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Abstract

This paper proposes the sequential compound options (SCOs), their generalized
pricing formula and sensitivity analysis under the necessity from project valuation.
Traditional methods for project valuation ignoring complicated projects' intrinsic
properties, such as highly internal interacting or multiple-fold stacks, are far beyond
the adequacy and will cause misleading for strategy-making. Based on project's
characteristics, this study propose SCOs'in:erder to have better effectiveness for
project valuation.

Most compound options described in|literatures.are simple 2-fold options whose
parameters are constant over time. EXisting research on multi-fold compound options
has been limited to sequential compound CALL options (SCCs). The multi-fold
sequential compound options (SCOs) proposed in this study are defined as compound
options on (compound) options where-the call/put property of each fold can be
arbitrarily assigned. Besides, the random interest rate and time-dependent variance of
asset price make the model more flexible. The pricing formula is derived by
risk-neutral method and change of numéraire method. The partial derivative of a
multivariate normal integration, a extension case of Leibnitz’s Rule, is derived in this
study and used to derive the SCOs sensitivities.

Evaluations of SCOs are more complicated than those of conventional options.
The computation differences between European options and compound options
(2-fold or more) lie in the equivalent asset prices (EAPS) evaluation with nested loops
and the dimension of normal integrals. This study overcomes these difficulties and
proposes the computing algorithm for SCOs and the numerical illustration of 3-fold
SCOs.

SCOs can enhance and broaden the use of compound option theory in the study
of project valuation, risk management and financial derivatives valuation. For
milestone projects (e.g., the new drug development), the milestone completion has the
choice to enter the next stage or not, and hence the projects can be pricing by SCOs.
Complex projects, within which expansion, contraction, shutting down, abandon,
switch and or growth option interacting, can also be evaluated by the SCOs. Several
most important issues, such as volatility risk, prepayment risk of mortgage and



weather risk, concerned by the finance institutions can be well controlled through
SCOs. The advantages of SCOs, including the cheaper premium, permission of
decision postponement, split-fee and better flexibility, can enhance the risk
management effectiveness. In addition, the SCOs can also be applied for the pricing
of financial derivatives, e.g. exotic American options.

The numerical examples of SCOs are proposed, including evaluation of
government revenue guarantee and currency hedging. In addition, the information
management system with SCOs as its core module is also proposed in order to
evaluating projects and financial derivatives.

Keywords: compound option; project valuation; real option; Leibnitz's Rule; option
pricing; risk management
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Chapter 1 Introduction

§1.1 Motivation

This paper proposes and analyzes the sequential compound options (SCOs) from
the demand for project valuation (or appraisal).

There are seven different methods for project valuation (Razgaitis, 1999),
including discounted cash flow (DCF), industry standards, rule of thumb, rating and
ranking, Monte Carlo simulation, auctions and real options. Different methods should
be applied to different types of projects according to their distinctions. For example,
the DCF method is suitable for projects with certain and predictable incomes, while
the real option approach is proper for those with high uncertainty. The DCF methods
for projects with high risk and growth potential will to tend to reject the investment
decision and consequently lose many opportunities. The popular real option approach
is more suitable for valuations of projects with high potential and risk, such as new
drug developments (NDAs), oil exploration, etc.. Judy Lewent, the Chief of Financial
Officer of Merck, even claims that "all kinds of business decisions are options" and
can be dealt with by the real option approach.(Nichols, 1994).

However, the conventional real option approach for valuations of projects with
evolutionary sophisticated structure 1s not enough.. The sophisticated structure of
derivative pricing and its wide deployment ifi the real options field have revealed the
limitations of the current methodology. 2-fold.compound options cannot be used as
further building blocks to model other financial innovations, but results concerning
multi-fold compound options so far have focused only on sequential compound calls.
Although Remer et al. (2001, p.97) mention that "... in practice, different project
phases often have different risks that warrant different discount rates,"” the important
feature of time-dependent (or fold-dependent) parameters is rarely taken into account
by current methodologies. In order to enhance flexibility, many projects are embedded
with different types of options, such as growth, switch, abandon, shutting down,
contraction or expansion (Trigeorgis 1993, 1996). Nevertheless, the flexibility is
accompanied by the difficulty of valuation and hence results in misleading decisions
by existing methods.

The SCOs, defined as (compound) options on options, are proposed to valuate
complex projects according to their intrinsic structures. For example, a project is
usually valuated as a European call option, thus its expansion and abandon options
can be regarded as a call on call and a put on call respectively. Therefore the abandon
option on the expansion option is a typical 3-fold put on call on call option. In

contrast with the traditional real option approach which considers the project as one



option, the complex project can be deconstructed as distinct essential options and their
interactions, and all of them can be evaluated by different SCOs. This kind of method
decomposes the project according to its special structure and provides decision
makers with better understanding of it. The decomposition method by SCOs offers a
more logic and rational way for complex project valuation. Besides, projects with
different milestones can be regarded as special cases of the complex projects. Thus
the SCOs can be applied for valuation.

In addition to project valuation, SCOs also can offer several advantages for
financial derivative applications. The SCO buyers pay a few premiums at the initial
time and own the privilege to pay again when they exercise the right to gain the next
fold SCOs. The SCOs will be discarded when they are not worth holding in
sacrificing previous payment. This split-fee property lets the SCO owners pay
proportionally according to available information at that time, instead of sinking
option premium at the beginning. Thus the decision-making can be postponed under
indefinite environments and more flexibility is offered to SCO holders. The feature
with high potential under constrained cost can provide greater leverage and yield
enhancement for SCO owners. SCOs,can be tailored for financial institutions as risk

management, such as hedging or mortgage pipelin€.risk (Bhattacharya, 2005).

§1.2 Result Sketch
This paper, using vanilla-European options as building blocks, extends the
compound option theory to multi-fold sequential compound options (SCOs) with
random or fold-wise parameters as well as alternating puts and calls arbitrarily (see
Table 1). An SCO is defined as a (compound) option written on another compound
option, where the call/put feature of each fold can be assigned arbitrarily. The SCOs
presented in this study also allow parameters (such as volatility, interest rate) to vary
over time or fold. This study derives an explicit valuation formula for SCOs by the
risk-neutral method and change of numéraire method (Geman et al., 1995; Shreve,
2004) respectively, and performs the sensitivity analysis on the result. The option
price is measured in units of a numéraire asset to make the derivation simple.
Compared with the P.D.E. method, more financial intuition is gained by the change of
numéraire derivation. Nonetheless, the partial derivative of a multivariate normal
integration (a special case of Leibnitz's Rule), is also derived here for the sensitivity
analysis.
Multi-fold SCOs with alternating puts and calls and random parameters can
greatly enhance the number of practical applications for compound options, especially
in the real option field. Real world cases can often be expressed in terms of multiple

interacting options (Trigeorgis, 1993, 1996) of different types, such as expansion,



contraction, shutting down, abandon, switch, and/or growth. The interaction between
different types of options could be evaluated by the SCOs. For example, a highway or
utility construction build-operate-transfer (BOT) project could be regarded as a
vanilla call option. The simple expansion or extension privilege, which allows only
once at a certain date, hence can be evaluated using the 2-fold compound option: call
on call; the abandon for the main construction project could be appraised by the put
on put. Similarly, the abandon option on the expansion or extension right could be
viewed as a 3-fold compound option: the put on call on call. While the expansion or
extension is flexible, such as been allowed to launch within a time period or perform
for two or more times, the compound option evaluated for the privilege is exotic
(Agliardi, 2006). Consequently, the valuation formula of the abandon on the
expansion is also a exotic SCO.

The SCOs discussed in this study make the evaluation of exotic multiple
interacting options possible. The SCOs can also be applied to the existing real option
applications, such as the competing technology adoption (Kauffman and Li, 2005),
joint ventures behavior analysis (Kogut, 1991) and strategic project examination
(Bowman and Moskowitz, 2001)._ Furthermore, the pricing of exotic financial
derivatives, such as exotic chooser options.and capletions, can also be accomplished
using SCOs.

The numerical examples: of “SCOs  are proposed, including evaluation of
government revenue guarantee-and eurreney-hedging. In addition, the information

management system with SCOs'as. its core module is also proposed in order to
evaluating projects and financial derivatives.

§1.3 Contribution
The contribution of this study are listed as follows.

® Enable the realistic and flexible valuation for complex projects, such as the
BOT, new drug applications (NDAs).

® Define and analysis of SCOs.

® Derive of the partial derivative of the multivariate normal integral, which can
be applied widely for the sensitivity of financial derivatives.

® Broaden the financial derivative pricing.

® Enhance Risk Management.

§1.4 Dissertation Structure

This dissertation is arranged as the follows. Chapter 2 presents the knowledge
roadmap of related literatures. Chapter 3 derives the pricing formula of SCOs.
Chapter 4 presents the partial derivative of multivariate normal integrand. Chapter 5

derives some comparative statistics of SCOs. The recursive computing algorithm and
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numerical examples are presented in Chapter 6. Chapter 7 presents further SCOs
applications, including milestone project valuation, complex project valuation,
derivatives pricing, hedging of volatility risk, mortgage pipeline risk and weather risk.
Chapter 8 illustrates two numerical SCOs examples. Chpater 9 exhibits the framework
of information management system with SCOs evaluation as its core module. The
paper ends with the conclusion.



Chapter 2 The Knowledge Roadmap

This chapter describes the knowledge roadmap (Figure 2.1) of related literatures.
The project valuation methods mentioned in Chapter 1 are concluded by Razgaitis
(1999). The following paragraphs focus on compound option and real option
methodology.

Compound options, initiating by Geske (1977; 1979), are options with other
options as underlying assets. The fold number of a compound option counts the
number of option layers tacked directly onto underlying options. The original closed
form of compound option is proposed by Geske (1977; 1979) and constitutes as a
precedent with respect to later works. Specific multi-fold compound option pricing
formulas are proposed by Geske and Johnson (1984a) and Carr (1988) while the
pricing formula sequential compound call (SCC) is proved by Thomassen & Van
Wouwe (2001) and Chen (2003). Chen (2002) and Lajeri-Chaherli (2002)
simultaneously derive the price formula for 2-fold compound options through the
risk-neutral method. Agliardi & Agliardi (2003) generalize that results to 2 fold
compound calls with time-dependent, patameters, while Thomassen & Van Wouwe
(2003) and Agliardi & Agliardi (2005) extend the multi-fold compound call options to
parameters varying with time. The evolution of.compound methodology is listed in
Table 2.1.

Financial applications based on compound option theory are widely employed.
Geske and Johnson (1984a) derived-an analytic. multi-fold exotic compound option
formula for the American put option, while Carr (1988) presented the pricing formula
for sequential exchange options. Corporate debt (Chen, 2003; Geske & Johnson,
1984b) and chooser options (Rubinstein, 1992), as well as capletions and floortions
(options on interest rate options) (Musiela & Rutkowski, 1998) are also priced by
compound options.

In addition to the pricing of financial derivatives, compound option theory is
widely used in the study. This approach originate from Myers (1977) and follow by
Brennan and Schwartz (1985), Pindyck (1988), Trigeorgis (1993, 1996) and so forth.
Examples include project valuation of new drugs (Cassimon et al., 2004), production
and inventory (Cortazar & Schwartz, 1993) and capital budget decision (Duan et al.,
2003). Compound options turn out to be very common, and the theory is versatile
enough to treat many real-world cases (Copeland and Antikarov, 2003). Some
interesting topics of compound options are left for readers, such as stochastic
volatility (Fouque and Han, 2005), stochastic interest rates (Thomassen and Van
Wouwe, 2003; Lee et al., 2007), options with extendible maturities (exotic compound
options, Longstaff, 1990), modular derivation (Zhu, 2000).
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. Figure 2.1 The Knowledge Roadmap of Project Valuation
Discounted Cash Flow (DCF)



Table 2.1 Evolutions of Compound Option Theory

Generalization
Ref: Fold A h time-
clerenee Number pproae aﬁg&gﬁg dependent
€  parameters
Geske (1977; 1979)* 2 PDE Put/Call No
Agliardi & Agliardi (2003) 2 PDE Call Yes
Chen (2002);Lajeri-Chaherli (2002) 2 Risk-neutral Put/Call No
Carr (1988), Chen (2003) Multiple Risk-neutral Call No
Thomassen & Van Wouwe (2001) Multiple PDE Call No
Thomassen & Van Wouwe (2003) Multiple PDE Call Yes
Agliardi & Agliardi (2005) Multiple Risk-neutral Call Yes
Risk-neutral
This Study Multiple & Change of Put/Call Yes
numéraire

*: The seminal compound option paper series.



