

enables us to minimize the Ohmic losses during propagation.

More recently, surface plasmon is discovered to be a new dimension to

store information [24]. And the basic quantum mechanical property for a

quantum particle, that is the duality of surface plasmons, has been also ex-

amined [25]. Moreover, in stead of using the conventional far-field optical

detection, Falk et al. [26] proposed a new all-electrical surface plasmon po-

laritons detection techniques based on the near-field coupling between guided

plasmons and a nanowire field-effect transistor to detect the plasmon emis-

sion from an individual colloidal quantum dot coupled to a surface plasmon

polaritons waveguide. In this way, one could not only preserve the better ef-

4



ficiency and miniaturization of photonic circuits but also have the advantage

of electrically near-field detection.

In the last chapter, we will summarize this thesis and propose a future

work on the simulation of quantum phase transition [27, 28] by considering

one QD coupled to a small nanowire as a site of a one-dimensional array.

Bose-Hubbard model can then be simulated if each site is coupled to its

nearest neighbors.
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Chapter 2

Spontaneous emission of

excitons into surface plasmons

2.1 Dispersion relations of surface plasmons

Consider now a colloidal CdSe/ZnS quantum dot (QD) near a cylindri-

cal silver nanowire with radius a. The QD and nanowire are assumed to be

separated by a GaN layer [29] as shown in Fig. 2.1. One of the main rea-

sons to choose a CdSe/ZnS QD exciton as the two-level emitter is that it is

now possible to isolate single colloidal QD and measure its exciton lifetime

[30]. The other reason is that its exciton bandgap is around 2eV to 2.5eV ,

depending on the size and environment of the dot [31]. The plasmon en-

ergy h̄ωp of bulk silver is 3.76 eV with the corresponding saturation energy

6



h̄ωp/
√

2 ≈ 2.66eV in the dispersion relation [32]. As we shall see below, vari-

ations of the dispersion relations in energy just match the exciton bandgap

of colloidal CdSe/ZnS QDs.

QD

wire

GaNGaN

z

Figure 2.1: Schematic view of the model: Spontaneous emission of a two-

level emitter (QD exciton) into nanowire surface plasmons, which act like

photons in a cavity.

Surface plasmon modes are created due to the nonzero local charge density

on the surface of a nanowire. The n-th surface plasmon mode’s components of

the electromagnetic field at the surface can be obtained by solving Maxwell’s

equations in a cylindrical geometry (ρ and ϕ denote the radial and azimuthal

7



coordinates, respectively) with the appropriate boundary conditions [33]:

Eρ = [
ikz

Kξ

dψξ
n(Kξρ)

d(Kξρ)
Aξ

n −
µξωn

K2
ξ ρ

ψξ
n(Kξρ)Bξ

n]φn,

Eϕ = −[
nkz

K2
ξ ρ

ψξ
n(Kξρ)Aξ

n −
iµξω

Kξ

dψξ
n(Kξρ)

d(Kξρ)
Bξ

n]φn,

Ez = [ψξ
n(Kξρ)Aξ

n]φn,

Hρ = [
n(K2

ξ + k2
z)

µξωK2
ξ ρ

ψξ
n(Kξρ)Aξ

n +
ikz

Kξ

dψξ
n(Kξρ)

d(Kξρ)
Bξ

n]φn,

Hϕ = [
i(K2

ξ + k2
z)

µξωKξ

dψξ
n(Kξρ)

d(Kξρ)
Aξ

n −
nkz

K2
ξ ρ

ψξ
n(Kξρ)Bξ

n]φn,

Hz = [ψξ
n(Kξρ)Bξ

n]φn, (2.1)

with

K2
ξ = ω2εξ(ω)/c2 − k2

z (ξ = I or O),

ψI
n(KIρ) = Jn(KIρ), ψO

n (KOr) = H(1)
n (KOρ),

φn = exp(inϕ + ikzz− iωt),

where Jn(KIρ) and H
(1)
n (KOρ) are Bessel and Hankel functions, respectively.

I (O) stands for the component inside (outside) the wire. The dielec-

tric function is assumed as ε(ω) = ε∞[1 − ω2
p

ω(ω+i/τ)
], where ε∞ = 9.6 (for

Ag) and ε∞ = 5.3 (for GaN). The plasma energy (h̄ωp) of bulk silver is

3.76 eV , and τ = 3.1 × 10−14 s is the relaxation time due to ohmic metal

loss [34], which has been taken into account in the following calculations.

The magnetic permeabilities µI,O are unity everywhere since we consider

8



nonmagnetic materials here. Aξ
n and Bξ

n are constants to be determined

by normalizing the electromagnetic field to the vacuum fluctuation energy,

∫
ε(|Eρ|2 + |Eϕ|2 + |Ez|2)dr = h̄ω(k), and matching the boundary conditions.

According to the experiment [35], the length of a nanowire is very long com-

paring to the size of the QD. Therefore, it’s legitimate to treat the length of

the nanowire as effectively infinite. In this case, the dispersion relations of

the surface plasmons with a continuum spectrum can be obtained by solving

the following transcendental equation numerically [33]:

S(kz, ω) =

[
µI

KIa

J ′n(KIa)

Jn(KIa)
− µO

KOa

H
(1)′
n (KOa)

H
(1)
n (KOa)

][
(ω/c)2εI(ω)

µIKIa

J ′n(KIa)

Jn(KIa)

− (ω/c)2εO(ω)

µOKOa

H
(1)′
n (KOa)

H
(1)
n (KOa)

]− n2k2
z [

1

(KOa)2
− 1

(KIa)2
]2

= 0. (2.2)

Fig. 2.2(a) shows the dispersion relations of the n = 0 mode for different

radii. Here, one unit of the effective radii R (≡ ωpa/c) is roughly equal to

53.8 nm. As can be seen, the behavior of these curves is very similar to the

two-dimensional case [17], i.e. Ω(≡ ω/ωp) gradually saturates with increasing

wave vector K(≡ kzc/ωp). This is because the fields for the n = 0 mode are

9



0 10 20 30
0.4

0.5

0.6

0.7

0.8

0 10 20 30

0.72

0.76

0.80

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

0.00 0.35 0.70

-0.04

-0.02

0.00

Im
[[ [[ ΩΩ ΩΩ
]] ]]

K

 ττττ = infinity
 ττττ = 3.1x10-14s

0 5 10

-0.08

-0.04

0.00

0.04

0.08

A
.U

.

D((((ωωωω
p
a/c))))

 Re[E]
 Im[E]
 |E|2

K

R
e [[ [[

ΩΩ ΩΩ
]] ]]

(c)

(b)

(a)

 R=0.1
 R=0.2
 R=0.3
 R=0.5

 R=0.1
 R=0.2
 R=0.3
 R=0.5

 R=0.1
 R=0.2
 R=0.3
 R=0.5

K

R
e [[ [[

ΩΩ ΩΩ
]] ]]

R
e [[ [[

ΩΩ ΩΩ
]] ]]

Figure 2.2: (a), (b), and (c) represent the dispersion relations of surface

plasmons for the modes n = 0, 1, and 2, respectively. The non-solid (solid)

lines represent the bound (non-bound) modes. The units for vertical and

horizontal lines are Ω = ω/ωp and K = kzc/ωp, and R ≡ ωpa/c. The inset

in (c) represents the real part, imaginary part, and intensity of the electric

field for n = 1 non-bounded mode as a function of distance away from the

wire surface.
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independent of the azimuthal angle ϕ. However, the behaviors for the n 6= 0

modes are quite different as shown in Fig. 2.2(b) and (c). The first interesting

point is the discontinuities around ω/c ≈ kz. Further analysis shows that

the solutions of ω are ”almost real” [36] as kz > Re[ω]/c. In this case, the

first kind Hankel function of order n, H
(1)
n (Kξρ), decays exponentially. This

means the surface plasmons in this regime are confined on the surface (bound

modes). For kz < Re[ω]/c, however, the solutions of ω are complex. The

form of H
(1)
n (Kξρ) in this case is like a traveling wave (non-bound modes),

for which its lifetime is finite. One might think that the reason for the finite

lifetime is totally from the ohmic metal loss. However, as shown in the inset

of Fig. 2.2(b), the frequency is still complex (the solid line) even without the

metal loss τ . We thus conclude that the finite lifetime in the regime of kz

< Re[ω]/c is actually influenced by both metal and radiation loss.

2.2 Rate enhancement due to band-edge ef-

fect

To calculate the SE rate of a QD or atom within a structured reservoir, one

in general considers the contributions from the scattered fields for different

surface geometry of surrounding scatters. There are some well-developed
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methods to deal with such calculations. For instance, making use of the

Green’s tensors, one can calculate the scattered fields and obtain the local

density of states for an atomic dipole [37]. Once the surfaces of scatters are

metallic, the presence of surface plasmons are expected to dominate the SE

rate due to the strong coupling between surface plasmons and QD [14]. A

simple explanation why the coupling is so strong is that the density of energy

stored in the electric fields of surface-plasmon modes must be equal to half

the vacuum fluctuation energy, 1
2

∫
ε(|Eρ|2+|Eϕ|2+|Ez|2)dr = 1

2
h̄ω(k). Since

the volume of the wire is very small, the electric field is supposed to be very

strong. In our case, we would like to focus on the decay into surface plasmons

on the SE rate, since other contributions of the scattering fields are much

smaller than that of the surface plasmons.

The general decay rate of a QD or atom coupled to multi-mode electro-

magnetic fields can be directly obtained from Fermi’s golden rule [38] within

the dipole approximation:

Γsp =
2π

h̄

∫
d~k |~d0 · ~E(~k)|2δ(ωeg − ω~k), (2.3)

where ω~k and ~k are the frequency and wave vector of the field ~E(~k), respec-

tively. ~d0 is the dipole moment of the QD exciton, and ωeg is the exciton

bandgap of the QD. Once the electromagnetic fields are determined, the SE

rate, Γsp, of the QD excitons into bound surface plasmons can be obtained
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via Eq. (2.3). Since the surface plasmons are confined on the surface [39] of

the cylindrical nanowire, the integral of ~k in Eq. (2.3) stands for the summa-

tion of the contributions from all possible final states, i.e. a two-dimensional

integral of kϕ and kz. Because n is the quantum number governing the ϕ-

component of the wavefunction, summing over all n-mode is equivalent to

integrate over all kϕ. For convenience, we assume the dipole moment ~d0 is

along the ρ-direction. By transforming the argument of the delta function

from ω~k(= ωn,kz) to kz as

δ(ωeg − ω~k) =
∑

kzi

1

|d(ωeg−ωn,kz )

dkz
|kzi

δ(kz − kzi
),

the SE rate can then be written as

Γsp =
∞∑

n=0

Γn =
2π

h̄

∞∑
n=0

∑
kzi
|~d0 · ~Eρ(kzi

)|2

|d(ωeg−ωn,kz )

dkz
|kzi

, (2.4)

where Γn is the SE rate into the n-th mode, and kzi
stands for the values

of kz that make the argument in the δ function vanish. For the purpose

of discussion, we display the SE rate into the first few modes (Γn, n =

0, 1, 2, 3) as shown in Fig. 2.3 and 2.4 for R = 0.1 and 0.5, respectively.

