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Student : Po-Chiang Hsu Advisors - Dr. Hsien-Da Huang
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Abstract

Protein acetylation, which is an important and reversible post-translational
modification, affects essential biological processes, including enzymatic activity,
stability, protein-protein interaction, DNA binding, DNA repair, transcription
regulation, apoptosis, cytokine signaling, .and nuclear import. However,
experimental 1identification | of | acetylation 'sites is time-consuming and
lab-intensive. In order“toridentify the ptoteim acetylation sites that could be
useful and insightful for further analysis, we investigate the substrate specificity
of acetylated sites and. propose a. method, namely N-Ace, for identifying
acetylation sites on alanine, glycine, lysine; methionine, serine, and threonine.
Support Vector Machine (SVM) is  adapted to learn the computational models
with the features of amino acids, structural characteristics, and physicochemical
properties surrounding the acetylation sites. K-fold cross-validation indicates
that the structural features, such as accessible surface area (ASA), and physical
and chemical properties, such as absolute entropy, non-bonded energy, size,
amino acid composition, steric parameter, hydrophobicity, volume, mean
polarity, electric charge, heat capacity and isoelectric point are involved in
substrate site specificity. The predictive accuracies of acetylated alanine, glycine,
lysine, methionine, serine, and threonine are 84%, 85%, 76%, 94%, 81% and
77%, respectively. Finally, the constructed models with highest accuracy are

used to implement a web-based prediction tool.
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Chpater 1 Introduction

1.1 Background

1.1.1 Protein Acetylation and Deacetylation
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Figure 1.1 Protein acetylation and deacetylation.

As shown in Figure 1.1, acetylation describes a reaction that introduces an acetyl functional
group into an organic compound by acetyltransferases and is one of protein acylations that
occur with short-chain acyl-CoA as donor substrate to nucleophilic side chains in proteins.
The protein acetylation had two distinct biological purposes. One is the acetylation of the

N-termini of a large fraction of eukaryotic proteins, which is an irreversible modification



occurring cotranslationally. The other is the acetylation of proteins, most famously histones
and transcription factors that affect selective gene transcription and chromatin structure.
These are regulatory events and are reversed by N-deacetylase enzymes. The two
N-acetylations are depicted, for N®-terminal acetylation and lysine N°-terminal acetylation,

respectively.

1.1.2 N*-terminus Acetylation and N°-terminus

Acetylation

N%-terminus acetylation is an irreversible modification occurring cotranslationally and occurs
in the a—amino group designates the-position of the central carbon atom of amino acids and
located on protein N-terminal only. Enzymatic acetylation of the N-terminus of proteins
occurs in about 50% of yeast proteins,«and up to, 80-90% of higher eukaryotic proteins [1, 2].
In contrast, it is very rare in prokaryotes. The biological mechanism of N-terminal acetylation

of eukaryotic proteins is unclear.

N°-terminus acetylation occur in g-amino group of lysine residues designates the position
of a carbon atom in the side chain. Unlike N*-terminal acetylation, post-translational
e-amino lysine acetylation of proteins is highly reversible. Acetylation of the e-NH; of lysine
residues participate in a variety of cellular processes, including transcription regulation,
DNA repair, apoptosis, signal transduction, nuclear import, protein—protein interaction, DNA

binding, enzymatic activity, stability, and subcellular localization [2-16].



1.1.3 Histone and p53 Acetylation

There are four histones, which include H2A, H2B, H3, and H4, that form the octameric
histone cores of nucleosomes, (H2A),(H2B),, (H3),(H4),, and around which 145147 base
pairs of DNA is wrapped in chromatin structures. The N-termini of the four histones are not
involved in the core structure and so are flexible, unstructured, and available for
post-translational modification, including phosphorylation, methylation, ubiquitylation, and
acetylation [17, 18]. These covalent markings are proposed to be signals, the histone code [19]
that gets read by proteins of the gene transcriptional activation or repression in particular

regions of chromatin.

The recent research discovered that.some transeriptional co-activators turned out to be
histone acetyltransferases (HATs) [20, 21]. The same as the post-translational modification
involved in signaling, the: acetyl groups®on histone lysine side chains can be removed
reversibly by histone deacetylases (HDACSs). ! Some  transcriptional co-repressor proteins
proved to have HDAC activity, previding further impetus for the characterization of the
balance of HAT and HDAC activity to understand the dynamic integration of the histone code

over time.

As shown in Figure 1.2, when lysine side chains are cationic at physiological pH,
N-acetylation will change the positive charges. If three or four of the four lysine side chains in
H3 or H4 were acetylated, as can happen in nucleosomes where promoters are actively
transcribed, then the charge quenching and the consequent electrostatic weakening of
interaction of histone tails with negatively charged DNA could contribute to opening up of the
chromatin in that microenvironment [20, 21]. Histone hyper-acetylation is correlated with

transcriptional activation and histone hypo-acetylation is correlated with chromatin regions of
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Figure 1.2 ll:eg'ulétion of gene expression by histone acetylation'.

The p53 protein, which inilibifea_cell prolpi.f?rat:iér-l. in the G, phase, is regulated primarily
through transcriptional activation of the p2l gene, which encodes an inhibitor of
cyclin-dependent kinases [22]. In contrast, transcriptional activation of the PUMA gene is
important for p53-dependent apoptosis, which encodes a BH3-only member of the Bcl-2
family that initiates the cell-death cascade by modulating Bax activity [23, 24]. In addition,
p53 also transactivates the mdm2 gene to initiate the p53-Mdm?2 feedback loop, which is

crucial for restraining p53 function during the stress response [8, 25].

Yi Tang et al. [12] proposed a model involving three different levels of p53-dependent

! Figure was extracted from
http://www1.imperial.ac.uk/resources/EC8CB2E8-2F45-4A67-B009-D00522783B93/
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transcriptional regulation. First, upon DNA damage-induced p53 stabilization, Mdm2 is
readily induced in the absence of Tip60 recruitment (although other coactivators such as
CBP/p300 might be required) (See Figure 1.3 (I)). Because activated p53 is potentially
dangerous to cell viability, the p53/Mdm?2 feedback is probably an early, perhaps default, step
in the p53-mediated stress response. Second, Tip60 interacts with pS3 and is recruited to p53
target promoters, leading to p21 transactivation and growth arrest (See Figure 1.3 (II)). This
step may be particularly important for cells to initiate productive DNA repair processes. In
contrast to mdm2 and p21, cells may be reluctant to induce high levels of p53 targets such as
puma that initiate an irreversible apoptotic response. Nevertheless, in response to some
signals (e.g., the existence of unrepairable DNA damage) K120 acetylation of p53 is induced

by Tip60 and PUMA expression is fully activated (See Figure 1.3 (III)).

This model might explain the differential effects of pS3-mediated transactivation under
various cellular conditions-and the level.of p53 acetylation regulates the programmed cell

death.
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Figure 1.3 The transcriptional r gulation by 53 acetylation. [Yi Tang et al., 2006 Molecular

Protein acetylation is an important ad reversible post-translational modification, and
acetylated proteins control gene regulation, transcription and protein activation. The
N-acetylation of histones can be detected by mass spectrometry, or by use of radioactive
*acetyl-CoA as cosubstrate to monitor protein covalent radioactivity, or by using
N-acetyllysine-specific antibodies in chromatin immunoprecipitation (ChIP) assays for
qualitative detection of acetylated histone levels. However, experimental identification of
acetylation sites wastes a lot of time and consumes experimental resources. How to identify of
protein acetylation sites that could be useful and insightful for further experimental design is
very important. Therefore, in silico identification of protein acetylation sites with high

predictive accuracy could be a promising strategy to conduct preliminary analyses and could
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heavily reduce the number of potential targets that need further in vivo or in vitro

confirmation.

