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Abstract: The performance of single-buffered 
banyan networks under certain nonuniform traffic 
patterns had been studied by Garg and Huang. 
However, the models used are over simplified and 
the results obtained may deviate from exact values 
significantly. Alternative models to achieve more 
accurate performance estimates are presented. In 
our models, the destinations of blocked packets 
residing in the buffers of nodes at stage 1 (and 
perhaps stage 2, depending on the traffc matrix) 
are memorised. Compared with those adopted by 
Garg and Huang, our models are only slightly 
more complicated. By viewing banyan networks 
as queueing systems, we apply Little’s formula to 
compute the average packet delays. 

1 Introduction 

Because of the nice properties such as self-routing, poten- 
tial VLSI implementation, and easiness of fault diagnosis, 
multistage banyan networks have attracted increasing 
interest from researchers and engineers in the areas of 
multiprocessor systems and telecommunications. Goke 
and Lipovski defined in Reference 1, a general class of 
banyan networks. Here we are interested in only the 
regular SW banyans with spread and fan-out of two. It 
was proved [4] that the flip network, the omega network, 
the indirect binary n-cube network, the baseline network, 
and the regular SW banyan network with spread and 
fan-out of two are all isomorphic. Therefore, we will not 
distinguish these terms in this paper. 

Patel [2] derived a simple recursive formula to 
compute the normalised throughput of unbuffered multi- 
stage banyan networks under the uniform traffic model. 
By uniform traffic model it is meant that inlets (sources) 
generate packets independently with identical rates and 
each outlet (destination) is equally likely to be the desti- 
nation of any packet. It was shown that banyan networks 
are more cost-effective than single-stage crossbar net- 
works for processor-memory interconnection in large 
multiprocessor systems. 

Dias and Jump [SI studied the effect of adding buffers 
to input links of each switching element of a banyan 
network. They conclude that, for most applications, the 
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number of buffers between stages should be limited to 
one or two. Jenq [6] proposed a similar analytic model 
to estimate the normalised throughput and the average 
packet delay for single-buffered banyan networks (see 
Fig. 1). The analyses were also based on the uniform 
traffic assumption. This assumption, which simplifies the 
analysis, may not be true for real world systems. Garg 
and Huang [7] modified the model used by Jenq to study 
the performance of single-buffered banyan networks 
under certain nonuniform traffic patterns. Similar work 
was done by Kim and Leon-Garcia [SI. In general, a 
higher degree of nonuniformity of traffic flow results in a 
worse performance. 

Unfortunately, the models used by Garg and Huang 
to analyse the performance of single-buffered banyan net- 
works under nonuniform traffic result in significant devi- 
ations from exact values. For example, consider a 
nonuniform traffic matrix of form I studied in their 
paper. The ratio of the normalised high-traffic through- 
put to the normalised low-traffic throughput should be 
ml/m2.  The reason is that the banyan network can be 
viewed as a queueing system and the normalised high- 
traffic and low-traffic throughputs are, respectively, equal 
to the effective arrival rates of high-traffic and low-traffic 
packets. According to the traffic matrix and the single- 
buffer assumption, the ratio of the effective arrival rate of 
high-traffic packets to that of low-traffic packets is equal 
to ml/m2,  Their results obviously are not consistent with 
this fact. 

In this paper we present alternative models to achieve 
more accurate estimates. In our new models, the destina- 
tions of blocked packets in buffers of nodes at stage 1 
(and perhaps stage 2) are memorised or stored. Com- 
pared with the models adopted by Garg and Huang, our 
new models are only slightly more complicated. The 

~~ 

Fig. 1 Four-stage single-buffered banyan network 
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same forms of nonuniform traffic matrices discussed in 
Reference 7 are analysed in this paper using our new 
models. Little's formula [lo] is used to compute the 
average packet delays. As will be seen later, the normal- 
ised throughputs obtained from our new models are con- 
sistent with the fact mentioned in the last paragraph. 