In plotting Fig. 2.3 and 2.4, the distance between the dot and the wire

surface is fixed as ` = 10.76 nm. We find that the latter modes (n >

3) contribute much less to the decay rate. For certain ranges of ωeg, the

contributions to the decay rate Γsp mainly come from the first few modes.

For example, if we set ωeg = 0.74647, which is the minimum point of the
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n = 1 mode dispersion curve, the decay rate (for R = 0.1 case) is mainly

from n = 0 and n = 1 modes as seen from Fig. 2.3. In addition, the novel

feature here is that the SE rate approaches infinity at certain values of the

exciton bandgap ωeg. Mathematically, one might think that at these values

the corresponding slopes of the dispersion relation are zero [40]. Physically,

however, this infinite rate is not reasonable since it’s based on perturbation

theory. Therefore, one has to treat the dynamics of the exciton around these

values more carefully, i.e. the Markovian SE rate is not enough. One has to

consider the non-Markovian behavior around the band-edge, which means

the band abruptly appears/disappears across certain values of ωn,kz .

2.3 Non-Markovian dynamics of QD excitons

When a open quantum system interacts with a structured reservoir,

there exists non-Markovian memory effect in the form of oscillatory behav-

ior of decay dynamics which reflects the exchanges of information back and

forth between system and reservoir. Recently, J. Piilo et al developed a

non-Markovian Quantum Jumps method [41] which generalized the proved

Monte Carlo wave function method for the Markovian system in order to deal

with the non-Markovian problems. Here, we will numerically solve the time-

dependent Schrödinger equation to obtain the time-dependent population on
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the excited state.

To obtain the non-Markovian dynamics of the exciton, we first write down

the Hamiltonian of the system in the interaction picture (with the rotating

wave approximation),

Hex−sp =
∑

n,kz

h̄∆n,kz â
†
n,kz

ân,kz

+h̄
∑

n,kz

(gn,kzσgeâ
†
n,kz

+ g∗n,kz
σegân,kz), (2.5)

where σij = |i〉 〈j|(i, j = e, g) are the atomic operators; ân,kz and â†n,kz
are

the radiation field (surface plasmon) annihilation and creation operators;

∆n,kz = ωn,kz − ωeg is the detuning of the radiation mode frequency ωn,kz

from the excitonic resonant frequency ωeg, and gn,kz = ~d0 · −→E n,kz is the

atomic field coupling.

Assuming there is an exciton in the dot with no plasmon excitation in

the wire initially, the wavefunction of the system then has the form

|ψ(t)〉 = be(t) |e, 0〉+
∑

n,kz

bn,kz(t) |g, 1n,kz〉 e−i∆n,kz t. (2.6)

The state vector |e, 0〉 describes an exciton in the dot and no plasmons

present, whereas |g, 1n,kz〉 describes the exciton recombination and a sur-

face plasmon emitted into mode kz. With the time-dependent Schrödinger

equation, the solution of the coefficient be(t) in z-space is straightforwardly

given by
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b̃e(z) = [z +
∞∑

n=0

∫
gn,kzg

∗
n,kz

dkz

z + i(ωn,kz − ωeg)
]−1. (2.7)

We use the dispersion relations obtained from Eq. (2.2) to numerically cal-

culate the integral over the whole spectrums of n and kz in Eq. (2.7). Con-

sequently, be(t) can be obtained by performing a numerical inverse Laplace

Transformation to Eq. (2.7).

The dashed, dotted, and dash-dotted lines in Fig. 2.5(a) represent the

decay dynamics of the QD excitons for different detunings: δ = −0.4γ0, 0.4γ0,

and 0.8γ0, respectively. Here, δ = ω0−ωn=1,kz is the detuning from the local

minimum of the n = 1 mode, and γ0 is the decay rate of the QD exciton into

free space. The radius of the wire and the wire-dot separation are R = 0.1

and ` = 0.34, respectively. Apparently, there exists oscillatory behavior in

the decay profile, demonstrating that decay dynamics is non-Markovian. If

one considers only the contribution from the n = 1 mode and set the detuning

δ = 0, the probability amplitude would saturate to a steady limit as shown

by the solid line. This quasi-dressed state is an analogy of Rabi-oscillation in

cavity quantum electrodynamics, and also appears in the systems of photonic

crystals [42]. In the investigations for SE of a two-level atom near the edge

of a photonic band gap, the density of states becomes singular, and the

dispersion relation near the band edge can be approximated as a parabolic
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curve [42]. The oscillatory behavior during the decay can be then obtained

by treating the transition from the excited state to the intermediate state

as the other decay channel. The oscillatory behavior in the photonic crystal

case is a direct consequence of strong interaction between the atom and its

own localized radiation. In our case, the coupling between the QD exciton

and surface plasmons can be very strong as well, resulting from a similar

feature of local extremum in the dispersion curve. So, the oscillations in

decay dynamics shown in Fig. 2.5(a) can be understood as the SE near a

band-edge.

Another interesting discovery is shown in Fig. 2.5(b) if one sets the

detuning δ = 0 and plots the dynamics of the exciton for different dot-wire

separations: ` = 0.2 (dotted line), ` = 0.3 (solid line), and ` = 0.35 (dashed

line). As can be seen, the oscillatory behavior is diminished when decreasing

the dot-wire separation. This is because, as ωeg is chosen to be close to

the local minimum of the dispersion relation of the n = 1 mode, the decay

dynamics is mainly dominated by the contributions from n = 0 and n = 1

modes. Since the non-Markovian oscillatory behavior is mainly from the

local minimum of n = 1 mode, the contribution from the n = 1 mode can be

overwhelmed by that from the n = 0 mode if the dot is put close enough to

the wire surface. This leads to a degradation of the oscillatory behavior.
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2.4 Conclusion

In this chapter, we have numerically calculated the dispersion relations

of nanowire surface plasmons propagating on the surface of a silver nanowire

and have shown that SE of QD excitons into surface plasmons can be greatly

enhanced at certain values of the exciton bandgap. The enhancement is due

to the strong coupling between QDs and the surface plasmons, and also the

band-edge effect [28] in dispersion relation. A non-Markovian way has been

used to treat the unreasonable infinitely-enhanced SE rate around the band

edge. With this treatment, we observe the oscillatory decay dynamics of QD

excitons. This band-edge effect can be analogous to the case that when a

two-level atom near the edge of photonic band gap: the density of state is

singular and the dispersion curves can be approximated as a parabolic curve

coinciding with the local minimum point in our dispersion relations for n ≥ 1

modes.
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Figure 2.3: Spontaneous emission rate (Γn) into n = 0 ∼ 3 modes for R = 0.1.

The unit of Γn is normalized to free space decay rate γ0.
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Figure 2.5: (a) Non-Markovian decay dynamics of QD excitons for δ =

−0.4γ0 (dashed line), 0.4γ0 (dotted line), and 0.8γ0 (dash-doted line). As

δ = 0, the solid line represents the result for the contribution from n = 1

mode. (b) By setting δ = 0, the dotted, solid, and dashed lines represent the

results for dot-wire separation d = 0.2, 0.3, and 0.35, respectively. Here, one

unit of d is ωpa/c = 53.8 nm.
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Chapter 3

Coherent single surface

plasmon transport

3.1 Scattering of surface plasmons

We propose in this chapter a novel scheme that can entangle two remote

QD qubits coupled to a metal nanowire. The idea is inspired by recent

experiments showing single surface plasmons in metallic nanowires coupled to

QDs [15]. We will use a real-space Hamiltonian to treat the coherent surface-

plasmon transport in the wire coupled to two dots. It will be found maximally

entangled states can be created if the separation between the two dots is

equal to multiple half-wavelength of the optical plasmon. Furthermore, we

will show the entangled state can also be stored in the metastable states,
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Figure 3.1: Schematic view of a metal nano-wire coupled with two QDs. A

single surface plasmon injected from the left is coherently scattered by the

dots.

which are decoupled from the surface plasmons, by applying classical laser

pulses to each QD separately. The storage efficiency of the entangled states

is equal to 1− 1/P , where P is the Purcell factor of the QD excitons.

When a semiconductor QD is put close to a metal nanowire, strong cou-

pling between the QD exciton and surface plasmons can occur [14], as in

traditional cavity QED. In the following, we consider two QDs, separated by

a distance of d, near a cylindrical metal nanowire with radius a as shown in

Fig. 3.1. The Hamiltonian of the two-level QDs (with energy spacing h̄ωeg)

and the surface plasmons can be written as [16]
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H =
∑
j=1,2

h̄[ωeg − i(
γ0 + Γ0

2
)]σej ,ej

−ih̄
sin(k0d)

2k0d
γ0(σe1,e2 + σe2,e1)

−h̄g

∫
dk [(σe1,g1 + σe2,g2e

ikd)ak + h.c.]