1.3 Specific Aims

In order to identify the protein acetylation sites that could be useful and insightful for further
analysis, we investigate the substrate specificity of acetylated sites and propose a method,
namely N-Ace, for identifying acetylation sites on alanine, glycine, lysine, methionine, serine,
and threonine. It has been observed that protein acetylation site prefers to occur in regions that
are easily accessible. Support Vector Machine (SVM) is adapted to learn the computational
models with the features of ‘amino acids, striictural characteristics, and physicochemical
properties surrounding the‘acetylation sites. The constructed models were evaluated based on
k-fold cross-validation. Moreover, the independent test set.was used to evaluate whether the
constructed model over-fittéd to the tramning set. To facilitate the investigation of protein
acetylation sites, the models with highest predictive accuracy were adopted to implement an

effective web-based prediction system.



Chpater 2 Related Works

Because more and more attentions were paid with the high-throughput proteomic studies of
protein acetylation in biological mechanism, which produce an increasing number of
experimentally verified acetylation sites. Nevertheless, experimental identification of
acetylation sites is complicated and need a lot of time. Computational prediction might not
only narrow down the potential acetylation sites, but also facilitate the further investigation in
downstream functional analysis. Thus, three works were proposed to computationally identify
the potential acetylation sites on alanine (A), glycine (G), lysine (K), serine (S) and threonine
(T) residues. Furthermore, there are two databases which provided information of protein for

this study to analyze acetylation'of protein.

2.1 Protein Acetylation Site Database

2.1.1 dbPTM

dbPTM [26] is a database that compiles information on protein post-translational
modifications (PTM) such as the modified sites, solvent accessibility of surrounding amino
acids, protein secondary and tertiary structures, protein domains, and protein variations. The
version 2.0 of dbPTM integrates the experimentally validated PTM sites with referable
literatures from UniProtKB/Swiss-Prot, Phospho.ELM, O-GLYCBASE, and UbiProt. In each
type of PTM, the substrate peptide specificity such as positional amino acid frequency,
solvent accessibility and secondary structure surrounding the modified sites are provided. All

the PTMs and related information are accessible at http://dbPTM.mbc.nctu.edu.tw/.



http://dbptm.mbc.nctu.edu.tw/

Welcome!
Introduction

Data Statistics
Browvise PTM Type
Search

Download
Tutorial

dbPTM 1.0

Latest news:

Jan. 20, 2008:

The structural
information, protein
disarder regions, will
be annotated on
dbPTM in Feb, zo0&!

Read more. ..

An Information Repository of Protein

Post-translational Modification

O Swiss-Pi

Welcome to dbPM!

dbPTM was proposed to integrate experimentally verified
PTMs from several databases, and to annotate the
predicted PTMs on Swiss-Prot proteins. This update
extends dbPTM to a knowledgebase comprisingthe
modified sites, solvent accessibility of substrate, protein
secondary and tertiary structures, protein domains and
protein variations.

Literature related to PTM, protein conservations and
substrate site specificity are also analyzed. Moreover,
various computational tools have been developed for more than ten PTM types, such as
phospharylation, glycosylation, acetylation, methylation, sulfation and sumoylation. This
study compiles a PTM benchmark consisting of all available experimental PTM sites for
performance evaluation of these computational tools, The interface is also redesigned and
enhanced to facilitate access to the resource,

PTM information repository

Orthologous Conserved Regions
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How to Link:

Users can directly
link to dbPTM by
Swiss-Prot 1D,
For example:

http:A/dbPTM. mbc,
nctu.edu tw/search
_result.php?swiss_id
=H31_HUMAN

PTM Resource:

- Swiss-Prot

- Phaspho ELM

- PhosphoSite

- Phosphorylation
Site Database

- OGlycBase

- UbiProt

Version: 2.0
(Dec 1, 2007)

The Clusters of Orthologous Groups of proteins (COGs) was integrated to ohserve
whether @ PTM sites located in the conserved regions of pratein arthologous
sequences. The alignment of the protein sequences in each cluster is provided in the
resource. An experimentally verified acetyllysine located in a protein-conserved region
indicates an evolutionary influence inwhich arthologous sites in ather species could be
involved in the same type af FT.

Figure 2.1 Web page of dbPTM.




2.1.2 UniProtKB/Swiss-Prot

Data integrated into UniProtKB/Swiss-Prot [27, 28], including the protein sequence and
current knowledge on protein, are manually checked and continuously updated. The main
sources of data are scientific publications, which report new sequence data, and/or review
articles to periodically update the annotations of families or groups of proteins. Each
UniProtKB/Swiss-Prot entry contains core data (sequence data; bibliographical references and
taxonomic data (description of the biological source of the protein)) and annotation, which
consists of the description of the following items: function(s) of the protein, post-translational
modifications (For example carbohydrates, phosphorylation, acetylation, GPI-anchor, etc),
domains and sites (For examples;Caleium binding regions, ATP-binding sites, zinc fingers,
homeobox, kringle, etc), secondary-structure, quaternary structure. (For example homodimer,
heterotrimer, etc), similarities to other proteins, diseases associated with deficiencies in the
protein, Sequence conflicts, . variants, etc. The web page is available

at http://us.expasy.org/sprot/.
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‘ iy EXPASY Home page | Site Map | Search ExPASy | Contact us | PROSITE ‘ Proteomics tools ‘

‘ Notice: This page will be replaced with beta.uniprot.org. Please send us your feedback!

Search | Swiss-ProvTiEMEL v |for
Swiss-Prot Discover the
Protein knowledgebase
I: TrEMBL T L T e
swlsmrn Computer-annotated supplement to Swiss-Prot Pioneers at the heart of science
. 2008 - 10" Anniversary

Prot s

The UniProt Knowledgebase consists of

+ UniProtkKB/Swiss-Prot; a curated protein sequence database which strives to provide a high level of annotation (such as the description of the function of a protein, its
domains structure, post-translational madifications, variants, etc.), a minimal lewvel of redundancy and high level of integration with other databases [More details f References
fLinking to Swiss-Prot / User manual / Recent changes / Disclaimer]

+ UniProtKBITrEMBL, a computer-annotated supplement of Swiss-Prot that contains all the translations of EMBL nucleotide sequence entries not yet integrated in
Swiss-Prot.

These databases are developed by the Swiss-Prot groups at SIB and at EBI

UniProt Knowledgebase Release 13.5 consists of:
UniProtKBiSwiss-Prot Release 55.5 of 10-Jun-2008: 389046 entries (More statistics)
UniProtKBITrEMBL Release 38.5 of 10-Jun-2008: 5906286 entries (More statistics)

SRS - Access to UniProtkBiSwiss-Prot, UniProtkKBITrEMBL and other databases using the Sequence Retrieval System

Full text search in the UniProt Knowledgebase

Advanced search in the UniProt Knowledgebase by description, gene name and organism (can be used to create html links to UniProt Knowledgebase queries)
Taxonomy browiser (NEVWT)
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+ FTF: Howi to obtain a local copy of Swiss-Prot and TrEMBL

+ UniProt Knowledgebase on DVD:
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Notice: This page will be replaced with beta.uniprot.org. Please send us your feedback!

