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中文摘要 
 

對於生物體內的許多生理功能而言，蛋白質之乙醯基化修飾是一種非常重

要且可逆的轉錄後修飾作用，它影響包括酵素的活性及穩定、蛋白質交互

作用、蛋白質與去氧核糖核酸之鍵結、去氧核糖核酸之修復、蛋白質轉錄

作用的調控、細胞凋亡、細胞因子信號傳遞及細胞核物質的輸入。因為利

用生物實驗來辨識蛋白質之乙醯基化極為曠日廢時且耗費實驗資源，為了

能有效並實用的辨識蛋白質之乙醯基化以供往後的研究使用，我們分析了

蛋白質乙醯基化的受質特異性並提出了一個名為N-Ace的蛋白質之乙醯基

化發生位置的辨識系統，來用於辨識蛋白質序列中的丙胺酸(Ala)、甘胺酸

(Gly)、賴胺酸(Lys)、蛋胺酸(Met)、絲胺酸(Ser)及蘇胺酸(Thr)之乙醯基化。

我們利用已知乙醯基化位置的蛋白質序列、結構特徵、物理及化學的特性，

如:蛋白質序列、可接觸表面積、亂度、能量、分子重量、蛋白質序列中胺

基酸的出現比率、空間參數、疏水性、體積、極性、電荷、熱含量及等電

點，並結合支援向量機來訓練計算模型。在模型建立完後，我們使用K-Fold

交叉驗証可證實這些特徵與乙醯基化的發生位置有明顯的關係。此外，蛋

白質之乙醯基化的各別的準確率分別為丙胺酸(Ala)84%、甘胺酸(Gly) 85%、

賴胺酸(Lys)76%、蛋胺酸(Met) 94%、絲胺酸(Ser) 81%及蘇胺酸(Thr) 77%。

最後，我們將最佳準確率的模型整合並建立成一個網頁介面的工具，以供

使用者利用。 
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Abstract 
 

Protein acetylation, which is an important and reversible post-translational 

modification, affects essential biological processes, including enzymatic activity, 

stability, protein-protein interaction, DNA binding, DNA repair, transcription 

regulation, apoptosis, cytokine signaling, and nuclear import. However, 

experimental identification of acetylation sites is time-consuming and 

lab-intensive. In order to identify the protein acetylation sites that could be 

useful and insightful for further analysis, we investigate the substrate specificity 

of acetylated sites and propose a method, namely N-Ace, for identifying 

acetylation sites on alanine, glycine, lysine, methionine, serine, and threonine. 

Support Vector Machine (SVM) is adapted to learn the computational models 

with the features of amino acids, structural characteristics, and physicochemical 

properties surrounding the acetylation sites. K-fold cross-validation indicates 

that the structural features, such as accessible surface area (ASA), and physical 

and chemical properties, such as absolute entropy, non-bonded energy, size, 

amino acid composition, steric parameter, hydrophobicity, volume, mean 

polarity, electric charge, heat capacity and isoelectric point are involved in 

substrate site specificity. The predictive accuracies of acetylated alanine, glycine, 

lysine, methionine, serine, and threonine are 84%, 85%, 76%, 94%, 81% and 

77%, respectively. Finally, the constructed models with highest accuracy are 

used to implement a web-based prediction tool. 
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Chpater 1  Introduction 

1.1 Background 

1.1.1 Protein Acetylation and Deacetylation 

 
Figure 1.1 Protein acetylation and deacetylation. 

 

As shown in Figure 1.1, acetylation describes a reaction that introduces an acetyl functional 

group into an organic compound by acetyltransferases and is one of protein acylations that 

occur with short-chain acyl-CoA as donor substrate to nucleophilic side chains in proteins. 

The protein acetylation had two distinct biological purposes. One is the acetylation of the 

N-termini of a large fraction of eukaryotic proteins, which is an irreversible modification 
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occurring cotranslationally. The other is the acetylation of proteins, most famously histones 

and transcription factors that affect selective gene transcription and chromatin structure. 

These are regulatory events and are reversed by N-deacetylase enzymes. The two 

N-acetylations are depicted, for Nα-terminal acetylation and lysine Nε-terminal acetylation, 

respectively. 

 

1.1.2 Nα-terminus Acetylation and Nε-terminus 

Acetylation 

Nα-terminus acetylation is an irreversible modification occurring cotranslationally and occurs 

in the α–amino group designates the position of the central carbon atom of amino acids and 

located on protein N-terminal only. Enzymatic acetylation of the N-terminus of proteins 

occurs in about 50% of yeast proteins, and up to 80–90% of higher eukaryotic proteins [1, 2]. 

In contrast, it is very rare in prokaryotes. The biological mechanism of N-terminal acetylation 

of eukaryotic proteins is unclear. 

Nε-terminus acetylation occur in ε-amino group of lysine residues designates the position 

of a carbon atom in the side chain. Unlike Nα-terminal acetylation, post-translational 

ε-amino lysine acetylation of proteins is highly reversible. Acetylation of the ε-NH2 of lysine 

residues participate in a variety of cellular processes, including transcription regulation, 

DNA repair, apoptosis, signal transduction, nuclear import, protein–protein interaction, DNA 

binding, enzymatic activity, stability, and subcellular localization [2-16]. 
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1.1.3 Histone and p53 Acetylation 

There are four histones, which include H2A, H2B, H3, and H4, that form the octameric 

histone cores of nucleosomes, (H2A)2(H2B)2, (H3)2(H4)2, and around which 145–147 base 

pairs of DNA is wrapped in chromatin structures. The N-termini of the four histones are not 

involved in the core structure and so are flexible, unstructured, and available for 

post-translational modification, including phosphorylation, methylation, ubiquitylation, and 

acetylation [17, 18]. These covalent markings are proposed to be signals, the histone code [19] 

that gets read by proteins of the gene transcriptional activation or repression in particular 

regions of chromatin. 

