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Chapter 1 

Introduction 

Intelligent Transportation Systems (ITS) is considered possessing the potential to solve the 

traffic congestion problem. By providing road users with traffic information and then helping 

them to make better travel decisions, ITS promises to enhance the utilization of existing 

transportation facilities and to mitigate traffic congestion. A considerable amount of resources 

have been concentrated on the academic research of fundamental issues as well as the 

empirical deployments of ITS infrastructures in Taiwan and worldwide.  

For examples, the national master plan and system architecture had been accomplished by 

the Institute of Transportation, Ministry of Transportation and Communication. The follow-up 

project of ITS regional architecture has been kept on going by the same authority. There are 

several traffic control systems and integrated traffic information system deployed on the 

national freeway system by the National Freeway Bureau and the Institute of Transportation, 

Ministry of Transportation and Communications. There are also many ITS-related long-term 

projects funded by the National Science Council and implemented by the Ministry of 

Transportation and Communications. Some ITS initiatives of advanced information system 

for bus transit operations had been carried out in metropolitan areas of Taiwan. 

One of the key features to functionalize the effectiveness and the efficiency of ITS 

operations is the interaction between travel information provision and the corresponding 

response of road users. Therefore, the ability of predicting how the travel information 

predicted and provided by ITS influences the time trajectory of network flows is an essential 

issue in the viewpoints of both theoretical analysis and empirical improvements.  

This dissertation is developed to concentrate on the theoretical analysis of network states 
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interacted among users, system performances, and travel information. The methodology 

proposed in this thesis is expected to form the preliminary foundation of the further 

elaborations for the operational analysis and planning applications of transportation system 

under the scenario of ITS services 

1.1 Problem Statement 

Several desirable properties of ITS deployment are outlined as the following. ITS should be 

based on projected future demand to evaluate traffic control strategy, anticipate traffic 

variations, reduce overall delays, control and eliminate overreaction, improve travel 

information reliability, and maintain credibility to achieve traveler compliance. In order to 

reach these benchmark, encapsulating the inter-dependence of network flows and travel 

information provision into the ITS functionality is a fundamental and critical issue for traffic 

researchers.  

As pointed out by historical studies (Friesz, 1985, Friesz et al., 1996), the above statement 

can be realized implicitly if the problem is reduced to the so-called dynamic network design 

problem, a formulation showing that how to determine a temporal management (or control) 

plan, which recognizes that flow perturbations generated from the new treatments bring about 

disequilibria that might adjust toward equilibrium. It is commonly observed that there exists a 

subset (or a sub level programming) to formulate the network flow pattern as the network 

design problem is solved in both static and dynamic scenario. The mentioned flow patterns 

construct the basic feasible solution set for the corresponding problem but each of them meets 

a specific criterion that depends on the methodology or behavioral assumption it assumes.  

Therefore, the problem concerned in the dissertation is focused on modeling the effects of 

travel information on the network flow evolution under the maneuvers of ITS. And the results 

of this research can be applied to the dynamic network design problem and to address the 
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network flow evolution involving the implementation of traffic improvement alternatives. 

In addition, the scenario of ITS operations mentioned above assumes that ITS solutions 

must be able to record the traffic volumes and to predict and distribute travel information 

defined in this research. No specific technologies are preferred to deliver these functions and 

services of ITS. The users discussed in this study are limited to the home-to-work commuters 

with private mode. 

1.2 Motivations 

The motivations of this research are distributed into two parts. The first one is the research 

problem mentioned above is valuable. A network flow evolution model is a core device for 

the traffic analysis of operational and planning applications. It determines the quality of 

predicted travel information and the effectiveness of traffic management alternatives. The ITS 

infrastructure won’t work itself better without a well-predicted flow pattern.  

The other motivation is that the research problem mentioned above is a fundamental and 

challenging work. The excellently established Wardrop’s principle (1952) dominates the static 

theory of traffic assignment. However, one aspect that is unanimous among traffic researchers 

is that the general dynamic traffic assignment (DTA) problem is inherently specified by 

ill-behaved system characteristics that are imposed by the need to represent traffic realism and 

user manners adequately. And that’s the reason why researchers have become increasingly 

aware that the theory of DTA is still relatively undeveloped, which necessitates new 

approaches that account for challenges from the application domains as well as for the 

fundamental questions related to tractability and realism. 

Another common feature of the existing studies is that they depart from the standard static 

assignment assumptions to deal with time-varying flows and none of them presently provides 

a universal solution for general networks. 
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1.3 Objectives 

The purpose of this research is to develop an analytical approach capable of modeling the 

interacted relationships between network flows and travel information and characterizing the 

theoretical issues of existence, uniqueness, and stability for the proposed model with a 

thoroughly mathematical foundation. It is expected that the proposed theory will build an 

analytical linkage between the flow evolution and the empirical adaptability of travel 

preference under the operations of Intelligent Transportation Systems. 

1.4 Methodology 

Based on the behavioral assumptions of minimal travel time seeking and daily learning and 

adaptive process of travel decision, a theory of day-to-day network dynamics under ITS 

operations is developed. The proposed theory of day-to-day network dynamics is composed of 

path flow dynamics, predicted minimal travel time dynamics, and their interactions. 

Then, a mathematical formulation for the theory is presented by using continuous-time 

dynamical system approach. The existence and uniqueness of solution is characterized by the 

fundamental theorem of ordinary differential equations. The property of equilibrium solution 

for the proposed model is analyzed and proved to be asymptotic stable by the so-called second 

method of Lyapunov. 

1.5 Contributions 

This research primarily concerns the interacted network dynamics under ITS operations with 

the behavioral assumptions of minimal travel time seeking and daily learning and adaptive 

process of travel decision. Several significant contributions are noted in the following: 

(1) The author develops a new theory of day-to-day network dynamics under ITS 

operations to guide the behavior of flow evolution. 



 - 5 -

(2) Two mathematical formulations of the proposed theory for both uniform and 

inhomogeneous user classes are successfully accomplished. 

(3) A Lipschitz Lemma is generated and proved to claim the existence and uniqueness of 

the presented dynamical systems by means of the fundamental theorem of ordinary 

differential equations. 

(4) A strict Liapunov function is built to claim the asymptotic stability of the equilibrium 

solution for the proposed theory and models. 

1.6 Dissertation Outline 

The dissertation is composed of eight chapters. They are briefly narrated as follows. 

The first chapter gives an introduction of the problem statement, motivations, objectives, 

methodology, and contributions of this research.  

A literature review is presented in chapter 2. Historical studies are grouped into two 

categories, disequilibrium approaches and equilibrium-like methods. 

In chapter 3, the theory of day-to-day network dynamics with the behavioral assumption 

of minimal travel time seeking and daily learning and adaptive process of travel decision is 

developed. The conceptual framework and general model of day-to-day network dynamics are 

derived to form the basis for the further invention of modeling and theoretic analysis. 

Path flow dynamics, predicted minimal travel time dynamics, and their inter-dependence 

are formulated in chapter 4. Both uniform and inhomogeneous user classes are considered in 

the formulations. 

Issues of existence and uniqueness are provided in chapter 5. A Lipschitz Lemma is 

generated and proved to claim the existence and uniqueness of the proposed dynamical 

systems by means of the fundamental theorem of ordinary differential equations. 
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Chapter 6 gives the analysis of steady state and its stability by the so-called second 

method of Lyapunov. After introducing the theorem of Lyapunov stability, a strict Lyapunov 

function is created to specify the asymptotic stability of the equilibrium solution. 

