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中文摘要 

 

在細菌生命週期中，具有足量的鐵離子是維持新陳代謝和生長必需的，因

此多數細菌演化出同時擁有數個螯鐵系統。然而，過多鐵離子卻會造成氧化自由

基形成，這對細菌本身將會造成致命的傷害，是故微生物體內的螯鐵系統都需要

受到緊密的調控。在革蘭氏陰性菌中，許多參與螯鐵系統基因轉錄過程都受到

Fur 蛋白質的抑制。此外,除了調控鐵離子濃度在細菌體內外的平衡，當細菌遭

受到酸性或過氧化環境壓力 Fur 蛋白質也參與啟動保護機制。克雷白氏肺炎桿

菌 CG43 是一具有毒性的臨床分離株，被 K2 血清型莢膜所包覆。為了瞭解 Fur

在克雷白氏肺炎桿菌 CG43 中扮演的角色，我們建構了 fur 基因缺損株，此基因

缺損明顯影響細菌生長。有趣的是，fur 突變株菌落相較於野生株顯得比較黏稠，

透過莢膜多醣定量顯示 fur 突變株莢膜明顯增量；進一步分析啟動子活性，我們

發現莢膜多醣合成基因組 orf3-15 表現量因 fur 基因缺損而增加；而 fur 突變株對

小白老鼠的半致死劑量較野生株減少，顯示 Fur 蛋白質可能參與調控細菌的毒性。

另外，我們也發現 fur 缺損使克雷白氏肺炎桿菌 CG43 對於酸性(pH 3)和過氧化

(H2O2 treatment)的環境壓力變得較為敏感。最後，fur 的缺損還會提高 iro、iuc

基因組(攝取三價鐵相關)以及 feo 基因組(攝取二價鐵相關)的啟動子活性，顯示

Fur 蛋白質在調控克雷白氏肺炎桿菌體內鐵離子平衡上扮演重要的角色。 
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Abstract 

Bacteria have evolved several acquisition systems for sufficient quantities of 

iron to support their metabolism and growth. Iron overloading would lead to the 

formation of hydroxyl radicals and hence microorganisms have equipped a tight 

regulatory system for iron uptake. In Gram-negative bacteria, Fur protein represses 

the transcription of many genes that are involved in iron acquisition. In addition to 

control iron homeostasis, Fur also participates in protective responses to acid stress 

and oxidative stress. Herein, we report the construction of fur deletion mutant and 

found that the deletion impaired the growth of Klebsiella pneumoniae CG43S3, a 

highly virulent strain heavily encapsulated with K2 serotype. Interestingly, the 

deletion rendered the bacteria more mucoid phenotype which probably resulted from 

increasing amount of the glucuronic acid content. In addition, an increased activity of 

Pcps-orf3-15 was found. The deletion of fur slight reduced the LD50 using mouse lethality 

assay suggesting an involvement of Fur in virulence regulation. Moreover, fur 

deletion was found to increase the bacterial sensitivity to either acidic or oxidative 

stress. Finally, promoter activity measurement revealed that the fur deletion enhanced 

the activity of iro and iuc, respectively encoding enterobactin and aerobactin 

siderophore uptake systems, and feoABC, coding for ferrous iron uptake system. This 

indicated that Fur plays a major role for the regulation of iron acquisition system in 

the bacteria.   
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Introduction 

Iron is essential for growth  

Iron is essential for the growth of nearly all organisms. It could be a cofactor of 

many enzymes including ribonucleotide reductase, RNA polymerase Ⅲ, various 

amino acid hydroylases and dioxygenases, and the enzymes, such as superoxide 

dismutase, catalase and peroxidase, participate in oxygen metabolism in microbial and 

mammalian cells (83). Iron is also necessary for the activities of cytochromes, 

hydrogenase, ferridoxin and succinate dehydrogenase that are involved in electron 

transfer. In vertebrates, T- and B-lymphocyte activity and natural killer cell function 

are all dependent on iron (11, 12).    

