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Abstract 

 
 As the population of the Internet users increases explosively, the market value of 
the virtual world becomes remarkable. In this thesis, we propose a mission planning 
problem arising from computer games to optimize the time required to reach a target 
experience level. The problem is formulated as a resource-constrained scheduling 
problem in which each job (task) has a processing time, requires an amount of 
resources for its processing and returns another amount of resources. We give a 
formal mathematical formulation through a binary integer program. A 
pseudo-polynomial time dynamic programming algorithm is developed to produce 
optimal schedules. A result of non-approximability about constant performance ratios 
is established and a 2-approximate greedy algorithm is given for a special case. We 
also proposed solution algorithms for two special cases: (1) jobs have the same 
processing time, and (2) jobs belong to K different types. 
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摘要 

 

 隨著網際網路使用者數量的快速累積，網路這個虛擬世界對現實世界的影響

力隨之變得具體而引人注目。其中，線上遊戲這個產業在近幾年爆發性的市場成

長更讓我們看到未來無限的潛力，在這麼多種的線上遊戲裡面又以角色扮演的線

上遊戲佔最大的比例，同時也是眾多遊戲廠商的主要收入來源。然而，對於如何

有效率的排程打怪練功過程，以提高經驗值的研究卻顯得稀少。因此，我們在這

篇論文中，提出一線上遊戲的戰術規劃問題。這個問題主要建立在一個在角色扮

演的線上遊戲，遊戲角色可以透過打怪、完成任務等等方式獲取經驗值，而我們

的目標就是在最少的時間下，排程打怪練功的過程，以達到特定目標經驗值。在

這篇論文裡，我們先把這個題目描述成一個資源限制下的排程問題，並設計一個

動態規劃演算法來求出最佳解，分析題目近似解，以及在幾個特殊情況下的求解

方法。 

 
 
關鍵字：電腦遊戲、 重置問題、資源限制的排程、近似解 
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Mission Planning in Computer Games

Kwei-Tang Fang

A Master Thesis Submitted to

the Institute of Information Management

National Chiao Tung University

Hsinchu 300, Taiwan

Abstract : As the population of the Internet users increases explosively, the market value

of the virtual world becomes remarkable. In this thesis, we propose a mission planning

problem arising from computer games to optimize the time required to reach a specified

experience level. The problem is formulated as a resource-constrained scheduling problem in

which each job (task) has a processing time, requires an amount of resources for its process-

ing and returns another amount of resources at completion. We give a formal mathematical

formulation through a binary integer program. A pseudo-polynomial time dynamic program-

ming algorithm is developed to produce optimal schedules. A result of non-approximability

about constant performance ratios is established and a 2-approximate greedy algorithm is

given for a special case. We also proposed solution algorithms for two special cases: (1) jobs

have the same processing time, and (2) jobs belong to K different types.

Keywords: Computer games, relocation problem, resource-constrained scheduling, ap-

proximability
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Chapter 1

Introduction

Online games started in the 1980s with simple multi-player text-based games (MUD). It was

usually played on a BBS with connections via modems. These games were based on fantasy

settings, using rules similar to those in the role-playing game Dungeons & Dragons. Nowa-

days MUD becomes an abbreviation of Multi-User dungeon, Multi-User dungeon dimension

or Multi-User Dialogue. It represents a text-based virtual reality that exists on the Internet

and is available for participation of multiple users.

A real virtual world that sounds like a confliction is a goal that all online games endeavor

to achieve. Because online games are a virtual society composed of many game players,

every role on the monitor is controlled by a real person, and we can see kinds of players with

different characteristics reflecting their personal preferences and behaviors.

In the whole Asia/Pacific area, except Japan, South Korea, China, Taiwan is the biggest

online game market (see Figure 1) (IDC1, 2006). Based on a report from IDC Asia/Pacific

Research, the online game market in Taiwan is US$289.8 million in 2007, a 15.2% increase to

2006 (see Figure 2) (IDC1, 2008). According to a new report from analyst firm DFC Intel-

ligence, the increase in broadband households, higher PC penetration and more connected

console video game systems. The worldwide online game market is forecasted to grow from
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$4.5 billion in 2006 to over $13 billion in 2012, a 192% increase (see Figure 3) (DFC, 2007).