2 

The first form of nonuniform traffic matrices we will 
analyse looks like 

Nonuniform traffic matrices: form I 

where D represents the traffic matrix and is nonuniform, 
but the submatrices D ,  and D, are uniform. The row 
sums of D ,  and D ,  are equal to m, and in,, respectively, 
and moreover, m, + m, is equal to 1 .  It should be 
pointed out that the (i, j)th element of the traffic matrix D 
represents the probability that a packet originated at the 
ith inlet is destined to the j th outlet. 

Under nonuniform traffic matrices of form I, the 
sources and destinations of a banyan network are both 
clustered into two groups. Source (destination) groups 1 
and 2 consist of sources (destinations) located in the 
upper and the lower half of the banyan network, respec- 
tively. A packet, originated at source group 1 ,  is destined 
to destination group 1 with probability m,  (called high- 
traffic) and is destined to destination group 2 (called low- 
traffic) with probability m, . Conversely, a packet, 
originated at source group 2, is destined to destination 
group 1 with probability m2 (low-traffic) and is destined 
to destination group 2 (high-traffic) with probability m,. 
As a consequence, the ratio of the effective arrival rate of 
high-traffic packets to that of low-traffic packets is equal 
to m1/m2. Traffic matrices of form I may appear in 
several application areas. For example, in a communica- 
tion network, the upper half and the lower half sources 
and destinations may come from different geographical 
areas and hence the traffic flows inside the same area may 
be different from that between different areas. As a result, 
a nonuniform traffic matrix of form I can be used to 
describe the traffic pattern if both traffic flows inside the 
same area and between different areas are uniform. 

For simplicity, the network is assumed operating in a 
synchronous mode. A network cycleris defined as a time 
unit required for a packet to move forward one stage. 
Notice that a packet in a buffer at stage k is able to move 
forward one stage in the Ith cycle if it is not blocked at 
stage k,  and its destination buffer space at stage k + 1 is 
available at the end of the Ith cycle. As usual, the inlets 
are assumed to generate packets independently with iden- 
tical rates denoted by p. The following variables, which 
will be used to derive the equilibrium equations, are 
defined at the end of network cycles at the steady state. 

Consider a node at stage 1 and let 

a, = Prob{both buffers are empty) 
= Prob{one buffer is empty and the other has a 

a,, = Prob{one buffer is empty and the other has a 

a h ,  = Prob{one buffer has a low-traffic packet and the 

a2h = Prob{both buffers have high-traffic packets) 
a,, = Prob{both buffers have low-traffic packets} 

high-traffic packet} 

low-traffic packet} 

other has a high-traffic packet} 

rh = Prob{a high-traffic packet is able to move to 
stage 2 )  
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r, = Prob{a low-traffic packet is able to move to 
stage 2 )  

t ,  = Prob{the high-traffic packet is able to move to 
stage 2 but the low-traffic packet is not, condi- 
tioning on one buffer has a high-traffic packet 
and the other has a low-traffic packet} 

t ,  = Prob{the low-traffic packet is able to move to 
stage 2 but the high-traffic packet is not, condi- 
tioning on one buffer has a high-traffic packet 
and the other has a low-traffic packet} 

th, = Prob{ both high-traffic and low-traffic packets 
are able to move to stage 2, conditioning on one 
buffer has a high-traffic packet and the other has 
a low-traffic packet} 

For nodes at stage k,  2 d k < n, let 

pho(k) = Prob{high-traffic buffer is empty} 
p f O ( k )  = Prob{low-traffic buffer is empty) 
ph(k) = - p h O ( k )  