Chapter 3 Valuation of the Sequential Compound Options

This chapter derives the analytic formula for the SCOs in both cases of fold-wise
parameters and random parameters. Section 3-1 describes the notation and
fundamental theorems used for derivations. Section 3-2 derives the closed-form price
of SCOs with fold-wise parameters by the risk-neutral method. The analytic pricing
formula of the generalzed SCOs, in which the interest rate and variance of asset price
are random, are derived by the change of numéraire method in Section 3-3. Section
3-4 explains the implication of these pricing formulas. The main results of this chapter
are available in Lee et al. (2007).

§3-1 Notation and Foundations
This section describes notation and foundation theorems used for SCOs valuation.

Denote the correlation matrix Q, =[Oy, ., ]i» Where Oy, ., is the symmetric (g,
h) entry of the matrix Q,, VI<g<h<k. Similarly, d,, . is the g-th entry of the

vector [d ", g] ([Q‘,k}’ el )(—i’_‘i) is the (k=1) by (k—1) matrix which excludes the

kx1”

|
——z
2

i-th row and the j-th column of [Q,. ' 7 ;. Define:the function f(z)=

1
e
N2

kg ]kxl and

The k-variate normal integral with =upper’ bound limit vector [d

correlation matrix Q, is characterized as

d d

et Qe Qs

1 -1
—7'Q,Z
2 Q;

where Z'Hz,z,, -+, 2], and Ny=l. The following theorem is the statement about

the construction of multivariate normal integrals.

Theorem 3.1
(a) The relationship between the (k-1) and k—variate normal integrals
(Curnow & Dunnett, 1962)

VISVSk’ Nk{ [d{k},g ]kxl ;Qk} -

(=) (=v,=v)
d{k},g _ Q{k}ﬂvﬂgzv . Q{k},g,h _ Q{k}ﬂvﬂgQ{k}avah

o ) e e T ],

[ 7N,

x1

v



(b) The decomposition of a multivariate normal integral (Schroder, 1989)

dyyy
N [d ] ol [ N diye = Qinyen?s | Qi = CienCiking
kU kg ’Qk = v-1 5
8 dfx1 \/I_QZ \/I_QZ \/I_QZ
- Hher o g Ehy iyt
XNk_v d{k},v+g _Q{k},v,v+gzv . Q{k},v+g,v+h _Q{k},v,v+gQ{k},v,v+h f(Zv)dZV

9
2 2 2
\/ 1_Q{k},v,v+g B \/ I_Q{k},v,v+g \/ I_Q{k},v,wh o
(k—v)x1 (k—v)x(k—v)

where Q, is the correlation matrix, VI<v<k.

In Theorem 3.1, (a) reveals that the k-variate normal integral can be constructed
from the (k—1)-variate by adding another dimension to the upper limit vector and
correlation matrix. (b) states that the specific multivariate normal integral can be
partitioned into two integrals of lesser variates. This result can extend the current
compound option methodology from 2-fold to multi-fold by induction, while Chen
(2003) just "observe a pattern" to generalize the SCC. Before applying this theorem to
sequential compound option pricing, mote pieces of notation are introduced in next
section.

§3-2 Sequential Compound Options

This section derives the closed=form formula: of sequential compound option
prices with fold-wise parameters by the risk-neutral method, in which the asset price
is assumed follows the geometric Brownian Motions process.

Let 7,1 < T,, Vu=l. The asset price at time 7, is donated as S,. The
instantaneous volatility of the asset price is given as o (u) . The instantaneous interest
rate and dividend rate are denoted as »(«) and g(u), respectively. The dividend rate g,
can also be considered as the depreciation rate (Remer et al., 2001).

The fold numbers in this study come in reverse order. Denote ¥;(7;) as the
i-fold SCO with strike price K; and it starts at time 7p and expires at time 7. The
(i-1)-fold SCO Y. (7)), active from T)to T, is the underlying asset of V(7).
Provided that the last fold SCO starts from 7y, the underlying SCO Y¥._,.(7,.,) is
valid from 7., to T, with fold number (i—u+1) and strike price K, and has parameters
o, ry, and q,. Wi (T,) is the first fold option and a vanilla option with the asset as
its underlying asset.

The notation for an arbitrary i-fold SCO starting from 7 is exhibited in Figure
3.1. For any u>1, the option feature /\,, characterizes the put or call attribute of
the (underlying) SCO with fold number (i—u+1) ranging from 7. to 7;,. If the SCO of
this fold is a put, /\,,=1, otherwise the feature 7\, ,= 1 is for a call. For example, a



put on a call (a 2-fold compound option) starting at 7y has the option features /\

h
1=l and /\,,=1. Denote A,,=1 and A,, :HAM,VI <g<h.

u=g

Fold number: Last fold First fold
Fold notation:
lIIi IIJi -1 \Pi —u+l IIJi —u lI11
T 0 T 1 T 2 T, u-1 T, u T, ut+l T'z 1 ]—'l
Length Tl .............. 2_2 ......... Tu ............... Z'u+1 ............. Z'l, _______
Strike K K K, K K
Parameters A A, AL A P e A ;

Figure 3.1: The Notation of the i-fold Sequential Compound Option

With the same assumptions as Thomassen and Van Wouwe (2001) except for
"parameters constant in each fold" here, the following Theorem 3.1 derives the
pricing formula of an i-fold SCO,at time 7y, Y. (Z;), with arbitrary calls and puts by
the risk-neutral method under a perfect market. Without loss of generality, the SCO in
this theorem is assumed to startfrom 7Tj.

The assumptions of the SCOs are'listedrasfollows.

No arbitrage.

The asset is tradable with any quantity.

Perfect market.

Perfect hedge.

No liquidity concerns.

No credit risk.

The asset price follows a geometric Brownian Motion process.

Assume there is no drift for the forward price under the risk neutral measure.

A A o

The volatility of the forward price is constant.
10. Any zero coupon prices are available.

Based on these assumptions, the SCO price is derived as a analytic form.

Theorem 3.2: Pricing Formula of Sequential compound option with Fold-wise
Parameters

Denote Denote

10



Sv
®

ln(S
@) 0, =, 0 (S,) = ——E , Vg>1

g

] + f [r(u) —q(u)+ ;O'z (u)}du
\/ TO‘Z (u)du

(0)bger by e (S) =10, (S) — | [o7 W), Vg=1

T,

v

(C) 5[;,/7,*\/ = Av+h71,v+gpg,h,*v7Vh > 8 > 19 pg,g,*v = 1’ vg’ Iog,h,*v = ph,g,*\/’v}l’ &;

Ty
I o’ (u)du
T,

Panr = Vi< g<h.

v
TV+

j haz(u)du
T,

(d) ai,g,#v = ai,g,*v (S#v,[); bi,g,#v = b[,g,*v (S#v,i)

(), =, 4035,y =B, 4105 Prg TP os05 Pe = a0
(f) Equivalent asset price of thezunderlying (EAP)

K, forg=i
“&1 | The asset price which makes Wi (T,)=K,, VIi<g<i

then

T Tj
—jq(u)du i —J.r(u)du

LP; (72)) = Ai,le K SONi { [Ai,gai,g ]ixl; [ﬁg,h ]ix,- }_ ZAj,le ? Kij {[Ai,gbi,g ]jxl; I:IBg,h ]jxj}

Jj=1
under the assumption that the EAP (Sy, ) exists, VI<g<i.
Proof: see Appendix A.

§3-3 The Existence of Equivalent Asset Price
This section proves the existence conditions of the equivalent asset price. Denote

T

—jr(u)du

‘T’hzm (T, = ZAj,le o Kij{[Ai,gbi,g ]jxl; [,Béh ]ixi}, which is the second component
= o
of the SCO pricing formula in Equation (3.2.1). Note that ‘?[’2&3(]})) may be
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negative or positive but all SCO prices ¥,(7,) are always nonnegative.

Lemma 3.1: The Sufficient Condition for the Existence of Existence of Equivalent
Price (EAP)

Giveng (1< g<i-1),the §,,, existsif

(@) S, existsforall g—-1</<i-1,

and either the following condition stand.

(b) Ay =+1;

~

(© A,_,,=-1and K, <-Y_, ,(T,).

Proof: see Appendix B.

The condition (a) of Lemma 3.1 reveals that the existence conditions is also
derived based essentially on the induction, by which the multi-fold SCO price is
available in Theorem 3.2. If the EAPs:of previous folds exist, the EAP existence of
the current fold is discussed according to the different sign of the cumulative option
future A, , . The condition (c).states that the strike price of the current fold K, is

limited by a maximum because: the asset price has opposite direction against the
current fold SCO price. Theopposite-direction is represented by the negative
cumulative option feature. For the' €as€of positive cumulative option feature
(condition (b)), there is no restriction for the strike price. The non-existing EAP will
incur the zero SCO price.

The SCO price (¥, ) is monotone with respect to the asset price and hence the
equivalent asset price (EAP, S, ;) is unique if it exists. According to the sensitivity

analysis in Theorem 5.1, the Delta (%) is a strictly monotone function. Its
0
increasing or decreasing nature depends on the cumulative option feature (A, ).

Therefore the EAP, defined as the asset price making the SCOs price equal to a
specific strike price, is unique if it exists. The EAP may not exist due to the range
limitation of a decreasing SCO price.

§3-4 The Generalized Sequential Compound Options

This section derives the closed-form formula of sequential compound option
prices with random parameters, including the interest rate, the variance of asset price.
Comparing with the cases of fold-wise parameters, it is named as the generalized
SCOs due to of random parameters. It is assumed that there is no depression rate here.

Assume the asset price and instantaneous variance of asset price at time ¢ are

. 2 . .
given as S(¢f) and o (¢), respectively. Denote the interest rate process r(¢), 7T, <t <T,

12



frw

- du
and the discount process D(¢) =e . Let B(t, T) be the zero coupon bond price

at time ¢ that matures at time 7. The bond price B(T;,7})can be represented by the

Tj
j “r(u)du
To

stochastic interest rate r(¢), B(T;,7)) e . In other words, the bond price is

determined by the interest rate r(¢). Note the bond prices act as the representation of
stochastic interest rate and hence there is no need to specify the interest rate dynamics
in this study. Denote the r-forward price of T-maturing zero coupon price at time ¢ as
Fit,7,T), Vt<t<T.

Denote as W,"(7,) the i-fold generalized SCO price starting at time 7T, and

expiring at time 77, with strike K; The notation ® stands for "stochastic interest rate

and random variance of asset price”. Its underlying asset is the (i—1)-fold SCO

W° (T,), which is active from T;to T». Under the assumption that the last fold SCO
starts from Ty, the underlying SCQswith fold number (i-u+1), ¥° . (T, ), is valid

from 7, to T, with strike price K, The first fold optien, ‘I’1® (T:_,), is a vanilla option

with the asset as its underlying asset. It should be noted that fold numbers come in the
reverse order. The notation for an‘arbitrary i-fold generalized SCO starting from 7 is

exhibited in Figure 3.2.

Fold number: Last fold First fold
Fold notation: ® ® ®
\Pi® \Pi—l \Pi—u+1 \Pl—ll lP1®
| | oveeeee | | ... | |
' 7 L1 } ' 1 1
Ty, 1 2 w1 u Tun [y i
Length Tl .............. 2_2 ________ Tu .............. Tu+1 ............ Tl .......
Strike K; K, K, K1 K;
Option feature Ay Ay, A At A

Figure 3.2: The Notation of the i-fold Generalized Sequential Compound Option

Under all the assumptions of Thomassen and Van Wouwe (2001), except for

random parameters of interest rate and variance of asset price, the following theorem

13



derives the pricing formula of an i-fold SCO with alternating arbitrarily calls and puts
by the change of numéraire method. Although the SCOs presented in later sections
can start at any time 7, the SCO in this theorem is starting from 7, without loss of

generality. The symbol " *v ", meaning "start from time 7,", is used to indicate time

shift in the sensitivity derivation. Following the above notation, ¥."(7;) is denoted

as the SCO price at the time 7.