Figure 2.2 Web page of UniProtKB/Swiss-Prot.
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2.2 Protien Acetylation Site Prediction Tools

2.2.1 NetAcet

Kiemer et al. [29] developed a neural network based method for prediction of N*-terminal
acetylated alanine (A), glycine (G), serine (S) and threonine (T) residues. They use the data
were extracted from Table 2 in Polevoda and Sherman (2003) [30] and joined with data from
the Yeast Protein Map (YPM) [31] to compose the datasets for training model. This study
developed on a yeast data set for N-acetyltransferase A (NatA) acetylation. The performance
of correlation coefficients is close to 0.7 on yeast data and sensitivity up to 74% on

mammalian data. The web servers available from http://www.cbs.dtu.dk/services/NetAcet/ .
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Figure 2.3 Web page of NetAcet.
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2.2.2 Liuetal., 2004

Liu et al. [32] employed Support Vector Machine method to predict N*-terminal acetylated
sites and used a balanced training datasets. The performance of the sensitivity and specificity
is 0.86 and 0.97, respectively, and the correlation coefficients and sensitivity on an
independent mammalian data set is 0.85 and 0.9%, respectively. Especially, the data
constructed from the Yeast Protein Map (YPM) and the same data set used by NetAcet. The

web site is http://166.111.24.5/acetylation.html, but it is not available.

2.2.3 PAIL

Li et al. [33] constructed asprediction server for,N -terminal acetylated lysine, which named
PAIL, and using a Bayesian Discriminant‘Method (BDM) algorithm, which can be described

as follow.

_|_) if P( ‘Hf} _ R(_lf) > b The b is the cut-off value to obtain
predict X € { ‘

(
. th. icti i :
(-) otherwise e prediction performance
The datasets were composed of experimental verified acetylation sites from
UniProtKB/Swiss-Prot and collected by surveying literatures. The window length of a
potential acetylated peptide has been optimized as 13. The accuracy of PAIL is highly
encouraging with, 85.13%, 87.97%, and 89.21% at low, medium, and high thresholds. The

web page is available at http://bioinformatics.lcd-ustc.org/pail.
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Figure 2.4 Web page of PAIL.
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Chpater 3 Materials and Method

3.1 Materials

The dbPTM [26], which included UniProtKB/Swiss-Prot [27, 28] release 53, consists of 2,062
experimentally verified acetylation sites within 1,524 protein entries. As given in Table 3.1,
after removing the non-experimentally sites, which annotated as “by similarity”, “potential”
or “probable”, and select the residues which had enough datum to train model , only alanine
(A), glycine (G), lysine (K), methionine (M), serine (S) and threonine (T) ,which are 424, 60,

792, 240, 431, and 63, respectivelyuIh this wotkswe just focused on acetylated alanine (A),

glycine (G), lysine (K), methionine (M), serine«(S).and threonine (T) residues.

16



Table 3.1 Data sources from dbPTM (including UniProtKB/Swiss-Prot Release 53).

Number of Acetylated proteins Number of Acetylated sites
Residue No. of experiment No. of experiment
No. of proteins ) No. of sites )
proteins sites
Alanine (A) 1160 424 1160 424
Aspartate (D) 115 6 115 6
Cysteine (C) 24 5 24 5
Glutamate (Q) 30 10 30 10
Glycine (G) 116 60 116 60
Lysine (K) 1534 299 3701 792
Methionine (M) 633 240 633 240
Proline (P) 217 14 217 14
Serine (S) 963 431 963 431
Threonine (T) 154 63 154 63
Tyrosine (Y) 2 2 2 2
Valine (V) 43 15 43 15
Arginine (R) 54 7 54 7
Total 4632 1524 7212 2062

The experiment data are not annotated as “by similarity”, “potential” or “probable”.

b

3.2 Overview of‘Method

The flow of the proposed method is shown in Figure 3.1. This study consists of four major
analyzing processes such as data preprocessing, feature coding, model training and evaluation,
and independent test. We firstly extracted the acetylated sites as positive sets, non-acetylated
sites as negative sets and used multiple features to code feature vector, which included
probability of classification from primary Support Vector Machine (SVM) at each features.
Thereupon, the secondary SVM put in practice to learn computational models from positive
sets and negative set of the acetylation sites. In order to evaluate the learned models, 5-fold
cross-validation is carried out. Each step in the proposed method will be introduced below.

Finally, independent test used to evaluate the selected models with best predictive accuracy.
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Figure 3.1 System flow of N-Ace.
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Defined as negative dataset

Figure 3.2 Defining the positive dataset and negative dataset.

3.3 Data Preprocessing

We firstly extracted experiment.data of acetylation site as positive datasets. Figure 3.2 depicts
while all other residues (A, G, K;-M; S or T) without-annotated as acetylated sites are
regarded as the negative set. WebLogo [34; 35] is used for creating the graphical sequence
logo for the relative frequency of the eorresponding amino acid at each position surrounding
the acetylted sites, with defined window size 2n+1 (varicty from 4~10) and n+1 (variety from
8~20) for N -terminal acetylation site and N -terminal acetylation, respectively. In order to
avoid the overestimation, the datasets must be the non-redundant datasets. As show as Figure
3.3, we clustered the protein sequences from datasets with a threshold of 30% identity by
BLASTCLUST [36], which is part of the BLAST software package from the NCBI and
systematically clusters protein sequences based on pairwise matches found using the BLAST
algorithm. If two proteins were similar with > 30% identity, we re-aligned the proteins with
BL2SEQ [36], is part of the BLAST software package from the NCBI and allows for the
alignment of two given sequences, and checked the results manually. If two acetylation sites
from two homologous proteins were at the same position after sequence alignment, only one

item was reserved while the other was discarded. Thus, we obtained non-redundant positive
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data set of high quality with 365 acetylalanine sites, 30 acetylglycine sites, 471 acetyllysine
sites, 184 acetylmethionine sites, 343 acetylserine sites and 57 acetylthreonine sites from 365,

30, 239, 184, 343 and 57 proteins, respectively.

Moreover, we make the equal sizes of the positive samples and the negative samples
during the training model and cross-validation processes. The size of the negative set, which
is constructed by randomly selected from the corresponding non-acetylation sites, is equal to

the size of positive set.

datasets

Same Position

BLASTCLUST
=30%

Only one item
was kept

BL2SEQ

Non-redundant
datasets

YES

Figure 3.3 The flow chart of extract non-redundant dataset.
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3.4 Two Stages Support Vector Machine (SVM)

In this study, we import the following 12 features , which are amino acid sequence, accessible
surface area [37, 38], absolute entropy [39], non-bonded energy [40],size [41],amino acid
composition [42], steric parameter [43], hydrophobicity [44, 45], volume[46], mean polarity
[47], electric charge [48], heat capacity[39] and isoelectric point [49]. As show as Figure 3.4,
we utilized two stages Support Vector Machine (SVM) to promote the model performance.
The two stages SVM can be described as follows: first, we are training each feature to get the
probability of positive datasets and negative datasets; secondly, these probability values are

constructing the feature vectors, which can be learning evaluation at the secondly stage SVM.
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Figure 3.4 The method of feature coding.
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3.5 Model Learning and Evaluation

3.5.1 Learning Model by Support Vector Machine (SVM)

The Support Vector Machine (SVM) is universal approximator based on statistical and
optimising theory. The SVM is particularly attractive to biological analysis. As show as
Figure 3.5, the basic principle of SVM can be described as follows: first, the inputs are
formulated as feature vectors. Secondly, these feature vectors are mapped into a feature space
by using the kernel function. Thirdly, a division is computed in the feature space to optimally
separate two classes of training vectors. The SVM always seeks global hyperplane to separate

the both classes of examples in training set and avoid.overfitting.