Iron exists as oxidized (Fe3+) and reduced form (Fe2+). Ferric iron has lower 

solubility and ferrous iron participates in Haber-Weiss-Fenton chemistry ( H2O2+Fe2+ 

→Fe3++OH-+OH·) that causes potentially cell damage (81). Hence, higher organisms 

have evolved mechanisms to lower the levels of free iron. In human body, the 

majority of iron is intracellular, either complexed with metalloproteins such as 

haemoglobin (74.3%), myoglobin (3.3%), catalase (0.11%) and cytochrome C 

(0.08%), or stored in the iron-storage protein ferritin (16.4%) and its insoluble 

degradation product haemosiderin (21, 74). In blood, tissues, and tissue fluids, there 

are concentrations of iron sufficient to supply the needs for cellular metabolism. The 
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iron-binding protein including transferrin and lactoferrin take charge of the iron 

transport and recycling. Thus, usable iron in human host is below that required for 

microbial growth. 

Bacteria have evolved several systems for the acquisition of sufficient quantities 

of iron to support their metabolism and growth. These include production of powerful 

iron-binding compounds (siderophores), direct utilization or uptake host iron-binding 

proteins, reduction of the Fe3+ insoluble form to soluble useful form of ferrous iron 

(Fe2+), enzymatic degradation of iron-binding compounds, production of lethal 

compound (exotoxins) that may eliminate competitors for usable iron resources (77). 

For instance, E. coli strains harboring the plasmid ColV-K30 were reported to own 

two independent siderophore systems, enterochelin and aerobactin (82, 80). Neisseria 

meningitidis (24), Haemophilus influenzae (65), Vibrio cholerae (69) and 

Campylobacter jejuni (64) use host iron compounds, heam and heamoglobin. Listeria 

monocytogenes (16), Pseudomonas aeruginosa (17), Bifidobacterium bifidus (7) and 

Streptococcus mutans (28) were reported to reduce ferric iron at cytoplasmic 

membrane and subsequently transport ferrous iron into the cytoplasm.  

To avoid iron overloading that would lead to the formation of hydroxyl radicals, 

microorganisms have tight regulation of iron uptake. In Gram-negative bacteria, iron 

regulation is mediated by the Fur protein, which represses the transcription of many 
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genes that are involved in iron acquisition across a wide range of species (29). Some 

bacteria have also evolved mechanism whereby gene transcription is initiated by the 

availability of iron-loaded siderophores on the cell surface. The best known of these 

systems is the ferric citrate system in E. coli (25). In addition, a global response to 

iron limitation has been observed at the level tRNA modification (36) observed in 

Salmonella typhimurium, K. pneumoniae, P. aeruginosa and N. meningitidis (56, 2). 

Klebsiella pneumoniae  

K. pneumoniae is a gram-negative, nonmotile, encapsulated rod-shaped 

bacterium of the family Enterobacteriaceae. It is an opportunistic pathogen, attacking 

immunocompromised and hospitalized patients suffering severe diseases. K. 

pneumoniae causes community acquired and nosocomial infections, including 

septicemia, pneumonia, urinary tract infection, meningitis, and purulent abscess at 

various sites (84). 

Klebsiella usually have well developed polysaccharide capsules, which make 

their colonies characteristic mucoid. Capsules that form thick bundles of fibrillous 

structures covering the bacterial surface in massive layers is the essential virulence 

factor. This could protect the bacterium from phagocytosis by polymorphonuclear 

granulocytes, and prevents killing by bactericidal serum factors (12). Acording to the 

diverse structures of capsular polysaccharide, K. pneumoniae could be classified into 
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77 serological K antigen types (45). K1 and K2 strains were found to be especially 

virulent assessed with the mouse peritonitis model (58). Beside the capsular 

polysaccharide, lipopolysaccharide, adhesin, iorn-acquisition system, and serum 

resistance factors are also major virulence factors involved in K. pneumoniae 

infections (66). 

Multiple siderophore biosynthesis systems have been reported in K. pneumoniae, 

which include enterobactin, aerobactin and yersiniabactin; respectively encoded by 

iro, iuc and ybt gene clusters (47). We have previously identified two siderophore 

biosynthesis gene clusters, iro and iuc, on the large virulence plasmid pLVPK in K. 

pneumoniae CG43, a highly virulent clinical isolate of K2 serotype (14). Besides the 

ferric iron uptake systems, two ferrous iron uptake systems, feoABC and sitABCD, 

could be identified in the genome of K. pneumoniae MGH78578 

(http://www.ncbi.nlm.nih.gov/sites/entrez). 