Theorem 3.3: The generalized sequential compound option pricing with random
parameters
Denote
Tyig
HLS(T)@j N [o* @)t
(@) a7y, (S(T)) = B0 )5) 21,
i,g0v DU,

- , Vg=>1
j o (t)dt
T,
Tv+g
(0) by o, (S(T) = a7, o, (S(T)) = [ o ()dt, Wg>1
T

W

(C) 5g®,h,*v = Av+h71,v+glof,h,*v’vh > g ¥ 1’ Iof,g,*v 3 1’ vgﬂ Ioih,*v = p}(z@,g,*v’v}l’ g7

Tv+g
[o? )
T,

Panm = V1< g<h.

Tv+h
[o* @yt
T,

® _ ® ® N, 1,® _ 1.® ®
(d) ai,g,#v = ai,g,*v (S#v,i)’ bi,g,#v = bi,g,*v (S#v,i)

® _ ® LL® 1 ® . ® _ ® L X® . =®
(€) @1y =0 4u05D; 5 =D; 4303 Pig = Pigos P = Panro

(f) Equivalent asset price

o K, forg=i
(EAP) S, = , _ o .
" | The asset price which makes W, (T, )=K,, V1< g <i
then
Y7 (1)) = A, S(T)N, { [Ai,gaioj)g ]M; [ﬁih ],»x,» }_ 2 A BT THK N, {[At,gb?g ]M; [:5511 ],«X,»}
J= '
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under the assumption that the EAP ( Sg[) exists, VI<g<i.

Proof: see Appendix C.

The SCO price in Equation (3.4.1) is derived by the change of numéraire method,
which is also known as the forward measure approach because it makes a second
change of measure from the risk-neutral measure to a forward measure. Equation (C.5)

is the key of derivation. It means that the current asset price is the expectation of the

future price with interest rate discount. Both of D(T}) and maX[Aljl‘I’l@(T1 )— ALK ]

within the expectation contain the interest rate (), which is a adopted stochastic
process, and they can not be dealt separately. Thus the asset price and bond price are

regarded as numéraires to overcome the difficulty.

§3-5 Interpretation of the Formula

This section interprets the implication of pricing formula of SCOs (Equation
(3.2.1) and (3.4.1)).

According to Equation (3.2.1) & (3.4.1); the price of an i—fold SCO can be
expressed as the weighted asset.price minus the weighted sum of the strike prices of
the i folds with different underlying assets. The weights consist of three factors: the
cumulative option features, thetbond prices, and the in-the-money probabilities. The
cumulative option feature is obtained by synthesizing the option features from the
current fold to the last fold. The bond.price is'a deduction made due to interest rate

compounding. The in-the money probabilities are assessed under different probability

measures by multivariate normal integrations. The factors a; ,/ a’ . and b,/ bi®g in

the integration are similar to the "d;" and "d," appearing in conventional pricing
formulas for vanilla options. The correlation matrices of SCOs are similar to those of
the sequential compound calls, except for a sign change due to the cumulative option
features. Within these 3 weighting factors, the parameters of the last fold have the
widely impact on the pricing formula.

These formulas of SCOs are more general than those derived for vanilla options,
2—fold compound options, and sequential compound calls, all of which can be
regarded as special cases of SCOs. The main difference between SCOs and sequential
compound calls lies in the freedom to alternate calls and puts, which is represented by
a sign changes in the cumulative option features A,,, V1< g <h. In other words,
the option prices will depend on the fold features A,,. Moreover, allowing the
parameters to vary over time makes the integrated variance and discounting bond
price of an SCO quite different from that derived by Thomassen & Van Wouwe

15



(2001). Setting all A,, to+1inan SCO results in a SCC.
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Chapter 4 Partial Derivative of the Multivariate Normal

Integral

This chapter derives the partial derivative of the multivariate normal integral by
induction. The result (Theorem 4.2) can be regard as the special case of Leibnitz's rule
and will be applied during the derivation of SCOs' sensitivity analysis (see Chapter 5).

First of all, the Leibnitz's Rule is listed.

Theorem 4.1 (Leibnitz’s Rule) (Casella & Berger 2002, p.69)
If flx,0),a(0),b(0)are differentiable with respect to 6, then

b(0 b(o
d() ()a

d d
) (L (5.0 = [HOL0) 550 - /@O F5a0)+ (jg 2o

It is noted that if a( @), b( @) are constant, we have a special case of Leibnitz’s Rule:

d | to
Ei £(x,0)dx = !5 £(x,0)dx .

According to the Leibnitz's'Rule, the‘partial derrvative of the multivariate normal

integral is derived.

Theorem 4.2: Partial Derivative of the Multivariate Normal Integral
Let dyyo(Gi, Go,..., Gy) =dy 4 , representing a function of Gy, Go,..., Gy,

VI<k1<(<p, 8Nk([d{k},g]k><l;[Q{k},g,h]kxk)

oG,
-4 D)
= if(d{k} A)adﬂc},j N, ., duye =y Cue || G = ssQuns i
2 J - ’

where [Qy, , , ]i. 18 @ correlation matrix that is not a function of G, .

Proof: see Appendix D.
Theorem 4.2 shows that the partial derivatives of a (k+1)—variate normal
integration can be represented as the k+1 weighted sum of k—variate normal

integrations. As Equation (4.1.2) shows, the Leibnitz’s rule can be used to decompose

the partial derivative into two parts. The first term is a k—variate normal integration

17



with a weighting factor. The second part is an integration of a partial derivative of the
(k—1)-variate normal. Theorem 4.2 proves, however, that this second part can be
represented in the same form as the first term. This means that Theorem 4.2 extends
the Leibnitz's rule to multivariate normal cases and it can be regarded as the special
case of Leibnitz's rule.

The specific partial derivatives presented in Thomassen & Van Wouwe (2002)

can be viewed as a special case of Theorem 4.2. If the elements of the correlation

.. . . T
matrix in Equation (4.1.1) as specified as Q,, ., = Oy, == > for 1<g<h, then
.2 s \/ 7,

Q{k},g,h — Q{k},j,gQ{k},j,h
2 2
\/(1 - Q{k},j,g)(l - Q{k},j,h)

=0, for g<j<h or h<j<g.
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Chapter S Greeks: the Sensitivity Analysis

This chapter probes the sensitivity analysis of SCOs. A short Lemma is discussed
before the analysis.
A feature of multivariate normal integrations will be presented after the

following notation has been defined. Let

N =N Algbt@)g_Atvbt@iva . 5gh 5v®gﬁ\f®h
v—=1,b — v—1 ’ )
LS N YR S S TT L 0 R
(v v
A b® _A bl®\/5v®é péh p\/épvh

_ ®
Nj—l,b,—v= J-1,b, v(b ) N s

Jl—(pv,g J[l (B Sn-(55)1]

_ ®
ZQi—l,a,—v = zxéi—l,a,—v (ai,g)

Lemma 5.1 shows that the multivariate integrals for SCO sensitivities can be factored
into two separated normal integrals.

Lemma 5.1
(@N,_ Lamy =, X {[Az Vig lg#v](, =[S [pgh*v](, V)x(i- v)}
(b) qu,b;v = Nvf {[Az vig b, sguHY L —)xl ['Bg h *V](j—v)x(j—v)}

® ®
(C) N ilav = N v-Lb X N {[A’ VEE, zg #y ](1 v)xl’ [ hy*v ](z v)x(i— v)}

@N" e =8N [0 sl

Sketch Proof:
The left-hand sides of Lemma 3.1 (a) and (b) are identical, hence the integrand

of the left hand sides. Lemma 5.1 can be proved according to the above result.
Lemma 5.1 can also be proved directly through a multivariate normal integration
whose correlation matrix can be partitioned into "four quadrants". The top-right and
the bottom-left quadrants are zero matrices, so the integrals can be represented as the
product of two uncorrelated normal integrals (Bickel and Doksum, 2001, Theorem

B.6.4). Q.E.D.

Note that the same factor X, appears on the right-hand side of Lemma 5.1 (a)

& (b), and the same factor NX®._i, appears on the right-hand side of Lemma 5.1 (c)
& (d).
The sensitivity analysis of SCOs is now possible thanks to the two results
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(Theorem 4.2 and Lemma 5.1) demonstrated in the preceding section and chapter.
Thomassen and Van Wouwe (2002) derived the sensitivities of SCCs. Theorem 5.1
extends their analysis to SCOs with the possibility of alternating calls and puts
arbitrarily based on Theorem 4.2. Theorem 5.1 also shows the interest rate sensitivity

under the special case of interest rate fold-wise.

Theorem 5.1: Sensitivities of SCOs

*]i (u)du
(a) Delta: 8‘2,-_;:5) = Ai,le Toq Nz { [Az g4 g], [pg hlxz}

1, 0
—ai,— [q(u)du
To

y LA
(b) Gamma: W) _ > o1 N
aSO2 v=1 Ty
=S, 27 [0 (u)du
Ty

i-l,a,—v

(c) Let the interest rate and the variance of asset price be fold-wise constant. In other
words, r(t)=r,o0(t)=0,,VT, ,<t<T ,1<u<i. Under this simplification, the

u’

"underscore" labels are added to the corresponding pieces of notation. The SCO price,

the correlation matrix and the two uppet limit vectors are denoted as ¥, p,, ,

g

a,, and b, , respectively. Thus,“the . interést rate sensitivity Rho is:

VI</l<i, 6%%):021\1-,11(,@_2 N; {[Alg ,g] [gh] j}-
14 Jj=

®
(@ a‘{’és(om ANAA, 6] (52

1(a®)2

@ TH@) _$ At
aS v=1
\/mja(t)dt

0

i-l,a,—v

Proof: see Appendix

As SCOs pricing formulas (Theorem 3.2 and Theorem 3.3) generalize previous
results for vanilla options and SCCs, the SCOs sensitivities given in Theorem 5.1 are
also extension of these previous works intuitively. Again, the sequence of option
features will affect the signs of the sensitivities. According to Theorem 5.1 (a) and (d),

the value of a SCO is monotonic with respect to the current asset price S(7p), hence
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the EAP is unique if it exists.
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Chapter 6 Computation Algorithm
This chapter explains the recursive computation algorithm of SCOs and

illustrates the computing results of 3-fold SCOs.

§6.1 Computation Algorithm

The computation differences between European options and compound options
(2-fold or more) lie in the EAP and the dimension of normal integrals. By definition,
the EAP is the asset price which makes the (compound) option price equivalent to a
specific strike price. Similar to the concept of implied volatility, the EAP can be
regarded as the "implied asset price", solving by the known (compound) option price
(given as the strike price) and other conventional option parameters except the asset
price itself. Thus there is no EAP concern in the 1-fold option computation and it is

calculated only for the 2 or more fold compound options. It seems that i-1 EAPs

(84, V1< g <i) are calculated during the i-fold SCO price computation. However,

more EAPs are calculated because they are solving by the bisection method in this
study and the higher-fold EAPs are_ebtained based on the lower-fold EAPs. Many
EAPs are figured just for another and.are not‘used straight for the SCOs price
calculation. Hence the nested algorithms; using the lower-fold SCO pricing formula
for EAPs while seeking for the higher-foldone, are titne-consuming.

The other computing dissimilarity’between European and compound options is
the normal integrals. The highest dimension of normal integrals of the SCO equals its
fold number. Precise computation of the multivariate normal integration needs more
work than that of a univariate case. Besides, the precise approximation of multivariate
normal integrals with arbitrary dimension and integration range is neither easy nor
convenient, although the univariate, bivariate and trivariate cases are disclosed
explicitly (Denz, 2004). Lin (2004) compares 3 computing methods for the
multivariate normal integral, including the improved Gauss quadrature method,
Monte Carlo method and Lattice method, to evaluating the 4-fold SCCs.The Monte
Carlo integration is applied here for normal integral computation in case the higher
fold SCOs are adopted. Casimon et al. (2004) even use the SCCs up to 6 fold!

The recursive computing algorithm of the SCO price, calculating from the first
fold to the last fold, include 5 looped steps and are exhibited in Figure 6.1. The
computing algorithm do not encompass any estimation or calibration of parameters,
which should be ready when the algorithm begin. In the flow chart, the rhombuses
represent decision symbols where a decision must be made, while the rectangles

symbolize the actions. The details of the chart are explained as follows.
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SCOs Price Calculation Start
(From the First Fold)

1. EAP Existence NO

2. EAP Availability

6. Go to Next Fold YES

A

A 4

3. The EAP Calculation
(Bisection Method in this study)

V.