Input Space Feature Space

Figure 3.5 Principle of Support vector machines (SVM)”.

This study incorporates Support Vector Machine (SVM) with the protein sequences and

? Figure was extracted from http://www.imtech.res.in/raghava/rbpred/algorithm.html
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for training the predictive models of acetylation sites prediction. A public SVM library,
namely LIBSVM [50], is applied for training the predictive models. The SVM kernel function

of radial basis function (RBF) is selected.

K(xi,%) = exp(=v[[xi =x[]),  v>0

3.5.2 Model Evaluation and Parameter Optimization

After the models are learned, it is necessary to evaluate whether the models are fitted or not.
5-fold cross-validation is used,to evaluate the predictive performance of the models trained
from the data sets. The SVM cost values- and SVM “gamma values are optimized for

maximizing the predictive accuracy by a toolfrom LIBSVM [50] . The following measures of

TP
the predictive performance=of the models are ithen calculated: Precision (Pr) = TP+FP
R < P R o) TP+TN
ensitivity (Sn) = TP+Fp Pect icity (Sp) = NG Fp heouracy (Acc) = TP+FP+TP+FN

and Mathew correlation coefficient (MCC)

(TPXTN)—(FNXFP)
J(TP+FN)x(TN+FP)x(TP+FP)x(TN+FN)

, where TP, TN, FP and FN are true positive,

true negative, false positive and false negative predictions, respectively. Moreover, when the
number of positive data and negative data differ too much from each other, the Mathew
correlation coefficient (MCC) should be included to evaluate the prediction performance. The
value of MCC ranges from -1 to 1, and a larger MCC value stands for better prediction

performance.
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3.6 Independent Test

Sometimes, the prediction performance of the trained models might be overestimated because
of the overfitting for training set. To estimate the real prediction performance, the independent
test set will be used to evaluate the predictive performance of the trained models which reach
the best accuracy based on the cross-validation. However, the performance of independent test
may be good by chance. To avoid the unfair independent test, the dataset of independent test
extracted from UniProtKB/Swiss-Prot release 55 which remote the same data in dbPTM, as
given in Figure 3.6. The independent test set is constructed for lysine, alanine, serine and
threonine, which is composed of 43, 21, 8 and 2 positive datasets, respectively. We also make
the equal sizes of the positive samples and the negative samples. The size of the negative set,
which is constructed by randomly selected from the non-acetylation sites, is equal to the size
of positive dataset. The performance of indepéndent test will be computed. The independent
test sets of lysine, alanine, serine and:threonine are not only adopted to test our method but

also used to test other previously proposed protein acetylation prediction tools.
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Figure 3.6 The flow chartof independent test.
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Chpater 4 Results

4.1 Observation of Acetylation Sites

As given in Table 4.1, the flanking amino acids (+0~+12) and (-6 ~ +6) of the non-redundant
acetylation sites (position 0) categorized by the modified residue are graphically visualized as
sequence logo, which can be easily investigated the conservation of amino acids surrounding
the acetylation sites. As the representation of sequence logo, there are no obvious conserved
amino acids surrounding the modified sites. In the case of acetylated alanine, glycine,
methionine and threonine are enriched surrounding the modified sites, especially in position
+1. In other cases, there aresno obvious-eonserved -amino acids surrounding the acetylated
lysine and serine. However, the conservation of amino acids in flanking regions may be
temporary due to the slow abundanee of experimental verified acetylglycine and

acetylthreonine.
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Table 4.1 The sequence logo of amino acids.

Redundant Non- redundant
Residues Window size Sequence logo
Sites Proteins Sites Proteins
Alanine (A) 415 415 356 356 +0~+12
Glycine (G) 60 60 1= 30 L +0~+12
‘ J 1

Lysine (K) 715 282 471 gl 616

Methionine (M) 239 239 184 184 +0~+12

W Mm% o % @ & 8 = ® B
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Redundant Non- redundant

Residues - - Window size Sequence logo
Sites Proteins Sites Proteins

Serine (S) 428 428 343 343 +0+12 i

nnnnnnnnnnnnn

Threonine (T) 63 63 CH0~+12 i

'
A T e
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4.2 Functional Analysis of Acetylated Proteins

To determine which types of proteins are acetylated, the GO annotation had been analyzed.

The non-redundant data set have 182 proteins which were acetylated at lysine residue. We

obtain 597 distinct GO categories. The top five Gene Ontology (GO) entries of biological

processes, molecular functions and cellular components of proteins, acetylated at lysine

residue, were shown at Table 4.2.

Table 4.2 The top five GO categories of biological process, molecular function and cellular
component of acetylated proteins.

GO symbol

Gene Ontology

No. of proteins

Top five biological processes

GO:0050789

G0O:0006139

GO:0009058

G0:0050896

GO:0007154

Top five molecular functions

GO:0005515

G0O:0003824

G0:0003676

GO:0016740

G0:0030528

Top four cellular components

GO:0005634

GO:0005739

GO:0005737

G0:0016020

regulation of biological process

nucleobase, nucleoside; nucleotide andi nucleic acid metabolic

process

biesynthétic process
response to-stimulus

cell communication

protein binding
catalytic activity
nucleic acid binding
transferase activity

transcription regulator activity

nucleus
mitochondrion
cytoplasm

membrane

42

31

30

24

22

69

46

30

17

16

63

47

14

10
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The most enriched GO item of biological process in which acetylated lysine proteins are
involved in is “regulation of biological process” (42 proteins). The other four significantly
biological processes are ‘“nucleobase, nucleoside, nucleotide and nucleic acid metabolic
process” (31 proteins), “biosynthetic process” (30 proteins), “response to stimulus” (24
proteins) and “cell communication” (22 proteins). The most frequent GO group of molecular
function is “protein binding” (69 proteins), while the other four highly-abundant molecular
functions are “catalytic activity” (46 proteins), “nucleic acid binding” (30 proteins),
“transferase activity” (17 proteins) and “transcription regulator activity” (16 proteins). The
most abundant GO entry of cellular component is “nucleus” (63 proteins), and the other three
highly-frequent cellular components are “mitochondrion” (43 proteins), “cytoplasm” (14

proteins) and “membrane” (10 proteins).

Taken together, the analyses propose that protein acetylation plays important roles in
regulation of biological process=and the functions of acetylated; proteins are different. Thus, the

protein acetylation is suitable for develop a prediction system.

4.3 Predictive Performance

We adopt five frequently considered measurements: precision (Pr), sensitivity (Sn), specificity
(Sp), accuracy (Ac) and Mathew correlation coefficient (MCC). Precision is a value of
positive predictive, while sensitivity (Sn) and specificity (Sp) represent the correct prediction
ratios of positive data sets and negative data sets respectively, and accuracy (Ac) illustrates
the correct ratio between both positive data sets and negative data sets. If the number of
positive data and negative data differ too much from each other, the Mathew correlation
coefficient (MCC) should be included to evaluate the prediction performance. The value of
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MCC ranges from -1 to 1, and a larger MCC value stands for better prediction performance.
Among the data with positive hits by prediction, the real positives are defined as true positives
(TP), while the others are defined as false positives (FP). When the data predict as negative,
the real positives are defined as false negatives (FN), while the others are defined as true

negatives (TN).