The recent research discovered that some transcriptional co-activators turned out to be 

histone acetyltransferases (HATs) [20, 21]. The same as the post-translational modification 

involved in signaling, the acetyl groups on histone lysine side chains can be removed 

reversibly by histone deacetylases (HDACs). Some transcriptional co-repressor proteins 

proved to have HDAC activity, providing further impetus for the characterization of the 

balance of HAT and HDAC activity to understand the dynamic integration of the histone code 

over time. 

As shown in Figure 1.2, when lysine side chains are cationic at physiological pH, 

N-acetylation will change the positive charges. If three or four of the four lysine side chains in 

H3 or H4 were acetylated, as can happen in nucleosomes where promoters are actively 

transcribed, then the charge quenching and the consequent electrostatic weakening of 

interaction of histone tails with negatively charged DNA could contribute to opening up of the 

chromatin in that microenvironment [20, 21]. Histone hyper-acetylation is correlated with 

transcriptional activation and histone hypo-acetylation is correlated with chromatin regions of 

  3



 

gene silencing. 

 

 
Figure 1.2 Regulation of gene expression by histone acetylation1. 

 

The p53 protein, which inhibited cell proliferation in the G1 phase, is regulated primarily 

through transcriptional activation of the p21 gene, which encodes an inhibitor of 

cyclin-dependent kinases [22]. In contrast, transcriptional activation of the PUMA gene is 

important for p53-dependent apoptosis, which encodes a BH3-only member of the Bcl-2 

family that initiates the cell-death cascade by modulating Bax activity [23, 24]. In addition, 

p53 also transactivates the mdm2 gene to initiate the p53-Mdm2 feedback loop, which is 

crucial for restraining p53 function during the stress response [8, 25]. 

Yi Tang et al. [12] proposed a model involving three different levels of p53-dependent 

                                                       
 
1  Figure was extracted from 
http://www1.imperial.ac.uk/resources/EC8CB2E8-2F45-4A67-B009-D00522783B93/ 
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transcriptional regulation. First, upon DNA damage-induced p53 stabilization, Mdm2 is 

readily induced in the absence of Tip60 recruitment (although other coactivators such as 

CBP/p300 might be required) (See Figure 1.3 (I)). Because activated p53 is potentially 

dangerous to cell viability, the p53/Mdm2 feedback is probably an early, perhaps default, step 

in the p53-mediated stress response. Second, Tip60 interacts with p53 and is recruited to p53 

target promoters, leading to p21 transactivation and growth arrest (See Figure 1.3 (II)). This 

step may be particularly important for cells to initiate productive DNA repair processes. In 

contrast to mdm2 and p21, cells may be reluctant to induce high levels of p53 targets such as 

puma that initiate an irreversible apoptotic response. Nevertheless, in response to some 

signals (e.g., the existence of unrepairable DNA damage) K120 acetylation of p53 is induced 

by Tip60 and PUMA expression is fully activated (See Figure 1.3 (III)). 

This model might explain the differential effects of p53-mediated transactivation under 

various cellular conditions and the level of p53 acetylation regulates the programmed cell 

death. 
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Figure 1.3 The transcriptional regulation by p53 acetylation. [Yi Tang et al., 2006 Molecular 

Cell 24, 827–839] 

 

1.2 Motivation 

Protein acetylation is an important and reversible post-translational modification, and 

acetylated proteins control gene regulation, transcription and protein activation. The 

N-acetylation of histones can be detected by mass spectrometry, or by use of radioactive 

*acetyl-CoA as cosubstrate to monitor protein covalent radioactivity, or by using 

N-acetyllysine-specific antibodies in chromatin immunoprecipitation (ChIP) assays for 

qualitative detection of acetylated histone levels. However, experimental identification of 

acetylation sites wastes a lot of time and consumes experimental resources. How to identify of 

protein acetylation sites that could be useful and insightful for further experimental design is 

very important. Therefore, in silico identification of protein acetylation sites with high 

predictive accuracy could be a promising strategy to conduct preliminary analyses and could 

  6



 

heavily reduce the number of potential targets that need further in vivo or in vitro 

confirmation. 

 

1.3 Specific Aims 

In order to identify the protein acetylation sites that could be useful and insightful for further 

analysis, we investigate the substrate specificity of acetylated sites and propose a method, 

namely N-Ace, for identifying acetylation sites on alanine, glycine, lysine, methionine, serine, 

and threonine. It has been observed that protein acetylation site prefers to occur in regions that 

are easily accessible. Support Vector Machine (SVM) is adapted to learn the computational 

models with the features of amino acids, structural characteristics, and physicochemical 

properties surrounding the acetylation sites. The constructed models were evaluated based on 

k-fold cross-validation. Moreover, the independent test set was used to evaluate whether the 

constructed model over-fitted to the training set. To facilitate the investigation of protein 

acetylation sites, the models with highest predictive accuracy were adopted to implement an 

effective web-based prediction system. 
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Chpater 2 Related Works 

Because more and more attentions were paid with the high-throughput proteomic studies of 

protein acetylation in biological mechanism, which produce an increasing number of 

experimentally verified acetylation sites. Nevertheless, experimental identification of 

acetylation sites is complicated and need a lot of time. Computational prediction might not 

only narrow down the potential acetylation sites, but also facilitate the further investigation in 

downstream functional analysis. Thus, three works were proposed to computationally identify 

the potential acetylation sites on alanine (A), glycine (G), lysine (K), serine (S) and threonine 

(T) residues. Furthermore, there are two databases which provided information of protein for 

this study to analyze acetylation of protein. 

