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GraphAlgorithm.java

package emnet.algorithm;

import java.util.Vector;

import emnet.graph.Graph;
import emnet.graph.Node;
import emnet.graph.Edge;
import java.util.lterator;

import emnet.thread.Center;
import emnet.thread.Roamer;
import emnet.thread.Detourist;

import emnet.thread.DetourManager;

public class GraphAlgorithm {
public GraphAlgorithm() {

try {
jblnit();

}

catch (Exception ex) {

ex.printStackTrace();

public static Graph copyGraph(Graph oldGraph){
Vector oldNodeSet,oldEdgeSet;

oldNodeSet=o0ldGraph.getNodeSet();
oldEdgeSet=oldGraph.getEdgeSet();

return copyGraph(oldNodeSet,oldEdgeSet);

public static Graph copyGraph(Vector oldNodeSet,Vector oldEdgeSet){
Vector newNodeSet=new Vector(),newEdgeSet=new Vector();
for(int i=0;i<oldNodeSet.size();i++){

/I new node setting:
/1 1. check label
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/I 2. check supply/demand
/I 3. check visit
Node tempOldNode=(Node)oldNodeSet.elementAt(i);

Node tempNewNode=new Node(i);

if(tempOIldNode.isSupply(){
tempNewNode.setSupply();
lelse if(tempOldNode.isDemand() )

tempNewNode.setDemand();

if(tempOldNode.isVisited()){

tempNewNode.visit();

newNodeSet.addElement(tempNewNode);

for(int i=0;i<oldEdgeSet.size();i++)

/I new edge setting:

/1 1. check label

/1 2. check n1/n2

Il 3. set weight

/I 4. set previous node

/1'5. check fast

/1'6. check detour

11'7. check visit

Edge tempOIldEdge=(Edge)oldEdgeSet.elementAt(i);

int n1=tempOIdEdge.getN1Label(),n2=tempOIdEdge.getN2Label();

double weight=tempOIdEdge.getWeight();

Edge tempNewEdge=new
Edge(i,(Node)newNodeSet.elementAt(n1),(Node)newNodeSet.elementAt(n2),weight);

if(tempOIdEdge.isFastEdge() X
tempNewEdge.setFastEdge();

if(tempOIdEdge.isDetourEdge()){
tempNewEdge.setDetourEdge();
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if(tempOIdEdge.isVisited(){
tempNewEdge.visit();

newEdgeSet.addElement(tempNewEdge);
}

return new Graph(newNodeSet,newEdgeSet);

public static Graph getSubtreeWithCertainNode(Graph tree,Node certainNode,Edge ruinedEdge){

Vector nodeSet=new Vector(),edgeSet=new Vector();
Vector currAdjacentNodes,currincidentEdges;

Node currNode=certainNode;

int maxLabel=0;

Vector tempTreeNodeSet=tree.getNodeSet();

Node tempTreeNode;

for(int i=0;i<tempTreeNodeSet.size();i++){
tempTreeNode=(Node)tempTreeNodeSet.elementAt(i);
if(tempTreeNode.getLabel()>maxLabel)

maxLabel=tempTreeNode.getLabel();

Vector preNodes=new Vector(maxLabel+1);

for(int i=0;i<(maxLabel+1);i++)
preNodes.addElement(null);

boolean finish=false;

do{
currAdjacentNodes=tree.adjacentNodeSet(currNode);
currincidentEdges=tree.incidentEdgeSet(currNode);
if(currincidentEdges.contains(ruinedEdge))

currincidentEdges.removeElement(ruinedEdge);

currAdjacentNodes.removeElement(ruinedEdge.theOtherNode(currNode));