4. Current Fold SCO Price Calculation |
(Monte Carlo Integration in this study)

5. Last Fold SCO

( End )

Figure 6.1 The Nested Computing Algorithm of the SCOs

Step 1: Check the EAP existence of the current fold. If EAP exists, go to Step 2,
otherwise terminate the algorithm. The EAP may not exist because of the
non-negative range limitation of the decreasing SCO price. There is no need to
calculate EAP for the 1-fold option because it is for compound options only.

Step 2: Check the EAP availability. If the desired EAP is available, skip to Step 4,

otherwise go to Step 3. The EAP calculation is time-consuming, thus it can be used
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repeatedly to save time if the same one was solved before.

Step 3: The EAP Calculation. Since the EAP is like "implied asset price", it is solved
according to Theorem 3.2 (d) or Theorem 3.3 (f) to by the bisection method in this
study. Within this step, it is necessary to calculate the lower-fold SCO prices, which
is the main target of the computation algorithm. Hence it causes the processes to be
nested and sophisticated.

Step 4: The Current Fold SCO Price Calculation. The SCO price is computed
according to Equation (3.2.1) or (3.3.1) if all the EAPs are available. The
cumulative probabilities of multivariate normal density are acquired by Monte
Carlo integration in this study.

Step 5: Check whether the current fold is last fold. If yes, the last SCO price is the final
result, otherwise go to Step 6.

Step 6: Go to the next fold. If the current fold is not the last one, go to the next fold
and results so far are bases to calculate the next fold SCO price. Compared with the
current fold case, the dimension and fold number are increased by one to enter the
next loop.

In the SCOs evaluation algorithm,sthererare one recursive loop and three decision
nodes. The recursive loop occurs.in the EAP calctlation (Step 3), while the decision
nodes take place in determining whether: the current fold is last (Step 5), EAP
existence (Step 1) and availability (Step 2), respectively. The recursive loop involved
in the bisection method together withTdecision nodes makes the computation
sophisticated.

The numerical methods mentioned above, such as the bisection method for EAPs
in Step 3 and Monte Carlo integration for multivariate normal integrals in Step 4, can
be substituted by other suitable methods. The conventional options just need the "Step
4" to calculate the option price straightforwardly. By contrast, the looped and nested
computation algorithm of SCO prices, involving some numerical techniques, are more

complicated.

§6.2 Three-Fold SCOs Illustration

This subsection illustrates the 8 cases of 3-fold sequential compound options,
including the call on call on call (CCC), call on call on put (CCP), call on put on call
(CPC), call on put on put (CPP), put on call on call (PCC), put on call on put (PCP),
put on put on call (PPC), put on put on put (PPP). The parameters of these SCOs are
identical for comparison in the numerical examples. The time to maturity of 3 folds
are all equal to one, and the strikes K;, K>, K3 are 10, 100, 500 respectively. Assume
the volatility and dividend rate keeps constant in these three folds. Figure 6.2 exhibits

the SCOs price along the volatility and asset price.
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The price surface of PCC is presented in Table 6.1 and Figure 6.2 (e). The
follows explain the PCC to understand the feature of SCOs. The max price of PCC is
about 9.51 because the last fold put option strikes with 10. The PCC price drops as the
stock price hikes under the same volatility due to the put feature of the underlying
asset. Although with different underlying assets, the PPP also has a similar
phenomenon due to the same reason. This reason also supports the fact that the PCC
price descends with the volatility (sigma) increasing under the same stock price.
Theoretically, the SCOs are monotone with respect to the asset prices (Thomassen and
Van Wouwe, 2002; Lee et al., 2007). However, the integrals evaluated by Monte Carlo
simulation result in subtle non-monotonicity.
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Table 6.1: Prices of the 3-fold SCO (Put on Call on Put)

SCOs Volatility of Asset Price
Price 005 010 015 02 025 03 035 04 045 05| 055 06 065 07 075 08 085 09 095 1
1 951 951 951 951 951] 951 951 951 951 951] 951 951 951 951 951] 951 951 951 951 951
26] 951 951 951 951 951] 951 951 951 951 951] 951 950 949 946 941 934 924 9.3 _ 9.00 _ 8.86
51] 951 951 951 951 951 951 951 951 951 949 945 936 923 905 885 8.62 838 8.12 788  7.65
76] 951 951 951 951 951 951 951 950 946 935 0.8 893 862 829 798] 7.65 733 702 676 651
101] 951 951 951 951 951] 951 949 943 927 901] 8.66 823 7.9 737 7.02] 665 632 602 578 555
126 951 951 951 951 951] 950 942 923 800 844 794 738 687 643 600 574 543 516 495 475
151] 951 951 951 951 9051] 944 923 885 832 7.71] 710 648 597 555 525 494 467 443 426 4.10
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Chapter 7 Further Applications

This chapter demonstrates the applications of SCOs in project valuation, risk

management and financial derivatives pricing.

§7.1 Milestone Project Valuation

This section proposes the Milestone Projection Valuation (MPV) method for
multi-stage projects. The projects setting some critical milestones which should be
achieved sequentially are called milestone projects (see Figure 7.1 for example). The
milestone projects fail if any one of the serial milestones is not completed. The
milestone projects are very common in real situations, including R&D management,
manufactures, technology development, etc.. Originally, the milestone projects are
valuated by methods including the net present values (NPV) and decision trees. The
NPV method valuates a project under a rigorous assumption that all future cash flows
are certain. Obviously, the uncertainty is ignored in the NPV method and results in
symmetric underestimates. Recently, the popular real option approach is applied for
flexible consideration and reasonable.explanation. Under the framework of financial
option theory, the real option approach decomposes the project valuation as several
parameters, including the present value, costs, time to maturity, value uncertainty
(volatility) and interest rate. Most of the existing real option studies for multi-stage
milestone project valuations use  one-fold-options, while others apply multi-fold
options under the assumption of:censtant parameters through the whole process
(Casimon et al., 2004). However, the parameters often change due to the milestone
completion and the project values will be misestimated if parameters are assumed
constant through all the time. The one-fold real option approach is even inadequate

for a multi-stage project.
8¢ pro) New Drug

Phase 2

Clinical
Phase 1

\F \Failure
ailure

ailure

Pre-clinical

Figure 7-1 : A Milestone Project Example: the New Drug Development (NDA)
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Based on Theorem 3.2 & 3.3, this paper proposes a method called Milestone
Projection Valuation (MPV) for multi-stage project valuation. Each milestone
completion has the choice to enter the next stage or not, and the sequential project
milestone can be viewed by the sequential compound CALL options. The MPV
method adopts the results of SCOs and the project is regarded as the corresponding
asset in SCOs. Under the same denotations as Theorem 3.2, the MPV valuation
formula is expressed as

-S4, P S,
MPV:(TO) =e ! q SONi { [ai;g]ixl; [5&11]1”'}_ Ze l Kij {[blé. ]jxl; ['Bgsh]jxj}

j=1

where the strikes represent the cost at different stages; the volatilities come from the

project value fluctuation and the dividend rates are replaced by the depression rates.

The option features (A, ,) equal one (for any i, g) due to the underlying compound

calls, hence disappear in the MPV pricing formula.

Compared with the literature, the MPV:not only applies multi-fold compound
option theory, but also allows the’piece-constant parameters to vary with the distinct
stages. The different parameters of different stages can adapt to the change of project
nature after the milestone completion. Mote phenomena can be discovered from the
parameter comparisons. Under- the: MPV-Tmodel,  the implicit "project valuation
experience" is decomposed as the parameter estimation.

The new drug applications (NDASs) may be the most famous and significant
milestone projects. Under the consideration of human health, the NDAs are
well-regulated including the stages of pre-clinical trial, phase 1, phase 2, phase 3 and
approval phase. Each stage has a definitive milestone. The time- and cost-consuming
NDAs are the cores of the pharmaceutical companies because the R&D results from
NDAs dominate their future! The MPV model can enhance the NDA valuation under

a more reasonable framework and improve the R&D management of these companies.

§7.2 Complex Project Valuation

Projects with tremendous amounts value often have great contribution and
impact to the society and catch a lot of public attention. In order to make sure of being
executed smoothly, these projects tend to enhance project flexibility by insetting many
options, such as growth, switch, abandon, shutting down, contraction or expansion
(Trigeorgis 1993, 1996). However, these embedded options will also make the project
structure complicated. For this kind of projects, the valuation by real option approach

regarding the project still as only a one-fold option is not reasonable. Realistic and
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rational valuation should take the project structure into consideration.

The different options and their interactions can be evaluated separately by
different SCOs. The MPV case discussed in the previous subsection is just a special
case of complex project valuation using SCOs. The effect of revenue guarantee, for
example, in a build-operate-transfer (BOT) project of utility construction can be
evaluated by SCOs. A company signs the BOT contract with the government to build
and operate the construction while related revenue belongs to the company during
operating period. The guarantee promised by government ensures the company's
minimum revenue. If the actual revenue is less than the minimum, the deficit is
subsidized by the government. The company hence owns the operating revenue and
the put option written by the government. The put option, with the guarantee amount
as its strike price, can enhance the incentives for the BOT project. At the preparation
period time prior to construction, the put option can be considered as a 2-fold
compound option, call on put. The add-in call option, with the construction cost as its
strike price, represents the right to participate in the construction and share the
potential revenue.

Similarly, the revenue guarantee, of the:expansion can be regarded as a 3-fold
SCO, call on call on put, at the preparation. period:-Assume the government will offer
corresponding revenue guarantee for the expansion if there is an expansion right
embedded in the BOT project. The revenue guarante€ of the expansion can be viewed
as another put option with its own guarantée amount as the strike price. At the main
construction time, the put option can be considered as a 2-fold compound option, call
on put. This add-in call option, with the expansion cost as it strike price, stands for the
expansion right. At the preparation time, the right can be evaluated as a 3-fold SCO:
call on call on put. The last add-in call option, with the proportional main construction
cost as it strike price, represents the right to participate in the main construction. Note
that the main construction cost is divided proportionally as the strike prices of both
call options for the guarantee of main and expansion construction. The call on call,
stacked on the put option, represents the sequential feature that the expansion right
exists only when the main construction is executed. The SCOs discussed in this study
make the evaluation of complex options possible.

The project valuation considering the intrinsic structure is more logical and
acceptable, and is applied gradually (eg: Huang and Chou, 2006). The adoption of
SCOs for project valuation can broaden and expand the real option application.
Besides, the sensitivity analysis is more visible under this situation. The change of
risk source (such as the asset price, its variance, interest rate) will have different
impacts on different parts of the project. The impacts can be quantified by the Greeks
of SCO's (Thomassen and Van Wouwe, 2002; Lee et al., 2007) and can be applied for
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risk management.

§7.3 American Options

The American options and their exotic styles can be also valuated analytically
with SCOs. As is widely known, the optimal time to exercise the American call is
only at the time immediately before ex-dividend of the underlying stock. Hence the
valuations of American calls in the absence dividends are similar to that of European
ones. The Roll-Geske-Whaley model (Roll, 1977; Geske, 1979b, 1981; Whaley, 1981)
gives the explicit form for American calls with single dividend by replication of
European calls and a 2-fold conventional compound option, while Cassimon et al.
(2007) extend their results to the cases of multiple dividends. Geske and Johnson
(1984) propose the American put's closed form formula, which is actually an exotic
SCO form.

The SCOs can be adopted for the derivation of pricing formulas for American
puts on stocks paying multiple dividends. Besides, the closed form of exotic 2-fold
compound options, such as European option on American options, can be proposed
explicitly with SCOs.

§7.4 Risk Management

SCOs applied as the instruments for risk controlare discussed in this subsection,
such as for volatility risk, mortgage pipeline¥isk and weather risk.

(1) Volatility Risk

Volatility risk, the unobservable but crucial variable, determines the option
premiums and the order of the financial system. The notorious Long Term Capital
Management (LTCM) crash is just one of the evidences (Lowenstein, 2000).
Originally, the volatility index is designed for hedging volatility fluctuation, e.g. the
CBOE Volatility index (VIX). Brenner et al. (2006) and Zsembery (2004) propose
exotic 2-fold compound options, the option on a forward-start straddle, in order to
improve the efficiency and tradability of volatility hedging.