P,(k) = 1 - P,o(k) 
rh(k) = Prob{a packet in a high-traffic buffer is able 

r,(k) = Prob{a packet in a low-traffic buffer is able to 

qh(k) = Prob{a packet is ready to come to a high- 

q, (k)  = Prob{a packet is ready to come to a low- 

Notice that rh and r, should be interpreted differently 
from rh(k) and r,(k) ( k  2 2). The value of rh (or r,)  is equal 
to the probability that the destination buffer space at 
stage 2 is available at the end of a network cycle. 
However, to compute the value of r h ( k )  (or r,(k)), we have 
to multiply the probability that the destination buffer 
space at stage k + 1 is available (this probability is equal 
to 1 for k = n) with the probability that the high-traffic 
(low-traffic) packet is not blocked at stage k.  Given the 
above notation, the set of equilibrium equations for the 
system can be derived. For convenience, let 

to move forward} 

move forward} 

traffic buffer} 

traffic buffer}. 

A = a0 + a l h r h  + allrl + a h l t h ,  

i.e. A is equal to the probability that both buffers of a 
node at stage 1 are available at the end of a network 
cycle. Then we have 

a, = A(l  - p)' 

a l h  = A[2p(1  - dm 1 1  

+ - rh)  + t f  + a 2 h  rh l ( l  - p) 

at,  = A C M l  - m 2 1  

+ [ a l l ( 1  - rf) + t h  + - p )  

ahl = A @ 2 m 1 m 2 )  + a l h ( l  - r h ) p m 2  + - rl)pml 

+ a h l ( t h p m l  + + - t h  - cl - c h f )  

+ a 2 h ( r h p m 2 )  + a 2 f ( r f p m 1 )  

= A p 2 m :  + a l h ( l  - r h ) p m l  + a h l ( t l p m l )  

+ a 2 h ( r h p m 1  + - rh) 

a21 = 1 - a0 - a l h  - a,, - a h ,  - a 2 h  

' h  = P h O ( 2 )  + P h ( 2 ) r h ( 2 )  

rl = P I O ( 2 )  + p,(2)rA2) 
t ,  = r,( 1 - r,) 

t ,  = rr(l - r,) 

'hl = rh 
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In this Section, we will consider nonuniform traffic 
matrices of the following form: 

Nonuniform traffic matrices: form II 

average high delay 

average low delay: 

It can be seen that our new model for form I nonuni- 
form traffic matrices is different from the one used by 
Garg and Huang only in the description of buffer condi- 
tions of nodes at stage 1. The destinations of blocked 
packets residing in the buffers of nodes at stage 1 are 
memorised in our model. The buffers at other stages can 
obviously be similarly modelled. However, our experience 
show that memorising the destinations of all the blocked 
packets will dramatically increase computational com- 
plexity without significant improvement. For example, 
for a four-stage banyan network with m1 = m2 = 0.5, the 
normalised throughput and the average packet delay are 
0.523 and 5.96, respectively, for the proposed model; and 
are 0.51 1 and 6.10, respectively, for the more complicated 
model. 

Notice that Little’s formula is applied to compute the 
average packet delays. At the steady state, the effective 
arrival rate of high-traffic packets to the banyan network 
is equal to 2”- ‘ S h  and the average number of high-traffic 
packets in system is equal to 

n 

2”-’(alh + + 2a2h) + 2 “ - ’  ph(k) 
k = 2  

Hence the average delay for high-traffic packets, denoted 
by D h ,  is equal to 

The average delay for low-traffic packets can be similarly 
derived. Notice again that, in our new model (and the 
one used by Garg and Huang), buffers at different stages 
are assumed to be independent. Without this assumption, 
the modelling complexity is expected to increase dramat- 
ically. 
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The nonuniform traffic matrix D is partitioned vertically 
and the submatrices D ,  and D2 are uniform. The row 
sums of D ,  and D 2  are equal to m, and m 2 ,  respectively, 
and m, + m2 is equal to 1 .  Traffic matrices of form I1 can 
also appear in several application areas. For example, in 
a multiprocessor system, it may happen that the variables 
stored in the upper half memory modules are accessed 
more frequently than those stored in the lower half ones. 
In reality, the traffic matrix D studied here can be parti- 
tioned at the centre or not at the centre. We consider in 
the following two possible cases seaparately. 