4.3.1 Predictive Performance of 5-fold Cross-validation

with various windows sizes

Figure 4.1 illustrates the predictive-accuracy of themmodels, based on various window sizes
2n+1, where n varies from"4 to -10.7°As far as various window sizes are concerned in
acetyllysine, the windowsize increasing from-4 to 10 -makes no obvious difference to
predictive accuracy. The predictive.speeificity increased with the window size increasing from
4 to 10. However, the predictive sensitivity decreaseéd with the window size increasing. To
consider the computational efficiency and overall performance of the models trained with

different window sizes, 13-mer is selected as the feasible window length.
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Figure 4.1 The predictive performance of models trained with various windows sizes.
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4.3.2 Predic:ti”ve Performér;ce of 5-fo|d Cross-validation

based ‘on.Amino Acid-Sequence

As shown in Table 4.3, the performéﬁce meagﬁrements of sensitivity (Sn), specificity (Sp),
accuracy (Acc), and Mathew correlation coefficient (MCC) based only on amino acid
sequence. We adopt the 5-fold cross-validation to evaluation. However, because the flanking
amino acids of alanine, lysine and serine are not conserved, the model training by amino acid
sequence can’t identify positive datasets and negative datasets completely. The predictive
accuracies of our method are 69%, 72%, 67%, 83%, 70% and 68% for alanine, glycine, lysine

methionine serine and threonine, respectively.
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Table 4.3 The cross-validation performance of the models trained with amino acid sequence

feature.

Acetylation No. of non-redundant ) )

] o Window Size Pr Sn Sp Acc  MCC
Residue training set

Alanine 356 +0~+12 0.74  0.60 0.79  0.69 0.40
Glycine 30 +0~+12 0.83 0.60 0.83 072 047
Lysine 471 -6~+6 074  0.52 0.81 0.67  0.35
Methionine 184 +0~+12 0.83 0.83 0.83 0.83 0.66
Serine 343 +0~+12 0.82 0.53 0.86 0.70 0.43
Threonine 57 +0~+12 0.73 0.63 0.73 0.68 0.39

Abbreviation: Pr, precision; Sn, sensitivity; Sp, specificity; Acc, accuracy; MCC, Mathew

correlation coefficient.

4.3.3 Predictive’Performance of 5-fold Cross-validation

based-on Twe- Stages SVM with Multiple Features

In order to improve the prediction performance;wemot only include amino acid sequence, but

also constructed other structural characteristics, such “as accessible surface area, absolute

entropy, non-bonded energy, size, amino“acid ‘composition, steric parameter, hydrophobicity,

volume, mean polarity, electric charge, heat capacity and isoelectric point. Moreover, we

implemented two stages SVM method to increase performance. The results of prediction

performance were presented in Table 4.4. The predictive accuracies of our method are 84%,

85%, 73%, 94%, 81% and 77% for alanine, glycine, lysine methionine serine and threonine,

respectively. Figure 4.2 show the model comparisons between implemented amino acid

sequence feature and two stages SVM method.
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Table 4.4 The cross-validation performance of the models trained with selected features

feature and implemented two stages SVM with multiple features.

Acetylation No. of non-redundant ) .
Residue training set Window Size Pr Sn Sp Acc  MCC
Alanine 356 +0~+12 0.91 0.76 0.93 0.84 0.69
Glycine 30 +0~+12 0.93 0.80 0.90 0.85 0.74
Lysine 471 -6~+6 0.84 0.59 0.88 0.73 0.49
Methionine 184 +0~+12 0.99 0.89 0.99 0.94 0.89
Serine 343 +0~+12 0.97 0.65 0.98 0.81 0.66
Threonine 57 +0~+12 0.78 0.76 0.79 0.77 0.56

Abbreviation: Pr, precision; Sn, sensitivity; Sp, specificity; Acc, accuracy; MCC, Mathew

correlation coefficient.
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Abbreviation: AA, Amino Acid sequence; SVM2, Two Stages SVM.

Figure 4.2 Acetylation model comparisons between implemented amino acid sequence
feature and two stages SVM with multiple features.
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4.3.4 Predictive Performance of 5-fold Cross-validation
based on Two Stages SVM with multiple features

and Clustered by Subcellular Localization

Due to the high-throughput mass spectrometry-based proteomics, the number of
experimentally verified acetylated sites are rapidly increasing, which prompted the researcher
to investigate the substrate specificity of acetyltransferases. As shown in Table 4.5, the protein
subcellular localization of acetyltransferases and their substrates is mostly located in nucleus,
which are interacted with DNA replication, DNA repair, transcription, and translational.
However, some of them located in,different’localization are involved in different protein
functions. Therefore, we investigate the.substrate specificity of acetylated sites with their

protein subcellular localization.

Table 4.5 The statistics of acetyltransferases with subcellular

localization in dbPTM.
Subcellular localization Number of Acetyltransferase
Nucleus 145
Cytoplasm 74
Membrane 27
Mitochondrion 0
Not description 71

Especially in larger data set (greater than 100 sites), we clustered the sequences of the
acetylation sites by subcellular localization into several subgroups, which are separately taken

as training sets, and the model of each subgroup are generated. The experiment results are
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given in Table 4.6. For the acetyllysine, the models learned from localization-clustered data
sets have higher sensitivity than the ones learned from the data sets not applied clustered, but
the models lose a little specificity. However, the models learned from localization-clustered
for acetylalanine, acetylmethionine and acetylserine have lost a part of performance than the
data sets not applied clustered. As given in Figure 4.3, the models we comparisons between

original data sets and the localization-cluster data sets.
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Table 4.6 The cross-validation performance of the models trained with implemented two
stages SVM with multiple features and clustered by subcellular localization

No. of
Acetylated Subcellular Window
non-redundant Pr Sn Sp Acc  MCC
Residue localization Size
training set

Nucleus 48 +0~+12 077 078 077 0.77 0.56
Cytoplasm 139 +0~+12 093 073 094 084 0.70
Mitochondrion 36 +0~+12 093 0.61 095 078 0.60
Alanine
Membrane 48 +0~+12 089 071 090 0.80 0.63
Average - +0~+12 090 072 090 081 0.65
Total 356 +0~+12 091 076 093 0.84 0.69
Glycine Total 30 +0~+12 093 080 090 085 0.74
Nucleus 178 -6~+6 097 081 098 090 0.80
Cytoplasm 51 -6~+6 0.77 0.73 0.79 0.76 0.52
Mitochondrion 190 -6~+6 070 0.67 072 0.69 0.39
Lysine
Membrane 94 -6~+6 0.66 0.68 0.64 066 033
Average - “6~+6 080 073 080 076 053
Total 471 -6~16 084 059 088 0.73 0.49
Nucleus 31 +04+12 090 093 088 090 0.83
Cytoplasm 68 +F0~+12 090 087 089 088 0.77
Methionine Membrane 30 +0+12 0.89 0.80 090 085 0.71
Average - +0~+12 090 087 089 088 0.77
Total 184 +0~+12 099 0.89 099 094 0.89
Nucleus 52 +0~+12 097 065 098 0.82 0.67
Cytoplasm 110 +0~+12 079 0.60 084 072 045
Serine Membrane 32 +0~+12 066 071 0.63 0.67 035
Average - +0~+12 082 063 084 074 049
Total 343 +0~+12 097 0.65 098 0.81 0.66
Threonine Total 57 +0~+12 0.78 0.76 0.79 0.77 0.56

