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摘要 
在專案鑑價方法的需求之下，本文提出序列複合選擇權 (Sequential 

Compound options，SCOs)、它們的一般化評價公式以及敏感度分析。傳統專案

鑑價的評價方法忽略了複雜專案的內在本質，例如內部高度交互作用或是多層堆

疊，使得這些方法不適用，進而誤導策略制定。基於專案的特質，本研究提出序

列複合選擇權，以提升專案鑑價的效能。 
 文獻中大部分的複合選擇權，大多是參數固定的簡單兩層選擇權。在多層複

合選擇權的現有研究，也只侷限在序列複合買權(Sequential Compound CALL 
options，SCCs)。本研究提出多層的序列複合選擇權(SCOs)，定義為以(複合)選
擇權為標的的選擇權，而它們每一層的買權(call)或賣權(put)性質是可以任意指
定。此外，隨機利率與隨時間改變之資產價格波動度讓模型更加彈性。評價公式

是由 risk-neutral方法與 change of numéraire方法分別推導而得到。一個多維度常

態積分的偏微分關係，可以被視為萊布尼茲法則(Leibnitz’s Rule)的推廣，也在本
研究裡推導而得，並且被用來推導序列複合選擇權(SCOs)的敏感度分析。 
序列複合選擇權(SCOs)的計算，比起其他傳統的選擇權還要複雜許多。傳統

歐式選擇權與(兩層或更多層)複合選擇權在演算上的差異，在於約當資產價格

(Equivalent Asset Prices，EAPs)的槽套迴圈計算以及常態積分的維度。本研究克

服這些困難，提出序列複合選擇權(SCOs)的演算法與三層複合選擇權的數值例。 
序列複合選擇權(SCOs)可以強化並增廣複合選擇權理論在專案鑑價、風險管

理與財務衍生性商品定價領域的應用。對於里程碑專案(例如新藥開發)而言，里

程碑專案的達成代表擁有選擇進入下一個階段與否的權利，因此這類專案可以用

序列複合選擇權(SCOs)來評價。擁有擴張、縮小規模、中止、放棄、轉換或成長
選擇權在裡面交互作用的複雜專案，也可以運用序列複合選擇權(SCOs)來評價。
序列複合選擇權(SCOs)的優點，包括較便宜的權利金、允許決策後延、費用分期

支付、較高的彈性，可以提高風險控管的效果。一些金融機構所關心的最重要議

題，例如波動度風險、抵押貸款提前還款風險與天氣風險，也可以透過序列複合

選擇權(SCOs)而得到良好的控管。此外，序列複合選擇權(SCOs)也可以被運用於
財務衍生性商品的定價，例如新奇美式選擇權。 
本文提出序列複合選擇權(SCOs)的數值範例，包括政府營收保證評估與外匯

避險運用。另外，以序列複合選擇權(SCOs)為核心的資訊系統也被提出，以作為
專案與衍生性商品的評價。 
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Abstract 
This paper proposes the sequential compound options (SCOs), their generalized 

pricing formula and sensitivity analysis under the necessity from project valuation. 
Traditional methods for project valuation ignoring complicated projects' intrinsic 
properties, such as highly internal interacting or multiple-fold stacks, are far beyond 
the adequacy and will cause misleading for strategy-making. Based on project's 
characteristics, this study propose SCOs in order to have better effectiveness for 
project valuation.  
 Most compound options described in literatures are simple 2-fold options whose 
parameters are constant over time. Existing research on multi-fold compound options 
has been limited to sequential compound CALL options (SCCs). The multi-fold 
sequential compound options (SCOs) proposed in this study are defined as compound 
options on (compound) options where the call/put property of each fold can be 
arbitrarily assigned. Besides, the random interest rate and time-dependent variance of 
asset price make the model more flexible. The pricing formula is derived by 
risk-neutral method and change of numéraire method. The partial derivative of a 
multivariate normal integration, a extension case of Leibnitz’s Rule, is derived in this 
study and used to derive the SCOs sensitivities.  

Evaluations of SCOs are more complicated than those of conventional options. 
The computation differences between European options and compound options 
(2-fold or more) lie in the equivalent asset prices (EAPs) evaluation with nested loops 
and the dimension of normal integrals. This study overcomes these difficulties and 
proposes the computing algorithm for SCOs and the numerical illustration of 3-fold 
SCOs. 

SCOs can enhance and broaden the use of compound option theory in the study 
of project valuation, risk management and financial derivatives valuation. For 
milestone projects (e.g., the new drug development), the milestone completion has the 
choice to enter the next stage or not, and hence the projects can be pricing by SCOs. 
Complex projects, within which expansion, contraction, shutting down, abandon, 
switch and or growth option interacting, can also be evaluated by the SCOs. Several 
most important issues, such as volatility risk, prepayment risk of mortgage and 
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weather risk, concerned by the finance institutions can be well controlled through 
SCOs. The advantages of SCOs, including the cheaper premium, permission of 
decision postponement, split-fee and better flexibility, can enhance the risk 
management effectiveness. In addition, the SCOs can also be applied for the pricing 
of financial derivatives, e.g. exotic American options. 

The numerical examples of SCOs are proposed, including evaluation of 
government revenue guarantee and currency hedging. In addition, the information 
management system with SCOs as its core module is also proposed in order to 
evaluating projects and financial derivatives. 
Keywords: compound option; project valuation; real option; Leibnitz's Rule; option 
pricing; risk management  
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Chapter 1 Introduction  
 
§1.1 Motivation 

This paper proposes and analyzes the sequential compound options (SCOs) from 
the demand for project valuation (or appraisal).  

There are seven different methods for project valuation (Razgaitis, 1999), 
including discounted cash flow (DCF), industry standards, rule of thumb, rating and 
ranking, Monte Carlo simulation, auctions and real options. Different methods should 
be applied to different types of projects according to their distinctions. For example, 
the DCF method is suitable for projects with certain and predictable incomes, while 
the real option approach is proper for those with high uncertainty. The DCF methods 
for projects with high risk and growth potential will to tend to reject the investment 
decision and consequently lose many opportunities. The popular real option approach 
is more suitable for valuations of projects with high potential and risk, such as new 
drug developments (NDAs), oil exploration, etc.. Judy Lewent, the Chief of Financial 
Officer of Merck, even claims that "all kinds of business decisions are options" and 
can be dealt with by the real option approach (Nichols, 1994). 

However, the conventional real option approach for valuations of projects with 
evolutionary sophisticated structure is not enough. The sophisticated structure of 
derivative pricing and its wide deployment in the real options field have revealed the 
limitations of the current methodology. 2-fold compound options cannot be used as 
further building blocks to model other financial innovations, but results concerning 
multi-fold compound options so far have focused only on sequential compound calls. 
Although Remer et al. (2001, p.97) mention that "… in practice, different project 
phases often have different risks that warrant different discount rates," the important 
feature of time-dependent (or fold-dependent) parameters is rarely taken into account 
by current methodologies. In order to enhance flexibility, many projects are embedded 
with different types of options, such as growth, switch, abandon, shutting down, 
contraction or expansion (Trigeorgis 1993, 1996). Nevertheless, the flexibility is 
accompanied by the difficulty of valuation and hence results in misleading decisions 
by existing methods.  

The SCOs, defined as (compound) options on options, are proposed to valuate 
complex projects according to their intrinsic structures. For example, a project is 
usually valuated as a European call option, thus its expansion and abandon options 
can be regarded as a call on call and a put on call respectively. Therefore the abandon 
option on the expansion option is a typical 3-fold put on call on call option. In 
contrast with the traditional real option approach which considers the project as one 
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option, the complex project can be deconstructed as distinct essential options and their 
interactions, and all of them can be evaluated by different SCOs. This kind of method 
decomposes the project according to its special structure and provides decision 
makers with better understanding of it. The decomposition method by SCOs offers a 
more logic and rational way for complex project valuation. Besides, projects with 
different milestones can be regarded as special cases of the complex projects. Thus 
the SCOs can be applied for valuation.  
 In addition to project valuation, SCOs also can offer several advantages for 
financial derivative applications. The SCO buyers pay a few premiums at the initial 
time and own the privilege to pay again when they exercise the right to gain the next 
fold SCOs. The SCOs will be discarded when they are not worth holding in 
sacrificing previous payment. This split-fee property lets the SCO owners pay 
proportionally according to available information at that time, instead of sinking 
option premium at the beginning. Thus the decision-making can be postponed under 
indefinite environments and more flexibility is offered to SCO holders. The feature 
with high potential under constrained cost can provide greater leverage and yield 
enhancement for SCO owners. SCOs can be tailored for financial institutions as risk 
management, such as hedging or mortgage pipeline risk (Bhattacharya, 2005). 
 
§1.2 Result Sketch 

This paper, using vanilla European options as building blocks, extends the 
compound option theory to multi-fold sequential compound options (SCOs) with 
random or fold-wise parameters as well as alternating puts and calls arbitrarily (see 
Table 1). An SCO is defined as a (compound) option written on another compound 
option, where the call/put feature of each fold can be assigned arbitrarily. The SCOs 
presented in this study also allow parameters (such as volatility, interest rate) to vary 
over time or fold. This study derives an explicit valuation formula for SCOs by the 
risk-neutral method and change of numéraire method (Geman et al., 1995; Shreve, 
2004) respectively, and performs the sensitivity analysis on the result. The option 
price is measured in units of a numéraire asset to make the derivation simple. 
Compared with the P.D.E. method, more financial intuition is gained by the change of 
numéraire derivation. Nonetheless, the partial derivative of a multivariate normal 
integration (a special case of Leibnitz's Rule), is also derived here for the sensitivity 
analysis. 
   Multi-fold SCOs with alternating puts and calls and random parameters can 
greatly enhance the number of practical applications for compound options, especially 
in the real option field. Real world cases can often be expressed in terms of multiple 
interacting options (Trigeorgis, 1993, 1996) of different types, such as expansion, 
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contraction, shutting down, abandon, switch, and/or growth. The interaction between 
different types of options could be evaluated by the SCOs. For example, a highway or 
utility construction build-operate-transfer (BOT) project could be regarded as a 
vanilla call option. The simple expansion or extension privilege, which allows only 
once at a certain date, hence can be evaluated using the 2-fold compound option: call 
on call; the abandon for the main construction project could be appraised by the put 
on put. Similarly, the abandon option on the expansion or extension right could be 
viewed as a 3-fold compound option: the put on call on call. While the expansion or 
extension is flexible, such as been allowed to launch within a time period or perform 
for two or more times, the compound option evaluated for the privilege is exotic 
(Agliardi, 2006). Consequently, the valuation formula of the abandon on the 
expansion is also a exotic SCO.  

The SCOs discussed in this study make the evaluation of exotic multiple 
interacting options possible. The SCOs can also be applied to the existing real option 
applications, such as the competing technology adoption (Kauffman and Li, 2005), 
joint ventures behavior analysis (Kogut, 1991) and strategic project examination 
(Bowman and Moskowitz, 2001). Furthermore, the pricing of exotic financial 
derivatives, such as exotic chooser options and capletions, can also be accomplished 
using SCOs. 

The numerical examples of SCOs are proposed, including evaluation of 
government revenue guarantee and currency hedging. In addition, the information 
management system with SCOs as its core module is also proposed in order to 
evaluating projects and financial derivatives. 
 
§1.3 Contribution  
 The contribution of this study are listed as follows.  

 Enable the realistic and flexible valuation for complex projects, such as the 
BOT, new drug applications (NDAs). 

 Define and analysis of SCOs. 
 Derive of the partial derivative of the multivariate normal integral, which can 

be applied widely for the sensitivity of financial derivatives. 
 Broaden the financial derivative pricing. 
 Enhance Risk Management. 