+

∫
dk h̄vg|k|a†kak, (3.1)

where σej ,ej
(σej ,gj

)= |ej〉〈ej|(|ej〉〈gj|) represents the diagonal (off-diagonal)

element of the j-th QD operator, and a†k is the creation operator of the

surface plasmon. Here, γ0 and Γ0 denote the decay rates into free space and

other non-radiative channels, respectively. vg is the velocity of the surface

plasmon, k0 = ωeg/vg, and g is the coupling constant between the excitons

and surface plasmons. The third term in the first line of Eq. (3.1) represents

the effect of collective decay (super-radiance) [44]. Transforming Eq. (3.1)

into real space, one obtains

H = h̄

∫
dx{−ivgc

†
R(x)

∂

∂x
cR(x) + ivgc

†
L(x)

∂

∂x
cL(x)

+h̄g
∑
j=1,2

δ(x− (j − 1)d)[c†R(x)σgj ,ej
+ cR(x)σej ,gj

+c†L(x)σgj ,ej
+ cL(x)σej ,gj

]}

+
∑
j=1,2

[Ee − ih̄(
γ0 + Γ0

2
)]σej ,ej

−ih̄
sin(k0d)

2k0d
γ0(σe1,e2 + σe2,e1) + Egσgj ,gj

, (3.2)
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where Ee − Eg = h̄ωeg and c†R(x) [c†L(x)] is a bosonic operator creating a

right-going (left-going) photon at x. Assuming that a photon is coming from

the left with energy Ek = vgk. The stationary state of the system is written

as

|Ek〉 =

∫
dx[φ†k,R(x)c†R(x) + φ†k,L(x)c†L(x)]|g1, g2, 0〉

+
∑
j=1,2

ekj
σej ,gj

|g1, g2, 0〉, (3.3)

where |g1, g2, 0〉 means that both QD-1 and -2 are in the ground state with

zero photon and ekj
is the probability amplitude of the j-th QD in the excited

state. For a photon incident from the left, φ†k,R(x) and φ†k,L(x) takes the form





φ†k,R(x) ≡ exp(ikx)[θ(−x) + a θ(x)θ(d− x) + t θ(x− d)],

φ†k,L(x) ≡ exp(−ikx)[r θ(−x) + b θ(x)θ(d− x)],

(3.4)

where t and r are the transmission and reflection amplitudes, respectively.

a exp(ikx)θ(x)θ(d − x) and b exp(−ikx)θ(x)θ(d − x) represent the wave-

function of the photon between 0 and d. From the eigenvalue equation

H|Ek〉 = Ek|Ek〉, we obtain the following relations for the coefficients





g(2aeikd + 2be−ikd)− i
2

sin(k0d)
kd

γ0ek1 = (Ek/h̄− ωeg)ek2 ,

g(1 + a + r + b)− i
2

sin(k0d)
k0d

γ0ek2 = (Ek/h̄− ωeg)ek1 ,

gek1 = ivg(a− 1), a = r − b + 1,

gek2 = ivg(t− a)eikd, and t = a + be−2ikd.

(3.5)
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The transmission and reflection amplitudes can then be determined alge-

braically.

Fig. 3.2(a) numerically displays the transmission coefficients |t|2 (dashed

lines) and reflection coefficients |r|2 (solid lines) for different inter-dot dis-

tance. It is evident that the peak positions of the reflection coefficients

deviate from the center (δ = 0). The inset in Fig. 3.2(a) shows the peak

positions as a function of kd. The green (blue) line represents the result with

(without) super-radiant effect. As can be seen, not only the interference from

the inter-dot separation, but also the super-radiance affects the positions of

the peaks. Fig. 3.2(b) shows that the amplitude of reflection coefficients is

suppressed when increasing metal loss Γ0. Another interesting point is that

the reflection coefficients have minimum points in the regime of δ < 0. In

the limit of large d, the super-radiant effect can be neglected. By setting

Γ′ = γ0 +Γ0, the positions of the minimum points, δmin, can be deduced from

Eq. (3.5) and satisfy the following relation:

− tan2(kd) = −4(
δmin

Γpl

)2 − (
Γ′

Γpl

)2. (3.6)

If there is no reflection (r = 0), one can say that Eq. (3.6) is the resonant

tunneling condition for a photon travelling through two QDs, as an electron

tunnel through a barrier.
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Figure 3.2: Transmission probabilities |t|2 (dashed lines) and reflection prob-

abilities |r|2(solid lines) for a single surface plasmon incident on two QDs,

as a function of detuning δ. In plotting the figures, we have assumed that

γ0 = Γ0 = 0.025Γpl in (a), and kd = π/4 in (b). The inset in (a) shows

the peak positions of the reflection probabilities as a function of kd. The

green (blue) line represents the result with (without) super-radiant effect.

The inset in (b) is the result of a surface plasmon incident on a single dot

[16].
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3.2 Entanglement creation and storage

Eq. (3.3) and Eq. (3.5) also tell us that if there is no transmission or

reflection photon detected at the two ends of the wire, the wavefunction col-

lapses into the state:
∑

j=1,2 ekj
σej ,gj

|g1, g2, 0〉. This means that it is possible

to create entanglement between the two dots. Two special cases are that if

kd = 2nπ or (2n + 1)π with n being an integer, the amplitude ek1 is equal to

ek2 or −ek2, respectively. In this case, the two-dot qubits become triplet or

singlet entangled if no photon is detected. Fig. 3.3(a) shows the concurrence

C of the two-dot qubits as functions of inter-dot distance and detuning δ. In

addition to the special cases mentioned above, there is another oblique line

satisfying the condition of maximum entanglement (C = 1). In the limit of

large d, we find that the equation of this line is give by

δ = −(Γpl + Γ′) tan(kd). (3.7)

The physical meaning is that even the energy of the incident photon is not res-

onant with the qubit energy h̄ωeg, it is still possible to achieve the maximum

entangled states, only if the two dots are put at the right positions. The price

to pay is that the entangled state now becomes ek1|e1, g2〉+eiθ ·ek2|g1, e2〉, i.e.

there is an extra phase θ between |e1, g2〉 and |g1, e2〉. Fig. 3.3(b) shows the

variations of the phase θ as a function of detuning δ. In the limit of γ0 → 0,
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black, red, and blue lines represent the results of Γ0 = 0, 0.025, and 0.125Γpl,

respectively. As can be seen, once the metal loss, Γ0, appears, the phase in-

stantaneously changes from π(black line) to 0(red and blue lines) at the point

δ = 0. In Fig. 3.4, we show the density plot of the Concurrence versus kd

and δ. The two different cases of maximal entanglement can be clearly seen.

One might argue that the created entangled states are irrelevant since the

QDs are still coupled to the surface plasmons. The entanglement would even-

tually disappear due to radiative or non-radiative loss. To overcome this, one

can consider multilevel emitters, such as the three-level configuration shown

in Fig. 3.5. Metastable states, |s1〉 and |s2〉, are decoupled from the sur-

face plasmons, but are resonantly coupled to |e1〉 and |e2〉, respectively, via

a classical optical control field with Rabi frequencies Ω1(t) and Ω2(t).

Instead of transforming Eq. (3.1) into real space, the Hamiltonian is

now represented under the bases of singlet, |S〉 = 1√
2
(|e1, g2〉 − |g1, e2〉), and

triplet, |T 〉 = 1√
2
(|e1, g2〉+ |g1, e2〉, states:

H = h̄(ωeg − i
Γ′

2
)(|T 〉 〈T |+ |S〉 〈S|)

−h̄g

∫
dk {[ 1√

2
(1 + eikd) |T 〉 〈g1, g2| ak

+
1√
2
(1− eikd) |S〉 〈g1, g2| ak] + h.c.}

+

∫
dk h̄vg|k|a†kak, (3.8)
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where Γ′ = γ0 +Γ0 again is from the approximation that super-radiant effect

can be neglected in the limit of large d. We now consider the general time-

dependent wave function

|ψ〉 =

∫
dk[cR,k(t)

∧
a
†
R,k + cL,−k(t)

∧
a
†
L,−k] |g1, g2; vac〉

+cT (t) |T ; vac〉+ cS(t) |S; vac〉 (3.9)

+cMT
(t) |MT ; vac〉+ cMS

(t) |MS; vac〉 ,

where |MS〉[= 1√
2
(|s1, g2〉 − |g1, s2〉)] and |MT 〉[= 1√

2
(|s1, g2〉 + |g1, s2〉)] de-

note the singlet and triplet metastable states, respectively. From H |ψ〉 =

− h̄
i

∂
∂t
|ψ〉, the state amplitudes evolve according to

·
cR,k(L,−k)(t) = −iδkcR,k(L,−k)(t) +

ig√
2
(1 + e−ikd)cT (t)

+
ig√
2
(1− e−ikd)cS(t), (3.10)

where δk = vgk − ωeg. If Ω1(t) = Ω2(t) and kd = 2nπ, where n is an integer,

Eq. (3.10) can be substituted into the equation of motion for cT (t)

·
cT (t) = −Γ′

2
cT (t) + iΩ1(t)cMT

(t)

+ig

∫
dk[cR,k(t) + cL,−k(t)], (3.11)

which yields integral-differential equation involving cT (t). Imposing a reason-

able constraint that in the photon storage process, there is no outgoing field
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at the end, such that cR,k(L,−k)(∞) = 0, one can obtain an implicit expres-

sion for the required pulse shape Ω1(t) and the following equation relating

the population in the state |MT 〉

d

dt
|cMT

(t)|2 = −v2
g/(2πg2)(

d

dt
|ET (t)|2 − Γpl − Γ′

2
|ET (t)|2), (3.12)

where ET (t) = −√2πigcT (t)/vg. With the normalizing condition,
∫∞
−∞ dt |ET (t)|2 =

1/(2vg), and assuming that the incoming field vanishes at t = ±∞ [ET (±∞) =

0] [16], Eq. (3.12) can be integrated to yield |cMT
(±∞)|2 = 1 − 1/P ,

where P ≡ Γpl/Γ′ is the effective Purcell factor. Similarly, it can be eas-

ily shown that the storage efficiency into |MS〉 state is also equal to 1− 1/P

if Ω1(t) = −Ω2(t) and kd = (2n + 1)π. Note that the metal and radiative

losses on the qubits are taken into account in the above derivation. There-

fore, the entangled states can be stored with a high efficiency only if the

Purcell factor is high enough. Furthermore, the two qubits can be separated

in a remote sense, such that one can address a lone qubit without affecting

another.