The largest online game companies such as Blizzard Entertainment, NCsoft, Sony Online

Entertainment and Shanda Entertainment, now generate hundreds of millions of dollars in

annual revenue from high profile massively multiplayer online games (MMOGs).

Figure 1

Figure 2
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Figure 3

While computer games attract players from around the world and the industry is growing,

we are interested in decision problems that can be observed from this area. In this thesis,

we investigate a planning problem that could arise from online RPG games. In such games,

players fight against the monsters or mobs they encounter so as to achieve the task of

missions. In the process, players gain experiences if they successfully defeat the mobs.

When a player accumulate his/her experience up to a certain level, he/she can acquire special

weapons or upgrade to a higher level. Different types of mobs may come into scenes. The

decision problem of the payer is to determine, subject to a personal experience level, a fighting

plan to accumulate experience to so as meet a specific experience level in the shortest time.

This thesis studies this decision problem from the aspect of resource-constrained scheduling.

The scheduling model we adopt is the relocation problem, which was first formulated

by Kaplan (1986) from a public housing development project in Boston. We first introduce
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the generic relocation problem. There are n houses to redevelop. The town governor offers

initial v0 housing units for temporarily house the tenants of the buildings under development.

Each building Ji has two parameters: αi, the original capacity and βi, new capacity after

redevelopment. Building Ji is allowed to execute only if there are at least αi housing units

available. After building Ji is completed, it will return βi units for common use. The goal is to

find a feasible construction sequence subject to a fixed amount of initial resources. Mapping

the relocation problem to the mission planning problem in the role-playing games, each player

has initial experience v0 and intend to accumulate sufficient experience through defeating

monsters and completing missions as earlier as possible. Like the relocation problem, there

are three parameters associated with a mission or monster: αi, βi, and pi. Job Ji means

the mission of fighting against a monster or complete a mission. Different mobs will require

different experiences to fight. That is, if the player’s experience is less than a mob’s power αi,

then the player will be defeated and perish. On the other hand, if the player has sufficient

experience, then his/her experience level will drop by αi for the fight. After successfully

defeating a mob, the player will pickup experiences βi, which depends on the type of mob

defeated. Given an initial experience level, the mission planning task of the player is to

construct a sequence of mobs to fight with so as to accumulate experiences to a specific level

in the shortest time.

The thesis is organized in five chapters. Chapter 2 provides formal statements of the

problem and preliminary properties of the relocation problem. In Chapter 3, we will propose

a binary integer program and design a pseudo-polynomial time dynamic program. Chapter

4 investigates the approximability of the mission planning problem. Chapter 5 is devoted

to solution algorithms for two special cases: jobs have the same processing time and the

scenario where exactly K types of jobs. In Chapter 6, we will give concluding remarks and

suggest further research directions.
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Chapter 2

Problem Statements and Preliminary

Properties

In this chapter, we give a formal definition of the mission planning problem from the aspect

of resource-constrained scheduling. An integer programming model will be given to describe

the problem. Preliminary properties about the relocation problem follow.

In the mission planning problem, initial resource level v0 of a common pool is given for

processing a set of jobs J = {J1, J2, . . . , Jn} on a single-machine. Each job Jj acquires

and immediately consumes αj units of resource and has a processing time pi. A target

resource level v̄ is specified. At any time the machine can process at most one job, and no

preemption is allowed. When job Jj is completed, it immediately returns βi units to the

common resource pool. It is assumed αj ≤ βj for all Jj ∈ J . We denote δj = βj − αj and

let σ = (σ1, σ2, . . . , σn′), 0 ≤ n′ ≤ n be a particular schedule. Schedule σ is feasible if at any

moment the resource level can satisfy the resource requirement of each job in the schedule
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and the target resource level is met. The feasibility issues can be described as:

v[k] = v0 +
k−1
∑

l=1

δσl
≥ αk, 1 ≤ k ≤ n′ and (2.1)

n′

∑

l=1

δσl
≥ v̄, (2.2)

where v[k] is the resource level at the exact moment of the completion of the job in position

k. The mission planning problem seeks to determine a feasible schedule such that the total

processing time of the schedule is minimum, i.e. find a feasible schedule σ∗ = (σ∗
1 , σ

∗
2, . . . , σ

∗
n′)

such that
∑n′

l=1 pσ∗

l
is minimum among all feasible schedules.