Fur  

In 1978, Ernst et al., (26) described a mutation in S..enterica Typhimurium, 

designated fur (ferric uptake regulator), that resulted in constitutive expression of 

several high-affinity iron assimilation systems. Fur, a 17-kDa polypeptide, negatively 

regulates the iron acquisition systems in most gram negative bacteria. (3, 51) In iron 

replete condition, Fe+2-Fur binds to the promoter of iron-regulated genes thereby 



 

5 
 

prevents their expression. Under low iron, Fur is present in the iron-free form, which 

does not bind to the regulated promoters (3). Fur not only controls iron homeostasis 

by regulating the promoters of iron uptake systems directly, but also represses a small 

RNA, RyhB, that in turn negatively regulates the expression of iron-rich enzymes 

such as succinate dehydrogenase, fumarase, and aconitase. This allows the production 

of these enzymes to be activated in response to available iron (55). 

The N-terminal domain of Fur is involved in DNA binding and the C-terminal 

domain in dimerization (72). A consensus sequence has been derived for the Fur 

binding site in E coli, and this is referred to as an iron or Fur box (34). The 

palindromic sequence GATAATGATAATCATTATC has been elucidated for 

different bacteria (62, 85).  

In addition to the role is in the regulation of iron uptake systems, its 

involvement in regulation of acid tolerance response, oxidative stress response, some 

metabolic pathways, and expression of virulence factors has been proposed (27). In 

some of these cases, Fur acted positively rather than negatively in the regulation of 

the expression of certain genes (61, 37, 23). For example, fur deletion resulted in 

decrease of oxidative stress response and increase of DNA damage in E. coli (75). In 

S. enterica Typhimurium, fur mutation rendered an acid-sensitive phenotype (30). In 

H. pylori, Fur is also involved in acid resistance (8). In response to iron, Fur is often 
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but not always involved in autoregulation in many Gram-negative bacteria (19, 1, 53). 

FeoABC 

Feo system was described for the first time in E. coli in 1987 (38). The ferrous 

iron acquisition system has been experimentally identified in seven additional 

microbes including Porphyromonas gingivalis (18), Leptospira biflexa (52), 

Helicobacter pylori (78), Shigella flexneri (68), Salmonella enterica serovar 

Typhimurium (10), Legionella pneumophila (67), and the cyanobacterium 

Synechocystis sp (44.). In Campylobacter jejuni, FeoB-mediated ferrous iron 

acquisition has been found to play an essential role in bacterial virulence (60).  

Feo consists of FeoA, a 75-residue hydrophilic protein probably required to 

sense the concentrations of iron; FeoB, an integral cytoplasmic membrane protein of 

773 amino acids required for ferrous iron acquisition; FeoC (YhgG), a small protein 

(75 amino acid) with unknown function (43, 54). In E. coli, Fur and Fnr binding sites 

were found in feo promoter, and both global regulators have been shown to regulate 

the expression of Feo system (13). 
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Materials and methods 

 

 Bacterial strains, and growth conditions 

The bacterial strains and plasmids used in the present study are described in 

Table 1. K. pneumoniae CG43 is clinical isolated strains from Chang Gung 

Memorial Hospital Linkou branch. E. coli and K. pneumoniae were cultured 

aerobically at 37 ℃ in Luria-Bertani (LB) broth or on LB agar plates supplied 

with appropriate antibiotics. The concentrations of antibiotics added in mediums 

include streptomysin (500 μg/ml), ampicillin (100 μg/ml), chloramphenicol (35 

μg/ml), kanamycin (25 μg/ml), and tetracycline (5 μg/ml). 

 

 Construction of gene-deletion mutants and complement strains 

The fur and feoB deletion strains were made by allelic exchange. 