Under this framework, SCOs can enhance the effectiveness of volatility hedging.
The plain straddle could be replaced with exotic straddles (different strikes and
maturities) or complex chooser option (Rubinstein, 1992). Under identical conditions,
the complex chooser option is cheaper than the straddle and thus more attractive. The
compound option written on these exotic straddles or chooser options can be valuated
precisely through SCOs.

(2) Mortgage Pipeline Risk

Mortgage pipeline risk, the unexpected irregular payment caused mainly by
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interest rate fluctuation, has been widely hedged by compound option (Bhattacharya,
2005). If the interest rates rise, the mortgage loans fall out of the pipeline and
resulting in the lenders' loss. The pipeline risk will be amplified when the loans have
been sold. The 2-fold calls on put options provide mortgage corporate the rights to
buy put options with cheaper cost. The put options allow the lender to sell the
mortgage with higher strike prices to cover loss. There is no need to exercise the put
options while the interest rate decreases and this save the cost accordingly.

This kind of pipeline risk hedge can be enhanced through the long position of a
pool of SCOs. The central banks (e.g., the FED in the U.S.) often take sequential
actions of interest rate hiking to overcome inflation, so the pools of SCOs
(combination with 2-fold, 3-fold, etc.) let the lenders make decisions depending on the
up-to-date situations with cheaper expenses. The SCOs can also be used for
valuating the mortgage with prepayment under the option-adjusted-spread (OAS)
framework.

(3) Weather Risk

Insurers and reinsurers pay more attention to the ecosystem evolution than single
accidents. They also are more willingto provide long-term management of weather
risk than most trading houses.. Thus compound options are introduced to give
reinsurers (e.g., Swiss Re) the rights to buy an option on the weather risk at a later
time (Gakos, 1999). The split-fee feature of compound options can reduce the cost the
long-maturity and high-amount hedge of wieather risk.

SCOs can offer better hedge ‘effects than 2-feld compound options. Through the
combination of different fold/ different” maturities SCOs, insurers with a slight
up-front premium can lock in coverage at different future exercise dates with

additional lower premiums.
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Chapter 8 Numerical Examples

This chapter illustrates 2 examples of SCO applications, including the flexibility

evaluation of revenue guarantee and currency hedging by the pool of SCOs.

§8.1 Revenue Guarantee
This section illustrates a SCO application of BOT (Build-Operate-Transfer)
project valuation. In this example, a 2-fold option (call on put) and a 3-fold SCO (call

on call on put) are used to evaluate the promise value of revenue guarantee.

§8.1.1 Description for the Revenue Guarantee

Assume the government issues a BOT project of electric power plants in order to
increase power supply. Assume the government and the company sign the contract at
starting time 7y. The project starts from 1.5 years of preparation period, which follows
with 4-year construction. After the construction, there will be operation period of 30
years. If the project is constructed and operated well, there can be an expansion at the
24-year. The expansion, with scale size 1 @;» proportional to the original one, takes 2
years and won't extend the operation time.of the project. The Figure 8.1 illustrates the
schedule of the BOT project.

P<rep_an$tion ;xpalgi%n expansion operation >
c%nstrqgtign main operation >

| | | | | |

| | | | | |

T 0 T 1 T 2 T 3 T. 4 T 5

0 15 4 24 26 34

Figure 8-1: The time intervals of the example of revenue guarantee

For the government, the BOT project can increase the power supply without huge
construction cost at one time. Hence the government will try its best to increase the
project's investment incentives, such as the annual revenue guarantee. Revenue
guarantee is the minimum revenue promised by the government. If the annual
operation revenue is less than the guarantee amount, then the deficit is subsided by the
government. Compared with the once huge construction cost, the payment of the
revenue guarantee from the government is less and distributed over many years, and
causes less burdens to the government. In addition, the guarantee can strengthens
companies' incentives toward the BOT project, thus increase the plausibility of project

execution.
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The revenue guarantee can be regarded as the put option written by the
government and owned by the company. Their Payoffs are exhibited in Figure 8.2 (a)
and (b) respectively. 4

Guarantee Amount

e

/

Payoff of the put

/
/

Revenue from operation

Figure 8.2 (a) The payoft of the put option written by the government

A\

\ Guarantee Amount

\

g'________,

Payoff of the put

Revenue from operation
Figure 8.2 (b) The payeff of the put option owned by the company
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Figure 8.2 (¢) The operation payoff of the company
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Revenue trom operation
Figure 8.2 (d) The total payoff of by the company
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The payoff from the operation is shown in Figure 8.2 (c), which means that the
company hold simultaneously downside risk and upside potential. Downside risk can
be eliminated by holding the revenue guarantee and thus the company can retain the
upside potential (Figure 8.2(d)).

The value of the revenue guarantee, which essentially is the value of the put
option, can be regarded as the expected value of the company's extra gain or the
expected value of the government's payment. However, the revenue guarantee should
be considered as a multi-fold SCO to coincide with preceding sequential decisions.
The following section describes details about the revenue guarantee with numerical

examples.

§8.1.2 Guarantee Evaluation
Assume the government promises every year's revenue guarantee (K;') to the

company, which lasts for 30 years. The expansion part also has every year's revenue

guarantee (K{*) for 8 years. All the construction costs are paid by the company and

the revenue are belong to the companys The preparation period is 1.5 years before the
2.5-year's construction period. Assume.there isno inflation. In other words, the
inflation is accounting as parts ‘of the risk-free rate.-No depression rate (¢=0) in this
example. The construction payment occurs at its end time. The parameter setting is
listed as follows.
The main construction cost (at Fime 73): Kl“1 =50,000,000,000.
The expansion construction cost (at Time 73): K{* =, K" *1.05.
The each year's guarantee revenue of original construction (at time 77):
K:'=100,000,000.
The each year's guarantee revenue of expansion construction (at time 73):
K =a,K"*1.05
The expansion scale coefficient (comparing to the original scale): «,,=0.3.
The initial time: To=0
The start time of main construction: 71=1.5
The end time of main construction and the start time of operation: 7,=4
The start time of expansion construction: 75=24.
The end time of expansion construction and the start time of the expansion
operation: 7,=26.
The end time of all operation and transfer the plant to the government: 75=34.
The risk-free rate (through time): 7=3.5%.
The annual volatility of the underlying revenues (through time): o =0.5.

The estimated average revenue of each year (at time 7j): So=2,000,000,000.
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For the revenue guarantee of the main construction at time 77, it can be regarded
30
as the guarantee revenue plus 30 1-fold forward-start put options (Z‘P&IH) ) written

u=1
by the government to the company. These forward-start options can be regarded as
European options because their dividend rates are zero. The company should pay the
construction cost (K"') as the "option premium". It should be noted that the main

construction cost K" is shared as the strike price of both the main guarantee and the

expansion one. The strike price of the option (‘P{f(lu) ) is the revenue guarantee (K3').

At time T), the revenue guarantee of the main construction can be considered as

30
2-fold compound options (call on put) Z‘Pz"’l(u) , whose strike prices are the
u=1

al

. . K T o
proportional construction cost —2—x L . Thus the payoff of a individual
Tal Tal + TaZaal
. . . al al Kgl z-al 1
option at time Ty is ¥, (7)) =max| 0,'¥, — X . At time Ty, the
, ’ Tal Tal + z-aZczal

) - Ka]
payoffis ;' (T)) = E(max[O,‘Pl"(lu) =-FlEAn }) :
’ , T Tal + TaZaal

al

Similarly, the revenue guarantee of the“€Xpansion construction can be regarded
as 3-fold SCOs (call on call on put). At time 73, the SCOs can be regarded as 8 1-fold

8
forward-start put options (Z‘P{fé) ) written by the government to the company. The

u=1

company pays the main construction cost and the expansion cost as the "option

premium". The strike price of the option (‘Pl”f(zu)) is the revenue guarantee amount of

the expansion ( K{’). At time Tj, the revenue guarantee of expansion can be

considered as 2-fold SCOs (call on put), whose strike price is the proportional cost of
expansion construction K;”. It means that the company should pay the expansion

cost in order to gain the revenue guarantee. Thus the payoff of the individual option is

vy, () = E (max[O,‘I"’2 —Kle). At time Ty, the payoff can be regarded as 3-fold

1,()
SCOs (call on call on put), whose strike price is proportional cost of main

al

2 x 4 It means that the company should pay the cost of
Ta2 z-al + z-aZO(al

. T,,0
construction

main construction in order to gain the expansion right. The payoff of the individual

36



option is ¥, (7;) = E(max| 0,57, — K7 x —La2%a }) :
Tor Tat 7,0,

At time T), the main revenue guarantee is 4.437 billion worth, which is evaluated
by 30 2-fold options (call on put). Thus the company is expected to gain 4.437 billion
from the government to eliminate the downside risk of main operation. The company
can get at least 6 billion in 30 years. Similarly, the revenue guarantee of expansion is
0.287 billion worth, which is evaluated by 8 3-fold SCOs (call on call on put). In other
words, the company is expected to gain 0.287 billion from the government according
to the revenue guarantee of expansion construction. There the company can get at
least 1.6 billion in last 8 years due to expansion.

The sensitivity analysis is listed as follows. Table 8.1 represents the guarantee
amount sensitivity. The annual guarantee revenue of the expansion construction is
associated with that of main construction. The 30-year guarantee revenue is the
summation of 30 years' annual guarantee. Guarantee worth (30-year) is the value of
the revenue guarantee, which is evaluated by 2-fold compound options. It is found
that guarantee worth decreases while_the guarantee revenue increase. It means that the
raise of guarantee amount can increase the, guaranteed revenue hugely and thus results
in the subtle reduce of the guarantee worth. In ‘other words, the increase of the
certainty part (guarantee amourit) will dimmish the uncertainty part (guarantee worth).
Similarly, the opposite direction of the guarantee amount and guarantee worth also

appears in the expansion construction:

Table 8.1: The Guarantee Sensitivity of the Guarantee Example (Unit: 10" NT)

Annual

. Guarantee 0.100 0.200 0.300 0.500
Main Revenue
Construction 30-year

Guarantee 3.000 6.000 9.000 15.000
Revenue
Guarantee

Worth(30yr) 6.096 4436 3.162 1.451

Annual 0.094

) Guarantee 0.0315 0.063 0.158
Expansion  Revenue 5
Construction ~ 3-year
Guarantee 0.252 0.504 0.756 1.260
Revenue

Guarantee
Worth(8yr)

0.884 0.794 0.708 0.544
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Table 8.2 represents the sensitivity analysis of volatility. The volatility of the
annual revenue is assumed constant through time. The table shows that the guarantee
worth, which is evaluated as option summation, increases with the volatility. The

results correspond with general intuition.

Table 8.2: The Volatility Sensitivity of the Guarantee Example (Unit: 10” NT)

Volatility 0300 0400 0.500 0.600
Guarantee Worth (30yr) of

rantee Worth (00 0932 2467 4436 6.631
Guarantee Worth (8yr) of 0.001 0.137  0.794 1.517

Expansion Construction

The sensitivity of estimated annual revenue is tabulated in Table 8.3. The
guarantee worth decreases while the estimated annual revenue increases, which is
consistent with put's behavior. In other words, the increase of the estimated annual
revenue will also increase the certainty of high revenue, thus causes reduce of the

uncertainty (guarantee worth).

Table 8.3: The Sensitivity of Estimated Annual Revenue of
the Guarantee Example (Unit: 10 NT)

Estimated Annual Revenue S 0.500 1.000 2.000 3.000

Guarantee Worth (30yr) of:
Main Construction 22.581 12972 4.436 1.691

Guarantee Worth (8yr) of

Expansion Construction 1.772 1.321  0.794 0.496

Table 8.4 exhibits the interest rate sensitivity. The hike of interest rate results in
the guarantee worth decrease because the discounting of high interest rate will

diminish the guarantee's value.

Table 8.4: The Interest Rate Sensitivity of the Guarantee Example
(Unit: 10 NT)

Interest rate r 2.5% 3.0% 3.5% 4.0%

Guarantee Worth (30yr) of 4.815 4.623 4436 4.256
Main Construction

Guarantee Worth (8yr) of 2.207 1.440  0.794 0.309

Expansion Construction
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§8.2 Currency Hedging

Assume an American company participates in a project auction and may have to
buy Japanese products sequentially in the future. The company wants to hedge the
appreciation risk of Japanese Yen. It can take a pool of SCOs, instead of a strip of
futures or a stack of futures. The pool including a 1-fold European put, a 2-fold
compound option (call on put) and a 3-fold SCO (call on call on put). Compared with
the strip/stack of futures, the SCO pool is a better risk management instrument
because the downside risk is well protected.