In the basic relocation problem, constraint (2.2) is not required, i.e. given an initial

resource level v0 the decision is on the existence of a sequence of all jobs satisfying con-

straint (2.1). The optimization counterpart of the relocation problem becomes determining

the minimum initial resource level that will guarantee the existence of a feasible sequence.

In the following, we review some important properties of the basic relocation problem. Ka-

plan and Amir (1988) have shown that the relocation problem is equivalent to the classi-

cal two-machine flowshop scheduling (Johnson’s) problem of makespan minimization. The

equivalence is settled as follows. For each job Jj of the relocation problem, we create a

corresponding job of the flowshop scheduling by letting αj and βj be the processing times

required by machine-one and machine-two operations, respectively. For a given sequence of

indices, the minimum amount of resources required to guarantee the feasibility of the job

sequence in the relocation problem is equivalent to the sum of idle times on machine two in

Johnson’s problem. Therefore, the following lemma gives the polynomial solvability of the

relocation problem.

Lemma 1 (Kaplan and Amir 1988) To find the minimum resource provision for guarantee-

ing the existence of a feasible sequence in the relocation problem can be solved in O(n log n)

time using Johnson’s algorithm.
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As given in Cheng and Lin (2008), Johnson’s algorithm can be described in the following

forms:

1. Job Ji precedes job Jj if min{αi, βj} ≤ min{βi, αj}.

2. Partition job set J by letting J + = {Ji|αi ≤ βi, Ji ∈ J } and J − = {Ji|αi > βi, Ji ∈

J }. Schedule the jobs of J + in non-decreasing order of αi, and the jobs of J − in

non-increasing order of βi. The sequence of J + precedes the sequence of J −.

3. Select the smallest element from {αi} ∪ {βi} of all unscheduled jobs Ji. If the element

is αi of some job Ji, then schedule job Jiat the earliest open position, else schedule job

Ji at the last open position. Remove job Ji from the job set. Repeat the process until

all jobs are scheduled.

Let σ[i:j] = (σi, . . . , σj), 1 ≤ i ≤ j ≤ n be a subsequence of σ = (σ1, σ2, . . . , σn). We

define the resource requirement R(σ[i:j]) as the minimum resource provision to guarantee

the successful processing of jobs σi, σi+1, . . . , σj in the specified sequence. Kurisu (1976)

introduced the notion of composite jobs, which has spurred many interesting applications

(Cheng and Lin 2008). Composite job Ji:j(σ) of subsequence σ[i:j] is defined by letting

αi:j(σ) = R(σ[i:j]), and

βi:j(σ) = R(σ[i:j]) +

j
∑

l=1

(βl − αl).

Lemma 2 (Kurisu 1976, Lin 1994, Cheng and Lin 2008) For a particular sequence σ, the

following equality about resource requirement holds:

R(σ) = R((σ1, . . . , σi−1, σ[i:j], σj+1 . . . , σn)).

For all i, j, 1 ≤ i ≤ j ≤ n, composite jobs σ[i:j] can be defined in a recursion. To define

composite jobs σ[i:j], we need (composite) jobs composite jobs σ[i:j−1] and σj . The whole
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procedure is given as follows:

For i = 1 to n do

For j = i + 1 to n do

Define composite job σ[1:j] using σ[1:j−1] and σj .

Therefore, when input instance is given all composite jobs can be derived in O(n2) time.

In the following section, we will apply the concept of composite jobs in the design of solution

algorithms. This concept can reduce the time complexity by an order.
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Chapter 3

Integer Program and Dynamic

Program

In this chapter, we start to investigate the mission planning problem. We consider the case

where αj = 0 for all jobs Jj. In comparison with the Knapsack problem, βi and pi will

correspond to the value and weight of item xi in the Knapsack problem. The special case

of our problem can be interpreted as the minimization Knapsack problem: Minimizing the

capacity required to achieving a specific target value. Note that the Knapsack problem is

known for maximizing the total value subject to the knapsack capacity, however the mini-

mization counterpart is to minimize the total weight required to achieve a threshold on total

value. Therefore, the mission planning problem is also NP-hard. The major difference of

the mission planning problem from the Minimization Knapsack problem is the feasibility

requirement in the sequencing of selected jobs. This extra requirement may pose a higher

complexity of the problem. By the preliminary properties cited in last chapter, we can give

the optimality property to resolve part of the difficulties.