Two examples of the proposed models, homogeneous-user model and multiple-user-class 

model, solved by the high-order Runge-Kutta method are illustrated to show the network 

dynamics numerically with a simple network in chapter 7. 

Finally, conclusions and prospects are summarized in chapter 8. 
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Chapter 2 

Literature Review 

This chapter provides literature reviews of DTA related studies by classifying the various 

theories into two broad methodological groups: disequilibrium methods and equilibrium-like 

approaches. The disequilibrium methods simulate the time passage of network flows in a 

day-to-day time scale. No equilibrium-like behavioral assumption is enforced on the theory 

and modeling process of these kind approaches. A further sub label can be imposed on these 

approaches to make the distinction between analytical methods and simulation-based methods. 

For the equilibrium-like approaches, a vast body of literature had been developed over the 

past two decades. Brief reviews on mathematical programming, optimal control, and 

variational inequality are also provided in this chapter. 

2.1 Disequilibrium Methods 

The question of whether equilibrium actually takes place or is a mathematical construct is a 

very old issue and probably precedes even the definition of traffic equilibrium itself. The 

context of disequilibrium network flows provides opportunities to relax the restrictive 

steady-state equilibrium assumptions and to model the phenomena of evolving disequilibria. 

This type of evolution models is able to capture the transition states of system and 

consequently might reach an equilibrium as the simulation duration is long enough. However, 

if the duration of the disruption and the time it takes for the system to reach equilibrium are 

such that the system stays longer in a non-equilibrium state rather than in equilibrium, it is 

important to catch the inter-transition process of traffic diversion. These are the most 

important and common features of disequilibrium methods. The following three sub sections 

introduce these approaches with a daily temporal scaling. 
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2.1.1 Simulation-based Method - DYNASMART 

Probably the only experimental evidence of user decision-making behavior is a real test that 

involved 100 travelers over a 24-day period performed by Chang and Mahmassani’s (1988), 

also see Mahmassani, Chang, and Herman (1986), Mahmassani (1990). The results of these 

serial researches revealed that route choice behaviors of commuters had indicated that the 

learning and adaptive process for this choice may take weeks, partly because of the dynamic 

feedbacks from the traffic system, and can indeed be lengthened by complex switching that 

resulted from the provision of better information.  

Mahmassani (2001) gave an overview of the DYNASMART simulation-assignment logic, 

the principle formulations that it is intended to support in the context of ITS network 

applications, and the specific DTA procedures developed for these formulations. A DTA 

system for advanced traffic network management was built around the traffic 

simulation-assignment modeling framework, which describes the evolution of traffic patterns 

in the network for given traffic loading under particular control measures and route guidance 

information supply strategies to individual motorists. The simulator was also embedded in an 

interactive search algorithm to determine optimal route guidance instructions to motorists. 

The related historical references can also be found in Mahmassani and Peeta (1993), 

Jayakrishnan et al. (1994), Hu and Mahmassani (1995, 1997). 

2.1.2 Deterministic Adjustment Process 

Smith (1979) gave a new interpretation of Wardrop’s first principle to formulate a dynamical 

system conceptually with its equilibria being exactly the same as Wardrop’s equilibria. His 

principle states that a single driver may use the same route tomorrow. However if he does 

change a route then he must change to a route, which today was cheaper than the one he 

actually used today. This point in Smith’s paper should be highlighted that cost comparisons, 
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which are supposed to influence tomorrow’s behavior, are based on today’s actual route-costs, 

the latest information. 

Friesz et al. (1994) addressed the experiment of Chang and Mahmassani (1988) 

theoretically by introducing a tatonnement process in micro economic theory for modeling the 

transition of disequilibria from one state to another. They presented both a qualitative analysis 

of stability and numerical studies, which show that such an approach provides a reliable 

means for determining static user equilibria. They also described circumstances for which 

these models depict day-to-day adjustments from one realizable disequilibrium state to 

another and how these adjustment processes differ depending on the quality of the 

information being provided by traveler information system. 

In particular, Friesz et al. facilitated certain elementary properties of variational inequality 

problems and fixed point problems to prove the steady state of the adjustment process 

satisfying static Wardropian user equilibria on congested network with fully general demand 

and cost structure. Under appropriate regularity conditions, they gave the proof of asymptotic 

stability for equilibrium solution in the sense of Lyapunov. However, the presented flow 

adjustment process was impassive to congestion level. And the non-uniqueness of solutions 

raises the methodological and practical issues in flow prediction. 

2.1.3 Stochastic Adjustment Process 

In general, stochastic adjustment process utilizes a stochastic mechanism to determine the 

route choice probability of traffic users. A simplified formula is applied to estimate the 

predicted travel time by giving each historical travel time a weight.  

Horowitz (1984) developed an investigation of the stability of stochastic equilibrium in a 

two-link network involving a route choice decision-making over time. It had been shown that 

even when equilibrium is unique, link volumes may converge to their equilibrium values, 
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oscillate about equilibrium perpetually, or converge to values that may be considerably 

different from the equilibrium ones, depending on the details of the route choice 

decision-making process. 

The serial studies of Cascetta and Cantarella (1991), Cantarella and Cascetta (1995), and 

V. Astarita et al. (1999) provided a doubly dynamic assignment model for a general network. 

They assumed that users’ choices are based on information about travel times and generalized 

transportation costs occurred in a finite number of previous days. The information are 

supplied and managed by an information system. This model follows a non-equilibrium 

approach in which both within-day and day-to-day flow fluctuations were formulated as a 

stochastic process. They also presented a dynamic network loading method for computing 

within-day variable arc flows from path flows. The model deals explicitly with queuing at 

oversaturated intersections and can be denoted as a fixed point problem. The authors proved 

that the process admits a unique stationary probability distribution with an equilibrium 

probability vector if some sufficient conditions hold. Numerical results of an application of 

the proposed procedure to a realistic network were also described in Cascetta and Cantarella 

(1991) and V. Astarita et al. (1999). 

Watling (1999) considered the stochastic approach to design a day-to-day traffic 

assignment process on a simple two-link network. The model consists of a multinomial split 

of the day-specific demand among those drivers that follow information, those that follow 

habitual choices, and those that choose a route based on previously experienced costs. The 

optimal split in the information are computed according to three criteria: 

(1) user optimal routing, in which the user equilibrium proportions are used; 

(2) stochastic user optimal routing, in which the stochastic user equilibrium proportions 

for a logit-based model with dispersion parameter are used; and 
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(3) system optimal routing, in which the proportions that minimize total travel cost are 

used. 

Based on the numerical tests of this study, the total travel time is a largely decreasing 

function of the probability of drivers following information. In order to overcome the 

correlations among the overlapping route segments, Watling suggested that it is more usually 

assumed that link cost perceptual errors follow independent Normal distributions, which 

implies a Multivariate Normal distribution of cost perceptual errors and leads to a probit 

choice model. 

2.2 Equilibrium-like Approaches 

Some other researchers are concerned about the formulations and solution methods of 

dynamic traffic assignment problem to compute the flow pattern satisfying system optimum 

(SO), dynamic user equilibrium (DUE), or dynamic user optimum (DUO). These studies do 

not simulate the evolutions of network flows but only a unique flow solution with some 

optimal criteria. 