Iterator itrAdjacentNodes=currAdjacentNodes.iterator();

if(lnodeSet.contains(currNode))
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nodeSet.addElement(currNode);

int i=0;
currNodeAssign:
do{
if(itrAdjacentNodes.hasNext(){
Node tempNode=(Node)itrAdjacentNodes.next();

if(lnodeSet.contains(tempNode) ¥
preNodes.setElementAt(currNode,tempNode.getLabel());
currNode=tempNode;
break currNodeAssign;
telse{
i++;
if(i==currAdjacentNodes.size()
if(currNode==certainNode){
finish=true;
break currNodeAssign;
}
Edge
tempEdge=tree.getEdge(currNode,(Node)preNodes.elementAt(currNode:getLabel()));
if(ledgeSet.contains(tempEdge)){
edgeSet.addElement(tempEdge);

}
currNode=(Node)preNodes.elementAt(currNode.getLabel());
}
}
telse{
finish=true;

/Ibreak currNodeAssign;

}
twhile(itrAdjacentNodes.hasNext());

Jwhile('finish);

return new Graph(nodeSet,edgeSet);

public static Vector getAdjacentNodes(Graph graph,Node currNode){

return graph.adjacentNodeSet(currNode);

public static Vector getincidnetEdges(Graph graph,Node currNode)}{
return graph.incidentEdgeSet(currNode);
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}

public static Graph getSubtreeWithoutSupply(Graph tree,Edge ruinedEdge {
Graph subtreeWithoutSupply=null;
Graph subtreeN1=getSubtreeWithCertainNode(tree,ruinedEdge.getN1(),ruinedEdge);
Graph subtreeN2=getSubtreeWithCertainNode(tree,ruinedEdge.getN2(),ruinedEdge);
Vector subtreeNodeSetN1=subtreeN1.getNodeSet();
Node tempNode;
for(int i=0;i<subtreeNodeSetN1.size();i++)
tempNode=(Node)subtreeNodeSetN1.elementAt(i);
if(tempNode.isSupply())
subtreeWithoutSupply=subtreeN2;
}
if(subtreeWithoutSupply!=subtreeN2)
subtreeWithoutSupply=subtreeN1;
return subtreeWithoutSupply;

public static Graph getSubtreeWithSupply(Graph tree,Edge ruinedEdge){
Graph subtreeWithSupply=null;
Graph subtreeN1=getSubtreeWithCertainNode(tree,ruinedEdge.getN1(),ruinedEdge);
Graph subtreeN2=getSubtreeWithCertainNode(tree ruinedEdge.getN2(),ruinedEdge);
Vector subtreeNodeSetN1=subtreeN1.getNodeSet();
Node tempNode;
for(int i=0;i<subtreeNodeSetN1.size();i++)
tempNode=(Node)subtreeNodeSetN1.elementAt(i);
if(tempNode.isSupply())
subtreeWithSupply=subtreeN1;
}
if(subtreeWithSupply!=subtreeN1)
subtreeWithSupply=subtreeN2;
return subtreeWithSupply;

private void jbinit() throws Exception {

}

public static Vector getincidentEdgeSet(Roamer roamer,Vector nodeSet)
Center center=roamer.getCenter();

Graph graph=center.getGraph();
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Edge myEdge=center.getMyEdge(roamer);

Vector visitorSequence;

Vector edgeSet=new Vector();

Edge tempEdge;

Node n1,n2;

for(int i=0;i<nodeSet.size();i++ )
Vector tempEdgeSet=graph.incidentEdgeSet((Node)nodeSet.elementAt(i));
for(int j=0;j<tempEdgeSet.size();j++){

if(ledgeSet.contains(tempEdgeSet.elementAt(j))
edgeSet.addElement(tempEdgeSet.elementAt(j));

tempEdge=(Edge)tempEdgeSet.elementAt(j);

n1=tempEdge.getN1();

n2=tempEdge.getN2();

/Iremove edges included in the routeEdgeSet

if(nodeSet.contains(n1) && nodeSet.contains(n2))
edgeSet.removeElement(tempEdge);

/Iremove dummyEdges

if(n1==center.getDummyNode() || n2==center.getDummyNode())
edgeSet.removeElement(tempEdge);