Lemma 3 In an optimal solution to the mission planning problem, the jobs are sequenced
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in non-decreasing order of resource requirement αj.

Proof: Let σ = (σ1, σ2, . . . , σn′) be an optimal schedule. If there are any two consecutive

jobs σj and σj+1 satisfying ασj
> ασj+1

, then we swap their positions. Feasibility of all jobs

in {σ} \ {Jσj
, Jσj+1

} will not be affected. Because v[j−1] ≥ ασj
> ασj+1

, job Jσj+1
can be

processed with sufficient resources. Moreover, job Jσj+1 adds extra δσj+1 units of resources

to v[j−1] for job Jσj
, and thus the processing of job Jσj

is also successful. Therefore, the

correctness follows. �

By Lemma 3, we can thus re-index the jobs in non-decreasing order of resource require-

ments. The mission planning problem can be considered as selection of jobs out from a list

to discard such that the jobs remained in the list can be successfully process and the resource

level at completion of the list can meet the target level. We can thus formulate the mission

planning problem into a binary integer program. Binary variable xj , 1 ≤ j ≤ n indicates

whether job Jj is included for processing or not.

(MP) Minimize

n
∑

j=1

pjxj

subject to

αjxj ≤ v0 +

j−1
∑

i=1

δixi, 1 ≤ j ≤ n; (3.1)

v0 +

n
∑

j=1

δjxj ≥ v̄; (3.2)

xj ∈ {0, 1}, 1 ≤ j ≤ n. (3.3)
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In the above formulation, constraints (3.1) specify the feasibility issue of constraint (2.1),

and constraints (3.2) reflect the target requirement of constraint (2.2).

We proceed to the development of a dynamic program for producing optimal solutions.

From the preliminary observations mentioned above, the mission planning problem reduces

to selecting a subset of jobs out from the ordered list of jobs to meet the target require-

ment. Let function f(j, v) denote the shortest processing time required by a feasible subset

of jobs from {J1, J2, . . . , Ji} to meet the resource level v. Similar to the dynamic programs

developed in the literature for the Knapsack problem, subject to optimal solutions of the

previous j − 1 jobs with various target levels we can include job Jj or discard it when it is

considered. The only difference is that we need to abide by the feasibility constraint. The

dynamic program is given in the following:

Initialization:

f(j, v) =







0, if j = v = 0;

∞, otherwise.

Recursion:

f(j, v) = min
{

f(j − 1, v), f ′(j − 1, v − δi)
}

, where

f ′(j − 1, v − δj) =







f(j − 1, v − δj) + pj, if v − δj ≥ αj ;

∞, otherwise.

Goal:

Find min
{

f(n, v)|v̄ ≤ v ≤ v0 +
n

∑

j=1

δj)
}

.
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In the dynamic programming algorithm, there are O(nv̄) states. A constant time step is

sufficient to compute the optimal value of each state, Therefore, the overall time complexity

O(nv̄) is pseudo-polynomial in terms of the input length and the parameter v̄. The existence

of a pseudo-polynomial algorithm in the mean time indicates that the mission planning

problem cannot be strongly NP-hard.

While the dynamic programming algorithm can optimally solve the mission planning

problem, its run time can be prohibitively long if the values of parameter v̄ is large. Devel-

opment of approximation algorithms is an alternative for solving the problem. In the next

chapter, we shall discuss the room for the development of approximation algorithms.