Approximately 1000 bp sequences flanking both sides of the deleted region were 

cloned into plasmid pKAS46 (49), a suicide vector containing rpsL, which allows 

positive selection with streptomycin for loss of the vector, to generate an in frame 

deletion plasmid. The resulting plasmids were then mobilized to K. pnumoniae 

CG43S3 through conjugation from E. coli S17-1 λpir. The transconjugants, 

carrying with constructed plasmid integrated in the chromosome via homologous 
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recombination, were selected by ampicillin and kanamycin on minimal 

medium.one of colonies was grown in LB at 37 ℃ for overnight and then spread 

onto a LB plate containing 500 μg/ml streptomysin. The streptomysin-resistant 

and kanamycin sensitive colonies were selected and the deletion of gene verified 

by PCR. The primer pairs used for PCR amplification are listed in Table 3.  

To construct the complement strains (Table2), the target gene including the 

promoter and coding sequences was amplified with the specific primers, the PCR 

product cloned to yT&A, and then subcloned to pRK415. 

 

 Quantification of CPS 

CPS was extracted by using the method described (22). Briefly, bacteria 

were collected from 500 μl of culture medium and mixed with 100 μl of 1% 

Zwittergent 3-14 detergent (Sigma-Aldrich, Milwaukee, WI) in 100 mM citric 

acid (pH 2.0). The mixture was incubated at 50℃ for 20 min. After 

centrifugation, 250 μl of the supernatant was transferred to a new tube and CPS 

was precipitated with 1 ml of absolute ethanol. The pellet was then dissolved in 

200 μl distilled water and a 1,200 μl of 12.5 mM borax (Sigma-Aldrich, 

Milwaukee, WI) in H2SO4 was added. The mixture was vigorously vortexed, 

boiled for 5 min, cooled, and then 20 μl 0.15% 3-hydroxydiphenol 
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(Sigma-Aldrich, Milwaukee, WI) was added and the absorbance at 520 nm was 

measured. The uronic acid content was determined from a standard curve of 

glucuronic acid (Sigma-Aldrich, Milwaukee, WI) and expressed as μg per 109 

CFU. 

 

 Survivals under acid stress 

According to the described method with some modification (37),  the 

bacteria were grown overnight in LB and 1/20 of the bacteria refreshed grown for 

3 h. The cultures were then transferred to pH 5.8 or pH 4.4 LB broth (adjusted 

with HCl) for acid adaptation 1 h. Finally, the cultures were subjected to pH 3 

acid stress for 1 h and then plating onto LB agar for viable counts. Data shown 

are from the representative experiment performed triplicately. 

 

 Survival rate of oxidative stress 

As described with some modification (75), the bacteria grown in LB 

medium at 37℃ overnight were diluted in 1/20 and refreshed grown for 3 h, and 

H2O2 from 0 to 30 mM was added. After 20 min of incubation by shaking at 37℃, 

the viable bacteria were determined by plating the cultures onto LB plates.  

 Streptonigrin resistance 
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As the described method (67), the bacteria were grown in LB broth for 16 h 

and 100 μl of the bacteria in 10-fold serial dilution were plated on LB agar 

containing either 0.75, 1.5 or 3 μM streptonigrin. 

 

 β-galactosidase activity assay  

β-galactosidase was assayed according to the method of Miller (57). The 

bacteria in the early or late logarithmic growth phase (optical density at 600 nm 

0.4 or 0.7) were taken 100 μl, and mixed with 900 μl Z buffer (60 mM Na2HPO4, 

40 mM NaH2PO4, 10 mM KCl, 1 mM MgSO4, 50 mM β-mercaptoethanol), 17 μl 

of 0.1% SDS and 35 μl chloroform and incubated for 10 min at 30℃. 

Subsequently, 200 μl of 4 mg/ml ο-nitrophenyl-β-D-galactopyranoside (ONPG) 

was added and the mixture vortexed for 10 s, then incubated at 30℃ until yellow 

color was apparent. Finally, the reaction was stopped by adding 500 μl of stop 

solution (1 M Na2CO3) and the absorbance of the supernatant was measured 

OD420. One unit of β-galactosidase is defined as the hydrolysis of 1 nmol ONPG 

per min per mg protein. 

 

 Mouse lethality assay 

The 4~5-week-old female Balb/c mice were obtained from National 
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Laboratory Animal Center and were acclimatized in an animal house for 1 week. 