 

2.1 Protein Acetylation Site Database 

2.1.1 dbPTM 

dbPTM [26] is a database that compiles information on protein post-translational 

modifications (PTM) such as the modified sites, solvent accessibility of surrounding amino 

acids, protein secondary and tertiary structures, protein domains, and protein variations. The 

version 2.0 of dbPTM integrates the experimentally validated PTM sites with referable 

literatures from UniProtKB/Swiss-Prot, Phospho.ELM, O-GLYCBASE, and UbiProt. In each 

type of PTM, the substrate peptide specificity such as positional amino acid frequency, 

solvent accessibility and secondary structure surrounding the modified sites are provided. All 

the PTMs and related information are accessible at http://dbPTM.mbc.nctu.edu.tw/. 
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Figure 2.1 Web page of dbPTM. 
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2.1.2 UniProtKB/Swiss-Prot 

Data integrated into UniProtKB/Swiss-Prot [27, 28], including the protein sequence and 

current knowledge on protein, are manually checked and continuously updated. The main 

sources of data are scientific publications, which report new sequence data, and/or review 

articles to periodically update the annotations of families or groups of proteins. Each 

UniProtKB/Swiss-Prot entry contains core data (sequence data; bibliographical references and 

taxonomic data (description of the biological source of the protein)) and annotation, which 

consists of the description of the following items: function(s) of the protein, post-translational 

modifications (For example carbohydrates, phosphorylation, acetylation, GPI-anchor, etc), 

domains and sites (For example calcium binding regions, ATP-binding sites, zinc fingers, 

homeobox, kringle, etc), secondary structure, quaternary structure. (For example homodimer, 

heterotrimer, etc), similarities to other proteins, diseases associated with deficiencies in the 

protein, Sequence conflicts, variants, etc. The web page is available 

at http://us.expasy.org/sprot/. 
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Figure 2.2 Web page of UniProtKB/Swiss-Prot. 
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2.2 Protien Acetylation Site Prediction Tools 

2.2.1 NetAcet 

Kiemer et al. [29] developed a neural network based method for prediction of Nα-terminal 

acetylated alanine (A), glycine (G), serine (S) and threonine (T) residues. They use the data 

were extracted from Table 2 in Polevoda and Sherman (2003) [30] and joined with data from 

the Yeast Protein Map (YPM) [31] to compose the datasets for training model. This study 

developed on a yeast data set for N-acetyltransferase A (NatA) acetylation. The performance 

of correlation coefficients is close to 0.7 on yeast data and sensitivity up to 74% on 

mammalian data. The web server is available from http://www.cbs.dtu.dk/services/NetAcet/ . 
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Figure 2.3 Web page of NetAcet. 
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2.2.2 Liu et al., 2004 

Liu et al. [32] employed Support Vector Machine method to predict Nα-terminal acetylated 

sites and used a balanced training datasets. The performance of the sensitivity and specificity 

is 0.86 and 0.97, respectively, and the correlation coefficients and sensitivity on an 

independent mammalian data set is 0.85 and 0.9%, respectively. Especially, the data 

constructed from the Yeast Protein Map (YPM) and the same data set used by NetAcet. The 

web site is http://166.111.24.5/acetylation.html, but it is not available. 

 

2.2.3 PAIL 

Li et al. [33] constructed a prediction server for N　-terminal acetylated lysine, which named 

PAIL, and using a Bayesian Discriminant Method (BDM) algorithm, which can be described 

as follow. 

  

The b is the cut-off value to obtain 
the prediction performance. 

The datasets were composed of experimental verified acetylation sites from 

UniProtKB/Swiss-Prot and collected by surveying literatures. The window length of a 

potential acetylated peptide has been optimized as 13. The accuracy of PAIL is highly 

encouraging with, 85.13%, 87.97%, and 89.21% at low, medium, and high thresholds. The 

web page is available at http://bioinformatics.lcd-ustc.org/pail. 

 

  14

http://166.111.24.5/acetylation.html
http://bioinformatics.lcd-ustc.org/pail


 

 

 
Figure 2.4 Web page of PAIL. 
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Chpater 3  Materials and Method 

3.1 Materials 

The dbPTM [26], which included UniProtKB/Swiss-Prot [27, 28] release 53, consists of 2,062 

experimentally verified acetylation sites within 1,524 protein entries. As given in Table 3.1, 

after removing the non-experimentally sites, which annotated as “by similarity”, “potential” 

or “probable”, and select the residues which had enough datum to train model , only alanine 

(A), glycine (G), lysine (K), methionine (M), serine (S) and threonine (T) ,which are 424, 60, 

792, 240, 431, and 63, respectively. In this work we just focused on acetylated alanine (A), 

glycine (G), lysine (K), methionine (M), serine (S) and threonine (T) residues. 

   

  16



 

Table 3.1 Data sources from dbPTM (including UniProtKB/Swiss-Prot Release 53). 

Residue 

Number of Acetylated proteins Number of Acetylated sites 

No. of proteins 
No. of experiment 

proteins 
No. of sites 

No. of experiment 

sites 

Alanine (A) 1160 424 1160 424 

Aspartate (D) 115 6 115 6 

Cysteine (C) 24 5 24 5 

Glutamate (Q) 30 10 30 10 

Glycine (G) 116 60 116 60 

Lysine (K) 1534 299 3701 792 

Methionine (M) 633 240 633 240 

Proline (P) 217 14 217 14 

Serine (S) 963 431 963 431 

Threonine (T) 154 63 154 63 

Tyrosine (Y) 2 2 2 2 

Valine (V) 43 15 43 15 

Arginine (R) 54 7 54 7 

Total 4632 1524 7212 2062 

The experiment data are not annotated as “by similarity”, “potential” or “probable”.  

 

3.2 Overview of Method 

The flow of the proposed method is shown in Figure 3.1. This study consists of four major 

analyzing processes such as data preprocessing, feature coding, model training and evaluation, 

and independent test. We firstly extracted the acetylated sites as positive sets, non-acetylated 

sites as negative sets and used multiple features to code feature vector, which included 

probability of classification from primary Support Vector Machine (SVM) at each features. 

Thereupon, the secondary SVM put in practice to learn computational models from positive 

sets and negative set of the acetylation sites. In order to evaluate the learned models, 5-fold 

cross-validation is carried out. Each step in the proposed method will be introduced below. 