Options in the pool are with the final strike price 110. The 2-fold and 3-fold
option should pay the fold payment (5 Yen) when enter the next fold.

The parameters of this example are set as follows.

The current exchange rate= 123.8 (Yen/USD).

The final strike price =110.

Payment for each fold =5.

The domestic (US) risk-free interest rate: r=5%

The foreign (Japanese) risk-free interest rate: g=r=1%

The annual volatility of the exchangerate:. o =0.4.

The time interval for each fold: 0.5 yr.

The 1-fold put option is priced as 6.51 (Yen), while the 2-fold (call on put) and
the 3-fold (call on call on put) are valued as 6.69 and 5.86, respectively. The
following tables show the sensitivity analysis of this example.

Table 8.5 represents the exchange rate sensitivity. It is found that the value of the
SCO pool decrease while the current exchange rate rises. The result corresponds with
the behavior of put option. The volatility sensitivity is tabulated in Table 8.6. The

table reflects the intuition that higher volatility causes higher option prices.

Table 8.5 The Exchange Rate Sensitivity of the Currency Example

(Unit:Yen)
S 115.00 123.80 130.00
1-fold 9.22 6.51 5.05
2-fold 9.04 6.69 5.38
3-fold 7.85 5.86 4.73

Table 8.7 and 8.8 exhibit the sensitivity of domestic and foreign interest rate,
respectively. When the domestic (US) interest rate hikes, the US dollar becomes more
strengthen and results in the exchange rate decrease. Nevertheless, the foreign

(Japanese) interest rate raising will cause the exchange rate increase. The result can be
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explained according to Interest Rate Parity (IRP).

Table 8.6 The Volatility Sensitivity of the Currency Example

(Unit:Yen)
Volatility 0.3 0.4 0.5
1-fold 3.77 6.51 9.42
2-fold 3.32 6.69 10.47
3-fold 2.38 5.86 10.03

Table 8.7 The Domestic (US) Interest Rate Sensitivity of the

Currency Example (Unit:Yen)
r 4% 5% 6%
1-fold 6.71 6.51 6.32
2-fold 7.08 6.69 6.64
3-fold 6.37 5.86 5.37

Table 8.8 The Foreign (Japanese) Interest Rate Sensitivity of the

Currency Example (Unit:Yen)

rr(q) 0.5% 1% 2%
1-fold 0.43 6.51 6.68
2-fold 6.55 6.69 6.99
3-fold 5.67 5.86 6.23

The sensitivity of final strike and fold payment are shown in Table 8.9 and Table
8.10, respectively. The increase of final strike will result the value of the put-style
SCO pool. The fold payment can be regarded as another premium payment. Table
8.10 prevails the fact that SCOs can support decision postponement, which is one of
SCOs' advantages. The higher SCO premium payment at current time can enjoy less

fold payment in the future.

Table 8.9 The Strike Sensitivity of the Currency Example

(Unit:Yen)
final Strike 100 110 130
1-fold 3.54 6.51 13.16
2-fold 3.72 6.69 13.05
3-fold 3.10 5.86 11.79
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Table 8.10 The Fold Payment Sensitivity of the Currency Example

(Unit:Yen)
payment 1 5 10
2-fold 9.51 6.69 4.30
3-fold 11.32 5.86 2.12
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Chapter 9 The Information Management System of
Projects and Financial Derivatives Evaluation

This chapter illustrates the information management system of projects and
financial derivatives evaluation. The system is designed based on the main idea that
all projects and derivatives can be decomposed as and evaluated individually by other
simple components. The system can be applied as knowledge management
instruments for the price discovery.

The system includes six main steps, which are stated as follows.

Step 1: Project/Derivatives Decomposition. The target (such as projects or financial
derivatives) is decomposed as different excluding parts in order to simplify the
evaluation.

Step 2: Parameter Setting. The parameters of decomposed components are set in this
step.

Step 3: Calculation of Individual Components. According to the parameters set in
the previous step, individual components are evaluated separately here.

Step 4: Aggregation. All the evaluation results are aggregated in step 4. The
interactions of disjoint parts are taken into consideration in this step. The values of
projects or financial derivatives-are availablé here.

Step 5: Sensitivity Analysis.- The scenarios of the projects and derivatives are
presented in order to enhance the risk management;

Step 6: Visualization. The results of previous-steps are visualized to facilitate usage.
The user interface is illustrated as Figure 9.1, 'while the six-step framework of the
system is exhibited in Figure 9.2.

2 D psion{GLITO02

Compowrd Decision Todl (D oped by WY, Los)

L it Licrisd Soar pond Fsnbow Tres Foo ps Trss j
— Pt £ B

Fararchor | Tl 1 Paranrke 1 [

Pk & = Prarzia £t & T

oyl A Tisgal 3 Pagsel i [T 1

=l Ll o Pt
T T

e

TIETEY

g
g
8
5
g
g
E
8
g
g

Figure 9.1 The illustrated User Interface of the System
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Step 1: Project/Derivatives Decomposition
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Step 2: Parameter Setting

y

Step 3: Calculation of Individual Components

A 4
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Step 5: Sensitivity Analysis

A 4

Step 6: Visualization

End

Figure 9.2: The Procedure of the Information Management System of

Projects & Financial Derivatives Evaluation
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Chapter 10 Conclusions

Motivated by the current inadequate methods for complex project valuation, the
present study defines and derives the pricing formula of sequential compound options
(SCOs), where the parameters vary over time/fold and each fold option may have
different put/call attribute. The partial derivative of a multivariate normal integration
is derived in this paper as a special case of Leibnitz's Rule, and is used to derive the
sensitivities of SCOs. Besides, SCOs allow puts and calls alternating arbitrarily and
are therefore suitable for project valuation with sophisticated structures such as
internal options interaction and fold stack-up.

Previous results have analyzed 2-fold puts/calls-alternating compound options or
multi-fold "sequential compound calls" where all options are of call-type. Fold-wise
differences are rarely taken into consideration. The SCOs presented in this paper have
the following qualities. First of all, multi-fold SCOs enable arbitrary option feature
(call/put) assignments, greatly enhancing the range of practical applications that can
be treated by compound option theory. Second, in real-world problems option
parameters often vary over time; SCOsienabling random parameters can capture the
"sequential” features. Third, SCOs'can accommodate an arbitrary number of folds.

Furthermore, SCOs can be used to demonstrate some features of cumulative
multivariate normal distributions, including a special form of Leibnitz's rule. The
sensitivities of SCOs to asset price (and itsichange) and interest rate (under the case of
interest rate fold-wise) are also defived.

SCOs not only generalize the methodology of European Options (Black-Scholes,
1973), 2-fold compound options (Geske, 1977; 1979) and sequential compound calls
(Thomassen & Van Wouwe, 2001, 2003; Agliardi & Agliardi, 2005), but can be
evaluated by a linear combination of the asset and strike prices weighted by different
variate normal integrations. Corresponding to intuitions, an SCO can be seen as a
multi-dimensional options extending from the work of Black-Scholes (1973) and
Geske (1977; 1979). The changing numéraire method enriches the SCOs pricing
formula derivation with more financial implications than P.D.E. method. The
Leibnitz's rule can be used to decompose the partial differential of (k+1)-variate
integration into two parts: a k-variate normal integration and an integration with the
integrand of a partial derivative. This paper proves that, under the multivariate normal
cases, these two parts can be presented in a unified form. Based on the above results,
the sensitivities of SCOs can be expressed explicitly as a generalized version of those
found by Black-Scholes (1973), Geske (1977; 1979) and Thomassen & Van Wouwe
(2002).

The six-step recursive algorithm for SCOs evaluation is proposed in order to
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clarify the computing details. The evaluation of SCOs is not easy due to the nested
loops, EAP calculation and the computation of multivariate normal integration. These
difficulties all result from the multiple fold features of SCOs. Numerical examples of
3-fold SCOs are illustrated. The SCOs proposed in this study can extend the
compound option methodology and broaden the popular real option applications.

SCOs can enhance and broaden the use of compound option theory in real option
and financial derivative fields. Real options often incorporate multiple options of
different types with sophisticated interactions, but such situations can be evaluated by
aggregating various SCOs. Even milestone projects, which must decide whether or
not a project has terminated according to the milestone achievement, can be evaluated
by the use of fold-wise SCOs. Compared with the constant volatility assumed in in
Casimon et al. (2004), allowing the volatilities and interest rates to vary for different
periods makes this method of project valuation more precise and flexible.

Risk management is another SCO application. Volatility risk, prepayment risk of
mortgage and weather risk are some the most important issues of concerned to finance
institutions. The advantages of SCOs, including the cheaper premium, decision
postponement, split-fee and flexibility;icanrenhance risk management effectiveness
through SCO adoption.

Numerical examples of SEOs proposed . this study, including evaluation of
government revenue guarantee and currency hedging, shows that SCOs can be applied
widely in both real option and financial derivative field. Besides, the information
management system with SCOs<as. its core module proposed here can support the
evaluation of projects and financial derivatives.

Finally, a number of complex financial derivatives can be developed or evaluated

using SCOs in the same way that chooser options and capletions can be priced by
2-fold compound options. These applications of SCOs with real-world cases will be
the subject of probable future researches. Some topics for future study are listed
below.

1. The uncertainty of the fold time intervals is an important issue for real option
application. This problem can be solved by simulation.

2. The piecewise method can facilitate the computation procedures.

3. Discovery the forward rate by the piecewise method and optimization
methodology. .

4. Examine the accuracy and consistency of SCOs routines.

5. Study the option with both European and American type in different time
interval. This option is also common in real world application. According to Geske
and Johnson (1984), the result seems like a exotic SCO.

6. Discovery the relation between simultaneous compound option and SCOs.
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Appendix A: Proof of Theorem 3.1

This theorem is proved by induction. When i=1, ¥(7;) with A;;=1 and
Aj,1=-1 are the vanilla call and put formulas respectively. When =2, Y¥,(7;) is the
2-fold compound option, such as call on call (A; =1, Ay»=1), put on call (A ;= -1,
Ayp=1), call on put(A;;=1, Ayp= -1), and put on put(A;;=-1, Az»=-1). These
generalized 2-fold cases can be extended easily from Chen (2002) and Lajeri-Chaherli
(2002).

Assuming that Equation (3.2.1) is true for the i-fold compound option ¥;(7;), it
will be shown that Equation (3.2.1) is also true for the (i+1)-fold compound option,
forany Ay, 1< g<i+1.

Because the underlying asset of WY.;(7y) is W¥,(T}), instead of Y(7), the start
time of the i-fold compound option is shifted from 7j to 7;. All pieces of notation for
the i-fold compound option are changed simultaneously according to this time shift.

(In other words, v=1).

Tix1

- Iq(u)du
Hence \Pi (Tl ) = Ai+1,2e g SlNi { [Ai+l,g+lai,g,*1]‘.xl; [ﬁg,h,*l]m}

Tjtl
i - ."r(u)du

YAe KN j{[AM_gHb,.,g,,,l]/_xl;[5g,,,,*l]jx/_} ...... (A1)

J=1

At T}, the maturity time of the i+1-fold compound option, the option price can be

expressed as '\, | (T)=max[A;¥:(T})-A K, ]- At its starting time 7, the option price

is given by

7
—J.r(u)du

¥, () =Efe™  max[A, ¥ (T)-A,K, 1 (A.2)

according to the fundamental theory of asset pricing (Baxter and Runie, 1996). E is
the expectation operator under the risk-neutral measure, and F, denotes the
information available at time 7j from the asset price.

Under the assumption that the asset price follows a geometric Brownian motion,

it can be expressed as

Ul I

J[r(u)—q(u)—%o‘2 (u)}d&wz IUZ (u)du
Tt T
S =8 é" o (A.3)

where z is a standard normal random number z~N(0,1) , with density function f .
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WY.. (1) is a function of §, and hence a function of z. Thus the SCO price can be
represented as

Ul
—jr(u)du ©

Y (T)=e®  [max[A, W) - A, K Jf(2)d: .