Case 1 : partitioned at the centre: For this case, the outlets 
are clustered into two equal-size groups. A packet is 
called a high-traffic (or low-traffic) packet if its destina- 
tion is located in the upper (lower) half. Similarly, the 
ratio of the normalised high-traffic throughput to the 
normalised low-traffic throughput should be equal to 

Given the same variables defined in the previous 
Section, the set of equilibrium equations for this case can 
be derived. In reality, the set of equilibrium equations for 
this case, except the two for rh(n) and rl(n), are exactly the 
same as those for form I nonuniform traffic matrices. The 
expressions for rh(n) and rl(n) should be interchanged, i.e. 

m1/m2 ’ 

rh(n)  = P h O ( n )  + 0.75ph(n) 

and 

rdn) = Plo(n) + 0 . 7 5 p M .  
The normalised throughputs and the average delays of 
high-traffic and low-traffic packets can be computed 
using the same formulas given in the previous section. 

Case 2 :  partitioned not at the centre: For the second case 
of form I1 nonuniform traffic matrices, the matrix D is 
partitioned not at the centre. Here we consider traffic 
matrices with the following partition : 

D =  C D,(m,) ~ D2(m2) I 
group of upper 
114 destinations 314 destinations 

group of lower 

Fig. 2 illustrates such a partition for a four-stage banyan 
network. For convenience, packets destined to the 
upmost 1/4 destinations, the succeeding 1/4 destinations, 
and the lower 1/2 destinations are called high-traffic, 

1 

I 
1 

12 

I 
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middle-traffic, and low-traffic packets, respectively. The 
relationships among the normalised high-traffic, middle- 
traffic, and low-traffic throughputs will be discussed later. 
To obtain performance estimates under nonuniform 
traffic matrices of this case, more notation, in addition to 
those introduced in Section 2, are needed. 

For the upper half nodes at the second stage, let 

bo = Prob{both buffers are empty} 
blh = Prob{one buffer is empty and the other has a 

high-traffic packet} 
b,, = Prob{one buffer is empty and the other has a 

middle-traffic packet} 
bhm = Prob{one buffer has a high-traffic packet and 

the other has a middle-traffic packet} 
b2, = Prob{both buffers have high-traffic packets} 
b,, = Prob{both buffers have middle-traffic packets} 

xh = Prob{a high-traffic packet is able to move to 
stage 3) 

x, = Prob{a middle-traffic packet is able to move to 
stage 3) 

yh = Prob{the high-traffic packet is able to move to 
stage 3 but the middle-traffic packet is not, con- 
ditioning on one buffer has a high-traffic packet 
and the other has a middle-traffic packet} 

y, = Prob{the middle-traffic packet is able to move 
to stage 3 but the high-traffic packet is not, con- 
ditioning on one buffer has a high-traffic packet 
and the other has a middle-traffic packet} 

yhm = Prob{both the high-traffic and the middle- 
traffic packets are able to move to stage 3, con- 
ditioning on one buffer has a high-traffic packet 
and the other has a middle-traffic packet}. 

For nodes at stage k, 3 < k < n, let 

pmo(k) = Prob{middle-traffic buffer is empty} 
P m ( k )  = 1 - Pmdk) 
q,(k) = Prob{a packet is ready to come to a middle- 

traffic buffer} 

Finally, let 

fl = m, + m2/3 

91 = m J f 1  
9 2  = 1 - 91 

f2 = 2m,/3 

B = b0 + b l h x h  + b l m x m  + b h m y h m  

and 

p1 = a l h  + ahl  + a 2 h  

Then the set of equilibrium equations for this case are 

a, = A(l  - p)2 

a l h  = A[2p(1 - P) f l l  
+ C a 1 h ( l  - 'h) + a h l t l  + a 2 h r h ] ( 1  - p )  

a l l  = "1 - d f 2 1  
+ [ a l l ( 1  - + a h l  t h  + a,, r l I ( 1  - p )  