The tested bacteria were cultured at 37℃ for 16 h in LB broth. Four mice of a 

group were injected intraperitoneally with bacteria resuspended in 0.2 ml PBS. 

The 50% lethal doses, based on the number of survivors after 10 days, were 

calculated by the method of Reed and Muench (59) and expressed as colony 

forming units (CFU). 
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Results 

 

 Sequence analysis of K. pneumoniae Fur. 

In comparison of the Fur amino acid sequences of K. pneumoniae CG43, 

Escherichia coli K12, and Shigella flexneri 5b (http://www.ncbi.nlm.nih.gov 

/GenBank) as shown in Fig. 1B revealed 94% identityl feature. Analysis of the 

genomic location also revealed a conserved organization with fur gene in the 

middle, upstream with fldA, coding for a putative citrate-proton symporter, and 

Flavodoxin 1 encoding gene citA at the downstream (Fig. 1A). 

 

 Construction of fur deletion muatnt. 

As shown in Fig. 2A, 454 bp of the fur coding sequence was designed to be 

deleted by the allelic exchange method. The PCR products of 1743 bp and 1289 

bp obtained in Fig. 2B using the same primer pair on different templates DNA 

from K. pneumoniae CG43S3 and the selected fur mutant demonstrated the 

deletion. The fur deletion appeared to negatively affect the growth in LB or M9 

broth (Fig. 3A & 3B). Introducing the plasmid pfcpRK, pRK415 carrying fur 

gene, into the mutant was found to compensate the deficiency. 
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 Fur is involved in the regulation of CPS biosynthesis. 

Interestingly, the mutant strain displayed larger and more glistening colony 

morphology than the wild type on LB agar (Fig. 4A). Introduction of pfcpRK into 

the fur mutant restored the phenotype (Fig. 4B). When the bacteria cultures were 

subjected to low-speed centrifugation, the mutant were precipitated much slower 

than its parental strain K. pneumoniae CG43S3 (Fig. 5A). Subsequently, the CPS 

production in CG43S3 and the mutant were quantified by measuring the 

glucuronic acid content, the core component of the K2 CPS. As shown in Fig. 5B, 

the deletion of fur enhanced the CPS synthesis. The transformation of the fur 

mutant with the plasmid pfcpRK decreased the sedimentation rate (Fig. 6A) and 

CPS production (Fig. 6B).  

As shown in Fig. 7A, biosynthesis of K. pneumoniae CG43 K2 CPS has been 

shown to be determined by three major transcripts namely orf 1-2, orf 3-15, and 

orf 16-17 (88). The promoter activity measurement as shown in Fig. 7B, deletion 

of fur had positive effect on the expression of cps clusters orf 3-15 and orf 16-17. 

However, no apparent effects on the promoter activities of RmpA, RmpA2, RcsB, 

and KvgA, the regulators of mucoid phenotype, were noted (Fig. 8). 
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 Effect of fur deletion on the acid sensitivity 

If K. pneumoniae Fur is involved in acid stress response as the Fur reported 

for many other bacteria (37, 39, 70, 73) is also investigated. As shown in Fig. 9, 

fur deletion had negative effect on the bacterial survivals at pH 3 regardless the 

adaptation at pH 5.8 or pH4.4. The introduction of the fur-expression plasmid 

pfcpRK appeared to restore the viability.  

 

 The fur deletion reduced the bacterial survival upon H2O2 treatment 

Hydrogen peroxide causing DNA damage via the Fenton reaction had been 

demonstrated. E. coli Fur has been associated with the bacterial survivals with 

H2O2 treatment (75). To know if Fur provides protection in K. pneumoniae under 

H2O2 treatment, different concentrations of H2O2 were added to the cultures of the 

wild type bacteria, △fur muatnt, △fur [pRK415], and △fur [pfcpRK]. While the 

concentration of H2O2 reached to 20 mM, fur deletion had apparent effect on the 

bacterial survivals. As shown in Fig. 10, an increased sensitivity to H2O2 of the 

mutant was observed and the complementation with pfcpRK was able to restored 

the survivals.  
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 A decreased LD50 of the fur mutant  

In many pathogenic bacteria, deletion of fur causes virulence reduction (46). 