—00

Assume that Sy, is the equivalent asset price which makes ¥;(7})—K,=0. The
condition "S, =S8;,,; " is then equivalent to "z =-b,.,," , where

1n(SS? )+ | [r(u) —q(u) - ;O'Z(u)jdu

b'+1,1 =

! Y

jaz (u)du

T
Because the integration range is either [-o0, -b;+1,1] or [-bi+1,1 ,0], depending on A,
(the sign of S,), the compound option can be expressed in the unified form

T
— | r(u)du A ®

Y, (T)=e" Ai+1,1 J.{Al,llPi(Ti) - Al,lKl}f(Z)dZ .
_bi+l,l
Substituting Equation (A.1) into the previous equation, it can be obtained that
T Ti1
—Ir(u)du Aj g - Iq(u)du
VY., (T)=e" AHI,IAHI,I I e d SlNi{[Ai+1,g+1a[,g,*1]jxl; [pg,h,*llxi}f(z)dz
7bi+l,1
—Jlr(u)du i Aj o — /ﬁ’(”)d“
—e K Ai+l,lej+l,l J. e ! Kj+le {[Ai+1,g+lbi,g,*l]i><1; [pg,h,*l]/xj }f(Z)dZ
J=1 _b[+l.1 . o
- f F(u)du Ao
—e” A J‘Klf(z)dz
_bz+1,l

E‘?m,l_\?m,z_qlmg .
The following paragraphs derivates ‘T’Hm, ‘T’H,’Z and ‘T’Hm explicitly. By Equation
(A.3), S| can be substituted by the representation of Sy and thus

Tis1 1 T1 2
- _[Q(u)du A1 1 -l jaz (u)du
\P. =A. e To SA e To N{[A ) 5,*] .[ﬁ) *]kZ
i+1,1 i+1,1 0° *i+1,1 e ,27[ i i+1,g+17,8,%1 1512 .01 )y 5
where
S, e 1 I T
In(——">—)+ j {r(u) —q(u)+ 50'2 (u)}du +z _[0'2 (u)du — J.o-2 (u)du
a’g,*l _ #e+1,i+l Ty . To Ty ’ V] < g <i
g+l
J.Jz(u)du
T

T,
Let z,=z— Uaz(u)du , so that the above equation can be written as
Ty
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Tis1 A
— Jq(u)du i+1,1% 1 _1222

O _ Ty 2 = N >
V=70 AYYAVI _[ \/— e’ N, { [Ai+1,g+1ai,g,*l ]ms [pg,h,*l]ixi }122
2z

i1

Oign T 2P g0

ig¥1 2
\/1 ~ Pign
Then denote z; =-A,,,,z,, hence

where a, ,Vi<g<i.

Ti+] a 71 232 -
— u du 1+] 1%i+1,1 2 _
latw) e A g+1at+1 g+l Ag 1,01 g+%3

q}iﬂl =N e " I —N,
o 2 \/1 g P g+1
—T;ﬁ](u)du { }
=N e " SoNi [Ai+1,gai+l,g ](i+1)x1; [Ho,g,h ](i+1)><([+1)
The last equation is obtained by Theorem 1 (a). The following derivation will
demonstrate that [H 0gh L

5 ['Og:h,*l ][x[ dZ3

ix1

+)x(i+1) = Peu ](i+1)><(i+l) '
According to Theorem 1 (a), Hy11=1; Ho,l’g =N, 1Py V2 < g <i+]1; Hogi=
Ho g and Hogg=1, V2<g<i+l. V2<g<h<i+l,

_ 2 2
Ho,g,h = Ag—l,lpl,gAh—l,lpl,h + \/1 - (Ag—1,1p1,g) \/1 —(NyiPip) Peth-1,41
Tg

_[0'2 (u)du

=A, = Ah—l,g/Oth = P -

-l.g 7,

According to the above statements, [Ho’g’ h](i+1)><(i+]) = [pg,h ](i+1)x(i+l) and hence

Ti1
— [r(u)du

5 ] T~
VYo =ALe " SONi+1{[Ai+1,ga[+l,g](i+1)xl’ [pg,h](m)x(m)}'

By a similar method, ‘T’M,z and ‘T’Hm can be derived:

T

- i+l — [ r(u)du
_ Ti
P = ZAj,le ' K.fNj{[Az+1g z+1g],xl’[pgh],xj}
=2
T
- = [r(u)du
]
\Pi+1,3 = Al,le ’ KN {A1+1 b, 1}

Equation (3.2.1) is true for any i+1-fold compound option, provided it is true for the
i-fold compound option. Consequently, Theorem 3.2 is proved. Q.E.D.
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Appendix B: Proof of Lemma 3.1
According to Theorem 3.2 (f), the S,,, will exist only when the EAPs of the
previous folds (S,,;,g —1</<i-1) exist. Thus the condition (a) holds. According to
Theorem 5.1 (a), the option price ‘T’F ((T,) 1s strict monotone and its sign is decided

by A, ,,- Hence it is discussed as the cases of A, =+l (condition (b)) and

1

l

A, ,,=-1 (condition (c)), respectively. For condition (b), ¥, ,(7,) has the same

sign with the asset price and thus can ranges from zero to infinity to fit any

nonnegative K. For condition (¢), ¥, ,(7,) has the opposite sign with the asset
price, then ¥,  (7,) will reach the maximum - ‘T’F e283(l,) while the asset price is
zero. Therefore the strike price &, jcan NOT exceed the maximum in order to keep

S

#e,i

exist. Q.E.D.
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Appendix C: Proof of Theorem 3.3

This theorem is proved by induction. The dynamics of related securities are

exhibited before the induction procedures. Let 7 be a fixed maturity date and P be

the risk-neutral measure. Let E[-] be the expectation operator under P. Given T

satistying 7, <T, let P” be the T-forward measure, that is,

BT D(T) D -
p ——B(TO’T)dP,where B(T,,T) = E[D(T)].

Under P7, it is known that the forward price, Fy(t,T), is a martingale, for

T,<t<T. Let W, be the multiple dimensional Brownian Motion under P .

Assume that the dynamics of the bond price and the underlying asset are

dB(t,T) = B(t,T)|r()dt + &,(¢, T)d ) and e dS(6) = SO|r(0)dt + o5 (0)aW,|

T
respectively, where c,(¢,T) =—I0'B(t,u)du. The forward price of the underlying
t

asset, Fy(t,T),equals Fy(t,T)= Bft(t;) ¥Vt e[0,7T]. According to I1t6 Lemma,
dF,(t,T) = Fy(t. )G, (. o Yt + 5, YW, |, .. (C.1)

where o(¢,T) = |O'S (t)—o, (t,T)| . Because F(¢,T) is a martingale under PT it can
be set that dVIN/,T =d W; —0,(t,T)dt to cancel the drift term of Equation (C.1). Thus
dF(t,T)=F(t,T )[E(t,T )d VIN/,T] The stochastic differential equation of the logarithm

forward price can be derived by It Lemma: dInFy(1,T) = &(¢,T)dW, — %52(t,T)dt.

Therefore, the dynamics of the forward price is obtained,

1¢t -y t T
JTOJ (u,T)dquj o (u,T)dW, }

F,(t,T)=F, (T(),T)e{2 L (C.2)

Take the asset price S(f) as the numéraire, and the bond price is
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B,T) 1

= under P’ . By 1td Lemma,
Sty F@T)

_N NT_N

F(@t,T) F(@,T)
dWS =dW' —&(t,T)dt . e (C3)
By Girsanov's Theorem, as dP® satisfies dP* :%dﬁT , WIS is the
0
Brownian Motion under P°. Hence, d{ ! }: _5(t’T)dW’S 1S a martingale
F@T) F@¢T)

under P°. By It6 Lemma again, dIn L —lEZ(t,T)dt —&(t,T)dW? . Thus,
FT)| 2

1 1 {—%Jjﬂ&z (u,T)du-%—J.TtO E(M,T)quS}
F(t,T) F(T,T) |

The exploited dynamics are used fot/the induction. The Equation (1) is true for
i=1. For the case A;;=+1 is exhibited. in, Musiela and Rutkowski (1998, section
15.1.2) and Frey and Sommer (1998). The other case, A; ;= 1, can be proved by the

similar way.
Assume the Equation (1) is.true for the i-fold’ compound option ¥,°(T}), it is

showed that the Equation (1) is also true for the i+1-fold compound option, for any
Ngg, 1<g<i+l.

Because the underlying asset of W, (7,) is ¥,°(T}), instead of W,°(7}), the

start time of the i-fold compound option is shift from 7, to 7). All pieces of notation

of the i-fold compound option are changed simultaneously according to the time shift.

Hence W2 (T)=A,, st)N A, a®.] [3%.] )

- ZA‘M,zB(]} > Z'/'H )K_/+1Nj { [Am,gnbi(?g,*l ]jxl; [ﬁ;@,h,*l ]_/x_/' } """ (C4)
j=1
At the maturity time 7) of the i+1-fold compound option, the SCO price is

Yo (T) = maX[Aljl‘I’l@ (T)— A, K, ]; thus at the start time 7o, the option price is

WE(T) = E{D(T)max[A,, W (T) - A K IR}, (C.5)

according to the fundamental theory of asset pricing (Baxter and Runie, 1996), where
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Fo denotes the information available at time 7; from the asset price.

1+1(T) E{D(T)A11T®(T)l{

AL ()ALLK, |

§=E{D(A, K 1

A1,1¥®(7])>A171K1}}

— ® < =x®
_Al,lE i+1,2D(Tl )S(Tl )Ni { [Ai+1.g+1ai,g *1 ] 5 [pg,h,*] ]m. }1 {A1,1Wf®(7])>A1,1K1 }}

ZA“E{D(T)AH”B(T{,T/H)K N {[A+1g+1 lg*l] [pgh*l] } AH‘I’ (T)>AHK1}}

D(T)

—~ A, B(T,,T)K E{—— 1, .
1,1 ( 0 1) 1 {B(%,Ti) {AH‘P,» <T|)>AI.IK1}}

_p®
\PHII

G ® $71C)
\Pm,z - \Pi+1,3

=] D(T))S(T))
+11(T) AH“S(TO)E{TTO) {[ 41,41 tg*l] [gh*l] } AHTO<T)>AHK1}}

1+11S(T )ES {N{[A+lg+l lg*l] [ gh*l] } AII‘P[®(T1)>A1.,K1}}’

where ES[-] is the expectation operator under P>

The condition {Al’l‘Pi®(T, )> ALIKI}, deciding whether the current fold SCO is

worth exercising or not, is equivalent to

Fensse.y (C.6)

and {Zn > —b[®+1’1}, where z;, is the standard normal random variable. Frey and

Sommer (1998) mention, under stochastic interest rate, that the volatility of asset price
and bond price must be perfectly correlated to make sure the existence of compound
options' equivalent price (EAP) (Equation C.6). The condition of volatility is
generalized for SCOs as

(o) =5,(T,.) ~(1-{ ), (LT, Ve ell, T, 1<g<i, . (C.7)

where ¢, is constant. Because the integration range is either [—oo HH] or

[ b0 ], depending on the sign of forward price (A,,,), the ‘T‘SI,I(Y})) can be

expressed as a unified form
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Aj® 1
e 1 —z
1+11(T) A1+1,1S(T0)Ai+11 I \/Ee :

_p®

i+1,1

® J~e .
N, { [Ai+l,g+1ai,g,*l ]M’ [pg,h,*l ]m }iZn

According to Equation (C.2) and (C.3),

{—ij’ Fru,T +l)azu+J' &(u,Tyy )qug*‘}
+1)

Fy(T.,T,.,)) = F (T, . Applying the last equation, it

could be showed that

Sg ©

®
#otlitl Tl en T Z0Prgn _ Z®

ai‘g,*l = - ® 5 = lg*l’
1_( + )
| j & (u, T, )du VT e
T

z1 18 the standard normal random variable. Then,

F(T,,T,.)| 1% _, (. =T
ln{oél:l 5 Ia (u,TgH)dquIa(u,Tg+1)quTg+
—e TT T vl g <i

Ajy© 1,
1 5412

2
. e
i+1,1 I
S 2T

44,1

qji(-?l,l (T) =N S(THA N; { [Ai+1,g+167i,®g,*l ]M; [ﬁ;@,h,*l ]m }1212 ’

i+1,1

Note that the lower limit of the integration is also changed by Equation (C.3).