 
§1.4 Dissertation Structure 
 This dissertation is arranged as the follows. Chapter 2 presents the knowledge 
roadmap of related literatures. Chapter 3 derives the pricing formula of SCOs. 
Chapter 4 presents the partial derivative of multivariate normal integrand. Chapter 5 
derives some comparative statistics of SCOs. The recursive computing algorithm and 
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numerical examples are presented in Chapter 6. Chapter 7 presents further SCOs 
applications, including milestone project valuation, complex project valuation, 
derivatives pricing, hedging of volatility risk, mortgage pipeline risk and weather risk. 
Chapter 8 illustrates two numerical SCOs examples. Chpater 9 exhibits the framework 
of information management system with SCOs evaluation as its core module. The 
paper ends with the conclusion. 
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Chapter 2 The Knowledge Roadmap 

 This chapter describes the knowledge roadmap (Figure 2.1) of related literatures. 
The project valuation methods mentioned in Chapter 1 are concluded by Razgaitis 
(1999). The following paragraphs focus on compound option and real option 
methodology.  

Compound options, initiating by Geske (1977; 1979), are options with other 
options as underlying assets. The fold number of a compound option counts the 
number of option layers tacked directly onto underlying options. The original closed 
form of compound option is proposed by Geske (1977; 1979) and constitutes as a 
precedent with respect to later works. Specific multi-fold compound option pricing 
formulas are proposed by Geske and Johnson (1984a) and Carr (1988) while the 
pricing formula sequential compound call (SCC) is proved by Thomassen & Van 
Wouwe (2001) and Chen (2003). Chen (2002) and Lajeri-Chaherli (2002) 
simultaneously derive the price formula for 2-fold compound options through the 
risk-neutral method. Agliardi & Agliardi (2003) generalize that results to 2 fold 
compound calls with time-dependent parameters, while Thomassen & Van Wouwe 
(2003) and Agliardi & Agliardi (2005) extend the multi-fold compound call options to 
parameters varying with time. The evolution of compound methodology is listed in 
Table 2.1. 

Financial applications based on compound option theory are widely employed. 
Geske and Johnson (1984a) derived an analytic multi-fold exotic compound option 
formula for the American put option, while Carr (1988) presented the pricing formula 
for sequential exchange options. Corporate debt (Chen, 2003; Geske & Johnson, 
1984b) and chooser options (Rubinstein, 1992), as well as capletions and floortions 
(options on interest rate options) (Musiela & Rutkowski, 1998) are also priced by 
compound options.  

In addition to the pricing of financial derivatives, compound option theory is 
widely used in the study. This approach originate from Myers (1977) and follow by 
Brennan and Schwartz (1985), Pindyck (1988), Trigeorgis (1993, 1996) and so forth. 
Examples include project valuation of new drugs (Cassimon et al., 2004), production 
and inventory (Cortazar & Schwartz, 1993) and capital budget decision (Duan et al., 
2003). Compound options turn out to be very common, and the theory is versatile 
enough to treat many real-world cases (Copeland and Antikarov, 2003). Some 
interesting topics of compound options are left for readers, such as stochastic 
volatility (Fouque and Han, 2005), stochastic interest rates (Thomassen and Van 
Wouwe, 2003; Lee et al., 2007), options with extendible maturities (exotic compound 
options, Longstaff, 1990), modular derivation (Zhu, 2000). 
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Figure 2.1 The Knowledge Roadmap of Project Valuation 

Boyle, 1977 

Discounted Cash Flow (DCF) 



 
 

Table 2.1 Evolutions of Compound Option Theory 
Generalization 

Reference 
Fold 

Number
Approach Put-Call 

alternating 
time- 

dependent 
parameters 

Geske (1977; 1979)* 2 PDE Put/Call No 
Agliardi & Agliardi (2003) 2 PDE Call Yes 
Chen (2002);Lajeri-Chaherli (2002) 2 Risk-neutral Put/Call No 
Carr (1988), Chen (2003) Multiple Risk-neutral Call No 
Thomassen & Van Wouwe (2001) Multiple PDE Call No 
Thomassen & Van Wouwe (2003) Multiple PDE Call Yes 
Agliardi & Agliardi (2005) Multiple Risk-neutral Call Yes 

This Study Multiple
Risk-neutral 
& Change of 
numéraire

Put/Call Yes 

*: The seminal compound option paper series.  
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Chapter 3 Valuation of the Sequential Compound Options 
 This chapter derives the analytic formula for the SCOs in both cases of fold-wise 
parameters and random parameters. Section 3-1 describes the notation and 
fundamental theorems used for derivations. Section 3-2 derives the closed-form price 
of SCOs with fold-wise parameters by the risk-neutral method. The analytic pricing 
formula of the generalzed SCOs, in which the interest rate and variance of asset price 
are random, are derived by the change of numéraire method in Section 3-3. Section 
3-4 explains the implication of these pricing formulas. The main results of this chapter 
are available in Lee et al. (2007). 
 
§3-1 Notation and Foundations 
 This section describes notation and foundation theorems used for SCOs valuation. 

Denote the correlation matrix , where is the symmetric (g, 

h) entry of the matrix  

kkhgkk Q ×= ][: ,},{Q  ,},{ hgkQ

, kQ khg   1 ≤≤≤∀ . Similarly,  is the g-th entry of the 

vector  [ ] .  is the (k–1) by (k–1) matrix which excludes the 

i-th row and the j-th column of . Define the function 

gkd },{

1 },{ ×kgkd ( ) ),(
,},{ ][ ji

kkhgkQ −−

×

kkhgkQ ×][ ,},{

2

2
1

2
1)(

z
ezf
−

=
π

. 

The k-variate normal integral with upper bound limit vector  and 

correlation matrix is characterized as  

[ ]
1 },{ ×kgkd

 kQ

 [ ]{ } 11

 
2
1

1 },{ ddd
)2(
1  

11},{ 2},{ },{

2
zzzed kk

d d d

k
kkgkk

k
k k kk

k LL −

′−

∞− ∞− ∞−
×

−

∫ ∫ ∫=
ZQZ

Q
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where and  ], , , ,[ 21 kzzz L=′Z 10≡N .  The following theorem is the statement about 
the construction of multivariate normal integrals. 
 
Theorem 3.1 

(a) The relationship between the (k-1) and k–variate normal integrals 
(Curnow & Dunnett, 1962) 
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(b) The decomposition of a multivariate normal integral (Schroder, 1989) 
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where  is the correlation matrix , kQ kv ≤≤∀1 .  
 

In Theorem 3.1, (a) reveals that the k-variate normal integral can be constructed 
from the (k–1)-variate by adding another dimension to the upper limit vector and 
correlation matrix. (b) states that the specific multivariate normal integral can be 
partitioned into two integrals of lesser variates. This result can extend the current 
compound option methodology from 2-fold to multi-fold by induction, while Chen 
(2003) just "observe a pattern" to generalize the SCC. Before applying this theorem to 
sequential compound option pricing, more pieces of notation are introduced in next 
section.  
 
§3-2 Sequential Compound Options 
 This section derives the closed-form formula of sequential compound option 
prices with fold-wise parameters by the risk-neutral method, in which the asset price 
is assumed follows the geometric Brownian Motions process. 

Let Tu-1 < Tu, . The asset price at time Tu is donated as Su. The 
instantaneous volatility of the asset price is given as 

1≥∀u
)(uσ . The instantaneous interest 

rate and dividend rate are denoted as r(u) and q(u), respectively. The dividend rate qu 
can also be considered as the depreciation rate (Remer et al., 2001).  
    The fold numbers in this study come in reverse order. Denote  as the 
i-fold SCO with strike price K1 and it starts at time T0 and expires at time T1. The 
(i–1)-fold SCO , active from T1 to T2, is the underlying asset of . 
Provided that the last fold SCO starts from T0, the underlying SCO  is 
valid from Tu-1 to Tu with fold number (i–u+1) and strike price Ku and has parameters 

)( 0TiΨ

)( 11 Ti−Ψ )( 0TiΨ
)( 11 −+−Ψ uui T

2
uσ , ru, and qu.  is the first fold option and a vanilla option with the asset as 

its underlying asset. 
)( 11 −Ψ iT

The notation for an arbitrary i-fold SCO starting from T0 is exhibited in Figure 
3.1. For any , the option feature Λu,u characterizes the put or call attribute of 
the (underlying) SCO with fold number (i–u+1) ranging from Tu-1 to Tu. If the SCO of 
this fold is a put, Λu,u=–1, otherwise the feature Λu,u= 1 is for a call. For example, a 

1≥u
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put on a call (a 2-fold compound option) starting at T0 has the option features Λ

1,1=–1 and Λ2,2=1. Denote 10,1 ≡Λ  and .  hg
h

gu
uugh ≤≤∀Λ=Λ ∏

=

1,,,

 
 Fold number: Last fold First fold 

 
1Ψui−Ψ1+−Ψ ui1−ΨiiΨ

Fig on

ii , Λ1,1 ++Λ uuuu ,Λ2,2 Λ1,1Λ

iτ1+uτuτ2τ1τ

K1       K2             Ku       Ku+1              Ki 

ure 3.1: The Notation of the i-fold Sequential Compound Opti

T0        T1        T2      Tu-1       Tu       Tu+1       Ti-1       Ti 

Fold notation: 
 
 
 Length 
 

Strike  
 
 
Parameters 

 
 

With the same assumptions as Thomassen and Van Wouwe (2001) except for 
"parameters constant in each fold" here, the following Theorem 3.1 derives the 
pricing formula of an i-fold SCO at time T0, )( 0TiΨ , with arbitrary calls and puts by 
the risk-neutral method under a perfect market. Without loss of generality, the SCO in 
this theorem is assumed to start from T0.  
 The assumptions of the SCOs are listed as follows. 

1. No arbitrage. 
2. The asset is tradable with any quantity. 
3. Perfect market. 
4. Perfect hedge. 
5. No liquidity concerns. 
6. No credit risk. 
7. The asset price follows a geometric Brownian Motion process. 
8. Assume there is no drift for the forward price under the risk neutral measure. 
9. The volatility of the forward price is constant. 
10. Any zero coupon prices are available.  
Based on these assumptions, the SCO price is derived as a analytic form. 

 
 
 
Theorem 3.2: Pricing Formula of Sequential compound option with Fold-wise 
Parameters 

Denote Denote  
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⎩
⎨
⎧

<≤∀=
=

=
− igK)(T

i  gK
S

gggi

i
ig 1  ,Ψ makes which priceasset  The

                                                                    for  ,
 ,#   

then 
 

                        ......(3.2.1) 

[ ] [ ]{ } [ ] [ ]{ }
jjhgjgigijj

i

j

duur

jiihgigigii

duuq

ii bKeaSeT

jiT T

TT

××
=

−

××

−

Λ
∫

Λ−Λ
∫

Λ=Ψ ∑ ,1,,
1

)(

1, ,1 ,,0

)(

1,0
~  ~  )( 00 ρρ ;Ν;Ν

under the assumption that the EAP (S#g,i ) exists, .1 ig≤≤∀  
 
Proof: see Appendix A. 
 
§3-3 The Existence of Equivalent Asset Price 
 This section proves the existence conditions of the equivalent asset price. Denote 

, which is the second component 

of the SCO pricing formula in Equation (3.2.1). Note that 
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negative or positive but all SCO prices )( 0TiΨ  are always nonnegative. 
 
Lemma 3.1: The Sufficient Condition for the Existence of Existence of Equivalent 
Price (EAP) 

Given g ( ), the  exists if 11 −≤≤ ig igS ,#

(a)  exists for all iS ,#l 11 −≤≤− ig l ,  

and either the following condition stand.  