13



Chapter 4

Approximability

In this chapter, we study the approximability of the mission planning problem. In the study

of theoretical approximation algorithms, the Knapsack problem provides a good source of

classical results. Let Z∗ denote the optimal solution value of problem P and A be an approx-

imation algorithm with solution value ZA for an NP-hard optimization problem. Algorithm

A is an r-approximate algorithm if applied on any instance I of problem P,

max{
Z∗

ZA
,
ZA

Z∗
} ≤ r

is guaranteed for constant rational r > 0. A polynomial time approximation scheme (PTAS)

accepts any instance I and rational r can produce an approximation solution such that the

ratio r is guaranteed with a computing time polynomial in terms of length of instance I, but

not of (r − 1)−1. If a PTAS has a computing time polynomial in terms of length of instance

I and (r − 1)−1, then it is called a fully polynomial time approximation scheme (FPTAS).

In the literature, a well-known modified greedy algorithm is shown to be a 2-approximate

algorithm for the Knapsack problem (Kellerer et al. 2004). Due to the structure of pseudo-

polynomial dynamic programs (Woeginger 2000), FPTAS exists for the Knapsack problem

(Kellerer et al. 2004). PTAS also exists even if the Knapsack problem is generalized to
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allow acceptance of multiple copies of each individual item (Kellerer et al. 2004). While the

Knapsack problems permits approximation algorithms with desired performance ratio, it is

not that promising for us to design such approximation methods for the mission planning

problem. The difficulty arises from the requirement of sequencing feasibility. In the follow-

ing, we give a negative result of approximability.

Theorem 1 Unless P=NP, there is no r-approximate algorithm for the mission planning

algorithm for constant rational r > 1.

Proof: To prove the result, we use the Equal-Size-Partition problem (Garey and Johnson

1979) for the reduction.

Equal-Size-Partition: The input instance consists of integer B and 2t positive integers S =

{s1, ..., s2t} such that
∑

si∈S si = 2B. The problem is to determine if there is a partition S1

and S2 of set S with |S1| = |S2| and
∑

si∈S1
si =

∑

si∈S2
si = B.

For an instance of Equal-Size-Partition, we create an instance of 2t + 1 jobs for the mis-

sion planning problem as follows:

Ordinary job Jj: αj = 0, βj = B + sj, pj = B − sj, 1 ≤ j ≤ 2t;

Large job J2t+1: αj = (t + 1)B, βj = 3tB2, pj = 0;

Initial resource level v0 = 0;

Target resource level v̄ = 3tB2;

Total processing time is no more than (t − 1)B.

Given the constructed instance, if the mission planning problem has a feasible schedule,

then by the value of target resource level job J2t+1 must be selected and scheduled last (by

Lemma 3). For a solution to have a total processing time no more than (t−1)B, the number
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of ordinary jobs selected for processing must be less than or equal to t. However, if less than

t ordinary jobs are selected, then the resource level after the completion of all ordinary jobs

is less than (t + 1)B and cannot support the processing of large job J2t+1. Therefore, the

number of ordinary selected jobs must be exactly t. Let J ′ denote the set of selected ordinary

jobs. To support the processing of large job J2t+1,
∑

Jj∈J ′ B + sj ≥ (t + 1)B must hold. On

the other hand, not to exceed the total processing length, we have
∑

Jj∈J ′ B−sj ≤ (t−1)B.

Combining the two inequalities, we have
∑

sj∈S1
sj = B, where S1 contains the elements

that define the jobs of J ′. Therefore, we have found a partition as specified in Equal-Size-

Partition.

Assume now that there is a partition S1 and S2 of set S in Equal-Size-Partition. An

optimal schedule of the mission planning problem is constructed by selecting job J2t+1 and

the jobs defined by the elements of S1 (or S2), and the processing length is (t − 1)B. If

there is an r-approximate algorithm for the mission planning algorithm, then it will pro-

duce a solution value less than r(t − 1)B. From the constructed instance, we know that if

the approximation algorithm cannot report the optimal solution value, then it will not find

a feasible schedule. That is, the performance ratio is unbounded, and the theorem follows. �

The above theorem indicates that it is very unlikely to design r-approximate algorithms,

PTAS or FPTAS for the mission planning problem. In the following, we investigate the

approximability of a special case. We consider the case when the resource requirement αj

is uniform for all jobs. In this case, we can simply assume v0 = 0 and αj = 0 for all jobs.

Then, the problem can be formulated as the Minimization Knapsack problem.