2.2.1 Mathematical Programming Formulations 

Merchant and Nemhauser (1978) represent the first attempt to formulate the DTA problem as 

a mathematical program. The model was limited to the single-destination, single-commodity, 

and SO case. A link exit function to propagate traffic and a static link performance function to 

represent the travel cost as a function of link volume were provided. The model was shown to 

give a proper generalization of the conventional static SO assignment problem, and the global 

solution was obtained by solving a piecewise linear version of the model. 

Janson (1991) represents one of the earliest attempts to model DUE assignment problem 

as a mathematical programming. This approach seeks an equilibrium solution with 

experienced path travel times instead of the instantaneous travel time. Non-linear mixed 
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integer constraints are proposed in the formulation to ensure temporal continuity of 

origin-destination (O-D) flows, though they may be violated in the solution procedure 

specified which is a straightforward extension of the well-known incremental assignment 

heuristic for static formulations. 

Ziliaskopoulos (2000) introduced a linear programming formulation for the single 

destination SO assignment problem based on the cell transmission model for traffic 

propagation. H.K. Lo and W.Y. Szeto (2002) presented a cell-based dynamic traffic 

assignment model that follows the ideal dynamic user optimal principle. These studies 

circumvents the need for link performance functions as the flow propagation according to the 

cell transmission model (Daganzo, 1994), thereby being more sensitive to traffic realities. 

2.2.2 Optimal Control Models 

Friesz et al. (1989) discussed link-based optimal control formulations for both SO and DUE 

objectives on a single destination case. The models assume that adjustment s from one system 

state to another may occur concurrently as the network conditions change; that is, the routing 

decisions are made based on current network conditions, but can be continuously modified as 

conditions change. The SO model is a temporal ectension of the static SO model, and proves 

that at the optimal solution the instaneous flow marginal costs on the used paths for an O-D 

pair are identical and less than or equal the ones on the unused paths. 

In the study of Ran et al. (1993), several link-based SO models and instantaneous DUE 

optimal control models were proposed for an urban transportation network with multiple 

origins and destinations. They use linear exit functions and quadratic link performance 

functions so as to reduce the computational burden for a time-space decomposition solution 

procedure that can only handle very small network problems. 
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2.2.3 Variational Inequality Methods 

Friesz et al. (1993) formulated a continuous time path-based VI model to solve for the 

departure time/route choice by equilibrating the experienced travel times. Wei et al. (1995) 

introduced a discretized VI formulation for the simultaneous route-departure equilibrium 

problem to enable computational tractability, and proposed a heuristic algorithm to 

approximately solve it. They show solution existence under certain regularity conditions. 

Ran and Boyce (1996) proposed a link-based discretized VI formulation with fixed 

departure times to conquer the problems with path-based VI models. Chen and Hsueh (1998) 

presented a link-based VI formulation for the DUE assignment problem. They show that 

without loss of generality, travel time on a link can be represented as a function of link in flow 

only (instead of function of link inflow, exit flow, and number of vehicles on the link). A 

solution algorithm based on the nested diagonalization procedure was also designed. 

2.3 Summary and Discussions 

It is obvious that the equilibrium-like approaches are unable to simulate the traffic patterns 

when perturbations of the traffic system create disequilibria. And they are invalid to depict the 

interactions between flow dynamics and information provision.  

The simulation-based method of disequilibrium approaches is the most flexible approach 

to characterize the complicated system behaviors and their inter-dependence. However, this 

type of method can’t provide a satisfied theoretical analysis to sustain the issues of existence, 

uniqueness, and stability. Stability of the DTA solution is an important operational issue for 

the control of dynamic traffic network. This is because inappropriate assignment proportions 

may lead to increased unpredictability, or ill-behaved consequences for the system. 

Conceptually, the notion of stability implies that all solutions are bounded and converge to the 

time-dependent desirable states. The practical implication is that a stable solution minimizes 
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or limits the deterioration of system performance (Peeta and Ziliaskopoulos, 2001). 

However, even the analytical approaches of disequilibrium methods, the theoretical issues 

are not easily derived (Friesz et al., 1994). The stochastic adjustment models proposed by 

Cascetta and Cantarella (1991, 1995) failed due to the over-simplified updating process of 

anticipated cost. Under the operations of ITS, the predicted travel information should be 

specified in a more systematic viewpoints rather than a plain weighted mechanism. 
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Chapter 3 

Theory of Day-to-day Network Dynamics 

In this chapter, some essential assumptions and specific notation are employed to reflect the 

defined network dynamics and evolution focus. After the structure of day-to-day network 

dynamics theory is identified, the consequent conceptual framework and general model are 

also presented to form the preliminary foundation for the further modeling of network 

dynamics. 

3.1 Assumptions and Notation 

The main assumptions in this research are the minimal travel time seeking and the daily 

learning and adaptive process for both road users and operator of ITS. These assumptions are 

commonly accepted and applied in the existing disequilibrium approaches. The information 

provided by ITS include the actual path travel times and the predicted minimal travel time of 

previous day to help users making travel decision. Operator of ITS predicts minimal travel 

time based on the traffic volume detected by ITS and the predicted (or given) demand of 

previous day in a system-wide standpoint.  

In addition, each link cost function is assumed to be a smooth and strict monotone 

function of link flow and is used to estimate the actual travel time for all paths. Travel demand 

is presumably fixed in this study without the loss of generality under the supposition of no 

structural changes from competing transportation facilities over the whole period of interest. 

The main concern is that the variations of path flow and path travel time are much more 

sensitive than that of the O-D demand if the travel information provided by ITS is the only 

perturbation of transportation system. It is also assumed that travel demands of all O-D pairs 

do not jointly violate any capacity constraints of all the links. En-route information provision 
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and the corresponding user response are not considered in this research, neither. 

Some notation based on the typical equilibrium models of commuter route choice are 

employed and augmented to meet the concerns of following context. In particular, all vectors 

are assumed to be column vectors. Vectors and matrices are expressed in boldface. 

Table 3.1 Notation 

Notation Descriptions units 

t time index day 

W the full set of O-D pairs with W  O-D pairs  

P the full set of paths with P  paths  

A the full set of links with A  links  

wP  the set of paths connecting O-D pair w with wP  paths  

t
ph  the non-negative peak-flow of path p at day t vehicle/hour 

t
wh  the sum of t

ph  ∀ p∈Pw vehicle/hour 

th  the full vector of path flows at day t  

t
af  the non-negative peak volume of link a at day t, ∑=

p

t
pap

t
a hf δ , 

where 1=apδ  if link a belongs to path p, otherwise 0=apδ  

vehicle/hour 

ak  the capacity of link a; vehicle/hour 

)( t
aa fc  the unit average travel time on link a at day t, a smooth and strict 

monotone function of t
af  

hour 

t
pc  the unit average travel time on path p at day t, without 

considering node travel time, ∑=
a

t
aaap

t
p fcc )(δ  

hour 

t
wc  the unit minimal travel time on O-D pair w at day t predicted and 

provided by ITS 

hour 
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tc  the full vector of t
wc  at day t 

 

wD  the travel demand of O-D pair w over whole time period vehicle/hour 

pα  the positive and path-specific parameter to denote the propensity 

of path flow dynamics 

vehicle/hour2 

wβ  the positive and O-D-specific parameter to denote the sensitivity 

of predicted travel time dynamics 

hour2/vehicle 

x&  the ordinary derivative of x with respect to t  

x′  the transpose of vector (or matrix) x   

3.2 Basic Structure of Network Dynamics 

Conceptually, a dynamical system is to describe the future states unambiguously as the 

evolution rules and initial situations are specified. In order to meet this end, a way to 

formulate the time passage of all the points for a given space E mathematically is the first and 

most important thing before advancing further analysis. Consider a first-order dynamical 

system 
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M
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=

=
 (1) 

this n-dimensional nonlinear system of first-order ordinary differential equations can be 

expressed in vector form as 

 ),(vGv =&  (2) 

where ),,( 1 ′= nxx Lv  is a vector of system variables. There are some useful fundamental 

results for equation (2) to articulate the issues of existence and uniqueness analytically if a 

well-behaved slop field G were provided. As the system dynamics of interest could be 

successfully translated into the same format as equation (2) behaves, the analysis of 

asymptotic behavior will be very helpful to evaluate the prediction of system evolution. 