(b) ;  11, +=Λ −gi

(c)  and 11, −=Λ −gi )(~
3&2, ggig TK −Ψ−≤ .  

Proof: see Appendix B.  
 
 The condition (a) of Lemma 3.1 reveals that the existence conditions is also 
derived based essentially on the induction, by which the multi-fold SCO price is 
available in Theorem 3.2. If the EAPs of previous folds exist, the EAP existence of 
the current fold is discussed according to the different sign of the cumulative option 
future . The condition (c) states that the strike price of the current fold  is 
limited by a maximum because the asset price has opposite direction against the 
current fold SCO price. The opposite direction is represented by the negative 
cumulative option feature. For the case of positive cumulative option feature 
(condition (b)), there is no restriction for the strike price. The non-existing EAP will 
incur the zero SCO price. 

1,gi−Λ gK

The SCO price ( ) is monotone with respect to the asset price and hence the 
equivalent asset price (EAP, ) is unique if it exists. According to the sensitivity 

analysis in Theorem 5.1, the Delta (

iΨ

igS ,#

)(
)(

0

0

TS
Ti

∂
Ψ∂ ) is a strictly monotone function. Its 

increasing or decreasing nature depends on the cumulative option feature ( ). 
Therefore the EAP, defined as the asset price making the SCOs price equal to a 
specific strike price, is unique if it exists. The EAP may not exist due to the range 
limitation of a decreasing SCO price. 

1,iΛ

 
§3-4 The Generalized Sequential Compound Options 
 This section derives the closed-form formula of sequential compound option 
prices with random parameters, including the interest rate, the variance of asset price. 
Comparing with the cases of fold-wise parameters, it is named as the generalized 
SCOs due to of random parameters. It is assumed that there is no depression rate here. 

Assume the asset price and instantaneous variance of asset price at time t are 

given as S(t) and , respectively. Denote the interest rate process r(t),  )(2 tσ iTtT ≤≤0
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and the discount process . Let B(t, T) be the zero coupon bond price 

at time t that matures at time T. The bond price can be represented by the 

stochastic interest rate r(t), . In other words, the bond price is 

determined by the interest rate r(t). Note the bond prices act as the representation of 
stochastic interest rate and hence there is no need to specify the interest rate dynamics 
in this study. Denote the τ-forward price of T-maturing zero coupon price at time t as 
F(t, τ, T),  

∫=
−

t

T
duur

etD 0
)(

)(

),( 0 jTTB

∫=
−

jT

T
duur

j eTTB 0
)(

0 ),(

Tt ≤≤∀ τ . 

Denote as  the i-fold generalized SCO price starting at time T0 and 

expiring at time T1, with strike K1. The notation ® stands for "stochastic interest rate 
and random variance of asset price”. Its underlying asset is the (i–1)-fold SCO 

, which is active from T1 to T2. Under the assumption that the last fold SCO 

starts from T0, the underlying SCO with fold number (i–u+1), , is valid 

from Tu-1 to Tu with strike price Ku. The first fold option, , is a vanilla option 

with the asset as its underlying asset. It should be noted that fold numbers come in the 
reverse order. The notation for an arbitrary i-fold generalized SCO starting from T0 is 
exhibited in Figure 3.2. 

)( 0Ti
®Ψ

)( 11 Ti
®
−Ψ

)( 11 −
®

+−Ψ uui T

)( 11 −
®Ψ iT

 
 
 Fold number: Last fold First fold 
 

Fold notation: ®Ψ1
®
−Ψ ui

®
+−Ψ 1ui

®
−Ψ 1i

®Ψi 

ii , Λ1,1 ++Λ uuuu ,Λ2,2 Λ1,1Λ

iτ1+uτuτ2τ1τ

K1       K2             Ku       Ku+1              Ki 

T0        T1        T2      Tu-1       Tu       Tu+1       Ti-1       Ti 
 
 

Length  
 Strike 
 

Option feature  
 Figure 3.2: The Notation of the i-fold Generalized Sequential Compound Option 
 

Under all the assumptions of Thomassen and Van Wouwe (2001), except for 
random parameters of interest rate and variance of asset price, the following theorem 
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derives the pricing formula of an i-fold SCO with alternating arbitrarily calls and puts 
by the change of numéraire method. Although the SCOs presented in later sections 
can start at any time Tu, the SCO in this theorem is starting from T0 without loss of 
generality. The symbol " *v ", meaning "start from time Tv", is used to indicate time 

shift in the sensitivity derivation. Following the above notation,  is denoted 

as the SCO price at the time T0.  

)( 0Ti
®Ψ

 
Theorem 3.3: The generalized sequential compound option pricing with random 
parameters 

Denote  
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under the assumption that the EAP ( ) exists, ®
igS ,# .1 ig≤≤∀  

Proof: see Appendix C. 
 

The SCO price in Equation (3.4.1) is derived by the change of numéraire method, 
which is also known as the forward measure approach because it makes a second 
change of measure from the risk-neutral measure to a forward measure. Equation (C.5) 
is the key of derivation. It means that the current asset price is the expectation of the 

future price with interest rate discount. Both of D(T1) and  

within the expectation contain the interest rate r(t), which is a adopted stochastic 
process, and they can not be dealt separately. Thus the asset price and bond price are 
regarded as numéraires to overcome the difficulty.  

])(max[ 11,111,1 KTi Λ−ΨΛ ®

 
§3-5 Interpretation of the Formula 
 This section interprets the implication of pricing formula of SCOs (Equation 
(3.2.1) and (3.4.1)).  

According to Equation (3.2.1) & (3.4.1), the price of an i–fold SCO can be 
expressed as the weighted asset price minus the weighted sum of the strike prices of 
the i folds with different underlying assets. The weights consist of three factors: the 
cumulative option features, the bond prices, and the in-the-money probabilities. The 
cumulative option feature is obtained by synthesizing the option features from the 
current fold to the last fold. The bond price is a deduction made due to interest rate 
compounding. The in-the money probabilities are assessed under different probability 

measures by multivariate normal integrations. The factors /  and /  in 

the integration are similar to the "d1" and "d2" appearing in conventional pricing 
formulas for vanilla options. The correlation matrices of SCOs are similar to those of 
the sequential compound calls, except for a sign change due to the cumulative option 
features. Within these 3 weighting factors, the parameters of the last fold have the 
widely impact on the pricing formula.  

gia , ®
gia , gib , ®

gib , 

These formulas of SCOs are more general than those derived for vanilla options, 
2–fold compound options, and sequential compound calls, all of which can be 
regarded as special cases of SCOs. The main difference between SCOs and sequential 
compound calls lies in the freedom to alternate calls and puts, which is represented by 
a sign changes in the cumulative option features gh,Λ , hg ≤≤∀1 . In other words, 
the option prices will depend on the fold features gh,Λ . Moreover, allowing the 
parameters to vary over time makes the integrated variance and discounting bond 
price of an SCO quite different from that derived by Thomassen & Van Wouwe 
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(2001). Setting all  to +1 in an SCO results in a SCC.  gh,Λ

 

 16



Chapter 4 Partial Derivative of the Multivariate Normal 

Integral 
 This chapter derives the partial derivative of the multivariate normal integral by 
induction. The result (Theorem 4.2) can be regard as the special case of Leibnitz's rule 
and will be applied during the derivation of SCOs' sensitivity analysis (see Chapter 5). 
 First of all, the Leibnitz's Rule is listed.  
Theorem 4.1 (Leibnitz’s Rule) (Casella & Berger 2002, p.69) 
If  f(x,θ), a(θ), b(θ) are differentiable with respect to θ, then  
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xxfaafbbfxxf .  

It is noted that if a(θ), b(θ) are constant, we have a special case of Leibnitz’s Rule: 
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d
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θ
. 

 
 According to the Leibnitz's Rule, the partial derivative of the multivariate normal 
integral is derived.  
 
Theorem 4.2: Partial Derivative of the Multivariate Normal Integral 
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.  offunction  anot  ist matrix than correlatio a is ][  where ,},{ lGQ kkhgk ×  

Proof: see Appendix D.  
 

Theorem 4.2 shows that the partial derivatives of a (k+1)–variate normal 
integration can be represented as the k+1 weighted sum of k–variate normal 
integrations. As Equation (4.1.2) shows, the Leibnitz’s rule can be used to decompose 
the partial derivative into two parts. The first term is a k–variate normal integration 
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with a weighting factor. The second part is an integration of a partial derivative of the 
(k–1)-variate normal. Theorem 4.2 proves, however, that this second part can be 
represented in the same form as the first term. This means that Theorem 4.2 extends 
the Leibnitz's rule to multivariate normal cases and it can be regarded as the special 
case of Leibnitz's rule. 

The specific partial derivatives presented in Thomassen & Van Wouwe (2002) 
can be viewed as a special case of Theorem 4.2. If the elements of the correlation 

matrix in Equation (4.1.1) as specified as  ,},{,},{
h

g
ghkhgk QQ

τ
τ

== , for , then hg≤≤1
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=0, for g<j<h or h<j<g.  
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Chapter 5 Greeks: the Sensitivity Analysis 
 This chapter probes the sensitivity analysis of SCOs. A short Lemma is discussed 
before the analysis.  

A feature of multivariate normal integrations will be presented after the 
following notation has been defined. Let 
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Lemma 5.1 shows that the multivariate integrals for SCO sensitivities can be factored 
into two separated normal integrals.  
 
Lemma 5.1 
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Sketch Proof:  

The left-hand sides of Lemma 3.1 (a) and (b) are identical, hence the integrand 

of the left hand sides. Lemma 5.1 can be proved according to the above result. 

Lemma 5.1 can also be proved directly through a multivariate normal integration 

whose correlation matrix can be partitioned into "four quadrants". The top-right and 

the bottom-left quadrants are zero matrices, so the integrals can be represented as the 

product of two uncorrelated normal integrals (Bickel and Doksum, 2001, Theorem 

B.6.4). Q.E.D.  

 

Note that the same factor appears on the right-hand side of Lemma 5.1 (a) 

& (b), and the same factor  appears on the right-hand side of Lemma 5.1 (c) 
& (d).  

bv ,1−ℵ

bv ,1−
®ℵ

   The sensitivity analysis of SCOs is now possible thanks to the two results 
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(Theorem 4.2 and Lemma 5.1) demonstrated in the preceding section and chapter. 
Thomassen and Van Wouwe (2002) derived the sensitivities of SCCs. Theorem 5.1 
extends their analysis to SCOs with the possibility of alternating calls and puts 
arbitrarily based on Theorem 4.2. Theorem 5.1 also shows the interest rate sensitivity 
under the special case of interest rate fold-wise.  
 
Theorem 5.1: Sensitivities of SCOs 
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(c) Let the interest rate and the variance of asset price be fold-wise constant. In other 
words, iuTtTtrtr uuuu ≤≤<≤∀== − 1 , ,)( ,)( 1σσ . Under this simplification, the 
"underscore" labels are added to the corresponding pieces of notation. The SCO price, 

the correlation matrix and the two upper limit vectors are denoted as iΨ , hg ,
~ρ  , 

gia , and gib , , respectively. Thus, the interest rate sensitivity Rho is: 
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Proof: see Appendix  
 

As SCOs pricing formulas (Theorem 3.2 and Theorem 3.3) generalize previous 
results for vanilla options and SCCs, the SCOs sensitivities given in Theorem 5.1 are 
also extension of these previous works intuitively. Again, the sequence of option 
features will affect the signs of the sensitivities. According to Theorem 5.1 (a) and (d), 
the value of a SCO is monotonic with respect to the current asset price S(T0), hence 
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the EAP is unique if it exists. 
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Chapter 6 Computation Algorithm 
 This chapter explains the recursive computation algorithm of SCOs and 
illustrates the computing results of 3-fold SCOs.  
 