The minimization knapsack problem (MinKP) is a transformation of the traditional knap-

sack problem (KP) into a minimization problem. From a finite number of items a subset

shall be selected with total profit at least p̄ such that the total weight of the selected items
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is minimized.

Because the initial resource level v0 = 0, there is no feasible problem during execut-

ing each job. With a uniform resource requirement (αi = α) among all jobs, the mission

planning problem can thus be treated as the MinKP problem as in the following formulation:

(MinKP) Minimize
n

∑

j=1

pjxj

subject to

v0 +

n
∑

j=1

δjxj ≥ v̄; (4.1)

xj ∈ {0, 1}, 1 ≤ j ≤ n. (4.2)

In the literature, a multiple-run 2-approximate algorithm was designed for MinKP. In this

thesis, we design another greedy algorithm, called MinGreedy, and provide a 2-approximate

proof. First, we re-index the jobs in non-decreasing order of the ratio of processing time and

resource contribution, i.e. p1

δ1
≤ p2

δ2
≤ . . . ≤ pn

δn
. The algorithm is given as follows.

Algorithm MinGreedy :

begin

Initializaion:

S1 = ∅. (Set of selected jobs)

S2 = {1, 2, . . . , n}. (Set of untouched jobs)

v = 0. (Current resource level)

psum = 0. (Total processing time)

pmin = 0. (Smallest pi for which v + δi ≥ v̄)
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return Recursive(v, psum).

end

Function Recursive(v, psum)

begin

for i = 1 to n

begin

If(v + δi < v̄)

v = v + δi;

psum = psum + pi;

S2 = S2 \ {i};

else

break; (Ji is the first job in S2 that satisfies the constraint.)

end

for j = i to n

begin

If (v + δi ≥ v̄)

If (pmin < pj) then pmin = pj ;

S2 = S2 \ {Jj};

end

end

While (S2 6= ∅)

begin

Recursive(v, psum);
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If (pmin >
∑i−1

k=1 pk) and (
∑

i∈S2−{Jj}
δi > v̄ −

∑i−1
k=1 δk)

psum = min{
∑i−1

k=1 pi + pmin, Recursive(v, psum)};

else

return (
∑i−1

k=1 pi + pmin);

end

Theorem 2 Algorithm MinGreedy is 2-approximate when all jobs have the same re-

source requirement.

Proof: Let Jj be the job that first completes the solution x1, x2, . . . , xn and p∗ the optimal

processing time. Because of the jobs have been sorted, we have

j−1
∑

i=1

pi ≤ p∗.

If pj ≤
∑j−1

i=1 pi, then the 2-approximation result is obvious. For the case with pj >
∑j−1

i=1 pi,

we discuss two conditions, and get final optimal solution in two of them. The analysis is

based on induction. For condition 1, we will continue our algorithm, eliminate job Jj with-

out changing the optimal solution. Since pj > p∗, job Jj will not be included in the optimal

solution. We find another job Jk in one of the following for-loop. If this condition holds,

that is, this condition will return smaller heuristic solution, we could get pk ≤
∑

i∈S2
pi,

and complete the proof. For another condition, we will select job Jj into our solution. If

condition 2 will get smaller heuristic solution, then we can say that pj must be chosen to be

included into the optimal solution. Thus, we get pj ≤ p∗, and this completes the proof. �
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Chapter 5

Special Cases

In this Chapter, we consider two special cases that can be solved in polynomial time. In the

first case, all jobs have the same processing time. Since processing time pi = p, the problem

reduces to minimizing the number of selected jobs to reach the target resource level. This

special case can be solved by the following algorithm:

Algorithm Equal Processing Time

Step 1: Set v = v0, k = 1.

Step 2: While ((k ≤ n) and (v < v̄)) do

begin

Select job Jj ∈ J achieving δj = max{δi : αi ≤ v, Ji ∈ J }.

Schedule job Jj in position k.

Set v = v + δj.

Set J = J \ {Jj}.

Set k = k + 1.

end

Step 3: Report the schedule.
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Theorem 3 Algorithm Equal Processing Time provides an optimal schedule for the

case with equal processing time in O(n log n) time.

Proof: The correctness can be easily established by the standard job-interchange argument.