 - 18 -

The goal of this study mentioned in chapter one is to provide a theory capturing the effects 

of travel information on network dynamics, especially day-to-day interactions over system 

variables, network performances, and travel information. Let us start from the learning and 

adjustable behavior process assumed to guide daily travel decisions.  

This process is specified as that travel information, the actual path travel times and the 

predicted minimal travel time of previous day, are provided to all path users of each O-D pair. 

Then travelers with actual travel time less than predicted minimal travel time should have 

perceived a (pseudo) travel time saving on the traveling of previous day. On the other hand, 

users with actual travel time that is more than the predicted minimal travel time should feel 

like a (pseudo) travel time loss on the traveling of previous day. These deviations result in the 

path flows adjustments of the next day to coincide with the behavioral assumption of minimal 

travel time seeking. 

On the side of ITS operator, by recording actual path traffic volumes, ITS operator 

evaluates the difference between the fixed travel demand and the sum of the path flows for 

each O-D pair. In order to reflect the relative scarcity (or surplus) of transportation facilities, it 

is assumed that the predicted minimal travel time of an O-D pair adjusts accordingly as the 

difference between the fixed travel demand and the sum of the corresponding path flows is 

prompted.  

 Now we are ready to construct our dynamical system in the sense of (1). Taking time 

derivatives of the predicted minimal travel time of an O-D pair w and the corresponding path 

flows as the left hand side (LHS) of (1), we have the general form as 
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.,, WwPpTt w ∈∈∈∀  As mentioned in previous paragraph, the functions G,p , Pp∈∀ , in 

(3) are dominated by actual path travel time, which is a function of time-varying path flow 

pattern, and the predicted minimal travel time of O-D pair w at day t. On the other hand, the 

functions Gw , Ww∈∀ , in (3) are determined by the real happened path flows and the 

corresponding predicted demand of O-D pair w. It is obvious now that the network dynamics 

identified here includes path flow dynamics, predicted minimal travel time dynamics, and 

their interactions. This conceptual framework of network dynamics is illustrated as Fig. 3-1.  

 

day (t) day (t+1)day (t-1)

predicted minimal
travel time of O-D

pair w

path flow pattern

predicted demand
of O-D w

actual travel time
using path p

detecting all path
flows of

O-D pair w

predicted demand
of O-D w

predicted minimal
travel time of O-D

pair w

predicted minimal
travel time of O-D

pair w

path flow pattern

traffic user side

ITS operator

recording all path
travel times of

O-D pair w

detecting all path
flows of

O-D pair w

recording all path
travel times of

O-D pair w

actual travel time
using path p

predicted minimal
travel time of O-D

pair w

 

Fig. 3-1 Conceptual framework of network dynamics 
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Chapter 4 

Modeling Network Dynamics 

The contents of this chapter are distributed into two parts. The first is path flow dynamics that 

interact with ITS information, which are formulated in section 4.1. The second is predicted 

minimal travel time evolutions of O-D pairs that is predicted by ITS, which are analyzed in 

section 4.2. The whole network dynamics is a combination of these two components. 

4.1  Path Flow Dynamics 

The basic behavioral assumption of least travel time seeking has been mentioned in chapter 3. 

Before giving a mathematical relationship between path flow dynamics and this supposition, 

the author defines the value of total perceived travel time loss (or saving) for path p∈Pw at 

day t as 

 t
wpPTTL , )( t

w
t
p

t
p cch −≡ . (4) 

The perceived travel time loss (or saving) is measured by multiplying path flow with the 

difference between users’ average experienced travel time for a path estimated by link cost 

functions and the predicted travel time provided by ITS for the corresponding O-D pair. This 

quantity can be an estimation of the total travel time loss (or saving) perceived by travelers 

driving path p at day t. The meaning of positive (negative) t
wpPTTL ,  is that the average path 

travel time the users actually underwent is greater (less) than the travel time predicted by ITS. 

Travelers might be motivated to change their route due to this difference. Alternatively, 

t
wpPTTL ,  can be viewed as a measure of path performance for the previous time point and as 

a key factor to formulate the consequent shift of path flow at the next time point. In addition, 
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the congestion effect is embedded in t
wpPTTL ,  implicitly by including the current state of 

path flow. It means that the values of t
wpPTTL ,  will be different at various congestion levels 

even under the condition that the average path travel time experienced by the users is equal to 

the travel time predicted by ITS. The predicted travel time of O-D pair w at day t, t
wc , is 

updated by another dynamic process that will be presented in section 4.2. To continue the 

development it is useful to postulate that future path flow is established through the tuning of 

the present state at a rate proportional to the value of t
wpPTTL , . That is 

 tPTTLhh t
wpp

t
p

tt
p ∆−≡∆+ )( ,α , (5) 

with constraints 

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
<<

>− t
w

t
p

cc
p cct

w
t
p

1inf0
0

α , (6a) 

and 

 ∑∑
∈∀

<−
∈∀

−≤−
Pp

t
papa

cc
Pp

t
wppap hkPTTL

t
w

t
p

δαδ

0

, , (6b) 

for all OD pair w∈W, p∈Pw, a∈A at day t. Inequalities (6a) and (6b) ensure to avoid 

infeasibilities of non-negative flow and path capacity constraints. It is obvious that 

inequalities (6a) and (6b) is naturally satisfied if αp is carefully calibrated from the empirical 

data in which meets the assumptions and conditions defined previously. By taking the limit of 

(5) as ∆t approaches to zero and substituting (4) into (5), our path flow dynamics follow 

immediately as 
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 )( t
w

t
p

t
pp

t
pt

p cch
dt

dh
h −−== α&  (7) 

for all OD pair w∈W, p∈Pw at day t. The physical meaning of (7) is that the time change rate 

of the flow for path p at day t is equal to the negative product of the propensity of path flow 

shift and the value of t
wpPTTL , . 