3.3 Remark on experimental realization

Once the entangled state is prepared, how can one verify it? One possible

procedure is to inject plasmons from one end and measuring the output sig-
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nals. For example, if the entangled state |s1, g2〉+ |g1, s2〉 is created, we then

inject a plasmon from the left-side. As the plasmon arrives dot-1, pumping it

with a energy-selected laser pulse, which only excites dot-1 from ”g1” state to

”e1” state (but can not excite it from ”s1” to ”e1”). The state now becomes

|s1, g2〉+ |e1, s2〉. Put two detectors at both ends of the wire. If we get a sig-

nal from the right-end, we know that the wave-function collapses into |e1, s2〉

(note that the injected plasmon connects the states ”e” and ”g”). Driving

the state goes back to |g1, s2〉 with an appropriate pulse. Then, injecting a

surface plasmon again, but with a pulse on dot-2. This time the surface plas-

mon will be scattered by |g1, s2〉 since dot-1 is in ”g” state and one observes

a signal at the left-end. However, if one observes a signal from the left-end

initially, we know that the state collapses into |s1, g2〉. When the last pulse

is shined on dot-2, the state becomes |s1, e2〉. This time the second plasmon

will pass through the two dots without reflection, and one observes a signal

at the right-end. As for the non-entangled state, for example: |s1, s2〉/|g1, g2〉

state, the above procedure gives two transmitted/reflected photons at at the

right/left end.
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3.4 Conclusion

In summary, we have examined the scattering properties of the surface

plasmons in a metal nanowire coupled with two QDs. Not only the metal

loss, but also the super-radiant effect is found to influence the reflection prop-

erties. A scheme to create remote entangled state is proposed in the presence

of metal and radiative losses. We discover that there are two different cases

that the maximal entanglement can be achieved. One is when kd is multiple

of π, and the other one is when kd and δ satisfy the condition Eq. (3.7).

Furthermore, the proposal can also be applied to other physical system. For

example, one can easily extend this to the transmission lines (photons) cou-

pled with Cooper pair boxes (qubits). The Hamiltonian is identical to that

in Eq. (3.1) [45]. We therefore believe that it could be tested with current

technologies.

33



HaL

-0.2
0

0.2kd -4

-2

0

2

4

δêΓpl

0.5
0.6
0.7
0.8
0.9
1

C

-0.2
0

0.2kd

HbL

0 2 4 6 8 10
δêΓpl

0.5

1

1.5

2

2.5

3

θ

Figure 3.3: (a) Concurrence C of the two-dot qubits as functions of inter-

dot distance and detuning δ. (b) The phase factor θ of the entangled state

ek1|e1, g2〉 + eiθ · ek2|g1, e2〉 in the limit of γ0 → 0. Black, red, and blue lines

represent the results of Γ0 = 0, 0.025, and 0.125Γpl, respectively.
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Figure 3.4: The density plot of the concurrence
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Figure 3.5: Schematic diagram of the storage process into metastable entan-

gled states, |s1, g2〉 ± |g1, s2〉 , with classical optical pulses Ω1(t) and Ω2(t).

To avoid the possible losses in metal nano-wire, a dielectric waveguide is

introduced to achieve remote entanglement.
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Chapter 4

Entanglement dynamics

The surface plasmons inevitably experience losses as they propagate along

the nanowire. It could limit the feasibility in creating remote entanglement.

To avoid this, instead of using a infinite long silver nanowire, we consider

in this chapter two separate wires with finite length (in the order of 10 nm)

evanescently coupled to a phase-matched dielectric waveguide [23]. We also

assume the two QDs are coupled to these two wires as shown in Fig. 4.1.

In this case, one can have both the advantages of strong coupling from the

surface plasmons and long-distance transport by the dielectric waveguide.

By using density matrix treatment and Lindblad form master equations,

we will investigate the dynamics of the QD excitons and the corresponding

entanglement in this chapter.
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Figure 4.1: Schematic diagram of the two quantum dots coupled to two

separate wires with finite length.

4.1 Open quantum system

Let us assume a system S in a superposition of its two basis states, and

a second system S’ is in a initial state |φ0〉. If there is no interactions (i.e.

no correlations) between S and S’, the composite state can be written as

|Ψ〉 = (α |A〉 + β |B〉) ⊗ |φ0〉, where|α|2 + |β|2 = 1. If we represent this

separable state as a density matrix ρSS′ = |Ψ〉 〈Ψ|, and trace out the second

system S’ (i.e. ρS = TrS′ρSS′ = 〈φ0 |Ψ〉 〈Ψ|φ0〉), we obtain a pure state

reduced density matrix of system S

σS =



|α|2 αβ∗

α∗β |β|2


 .

But if the system S interacts with the second system S’, we say that

now the system S is ”open”, which causes the evolution of S’. Therefore,
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the state of S’ would no longer be in |φ0〉 and the composite state is not

separable anymore. We can thus write the interacting composite state as

|Ψ〉 = α |A〉 |φ1〉 + β |B〉 |φ2〉. After tracing out the second system S’, we

again obtain the reduced density matrix σS,

ρS =




|α|2 αβ∗ 〈φ2|φ1〉

α∗β 〈φ1|φ2〉 |β|2


 .

The off-diagonal elements (coherence) is smaller than those in non-interacting

case since 〈φ2|φ1〉 < 〈φ0|φ0〉 = 1 . This means that the coherence is decreased

due to the interactions between systems S and S’, and the state goes from

pure to mixed. In other words, some information of the total system is stored

in the entanglement between S and S’ resulting from the coupling [46].

In the third section of this chapter, we will treat the surface plasmon

modes as the second system S’, and the two QDs as the system S. From

previous discussions, one realizes that the coherence will be decreased due to

the QD-plasmon interactions, and the reduced density matrix will become

mixed. To investigate the evolution of the reduced density matrix, in the

next section, we will introduce the Lindblad form master equation approach,

which is widely used to study time-dependent behaviors.
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4.2 Lindblad form master equation

Surface plasmons, propagating electromagnetic waves on the surface of

metal nanowires in our model, must be damped due to Ohmic losses or the

leakages during transmission (see Fig. 4.1). For two QDs, if they are initially

in the ground state, each of them is possible to be excited by the surface plas-

mons. But meanwhile, they are coupled to the vacuum as well. Therefore,

besides decaying into surface plasmons modes, they may also decay into the

free space. Since now we consider small nanowires with finite length, the

Ohmic losses could be minimized. And, from our previous discussions in

chapter 2, the pheonmenon of large Purcell factors due to the strong cou-

pling between dots and surface plasmons should still hold. Thus, we can take

these two decay channels : field dampings and spontaneous emissions into

free space, as dissipations in our model. Instead of using the quantum jump

effective Hamiltonian, we introduce in this section the Lindblad form master

equation approach [47], in which the two dissipations are both included.

We start out with a general Hamiltonian, H = HS + HR + HSR, where

HS and HR are Hamiltonian for S and R respectively, HSR is the interaction

between system S and reservoir R. The density matrix corresponding to the

total system S ⊕ R reads ρSR = ρS ⊗ ρR, while the reduced density matrix of

the system is written as ρS = TrRρSR.
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The Schrödinger equation of ρSR is

ρ̇SR =
1

ih̄
[H, ρSR], (4.1)

we can transform this Schrödinger equation into the interaction picture and

get

˙̃ρSR =
1

ih̄
[H̃SR(t), ρ̃SR], (4.2)

with ρ̃SR = ei/h̄(HS+HR)tρSR(t)e
−i/h̄(HS+HR)t, and H̃SR(t) = ei/h̄(HS+HR)tHSR(t)e

−i/h̄(HS+HR)t.

Setting the starting point of interaction is t = 0 and integrating Eq. (4.2),

we directly obtain

ρ̃SR(t) = ρ̃SR(0) +
1

ih̄

∫ t

0

dt′[H̃SR(t
′), ρ̃SR(t′)]. (4.3)

Substituting this back to Eq. (4.2) for ρ̃SR(t) inside the commutator gives

˙̃ρSR =
1

ih̄
[H̃SR(t), ρ̃SR(0)]− 1

h̄2

∫ t

0

dt′[H̃SR(t), [H̃SR(t
′), ρ̃SR(t′)]], (4.4)

where, ρ̃SR(0) = ρSR(0) = ρS(0)ρR(0). Because the system S is what we are

interested in, after tracing out R, Eq. (4.4) becomes

˙̃ρS =
1

ih̄
T rR{[H̃SR(t), ρ̃SR(0)]} − 1

h̄2

∫ t

0

dt′TrR{[H̃SR(t), [H̃SR(t
′), ρ̃SR(t′)]]}.

(4.5)

Since one could always write H̃SR as a sum of products of operators si of

system S and operators Ri of reservoir R,

H̃SR(t) = h̄
∑

i

s̃i(t)R̃i(t), (4.6)
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we assume that the mean value of the observable R̃i in state ρR is zero ( i.e.

Tr[ρRR̃i] = 0 ). We can then eliminate the leading term 1
ih̄

TrR{[H̃SR(t), ρ̃SR(0)]}

with the cyclic property of trace Tr[ABC] = Tr[BCA] = Tr[CAB]. Finally,

we have

˙̃ρS = − 1

h̄2

∫ t

0

dt′TrR{[H̃SR(t), [H̃SR(t
′), ρ̃SR(t′)]]}. (4.7)

If the interaction between the system and reservoir is very weak and the

reservoir is relatively large, one can expect the reservoir is virtually unaffected

(stay in initial state) during the interaction. Thus, the density matrix of the

total system can be expanded as

ρ̃SR(t) = ρ̃S(t)ρ̃R(0) + O(HSR), (4.8)

The Born approximation can be made here to neglect the higher order terms

in Eq. (4.7) and give

˙̃ρS = − 1

h̄2

∫ t

0

dt′TrR{[H̃SR(t), [H̃SR(t
′), ρ̃S(t′)ρ̃R(0)]]}. (4.9)

We can now substitute Eq. (4.6) into Eq. (4.9) and obtain

˙̃ρS = −
∑
i,j

∫ t

0

dt′{[s̃i(t)s̃j(t
′)ρ̃S(t′)− s̃j(t

′)ρ̃S(t′)s̃i(t)]〈R̃i(t)R̃j(t
′)〉R

+ [ρ̃S(t
′)s̃j(t

′)s̃i(t)− s̃i(t)ρ̃S(t
′)s̃j(t

′)]〈R̃j(t
′)R̃i(t)〉R}, (4.10)

where,

〈R̃i(t)R̃j(t
′)〉R = TrR[ρ̃R(0)R̃i(t)R̃j(t

′)]

〈R̃j(t
′)R̃i(t)〉R = TrR[ρ̃R(0)R̃j(t

′)R̃i(t)]. (4.11)
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Now, we can use this master equation, i.e. Eq. (4.10), to discuss the two

dissipations taking place in our model separately. First, we focus on the field

damping dissipation and ignore two QDs for present discussion. Considering

the surface plasmon modes as a system, and the modes which damp the

surface plasmon fields as a reservoir. The Hamiltonian can be written as

HS =
∑

k

h̄ωka
†
kak,

HR =
∑

j

h̄ω′jb
†
jbj,

HSR =
∑

k,j

h̄(κ∗j,kakb
†
j + κj,ka

†
kbj), (4.12)

where ωk is the energy of the surface plasmons, a†k(ak) denotes the creation

(annihilation) operators for each k mode; b†j and bj represent the modes of

reservoir with frequencies ω′j; κj,k denotes the coupling constant between the

surface plasmons and reservoir. In our model, these j modes play the role

of transmission losses from Ohmic losses and the leakages between dielectric

waveguide and nanowires. From Eqs. (4.6) and (4.12), we can specify s̃i and

R̃i respectively as

s̃1 =
∑

k

ake
−iωkt,

s̃2 =
∑

k

a†ke
iωkt,

R̃1 = R̃† =
∑

j

κ∗j,kb
†
je

iω′jt,

R̃2 = R̃ =
∑

j

κj,kbje
−iω′jt. (4.13)
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Substitute Eq. (4.13) into Eq. (4.10), we obtain

˙̃ρS = −
∑

k

∫ t

0

dt′{[akakρ̃S(t
′)− akρ̃S(t

′)ak]e
−iωk(t+t′)〈R̃†(t)R̃†(t′)〉R + h.c.