§6.1 Computation Algorithm 

The computation differences between European options and compound options 
(2-fold or more) lie in the EAP and the dimension of normal integrals. By definition, 
the EAP is the asset price which makes the (compound) option price equivalent to a 
specific strike price. Similar to the concept of implied volatility, the EAP can be 
regarded as the "implied asset price", solving by the known (compound) option price 
(given as the strike price) and other conventional option parameters except the asset 
price itself. Thus there is no EAP concern in the 1-fold option computation and it is 
calculated only for the 2 or more fold compound options. It seems that i-1 EAPs 

( ) are calculated during the i-fold SCO price computation. However, 

more EAPs are calculated because they are solving by the bisection method in this 
study and the higher-fold EAPs are obtained based on the lower-fold EAPs. Many 
EAPs are figured just for another and are not used straight for the SCOs price 
calculation. Hence the nested algorithms, using the lower-fold SCO pricing formula 
for EAPs while seeking for the higher-fold one, are time-consuming.  

igS ig <≤∀1,,#

 The other computing dissimilarity between European and compound options is 
the normal integrals. The highest dimension of normal integrals of the SCO equals its 
fold number. Precise computation of the multivariate normal integration needs more 
work than that of a univariate case. Besides, the precise approximation of multivariate 
normal integrals with arbitrary dimension and integration range is neither easy nor 
convenient, although the univariate, bivariate and trivariate cases are disclosed 
explicitly (Denz, 2004). Lin (2004) compares 3 computing methods for the 
multivariate normal integral, including the improved Gauss quadrature method, 
Monte Carlo method and Lattice method, to evaluating the 4-fold SCCs.The Monte 
Carlo integration is applied here for normal integral computation in case the higher 
fold SCOs are adopted. Casimon et al. (2004) even use the SCCs up to 6 fold!  
 The recursive computing algorithm of the SCO price, calculating from the first 
fold to the last fold, include 5 looped steps and are exhibited in Figure 6.1. The 
computing algorithm do not encompass any estimation or calibration of parameters, 
which should be ready when the algorithm begin. In the flow chart, the rhombuses 
represent decision symbols where a decision must be made, while the rectangles 
symbolize the actions. The details of the chart are explained as follows.  
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1. EAP Existence

6. Go to Next Fold 

4. Current Fold SCO Price Calculation 
(Monte Carlo Integration in this study) 

3. The EAP Calculation 
(Bisection Method in this study) 

YES 

YES 

5. Last Fold SCO 

End 

NO 

NO 

YES 

2. EAP Availability

NO 

SCOs Price Calculation Start  
(From the First Fold)

Figure 6.1 The Nested Computing Algorithm of the SCOs  
 
Step 1: Check the EAP existence of the current fold. If EAP exists, go to Step 2, 

otherwise terminate the algorithm. The EAP may not exist because of the 
non-negative range limitation of the decreasing SCO price. There is no need to 
calculate EAP for the 1-fold option because it is for compound options only.  

Step 2: Check the EAP availability. If the desired EAP is available, skip to Step 4, 
otherwise go to Step 3. The EAP calculation is time-consuming, thus it can be used 
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repeatedly to save time if the same one was solved before. 
Step 3: The EAP Calculation. Since the EAP is like "implied asset price", it is solved 

according to Theorem 3.2 (d) or Theorem 3.3 (f) to by the bisection method in this 
study. Within this step, it is necessary to calculate the lower-fold SCO prices, which 
is the main target of the computation algorithm. Hence it causes the processes to be 
nested and sophisticated.  

Step 4: The Current Fold SCO Price Calculation. The SCO price is computed 
according to Equation (3.2.1) or (3.3.1) if all the EAPs are available. The 
cumulative probabilities of multivariate normal density are acquired by Monte 
Carlo integration in this study.  

Step 5: Check whether the current fold is last fold. If yes, the last SCO price is the final 
result, otherwise go to Step 6.  

Step 6: Go to the next fold. If the current fold is not the last one, go to the next fold 
and results so far are bases to calculate the next fold SCO price. Compared with the 
current fold case, the dimension and fold number are increased by one to enter the 
next loop.  

 In the SCOs evaluation algorithm, there are one recursive loop and three decision 
nodes. The recursive loop occurs in the EAP calculation (Step 3), while the decision 
nodes take place in determining whether the current fold is last (Step 5), EAP 
existence (Step 1) and availability (Step 2), respectively. The recursive loop involved 
in the bisection method together with decision nodes makes the computation 
sophisticated. 

The numerical methods mentioned above, such as the bisection method for EAPs 
in Step 3 and Monte Carlo integration for multivariate normal integrals in Step 4, can 
be substituted by other suitable methods. The conventional options just need the "Step 
4" to calculate the option price straightforwardly. By contrast, the looped and nested 
computation algorithm of SCO prices, involving some numerical techniques, are more 
complicated.  
 
§6.2 Three-Fold SCOs Illustration 

This subsection illustrates the 8 cases of 3-fold sequential compound options, 
including the call on call on call (CCC), call on call on put (CCP), call on put on call 
(CPC), call on put on put (CPP), put on call on call (PCC), put on call on put (PCP), 
put on put on call (PPC), put on put on put (PPP). The parameters of these SCOs are 
identical for comparison in the numerical examples. The time to maturity of 3 folds 
are all equal to one, and the strikes K1, K2, K3 are 10, 100, 500 respectively. Assume 
the volatility and dividend rate keeps constant in these three folds. Figure 6.2 exhibits 
the SCOs price along the volatility and asset price.  
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(g) Put on put on call 
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(h) Put on put on put 
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(f) Put on call on put 

Figure 6.2: The Price Surface of 3-fold SCOs 
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The price surface of PCC is presented in Table 6.1 and Figure 6.2 (e). The 
follows explain the PCC to understand the feature of SCOs. The max price of PCC is 
about 9.51 because the last fold put option strikes with 10. The PCC price drops as the 
stock price hikes under the same volatility due to the put feature of the underlying 
asset. Although with different underlying assets, the PPP also has a similar 
phenomenon due to the same reason. This reason also supports the fact that the PCC 
price descends with the volatility (sigma) increasing under the same stock price. 
Theoretically, the SCOs are monotone with respect to the asset prices (Thomassen and 
Van Wouwe, 2002; Lee et al., 2007). However, the integrals evaluated by Monte Carlo 
simulation result in subtle non-monotonicity.  



Table 6.1: Prices of the 3-fold SCO (Put on Call on Put) 
Volatility of Asset Price SCOs 

Price 0.05 0.10 0.15   0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
1                     9.51 9.51 9.51 9.51 9.51 9.51 9.51 9.51 9.51 9.51 9.51 9.51 9.51 9.51 9.51 9.51 9.51 9.51 9.51 9.51

26                     9.51 9.51 9.51 9.51 9.51 9.51 9.51 9.51 9.51 9.51 9.51 9.50 9.49 9.46 9.41 9.34 9.24 9.13 9.00 8.86
51                     9.51 9.51 9.51 9.51 9.51 9.51 9.51 9.51 9.51 9.49 9.45 9.36 9.23 9.05 8.85 8.62 8.38 8.12 7.88 7.65
76                     9.51 9.51 9.51 9.51 9.51 9.51 9.51 9.50 9.46 9.35 9.18 8.93 8.62 8.29 7.98 7.65 7.33 7.02 6.76 6.51

101                     9.51 9.51 9.51 9.51 9.51 9.51 9.49 9.43 9.27 9.01 8.66 8.23 7.79 7.37 7.02 6.65 6.32 6.02 5.78 5.55
126                     9.51 9.51 9.51 9.51 9.51 9.50 9.42 9.23 8.90 8.44 7.94 7.38 6.87 6.43 6.09 5.74 5.43 5.16 4.95 4.75
151                     9.51 9.51 9.51 9.51 9.51 9.44 9.23 8.85 8.32 7.71 7.10 6.48 5.97 5.55 5.25 4.94 4.67 4.43 4.26 4.10
176                     9.51 9.51 9.51 9.51 9.48 9.30 8.85 8.28 7.59 6.88 6.24 5.62 5.14 4.76 4.51 4.25 4.02 3.83 3.69 3.56
201                     9.51 9.51 9.51 9.50 9.38 9.00 8.28 7.56 6.78 6.03 5.41 4.82 4.40 4.08 3.88 3.66 3.48 3.32 3.21 3.11
226                     9.51 9.51 9.51 9.46 9.17 8.52 7.55 6.74 5.94 5.21 4.65 4.11 3.76 3.49 3.34 3.17 3.02 2.89 2.81 2.74
251                     9.51 9.51 9.51 9.35 8.78 7.86 6.70 5.89 5.13 4.45 3.96 3.48 3.20 2.99 2.88 2.75 2.63 2.53 2.47 2.42
276                     9.51 9.51 9.48 9.09 8.19 7.05 5.81 5.06 4.38 3.78 3.36 2.95 2.73 2.56 2.49 2.39 2.30 2.22 2.19 2.15
301                    9.51 9.51 9.39 8.61 7.40 6.16 4.93 4.29 3.70 3.18 2.84 2.49 2.33 2.20 2.16 2.08 2.02 1.96 1.94 1.92
326                     9.51 9.50 9.14 7.88 6.48 5.25 4.10 3.59 3.10 2.67 2.40 2.11 1.99 1.90 1.88 1.83 1.78 1.74 1.73 1.72
351                     9.51 9.46 8.64 6.93 5.49 4.37 3.37 2.97 2.59 2.24 2.03 1.78 1.70 1.64 1.64 1.60 1.57 1.55 1.55 1.54
376                     9.51 9.28 7.82 5.82 4.52 3.57 2.72 2.44 2.15 1.87 1.71 1.51 1.46 1.42 1.44 1.41 1.39 1.38 1.39 1.39
401                     9.51 8.74 6.68 4.69 3.62 2.87 2.18 2.00 1.78 1.56 1.44 1.28 1.26 1.23 1.26 1.25 1.24 1.23 1.25 1.26
426                     9.49 7.61 5.36 3.62 2.82 2.27 1.73 1.62 1.47 1.30 1.22 1.09 1.08 1.07 1.11 1.11 1.11 1.11 1.13 1.15
451                    9.20 5.91 4.03 2.68 2.15 1.77 1.36 1.32 1.21 1.08 1.03 0.92 0.93 0.93 0.98 0.98 0.99 1.00 1.03 1.05
476                     7.67 3.99 2.83 1.92 1.61 1.37 1.07 1.06 1.00 0.90 0.87 0.79 0.81 0.82 0.86 0.88 0.89 0.90 0.93 0.96
501                     4.37 2.32 1.87 1.33 1.18 1.05 0.83 0.86 0.82 0.75 0.74 0.67 0.70 0.71 0.77 0.78 0.80 0.82 0.85 0.87
526                     1.41 1.16 1.17 0.89 0.86 0.79 0.65 0.69 0.68 0.63 0.63 0.57 0.61 0.63 0.68 0.70 0.72 0.74 0.78 0.80
551                     0.24 0.50 0.69 0.59 0.61 0.60 0.50 0.55 0.56 0.53 0.53 0.49 0.53 0.55 0.61 0.63 0.65 0.67 0.71 0.74
576                     0.02 0.19 0.39 0.38 0.43 0.45 0.39 0.44 0.46 0.44 0.45 0.42 0.46 0.49 0.54 0.57 0.59 0.62 0.65 0.68
601                    0.00 0.07 0.21 0.24 0.30 0.33 0.30 0.36 0.38 0.37 0.39 0.36 0.40 0.43 0.48 0.51 0.54 0.56 0.60 0.63
626                     0.00 0.02 0.11 0.15 0.21 0.25 0.23 0.29 0.31 0.31 0.33 0.31 0.35 0.38 0.43 0.46 0.49 0.51 0.55 0.58
651                     0.00 0.01 0.05 0.09 0.14 0.18 0.18 0.23 0.26 0.26 0.28 0.27 0.31 0.34 0.39 0.42 0.45 0.47 0.51 0.54
676                     0.00 0.00 0.03 0.05 0.10 0.14 0.14 0.19 0.21 0.22 0.24 0.23 0.27 0.30 0.35 0.38 0.41 0.43 0.47 0.50
701                     0.00 0.00 0.01 0.03 0.07 0.10 0.10 0.15 0.18 0.18 0.21 0.20 0.24 0.27 0.32 0.35 0.37 0.40 0.44 0.47
726                     0.00 0.00 0.01 0.02 0.05 0.07 0.08 0.12 0.15 0.16 0.18 0.17 0.21 0.24 0.29 0.31 0.34 0.37 0.40 0.43
751                     0.00 0.00 0.00 0.01 0.03 0.05 0.06 0.10 0.12 0.13 0.15 0.15 0.19 0.22 0.26 0.29 0.31 0.34 0.37 0.40
776                     0.00 0.00 0.00 0.01 0.02 0.04 0.05 0.08 0.10 0.11 0.13 0.13 0.17 0.19 0.23 0.26 0.29 0.31 0.35 0.38
801                     0.00 0.00 0.00 0.00 0.01 0.03 0.04 0.06 0.08 0.09 0.11 0.11 0.15 0.17 0.21 0.24 0.27 0.29 0.32 0.35
826                     0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.05 0.07 0.08 0.10 0.10 0.13 0.16 0.19 0.22 0.25 0.27 0.30 0.33
851                     0.00 0.00 0.00 0.00 0.01 0.02 0.02 0.04 0.06 0.07 0.09 0.09 0.12 0.14 0.18 0.20 0.23 0.25 0.28 0.31
876                     0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.05 0.06 0.07 0.08 0.11 0.13 0.16 0.19 0.21 0.23 0.26 0.29
901                     0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.03 0.04 0.05 0.07 0.07 0.09 0.11 0.15 0.17 0.19 0.22 0.25 0.27
926                    0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.03 0.04 0.06 0.06 0.08 0.10 0.13 0.16 0.18 0.20 0.23 0.26
951                     0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.04 0.05 0.05 0.08 0.09 0.12 0.14 0.17 0.19 0.22 0.24
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ss