As for the computing time, we maintain a a sorted of the jobs based on non-decreasing αj

and a max-heap based on δj . Whenever a job requires less than the updated resource level,

it is inserted into the max-heap, from which the root is selected for processing. Each job

can be inserted into and deleted from the max-heap exactly once. Adjustment operation of

each insertion and deletion takes O(log n) time, thus the overall run time is O(n log n). �

In the second case of interest, we assume the number of job types to be fixed. Assume

the jobs are categorized into K different types, and mobs of a type have the same αi and

βi. We will design a polynomial time algorithm for determining a feasible sequence whose

makespan is minimum.

Let nk denote the number of mobs in type k, 1 ≤ k ≤ K. Denote the experience require-

ment and experience returned of mobs in type k, 1 ≤ k ≤ K, by α(k) and β(k), respectively.

We assume the types of mobs are sorted by the values of required experience, i.e. α(k1) ≤ α(k2)

if 1 ≤ k1 < k2 ≤ K. Moreover, mobs of the same type are sequenced in non-decreasing order

of processing times. We re-index all jobs in the above order. If
∑k−1

r=1 nr < j ≤
∑k

r=1 nr and

∑k−1
r=1 nr + l = j, then job Jj is the l-th job of type k.

Remark 1 In some optimal schedule of an instance with K types of jobs, if n′
k type-k mobs,

0 ≤ k′
k ≤ nk, are selected, then they are the first n′

k jobs of type k.
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The property stems from the simple consideration: Within the same type, mobs with

shorter processing times will be preferred than those with longer processing times.

Remark 2 Given an instance with K types of jobs, there exists an optimal schedule σ =

σ1 ⊕ σ2 ⊕ · · · ⊕ σK, where σk, 1 ≤ k ≤ K, is a subsequence of jobs of type k, and ⊕ is the

sequence concatenation operation.

This property highlights the structure of an optimal solution where blocks of mobs from

the same type are constructed and the blocks are arranged in increasing order of type in-

dex. With Remark 2, we readily know that mobs of the same type will be in consecutive

positions and mob types are arranged in ascending order of their experience requirements

α(k). A schedule can thus be represented in a canonical form σ = (n′
1, n

′
2, . . . , n

′
K) subject

to 0 ≤ n′
k ≤ nk for all k = 1, 2, . . . , K. Note that for any type k, it is not that n′

k mobs are

simultaneously processed but that they are processed in serial.

Remark 3 Given an instance of an instance with K types of jobs, if schedule σ1 = (n′
1, . . . , n

′
K)

is not feasible, then any schedule σ2 = (n′′
1, . . . , n

′′
K) with n′′

k ≤ n′
k for all k = 1, 2 . . . , K is

also infeasible.

With the above optimality properties, we can enumerate and examine all feasible sched-

ules and then select the best solution. The algorithm will start from a seed schedule

σ0 = (n1, n2, . . . , nK) that selects all jobs. From the seed schedule, the algorithm gener-

ates all feasible schedules with n − 1 jobs selected. The process continues until all feasible

schedules are examined.

Algorithm K Types

Step 1: Set Σn = {σ0}, where σ0 = (n1, n2, . . . , nK).
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Step 2: Set Σi = ∅ for 1 ≤ i ≤ n.

Step 3: Set i = 1.

Step 4: while i ≤ n and Σn−i+1 6= ∅ do

begin

for each element (schedule) σ
′

= (n′
1, n

′
2, . . . , n

′
K) ∈ Σn−i+1 do

begin

for k = 1 to K

if n′
k ≥ 1 and schedule σ′′ = (n′

1, n
′
2, . . . , n

′
k − 1, . . . , n′

K) is feasible

then insert σ′′ into Σn−i.

if for some k schedule σ′′ is generated, then delete σ′ from Σn−i+1.

end

Set i = i + 1.

end

Step 5: Select the schedule from
⋃n

i=1 Σi whose makespan is smallest.

Lemma 4 For any given instance with K types of jobs, all feasible sequences are be generated

by Algorithm K types.

Proof. The proof is given by induction on index i of the main loop of Algorithm K types.

We show that any feasible schedules of n− i+1 jobs must be included set σn−i+1 during the

course of the execution of iteration i, although some of which may be discarded later itera-

tion. When i = 1, the only feasible schedule σ0 = (n1, n2, . . . , nK) is indeed in Σn−i+1 = Σn.