Finally, independent test used to evaluate the selected models with best predictive accuracy. 
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Figure 3.1 System flow of N-Ace. 
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Figure 3.2 Defining the positive dataset and negative dataset. 

 

3.3 Data Preprocessing 

We firstly extracted experiment data of acetylation site as positive datasets. Figure 3.2 depicts 

while all other residues (A, G, K, M, S or T) without annotated as acetylated sites are 

regarded as the negative set. WebLogo [34, 35] is used for creating the graphical sequence 

logo for the relative frequency of the corresponding amino acid at each position surrounding 

the acetylted sites, with defined window size 2n+1 (variety from 4~10) and n+1 (variety from 

8~20) for N　-terminal acetylation site and N　-terminal acetylation, respectively. In order to 

avoid the overestimation, the datasets must be the non-redundant datasets. As show as Figure 

3.3, we clustered the protein sequences from datasets with a threshold of 30% identity by 

BLASTCLUST [36], which is part of the BLAST software package from the NCBI and 

systematically clusters protein sequences based on pairwise matches found using the BLAST 

algorithm. If two proteins were similar with ≥ 30% identity, we re-aligned the proteins with 

BL2SEQ [36], is part of the BLAST software package from the NCBI and allows for the 

alignment of two given sequences, and checked the results manually. If two acetylation sites 

from two homologous proteins were at the same position after sequence alignment, only one 

item was reserved while the other was discarded. Thus, we obtained non-redundant positive 
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data set of high quality with 365 acetylalanine sites, 30 acetylglycine sites, 471 acetyllysine 

sites, 184 acetylmethionine sites, 343 acetylserine sites and 57 acetylthreonine sites from 365, 

30, 239, 184, 343 and 57 proteins, respectively. 

Moreover, we make the equal sizes of the positive samples and the negative samples 

during the training model and cross-validation processes. The size of the negative set, which 

is constructed by randomly selected from the corresponding non-acetylation sites, is equal to 

the size of positive set. 

 

 
Figure 3.3 The flow chart of extract non-redundant dataset. 
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3.4 Two Stages Support Vector Machine (SVM) 

In this study, we import the following 12 features , which are amino acid sequence, accessible 

surface area [37, 38], absolute entropy [39], non-bonded energy [40],size [41],amino acid 

composition [42], steric parameter [43], hydrophobicity [44, 45], volume[46], mean polarity 

[47], electric charge [48], heat capacity[39] and isoelectric point [49]. As show as Figure 3.4, 

we utilized two stages Support Vector Machine (SVM) to promote the model performance. 

The two stages SVM can be described as follows: first, we are training each feature to get the 

probability of positive datasets and negative datasets; secondly, these probability values are 

constructing the feature vectors, which can be learning evaluation at the secondly stage SVM. 
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Figure 3.4 The method of feature coding. 
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3.5 Model Learning and Evaluation 

3.5.1 Learning Model by Support Vector Machine (SVM) 

The Support Vector Machine (SVM) is universal approximator based on statistical and 

optimising theory. The SVM is particularly attractive to biological analysis. As show as 

Figure 3.5, the basic principle of SVM can be described as follows: first, the inputs are 

formulated as feature vectors. Secondly, these feature vectors are mapped into a feature space 

by using the kernel function. Thirdly, a division is computed in the feature space to optimally 

separate two classes of training vectors. The SVM always seeks global hyperplane to separate 

the both classes of examples in training set and avoid overfitting. 

 

 
Figure 3.5 Principle of Support vector machines (SVM)2. 

This study incorporates Support Vector Machine (SVM) with the protein sequences and 

                                                       
 
2  Figure was extracted from http://www.imtech.res.in/raghava/rbpred/algorithm.html 
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for training the predictive models of acetylation sites prediction. A public SVM library, 

namely LIBSVM [50], is applied for training the predictive models. The SVM kernel function 

of radial basis function (RBF) is selected. 

K൫x୧ , x୨൯ ൌ exp൫െγฮ x୧ െ x୨ ฮ൯ , γ ൐ 0 

 

3.5.2 Model Evaluation and Parameter Optimization 

After the models are learned, it is necessary to evaluate whether the models are fitted or not. 

5-fold cross-validation is used to evaluate the predictive performance of the models trained 

from the data sets. The SVM cost values and SVM gamma values are optimized for 

maximizing the predictive accuracy by a tool from LIBSVM [50] . The following measures of 

the predictive performance of the models are then calculated: Precision (Pr) = 
TP

TPାFP
 , 

Sensitivity (Sn) = TP
TPାFP

 ,Specificity (Sp) = 
TN

TNାFP
 ,Accuracy (Acc) = 

TPାTN
TPାFPାTPାFN

 

and Mathew correlation coefficient (MCC) = 

ሺTPൈTNሻିሺFNൈFPሻ
ඥሺTPାFNሻൈሺTNାFPሻൈሺTPାFPሻൈሺTNାFNሻ

 , where TP, TN, FP and FN are true positive, 

true negative, false positive and false negative predictions, respectively. Moreover, when the 

number of positive data and negative data differ too much from each other, the Mathew 

correlation coefficient (MCC) should be included to evaluate the prediction performance. The 

value of MCC ranges from -1 to 1, and a larger MCC value stands for better prediction 

performance. 
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3.6 Independent Test 

Sometimes, the prediction performance of the trained models might be overestimated because 

of the overfitting for training set. To estimate the real prediction performance, the independent 

test set will be used to evaluate the predictive performance of the trained models which reach 

the best accuracy based on the cross-validation. However, the performance of independent test 

may be good by chance. To avoid the unfair independent test, the dataset of independent test 

extracted from UniProtKB/Swiss-Prot release 55 which remote the same data in dbPTM, as 

given in Figure 3.6. The independent test set is constructed for lysine, alanine, serine and 

threonine, which is composed of 43, 21, 8 and 2 positive datasets, respectively. We also make 

the equal sizes of the positive samples and the negative samples. The size of the negative set, 

which is constructed by randomly selected from the non-acetylation sites, is equal to the size 

of positive dataset. The performance of independent test will be computed. The independent 

test sets of lysine, alanine, serine and threonine are not only adopted to test our method but 

also used to test other previously proposed protein acetylation prediction tools. 
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Figure 3.6 The flow chart of independent test. 
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Chpater 4  Results 