et
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976                     0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.03 0.04 0.05 0.07 0.09 0.11 0.13 0.15 0.18 0.20 0.23
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Chapter 7 Further Applications 
This chapter demonstrates the applications of SCOs in project valuation, risk 

management and financial derivatives pricing.  
 
§7.1 Milestone Project Valuation 
 This section proposes the Milestone Projection Valuation (MPV) method for 
multi-stage projects. The projects setting some critical milestones which should be 
achieved sequentially are called milestone projects (see Figure 7.1 for example). The 
milestone projects fail if any one of the serial milestones is not completed. The 
milestone projects are very common in real situations, including R&D management, 
manufactures, technology development, etc.. Originally, the milestone projects are 
valuated by methods including the net present values (NPV) and decision trees. The 
NPV method valuates a project under a rigorous assumption that all future cash flows 
are certain. Obviously, the uncertainty is ignored in the NPV method and results in 
symmetric underestimates. Recently, the popular real option approach is applied for 
flexible consideration and reasonable explanation. Under the framework of financial 
option theory, the real option approach decomposes the project valuation as several 
parameters, including the present value, costs, time to maturity, value uncertainty 
(volatility) and interest rate. Most of the existing real option studies for multi-stage 
milestone project valuations use one-fold options, while others apply multi-fold 
options under the assumption of constant parameters through the whole process 
(Casimon et al., 2004). However, the parameters often change due to the milestone 
completion and the project values will be misestimated if parameters are assumed 
constant through all the time. The one-fold real option approach is even inadequate 
for a multi-stage project. 

New Drug 
 

FDA Approval

Phase 3 

Phase 2 
Clinical 
Phase 1 

Testing 
Pre-clinical 

Discovery 
Failure 

Failure 

Failure 

Failure 

Failure 

Failure 
Figure 7-1 : A Milestone Project Example: the New Drug Development (NDA) 
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    Based on Theorem 3.2 & 3.3, this paper proposes a method called Milestone 
Projection Valuation (MPV) for multi-stage project valuation. Each milestone 
completion has the choice to enter the next stage or not, and the sequential project 
milestone can be viewed by the sequential compound CALL options. The MPV 
method adopts the results of SCOs and the project is regarded as the corresponding 
asset in SCOs. Under the same denotations as Theorem 3.2, the MPV valuation 
formula is expressed as  
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               ......(7.1.1) 
where the strikes represent the cost at different stages; the volatilities come from the 
project value fluctuation and the dividend rates are replaced by the depression rates. 

The option features ( ) equal one (for any i, g) due to the underlying compound 

calls, hence disappear in the MPV pricing formula.  

gi,Λ

Compared with the literature, the MPV not only applies multi-fold compound 
option theory, but also allows the piece-constant parameters to vary with the distinct 
stages. The different parameters of different stages can adapt to the change of project 
nature after the milestone completion. More phenomena can be discovered from the 
parameter comparisons. Under the MPV model, the implicit "project valuation 
experience" is decomposed as the parameter estimation. 

The new drug applications (NDAs) may be the most famous and significant 
milestone projects. Under the consideration of human health, the NDAs are 
well-regulated including the stages of pre-clinical trial, phase 1, phase 2, phase 3 and 
approval phase. Each stage has a definitive milestone. The time- and cost-consuming 
NDAs are the cores of the pharmaceutical companies because the R&D results from 
NDAs dominate their future! The MPV model can enhance the NDA valuation under 
a more reasonable framework and improve the R&D management of these companies.  
 
§7.2 Complex Project Valuation 
 Projects with tremendous amounts value often have great contribution and 
impact to the society and catch a lot of public attention. In order to make sure of being 
executed smoothly, these projects tend to enhance project flexibility by insetting many 
options, such as growth, switch, abandon, shutting down, contraction or expansion 
(Trigeorgis 1993, 1996). However, these embedded options will also make the project 
structure complicated. For this kind of projects, the valuation by real option approach 
regarding the project still as only a one-fold option is not reasonable. Realistic and 
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rational valuation should take the project structure into consideration.  
The different options and their interactions can be evaluated separately by 

different SCOs. The MPV case discussed in the previous subsection is just a special 
case of complex project valuation using SCOs. The effect of revenue guarantee, for 
example, in a build-operate-transfer (BOT) project of utility construction can be 
evaluated by SCOs. A company signs the BOT contract with the government to build 
and operate the construction while related revenue belongs to the company during 
operating period. The guarantee promised by government ensures the company's 
minimum revenue. If the actual revenue is less than the minimum, the deficit is 
subsidized by the government. The company hence owns the operating revenue and 
the put option written by the government. The put option, with the guarantee amount 
as its strike price, can enhance the incentives for the BOT project. At the preparation 
period time prior to construction, the put option can be considered as a 2-fold 
compound option, call on put. The add-in call option, with the construction cost as its 
strike price, represents the right to participate in the construction and share the 
potential revenue. 

Similarly, the revenue guarantee of the expansion can be regarded as a 3-fold 
SCO, call on call on put, at the preparation period. Assume the government will offer 
corresponding revenue guarantee for the expansion if there is an expansion right 
embedded in the BOT project. The revenue guarantee of the expansion can be viewed 
as another put option with its own guarantee amount as the strike price. At the main 
construction time, the put option can be considered as a 2-fold compound option, call 
on put. This add-in call option, with the expansion cost as it strike price, stands for the 
expansion right. At the preparation time, the right can be evaluated as a 3-fold SCO: 
call on call on put. The last add-in call option, with the proportional main construction 
cost as it strike price, represents the right to participate in the main construction. Note 
that the main construction cost is divided proportionally as the strike prices of both 
call options for the guarantee of main and expansion construction. The call on call, 
stacked on the put option, represents the sequential feature that the expansion right 
exists only when the main construction is executed. The SCOs discussed in this study 
make the evaluation of complex options possible.  

The project valuation considering the intrinsic structure is more logical and 
acceptable, and is applied gradually (eg: Huang and Chou, 2006). The adoption of 
SCOs for project valuation can broaden and expand the real option application. 
Besides, the sensitivity analysis is more visible under this situation. The change of 
risk source (such as the asset price, its variance, interest rate) will have different 
impacts on different parts of the project. The impacts can be quantified by the Greeks 
of SCO's (Thomassen and Van Wouwe, 2002; Lee et al., 2007) and can be applied for 
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risk management.  
 
§7.3 American Options 
 The American options and their exotic styles can be also valuated analytically 
with SCOs. As is widely known, the optimal time to exercise the American call is 
only at the time immediately before ex-dividend of the underlying stock. Hence the 
valuations of American calls in the absence dividends are similar to that of European 
ones. The Roll-Geske-Whaley model (Roll, 1977; Geske, 1979b, 1981; Whaley, 1981) 
gives the explicit form for American calls with single dividend by replication of 
European calls and a 2-fold conventional compound option, while Cassimon et al. 
(2007) extend their results to the cases of multiple dividends. Geske and Johnson 
(1984) propose the American put's closed form formula, which is actually an exotic 
SCO form.  

The SCOs can be adopted for the derivation of pricing formulas for American 
puts on stocks paying multiple dividends. Besides, the closed form of exotic 2-fold 
compound options, such as European option on American options, can be proposed 
explicitly with SCOs.  
 
§7.4 Risk Management 

SCOs applied as the instruments for risk control are discussed in this subsection, 
such as for volatility risk, mortgage pipeline risk and weather risk.  

 (1) Volatility Risk  
 Volatility risk, the unobservable but crucial variable, determines the option 
premiums and the order of the financial system. The notorious Long Term Capital 
Management (LTCM) crash is just one of the evidences (Lowenstein, 2000). 
Originally, the volatility index is designed for hedging volatility fluctuation, e.g. the 
CBOE Volatility index (VIX). Brenner et al. (2006) and Zsembery (2004) propose 
exotic 2-fold compound options, the option on a forward-start straddle, in order to 
improve the efficiency and tradability of volatility hedging. 
 Under this framework, SCOs can enhance the effectiveness of volatility hedging. 
The plain straddle could be replaced with exotic straddles (different strikes and 
maturities) or complex chooser option (Rubinstein, 1992). Under identical conditions, 
the complex chooser option is cheaper than the straddle and thus more attractive. The 
compound option written on these exotic straddles or chooser options can be valuated 
precisely through SCOs.  
 