+ [a†ka
†
kρ̃S(t

′)− a†kρ̃S(t
′)a†k]e

iωk(t+t′)〈R̃(t)R̃(t′)〉R + h.c.

+ [aka
†
kρ̃S(t

′)− a†kρ̃S(t
′)ak]e

−iωk(t−t′)〈R̃†(t)R̃(t′)〉R + h.c.

+ [a†kakρ̃S(t
′)− akρ̃S(t

′)a†k]e
iωk(t−t′)〈R̃(t)R̃†(t′)〉R + h.c.}, (4.14)

where we take the reservoir S to be a thermal equilibrium mixture of states,

ρ̃R =
∏

j e−h̄ω′jb†jbj/kBT (1− e−h̄ω′j/kBT ). Then, we can easily have

〈R̃†(t)R̃†(t′)〉R = 0

〈R̃(t)R̃(t′)〉R = 0

〈R̃†(t)R̃(t′)〉R =
∑

j

|κj,k|2eiω′j(t−t′)n(ω′j, T ),

〈R̃(t)R̃†(t′)〉R =
∑

j

|κj,k|2e−iω′j(t−t′)[n(ω′j, T ) + 1], (4.15)

with n(ω′j, T ) = TrR(ρ̃Rb
†
jbj) = e

−h̄ω′j/kBT

1−e
−h̄ω′

j
/kBT

, is the mean photo number for a

oscillator with frequency ωj at temperature T. Here, kB is the Boltzmann’s

constant. We can make a change of variable τ ≡ t − t′, Eq. (4.14) then

becomes

˙̃ρS = −
∑

k

∫ t

0

dτ{[aka
†
kρ̃S(t− τ)− a†kρ̃S(t− τ)ak]e

−iωk(τ)〈R̃†(t)R̃(t− τ)〉R + h.c.

+ [a†kakρ̃S(t− τ)− akρ̃S(t− τ)a†k]e
iωk(τ)〈R̃(t)R̃†(t− τ)〉R + h.c.}. (4.16)

For a large reservoir containing infinite modes, we can also change the sum-

mation in Eq. (4.15) to an integration by introducing the density of state
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g(ω), that is,
∑

j →
∫∞
0

dω′g(ω′). The remaining terms of Eq. (4.15) reads

〈R̃†(t)R̃(t− τ)〉R =

∫ ∞

0

dω′eiω′(τ)g(ω′)|κ(ω′)|2n(ω′, T ),

〈R̃(t)R̃†(t− τ)〉R =

∫ ∞

0

dω′e−iω′(τ)g(ω′)|κ(ω′)|2[n(ω′, T ) + 1]. (4.17)

From Eq. (4.17), we can easily see that if τ is large enough, the oscillat-

ing exponential would average other ”slow-varying” functions, g(ω′), κ(ω′),

n(ω′, T ) to zero, which means, comparing to the evolution time of ρ̃S, the

correlations of reservoir survive only within a very short time scale τ . We

can therefore make an approximation to replace ρ̃S(t − τ) by ρ̃S(t). This is

called Markovian approximation, which states that the evolution of ρ̃S(t) de-

pends only on its present state and is independent of its past history. After

making this Markovian approximation, Eq. (4.16) turns out to be the master

equation in Born-Markovian approximation,

˙̃ρS =
∑

k

[α(akρ̃Sa
†
k − a†kakρ̃S) + β(akρ̃Sa

†
k + a†kρ̃Sak − a†kakρ̃S − ρ̃Saka

†
k) + h.c.]

(4.18)

with

α =

∫ t

0

dτ

∫ ∞

0

dωe−i(ω′−ωk)τg(ω′)|κ(ω′)|2,

β =

∫ t

0

dτ

∫ ∞

0

dωe−i(ω′−ωk)τg(ω′)|κ(ω′)|2n(ω′, T ). (4.19)

Since the reservoir correlations, Eq. (4.17), vanish in the limit of large τ , we

45



can therefore extend the τ integration to infinity and obtain

lim
t→∞

∫ t

0

dτe−i(ω′−ωk)τ = πδ(ω′ − ωk) + i
P

ωk − ω′
, (4.20)

where, P is the Cauchy principal value. α and β are then written as

α = πg(ωk)|κ(ωk)|2 + i∆k,

β = πg(ωk)|κ(ωk)|2n(ωk, T ) + i∆′
k, (4.21)

with

∆ =

∫ ∞

0

dω
g(ω′)|κ(ω′)|2

ωk − ω′
,

∆′ =

∫ ∞

0

dω
g(ω′)|κ(ω′)|2

ωk − ω′
n(ω′, T ). (4.22)

By substituting α, β, ∆k, ∆
′
k into Eq. (4.18) and setting Γk = 2πg(ωk)|κ(ωk)|2,

and n(ω′, T ) = n, we obtain the master equation,

˙̃ρS =
∑

k

{−i∆k[a
†
kak, ρ̃S] + Γk(akρ̃Sa

†
k −

1

2
a†kakρ̃S − 1

2
ρ̃Sa

†
kak)

+ Γkn(akρ̃Sa
†
k + a†kρ̃Sak − a†kakρ̃S − ρ̃Saka

†
k)}. (4.23)

Eq. (4.23) is still in the interaction picture, we can transform it back to

Schrödinger picture, and it reads

ρ̇S =
∑

k

{−i(ωk + ∆k)[a
†
kak, ρS] + Γk(akρSa

†
k −

1

2
a†kakρS − 1

2
ρSa

†
kak)

+ Γkn(akρSa
†
k + a†kρSak − a†kakρS − ρSaka

†
k)}. (4.24)

Here, the frequency shift ∆k is the so-called Lamb shift in quantum electro-

dynamics, which is generally very small and can be conventionally neglected.
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Furthermore, we assume that the total system is at temperature T=0, then

the mean photon number n is zero. The final master equation in Born-

Markovian approximation can be written as

ρ̇S =
1

ih̄
[HS, ρS] +

∑

k

Γk(akρSa
†
k −

1

2
a†kakρS − 1

2
ρSa

†
kak). (4.25)

Eq. (4.25) is the Lindblad form master equation with Lindblad operator ak

which governs the field damping of the surface plasmons due to Ohmic losses

and leakages. Γk in Eq. (4.25) is identified as the decay rate of each k mode

into this field-damping dissipation channel.

Our next step is to derive the Lindblad form master equation for the dis-

sipation due to the QD excitons decaying into free space. We can now ignore

the surface plasmons and start out with the Hamiltonian which describes the

interaction between the two dots and vacuum,

HS′ =
∑

i

h̄ωeigi
σei,ei

,

HR′ =
∑

j

h̄$jr
†
jrj,

HS′R′ =
∑
i,j

h̄(η∗i,jσ−i
r†j + ηi,jσ+i

rj). (4.26)

where σei,ei
= |ei〉〈ei|, ωeigi

denotes the energy spacing for i-th QD with

i running from 1 to 2. In the Hamiltonian, HR′ describes the vacuum as

harmonic oscillators with frequencies $j for each j mode. And HS′R′ is the

interaction between the two dots and the vacuum, σ+i(−i) = |ei〉〈gi|(|gi〉〈ei|),

and ηi,j is the coupling constant.
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The master equation for the reduced density matrix for the dots can now

be easily obtained since the calculation is exactly similar to how we derived

Eq. (4.25). Thus, we could have it only by replacing ak and a†k by σ−i
and

σ+i
respectively

ρ̇S′ =
1

ih̄
[HS′ , ρS′ ] +

∑
i

γi(σ−i
ρS′σ+i

− 1

2
σ+i

σ−i
ρS′ − 1

2
ρS′σ+i

σ−i
), (4.27)

where γi is exactly the decay rate γ0 for the dot excitons into free space,

which can be exactly evaluated as γi = γ0 = 1
4πε0

4ω3
eigi

℘2
i

3h̄c3
with ℘i = e〈gi|q̂|ei〉

denoting the dipole moment of the i-th dot.

Eq. (4.27) is the Lindblad form master equation for the reduced density

matrix of the two QDs. It describes the dissipation of spontaneous emission

into free space resulting from the coupling to vacuum.