To know whether Fur affects the virulence of K. pneumoniae CG43S3, LD50 of 

the mutant using mouse lethality assay was determined. As shown in Table. 4, 

LD50 of the Fur deletion mutant slightly decreased. 

 

 Fur regulates the expression of the iron acquisition systems, iro, iuc and feo. 

In many bacteria, iron acquisition was regulated in part by the Fur protein 

(15). The effect of fur deletion on the expression of the iron acquisition systems 

including iro, iuc, and feoABC, all carrying a typical Fur box on the putative 

promoters (respectively Fig. 11A, 12A, and 13A), were examined. As shown 

respectively in Fig. 11B, 12B, and 13B, the putative promoter activity of iro, iuc, 

and feo were determined using LacZ as promoter reporter. As shown in Fig. 11C, 

12C, and 13C, the activity of Piro, Piuc or Pfeo apparently enhanced in the fur 

deletion mutant. Although a consensus Fur box could be identified upstream of 

the fur gene (Fig. 14A), the deletion of fur had no effect on the expression of fur 

using the promoter activity measurement (Fig. 14 B and C).  

 

 Sequence analysis of feoABC and construction of feoB deletion mutant 
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In general, Feo system consists of at least two genes, feoA and feoB, which 

encode, respectively, an iron-sensing protein and an iron permease. In some 

organisms, an additional locus, feoC, is present immediately downstream (13). 

Amino acid sequence comparison with E. coli K12 FeoA, FeoB, and FeoC 

revealed identity of respectively 81%, 67%, and 69%.  

To investigate if Feo system plays a major role in ferrous iron uptake in K. 

pneumoniae, feoB deletion mutant was constructed. The entire FeoB coding 

sequence of 2316 bp as shown in Fig. 15A was deleted and the deletion in the 

selected mutant verified by PCR (Fig 15B).  

To investigate the feoB deletion effect, growth of K. pneumoniae CG43S3 

and the feoB deletion mutant were monitored in LB broth and LB broth loaded 

with ferrous iron. As shown in Fig. 16A and B, no obvious difference could be 

observed between the wild type and the feoB mutant in LB or the medium loaded 

with 50 μM ferrous iron. The deletion effect on the resistance to streptonigrin 

was also investigated. This antibiotic, streptonigrin, possesses an iron-dependent 

toxicity and has been used to select E. coli FeoB mutant (67). As shown in Fig. 

17, addition of 0.75 μM to 3 μM of streptonigrin had no apparent difference for 

the survivals between K. pneumoniae CG43S3 and the feoB mutant.  

 LD50 of the feoB mutant using mouse lethality assay 
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The LD50 determined as shown in Table 4 indicated that the deletion of 

feoB does not cause apparent effect on the virulence of K. pneumoniae. 
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Discussion 

 

Fur protein was named as “ferric iron uptake regulator”, which directly points 

out the tight correlation of this protein with iron uptake. However, more and more 

recent articles indicate that Fur plays roles not only in iron uptake, but also others 

functions including acid tolerance in S. typhimurium and S. flexneri (76, 9), and 

oxidative stress response in E. coli and H. pylori (75, 79).  

Similar to the report in Pseudomonas aeruginosa (77), the deletion of fur 

appeared to retard the growth. While the changes of colony phenotype to more 

sparkling and transparent has not been mentioned. In addition to the reported 

functions, our results add to a novel role of Fur which is a negative regulator for the 

expression of the cps genes. Analysis the promoter sequences of the cps-orf 3-15 and 

cps-orf 16-17, it revealed a consensus Fur box on the Porf 3-15, but not on Porf16-17. 

Although Fur box was identified for promoters of RmpA, RmpA2, and RcsB, there 

was no distinct difference in the LacZ activity assay between the wild type and the 

Fur gene mutant. Besides, there was no Fur box on PkvgA, and no effect of Fur deletion 

on PkvgA activity was observed. 

pH homeostasis is the process whereby a cell maintains a relatively constant 

intracellular pH over a broad range of external values. The acid tolerance response 
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(ATR), one of mechanisms that keep pH homeostasis, has been discovered in S. 

typhimurium and E. coli (77). The acid tolerance response is triggered in Salmonella 

species at pH values between 6.0 and 5.5, but protects bacteria against much stronger 

acid (pH 3 to 4.0) (32). In S. typhimurium, the fur gene product has been implicated to 

contribute a key regulatory function to the acid tolerance response (32). Furthermore, 

Fur has been shown to participate in responses to low pH in S. flexneri (41) and H. 

pylori (35). In K. pneumoniae CG43S3, the deletion of fur reduced the survivals under 

acid treatment suggesting a positive regulatory role in the acid stress response. 