4.1 Observation of Acetylation Sites 

As given in Table 4.1, the flanking amino acids (+0~+12) and (-6 ~ +6) of the non-redundant 

acetylation sites (position 0) categorized by the modified residue are graphically visualized as 

sequence logo, which can be easily investigated the conservation of amino acids surrounding 

the acetylation sites. As the representation of sequence logo, there are no obvious conserved 

amino acids surrounding the modified sites. In the case of acetylated alanine, glycine, 

methionine and threonine are enriched surrounding the modified sites, especially in position 

+1. In other cases, there are no obvious conserved amino acids surrounding the acetylated 

lysine and serine. However, the conservation of amino acids in flanking regions may be 

temporary due to the low abundance of experimental verified acetylglycine and 

acetylthreonine. 

  



 

Table 4.1 The sequence logo of amino acids. 

Residues 
Redundant Non- redundant 

Window size Sequence logo 
Sites Proteins Sites Proteins 

Alanine (A) 415 415 356 356 +0~+12 

Glycine (G) 60 60 30 30 +0~+12 

Lysine (K) 715 282 471 239 -6~+6 

Methionine (M) 239 239 184 184 +0~+12 
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Residues 
Redundant Non- redundant 

Window size Sequence logo 
Sites Proteins Sites Proteins 

Serine (S) 428 428 343 343 +0~+12 

Threonine (T) 63 63 57 57 +0~+12 

 

 



 

4.2 Functional Analysis of Acetylated Proteins 

To determine which types of proteins are acetylated, the GO annotation had been analyzed. 

The non-redundant data set have 182 proteins which were acetylated at lysine residue. We 

obtain 597 distinct GO categories. The top five Gene Ontology (GO) entries of biological 

processes, molecular functions and cellular components of proteins, acetylated at lysine 

residue, were shown at Table 4.2. 

 

Table 4.2 The top five GO categories of biological process, molecular function and cellular 
component of acetylated proteins. 

GO symbol Gene Ontology No. of proteins

Top five biological processes 

GO:0050789 regulation of biological process 42 

GO:0006139 
nucleobase, nucleoside, nucleotide and nucleic acid metabolic 

process 
31 

GO:0009058 biosynthetic process 30 

GO:0050896 response to stimulus 24 

GO:0007154 cell communication 22 

Top five molecular functions 

GO:0005515 protein binding 69 

GO:0003824 catalytic activity 46 

GO:0003676 nucleic acid binding 30 

GO:0016740 transferase activity 17 

GO:0030528 transcription regulator activity 16 

Top four cellular components 

GO:0005634 nucleus 63 

GO:0005739 mitochondrion 47 

GO:0005737 cytoplasm 14 

GO:0016020 membrane 10 
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The most enriched GO item of biological process in which acetylated lysine proteins are 

involved in is “regulation of biological process” (42 proteins). The other four significantly 

biological processes are “nucleobase, nucleoside, nucleotide and nucleic acid metabolic 

process” (31 proteins), “biosynthetic process” (30 proteins), “response to stimulus” (24 

proteins) and “cell communication” (22 proteins). The most frequent GO group of molecular 

function is “protein binding” (69 proteins), while the other four highly-abundant molecular 

functions are “catalytic activity” (46 proteins), “nucleic acid binding” (30 proteins), 

“transferase activity” (17 proteins) and “transcription regulator activity” (16 proteins). The 

most abundant GO entry of cellular component is “nucleus” (63 proteins), and the other three 

highly-frequent cellular components are “mitochondrion” (43 proteins), “cytoplasm” (14 

proteins) and “membrane” (10 proteins). 

Taken together, the analyses propose that protein acetylation plays important roles in 

regulation of biological process and the functions of acetylated proteins are different. Thus, the 

protein acetylation is suitable for develop a prediction system. 

 

4.3 Predictive Performance 

We adopt five frequently considered measurements: precision (Pr), sensitivity (Sn), specificity 

(Sp), accuracy (Ac) and Mathew correlation coefficient (MCC). Precision is a value of 

positive predictive, while sensitivity (Sn) and specificity (Sp) represent the correct prediction 

ratios of positive data sets and negative data sets respectively, and accuracy (Ac) illustrates 

the correct ratio between both positive data sets and negative data sets. If the number of 

positive data and negative data differ too much from each other, the Mathew correlation 

coefficient (MCC) should be included to evaluate the prediction performance. The value of 
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MCC ranges from -1 to 1, and a larger MCC value stands for better prediction performance. 

Among the data with positive hits by prediction, the real positives are defined as true positives 

(TP), while the others are defined as false positives (FP). When the data predict as negative, 

the real positives are defined as false negatives (FN), while the others are defined as true 

negatives (TN). 

 

4.3.1 Predictive Performance of 5-fold Cross-validation 

with various windows sizes 

Figure 4.1 illustrates the predictive accuracy of the models, based on various window sizes 

2n+1, where n varies from 4 to 10. As far as various window sizes are concerned in 

acetyllysine, the window size increasing from 4 to 10 makes no obvious difference to 

predictive accuracy. The predictive specificity increased with the window size increasing from 

4 to 10. However, the predictive sensitivity decreased with the window size increasing. To 

consider the computational efficiency and overall performance of the models trained with 

different window sizes, 13-mer is selected as the feasible window length. 
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Figure 4.1 The predictive performance of models trained with various windows sizes. 
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4.3.2 Predictive Performance of 5-fold Cross-validation 

based on Amino Acid Sequence 

As shown in Table 4.3, the performance measurements of sensitivity (Sn), specificity (Sp), 

accuracy (Acc), and Mathew correlation coefficient (MCC) based only on amino acid 

sequence. We adopt the 5-fold cross-validation to evaluation. However, because the flanking 

amino acids of alanine, lysine and serine are not conserved, the model training by amino acid 

sequence can’t identify positive datasets and negative datasets completely. The predictive 

accuracies of our method are 69%, 72%, 67%, 83%, 70% and 68% for alanine, glycine, lysine 

methionine serine and threonine, respectively. 
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Table 4.3 The cross-validation performance of the models trained with amino acid sequence 
feature.  