Now, we would like to move back to our model Hamiltonian: H = HS +

HS′ + HSS′ + HR + HR′ + HSR + HS′R′ , which describes the two QDs couple

to multi-mode surface plasmons (see Fig. 4.1), and the two dissipations

discussed before. It can be written as a combination of Eqs. (4.12) and
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(4.26) plus the do-surface plasmons interaction HSS′ , which is

HS =
∑

k

h̄ωka
†
kak,

HS′ =
∑

i

h̄ωeigi
σei,ei

,

HR =
∑

j

h̄ω′jb
†
jbj,

HR′ =
∑

j

h̄$jr
†
jrj,

HSR =
∑

k,j

h̄(κ∗j,kakb
†
j + κj,ka

†
kbj),

HS′R′ =
∑
i,j

h̄(η∗i,jσ−i
r†j + ηi,jσ+i

rj),

HSS′ =
∑

k

h̄[(g1,kσe1,g1ak + g2,kσe2,g2e
ikdak) + h.c.], (4.28)

where g1(2),k is the coupling strength between surface plasmon modes and the

first (second) QD, and d is the inter-dot distance. The equation of motion

for this total system can be written as

ρ̇ =
1

ih̄
[H, ρ], (4.29)

we can exactly expand the H and rewrite Eq. (4.29) as

ρ̇ =
1

ih̄
{[HS + HR + HSR, ρ] + [HS′ + HR′ + HS′R′ , ρ] + [HSS′ , ρ]}, (4.30)

from Eq. (4.30), we identify that the first commutator corresponds to our

discussions for deriving Eq. (4.25), and the second commutator corresponds

to Eq. (4.27). After tracing out the reservoirs R and R′, the remaining terms

in the commutator is HS + HS′ + HSS′ , and the equation of motion for the
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reduced density matrix of a composite system χ = S ⊕ S′ can be easily

obtained :

ρ̇χ =
1

ih̄
[Hχ, ρχ]

+
∑

k

Γk(akρχa†k −
1

2
a†kakρχ − 1

2
ρχa†kak)

+
∑
i=1,2

γi(σ−i
ρχσ+i

− 1

2
σ+i

σ−i
ρχ − 1

2
ρχσ+i

σ−i
), (4.31)

where ρχ = TrR,R′ρ, and Hχ = HS + HS′ + HSS′ .

Eq. (4.31) contains the two QDs, the surface plasmon modes, the inter-

actions between them, and two kinds of dissipations such as field damping

and spontaneous emission into free space. It is exactly the Lindblad form

master equation we need to calculate the reduced density matrix of the two

dots and to investigate the entanglement generation and its dynamics in the

next section by tracing out the surface plasmon modes (system S′).

4.3 Evolution of entanglement

In this section, we will use the Lindblad form master equation approach to

calculate the dynamics of reduced density matrix for some systems. We first

start out with a simplified model to see how the two kinds of dissipations (field

damping and spontaneous emission into free space) damp the populations of

the two dot states and the surface plasmon states.
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Consider the two QDs couple to only one surface plasmon mode k which

is incident from the left end of the first small wire. The schematic diagram

is the same as Fig. 4.1. The total system now is S ⊕ S′, and the master

equation can be written as

ρ̇ =
1

ih̄
[H, ρ]

+ Γk(akρa†k −
1

2
a†kakρ− 1

2
ρa†kak)

+
∑
i=1,2

γi(σ−i
ρσ+i

− 1

2
σ+i

σ−i
ρ− 1

2
ρσ+i

σ−i
), (4.32)

where H = HS + HS′ + HSS′ with

HS = h̄ωka
†
kak,

HS′ =
∑

i

h̄ωeigi
σei,ei

,

HSS′ = h̄[(g1,kσe1,g1ak + g2,kσe2,g2e
ikdak) + h.c.]. (4.33)

Here, all operators and parameters are identical to those we used in previous

section. Since there is only one excitation in the system, we expand the

density operator of the total system S⊕ S′ with the basis:

{|g1, g2, 1k〉, |g1, e2, 0〉, |e1, g2, 0〉, |g1, g2, 0〉}.
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For convenience we label the basis kets as

|k〉 → |g1, g2, 1k〉,

|2〉 → |g1, e2, 0〉,

|1〉 → |e1, g2, 0〉,

|0〉 → |g1, g2, 0〉. (4.34)

|e1, g2, 0〉(|g1, e2, 0〉) denotes the first (second) QD is in the excited state, and

the other one is in the ground state; |g1, g2, 1k〉 denotes the two dots are both

in ground state, and the excitation is in the surface plasmon mode k. Since

we take the dissipations into account, we have to include the vacuum state

|0〉 = |g1, g2, 0〉 in our basis. Thus, the matrix representation of the density

operator of the total system reads

∑

n,m=k,2,1,0

|n〉〈n|ρ̇|m〉〈m|

=
1

ih̄

∑

n,m=k,2,1,0

|n〉〈n|[H, ρ]|m〉〈m|

+Γk

∑

n,m=k,2,1,0

|n〉〈n|(akρa†k −
1

2
a†kakρ− 1

2
ρa†kak)|m〉〈m|

+
∑
i=1,2

γi

∑

n,m=k,2,1,0

|n〉〈n|(σ−i
ρσ+i

− 1

2
σ+i

σ−i
ρ− 1

2
ρσ+i

σ−i
)|m〉〈m|.

(4.35)

52



Eq. (4.35) can be simplified as

(ρ̇)nm =
1

ih̄
(Hρ− ρH)n,m

+ Γk(akρa†k −
1

2
a†kakρ− 1

2
ρa†kak)nm

+
∑
i=1,2

γi(σ−i
ρσ+i

− 1

2
σ+i

σ−i
ρ− 1

2
ρσ+i

σ−i
)nm. (4.36)

Now we can calculate all elements of the matrices on both sides of Eq. (4.36).

These matrices can be flatted and rearranged as



ρ̇kk(t)

ρ̇k2(t)

...

...

ρ̇01(t)

ρ̇00(t)




16×1

=

(
A

)

16×16




ρkk(t)

ρk2(t)

...

...

ρ01(t)

ρ00(t)




16×1

.

Thus, the entire problem turns out to be a system of coupled differential

equations. All we need is to diagonalize the intermediate matrix A, and

obtain its eigenvalues and eigenvectors to do the linear transformation. In

this way, we can decouple the coupled differential equations and obtain the

solutions ρnm(t)(n, m = k, 2, 1, 0) with given initial conditions. In the den-

sity matrix of the total system S ⊕ S′, the diagonal elements ρnn(t) are the

probabilities in |n〉 and the off-diagonal elements ρnm(t)(n 6= m) are the co-

herences between |n〉 and |m〉. Now we set the two dots are both initially in
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Figure 4.2: Population dynamics without dissipations for each diagonal ele-

ment.
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Figure 4.3: Population dynamics with dissipations (Γk = γ1 = γ2 = γ0) for

each diagonal element.
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the ground state with identical two-level spacing which is resonant with the

surface plasmon mode k incident from the left end of the first wire, and the

two dissipations have the same decay rate (i.e. Γk = γ1 = γ2 = γ0). In last

chapter, we set the Purcell factor P = 20, for which the coupling strength

between QDs and surface plasmons is about 3γ0. We further assume that

the couplings of the two dots to the surface plasmon mode k are the same.

If we first ignore the dissipations (Fig. 4.2), it is similar to that of two iden-

tical dots are placed inside a high Q cavity with single mode. Therefore, the

populations are independent of inter-dot distance d and reveal the feature of

Rabi Oscillations in cavity Q.E.D: going back and forth between the surface

plasmon mode k and the two dots [38]. With dissipations, the populations

are damped by the two channels individually as shown in Fig. 4.3 (a), (b),

(c). Since we assume that the coupling constant g is the same for two dots

(i.e. g1 = g2 = g), panels (b) and (c) of Fig. 4.2 and 4.3 demonstrate that

the two dots ’see’ the same surface plasmon mode k . Note that in plotting

the figure, the unit of time t is normalized to the inverse of free-space decay

rate γ0.

One might argue that it is not sufficient to consider only a single-mode

since the QDs are coupled to infinite propagating modes. However, from our

discussions in Chapter 2, we realize that the energy spacing of QDs can be

tuned such that only the lowest n-mode is effective. In addition, the lengths
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of the wires considered here are finite. This means the dispersion relations

of the surface plasmons are discrete. Therefore, if the QD exciton energy

happens to be close to one of the discrete points of the dispersion relations,

it is plausible to assume a single-mode model. The difference to the original

cavity QED case is that the photon is assumed to be injected from one side

of the wire. Thus, one should also take into account the mode −k to denote

the reflecting surface plasmon from the other side.

Let us now consider two QDs resonantly coupled to the surface plasmon

mode k and its reflecting mode −k. The Hamiltonian H can be written as

H = HS + HS′ + HSS′

HS =
∑

k̃=k,−k

h̄ωk̃a
†
k̃
ak̃,

HS′ =
∑

i

h̄ωeigi
σei,ei

,

HSS′ =
∑

k̃=k,−k

h̄[(g1,k̃σe1,g1ak̃ + g2,k̃σe2,g2e
ik̃dak̃) + h.c.], (4.37)

and the corresponding Lindblad form master equation reads,

ρ̇ =
1

ih̄
[H, ρ]

+
∑

k̃=k,−k

Γk̃(ak̃ρa†
k̃
− 1

2
a†

k̃
ak̃ρ−

1

2
ρa†

k̃
ak̃)

+
∑
i=1,2

γi(σ−i
ρσ+i

− 1

2
σ+i

σ−i
ρ− 1

2
ρσ+i

σ−i
). (4.38)

The physical picture is similar to our discussions in Chapter 3: the surface

plasmon with wavevector k, is injected from the left end of the first wire. It
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would be either scattered or absorbed by the two QDs with certain possibil-

ities. If the surface plasmon is trapped between the two dots, it is possible

to create the entanglement between this two QDs. We now use the basis

|k−〉 → |g1, g2, 1−k〉,

|k+〉 → |g1, g2, 1k〉,

|2〉 → |g1, e2, 0〉,

|1〉 → |e1, g2, 0〉,

|0〉 → |g1, g2, 0〉. (4.39)

as a complete set to expand Eq. (4.38), and assuming that, at the initial time

t = 0, only the state |g1, g2, 1k〉 is populated. With these, the population

dynamics for each basis state can then be calculated.

In Figs. 4.4, 4.5 and 4.6, we show the population dynamics for three

different inter-dot distance kd = π
2
, π

4
and 2π (or π), respectively. Notes that

not only the coupling strengths are the same (g1 = g2 = g), but also the

decay rates for dissipations are assumed to be identical. A very interesting

point in Fig. 4.4 (a) is that the excitation never goes to the |g1, g2, 1−k〉 state.