The permanent derepression of iron assimilation system in Fur mutant could 

produce oxidative stress leading to various cell damages. E. coli fur mutant has been 

shown to be sensitive to hydrogen peroxide, increased oxidative DNA damage, and 

mutations under aerobic conditions (75, 86). In H. pylori, Fur was also proved as a 

key role in antioxidant systems (79). As shown in Fig. 10, following the increasing  

doses of hydrogen peroxide, from 10 mM to 30 mM, the survival rate of the fur 

mutant decreased more sharply than the wild type and the mutation effect could be 

complemented by introducing a fur-expression plasmid. This indicates that Fur 

protein probably also acts a positive role in the oxidative stress response. 

Deletion of fur caused attenuated virulence in S. flexneri (63) and A. 

tumefaciens (46), and a competitive defect in colonization in H. pylori (35). To assess 
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the role of Fur in K. pneumoniae, LD50 using mouse lethality assay of the mutant was 

measured. Although the fur deletion mutant appeared to grow more slowly than the 

wild type, a slight reduction of LD50 was observed. 

The iroBCDN gene cluster found on the virulence-associated plasmid pLVPK 

is responsible for enterochelin synthesis. In S. enteric, a typical Fur DNA binding site 

on the iro promoter region is required for the regulation of Fur on the expression of 

iro gene cluster (4, 5). The iucABCD involved in the biosynthesis of aerobactin is 

transcriptionally regulated by Fur in E. coli (20). In K. pneumoniae NTUH2044, 

iucABCDiutA was shown to be significantly prevalent in PLA-associated (pyogenic 

liver abcess) isolates (KP-PLA) (40). The iucA in K. pneumoniae CG43S3 has been 

reported as an IVE gene (48). In either Piro, Piuc, or Pfeo, putative Fur box could be 

found. The LacZ activity measurement further supports that the regulation of iro, iuc, 

or feo by Fur is probably via direct binding to the Fur box. These indicated that Fur is 

a major regulator for iron acquisition in K. pneumoniae. Autoregulation of Fur has 

been described in K. pneumoniae (1), and a putative Fur box was predicted on the fur 

promoter. However, the LacZ activity measurement revealed no apparent regulation.  

The presence of multiple iron transport system in K. pneumoniae suggests that 

iron acquisition systems are needed during infection. The PLA-associated strains were 

shown to be able to use wider range of iron sources than non-PLA-associated strains 
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(40). Whereas, obvious negative effect of feoB deletion suggested another ferrous iron 

uptake system SitABCD plays more important role in K. pneumoniae. The possibility 

could be demonstrated by generation of sitBCD deletion mutant. It is also possible 

that the activity of other ferric iron uptake system acts to compensate the deficiency of 

feoB.  
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Strain  Genotype or relevant property Reference or 
source 

E. coli:   

JM109 RecA1 supE44 endA1 hsdR17 gyrA96 rolA1 thi △ 
(lac-proAB) 

Laboratory stock 

S17-1λpir Tpr Smr recA, thi, pro, hsdR－M＋ [RP4-2-Tc::Mu:KmrTn7] 
(pir) 

De Lorenzo et al., 
1994 

K. pneumoniae:   
CG43 Clinical isolate of K2 serotype Laboratory stock 
CG43-S3 △rspl, Smr Laboratory stock 

Z01 CG43-S3△lacZ Smr Laboratory stock 
△fur CG43-S3△fur Smr This study 
△feoB CG43-S3△feoB Smr This study 
Z01△fur Z01△fur Smr This study 