4.2  Predicted Minimal Travel Time Dynamics 

To forward the network traffic to a steady status is the major intent of ITS. This goal is 

realized by successfully capturing predicted minimal travel time dynamics and delivering this 

information to users. In this section, we will focus on the formulation of predicted minimal 

travel time dynamics. To start the task, we first define the excess travel demand of an O-D 

pair w at day t as 

 t
wETD t

ww hD −≡ , (8) 

where wD  denotes the time-invariant travel demand of an O-D pair w over whole time 

period of interest. t
wETD  is considered to be the difference between the travel demand and 

the sum of the corresponding path flows for an O-D pair conceptually similar to Carey (1980) 

and Friesz et al. (1994). Positive (negative) excess travel demand means that the rate at which 

users desire to depart from an origin to a destination is greater than (less than or equal to) that 

where such movements are actually occurring. Predicted minimal travel time is then adjusted 

due to this deviation. Consequently, the predicted minimal travel time dynamics for all O-D 

pairs w∈W at day t can be written as 

 thDcc t
www

t
w

tt
w ∆−+≡∆+ )(β , (9) 
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where 
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if we further suppose that the minimal travel time prediction of the next time point for an 

O-D pair is transformed from the current status at a rate scaled to t
wETD . Inequality (10) 

guarantees that all predicted travel times stay in the feasible region without greater than wc) , 

the travel time at maximal flow, or less than wc( , the travel time at free flow, for OD pair w. 

And we define 

 ⎟
⎠

⎞
⎜
⎝

⎛
=≡ ∑∈ a

aaajPjw fcc
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)0(min δ(  (10a) 

and 
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⎠

⎞
⎜
⎝

⎛
=≡ ∑

∈ a
aaaajPjw kfcc

w

)(max δ) . (10b) 

After taking the limit of (9) the predicted minimal travel time dynamics can be written in 

differential form as 

 )( t
www

t
wt

w hD
dt

dc
c −== β&  (11) 

for all O-D pairs w∈W at day t. Equation (11) reveals that the time change rate of the 

predicted minimal travel time for O-D pair w at day t is equal to the product of the sensitivity 

of predicted minimal travel time dynamics and t
wETD . The whole version of network 

dynamics under operations of ITS is accomplished as 
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for all O-D pairs w∈W, p∈Pw at day t. 

4.3  Network Dynamics Involving Heterogeneous User Classes 

In this section road users are classified into n sub-groups to consider the effects of 

heterogeneous adjustments due to the various sensitivities of multi-class users on path flow 

dynamics. That is to say the parameter pα  in (7) is not only path specific but also user 

specific. Consequently there are n path flow dynamics for path p∈Pw at day t and (7) is 

augmented as 

 )( t
w

t
p

t
ipip

t
ipt

ip cch
dt

dh
h −−== α&  (13) 

for all O-D pair w∈W, p∈Pw , i=1,2,…,n, at day t. The physical meaning of (13) is that the 

time change rate of the flow for user class i using path p at day t is equal to the negative 

product of the propensity of path flow shift for user class i and the value of perceived travel 

time loss (saving) for user class i, t
wipPTTL , . If we further suppose that there are two options 

for ITS to provide predicted O-D travel time, i.e. a homogeneous forecast for all users or 

individual predictions according to multi-class users, the predicted minimal travel time 

dynamics should be reformulated as 
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c −== β& , (14) 

or 

 )( t
iwiwiw

t
iwt

iw hD
dt

dc
c −== β&  (15) 

for all O-D pairs w∈W , i=1,2,…,n, at day t respectively. In (14) the definition of t
wh  is the 

same as mentioned before but calculated in a different way and expressed as 

 ∑∑
∈

=
wPp i

t
ip

t
w hh . (16) 

All components in (15) are re-indexed from (11) by adding a subscript i for the 

corresponding user class in particular with 

 ∑
∈

=
wPp

t
ip

t
iw hh . (17) 

Equation (15) tells us that the time change rate of the predicted minimal travel time for user 

class i traveling on O-D pair w at day t is equal to the product of the sensitivity of predicted 

minimal travel time dynamics of user class i and the value of excess travel demand of user 

class i, t
iwETD . Now the multi-class users dynamical systems for all O-D pairs w∈W, p∈Pw , 

i=1,2,…,n, at day t are proposed as 
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for the case of providing a uniform prediction of O-D travel time by ITS and as 
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for the case of individually supplying user-definite O-D travel time respectively.  

Empirically, it is easy to be accomplished for such a hybrid system by providing a 

multi-access information inquiry system. However, we are concerned about the asymptotic 

behavior of the steady state and whether it is in complete accord with the well-known 

Wardrop’s user equilibrium. These topics are the major components in chapter 6. 
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Chapter 5 

Existence and Uniqueness 

A major property of a dynamical system is to specify the future states unambiguously when 

the evolution rules and initial situations are specified. In this section, we will briefly illustrate 

the issue of existence and uniqueness of a uniform-user model, i.e. (12), by the fundamental 

theorem of ordinary differential equations in section 5.1. For the part of multi-class models, 

brief statements of refinement from the results of the identical-user model are provided in 

section 5.2. Time indices, day t, and inequalities (6) and (10) are omitted for conciseness in 

the subsequent chapters, then (12) is rewritten as 
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5.1  Homogeneous User Model 

A dynamical system is a way of describing the time passage of all the points for a given space 

E. Mathematically, the space E might be an Euclidean space, R, or a subset of R. For the 

network dynamics mentioned in chapter 4, the set of possible non-negative path flows and 

predicted minimal travel time is clearly a convex subset of WPR +
+ , denoted as S even the 

constraints of path capacity are added. From the following theorem (Perko, 1996), 

Theorem 1. Suppose that )(1 ECG∈  and that )(xG  satisfies the global Lipschitz 

condition 

 yxyx −≤− LGG )()(  (21) 
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for all E∈yx, . Then for x0 ∈ nR , the initial value problem 

 0)0(with)( xxxx == G&  (22) 

has a unique solution )(tx  defined for all t ∈R . 

The existence and uniqueness of (20) can be claimed if (20) )(1 WPRC +
+∈  and (20) 

satisfies the global Lipschitz condition. The assumptions of the smooth and strict monotone 

function of link travel time ensure that (20) is )(1 WPRC +
+ . Then, the proof of the global 

Lipschitz of )(xG  is given by following lemma. For convenience, WPRSG +
+→:  in (20) is 

re-indexed as 
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and the norm ∑
+

=

=
WP

l
iy

1
y  is used WPR +

+∈∀ y . Now, we give the lemma of the Lipschitz 

condition for (23) and prove it. 

Lemma. ),( ch ′′G  defined in (23) satisfies the global Lipschitz condition with a Lipschitz 

constant }},{maxmax{ pww
LL β

∀
= , where 
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Proof. From the assumptions and definitions of the link cost function mentioned in previous 

sections, G in (23) is obviously continuously differentiable on S. Let yxu −=  and y, x are 

two given points in S, i.e. ),( yy chy ′′=′ and ),( xx chx ′′=′ . Since convexity of S, the points 
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uyv b+=  are also in S for all 10 ≤≤ b . Defining the function WPRH +
+→]1,0[:  by 

 )()( vGbH = , (25) 

and by the chain rule, we have 
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There are three conditions in (26) that keep 
l

j

v
g
∂

∂ )(v
 from vanishing for the path flow 

dynamics, i.e. Pjg j ≤≤∀ 1, . If we let ),( vv chv ′′=′ , they are 
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The upper bound of 
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v
g
∂
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 in condition (27) can be decided by 
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We know that ph  and wc  are bounded globally by constraints (6a), (6b), (10), (10a) and 

(10b). Hence, (27) is also bounded as the boundary conditions of (6a), (6b), (10), (10a) and 

(10b) take place. That is to say the upper bound of 
l

j

v
g
∂
∂

 in condition (27) is shown as 
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where 
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By similar treatments, there is only one condition that 
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v
g
∂

∂ )(v
, 

WPjPg j +≤≤+∀ 1and , in (26) is not equal to zero, it is 
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The results of (29) and (31) lead us to set 
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Now from the relation ∫ ′=−=−
1

0
)()0()1()()( dzzHHHGG yx , we find that 

∫ −≤′≤−
1

0
)()()( yxyx LdzzHGG . Thus ),( ch ′′G  in (23) satisfies the global Lipschitz 

condition and the corresponding Lipschitz constant L can be determined by (33). After 

proving the above lemma, the global existence and uniqueness of (20) is standard and we 

refer readers to Perko (1996) for a proof of the fundamental global theorem. 