Now we can go further to study the entanglement dynamics of the two

dots by introducing the ”concurrence” [48] as a criterion to quantify the

entanglement. For a general state ρ of two qubits, the spin-flipped state is
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Figure 4.4: Population dynamics with dissipations (Γ−k = Γk = γ1 = γ2 =

γ0) for kd = π
2

for each diagonal element.
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Figure 4.5: Population dynamics with dissipations ((Γ−k = Γk = γ1 = γ2 =

γ0)) for kd = π
4

for each diagonal element.
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Figure 4.6: Population dynamics with dissipations (Γ−k = Γk = γ1 = γ2 =

γ0) for kd = 2π (or π) for each diagonal element.
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written as

ρ′ = (σy ⊗ σy)ρ
∗(σy ⊗ σy). (4.40)

The concurrence is a positive value between 1 and 0, defined as

C(ρ) = max{0,
√

λ1 −
√

λ2 −
√

λ3 −
√

λ4}, (4.41)

where σy is the y component of Pauli matrices, and {λ1, λ2, λ3, λ4} are eigen-

values of ρρ′ in decreasing order. If all eigenvalues of ρρ′ are all negative,

then the concurrence is zero, which means the state is not entangled at all.

For maximally entangled state, the concurrence is unity.

We can therefore use this criterion to quantify the entanglement. First

of all, we need to have two qubits, which means we have to trace out the

surface plasmons (the system S’):

TrS′ρ = 〈1k|ρ|1k〉+ 〈1−k|ρ|1−k〉 = ρS.

Substituting this ρS into Eqs. (4.40) and (4.41), we calculate the concurrence

for kd = (2n+1)π
2

(n = 0, 1, 2...), (4n+1)π
4

(n = 0, 1, 2...), even multiple of π and

odd multiple of π for the cases without (with) dissipations shown in Fig. 4.7

(4.8). As see in Fig. 4.7 (a), for kd = (2n+1)π
2

(n = 0, 1, 2...), we have

a periodically maximal entanglement, which is different from our results in

Chapter 3. This is because, in Chapter 3, we studied the stationary state

which is an average of many measurements. We assume that once there is
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Figure 4.7: The concurrence dynamics without dissipations for kd = (a)

(2n+1)π
2

(n = 0, 1, 2...) (b) (4n+1)π
4

(n = 0, 1, 2...) (c) even multiple of π and

(d) odd multiple of π.
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Figure 4.8: The concurrence dynamics with dissipations (Γ−k = Γk = γ1 =

γ2 = γ0) for kd = (a) (2n+1)π
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(n = 0, 1, 2...) (b) (4n+1)π
4
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even multiple of π and (d) odd multiple of π.
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no detection of any outgoing surface plasmons at the two ends of wire, the

total state would be projected into the state of two qubits. Here, however, we

include also the probabilities of surface plasmons by using the density matrix

ρ. Therefore, for the cases of kd = even multiple of π and odd multiple of

π, no maximal entanglement can be created. In addition, since we only take

into account two modes here (k and −k), some differences are expected if we

include more modes. One also notes, in Fig. 4.8, the concurrences decay with

time due to dissipations. If one can further reduce the dissipations,higher

entanglement can be achieved between the two dots.

In real experiment [15], the samples are prepared by spinning QDs onto a

glass substrate with a PMMA layer coverage above. Then, dry silver wires are

deposited on top of it. The coupling strength between the QDs and surface

plasmons would not be identical for each dot. Therefore, it is desirable to

investigate how the concurrence changes with different coupling strengths,

i.e. varying g1,k̃ and g2,k̃ in Eq. (4.37). For simplification, we turn off the

dissipations and show the concurrences for different coupling strength ratio

of the first dot to the second one (Fig. 4.9).

A surprising result is that if g1/g2 is a ratio between two odd integers,

the concurrence for kd = (2n+1)π
2

(n = 0, 1, 2...) becomes unity at some points

in time. To prove this, we first use Laplace transformation to analytically

solve Eq. (4.38). After tracing out the system S′ and obtain the state of the
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Figure 4.9: The concurrence dynamics for kd = (2n+1)π
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5

and (d) 3
5
.

66



two-dot excitons (qubits), we can derive an analytical form of the condition

for C(ρ) = 1:

e
−i
√

2(
g1
g2

+1)t
(−1 + e2i

√
2t)(−1 + e

2i
√

2
g1
g2

t
) = ±4.

This equation can be further simplified as

Sin(
√

2
g1

g2

t)Sin(
√

2t) = ±1.

One immediately finds that for the requirement of Sin(
√

2t) = ±1, the con-

ditions are

t =
2ξ + 1

2
√

2
π (ξ = 0, 1, 2, 3...).

With the second requirement for Sin(
√

2g1

g2
t) = ±1, one obtains the ratio

must satisfy:

g1

g2

=
2η + 1

2ξ + 1
(ξ, η = 0, 1, 2, 3...), (4.42)

to achieve maximum entanglement at some points in time (t = 2ξ+1

2
√

2
π).

Instead of setting the initial state is in |g1, g2, 1k〉, here, we would like to

study two special cases for different initial state. First, we consider that if

the state is prepared in a pure state of the two QDs initially:

ρ(0) = |ψ(0)〉〈ψ(0)| = 1√
2
(|e1, g2, 0〉+ |g1, e2, 0〉) 1√

2
(〈e1, g2, 0|+ 〈g1, e2, 0|).

We find that, for kd =odd multiple of π, the state will stay in this triplet state

without evolving with time, and the concurrence is always unity as shown
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in Fig. 4.10 (a). This is because the triplet state is a eigenstate of the total

Hamiltonian [eq. (4.37)] with eigenvalue h̄ωeg. So, it is straightforward that

an eigenstate will not evolve. But this only holds for two QDs with the same

energy spacing h̄ωeg. Similarly, if the initial state is prepared in the singlet

state ρ(0) = |ψ(0)〉〈ψ(0)| = 1√
2
(|e1, g2, 0〉−|g1, e2, 0〉) 1√

2
(〈e1, g2, 0|−〈g1, e2, 0|),

for kd =even multiple of π, the state will not evolve as well with the same

reason, and the concurrence is also always unity as shown in Fig. 4.10

(b). Second, if the initial state is prepared in the mixed state ρ(0) =

1
2
(|e1, g2, 0〉〈e1, g2, 0| + |g1, e2, 0〉〈g1, e2, 0|). As shown in Fig. 4.11, the con-

currences for different kd are calculated. Surprisingly, for kd = (2n + 1)π
2

(n = 0, 1, 2...), the concurrence is always zero. The condition for this is

written as

cos2(
1 + eikd

ei kd
2

)− cos h2(
1 + eikd

ei kd
2

) = 0.

One can easily simplify it and obtain

1 + eikd

ei kd
2

= ± i
eikd − 1

ei kd
2

.

With this, one identifies that when kd = (2n + 1)π
2

(n = 0, 1, 2...), the

concurrence always vanishes as seen in Fig. 4.11(a).
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Figure 4.10: The concurrence dynamics for (a) kd=odd multiple of π with

|ψ(0)〉 being the triplet state and (b) kd=even multiple of π with |ψ(0)〉 being

the singlet state.
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Figure 4.11: The concurrence dynamics without dissipations. The initial

state is in the mixed state for kd = (a) (2n+1)π
2

(n = 0, 1, 2...) (b) multiple of

π (c) (4n+1)π
4

(n = 0, 1, 2...) and (d) (3n+1)π
3

(n = 0, 1, 2...).
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4.4 Conclusion

In this chapter, we keep the main configuration in chapter 3, but alter-

nate the mediator from the infinite long wire to two small wires which are

evanescently coupled to the same dielectric waveguide. In this way, one could

not only minimize the Ohmic losses resulting from propagating through the

metal wire, but also achieve the remote entanglement between the two QDs.

In section 4.1, we introduce the open quantum theory to show how a pure

composite density matrix of two systems goes to a mixed reduced density

matrix in the presence of interactions between two systems. In the second

section, we derive the Lindblad form master equation, which is the main

approach we used to study the time dependent behaviors of the system. In

the last section of this chapter, we first consider the two QDs coupled to

only one resonant surface plasmon mode and apply the master equation to

calculate the population dynamics for each basis state. We show that it

is legitimate to only take one surface plasmon mode into account because

one can tune the energy spacing of the QDs close to the discrete points in

the dispersion relations of surface plasmons. We therefore take one surface

plasmon mode k which is resonant with the dots plus its reflected mode −k

to investigate the entanglement dynamics without dissipations. We find that

if the inter-dot distance kd = π
2
, maximal entanglement can be achieved
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at some points in time when g1/g2 equals the ratios of odd integers. We

then study two special cases for the initial state prepared in pure and mixed

state. It is found that for pure state, the triplet and singlet states don’t

evolve with time and the maximal entanglement is hold for kd=odd multiple

of π and even multiple of π individually. For mixed state, we prove that the

concurrence is alwasy zero when kd = (2n+1)π
2

(n = 0, 1, 2...).

72



Chapter 5

Summary and outlooks

In this thesis, we make use of the physical properties of surface plasmons

to study a series of problems essentially based on the strong interactions

between QDs and surface plasmons. In the first chapter, we introduce some

backgrounds of the surface plasmons and the motivations. In the second

chapter, we apply the Fermi’s golden rule to calculate the decay rate of a QD

exciton into the surface plasmon modes. We find that the decay rate is greatly

enhanced due to the strong coupling between surface plasmon and the QD.

The unreasonable infinite enhancement tells us that it is not legitimate to

use Markovian treatment around the band-edge . We thereby deal with the

problem with a non-Markovian way, and obtain the oscillatory behaviors of

decay dynamics. In the third chapter, we consider a surface plasmon incident

from the left end of a long wire to study the scattering resulting from the
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interactions with two QDs. We find that if there is no out-going surface

plasmon detected, the entire state collapses into the entangled state of the

two QDs. We also obtain two conditions for achieving maximal entanglement.

In the latter part of chapter 3, we propose a way to store the entangled

state and a experimental procedure to verify that if the entangled state has

been prepared or not. In the last chapter, we keep the main configuration

in chapter 3, but use two small wires to replace the original infinite long

one to minimize the ohmic losses during propagation. In stead of applying

the ”projection” concept we used in chapter 3, we use the density matrix

approach to obtain the population dynamics of each basis state and introduce

the Lindblad form master equation to include the dissipations. After tracing

out the surface plasmon modes, we obtain the reduced density matrix of

the two QDs, which is used to calculate the concurrence dynamics. We find

that when the inter-dot distance kd = (2n+1)π
2

(n=0,1,2,3...), the maximal

entanglement can be achieved. We also investigate that when the ratio of

coupling strength of the two QDs equals a ration of two odd integers, the

concurrences recover to unity at some points in time for kd = π
2
. In addition,

for a triplet (singlet) initial state, the concurrence is always unity for kd =

odd (even) multiple of π. For an initially mixed state, we prove that under

the condition of kd = (2n+1)π
2

, the concurrence always vanishes. With the

advantage of the strong coupling between QDs and surface plasmons, we
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Figure 5.1: The schematic diagram for a one-dimensional array to simulate

Bose-Hubbard model.

propose a future work on the simulation of quantum phase transition [27, 28].