Abbreviation: Pr, precision; Sn, sensitivity; Sp, specificity; Acc, accuracy; MCC, Mathew
correlation coefficient.
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4.3.5 Predictive Performance of Independent Test

The independent test sets of acetyllysine, acetylalanine, acetylserine and acetylthreonine are
used to evaluate the selected models with best predictive accuracy. As given in Table 4.7, the
predictive accuracies of our method are 80.8% and 85.0% for alanine lysine serine and
threonine, respectively. In general, the performance of independent test might be approaching
the performance of cross-validation. While the performance of cross-validation is better than
independent test, it means that the trained model may be overfitting for the training data. This
table shows that our trained model may be not overfitting. Furthermore, the independent test
sets are also used to test other acetylation predictors. The result of independent test shows that
the PAIL has high predictive sensitivity for identifying acetylated lysine, but the trained
models of PAIL are not specific enough to the negative datasets of independent test sets.
NetAcet has high predictive specificity for identifying acetylated alanine and threonine, but
the trained models of NetAecet are not specific enough to the negative datasets of independent
test sets in alanine and threonine. Unlike acetylated-alanine and threonine, the independent

test of acetylated serine by NetAcet has high-predictive sensitivity and insufficient specificity.
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Table 4.7 The average performances of our method and other tools based on independent test.

Acetylated

Window

No. of

No. of

Tools Residue Reference Method Size positive set negative set Pr sn Sp Acc MCC
Li, A, et al., Biochem Bayesian
PAIL lysine Biophys Res Commun,  Discriminant -6~+6 43 43 0.55 084 033 058 0.19
2006. Method
alanine 0~+12 21 21 0.00 0.00 1.00 0.5 0.00
NetAcet serine Kiemer, L, etal, o1 Network  0~+12 8 8 060 075 05 063 026
Bioinformatics, 2005.
threonine 0~+12 2 2 0.00 0.00 1.00 0.5 N/A
lysine -6~+6 43 43 0.84 098 081 090 0.80
alanine 0~+12 21 21 0.89 094 089 092 0.3
N-Ace N/A SuppoﬂhYector
serine Machine 0~+12 8 8 0.86 0.75 0.88 081 0.63
threonine 0~+12 2 2 1.00 1.00 1.00 1.00 1.00

Abbreviation: Pr, precision; Sn, sensitivity; Sp, specificity; Acc, accuracy;-MEC; Mathew correlation coefficient.
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4.4 Summary of Result

The models with best performance are chosen in each residue as shown in Table 4.8. It could
be observed that acetyllysine clustered by localization with better performance. In lysine, the
average of precision, sensitivity, specificity, accuracy and Mathew correlation coefficient
(MCC) are 80%, 73%, 80%, 76% and 53%, respectively. Furthermore, we select the best
performance of models without clustered by localization in other residues. In alanine, the
precision is 91%, 76% in sensitivity, 93% in specificity, 84% in accuracy and 69% in MCC.
In glycine, the precision is 93%, 80% in sensitivity, 90% in specificity, 85% in accuracy and
74% in MCC. In methionine, the precision.is. 99%, 89% in sensitivity, 99% in specificity,
94% in accuracy and 89% in MCC. In Serine, the preeision is 97%, 65% in sensitivity, 98% in
specificity, 81% in accuracy and 66%. in MCC; The precision, sensitivity, specificity, accuracy

and MCC in threonine are 78%, 76%, 79%, 717% and 56%, respectively.
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Table 4.8 The selected models with the highest accuracy.

No. of .

Acetylated Subc_e IIu.Iar non-redundant er_ldow Pr Sn Sp Acc MCC

Residue localization L Size

training set
Alanine Total 356 +0~+12 091 076 093 0.84 0.69
Glycine Total 30 +0~+12 093 0.80 090 0.85 0.74
Methionine Total 184 +0~+12 099 0.89 099 094 0.89
Serine Total 343 +0~+12 097 0.65 098 0.81 0.66
Threonine Total 57 +0~+12 0.78 0.76 0.79 0.77 0.56
Nucleus 178 -6~+6 0.97 0.81 0.98 0.90 0.80
Cytoplasm 51 -6~+6 077 073 079 076 0.52
Lysine

Mitochondrion 190 -6~+6 0.70 0.67 0.72 0.69 0.39
Membrane 94 -6~+6 0.66 0.68 0.64 0.66 0.33
Lysine Average - -6~16 0.80 0.73 0.80 0.76 0.53

Abbreviation: Pr, precision; Sngsensitivity; Sp, specificity; Acc, accuracy; MCC, Mathew
correlation coefficient.

4.5 Web Interface of N-Ace

The users can submit their uncharaeterized proteinsequences to the query interface and make
a choice for the appropriate models to predict for alanine, glycine, lysine, methionine, serine
and threonine. As shown in Figure 4.4, our system returns the predicted results including
acetylated position and flanking amino acids. Furthermore, users can choose different
threshold for acetylation prediction based on predictive sensitivity. The web service is freely

available at http://N-Ace.mbc.NCTU.edu.tw/.
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http://n-ace.mbc.nctu.edu.tw/

|Home | Introduction| Independent Test| Download|

About N-Ace

N-Ace is A web tool for predicting the protein Acetylation site based on Support Vector Machine
(5VM), which is training depend on the amino acid sequence and other structural characteristics,
such as accessible surface area, absolute entropy, non-bonded energy, size, amino acid
composition, steric parameter, hydrophobicity, volume, mean polarity, electric charge, heat
capacity and isoelectric point which is surrounding the modification site and implemented two
stages SVM method.

Case study I Case study II Case study III Case study IV
Submission

Input Sequence(FASTA format only)

MTAEEMKATESGAQSAPLPMEGVDI SPEQDEGVLEVIKREGTGTEMPMIGDRVEVHY TGWLLDGTKFDSSLORKEDEFSFD
LGKGEVIKAWDIATATMEVGEVCHITCEPEYAYGSAGSPPREIPPNATLVFEVELFEFKGEDLTEEEDGGITRRIQTRGEG
YARPHNEGAIVEVALEGY YKDKLFDQRELRFEIGEGENLDLPYGLERATQRMEKGEHSIVY LKEPSYAFGSVGKEEKFQIPPN
AFLKYELHLKSFEKAKE SWEMNSEEKLEQSTIVRKERGT VY FREGR YK QAL LOYKKIVSWLEYESSFSNEEAQRAQAT.RT.A
SHLNLAMCHLELQAFSAATE SCHNEALELDSNNERGLFRRGEAHLAVNDFELARADFOEVLOLY PNNEARRT QLAVCQORT
RRQLARERKLYANMFERLAEEENKAKAEASSGDHPTDTEMRKEE QK SNTAGSQSQVETER

Prediction on:

(@ NE-terminus Acetyllysine (K)
Select Subcellular Localization of N=-terminus Acetyllysine (K) :| Nucleus

O No-terminus Acetylalanine () O N°%-terminus Acetylglycine (G)

O N®-terminus Acetyimethionine (M) O N®-terminus Acetylserine (S) O N®-terminus Acetylthreonine (T)

[ Submit || Clear Fields |[ Example |

Bid Lab, Institute of Bioinformatics, National Chiao Tung University , Taiwan.
Contact us: Po-Chiang Hsu kado.bce95g@nctu.edu.tw Tzong-Yi Lee francis.bid3g@nctu.=du.tw,
Hsien-Da Huang bryan@mazil.nctu.edu.tw with questions or comments.