 (2) Mortgage Pipeline Risk 
 Mortgage pipeline risk, the unexpected irregular payment caused mainly by 
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interest rate fluctuation, has been widely hedged by compound option (Bhattacharya, 
2005). If the interest rates rise, the mortgage loans fall out of the pipeline and 
resulting in the lenders' loss. The pipeline risk will be amplified when the loans have 
been sold. The 2-fold calls on put options provide mortgage corporate the rights to 
buy put options with cheaper cost. The put options allow the lender to sell the 
mortgage with higher strike prices to cover loss. There is no need to exercise the put 
options while the interest rate decreases and this save the cost accordingly. 
 This kind of pipeline risk hedge can be enhanced through the long position of a 
pool of SCOs. The central banks (e.g., the FED in the U.S.) often take sequential 
actions of interest rate hiking to overcome inflation, so the pools of SCOs 
(combination with 2-fold, 3-fold, etc.) let the lenders make decisions depending on the 
up-to-date situations with cheaper expenses.  The SCOs can also be used for 
valuating the mortgage with prepayment under the option-adjusted-spread (OAS) 
framework.  
 (3) Weather Risk 
 Insurers and reinsurers pay more attention to the ecosystem evolution than single 
accidents. They also are more willing to provide long-term management of weather 
risk than most trading houses. Thus compound options are introduced to give 
reinsurers (e.g., Swiss Re) the rights to buy an option on the weather risk at a later 
time (Gakos, 1999). The split-fee feature of compound options can reduce the cost the 
long-maturity and high-amount hedge of weather risk.  
 SCOs can offer better hedge effects than 2-fold compound options. Through the 
combination of different fold/ different maturities SCOs, insurers with a slight 
up-front premium can lock in coverage at different future exercise dates with 
additional lower premiums.  
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Chapter 8 Numerical Examples 
 This chapter illustrates 2 examples of SCO applications, including the flexibility 
evaluation of revenue guarantee and currency hedging by the pool of SCOs. 
 

§8.1 Revenue Guarantee 
 This section illustrates a SCO application of BOT (Build-Operate-Transfer) 
project valuation. In this example, a 2-fold option (call on put) and a 3-fold SCO (call 
on call on put) are used to evaluate the promise value of revenue guarantee.  
 

§8.1.1 Description for the Revenue Guarantee 
 Assume the government issues a BOT project of electric power plants in order to 
increase power supply. Assume the government and the company sign the contract at 
starting time T0. The project starts from 1.5 years of preparation period, which follows 
with 4-year construction. After the construction, there will be operation period of 30 
years. If the project is constructed and operated well, there can be an expansion at the 
24-year. The expansion, with scale size 1aα  proportional to the original one, takes 2 
years and won't extend the operation time of the project. The Figure 8.1 illustrates the 
schedule of the BOT project.  
 
 Preparation            expansion    expansion operation 

 construction        main operation 

 

T0   T1  T2                       T3   T4                     T5 

0 1.5   4                       24   26                    34 

 
 
 
 Figure 8-1: The time intervals of the example of revenue guarantee 
 

For the government, the BOT project can increase the power supply without huge 
construction cost at one time. Hence the government will try its best to increase the 
project's investment incentives, such as the annual revenue guarantee. Revenue 
guarantee is the minimum revenue promised by the government. If the annual 
operation revenue is less than the guarantee amount, then the deficit is subsided by the 
government. Compared with the once huge construction cost, the payment of the 
revenue guarantee from the government is less and distributed over many years, and 
causes less burdens to the government. In addition, the guarantee can strengthens 
companies' incentives toward the BOT project, thus increase the plausibility of project 
execution.  
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 The revenue guarantee can be regarded as the put option written by the 
government and owned by the company. Their Payoffs are exhibited in Figure 8.2 (a) 
and (b) respectively. 
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 Figure 8.2 (a) The payoff of the put option written by the government 
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Figure 8.2 (b) The payoff of the put option owned by the company  
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 Figure 8.2 (c) The operation payoff of the company 
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Figure 8.2 (d) The total payoff of by the company 
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The payoff from the operation is shown in Figure 8.2 (c), which means that the 
company hold simultaneously downside risk and upside potential. Downside risk can 
be eliminated by holding the revenue guarantee and thus the company can retain the 
upside potential (Figure 8.2(d)). 
 The value of the revenue guarantee, which essentially is the value of the put 
option, can be regarded as the expected value of the company's extra gain or the 
expected value of the government's payment. However, the revenue guarantee should 
be considered as a multi-fold SCO to coincide with preceding sequential decisions. 
The following section describes details about the revenue guarantee with numerical 
examples. 
 

§8.1.2 Guarantee Evaluation 
 Assume the government promises every year's revenue guarantee ( ) to the 
company, which lasts for 30 years. The expansion part also has every year's revenue 

guarantee ( ) for 8 years. All the construction costs are paid by the company and 

the revenue are belong to the company. The preparation period is 1.5 years before the 
2.5-year's construction period. Assume there is no inflation. In other words, the 
inflation is accounting as parts of the risk-free rate. No depression rate (q=0) in this 
example. The construction payment occurs at its end time. The parameter setting is 
listed as follows. 

1
2
aK

2
3
aK

The main construction cost (at Time T2): =50,000,000,000. 1
1
aK

The expansion construction cost (at Time T3): . 05.1*1
11

2
2

a
a

a KK α=

The each year's guarantee revenue of original construction (at time T1): 
=100,000,000. 1

2
aK

The each year's guarantee revenue of expansion construction (at time T3): 
 05.1*1

11
2

3
a

a
a KK α=

The expansion scale coefficient (comparing to the original scale): 1aα =0.3. 
 The initial time: T0=0 
    The start time of main construction: T1=1.5  

The end time of main construction and the start time of operation: T2=4 
The start time of expansion construction: T3=24. 
The end time of expansion construction and the start time of the expansion 

operation: T4=26. 
The end time of all operation and transfer the plant to the government: T5=34. 
The risk-free rate (through time): r=3.5%. 
The annual volatility of the underlying revenues (through time):σ =0.5.  
The estimated average revenue of each year (at time T0): S0=2,000,000,000. 
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 For the revenue guarantee of the main construction at time T1, it can be regarded 

as the guarantee revenue plus 30 1-fold forward-start put options (∑ ) written 

by the government to the company. These forward-start options can be regarded as 
European options because their dividend rates are zero. The company should pay the 
construction cost ( ) as the "option premium". It should be noted that the main 
construction cost  is shared as the strike price of both the main guarantee and the 

expansion one. The strike price of the option ( ) is the revenue guarantee ( ).  
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 At time T0, the revenue guarantee of the main construction can be considered as 

2-fold compound options (call on put) ∑ , whose strike prices are the 

proportional construction cost 

=

Ψ
30

1

1
)(,2

u

a
u

121

1

1

1
2

aaa

a

a

aK
αττ

τ
τ +

× . Thus the payoff of a individual 

option at time T1 is ⎥
⎦

⎤
⎢
⎣

⎡
+

×−Ψ=Ψ
121

1

1

1
21

)(,11
1

)(,2 ,0max)(
aaa

a

a

a
a

u
a

u
KT

αττ
τ

τ
. At time T0, the 

payoff is ),0(max~)(
121

1

1

1
21

)(,10
1

)(,2 ⎥
⎦

⎤
⎢
⎣

⎡
+

×−Ψ=Ψ
aaa

a

a

a
a

u
a

u
KET

αττ
τ

τ
.  

 Similarly, the revenue guarantee of the expansion construction can be regarded 
as 3-fold SCOs (call on call on put). At time T3, the SCOs can be regarded as 8 1-fold 

forward-start put options ( ) written by the government to the company. The 

company pays the main construction cost and the expansion cost as the "option 

premium". The strike price of the option ( ) is the revenue guarantee amount of 

the expansion ( ). At time T1, the revenue guarantee of expansion can be 

considered as 2-fold SCOs (call on put), whose strike price is the proportional cost of 
expansion construction . It means that the company should pay the expansion 
cost in order to gain the revenue guarantee. Thus the payoff of the individual option is 
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 At time T0, the main revenue guarantee is 4.437 billion worth, which is evaluated 
by 30 2-fold options (call on put). Thus the company is expected to gain 4.437 billion 
from the government to eliminate the downside risk of main operation. The company 
can get at least 6 billion in 30 years. Similarly, the revenue guarantee of expansion is 
0.287 billion worth, which is evaluated by 8 3-fold SCOs (call on call on put). In other 
words, the company is expected to gain 0.287 billion from the government according 
to the revenue guarantee of expansion construction. There the company can get at 
least 1.6 billion in last 8 years due to expansion.  

The sensitivity analysis is listed as follows.  Table 8.1 represents the guarantee 
amount sensitivity. The annual guarantee revenue of the expansion construction is 
associated with that of main construction. The 30-year guarantee revenue is the 
summation of 30 years' annual guarantee. Guarantee worth (30-year) is the value of 
the revenue guarantee, which is evaluated by 2-fold compound options. It is found 
that guarantee worth decreases while the guarantee revenue increase. It means that the 
raise of guarantee amount can increase the guaranteed revenue hugely and thus results 
in the subtle reduce of the guarantee worth. In other words, the increase of the 
certainty part (guarantee amount) will diminish the uncertainty part (guarantee worth). 
Similarly, the opposite direction of the guarantee amount and guarantee worth also 
appears in the expansion construction.  
 

Table 8.1: The Guarantee Sensitivity of the Guarantee Example (Unit: 10^9 NT)
Annual 
Guarantee 
Revenue 

0.100 0.200 0.300 0.500

30-year 
Guarantee 
Revenue 

3.000 6.000 9.000 15.000

 
Main 

Construction 
 

Guarantee 
Worth(30yr) 6.096 4.436 3.162 1.451
Annual 
Guarantee 
Revenue 

0.0315 0.063
0.094

5 
0.158

8-year 
Guarantee 
Revenue 

0.252 0.504 0.756 1.260

 
Expansion 

Construction 
 

Guarantee 
Worth(8yr) 0.884 0.794 0.708 0.544
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 Table 8.2 represents the sensitivity analysis of volatility. The volatility of the 
annual revenue is assumed constant through time. The table shows that the guarantee 
worth, which is evaluated as option summation, increases with the volatility. The 
results correspond with general intuition.  
 

Table 8.2: The Volatility Sensitivity of the Guarantee Example (Unit: 10^9 NT) 

Volatility 0.300 0.400 0.500 0.600
Guarantee Worth (30yr) of  

Main Construction  0.932 2.467 4.436 6.631
Guarantee Worth (8yr) of 
Expansion Construction 0.001 0.137 0.794 1.517

 
The sensitivity of estimated annual revenue is tabulated in Table 8.3. The 

guarantee worth decreases while the estimated annual revenue increases, which is 
consistent with put's behavior. In other words, the increase of the estimated annual 
revenue will also increase the certainty of high revenue, thus causes reduce of the 
uncertainty (guarantee worth). 
 
 Table 8.3: The Sensitivity of Estimated Annual Revenue of 

the Guarantee Example (Unit: 10^9 NT) 

Estimated Annual Revenue S0 0.500 1.000 2.000 3.000
Guarantee Worth (30yr) of  

Main Construction  22.581 12.972 4.436 1.691
Guarantee Worth (8yr) of 
Expansion Construction 1.772 1.321 0.794 0.496

 
 
 
 
 
 
 Table 8.4 exhibits the interest rate sensitivity. The hike of interest rate results in 
the guarantee worth decrease because the discounting of high interest rate will 
diminish the guarantee's value. 
 

Table 8.4: The Interest Rate Sensitivity of the Guarantee Example 
(Unit: 10^9 NT)

Interest rate r 2.5% 3.0% 3.5% 4.0%
Guarantee Worth (30yr) of  

Main Construction  
4.815 4.623 4.436 4.256

Guarantee Worth (8yr) of 
Expansion Construction 

2.207 1.440 0.794 0.309
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§8.2 Currency Hedging 
 Assume an American company participates in a project auction and may have to 
buy Japanese products sequentially in the future. The company wants to hedge the 
appreciation risk of Japanese Yen. It can take a pool of SCOs, instead of a strip of 
futures or a stack of futures. The pool including a 1-fold European put, a 2-fold 
compound option (call on put) and a 3-fold SCO (call on call on put). Compared with 
the strip/stack of futures, the SCO pool is a better risk management instrument 
because the downside risk is well protected.  
 Options in the pool are with the final strike price 110. The 2-fold and 3-fold 
option should pay the fold payment (5 Yen) when enter the next fold.  