/Iremove visited edge

if(nodeSet.contains(n1)){
visitorSequence=center.getVisitorSequence(n2);
if(visitorSequence.contains(roamer))

edgeSet.removeElement(tempEdge);

}else if(nodeSet.contains(n2)){
visitorSequence=center.getVisitorSequence(n1);
if(visitorSequence.contains(roamer))

edgeSet.removeElement(tempEdge);

}

if(edgeSet.contains(myEdge))
edgeSet.removeElement(myEdge);

return edgeSet;

public static Vector getincidentEdges(Detourist detourist,Vector nodeSet){

Graph usableGraph=detourist.getUsableGraph();
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DetourManager dmr=detourist.getDetourManager();
Center center=dmr.getCenter();

Edge myEdge=dmr.getMyEdge(detourist);

Vector incidentEdges=new Vector();
Edge tempEdge;
Node n1,n2;

for(int i=0;i<nodeSet.size();i++ )X
Vector tempEdgeSet=usableGraph.incidentEdgeSet((Node)nodeSet.elementAt(i));
for(int j=0;j<tempEdgeSet.size();j++){
tempEdge=(Edge)tempEdgeSet.elementAt(j);
if(lincidentEdges.contains(tempEdge))
incidentEdges.addElement(tempEdge);

n1=tempEdge.getN1();

n2=tempEdge.getN2();

if(nodeSet.contains(n1) && nodeSeticontains(n2))
incidentEdges.removeElement(tempEdge);

if(n1==center.getDummyNode() ||:-n2==center.getDummyNode())

incidentEdges.removeElement(tempEdge);

}
if(incidentEdges.contains(myEdge))

incidentEdges.removeElement(myEdge);
return incidentEdges;
public static Vector getinterfaceNodes(Graph subject,Graph environment){
Vector interfaceNodes=new Vector();

Vector environmentEdgeSet=environment.getEdgeSet();

Edge tempEdge;
Node n1,n2;

for(int i=0;i<environmentEdgeSet.size();i++){
tempEdge=(Edge)environmentEdgeSet.elementAt(i);
n1=tempEdge.getN1();

n2=tempEdge.getN2();

if(subject.hasNode(n1) && !subject.hasNode(n2))
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if(linterfaceNodes.contains(n1))
interfaceNodes.addElement(n1);
}
if(subject.hasNode(n2) && !subject.hasNode(n1))
if(linterfaceNodes.contains(n2))

interfaceNodes.addElement(n2);

}

return interfaceNodes;

public static double networkCost(Graph graph){

Vector edgeSet=graph.getEdgeSet();

Edge edge;

double networkCost=0.0;

for(int i=0;i<edgeSet.size();i++ )
edge=(Edge)edgeSet.elementAt(i);
networkCost=networkCost+edge.getWeight();

}

return networkCost;

public static double pathCost(Vector edgeSet){
double pathkCost=0.0;
Edge edge;
for(int i=0;i<edgeSet.size();i++ )X
edge=(Edge)edgeSet.elementAt(i);
pathkCost=pathkCost+edge.getWeight();

}
return pathkCost;

public static Vector intersection(Vector set0,Vector set1){
Vector intersection=new Vector();
Object temp;
for(int i=0;i<set0.size();i++){
temp=set0.elementAt(i);
if(set1.contains(temp))
intersection.addElement(temp);

}

return intersection;
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}

public static Vector union(Vector set0,Vector set1){
Vector union=new Vector();
Object temp;
for(int i=0;i<set0.size();i++){
temp=set0.elementAt(i);
union.addElement(temp);

}

for(int i=0;i<set1.size();i++

{
i);
)

union.addElement(temp);

—~ ~

temp=set1.elementAt

if(lunion.contains(temp

}

return union;
}
/Idetour

public static double getMergeCost(Detourist detourist,Node node){

Center center=detourist.getDetourManager().getCenter();

double mergeCost=0.0;

Graph downstream=detourist.getDownstream();

Vector downstreamDemandNodeSet=downstream.getDemandNodeSet();