Denote z,=-A,,,,z,, hence

1>
A+|.1”i®+1,1 5 ® ®
o S(T : N A a1, g+l _Ag 1/01 1?3 | [~e ] J
i+1,1 1+1 1 ( ) ~ - ’ Iog,h,*l i 213
e 272- 1 Ixi
g lpl g+1 .
ix1
l+l IS(T )Nz+1 {[At+l g t+l g ](H—l)xl 9 [Ho,g,h ](i+l)><(i+1) }

The last equation is derived by Theorem 1 (a) and the following is to exhibit that

_|=®
[Ho’g’h ](i+1)x(i+1) a [pg,h ](i+1)x(i+l) :

According to Theorem 1, Hy1,1=1; Ho,l,g:Ahfl,lploj)h’ V2<g<i+l; Hygn=Hong;
Hogo=1, V2<g<i+l. V2<g<h<i+l,

Ho,g,h = Agfl,lpl(‘?gAhfl,lpl(?h + \/1 - (Ag71,1p16,9g)2 \/1 - (Ah—l,lpl(‘?h )2,0?71,;,71,*1

h-lg

According to the above statements, [H 0, h](i+l)><(i+1) = [,52 ]( and

h X )x(i+1)

\Pl?n 1+1 1S(T )NHI{[AHIg t+1g]¢,+1)x1’[ ](z+l)><(i+l)}'

By the similar method, the ‘PHZ and ‘T’fm can be derived under the

T-forward measure P with the corresponding expectation operator E'[-].
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1+1 2 ZA/H lKj+lB( j+1)5{%7f)) J { [A i+l,g+1 t »gs *1] [ g.h *1] } A1 I\P,.®(7"1)>A1‘1K1}}

:;AjH,IKjHB(TE)?]}H)ET%Vj{[AHgﬂ ,g*l] [gh*l] } AH‘P,®(T1)>A1,1K1}}

Substitute the (C.2) into the above equation and apply the similar way of ge

i+1,1»

it can

be derived that %, =" A, BT, T)K N {[A, b o] sl |

gl
Jj=2

, can be derived by the same method. P2, = AI,IB(TEMTI)KINI{Ai+l,lbi<+@-l,l}‘
2(T,) isproved. Q.E.D.

P

i+1,

Consequently, ¥

i+1
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Appendix D: Proof of Theorem 4.2

: : : ON{dyy,,}
The theorem is proved by induction. For k=1, 6—

= f(d{l},l)NO' The

l

theorem thus stands for i=1.
By the result of /=1 and Leibnitz’s rule, it is obtained that

ON, {d{z},l’d{z},z; [Q{Z},g,h ]zxz} f(d )8( d{z} 1) d{z},z - Q{2},1,2d{2},1 N
= 211 N, 219
oG, oG, \/1 ~0%.,

d.., + z
27 ol G2 Oz

_ 1 d!z} ) T sz} 1 2Z \V 1- Q{22},1,2
N, = I f(z)\/— X~ = dz.
\/1 - sz} 1 2

diy

where N

2+d00012

\/1 - Q{zz},m

Denote z, = . Thus N,,can be rewritten as

~ od I od d,  —0 d
N2,1 = f(d{z},z) — If(z4)dz4=f( g - 2 N, 2 22 202

23,2/ 5
8G‘~} —dy1+t001 24250 6G€ \/1 - Q{z},l,Z
V1-0%12
(=J.=7)
ON, (3159 3y 55 [Q{z},g,h ho) _ % \od

z ( (25, N, d{z},g ~ d{z},.fQ{z},.f,g
12}, 1/ a

2
00, \/ 1=00, 5 il

Hence Equation (4.1.1) stands for i=2.
Assuming that Equation (4.1.1) is true for £, the following proves that it is also

true for k+1 By LeibnitZ’S I'ule aNk+l{|:d{k-¢—1},g ]k+l><1;[Q{k+l},g,h](k+1)><(k+l)} —

oG,
(=1,-1)
f(d ) od 4 N Ay gn ~ Qg ipa . Qi ~ Qg Qi
1) T o k 2 ’ 2 2
z V1= Qs V0= 0l )= Qi) |
+Nor (D.1)
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{k+1},g+1 + Q{k+1},1,g+lz . Q{k+1},g+1,h+1 - Q{k+1},1,g+lQ{k+1},l,h+l

~ 0 0 d
Nk+1,1 = Jf(Z)— N, 5
~dik+1},1 aG!/ \/1 - Q{2k+l},1,g+1 il \/(1 - Q{2k+1},l,g+l )a- Q{2k+l},1,h+1) o

dz

k

aNk([d{k},g]kxl; [Q{k},g,h]
oG,

Using the corresponding result for kxk) , by substituting

d{k+1},g+1 + Q{k+1},l,g+lz and Q{k+1},g+l,h+1 - Q{k+1},l,g+1Q{k+l},l,h+1

2 2 2
\/1 - Q{k+1},1,g+1 \/(1 - Q{k+1},1,g+1)(1 - Q{k+1},1,h+1)

as dk’g, Qk’g’h in

z+d,, ., A
Equation (4.1.1) respectively and setting Z = ey 1 Qs 1o

k+1,j+41 2
\/1 - Q{k+1},1,j+1

» Ngay can

derived as
~ k od ) ® o~
_ {k+1},j+1 .
Nk+1,l - Z f(d{k+1},j+l ) _[ f(Zk+l,j+1 )Nk—l {Hl ’ Hz }de+1,/’+1 ----- (DZ)
Jj=1 aG(/ —d{k+1}, 1+ k413, jH1Q0k+13,1,j+1

2
\/1’Q<k+1},1,j+1

~ J1-0% .,
The numerator and the denominator of « H; r are multiplied by el L]
\/1 - Q~{2k+1},j+1,g+1

order to match the format of Theorem 3.1: Therefore

(=J>)

d{k+1},g+1 _d{k+1},j+1Q{k+1},j+l,g+l 7 H
\/1 Qz & k+1 -+ %1, g
o T k1), 41,841 ~ —j—J
H1 — tk+1}, j+1,g+ - and HZZ([HQ’g’h]kxk)( J ./)’
N
4
kx1

where H1,g — Q{k+1},1,g2+1 B Q{k+1},l,j+1Q2{k+l},j+l,g+l V1< g< k:
\/(1 - Q{k+1},1,j+1)(1 - Q{k+1},j+1,g+1)

Oy, g+1.+1 ~ ity 1,11 Qpieaty, i B Opesty, g+t — Qpeany 1,1 Qeksy g+t Qiksty et — Qekeaty 41 Dty L

_ \/(1 - Q~{2k+l},1,g+1 )(1 - Q{2k+1},1,h+1) \/(1 - Q(2k+1‘,,1,j+1 )(1 - Q~{2k+l},l,g+1) \/(1 - Q\{2k+1},1,j+1 )(1 - Q{2k+1},1,h+1)

s>

2,0,
€ 2 2

- Oy, j+1,g+1 — ity 1, j+1 Qi) L+ - Oy, j+1 el ~ Qi1 j+1 Qi1 L1

\/(1 - Q\{2k+l},l,j+1 )(1 - Q{2k+1},l,g+1) \/(1 - Q(2k+1},1,j+1 )(1 - Q(2k+1‘,,1,h+1 )

Vi<g,h<k.
The integration of N w11 can be performed by applying Theorem 3.1. Hence,

(=j-1LD

N od,,.,, . . B0 -
NkHJZZk:f(d{km,m) gg}wl Nk (k+1},g {k+12;,./+1Q.k 1},j+l.g ;H3 ...... (D3)
= ¢ \/1 - Q{k+1},/+1,g

(k+1)x1
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(=J>)

~ ~

o’
3 1 H4 ﬁ _ Q{k+l},l,g+l _Q{k+l},1,j+1Q{k+1},j+1,g+l
H, H,

where H, = A= : -
\/(1 - Q{k+1},1,j+1)(1 - Q{k+1},_/+1,g+1) i

By Theorem 3.1, H;and H; are symmetric with diagonal elements equal to 1. For

ISg<h, Hsgy=H, H ,+|(-H},)(1-H2,)H, ;. Thus

(=/.=)

Y Qk+1 ,g+1,h+1 _Qk+1 L+ +1Q k+1}, j+1,h+1
H, = k+1}.g k1), gz{ 5J and

2
L \/(1 - Q{k+1},j+1,g+1)(1 - Q{k+1},_/+1,h+1) xk

(=j=L=j-D

Q{k+l},g,h - Q{k+l},j+1,gQ{k+1},j+l,h

2 2
\/(1 - Q{k+1},j+1,g)(1 - Q{k+1},j+1,h) (k+1)x(hsl)

umz
I

Substitute ﬁ3 into Equation (D.3) and change the index j to obtain

~ k+1 1 ad Y,
Nk+l,1 = ;Ef(d{kﬂ},j )#X

(=J») (=7,=1)

d{k+1},g - d{k+1},jQ{k+l},j,g Q{k+l},g,h u Q{k+1},j,gQ{k+l},j,h

2 3 : 2 2
\/1 - Q{k+1},j,g (et \/(l i Q{k+l},j,g)(l - Q{k+1},j,h) (k+1yx(k+1)

N,

Substituting the above result into Equation (D.1), the consequence is obtained:

aNkH {[d{k+1},g ](k+1)><1; [Q{k+l},g,h ](k+l)><(k+1)} ) Q.E.D.
oG,
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Appendix E: Proof of Theorem 5.1

Proof of (a):
alPi (T ) 7%[)q(u)du _ - N
For part (a), as = Ai,le N, { [Ai,gai,g lxli [pg,h ],-Xl- }"' Wos1 —Wasas
0
(u)du i 1,
J.q 1 5w 6515",

where ‘Pasl =A, e S, Zfe i Ay iy
v= 0

T
i —jr(u)du j 1 —lbfy 8[3
e’ .

S7 _ Tp i,v
lI"as,z = zAj,le BT )Nj—l,b,—v
Jj=1 0

The sequential paragraphs demonstrate P, — ¥, =0.

| T,

1 2 S#V i ’Eb:’z,v"[’(“)d“

By definition, e 2" ="%:i¢ honidiEr<i. 00 L. (E.1)
0
The ¥, . isdenoted as P B2 o e f
e is denoted as e g - e™ or convenience.
a58,3 08,3 & \/ﬁ ( i,v 8S0 v—1,b

According to Lemma 5.1, Equation (E.1) and the fact that 886;” :%, ‘T’as’l can be
0 0

reformulated as

T
- P - [ atudu
— T,
osS,1 — Z\P(?S,S 1{v<i}e l{v =i} A S#v 1N {[Athrg tg#v](l v)xl’[pgh*v](l v)x(z—v)} .
T
- i —Ir(u)du j 1 _lbz 8[)
V=DA™K, NSO { NN I 7 I
08,2 J A —-1,b — A &1 ki ? JF P~ )x( j—
/Z::' ! /;\/27z vos, L e )
Tv+j
i iy - J.r(u)du
— T,
=2 Va5 AV’IKV +1{V<i} € AV+1 IKV+1N {[At vtg lg#v](J x1? [pg h *V](J—v)x(j—v)}
v=l =l

The last equality is obtained by interchange of the two summations.

~ ~ ~ -1
‘Pas,l - \Pas,z = \Pas,s(AmS#;,fNo - Ai,lK ) Z a8 3( as 4 Av,lKv)’

v=1
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T
N —Iq(u)du
— TV
Where \P&S‘A =e Al v+1S#v IN {[Al v+g lg #v ](l v)><1 [pg h*v ](1 —V)x(i— v)}

Tv=+/
-y — jr(u)du
T, | A
- Ze Av+./,v+1Kv+_/Nf {[Aiav+gbiaga#v](j—v)xl’ [’Og’h’*vlj—V)X(j—V) }

j=1

By definitions, Sy, =K, hence A, ;S ;No—A;,K;=0. ‘T‘@M is the (i-v)-fold compound
option price with start time 7, (instead of 7p). In other words, ‘T’as,4=‘1’,-,v(Tv) with

initial asset price Sy,; . Thus, by definitions, ¥, , =K, , and ‘T‘@S,l—‘f’gs,z =0. Part (b),

05,4 =

(c), (d) and (e) can be proved by similar method to part (a). Q.E.D.
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