The parameters of this example are set as follows. 
The current exchange rate= 123.8 (Yen/USD).  
The final strike price =110. 
Payment for each fold =5.  
The domestic (US) risk-free interest rate: r=5% 

 The foreign (Japanese) risk-free interest rate: q=rf=1% 
 The annual volatility of the exchange rate: σ =0.4.  
 The time interval for each fold: 0.5 yr.  
  
 The 1-fold put option is priced as 6.51 (Yen), while the 2-fold (call on put) and 
the 3-fold (call on call on put) are valued as 6.69 and 5.86, respectively. The 
following tables show the sensitivity analysis of this example.  
 Table 8.5 represents the exchange rate sensitivity. It is found that the value of the 
SCO pool decrease while the current exchange rate rises. The result corresponds with 
the behavior of put option. The volatility sensitivity is tabulated in Table 8.6. The 
table reflects the intuition that higher volatility causes higher option prices. 
 

Table 8.5 The Exchange Rate Sensitivity of the Currency Example 
(Unit:Yen) 

S 115.00 123.80 130.00 
1-fold 9.22 6.51 5.05 
2-fold 9.04 6.69 5.38 
3-fold 7.85 5.86 4.73 

  
Table 8.7 and 8.8 exhibit the sensitivity of domestic and foreign interest rate, 

respectively. When the domestic (US) interest rate hikes, the US dollar becomes more 
strengthen and results in the exchange rate decrease. Nevertheless, the foreign 
(Japanese) interest rate raising will cause the exchange rate increase. The result can be 
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explained according to Interest Rate Parity (IRP).  
 

Table 8.6 The Volatility Sensitivity of the Currency Example 
(Unit:Yen) 

Volatility 0.3 0.4 0.5 
1-fold 3.77 6.51 9.42 
2-fold 3.32 6.69 10.47 
3-fold 2.38 5.86 10.03 

 
Table 8.7 The Domestic (US) Interest Rate Sensitivity of the 
Currency Example                              (Unit:Yen) 
r 4% 5% 6% 
1-fold 6.71 6.51 6.32 
2-fold 7.08 6.69 6.64 
3-fold 6.37 5.86 5.37 

 
Table 8.8 The Foreign (Japanese) Interest Rate Sensitivity of the 
Currency Example                              (Unit:Yen) 
 rf (q) 0.5% 1% 2% 
1-fold 6.43 6.51 6.68 
2-fold 6.55 6.69 6.99 
3-fold 5.67 5.86 6.23 

 
 The sensitivity of final strike and fold payment are shown in Table 8.9 and Table 
8.10, respectively. The increase of final strike will result the value of the put-style 
SCO pool. The fold payment can be regarded as another premium payment. Table 
8.10 prevails the fact that SCOs can support decision postponement, which is one of 
SCOs' advantages. The higher SCO premium payment at current time can enjoy less 
fold payment in the future.  
 

Table 8.9 The Strike Sensitivity of the Currency Example 
                              (Unit:Yen) 

final Strike 100 110 130 
1-fold 3.54 6.51 13.16 
2-fold 3.72 6.69 13.05 
3-fold 3.10 5.86 11.79 
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Table 8.10 The Fold Payment Sensitivity of the Currency Example 
                              (Unit:Yen) 

payment 1 5 10 
2-fold 9.51 6.69 4.30 
3-fold 11.32 5.86 2.12 
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Chapter 9 The Information Management System of  
Projects and Financial Derivatives Evaluation 

 This chapter illustrates the information management system of projects and 
financial derivatives evaluation. The system is designed based on the main idea that 
all projects and derivatives can be decomposed as and evaluated individually by other 
simple components. The system can be applied as knowledge management 
instruments for the price discovery.  
 The system includes six main steps, which are stated as follows. 
Step 1: Project/Derivatives Decomposition. The target (such as projects or financial 

derivatives) is decomposed as different excluding parts in order to simplify the 
evaluation.  

Step 2: Parameter Setting. The parameters of decomposed components are set in this 
step. 

Step 3: Calculation of Individual Components. According to the parameters set in 
the previous step, individual components are evaluated separately here. 

Step 4: Aggregation. All the evaluation results are aggregated in step 4. The 
interactions of disjoint parts are taken into consideration in this step. The values of 
projects or financial derivatives are available here.  

Step 5: Sensitivity Analysis. The scenarios of the projects and derivatives are 
presented in order to enhance the risk management.  

Step 6: Visualization. The results of previous steps are visualized to facilitate usage. 
The user interface is illustrated as Figure 9.1, while the six-step framework of the 
system is exhibited in Figure 9.2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9.1 The illustrated User Interface of the System 
 

 42



 
 

Start  
 
 

Step 1: Project/Derivatives Decomposition  
 
 
 

Step 2: Parameter Setting  
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End 
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Figure 9.2: The Procedure of the Information Management System of 
Projects & Financial Derivatives Evaluation 
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Chapter 10 Conclusions 
Motivated by the current inadequate methods for complex project valuation, the 

present study defines and derives the pricing formula of sequential compound options 
(SCOs), where the parameters vary over time/fold and each fold option may have 
different put/call attribute. The partial derivative of a multivariate normal integration 
is derived in this paper as a special case of Leibnitz's Rule, and is used to derive the 
sensitivities of SCOs. Besides, SCOs allow puts and calls alternating arbitrarily and 
are therefore suitable for project valuation with sophisticated structures such as 
internal options interaction and fold stack-up.  

Previous results have analyzed 2-fold puts/calls-alternating compound options or 
multi-fold "sequential compound calls" where all options are of call-type. Fold-wise 
differences are rarely taken into consideration. The SCOs presented in this paper have 
the following qualities. First of all, multi-fold SCOs enable arbitrary option feature 
(call/put) assignments, greatly enhancing the range of practical applications that can 
be treated by compound option theory. Second, in real-world problems option 
parameters often vary over time; SCOs enabling random parameters can capture the 
"sequential" features. Third, SCOs can accommodate an arbitrary number of folds.  

Furthermore, SCOs can be used to demonstrate some features of cumulative 
multivariate normal distributions, including a special form of Leibnitz's rule. The 
sensitivities of SCOs to asset price (and its change) and interest rate (under the case of 
interest rate fold-wise) are also derived.  
 SCOs not only generalize the methodology of European Options (Black-Scholes, 
1973), 2-fold compound options (Geske, 1977; 1979) and sequential compound calls 
(Thomassen & Van Wouwe, 2001, 2003; Agliardi & Agliardi, 2005), but can be 
evaluated by a linear combination of the asset and strike prices weighted by different 
variate normal integrations. Corresponding to intuitions, an SCO can be seen as a 
multi-dimensional options extending from the work of Black-Scholes (1973) and 
Geske (1977; 1979). The changing numéraire method enriches the SCOs pricing 
formula derivation with more financial implications than P.D.E. method. The 
Leibnitz's rule can be used to decompose the partial differential of (k+1)-variate 
integration into two parts: a k-variate normal integration and an integration with the 
integrand of a partial derivative. This paper proves that, under the multivariate normal 
cases, these two parts can be presented in a unified form. Based on the above results, 
the sensitivities of SCOs can be expressed explicitly as a generalized version of those 
found by Black-Scholes (1973), Geske (1977; 1979) and Thomassen & Van Wouwe 
(2002). 
 The six-step recursive algorithm for SCOs evaluation is proposed in order to 
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clarify the computing details. The evaluation of SCOs is not easy due to the nested 
loops, EAP calculation and the computation of multivariate normal integration. These 
difficulties all result from the multiple fold features of SCOs. Numerical examples of 
3-fold SCOs are illustrated. The SCOs proposed in this study can extend the 
compound option methodology and broaden the popular real option applications.  

SCOs can enhance and broaden the use of compound option theory in real option 
and financial derivative fields. Real options often incorporate multiple options of 
different types with sophisticated interactions, but such situations can be evaluated by 
aggregating various SCOs. Even milestone projects, which must decide whether or 
not a project has terminated according to the milestone achievement, can be evaluated 
by the use of fold-wise SCOs. Compared with the constant volatility assumed in in 
Casimon et al. (2004), allowing the volatilities and interest rates to vary for different 
periods makes this method of project valuation more precise and flexible.  

Risk management is another SCO application. Volatility risk, prepayment risk of 
mortgage and weather risk are some the most important issues of concerned to finance 
institutions. The advantages of SCOs, including the cheaper premium, decision 
postponement, split-fee and flexibility, can enhance risk management effectiveness 
through SCO adoption.  

Numerical examples of SCOs proposed in this study, including evaluation of 
government revenue guarantee and currency hedging, shows that SCOs can be applied 
widely in both real option and financial derivative field. Besides, the information 
management system with SCOs as its core module proposed here can support the 
evaluation of projects and financial derivatives. 

Finally, a number of complex financial derivatives can be developed or evaluated 
using SCOs in the same way that chooser options and capletions can be priced by 
2-fold compound options. These applications of SCOs with real-world cases will be 
the subject of probable future researches. Some topics for future study are listed 
below.  
 1. The uncertainty of the fold time intervals is an important issue for real option 
application. This problem can be solved by simulation.  
 2. The piecewise method can facilitate the computation procedures.  
 3. Discovery the forward rate by the piecewise method and optimization 
methodology. . 
 4. Examine the accuracy and consistency of SCOs routines. 
 5. Study the option with both European and American type in different time 
interval. This option is also common in real world application. According to Geske 
and Johnson (1984), the result seems like a exotic SCO. 
 6. Discovery the relation between simultaneous compound option and SCOs. 
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Appendix A: Proof of Theorem 3.1 
This theorem is proved by induction. When i=1, )( 01 TΨ  with Λ1,1=1 and 

Λ1,1=-1 are the vanilla call and put formulas respectively. When i=2,  is the 
2-fold compound option, such as call on call (Λ1,1=1, Λ2,2=1), put on call (Λ1,1= -1, 
Λ2,2=1), call on put(Λ1,1=1, Λ2,2= -1), and put on put(Λ1,1=-1, Λ2,2=-1). These 
generalized 2-fold cases can be extended easily from Chen (2002) and Lajeri-Chaherli 
(2002).  

)( 02 TΨ

Assuming that Equation (3.2.1) is true for the i-fold compound option , it 
will be shown that Equation (3.2.1) is also true for the (i+1)-fold compound option, 
for any Λg,g, 

)( 0TiΨ

11 +≤≤ ig . 
Because the underlying asset of )( 01 Ti+Ψ  is )( 1TiΨ , instead of , the start 

time of the i-fold compound option is shifted from T0 to T1. All pieces of notation for 
the i-fold compound option are changed simultaneously according to this time shift. 
(In other words, v=1). 
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  At T1, the maturity time of the i+1-fold compound option, the option price can be 

expressed as ])(max[)( KTT Λ−ΨΛ=Ψ+ . At its starting time T0, the option price 

is given by 
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according to the fundamental theory of asset pricing (Baxter and Runie, 1996). E~  is 
the expectation operator under the risk-neutral measure, and F0 denotes the 
information available at time T0 from the asset price.  