Graph mergeNode ToSupplyPath=getPathToSupply(node,center);
Vector mergeNode ToSupplyEdgeSet=mergeNode ToSupplyPath.getEdgeSet();

Vector tempEdgeSetUnion=new Vector(),tempEdgeSetintersection=new Vector();
Node tempDemand;

Graph tempDemandToSupplyPath;

Vector tempDemandToSupplyEdgeSet;

for(int i=0;i<downstreamDemandNodeSet.size();i++){

tempDemand=(Node)downstreamDemandNodeSet.elementAt(i);

tempDemandToSupplyPath=getPathToSupply(tempDemand,center);
tempDemandToSupplyEdgeSet=tempDemand ToSupplyPath.getEdgeSet();

tempEdgeSetUnion=union(mergeNode ToSupplyEdgeSet,tempDemandToSupplyEdgeSet);
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tempEdgeSetintersection=intersection(mergeNode ToSupplyEdgeSet,tempDemand ToSupplyEdgeSet);

mergeCost=mergeCost+pathCost(tempEdgeSetUnion)-pathCost(tempEdgeSetintersection);
}

return mergeCost;

public static Graph getPathToSupply(Node node,Center center){
Vector nodeSet=new Vector();

Vector edgeSet=new Vector();

Node currNode=node;
Edge preEdge;
while(currNode!=center.getDummyNode()){

preEdge=center.getPreEdge(currNode);

if(center.getPreNode(currNode)!=center.getDummyNode()){
if(lnodeSet.contains(currNode))
nodeSet.addElement(currNode);
if(ledgeSet.contains(preEdge))
edgeSet.addElement(preEdge);
telse{
if('InodeSet.contains(currNode?))
nodeSet.addElement(currNode);
}
currNode=preEdge.theOtherNode(currNode);
}

return new Graph(nodeSet,edgeSet);
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package emnet.graph;
import java.util.Vector;

public class Graph {
private Vector nodeSet,edgeSet;

int supplyNodeNum,demandNodeNum;

public Graph(Vector nodeSet, Vector edgeSet){
this.nodeSet=nodeSet;

this.edgeSet=edgeSet;

public Vector getNodeSet(){

return this.nodeSet;

public Vector getEdgeSet(){

return this.edgeSet;

/lincident edges of node n
public Vector incidentEdgeSet(Node node){
Vector incidentEdgeSet=new Vector();
for(int i=0;i<this.edgeSet.size();i++){
Edge tempEdge=(Edge)edgeSet.elementAt(i);
if(tempEdge.getN1()==node || tempEdge.getN2()==node)}{
if(lincidentEdgeSet.contains(tempEdge)){
incidentEdgeSet.addElement(tempEdge);

}

return incidentEdgeSet;

/ladjacent nodes of node n
public Vector adjacentNodeSet(Node n){
Vector adjacentNodeSet=new Vector();
for(int i=0;i<this.edgeSet.size();i++){
Edge tempEdge=(Edge)edgeSet.elementAt(i);
if(tempEdge.getN1()==n && !adjacentNodeSet.contains(tempEdge.getN2()){
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adjacentNodeSet.addElement(tempEdge.getN2());

lelse if(tempEdge.getN2()==n && !adjacentNodeSet.contains(tempEdge.getN1())){
adjacentNodeSet.addElement(tempEdge.getN1());

}

return adjacentNodeSet;

public Vector getSupplyNodeSet(){
Vector supplyNodeSet=new Vector();
for(int i=0;i<this.nodeSet.size();i++){
Node tempNode=(Node)nodeSet.elementAt(i);
if(tempNode.isSupply())
supplyNodeSet.addElement(tempNode);