Acetylation 

Residue 

No. of non-redundant 

training set 
Window Size Pr Sn Sp Acc MCC

Alanine 356 +0~+12 0.74 0.60 0.79 0.69 0.40 

Glycine 30 +0~+12 0.83 0.60 0.83 0.72 0.47 

Lysine 471 -6~+6 0.74 0.52 0.81 0.67 0.35 

Methionine 184 +0~+12 0.83 0.83 0.83 0.83 0.66 

Serine 343 +0~+12 0.82 0.53 0.86 0.70 0.43 

Threonine 57 +0~+12 0.73 0.63 0.73 0.68 0.39 

Abbreviation: Pr, precision; Sn, sensitivity; Sp, specificity; Acc, accuracy; MCC, Mathew 
correlation coefficient. 

 

4.3.3 Predictive Performance of 5-fold Cross-validation 

based on Two Stages SVM with Multiple Features 

In order to improve the prediction performance, we not only include amino acid sequence, but 

also constructed other structural characteristics, such as accessible surface area, absolute 

entropy, non-bonded energy, size, amino acid composition, steric parameter, hydrophobicity, 

volume, mean polarity, electric charge, heat capacity and isoelectric point. Moreover, we 

implemented two stages SVM method to increase performance. The results of prediction 

performance were presented in Table 4.4. The predictive accuracies of our method are 84%, 

85%, 73%, 94%, 81% and 77% for alanine, glycine, lysine methionine serine and threonine, 

respectively. Figure 4.2 show the model comparisons between implemented amino acid 

sequence feature and two stages SVM method. 
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Table 4.4 The cross-validation performance of the models trained with selected features 
feature and implemented two stages SVM with multiple features. 

Acetylation 

Residue 

No. of non-redundant 

training set 
Window Size Pr Sn Sp Acc MCC

Alanine 356 +0~+12 0.91 0.76 0.93 0.84 0.69 

Glycine 30 +0~+12 0.93 0.80 0.90 0.85 0.74 

Lysine 471 -6~+6 0.84 0.59 0.88 0.73 0.49 

Methionine 184 +0~+12 0.99 0.89 0.99 0.94 0.89 

Serine 343 +0~+12 0.97 0.65 0.98 0.81 0.66 

Threonine 57 +0~+12 0.78 0.76 0.79 0.77 0.56 

Abbreviation: Pr, precision; Sn, sensitivity; Sp, specificity; Acc, accuracy; MCC, Mathew 
correlation coefficient. 
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Figure 4.2 Acetylation model comparisons between implemented amino acid sequence 
feature and two stages SVM with multiple features. 
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4.3.4 Predictive Performance of 5-fold Cross-validation 

based on Two Stages SVM with multiple features 

and Clustered by Subcellular Localization 

Due to the high-throughput mass spectrometry-based proteomics, the number of 

experimentally verified acetylated sites are rapidly increasing, which prompted the researcher 

to investigate the substrate specificity of acetyltransferases. As shown in Table 4.5, the protein 

subcellular localization of acetyltransferases and their substrates is mostly located in nucleus, 

which are interacted with DNA replication, DNA repair, transcription, and translational. 

However, some of them located in different localization are involved in different protein 

functions. Therefore, we investigate the substrate specificity of acetylated sites with their 

protein subcellular localization. 

 

Table 4.5 The statistics of acetyltransferases with subcellular 
localization in dbPTM. 

Subcellular localization Number of Acetyltransferase 

Nucleus 145 

Cytoplasm 74 

Membrane 27 

Mitochondrion 0 

Not description 71 

 

Especially in larger data set (greater than 100 sites), we clustered the sequences of the 

acetylation sites by subcellular localization into several subgroups, which are separately taken 

as training sets, and the model of each subgroup are generated. The experiment results are 
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given in Table 4.6. For the acetyllysine, the models learned from localization-clustered data 

sets have higher sensitivity than the ones learned from the data sets not applied clustered, but 

the models lose a little specificity. However, the models learned from localization-clustered 

for acetylalanine, acetylmethionine and acetylserine have lost a part of performance than the 

data sets not applied clustered. As given in Figure 4.3, the models we comparisons between 

original data sets and the localization-cluster data sets. 
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Table 4.6 The cross-validation performance of the models trained with implemented two 
stages SVM with multiple features and clustered by subcellular localization 