Table 1.  Bacterial strains used and constructed in this study 
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Plasmids  Relevant characteristic Source or reference

yT&A vector PCR cloning vector, Apr Sigma 
pKAS46 Suicide vector, Apr Kmr  Novagene 
pRK415 Shuttle vector, mob+, Tcr Laboratory stock 
pLacZ15 A derivative of pYC016 (87), containing lacZ as a reporter, Cmr Laboratory stock 

pfur2K46 pKAS46 carrying a △fur fragment This study 
pfeoB2K46 pKAS46 carrying a △feoB fragment This study 
pfcpRK A 843 bp PCR product of the fur locus with the putative 

promoter cloned into pRK415 
This study 

pirocyyT A 455 bp PCR product of the iro putative promoter region 
cloned into yT&A 

This study 

piuccyyT A 721 bp PCR product of the iuc putative promoter region 
cloned into yT&A 

This study 

pfeoyT A 564 bp PCR product of the feo putative promoter region 
cloned into yT&A 

This study 

pfuryT A 426 bp PCR product of the fur putative promoter region 
cloned into yT&A 

This study 

pirocyZ15 A BamHI/BglII fragment of pirocyyT cloned into the pLacZ15 This study 

piuccyZ15 A BamHI/BglII fragment of piuccyyT cloned into the pLacZ15 This study 

pfeoZ15 A BamHI/BglII fragment of pfeoyT cloned into the pLacZ15 This study 
pfurZ15 A BamHI/BglII fragment of pfuryT cloned into the pLacZ15 This study 
pRmpAZ15 A 0.5 kb fragment of the rmpA putative promoter region cloned 

into the pLacZ15 
Laboratory stock 

pRmpA2Z15 A 0.5 kb fragment of the rmpA2 putative promoter region 
cloned into the pLacZ15 

Laboratory stock 

pRcsBZ15 A 0.4 kb fragment of the rcsB putative promoter region cloned 
into the pLacZ15 

Laboratory stock 

pKvgAZ15 A 0.2 kb fragment of the kvgA putative promoter region cloned 
into the pLacZ15 

Laboratory stock 

porf1-2Z15 A 0.8 kb fragment of the cps orf1-2 promoter region cloned into 
the pLacZ15 

Laboratory stock 

porf3-15Z15 A 0.9 kb fragment of the cps orf3-15 promoter region cloned 
into the pLacZ15 

Laboratory stock 

porf16-17Z15 A 0.4 kb fragment of the cps orf16-17 promoter region cloned 
into the pLacZ15 

Laboratory stock 

Table 2.  Plasmids used and constructed in this study 
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Primer Sequence 
CY001 5'-GAATTCTGCTGATGACCCAGTTAACC-3' 
CY002 5'-GGATCCGTTGTCAGTCATGCGGAATC-3' 
CY003 5'-GGATCCACGCGGTGGAAACATAATTC-3' 
CY004 5'-GAATTCACCTCTGGGAGAACGACAATG-3' 
CY007 5'-TCTAGAGGCAGGTTGGCTCTTCAGTC-3' 
CY008 5'-GGATCCATGAAGACAGCCAGCCGGA-3' 
CY009 5'-AGATCTGCCCAGCCTTCTTTAATGCGG-3' 
Pfeo01 5'-GAATTCTCACCAACGTCACCAACTTC-3' 
Pfeo04 5'-TCTAGACAAACCATGGGCACAGAGA-3' 
Pfeo05 5'-GGTACCGTGGTCTTGCTGGAGTTAGG-3' 
Pfeo06 5'-GGTACCTGCCACTAAGGAGGGACTGT-3' 
Pfeop01 5'-GGATCCCAACAGCGCGATGATGGAT-3' 
Pfeop02 5'-AGATCTGCCAGCATGCCGAGGGAGA-3' 
Piucp01 5'-GGATCCAGAGGGTGATTTGCCAGCAT-3' 
Piucp02 5'-AGATCTGGAAGCACTGAGCAGCCACA-3' 
Pirop01 5'-GGATCCGATTTCAGTACGGCATGGAC-3' 
Pirop02 5'-AGATCTACGGGAAACGCCTGTGCCA-3' 
  

Table 3. Primers used in this study 
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strain  CG43S3  Δfur  ΔfeoB  
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50

(cfu)  1.33×10
4 

 8.8×10
3 

 1.35×10
4 

 

Table 4. LD50 using mouse lethality assay 
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