}
return supplyNodeSet;

public int getSupplyNodeNum(){
return getSupplyNodeSet().size();

public Vector getDemandNodeSet(}
Vector demandNodeSet=new Vector();
for(int i=0;i<this.nodeSet.size();i++){
Node tempNode=(Node)nodeSet.elementAt(i);
if(tempNode.isDemand())
demandNodeSet.addElement(tempNode);
}

return demandNodeSet;

public int getDemandNodeNum(){

return getDemandNodeSet().size();

public Edge getEdge(Node n1,Node n2){
Edge edge;
for(int i=0;i<edgeSet.size();i++ )
edge=(Edge)edgeSet.elementAt(i);
if(ledge.getN1()==n1){
if(ledge.theOtherNode(edge.getN1())==n2)
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return edge;
lelse if(edge.getN1()==n2)
if(edge.theOtherNode(edge.getN1())==n1)

return edge;

}
System.out.printin("error: no edge can be returned!");

return null;

public void addNode(Node node){
if(lnodeSet.contains(node))

this.nodeSet.addElement(node);

public void addEdge(Edge edge){
if(ledgeSet.contains(edge))
this.edgeSet.addElement(edge);

public boolean hasNode(Node node){
if(nodeSet.contains(node) X
return true;
telse{

return false;

public boolean hasEdge(Edge edge){
if(edgeSet.contains(edge)X
return true;
telse{

return false;

public void removeNode(Node node){
if(nodeSet.contains(node) X
Vector incidentEdges=this.incidentEdgeSet(node);
Edge templincidentEdge;
for(int i=0;i<incidentEdges.size();i++){

templincidentEdge=(Edge)incidentEdges.elementAt(i);
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if(edgeSet.contains(templncidentEdge))

edgeSet.removeElement(tempincidentEdge);

}

nodeSet.removeElement(node);

public void removeEdge(Edge edge){
if(edgeSet.contains(edge))

edgeSet.removeElement(edge);
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package emnet.graph;

public class Node{
private int label;
private double x,y;
private boolean demand,supply,merge,access,source,dummy;

private boolean visit,occupy;

public Node(int label){
this.label=label;
this.demand=false;
this.supply=false;
this.merge=false;
this.access=false;
this.source=false;
this.dummy=false;
this.visit=false;

this.occupy=false;

public Node(int label,double x,double'y X
this(label);
setX(x);
setY(y);

public void setDemand(){

this.demand=true;

public void setSupply(){
this.supply=true;

public void setNeutral(){
this.supply=false;

this.demand=false;

public void setMerge(){

this.merge=true;
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public void setAccess(}

this.access=true;

public void setSource(){

this.source=true;

public void setDummy(){

this.dummy=true;

public synchronized void visit(){

this.visit=true;

public synchronized void occupy(X

this.occupy=true;

public synchronized void unOccupied(){

this.occupy=false;

public synchronized void leave(){

this.occupy=false;

public boolean isOccupied(}

return this.occupy;

public boolean isDemand(){

return this.demand;

public boolean isSupply()

return this.supply;
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public boolean isMerge(){

return this.merge;

public boolean isAccess(){

return this.access;

public boolean isSource(){

return this.source;

public boolean isDummy/(){

return this.dummy;

public boolean isVisited()}

return this.visit;

public int getLabel(){

return label;

public void setX(double x){

this.x=x;

public void setY(double y){
this.y=y;

public double getX(){

return this.x;

public double getY(){

return this.y;
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package emnet.graph;

public class Edge {
private int label;
private double weight;
private Node n1,n2;
private boolean fastEdge,detourEdge,testEdge,detourTestEdge,dummyEdge,maTestEdge,maEdge;

private boolean visit;

public Edge(int label,Node n1,Node n2){
this.label=label;
this.weight=0.0;
this.n1=n1;
this.n2=n2;
this.fastEdge=false;
this.detourEdge=false;
this.testEdge=false;
this.detourTestEdge=false;
this.dummyEdge=false;
this.maTestEdge=false;
this.maEdge=false;

this.visit=false;

public Edge(int label,Node n1,Node n2,double weight){
this(label,n1,n2);
this.weight=weight;

public synchronized void setFastEdge(){
this.fastEdge=true;