' h l  = A@2fl fi) + u l h ( l  - rh)Pf2 + - r l )pf l  

+ ahl[th6!fl + t l p f Z  + 
+ a Z h ( r h p f 2 )  + a Z l ( r l p f l )  

- t h  - t l  - th l ]  

a 2 h  = A p Z f :  + u l h ( l  - ' h ) d l  + ahl ( t [ /? f l )  

+ a 2 h ( r h p f l  + - rh) 

= 1 - a0 - a l h  - a l l  - a h [  - 

average middle delay : 

D m  = ('/'m) 2 ( a l h  + a h l  + 2 a 2 h ) g 2  

+ b l m  + bhm + 2 b Z m  + f p m ( k ) ]  

[ 
k = 3  
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average low delay: 4 Numerical and simulation results 

In this Section, we focus our attention on the per- 
formance of a four-stage banyan network under nonuni- 
form traffic patterns studied in the previous Sections. 

D l  = (l/sl)[ull + ahl + 2 a Z l  + 
k = 2  

Notice that, for this case, the destinations of blocked 
packets in buffers at stage 1 and upper half buffers at are performed to verify Our 

I 

stage 2 are memorised to achieve more accurate per- 
formance estimates. However, the destinations of blocked 
packets in other buffers are not memorised to reduce the 
modelling complexity. According to the traffic matrix, the 
normalised middle-traffic throughput is equal to the nor- 
malised low-traffic throughput and the normalised high- 
traffic throughput is g1/g2 times that of the normalised 
middle-traffic throughput. Again, Little's formula is used 
to compute average packet delays. 

Clearly, the set of equilibrium equations for other non- 
uniform traffic matrices of similar forms can be similarly 
derived. For example, the equilibrium equations for the 
following traffic matrix : 

group of upmost group of succeeding group of lower 
114 destinations 1/4 destinations 112 destinations 

D = C ~ , ( m , )  ~ D,(m,) i ~ , ( m , )  I 
are exactly the same as those we listed above for this 
case. The only differences are nowfl andf, should be 
replaced by m, + mz and m 3 ,  respectively. 

I 2 0 . 6 -  
m 
1 (0.5.0.5) 

E 0.21 

P 
a 

Example 1 Uorm I): Figs. 3a and b show, respectively, the 
normalised throughputs and the average packet delays 
against input rate p for nonuniform traffic matrices of 
form I (the pair (ml, m2) is equal to (0.75, 0.25) or (0.6, 
0.4)). Our results are consistent with the fact that the 
ratio of the normalised throughput of high-traffic packets 
to that of low-traffic packets is equal to m1/m2. Besides, it 
can be seen that analytic results are close to simulation 
results, especially when p is small. The performance 
degradation caused by nonuniform traffic flow can be 
observed in Figs. 3c and d (analytic results are used). One 
can see that a higher degree of nonuniformity results in a 
more serious performance degradation. 

Example 2 ybrm 11, case 1): The normalised throughputs 
and the average packet delays as functions of input rate p 
for nonuniform traffic matrices of form 11, case 1, are 
plotted in Figs. 4a-d. Again, our results are consistent 
with the fact that the ratio of the normalised throughput 

x 0 

aJ D 
- 

P 
b 

" - 
aJ U 

8 7  6 -  
2 
> 0 

5 -  

4 
0 0.2 0.4 0.6 0.8 1.0 

P P 
d C 

Fig. 3 
U Normalised throughput against p 
b Average packet delay against p 
c Normalised throughput for the total network against p ~ ~ ~ simulation 
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Normalised throughputs and average packet delays against input rate for nmuniform traflc matrices ofform 1 
d Average packet delay for the total network against p 

analytic ~~ 
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of high-traffic packets to that of low-traffic packets is 
equal to m1/m2. Furthermore, a higher degree of nonuni- 
formity results in a greater loss of performance. 