Predict Results

MYC_HUMAN

Mo Position Surrounding Residues Probability
1 143 137-GFSAAA K LVSEKL-145 0.99
2 157 151-SYQAAR K DSGSPN-1632 0.99
3 275 269-KRQAPG K RSESGS-281 0.94
4 317 211-APPSTR K DYPAAK-323 0.5
5 323 317-KDYPAA K RVKLDS-329 0.56

Bid Lab, Institute of Bicinformatics, National Chiao Tung University , Taivan.
Contact us: Po-Chiang Hsu kado.bceSSg@nctu.edu.tw, Tzong-Yi Lee francis.bis3g@nctu.edu.tw,
Hsien-Da Huang bryan@mail.nctu.edu.tw with questions or comments.

Figure 4.4 Web interfaces of N-Ace.
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Chpater 5 Discussions

5.1 Comparison to Other Tools

Our proposed method is compared to several current released acetylation prediction tools such
as NetAcet, Liu et al., 2004 and PAIL. All the previous tools just consider the protein
sequence annotation. Especially, in our investigation we construct the models include protein
sequence, accessible surface area, absolute entropy, non-bonded energy, size, amino acid
composition, steric parameter, hydrophobicity, volume, mean polarity, electric charge, heat
capacity and isoelectric point annotations; for acetylation sites. In order to have equality
comparison, we use independent test. The accuracy ofithe models learned from acetyllysine,
acetylalanine, acetylglycine, acetylmethionine, acetylserine.and acetylthreonine are 0.84, 0.85,
0.76, 0.94, 0.81 and 0.77,"respectively. All:the independent test of the alanine, lysine, serine
and threonine models are higher than NetAcet, Liwet al.,.2004 and PAIL. As show in Table
5.1 shows that the proposed method, material, training features, selected window size, the
predictive sensitivity and specificity “of acetyllysine, acetylalanine, acetylglycine,
acetylmethionine, acetylserine and acetylthreonine, and the overall performance are

compared.
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Table 5.1 Comparison of predictive performance between our method and previous works.

Tools NETAcet (Kiemer et al., 2004) Liu et al., 2004 PAIL (Li et al., 2006) N-Ace

UniProtKB/Swiss-Prot

Material Yeast Protein Map (YPM) Yeast Protein Map (YPM) UniProtKB/Swiss-Prot .
version v53

Method Neural Network Support Vector Machine Bayesian Discriminant Method Support Vector Machine

Amino Acids, structural
Training features Amino acid Amino acid Amino acid characteristics, and
physicochemical properties*

Selected window size 7 5 13 13
Acetylated lysine (K) - - Sn =59.76%, Sp = 90.20% Sn = 73%, Sp = 80%;
Acetylated alanine - - - Sn =76%, Sp=93%
Acetylated glycine - - - Sn = 80%, Sp =90%
Acetylated methionine - - - Sn = 89%, Sp =99%
Acetylated serine Sn=75%, Sp=92% Sn=86%, Sp=97% - Sn = 65%, Sp=98%
Acetylated threonine - - - Sn=73%, Sp=280%
lysine - - Sn = 84%, Sp =33% Sn =98%, Sp = 81%
Independent alanine Sn = 0%, Sp = 100% - - Sn =94%, Sp =89%
test serine Sn = 75%, Sp = 50% - - Sn = 75%, Sp = 88%
threonine Sn = 0%, Sp = 100% - - Sn =100%, Sp = 100%

* Structural characteristics and physicochemical properties include accessible surface area, absolute entropy, non-bonded energy, size, amino acid
composition, steric parameter, hydrophobicity, volume, mean polarity, electric charge, heat capacity and isoelectric point.
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5.2 Different Ratio of Positive sets and Negative sets

In this work, the positive and negative training sets are balanced during the cross-validation.
Because the size of negative set is much larger than positive set, the negative set may be
unfair sampling. Thus, thirty sets of negative training data are randomly extracted and used to
evaluate the prediction performance. However, it is impossible to extract thirty negative sets
for constructing thirty predictive models when implementing the web server. Therefore, a

larger size of negative set should be constructed.

Unfortunately, larger negative set will make the trained model prefer to classify negative
data correctly, based on achievinggzhighest accuracy. As shown in Figure 5.1, the predictive
specificity of acetyllysine model, which is trained with different ratio of positive and negative
sets, increases with larger size of negative set. Tortake bothsthe sensitivity and size of negative
set into account, the appropriate ratio of positive and negative sets is 1:2. As a result, the
appropriate ratio of positive and-négative sets'is'used. to construct the prediction model of the

protein acetylation web server.
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Figure 5.1 The cross-validation sensitivity, specificity and accuracy of the acetyllysine model
trained with different ratio of positive sets and negative sets.

5.3 Prospective Works

In the future, we hope the hnish with* two works will'make the research better. Firstly, it is
useful that utilizes more information of protein structure to advance the acetylation site
prediction performance. Secondly, it is important about transcription regulation with
acetylation, so we would combine with MicroArray data and prediction of acetylation sites to
describe the regulated transcription and more detail with acetylation to make users realize

about the key point of acetylation in the gene expression.
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Chpater 6 Conclusion

We proposed a prediction tool for identify protein acetylation sites, namely N-Ace, is
implemented to allow users submit protein sequences for prediction of acetylation sites. We
use independent test to test our system, and the result suggests that our system is capable of
predicting novel acetylation sites of protein. By comparing to other approaches previously
developed, our method provides not only considering the amino acid sequence of the
acetylation sites, but also the corresponding protein modified of structural characteristics, and

physicochemical properties.

50



References

10.

11.

12.

13.

14.

15.

16.

17.

18.
19.

20.

Polevoda, B. and F. Sherman, Nalpha -terminal acetylation of eukaryotic proteins. J
Biol Chem, 2000. 275(47): p. 36479-82.

Polevoda, B. and F. Sherman, The diversity of acetylated proteins. Genome Biol, 2002.
3(5): p. reviews0006.

Bannister, A.J., et al., Acetylation of importin-alpha nuclear import factors by
CBP/p300. Curr Biol, 2000. 10(8): p. 467-70.

Brunet, A., et al., Stress-dependent regulation of FOXO transcription factors by the
SIRT1 deacetylase. Science, 2004. 303(5666): p. 2011-5.

Cohen, H.Y., et al., Acetylation of the C terminus of Ku70 by CBP and PCAF controls
Bax-mediated apoptosis. Mol Cell, 2004. 13(5): p. 627-38.

Faiola, F., et al., Dual regulation of c-Myc by p300 via acetylation-dependent control
of Myc protein turnover and coactivation of Myc-induced transcription. Mol Cell Biol,
2005. 25(23): p. 10220-34.

Glozak, M.A., et al., Acetylationiand deacetylation of non-histone proteins. Gene,
2005. 363: p. 15-23.

Luo, J., et al., Deacetylation of p53:modulates itseffect on cell growth and apoptosis.
Nature, 2000. 408(6810): p. 377-81.