Under the assumption that the asset price follows a geometric Brownian motion, 
it can be expressed as  
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where z is a standard normal random number z～N(0,1) , with density function f . 
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)( 01 Ti+Ψ  is a function of S 0 and hence a function of z. Thus the SCO price can be 
represented as 
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Because the integration range is either [-∞, -bi+1,1] or [-bi+1,1 ,∞], depending on  
(the sign of S 1), the compound option can be expressed in the unified form 
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Substituting Equation (A.1) into the previous equation, it can be obtained that 

[ ] [ ]{ }

[ ] [ ]{ }

dzzfKe

dzzfbKee

dzzfaSeeT

i

i

T

T

i

i

jT

T

T

T

i

i

iT

T

T

T

b
i

duur

b
jjhgjgigijj

duuri

j
ji

duur

b
iihgigigii

duuq

ii

duur

i

)(

)(~  

)(~  )(

1,1

1,1

1

0

1,1

1,1

1

1

1

0

1,1

1,1

1

1

1

0

11,11,1

)(

1,*,11,*,1,11

)(

1
1,11,1

)(

1,*,1 1,*,1,11

)(

1,11,1

)(

01

∫

∫∑

∫

∞Λ

−
+

−

∞Λ

−
××+++

−

=
++

−

∞Λ

−
××++

−

++

−

+

+

+

+

+

+

+

+

+

ΛΛ
∫

−

Λ
∫

ΛΛ
∫

−

Λ
∫

ΛΛ
∫

=Ψ

ρ

ρ

;Ν

;Ν

 

3,12,11,1
~~~

+++ Ψ−Ψ−Ψ≡ iii .  
The following paragraphs derivates  explicitly. By Equation 
(A.3), S1 can be substituted by the representation of S0 and thus 

3,12,11,1
~ and ~ ,~

+++ ΨΨΨ iii

[ ] [ ]{ } ,~ ~ 
2
1~ 1,1

1,1

2
1

0

2
1

0

 1,*,1 1,*,1,1

)(
2
1

1,10

)(

1,11,1 dzaeSe
i

i

T

T

iT

T

b
iihgigigii

duuz

i

duuq

ii ∫
∞Λ

−
××++

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−−

+

−

++

+

+

+

Λ
∫

Λ
∫

Λ=Ψ ρ
π

σ

;Ν

where

.1 ,

)(

)()()(
2
1)()()ln(

~
1

1

1

0

1

0

1

0

2

222

1,1#

0

1,*, ig

duu

duuduuzduuuqur
S

S

a
g

g

T

T

T

T

T

T

T

Tig
gi ≤≤∀

−+⎥⎦
⎤

⎢⎣
⎡ +−+

=

∫

∫∫∫
+

+

++

σ

σσσ

 Let ∫−=
1

0

)(2
2

T

T

duuzz σ , so that the above equation can be written as 

 51



[ ] [ ]{ } 2 1,*,1 1,*,1,1
2
1

1,10

)(

1,11,1

1,1

1,1

2
2

1

0 ~  
2
1~ dzaeSe

i

i

iT

T

a
iihgigigii

z

i

duuq

ii ∫
∞Λ

−
××++

−

+

∫−

++

+

+

+

ΛΛΛ=Ψ ρ
π

;Ν  

where ig
za

a
g

ggi
gi ≤≤∀

−

+
=

+

+++ 1 ,
1 2

1,1

1,121,1
1,*,

ρ

ρ
. 

Then denote 21,13 zz i+Λ−= , hence  

( )
[ ] 3 1,*,

1 

2
1,11,

31,11,1,11,1
2
1

0

)(

1,11,1

1,11,1
2
31

0 ~ ~1

~
 

2
~ dz

zaeSe
ii

Ti

T

a

iihg

igg

gggigi
i

z
duuq

ii ∫
++

+ Λ−

∞
×

×+

+++++

−
∫−

++
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

Λ−

Λ−Λ
Λ=Ψ ρ

ρ

ρ
π

;Ν  

    =  [ ] [ ]{ }
)1()1(,,01)1(,1,110

)(

1,1   
1

0

+×+×++++

∫−

+ ΛΛ
+

iihgigigii

duuq

i HaSe
iT

T ;N

The last equation is obtained by Theorem 1 (a). The following derivation will 
demonstrate that [ ] [ ]

)1()1(,)1()1(,,0 ˆ
+×++×+

=
iihgiihgH ρ .  

According to Theorem 1 (a), H0,1,1=1; 12 ,,11,1,1,0 +≤≤∀Λ= − igH hhg ρ ; H0,g,h= 
H0,h,g; and H0,g,g=1, . 12 +≤≤∀ ig 12 +≤<≤∀ ihg , 

. ~

)(

)(

)(1)(1

,,,1

2

2

,1

1,*1,1
2

,11,1
2

,11,1,11,1,11,1,,0

0

0

hghgghT

T

T

T
gh

hghhgghhgghg

h

g

duu

duu

H

ρρ

σ

σ

ρρρρρ

=Λ=Λ=

Λ−Λ−+ΛΛ=

−−

−−−−−−

∫

∫  

According to the above statements, [ ] [ ]
)1()1(,)1()1(,,0

~
+×++×+

=
iihgiihgH ρ  and hence 

[ ] [ ]{ }
)1()1(,1)1(,1,110

)(

1,11,1
~  ~

1

0

+×+×++++

∫−

++ ΛΛ=Ψ
+

iihgigigii

duur

ii aSe
iT

T ρ;N . 

By a similar method, 2,1
~

+Ψi  and 3,1
~

+Ψi  can be derived: 

[ ] [ ]{ }.~  ~
,1,1,1

)(1

2
1,2,1

0

jjhgjgigijj

duuri

j
ji bKe

jT

T

××++

∫−+

=
+ ΛΛ=Ψ ∑ ρ;Ν . 

{ }1,11,111

)(

1,13,1

1

0
~

++

∫−

+ ΛΛ=Ψ ii

duur

i bKe
T

T N . 

Equation (3.2.1) is true for any i+1-fold compound option, provided it is true for the 
i-fold compound option. Consequently, Theorem 3.2 is proved. Q.E.D. 
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Appendix B: Proof of Lemma 3.1 

According to Theorem 3.2 (f), the  will exist only when the EAPs of the 

previous folds ( ,

igS ,#

iS ,#l 11 −≤≤− ig l ) exist. Thus the condition (a) holds. According to 

Theorem 5.1 (a), the option price )(~
ggi T−Ψ  is strict monotone and its sign is decided 

by . Hence it is discussed as the cases of  1,gi−Λ 11, +=Λ −gi  (condition (b)) and 

 (condition (c)), respectively. For condition (b),  has the same 

sign with the asset price and thus can ranges from zero to infinity to fit any 

nonnegative . For condition (c),  has the opposite sign with the asset 

price, then  will reach the maximum 
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3&2, ggi T−Ψ−  while the asset price is 

zero. Therefore the strike price  can NOT exceed the maximum in order to keep 

 exist. Q.E.D. 
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Appendix C: Proof of Theorem 3.3 
 

This theorem is proved by induction. The dynamics of related securities are 
exhibited before the induction procedures. Let T be a fixed maturity date and P~  be 

the risk-neutral measure. Let ][~ ⋅E  be the expectation operator under P~ . Given T 

satisfying let TT ≤ , 0
TP~  be the T-forward measure, that is, 

Pd
TTB

TDPd T ~
),(

)(~
0

= , where [ ])(~),( 0 TDETTB = . 

Under TP~ , it is known that the forward price, , is a martingale, for 

Let 
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Assume that the dynamics of the bond price and the underlying asset are 
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where ),()(),(~ TttTt BS σσσ −= . Because  is a martingale under ),( TtFS
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t ),(~~ σ−=  to cancel the drift term of Equation (C.1). Thus  
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Therefore, the dynamics of the forward price is obtained,  
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 Take the asset price S(t) as the numéraire, and the bond price is 
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 The exploited dynamics are used for the induction. The Equation (1) is true for 
i=1.  For the case Λ1,1=+1 is exhibited in Musiela and Rutkowski (1998, section 
15.1.2) and Frey and Sommer (1998). The other case, Λ1,1=－1, can be proved by the 
similar way.  

 Assume the Equation (1) is true for the i-fold compound option , it is 

showed that the Equation (1) is also true for the i+1-fold compound option, for any 
Λg,g, . 
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At the maturity time T1 of the i+1-fold compound option, the SCO price is 

; thus at the start time T0, the option price is ])(max[)( 11,111,111 KTT ii Λ−ΨΛ=Ψ ®®
+

    }])(max[)({~)( 011,111,1101 FKTTDET ii Λ−ΨΛ=Ψ ®®
+ ,   ......(C.5) 

according to the fundamental theory of asset pricing (Baxter and Runie, 1996), where 
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F0  denotes the information available at time T0 from the asset price.  
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where ][~ ⋅SE  is the expectation operator under SP~ . 

The condition { }11,111,1 )( KTi Λ>ΨΛ ® , deciding whether the current fold SCO is 

worth exercising or not, is equivalent to  
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and { }®
+−> 1,111 ibz , where  is the standard normal random variable. Frey and 

Sommer (1998) mention, under stochastic interest rate, that the volatility of asset price 
and bond price must be perfectly correlated to make sure the existence of compound 
options' equivalent price (EAP) (Equation C.6). The condition of volatility is 
generalized for SCOs as 
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where gζ  is constant. Because the integration range is either [ ]®
+−∞− 1,1, ib  or 

[ ]∞− ®
+ ,1,1ib , depending on the sign of forward price ( 1,1+Λ i ), the  can be 

expressed as a unified form 
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 z12 is the standard normal random variable. Then,  

)(~
01,1 Ti

®
+Ψ = [ ] [ ]{ } 12 1,*,1 1,*,1,1

2
1

1,101,1

1,1

1,1

2
12 ~  

2
1)( dzaeTS

i

ia
iihgigigii

z

ii ∫
∞Λ

−
×

®
×

®
++

−

++

+

®
+

ΛΛΛ ρ
π

;Ν .  

Note that the lower limit of the integration is also changed by Equation (C.3).  
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T-forward measure TP~ with the corresponding expectation operator ][~ ⋅TE .  
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Appendix D: Proof of Theorem 4.2 

The theorem is proved by induction. For k=1, ( ) 01},1{
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Hence Equation (4.1.1) stands for k=2.  
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Substituting the above result into Equation (D.1), the consequence is obtained: 

lG
Qd kkhgkkgkk

∂
∂ +×++×+++ }][ ]{[ )1()1(,},1{1)1(},1{1 ;N
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Appendix E: Proof of Theorem 5.1 
 
Proof of (a):  
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The 3,
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The last equality is obtained by interchange of the two summations.  

( ) ( )vvSv

i

v
SiiiiiSSS KKS 1,4,1,

1

1
3,1,0 ,#1,3,2,1,

~~~~~ Λ−ΨΛΨ+Λ−ΛΨ=Ψ−Ψ ∂

−

=
∂∂∂∂ ∑N ,  

 62



where  [ ] [ ]{ }
)()(,*,1)(#,,, ,#1,

)(

4,
~ ~

 
vivivhgvivgigviviivvi

duuq

S aSe

iT

vT

−×−×−+−+

−

∂ ΛΛ
∫

=Ψ ρ;N

[ ] [ ]{ }
)()(,*,1)(#,,,1,

1

)(
~  

vjvjvhgvjvgigvijjvvjv

vi

j

duur

bKe

jvT

vT

−×−×−++++

−

=

−

ΛΛ
∫

−∑
+

ρ;N . 

By definitions, S#i,i=Ki, hence iiiii KS 1,0 ,#1, Λ−Λ N =0. 4,
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s∂Ψ  is the (i-v)-fold compound 

option price with start time Tv (instead of T0). In other words, )(~
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initial asset price S#v,1 . Thus, by definitions, vs K=Ψ∂ 4,
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(c), (d) and (e) can be proved by similar method to part (a).  Q.E.D.  
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