5.2  Multiple User Classes Model 

For the cases of multi-class users, (23) is amplified as 
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where i = 1,2,…,n to fit (18) and (19) respectively. The dimension of ),( ch ′′G  and ),( ch ′′  

in (34) are the same and denoted as WPn + and in (35) as )( WPn + . By the similar 

treatments, condition (27) for path flow dynamics with Pnj ≤≤1  is modified as 
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and 
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for the two cases of multi-class users model respectively. And the corresponding non-zero 

parts of partial derivative of predicted minimal travel time dynamics can be similarly derived 

as 
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],1[, WnPnPnjg j ++∈∀  in (35). Eventually the Lipschitz constant can be expressed as 
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for (34) and as }},{maxmax{
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Chapter 6 

Analysis of Steady State and Its Stability 

The steady state of (12) is analyzed to be in agreement with Wardrop’s user equilibrium in 

section 6.1 followed by the proof of the associated stability theorems using Lyapunov’s direct 

method in section 6.2. 

6.1  Analysis of Steady State 

It is useful to recall the definition of Wardrop’s static user equilibrium in our terms before 

elaborating on the steady state of the proposed network dynamics. If the symbol, “ ”, is used 

to denote steady-state or equilibrium point, the Wardrop’s user equilibrium can be described 

as 

 

⎪
⎪
⎩

⎪⎪
⎨

⎧

=

=→>

=→>

ww

pwp

wpp

Dh

hcc

cch

0

0
wPpWw ∈∈∀ and, . (42) 

Condition (42) states a condition that is stable only when no traveler can improve his 

travel time by unilaterally changing paths. All path travel times of the same O-D pair are 

equal and minimal at this status. 

The steady state of (20) implies 0=ph&  and 0=wc&  for all O-D pair w∈W, p∈Pw. After 

some algebraic reasoning, we get the conditions below jointly equivalent to the steady state of 

path flow dynamics in (20) 
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 (43) 

for all O-D pair w∈W, p∈Pw. The second sub-case of the first part in condition (43) never 

happens because of the violating non-negative flow constraint. The second sub-case of the 

second relationship in condition (43) will never happen if initial conditions with positive path 

flows are provided. For the positive nature of the predicted minimal travel time even at zero 

path flow level, the last equilibrium state in condition (43) is evidently held on. Finally, we 

abstract the critical components in condition (43) as 
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 (44) 

for all O-D pair w∈W, p∈Pw. It is easy to infer that the actual average travel time is equal to 

the predicted minimal travel time by ITS and is minimal among all paths of an O-D pair 

simultaneously in condition (44). And the travel demand of an O-D pair is equal to the sum of 

corresponding path flows. Based on these results, we can claim that the steady state of (20) is 

identical to Wardrop’s user equilibrium. 

Similarly, the equilibrium state of multi-class-user models are derived as 
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 (45) 

in (18) and as 
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in (19) for all O-D pair w∈W, p∈Pw , i = 1,2,…,n respectively. In condition (45) wh  is 

defined in (16). And because pc  is not user-specific we have that path travel times with 

positive path flow are equal to the predicted minimal travel time of O-D pair w 

simultaneously and this path travel time is the minimal for all paths connecting O-D pair w. 

Travel demand of an O-D pair is equal to the sum of flows distributed over all user classes 

and corresponding paths. In condition (46), similarly the predicted minimal travel times of 

O-D pair w for all user classes are the same and equal to the path travel times simultaneously. 

The demand of an O-D pair is divided into n parts for n user classes and each part is equal to 

the sum of corresponding path flows. 

6.2 Analysis of Stability 

In this section, our interest is in showing that model (12) is asymptotically stable. The 

definitions and theorem of stability in the sense of Lyapunov are employed as the following 

statements (Alligood et al., 1997). 

Definition 1. Let v  be a steady state of a dynamical system, )(1 ECG∈ . A function 

REL →:  is called a strict Lyapunov function for v  if the following conditions are 

satisfied: 

(1) ELL ∈≠∀>= vvvvv ,0)(and,0)( ; 

(2) EL ∈≠∀< v,vvv 0)(& . 

Theorem 2. Let v  be a staedy state of )(vv G=& . If there exists a strict Lyapunov function 
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E∈≠∀ v,vv , then v  is asymptotically stable. 

Accordingly theorem 2, the stability of proposed dynamical system is illustrated on 

theorem 3. 

Theorem 3. Let ),.....,,,,.....,,( 2121 WP ccchhh=
′

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

c
h

 be a steady state of (12) and ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

c
h

 is 

asymptotically stable. 

For the sake of conciseness, the following definitions are introduced to rewrite (20) in 

vector and matrix form. Let 
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L

h  and rearrange it into several diagonal 

matrices as 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≡

−

+

h
h

hr 0
0ˆ , (47) 

where the components of +h  and −h  are path flows with 0))(( ≥−− wppp cchh  and 

0))(( <−− wppp cchh  respectively. Moreover, let 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≡

−

+

ε

ε
ε h

h
h

0
0

, (48) 

where +εh  and −εh  are two diagonal matrices and there exists ++ ∈ Rpε  and +− ∈ Rpε such 

that the elements of +εh  and −εh  are +
p

*
ph ε  and −

p
*
ph ε  respectively with 
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and 
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where ppp
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*
p hhhh

p

 of statesteady   theis    and  )(sup 
h∈∀

= . 0 denotes the zero matrix with suitable 

dimension. Furthermore, if we let ⎟⎟
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φ , where I, ( )hca ∆ , ∆ , O , and Γ  denote identity matrix, full link-cost vector, 

link-path incident matrix, full OD pair demand vector, and path-OD pair incident matrix 

respectively. α and β are diagonal matrices with all pα  and wβ  as diagonal elements 

respectively. And all the elements of the mentioned vectors and matrices are ordered in 

accordance with rĥ . Then we rewrite (20) as 

 
( ) ( ) ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−′
−′

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
c
h

sM
I

h
Oh

chc
I

h
c
h rar Ω

0
0

Γ
Γ∆∆

0
0

φφ
ˆˆ

&

&
. (51) 

Now we are ready to prove theorem 3. 

Proof. Let REL →:  be a 1C  map and  
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where ⎟⎟
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Because ( )hca ∆  is a strict monotone function, we have 
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From the analysis of the steady state, we also have 
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For further calculating, we have 
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by the definitions of +h , −h , +εh , and −εh , in (47)-(50) we have 
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Accordingly, we have 0<⎟⎟
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Hence, (52) is affirmed as a strict Lyapunov function of dynamical system (12). 