Murr, R., et al., Histoneacetylation by Trrap-Tip60 modulates loading of repair
proteins and repair-of DNA double-strand breaks. Nat Cell Biol, 2006. 8(1): p. 91-9.
Ramanathan, B. and'M.J. Smerdon; Enhanced DNA'repair synthesis in
hyperacetylated nucleosomes. J'Biol Chem, 1989. 264(19): p. 11026-34.
Subramanian, C., et alf, Ku70 acetylation mediates neuroblastoma cell death induced
by histone deacetylase inhibitors. Proc Natl Aead Sci U S A, 2005. 102(13): p. 4842-7.
Tang, Y., et al., Tip60-dependent acetylation of p53 modulates the decision between
cell-cycle arrest and apoptosis. Mol Cell, 2006. 24(6): p. 827-39.

Verdone, L., et al., Histone acetylation in gene regulation. Brief Funct Genomic
Proteomic, 2006. 5(3): p. 209-21.

Wang, W., et al., AMP-activated protein kinase-regulated phosphorylation and
acetylation of importin alphal: involvement in the nuclear import of RNA-binding
protein HuR. J Biol Chem, 2004. 279(46): p. 48376-88.

Yang, X.J., Lysine acetylation and the bromodomain: a new partnership for signaling.
Bioessays, 2004. 26(10): p. 1076-87.

Yuan, Z.L., et al., Stat3 dimerization regulated by reversible acetylation of a single
lysine residue. Science, 2005. 307(5707): p. 269-73.

Marmorstein, R., Protein modules that manipulate histone tails for chromatin
regulation. Nat Rev Mol Cell Biol, 2001. 2(6): p. 422-32.

Turner, B.M., Cellular memory and the histone code. Cell, 2002. 111(3): p. 285-91.
Strahl, B.D. and C.D. Allis, The language of covalent histone modifications. Nature,
2000. 403(6765): p. 41-5.

Berger, S.L., Gene activation by histone and factor acetyltransferases. Curr Opin Cell

51



21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Biol, 1999. 11(3): p. 336-41.

Kouzarides, T., Acetylation: a regulatory modification to rival phosphorylation?
EMBO J, 2000. 19(6): p. 1176-9.

el-Deiry, W.S., et al., WAF1, a potential mediator of p53 tumor suppression. Cell,
1993. 75(4): p. 817-25.

Nakano, K. and K.H. Vousden, PUMA, a novel proapoptotic gene, is induced by p53.
Mol Cell, 2001. 7(3): p. 683-94.

Yu, J., et al., PUMA induces the rapid apoptosis of colorectal cancer cells. Mol Cell,
2001. 7(3): p. 673-82.

Brooks, C.L. and W. Gu, p53 ubiquitination: Mdm2 and beyond. Mol Cell, 2006.
21(3): p. 307-15.

Lee, T.Y., et al., dboPTM: an information repository of protein post-translational
modification. Nucleic Acids Res, 2006. 34(Database issue): p. D622-7.

Bairoch, A. and R. Apweiler, The SWISS-PROT protein sequence data bank and its
supplement TrEMBL in 1998. Nucleic Acids Res, 1998. 26(1): p. 38-42.

Boeckmann, B., et al., The SWISS-PROT protein knowledgebase and its supplement
TrEMBL in 2003. Nucleic Acids Res, 2003. 31(1): p. 365-70.

Kiemer, L., J.D. Bendtsen, and N. Blom, NetAcet: prediction of N-terminal acetylation
sites. Bioinformatics, 2005. 21(7): p. 1269-70.

Polevoda, B. and F. Sherman, N-terminal acetyltransferases and sequence
requirements for N-terminal-acetylation of eukaryotic proteins. J Mol Biol, 2003.
325(4): p. 595-622.

Perrot, M., et al., Two-dimensional.gel protein database of Saccharomyces cerevisiae
(update 1999). Electrophoresis;'1999. 20(11): p. 2280-98.

Liu, Y. and Y. Lin, A'novel method for-N=terminal acetylation prediction. Genomics
Proteomics Bioinformaties;:2004. 2(4): p. 253-5.

Li, A., et al., Prediction of Nepsilon-acetylation on internal lysines implemented in
Bayesian Discriminant Method. Biochem Biophys Res Commun, 2006. 350(4): p.
818-24.

Crooks, G.E., et al., WebLogo: a sequence logo generator. Genome Res, 2004. 14(6):
p. 1188-90.

Schneider, T.D. and R.M. Stephens, Sequence logos: a new way to display consensus
sequences. Nucleic Acids Res, 1990. 18(20): p. 6097-100.

Altschul, S.F., et al., Gapped BLAST and PSI-BLAST: a new generation of protein
database search programs. Nucleic Acids Res, 1997. 25(17): p. 3389-402.

Ahmad, S., M.M. Gromiha, and A. Sarai, RVP-net: online prediction of real valued
accessible surface area of proteins from single sequences. Bioinformatics, 2003.
19(14): p. 1849-51.

Ahmad, S., M.M. Gromiha, and A. Sarai, Real value prediction of solvent accessibility
from amino acid sequence. Proteins, 2003. 50(4): p. 629-35.

Hutchens, J.O., Heat capacities, absolute entropies, and entropies of formation of
amino acids and related compounds. In "Handbook of Biochemistry", 2nd ed. (Sober,
H.A., ed.), Chemical Rubber Co., Cleveland, Ohio, p. B60-B61, 1970.

Oobatake, M. and T. Ooi, An analysis of non-bonded energy of proteins. J. Theor. Biol.

52



41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

67, 567-584 Last two calcualted by Kidera; multiplied by the number of heavy atoms,
1977.

Dawson, D.M., The Biochemical Genetics of Man. (Brock, D.J.H. and Mayo, O., eds.),
Academic Press, New York, p.1-38, 1972.

Dayhoff, M.O., L.T. Hunt, and S. Hurst-Calderone, Composition of proteins. In "Atlas
of Protein Sequence and Structure", Vol.5, Suppl.3 (Dayhoft, M.O., ed.), National
Biomedical Research Foundation, Washington, D.C., p.363, 1978.

Charton, M., Protein folding and the genetic code: an alternative quantitative model. J
Theor Biol, 1981. 91(1): p. 115-23.

Cid, H., et al., Hydrophobicity and structural classes in proteins. Protein Eng, 1992.
5(5): p. 373-5.

Jones, D.D., Amino acid properties and side-chain orientation in proteins: a cross
correlation appraoch. J Theor Biol, 1975. 50(1): p. 167-83.

Pontius, J., J. Richelle, and S.J. Wodak, Deviations from standard atomic volumes as a
quality measure for protein crystal structures. J Mol Biol, 1996. 264(1): p. 121-36.
Radzicka, A. and R. Wolfenden, Comparing the polarities of the amino acids:
Side-chain distribution coefficients between the vapor phase, cyclohexane, 1-octanol,
and neutral aqueous solution: Biochemistry 27, 1664-1670 (Pro missing), 1988.
Fauchere, J.L., et al., Amino acid side chain parameters for correlation studies in
biology and pharmacelogy. Int-J. Pept Protein Res,:1988. 32(4): p. 269-78.
Zimmerman, J.M., N. Eliezer,-and R. Simha, The characterization of amino acid
sequences in proteins by statistical methods. J TheorBiol, 1968. 21(2): p. 170-201.
Chang, C.-C. and C:-J. Lin, LIBSVM.: a library for support vector machines. Software
available at http://www.csiemntuedu.tw/~cjlin/libsvm, 2001.

53


http://www.csie.ntu.edu.tw/%7Ecjlin/libsvm