Acetylated 

Residue 

Subcellular 

localization 

No. of 

non-redundant 

training set 

Window 

Size 
Pr Sn Sp Acc MCC

Alanine 

Nucleus 48 +0~+12 0.77 0.78 0.77 0.77 0.56

Cytoplasm 139 +0~+12 0.93 0.73 0.94 0.84 0.70

Mitochondrion 36 +0~+12 0.93 0.61 0.95 0.78 0.60

Membrane 48 +0~+12 0.89 0.71 0.90 0.80 0.63

Average - +0~+12 0.90 0.72 0.90 0.81 0.65

Total 356 +0~+12 0.91 0.76 0.93 0.84 0.69

Glycine Total 30 +0~+12 0.93 0.80 0.90 0.85 0.74

Lysine 

Nucleus 178 -6~+6 0.97 0.81 0.98 0.90 0.80

Cytoplasm 51 -6~+6 0.77 0.73 0.79 0.76 0.52

Mitochondrion 190 -6~+6 0.70 0.67 0.72 0.69 0.39

Membrane 94 -6~+6 0.66 0.68 0.64 0.66 0.33

Average - -6~+6 0.80 0.73 0.80 0.76 0.53

Total 471 -6~+6 0.84 0.59 0.88 0.73 0.49

Methionine 

Nucleus 31 +0~+12 0.90 0.93 0.88 0.90 0.83

Cytoplasm 68 +0~+12 0.90 0.87 0.89 0.88 0.77

Membrane 30 +0~+12 0.89 0.80 0.90 0.85 0.71

Average - +0~+12 0.90 0.87 0.89 0.88 0.77

Total 184 +0~+12 0.99 0.89 0.99 0.94 0.89

Serine 

Nucleus 52 +0~+12 0.97 0.65 0.98 0.82 0.67

Cytoplasm 110 +0~+12 0.79 0.60 0.84 0.72 0.45

Membrane 32 +0~+12 0.66 0.71 0.63 0.67 0.35

Average - +0~+12 0.82 0.63 0.84 0.74 0.49

Total 343 +0~+12 0.97 0.65 0.98 0.81 0.66

Threonine Total 57 +0~+12 0.78 0.76 0.79 0.77 0.56

Abbreviation: Pr, precision; Sn, sensitivity; Sp, specificity; Acc, accuracy; MCC, Mathew 
correlation coefficient. 
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Figure 4.3 Acetylation model comparisons between original data sets and the localization 
-cluster data sets. 
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4.3.5 Predictive Performance of Independent Test 

The independent test sets of acetyllysine, acetylalanine, acetylserine and acetylthreonine are 

used to evaluate the selected models with best predictive accuracy. As given in Table 4.7, the 

predictive accuracies of our method are 80.8% and 85.0% for alanine lysine serine and 

threonine, respectively. In general, the performance of independent test might be approaching 

the performance of cross-validation. While the performance of cross-validation is better than 

independent test, it means that the trained model may be overfitting for the training data. This 

table shows that our trained model may be not overfitting. Furthermore, the independent test 

sets are also used to test other acetylation predictors. The result of independent test shows that 

the PAIL has high predictive sensitivity for identifying acetylated lysine, but the trained 

models of PAIL are not specific enough to the negative datasets of independent test sets. 

NetAcet has high predictive specificity for identifying acetylated alanine and threonine, but 

the trained models of NetAcet are not specific enough to the negative datasets of independent 

test sets in alanine and threonine. Unlike acetylated alanine and threonine, the independent 

test of acetylated serine by NetAcet has high predictive sensitivity and insufficient specificity. 

  

  



 

Table 4.7 The average performances of our method and other tools based on independent test. 

Tools Acetylated 
Residue Reference Method Window 

Size 
No. of 

positive set
No. of 

negative set Pr Sn Sp Acc MCC 

PAIL lysine 
Li, A., et al., Biochem 
Biophys Res Commun, 

2006. 
Bayesian 

Discriminant 
Method 

-6~+6 43 43 0.55 0.84 0.33 0.58 0.19 

NetAcet 

alanine 
Kiemer, L., et al., 

Bioinformatics, 2005. Neural Network

0~+12 21 21 0.00 0.00 1.00 0.5 0.00 

serine 0~+12 8 8 0.60 0.75 0.5 0.63 0.26 

threonine 0~+12 2 2 0.00 0.00 1.00 0.5 N/A 

N-Ace 

lysine 

N/A Support Vector 
Machine 

-6~+6 43 43 0.84 0.98 0.81 0.90 0.80 

alanine 0~+12 21 21 0.89 0.94 0.89 0.92 0.83 

serine 0~+12 8 8 0.86 0.75 0.88 0.81 0.63 

threonine 0~+12 2 2 1.00 1.00 1.00 1.00 1.00 
Abbreviation: Pr, precision; Sn, sensitivity; Sp, specificity; Acc, accuracy; MCC, Mathew correlation coefficient. 
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4.4 Summary of Result 

The models with best performance are chosen in each residue as shown in Table 4.8. It could 

be observed that acetyllysine clustered by localization with better performance. In lysine, the 

average of precision, sensitivity, specificity, accuracy and Mathew correlation coefficient 

(MCC) are 80%, 73%, 80%, 76% and 53%, respectively. Furthermore, we select the best 

performance of models without clustered by localization in other residues. In alanine, the 

precision is 91%, 76% in sensitivity, 93% in specificity, 84% in accuracy and 69% in MCC. 

In glycine, the precision is 93%, 80% in sensitivity, 90% in specificity, 85% in accuracy and 

74% in MCC. In methionine, the precision is 99%, 89% in sensitivity, 99% in specificity, 

94% in accuracy and 89% in MCC. In Serine, the precision is 97%, 65% in sensitivity, 98% in 

specificity, 81% in accuracy and 66% in MCC. The precision, sensitivity, specificity, accuracy 

and MCC in threonine are 78%, 76%, 79%, 77% and 56%, respectively. 
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Table 4.8 The selected models with the highest accuracy. 

Acetylated 
Residue 

Subcellular 
localization 

No. of 
non-redundant 

training set 

Window 
Size Pr Sn Sp Acc MCC

Alanine Total 356 +0~+12 0.91 0.76 0.93 0.84 0.69

Glycine Total 30 +0~+12 0.93 0.80 0.90 0.85 0.74

Methionine Total 184 +0~+12 0.99 0.89 0.99 0.94 0.89

Serine Total 343 +0~+12 0.97 0.65 0.98 0.81 0.66

Threonine Total 57 +0~+12 0.78 0.76 0.79 0.77 0.56

Lysine 

Nucleus 178 -6~+6 0.97 0.81 0.98 0.90 0.80

Cytoplasm 51 -6~+6 0.77 0.73 0.79 0.76 0.52

Mitochondrion 190 -6~+6 0.70 0.67 0.72 0.69 0.39

Membrane 94 -6~+6 0.66 0.68 0.64 0.66 0.33

Lysine Average - -6~+6 0.80 0.73 0.80 0.76 0.53

Abbreviation: Pr, precision; Sn, sensitivity; Sp, specificity; Acc, accuracy; MCC, Mathew 
correlation coefficient. 