Consider a one-dimensional array, each site in this array contains a QD which

is put close to a small metal wire (See Fig. 5.1) and is thus coupled to the

surface plasmons with coupling strength g. Each site is also coupled to one

another with coupling strength J . So, once the surface-plasmonic polariton

is created, it can transport back and forth from one site to the next. The

Hamiltonian of each cell can be described by a atom-field Hamiltonian plus

one hopping term as [27, 49]

H =
∑

i

Haf
i −

∑
i,j

Ji,ja
†
ki

akj
−

∑
i

µiNi, (5.1)

with

Haf =
∑

k

h̄ωka
†
kak + h̄ωegσee +

∑

k

h̄gk(σ+ak + σ−a†k). (5.2)
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Where, Haf denotes the atom-field Hamiltonian with gk denotes the coupling

strength between QD and surface plasmon. The second term in Eq. (5.1)

is the hopping term with Jij = J denotes the coupling strength for nearest

neighbors and J = 0 otherwise. a†ki
(aki

) is the creation (annihilation) opera-

tor for k−mode surface plasmon at site i, σee = |e〉〈e| with ωeg is the energy

spacing of each dot. ωk is the frequency of k−mode surface plasmon, and

σ+(−) = |e〉〈g| (|g〉〈e|) denotes the atomic creation (annihination) operators;

Ni is the total number of photonic and atomic excitations, and µi is the

chemical potential at site i in the grand canonical ensemble.

In this way, we can regard this system as an analogy [27, 28] to a conven-

tional one-dimensional lattice in condensed matter physics and investigate

the Mott insulator-to-superfluid phase transition in our system.
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Fedutik, V. V. Temnov, O. Schöps, U. Woggon, and M. V. Artemyev,

Phys. Rev. Lett. 99, 136802 (2007).

[16] D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, Nature

Physics 3, 807 (2007).

[17] C. H. Bennett and D. P. DiVincenzo, Nature 404, 247 (2000).

78



[18] T. Pellizzari, S. A. Gardiner, J. I. Cirac, and P. Zoller, Phys. Rev. Lett.

75, 3788 (1995); J. I. Cirac and P. Zoller, Phys. Rev. Lett. 74, 4091

(1995); K. Molmer and A. Sorensen, Phys. Rev. Lett. 82, 1835 (1999).

[19] A.T. Costa, Jr. and S. Bose, Phys. Rev. Lett. 87, 277901 (2001); W.D.

Oliver, F. Yamaguchi, and Y. Yamamoto, Phys. Rev. Lett. 88, 037901

(2002); O. Gywat, G. Burkard, and D. Loss, Phys. Rev. B 65, 205329

(2002).

[20] A. J. Berkley, H. Xu, R. C. Ramos, M. A. Gubrud, F. W. Strauch, P.

R. Johnson, J. R. Anderson, A. J. Dragt, C. J. Lobb, F. C. Wellstood,

Science 300, 1548 (2003); M. Steffen, M. Ansmann, R. C. Bialczak, N.

Katz, E. Lucero, R. McDermott, M. Neeley, E. M. Weig, A. N. Cleland,

J. M. Martinis, Science 313, 1423 (2006); A. O. Niskanen, K. Harrabi, F.

Yoshihara, Y. Nakamura, S. Lloyd, J. S. Tsai, Science 316, 723 (2007).

[21] J. Majer, J. M. Chow, J. M. Gambetta, Jens Koch, B. R. Johnson, J.

A. Schreier, L. Frunzio, D. I. Schuster, A. A. Houck, A. Wallraff, A.

Blais, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, Nature 449,

443 (2007).

[22] A. L. Pyayt, B. Wiley, Y. Xia, A. Chen, and L. Dalton, Nature Nan-

otechnology 3, 660 (2008).

79



[23] B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. J. Vahala, H. J.

Kimble, Science 319, 1062 (2008).

[24] P. Zijlstra, J. W. M Chon, and M. Gu, Nature 459, 410 (2009).

[25] R. Kolesov, B. Grotz, G. Balasubramanian, R. J. Stohr, A. A. L. Nicolet,

P. R. Hemmer, F. Jelezko, and J. Wrachtrup, Nature Physics 4, 470

(2009).

[26] A. Falk, F. H. L. Koppens, C. L. Yu, K. Kang, N. de Leon Snapp, A.

V. Akimov, M.-H. Jo, M. D. Lukin and H. Park, Nature Physics 5, 475

(2009).

[27] A. D. Greentree, C. Tahan, J. H. Cole, and L. C. Hollenberg, Nature

Physics 2, 856 (2006).

[28] L. Buluta and F. Nori, Sciense 326, 108 (2009).

[29] I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and

S. P. DenBaars, Phys. Rev. B 60, 11564 (1999).

[30] G. Schlegel, J. Bohnenberger, I. Potapova, and A. Mews, Phys. Rev.

Lett. 88, 137401 (2002).

80



[31] C. T. Yuan, W. C. Chou, Y. N. Chen, J. W. Chou, D. S. Chuu, C. A.

Lin, J. K. Li, W. H. Chang, and J. L. Shen, J. Phys. Chem. C, 111 (42),

15166 (2007).

[32] J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941).

[33] C. A.Pfeiffer, E. N. Economou and K. L. Ngai, Phys. Rev. B 10, 3038

(1974).

[34] P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972); R.

Paiella, Appl. Phys. Lett. 87, 111104 (2005).

[35] B. H. Hong, S. C. Bae, C. W. Lee, S. Jeong, and K. S. Kim, Science

294, 348-351 (2001).

[36] From the numerical results, the imaginary parts of ω for the bound

modes are actually very small (10−4 ∼ 10−5 of the real parts).

[37] H. T. Dung, L. Knoll, D. G. Welsch, Phys. Rev. A 62, 053804 (2000). A.

A. Asatryan et al, Phys. Rev. E 63, 046612 (2001). V. Yannopapas and

N. V. Vitanov, Phys. Rev. B 75, 115124 (2007); V. Yannopapas and N.

V. Vitanov, J. Phys.: Condens. Matter 19, 096210 (2007).

[38] Y. Yamamoto and A. İmamoḡlu, Mesoscopic Quantum Optics (Wiley,

New York, 1999); M. O. Scully and M. S. Zubairy, Quantum Optics

(Cambridge University Press, Cambridge, 1997).

81



[39] J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, Rep.

Prog. Phys. 70, 1-87 (2007).

[40] V. Yannopapas, J. Opt. B 6, 283 (2004).

[41] J. Piilo, S. Maniscalco, K. Harkonen, and K.A. Suominen, Phy. Rev.

Lett. 100, 180402 (2008); S. Maniscalco, S. Olivares, and M. G. A.

Paris, Phy. Rev. A 75, 062119 (2007).

[42] S. John and T. Quang, Phys. Rev. A 50, 1764 (1994); S. Y. Zhu, Y.

Yang, H. Chen, H. Zheng, and M. S. Zubairy, Phys. Rev. Lett. 84, 2136

(2000); P. Lambropoulos et al, Rep. Prog. Phys. 63, 455 (2000); D. G.

Angelakis, P. L. Knight, and E. Paspalakis, Contemp. Phys. 45, 303

(2004).

[43] D. P. Fussell and M. M. Dignam, Phys. Rev. A 76, 053801 (2007).

[44] Y. N. Chen, D. S. Chuu, and T. Brandes, Phys. Rev. Lett. 90, 166802

(2003).

[45] J.-T. Shen and S. Fan, Phys. Rev. Lett. 95, 213001 (2005); J.-T. Shen

and S. Fan, Opt. Lett. 30, 2001 (2005).

[46] L. Aolita, F. de Melo, and L. Davidovich, private communication.

82



[47] H. Carmichael, An Open System Approach to Quantum Optics

(Springer-Verlag, Berlin , 1993); C. Cohen-Tannoudji, J. Dupont-Roc,

and G. Grynberg, Atoms-Photon Interactions : Basic Processes and Ap-

plications (Wiley, New-York, 1992); G. Lindblad, Comm. Math. Phys.

48, 119V130 (1976).

[48] W. K. Wootters, Phys. Rev. Lett. 80, 2245 (1998).

[49] L. Zhou, Z. R. Gong, Y. Liu, C. P. Sun, and F. Nori, Phys. Rev. Lett.

101, 100501 (2008).

83



 84

Publication list : 
 
1. “Aharonov-Bohm Effect in Concentric Quantum Double Rings”, 
Guang-Yin Chen, Yueh-Nan Chen, and Der-San Chuu, Solid State 
Communications 143, 515 (2007).  
 
2. “Proposal for detection of non-Markovian decay via current noise”, 
Yueh-Nan Chen and Guang-Yin Chen, Phys. Rev. B 77, 035312 (2008). 
 
3. “Spontaneous emission of quantum dot excitons into surface plasmons 
in a nanowire” , Guang-Yin Chen, Yueh-Nan Chen, Der-San Chuu, Opt. 
Lett. 33, 2212 (2008) 
 
4. “Quantum-dot exciton dynamics with a surface plasmon: Band-edge 
quantum optics”, Y. N. Chen, G. Y. Chen*, D. S. Chuu, and T. Brandes, 
Phys. Rev. A 79, 033815 (2009). 
 
5. “Detecting non-Markovian plasmonic band gaps in quantum dots using 
electron transport”, Yueh-Nan Chen, Guang-Yin Chen, Ying-Yen Liao, 
Neil Lambert and Franco Nori, Phys. Rev. B 79, 245312 (2009).  
 
6. “Coherent single surface-plasmon transport in a nanowire coupled to 
double quantum dots”, G. Y. Chen, Y. N. Chen, F. Mintert, N. Lambert, 
D. S. Chuu, and A. Buchleitner, in preparation.  
 


	博論封面.pdf
	摘要及目錄.pdf
	thesis.pdf
	Publication list.pdf