public boolean isFastEdge(){
return this.fastEdge;

public synchronized void setDetourEdge(){

this.detourEdge=true;
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public boolean isDetourEdge(){

return this.detourEdge;

public synchronized void setTestEdge(){
this.testEdge=true;

public boolean isTestEdge(){

return this.testEdge;

public synchronized void setDetourTestEdge(boolean detourTestEdge){

this.detourTestEdge=detourTestEdge;

public boolean isDetourTestEdge(){

return detourTestEdge;

public synchronized void setDummyEdge()}
this.dummyEdge=true;

public boolean isDummyEdge(){

return dummyEdge;

public synchronized void setMATestEdge(boolean maTestEdge){
this.maTestEdge=maTestEdge;

public boolean isMATestEdge(){

return maTestEdge;

public synchronized void setMAEdge(){

this.maEdge=true;

public boolean isMAEdge ()}

return maEdge;
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}

public synchronized void setNeutralEdge(){
this.fastEdge=false;
this.detourEdge=false;
this.maEdge=false;
this.testEdge=false;
this.detourTestEdge=false;

this.maTestEdge=false;

public void setWeight(double weight){
this.weight=weight;

public double getWeight(){

return this.weight;

public Node getN1(){

return this.n1;

public Node getN2(){

return this.n2;

public Node theOtherNode(Node n){
if(n==this.n1)
return this.n2;
lelse if(n==this.n2){
return this.n1;

}

return null;

public synchronized void visit(){

this.visit=true;

public boolean isVisited(}

return this.visit;
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}

public int getN1Label(){

return n1.getLabel();

public int getN2Label(){
return n2.getLabel();

public int getLabel(){

return this.label;
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package emnet.gui;

import emnet.graph.Graph;

import emnet.graph.Node;

import emnet.graph.Edge;

import javax.swing.JPanel;

import java.awt.BorderLayout;
import java.awt.Dimension;

import java.util.Vector;

import java.awt.Graphics;

import java.awt.Color;

import java.awt.event.MouseEvent;
import java.awt.event.MouseAdapter;
import emnet.Frame;

import java.text.DecimalFormat;

import java.awt.Font;

public class Map extends javax.swing.JPanel{
Frame frame;
JPanel map=new JPanel();
Graph graph;
boolean dataln;
boolean supply,demand,neutral;

DecimalFormat myFormatter=new DecimalFormat("### ### #");

public Map(){
init();

public void init(){
this.setLayout(new BorderLayout());
this.setSize(new Dimension(600,400));
this.setPreferredSize(new Dimension(600,400));
this.add(map,BorderLayout. CENTER);

this.dataln=false;

this.addMouseListener(new Map_MouseAdapter(this));

public void paint(Graphics g){
if(dataln){
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drawNodes(graph,g);
drawEdges(graph,g);
frame.setSeperator(graph);
telse{
g.drawString("n/a",this.getWidth()/2,this.getHeight()/2);

public void setGraph(Graph graph){
this.graph=graph;
this.dataln=true;

this.repaint();

public Graph getGraph(){
return this.graph;
}
public void sentFrame(Frame frame){

this.frame=frame;

public Map getMap(){

return this;

private void drawNodes(Graph graph,Graphics g){
double ratio=scaledRatio(graph);
double newOX=newOX(graph);
double newOY=newOQY(graph);
int1=12,m=10,s=8;

g.setFont(new Font(null,Font.PLAIN,12));