Example 3 (form ZZ, case 2): Figs. 5a-e show the results 
for nonuniform traffic matrices of form 11, case 2. The 
same conclusions as we stated in examples 1 and 2 can be 
drawn for this case. 

It is noted that the performance estimates obtained 
from analytic models are consistently better than those 
obtained by simulations. The reason is that, in our 
models, buffers at different stages are assumed to be inde- 
pendent. However, in a real system, if the buffers at stage 
i contain blocked packets, then it is likely that packets in 
buffers at previous stages will also be blocked. If we con- 
sider the simulation results as true values, then the 
maximal relative error for the above three examples is 
about 10%. An approach to obtain better estimates of 
the normalised throughputs (and the average packet 
delays) is to first find the ratios of the normalised 
throughputs (or the average packet delays) obtained from 
simulation to those obtained from analytic models at 
p = 0.5 and then multiply these ratios to analytic values 

- 1  2 0.6 

0 0.2 0.4 0.6 0.8 1.0 
P 

0 

L 
01 ( 0 . 5 . 0 . 5 )  
2 

( 0 . 6 . 0 . 4 )  G 

- L" (0 .75,0.25)  

I 

0 0.2 0.L 0.6 0.8 1 .o 

L 
01 ( 0 . 5 . 0 . 5 )  

0.2 

0 
0 0.2 0.L 0.6 0.8 1 .o 

P 
C 

for 0.5 < p < 1. By doing such, a maximal relative error 
less than 5% can be achieved at the expense of one simu- 
lation. 

5 Conclusions 

We have presented in this paper alternative models to 
achieve more accurate performance estimates of single- 
buffered banyan networks under certain nonuniform 
traffic patterns. Our models are only slightly more com- 
plicated than those adopted in Reference 7. For example, 
for an n-stage banyan network with a nonuniform traffic 
matrix of form I, the number of unknowns to be solved 
are equal to 8n - 5 and 8n + 3 for the model used in 
Reference 7 and our model, respectively. More compli- 
cated models in which the destination of each blocked 
packet is memorised can be used to obtain even better 
estimates. However, our experience shows that the more 
complicated models require much higher computational 
loads than the models we adopted whereas no significant 
improvement can be achieved. An approach is proposed 
to compensate for the independence assumption among 
buffers -at different stages ai  the 
tion. How to accurately model 
buffers remains to be explored. 

&l 
0 

expense of one simula; 
the dependence among 

aJ -0 

b 6 -  
P 
> 0 

5 -  

0.2 0.4 0.6 0.8 1.0 

7 :I 5 0 

P 
b 

0.2 0.4 0.6 0.8 1.0 
P 

d 

Fig. 4 
a Normalised throughput against p 
b Average packet delay against p __ analytic 
c Normalised throughput for the total network against p 

Normalised throughputs and average packet delays against input rate for nonunijorm traflc matrices ofform 11, case I 
d Average packet delay for the total network against p 

~ ~ ~ - simulation 
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(0.75.0.25)-low 
\J 

0 J 

0 0.2 0.4 0.6 0.8 1.0 
P 
o 

I 

0 

U 

L 

0 0.2 0.4 0.6 0.8 1.0 
P 
C 

4 
0 0.2 0.4 0.6 0.8 1.0 

P 
e 

Fig. S 
input rate for nonuniform traffic matrices of form 11, case 2 
a Normalised throughput against p 
b Average packet delay against p with (m,, m,) = (0.75,0.25) 
c Average packet delay against p with (m,, m2) = (0.5, 0.5) 
d Normalised throughput for the total network aginst p 
e Average packet delay for the total network against p 
~ analytic 

Normalised throughputs and average packet delays against 

simulation _ _ _ _  

low 
4 I 

0 0.2 0.4 0.6 0.8 1 .o 
P 

b 

(0.25, 0.75)-uniform 

(0.75.0.25) 

0 
0 0.2 0.4 0.6 0.8 1.0 

P 

d 
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