Assume the claim is true for some i < n. Suppose that when i = k, Σn−i+1 = Σn−k+1

collected all feasible schedules σ
′

from Algorithm K types. Now let i = k+1. Since we know

that here are some feasible sequence generated when i = k. Thus, Σn−k 6= ∅, and i = k + 1
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will execute step 4 in Algorithm K types. Therefore, all feasible sequences in Σn−k−1 will be

generated by Algorithm K types at step 4. Thus, in any variant sequence σk will be collected

by Algorithm K types into the pool Σn−k. The proof of Lemma 2 is thus complete.

Now let us define a schedule characteristic. Let σ be some feasible. If deletion of any job

from {σ} will result in infeasibility, schedule σ is minimum.

Lemma 5 For any given instance with K types of jobs, the set
⋃n

i=1Σi generated by AlgorithmK types

contains all minimal schedules.

Proof. Assume there is a minimal schedule σ not collected into the set
⋃n

i=1Σi. Since σ

is minimal, it is also a feasible sequence, too. From Lemma 4, we know that σ must be

generated by Algorithm K types. However, if schedule σ is minimal, it will not deleted by

Algorithm K types in Step 4. Then, σ must remain in the set
⋃n

i=1 Σi. This completes the

proof. �

We conclude the above analysis into the following result.

Theorem 4 Given any instance with K types of jobs, Algorithm K types generates all min-

imal feasible schedule σn−r(0 ≤ r ≤ n) and finds the optimal one.

Since there are K types of job type, and each type has at most ni(i = 1, . . . , K) jobs to

select to execute. We can say that there are at most n1n2 · · ·nK different jobs combinations.

From Theorem 1, we know that for a given instance of problem G, Algorithm K types will

generate every feasible sequence σn−r(1 ≤ r ≤ n) and find its optimal schedule. Thus, we

come to the overall bound O(n1n2 · · ·nK) on the number of elements in the pool. The time
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required to examine the feasibility of each schedule σ in
⋃n

i=1 Σi takes O(n) time. However,

we can improve the time to O(1). Given the initial sequence σ0, applying the concept of

composite jobs addressed in Chapter 2 we can derive information on all composite jobs σ0
[1:j]

and σ0
[j:n] for 1 ≤ j ≤ n in O(n) time. The feasibility of each individual sequence generated

from σ0 by deleting one job can be checked in constant time. Therefore, we come up with

the following theorem.

Theorem 5 For the problem with K job types, Algorithm K types produces the optimal

schedule in O(n′
1n

′
2 · · ·n

′
K) time.

As the computing time O(n′
1n

′
2 · · ·n

′
K) is polynomial when K is a constant, therefore the

mission planning problem with K job types is polynomially solvable. We further restrict the

jobs of the same type also have the same processing time. Then, the input will include

n1, α1, β1, p1, . . . , nK , αK , βK , pK .

In such a case, even if K is fixed the run time O(n′
1n

′
2 · · ·n

′
K) becomes exponential in terms of

input length, although it is polynomial in terms of the number of jobs n = n1 +n2+ · · ·+nK .
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Chapter 6

Concluding Remarks

In this thesis, we formulated the mission planning problem that arises from computer games.

The problem is described and formulated using the concept of resource-constrained schedul-

ing, the relocation problem. We designed a pseudo-polynomial time dynamic programming

algorithm to produce optimal solutions. The development of the pseudo-polynomial time

algorithm also indicates that the mission planning problem cannot be strongly NP-hard.

We gave a negative result of approximability in the sense that there exists no r-approximate

algorithm for constant rational r unless P = NP . For the case with uniform resource require-

ment, we presented a 2-approximate greedy algorithm. A polynomial time algorithm was

designed for the case with uniform processing time. For the case where the jobs are catego-

rized into K different resource types, we design an efficient algorithm that has a polynomial

time complexity when K is fixed.

As the mission planning problem is new in the literature, there is considerable room for

further extensions. For example, the mobs may come into scene dynamically rather than

known in advance. There we can consider the scenario that each mob has its release date as

assumed in the area of scheduling theory.
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