Asymptotic stability is then immediate from theorem 2. 

For the multi-class users model shown in (19), we replace (47) and (48) with 
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where irĥ , +εhi , and −εhi  denote diagonal matrices of user class i defined by the same rule 

as rĥ , +εh , and −εh  in (47) and (48) respectively. Now the whole system dynamics can be 

rewritten as 
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where 

 

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

≡

n

n
N

c

c
h

h

s

M

M

1

1

, ( )

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−

−

⎟
⎠

⎞
⎜
⎝

⎛′

⎟
⎠

⎞
⎜
⎝

⎛′

≡ ∑

∑

=

=

n

a

a

NN

O

O

hc

hc

sM

1

1

1

n

i
i

n

i
i

∆∆

∆∆

M

,  

 

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

′

′
−

−

≡

00Γ00
00

0000Γ
Γ0000
00
00Γ00

Ω

L

MOMO

L

L

OMOM

L

n

n
N

1

1

  

with ΓΓ =i , and 



 - 44 -

 

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

≡

n

n

β

β
α

α

00

0

0

0

0

00

L

OON

OM

MO

NOO

L

1

1

Nφ , 

where iα  and iβ  are diagonal matrices with their elements to be ipα  and iwβ  

respectively, hi, ci, Oi denote path flows, predicted OD travel times and OD demands 

respectively of user class i. Then a strict Lyapunov function of the multi-class user dynamical 

system described as (56) can be proposed as  
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It is easy to check (57) by satisfying the two conditions in definition 1 in a similar way 

used in the proof of theorem 3. Finally the multi-class user dynamical system described as (18) 

can be reformulated as 
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with the same function form of (57) to be a strict Lyapunov function but newly defined as 
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Chapter 7 

Numerical Illustration of a Simple Network 

A simple network with four nodes and five links illustrated as Fig. 7-1 is used to show the 

numerical results of the proposed models. There is only one OD pair w = {node 1, node 4} 

which is connected by three paths denoted as path 1 = {link 1, link 4}, path 2 = {link 2, link 

5}, and path 3 = {link 1, link 3, link 5} respectively. The parameters of the link cost functions 

are set in Table 7.1 with the same function form as ( )
4

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

a

t
a

aa
t

aa k
f

BAfc . 

Table 7.1 Parameters of link cost function 

Links         Aa              Ba              ka 

  1           40         20         80 
                  2           60         30         80 
                  3           20         10        120 
                  4           50         25         80 
                  5           30         15         80 

 

 

 

 

 

 

 

 

Fig. 7-1 Graph of numerical example 

The following three examples (M1, M2, and M3) were solved using the high-order 

Runge-Kutta numerical method with the O-D demand fixed as 120. The initial conditions, 

1 

4 

3 

2 

5 

4 

1 3 

2 



 - 47 -

assumed identical parameters of the propensity of path flow dynamics, and parameters to 

denote the sensitivity of predicted travel time dynamics for the homogeneous user model 

(M1), i.e. (11), are given as ),,,,,( 0
1

0
3

0
2

0
1 βαchhh = (40,50,30,125,-0.0006,0.1). The second 

example is set for the multiple user classes model with identical predicted minimal O-D travel 

time by ITS (M2), i.e. (17) as n=2. Parameters of the propensity of path flow dynamics for the 

two classes are assumed to be different but the same within a user class. They are –0.0006 

and –0.003 for user class 1 and user class 2 respectively. The other inputs of the second 

example are the same as the previous case. Finally, the third case is prepared for the two-user 

classes model with the user-specific predicted minimal O-D travel time by ITS (M3), i.e. (18) 

as n=2. All inputs are the same as the second example but each user class is provided with a 

dedicated minimal O-D travel time predicted by ITS and an equal O-D demand, 

i.e. 602111 == DD . 

7.1  Numerical Results of Homogeneous User Model 

Table 7.2 shows the dynamics of flows, travel times, and predicted minimal O-D travel times 

by ITS at three different states for the first example. It is clear that the steady state satisfies the 

Wardrop’s user equilibrium and the predicted minimal O-D travel time is equal to the path 

travel times of which path flows are positive simultaneously. Numerical results by the 

evolutions of network dynamics illustrated from Fig. 7-2 to Fig. 7-5 also show that the path 

flow increases (decreases) as path travel time is less (more) than the predicted minimal O-D 

travel time and predicted minimal O-D travel time increases (decreases) as O-D demand is 

more (less) than the sum of path flows. 
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Table 7.2 Results of numerical example for homogeneous user model (M1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7-2 Evolutions of path 1 flow dynamics and unit t
wpathPTTL ,1 (M1) 

(dashed line: predicted minimal O-D travel time by ITS; gray line: travel time of path 1; black line: flow of path 1) 

Flow  Travel time  

 
Initial 

State at 
t=200 

Steady 
state 

Initial 
State at 
t=200 

Steady 
state 

Path 1 40 51.06 56.16 103.29 103.84 103.79 

Path 2 50 53.13 56.95 109.58 104.05 103.79 

Path 3 30 15.69  6.89 116.76 107.91 103.80 

Link 1 70 66.75 63.05  51.72 49.69  47.72 

Link 2 50 53.13 56.95  64.58 65.84  67.70 

Link 3 30 15.69 6.89  20.04 20.01  20.00 

Link 4 40 51.06 56.16  51.56 55.15  56.07 

Link 5 80 68.82 63.84  45.00 38.22  36.08 

Predicted minimal O-D travel time by ITS 125.00 104.25 103.79 
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Fig. 7-3 Evolutions of path 2 flow dynamics and unit t
wpathPTTL ,2 (M1) 

(dashed line: predicted minimal O-D travel time by ITS; gray line: travel time of path 2; black line: flow of path 2) 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 7-4 Evolutions of path 3 flow dynamics and unit t
wpathPTTL ,3 (M1) 

(dashed line: predicted minimal O-D travel time by ITS; gray line: travel time of path 3; black line: flow of path 3) 
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Fig. 7-5 Evolutions of predicted minimal O-D travel time by ITS and t
wETD (M1) 

(dashed line: predicted minimal O-D travel time by ITS; dotted line: O-D demand; gray line: sum of path flows) 

 

7.2  Numerical Results of Multiple User Classes Model 

The resultss reveal that the steady state is qualified as a Wardrop’s user equilibrium. The 

embedded mechanisms of adjustments are also sustained by the results in Table 7.3 and from 

Fig. 7-6 to Fig. 7-9. However, two additional facts are found that sensible users occupy better 

routes sooner than less sensible users in the evolution process until equilibrium is reached, 

and the ratio of 1st class users to 2nd class users for three paths at a steady state is different 

from that at the initial status. The latter one can be interpreted as the result of the former and 

evidently due to various parameters of the propensity of path flow dynamics. Moreover, we 

remind readers that the shares of O-D demand for two user classes might be changed in the 

processes. 

Unsurprisingly the outcome, shown in Table 7.4 and from Fig. 7-10 to Fig. 7-15, follows 

the asymptotic behaviors claimed in the previous section. It is also observed that the 

adjustment speeds in M3 are less than that in M2 from the initial conditions to the 200th time 
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state. It is in that the path flow dynamics are limited by a fixed and smaller O-D demand for 

user class two in M3. However, it seems to be reasonable that the O-D demand ratio of user 

class one to user class two should not be overly distorted in the evolution processes even 

though the total O-D demand is kept unchanged. This point should be a necessary check when 

M2 is implemented into the empirical study. 