 

4.5 Web Interface of N-Ace 

The users can submit their uncharacterized protein sequences to the query interface and make 

a choice for the appropriate models to predict for alanine, glycine, lysine, methionine, serine 

and threonine. As shown in Figure 4.4, our system returns the predicted results including 

acetylated position and flanking amino acids. Furthermore, users can choose different 

threshold for acetylation prediction based on predictive sensitivity. The web service is freely 

available at http://N-Ace.mbc.NCTU.edu.tw/. 
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Figure 4.4 Web interfaces of N-Ace. 
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Chpater 5  Discussions 

5.1 Comparison to Other Tools 

Our proposed method is compared to several current released acetylation prediction tools such 

as NetAcet, Liu et al., 2004 and PAIL. All the previous tools just consider the protein 

sequence annotation. Especially, in our investigation we construct the models include protein 

sequence, accessible surface area, absolute entropy, non-bonded energy, size, amino acid 

composition, steric parameter, hydrophobicity, volume, mean polarity, electric charge, heat 

capacity and isoelectric point annotations for acetylation sites. In order to have equality 

comparison, we use independent test. The accuracy of the models learned from acetyllysine, 

acetylalanine, acetylglycine, acetylmethionine, acetylserine and acetylthreonine are 0.84, 0.85, 

0.76, 0.94, 0.81 and 0.77, respectively. All the independent test of the alanine, lysine, serine 

and threonine models are higher than NetAcet, Liu et al., 2004 and PAIL. As show in Table 

5.1 shows that the proposed method, material, training features, selected window size, the 

predictive sensitivity and specificity of acetyllysine, acetylalanine, acetylglycine, 

acetylmethionine, acetylserine and acetylthreonine, and the overall performance are 

compared. 

 



 

Table 5.1 Comparison of predictive performance between our method and previous works. 
Tools NETAcet (Kiemer et al., 2004) Liu et al., 2004 PAIL (Li et al., 2006) N-Ace 

Material Yeast Protein Map (YPM) Yeast Protein Map (YPM) UniProtKB/Swiss-Prot UniProtKB/Swiss-Prot    
version v53 

Method Neural Network Support Vector Machine Bayesian Discriminant Method Support Vector Machine 

Training features Amino acid Amino acid Amino acid 
Amino Acids, structural 

characteristics, and 
physicochemical properties* 

Selected window size 7 5 13 13 

Acetylated lysine (K) - -  Sn = 59.76%, Sp = 90.20% Sn = 73%, Sp = 80%; 

Acetylated alanine - -  - Sn = 76%, Sp = 93% 

Acetylated glycine - -  - Sn = 80%, Sp = 90% 

Acetylated methionine - -  - Sn = 89%, Sp = 99% 

Acetylated serine Sn = 75%, Sp = 92% Sn = 86%, Sp = 97% - Sn = 65%, Sp = 98% 

Acetylated threonine - -  - Sn = 73%,  Sp = 80% 

Independent 
test 

lysine - - Sn = 84%, Sp = 33% Sn = 98%, Sp = 81% 

alanine Sn = 0%, Sp = 100% - - Sn = 94%, Sp = 89% 

serine Sn = 75%, Sp = 50% - - Sn = 75%, Sp = 88% 

threonine Sn = 0%, Sp = 100% - - Sn = 100%, Sp = 100% 

* Structural characteristics and physicochemical properties include accessible surface area, absolute entropy, non-bonded energy, size, amino acid 
composition, steric parameter, hydrophobicity, volume, mean polarity, electric charge, heat capacity and isoelectric point.
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5.2 Different Ratio of Positive sets and Negative sets 

In this work, the positive and negative training sets are balanced during the cross-validation. 

Because the size of negative set is much larger than positive set, the negative set may be 

unfair sampling. Thus, thirty sets of negative training data are randomly extracted and used to 

evaluate the prediction performance. However, it is impossible to extract thirty negative sets 

for constructing thirty predictive models when implementing the web server. Therefore, a 

larger size of negative set should be constructed. 

Unfortunately, larger negative set will make the trained model prefer to classify negative 

data correctly, based on achieving highest accuracy. As shown in Figure 5.1, the predictive 

specificity of acetyllysine model, which is trained with different ratio of positive and negative 

sets, increases with larger size of negative set. To take both the sensitivity and size of negative 

set into account, the appropriate ratio of positive and negative sets is 1:2. As a result, the 

appropriate ratio of positive and negative sets is used to construct the prediction model of the 

protein acetylation web server. 
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Figure 5.1 The cross-validation sensitivity, specificity and accuracy of the acetyllysine model 

trained with different ratio of positive sets and negative sets. 
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5.3 Prospective Works 

In the future, we hope the finish with two works will make the research better. Firstly, it is 

useful that utilizes more information of protein structure to advance the acetylation site 

prediction performance. Secondly, it is important about transcription regulation with 

acetylation, so we would combine with MicroArray data and prediction of acetylation sites to 

describe the regulated transcription and more detail with acetylation to make users realize 

about the key point of acetylation in the gene expression. 
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Chpater 6  Conclusion 

We proposed a prediction tool for identify protein acetylation sites, namely N-Ace, is 

implemented to allow users submit protein sequences for prediction of acetylation sites. We 

use independent test to test our system, and the result suggests that our system is capable of 

predicting novel acetylation sites of protein. By comparing to other approaches previously 

developed, our method provides not only considering the amino acid sequence of the 

acetylation sites, but also the corresponding protein modified of structural characteristics, and 

physicochemical properties. 
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