Table 7.3 Results of numerical example for M2* 

* Two-class users model with identical predicted minimal O-D travel time for two user classes, i.e. 
(18) with n=2; C1 denotes user class one and C2 user class two. 

 

 

 

Flow Travel time  

Initial 
State at 
t=200 

Steady 
state 

Initial 
State at 
t=200 

Steady state

C1 20 21.95 22.23 
Path 1 

C2 20 31.84 33.94 
103.29 103.79 103.79 

C1 25 25.81 26.08 
Path 2 

C2 25 29.30 30.88 
109.58 103.80 103.79 

C1 15 9.55 6.62 
Path 3 

C2 15 1.57 0.25 
116.76 105.72 103.79 

C1 35 31.50 28.85 
Link 1 

C2 35 33.41 34.19 
51.72 48.67 47.71 

C1 25 25.81 26.08 
Link 2 

C2 25 29.30 30.88 
64.58 66.76 67.71 

C1 15 9.55 6.62 
Link 3 

C2 15 1.57 0.25 
20.04 20.00 20.00 

C1 20 21.95 22.23 
Link 4 

C2 20 31.84 33.94 
51.56 55.11 56.08 

C1 40 35.36 32.70 
Link 5 

C2 40 30.87 31.13 
45.00 37.05 36.08 

Predicted minimal O-D travel time by ITS 125.00 103.88 103.79 
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Fig. 7-6 Travel time evolutions of M2 
(dashed line: predicted minimal O-D travel time; light gray line: path 1; medium gray line: path 2; black line: path 3) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7-7 Path flow evolutions of user class one in M2 
(light gray line: path 1; medium gray line: path 2; black line: path 3) 

 

 

50 100 150 200

105

110

115

120

125

50 100 150 200

10

12.5

15

17.5

20

22.5

25



 - 53 -

 

 

 

 

 

 

 

 

 

 

 

Fig. 7-8 Path flow evolutions of user class two in M2 
(dashed line: predicted minimal O-D travel time; light gray line: path 1; medium gray line: path 2; black line: path 3) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7-9 Evolutions of predicted O-D travel time by ITS and t
wETD (M2) 

(dashed line: predicted minimal O-D travel time by ITS; dotted line: O-D demand; gray line: sum of path flows) 
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Table 7.4 Results of numerical example for M3# 
Flow Travel time  

Initial 
State at 
t=200 

Steady 
state 

Initial 
State at 
t=200 

Steady state

C1 20 22.62 24.56 
Path 1 

C2 20 30.40 31.60 
103.29 103.04 103.78 

C1 25 26.56 28.71 
Path 2 

C2 25 27.80 28.24 
109.58 103.09 103.78 

C1 15 9.66 6.72 
Path 3 

C2 15 1.36 0.15 
116.76 104.91 103.78 

C1 35 32.28 31.28 
Link 1 

C2 35 31.76 31.75 
51.72 48.21 47.71 

C1 25 26.56 28.71 
Link 2 

C2 25 27.80 28.24 
64.58 66.40 67.70 

C1 15 9.66 6.72 
Link 3 

C2 15 1.36 0.15 
20.04 20.00 20.00 

C1 20 22.62 24.56 
Link 4 

C2 20 30.40 31.60 
51.56 54.82 56.07 

C1 40 36.22 35.43 
Link 5 

C2 40 29.16 28.39 
45.00 36.69 36.08 

C1 125.00 106.02 103.79 
Predicted minimal O-D travel time 

C2 125.00 102.99 103.79 
# Two-class users model with user-specific predicted minimal O-D travel time for two user classes, 

i.e. (19) with n=2; C1 denotes user class one and C2 user class two. 
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Fig. 7-10 Evolutions of path travel times and C1 predicted minimal O-D travel times for M3 
(dashed line: C1 predicted minimal O-D travel time; light gray line: path 1; medium gray line: path 2; black line: path 3) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7-11 Evolutions of path travel times and C2 predicted minimal O-D travel times for M3 
(dashed line: C2 predicted minimal O-D travel time; light gray line: path 1; medium gray line: path 2; black line: path 3) 
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Fig. 7-12 Evolutions of C1 predicted minimal O-D travel time by ITS and t
wETD1 (M3) 

(dashed line: C1 predicted minimal O-D travel time by ITS; dotted line: O-D demand; gray line: sum of path flows for C1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7-13 Evolutions of C2 predicted minimal O-D travel time by ITS and t
wETD2 (M3) 

(dashed line: C2 predicted minimal O-D travel time by ITS; dotted line: O-D demand; gray line: sum of path flows for C2) 
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Fig. 7-14 Path flow evolutions of C1 in M3 
(light gray line: path 1; medium gray line: path 2; black line: path 3) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7-15 Path flow evolutions of C2 in M3 
(light gray line: path 1; medium gray line: path 2; black line: path 3) 
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Chapter 8 

Conclusions and Prospects 

8.1  Conclusions 

In this research, the author deals with vehicular network dynamics in a day-to-day time scale 

by using a nonlinear dynamical system approach. Based on the learning and adaptive 

behavioral assumption and ITS operations, a new theory of network dynamics is developed. 

The structure of day-to-day network dynamics is identified as the path flow dynamics, 

predicted travel time dynamics, and their interactions. Two inhomogeneous user classes 

dynamical systems are formulated in the sense of different sensitivity of path flow dynamics 

due to the total perceived travel time loss (or saving) and information supply strategies. 

Incorporating the total perceived travel time loss (or saving), path flow dynamics are 

generated on a flow-weighted base to prevent them from being insensible of flow level. 

The equilibrium solutions of presented models are analyzed to satisfied the Wardropian 

equilibria under come conditions. And the stability of the equilibrium solution and are proved 

to be asymptotically stable in the standpoints of Lyapunov. The Lipschitz condition for the 

proposed dynamical system is a key lemma in the proof of existence and uniqueness by way 

of the fundamental theorem of ordinary differential equations. Based on these results, the 

proposed models build an analytical linkage among day-to-day network dynamics, the 

Wardrop’s user equilibrium, and the empirical adaptability of route preference under the 

operations of Intelligent Transportation Systems. 

8.2  Prospects 

The developed methodology built a new paradigm of dynamic traffic assignment problem. 

However, there are still some promising issues that should be further improved to enrich this 
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research field. They are outlined in the following. 

(1) Encapsulating within-day network dynamics will make the proposed framework more 

complete. For example, traffic dynamics could be replaced with a traffic flow model; 

en-route travel information could also be considered in future analysis. However, it 

can be inferred that the effects within-day network dynamics will cause the link cost 

operator much more complicated. And a more challenging task to derive the existence, 

uniqueness, and stability is very possibly unavoidable. 

(2) The parameter calibration for the sensitivity of network dynamics will make the 

proposed models more powerful in practical applications. It is also a valuable issue in 

the research filed of transportation demand analysis under the operations of ITS. 

(3) To formulate some problems of operational and planning applications as a dynamic 

network design problem in this style, will help traffic operator to understand the 

perturbations caused by a new management alternative. That provides a different 

viewpoint from conventional equilibrium-based approaches. 

(4) With the further treatments mentioned above, a well potential could be expected to 

deploy a traffic simulator based on the proposed methodology. 
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