Vector nodeSet=graph.getNodeSet();
Node node;
for(int i=0;i<nodeSet.size();i++ )X

node=(Node)nodeSet.elementAt(i);

if(node.isSupply(){
g.setColor(Color.RED);
g.drawOval(new Double((node.getX()-newOX)*ratio).intValue()-1/2,new
Double((node.getY()-newQY )*ratio).intValue()-1/2,1,1);
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}else if(node.isDemand()){
g.setColor(Color.BLUE);
g.drawRect(new Double((node.getX()-newOX)*ratio).intValue()-m/2,new
Double((node.getY()-newQY )*ratio).intValue()-m/2,m,m);
telse{
g.setColor(Color.LIGHT_GRAY);
}
g.drawString(""+node.getLabel(),new Double((node.getX()-newOX)*ratio).intValue(),new
Double((node.getY()-newQY))*ratio).intValue());

if(node.isAccess() && node.isMerge()){
g.setColor(Color.DARK_GRAY);
g.drawString("A & M",new Double((node.getX()-newOX)*ratio).intValue(),new
Double((node.getY()-newQY )*ratio).intValue()+20);
}else if(node.isAccess()){
g.setColor(Color.DARK_GRAY);
g.drawString("A",new Double((node.getX()-newOX)*ratio).intValue(),new
Double((node.getY()-newQY )*ratio).intValue()+20);
lelse if(node.isMerge(){
g.setColor(Color.DARK_GRAY);
g.drawString("M",new Double((node.getX()-newOX)*ratio).intValue(),new
Double((node.getY()-newQY )*ratio).intValue()+20);

}

if(node.isSource(){
g.setColor(Color.DARK_GRAY);
g.drawString("$rc",new Double(

Double((node.getY()-newQY )*ratio).intValue()+20
}

node.getX()-newOX)*ratio).intValue(),new

)

(
)

private void drawEdges(Graph graph,Graphics g){
double ratio=scaledRatio(graph);
double newOX=newOX(graph);
double newOY=newOQY(graph);

Vector edgeSet=graph.getEdgeSet();
Edge edge;

g.setFont(new Font(null,Font.PLAIN,10));
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for(int i=0;i<edgeSet.size();i++ )
edge=(Edge)edgeSet.elementAt(i);
Node n1=edge.getN1(),n2=edge.getN2();
int n1x=new Double((n1.getX()-newOX)*ratio).intValue();
newQY)*ratio).intValue();
)
)

int n1y=new Double((n1.getY

( ()-
(n2.getX()-newOX ;
( ()-

)

int n2x=new Double intValue

0
0
0
0

)

newQY)*ratio).intValue

(
( )
( *ratio)
( )

int n2y=new Double((n2.getY

if(edge.isFastEdge()){
g.setColor(Color.BLACK);
else if(edge.isDetourEdge()){
g.setColor(Color.ORANGE);
lelse if(edge.isMAEdge()){
g.setColor(Color.GREEN);
lelse if(edge.isTestEdge(){
g.setColor(Color.MAGENTA);
lelse if(edge.isDetourTestEdge()){
g.setColor(Color.CYAN);
lelse if(edge.isMATestEdge()){
g.setColor(Color.MAGENTA);
telse{
g.setColor(Color.LIGHT, GRAY));

if(ledge.isDummyEdge() X

Double weight;

if(edge.isMAEdge(){
g.setFont(new Font(null,Font.BOLD,11));
g.drawLine(n1x,n1y,n2x,n2y);
weight=new Double(edge.getWeight());
g.drawString(""+edge.getLabel()+":"+myFormatter.format(weight)+" @B",new

Double((n1x+n2x)/2).intValue(),new Double((n1y+n2y)/2).intValue());

g.setFont(new Font(null,Font.PLAIN,10));

telse{
g.drawLine(n1x,n1y,n2x,n2y);
weight=new Double(edge.getWeight());
g.drawString(""+edge.getLabel()+":"+myFormatter.format(weight),new

Double((n1x+n2x)/2).intValue(),new Double((n1y+n2y)/2).intValue());
}
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private double scaledRatio(Graph graph){
Vector nodeSet=graph.getNodeSet();
double maxX=0.0,maxY=0.0;
double newOX=newOX(graph),newOY=newQY(graph);
Node node;
for(int i=0;i<nodeSet.size();i++ )
node=(Node)nodeSet.elementAt(i);
if((node.getX()-newOX)>maxX){
maxX=node.getX()-newOX;
lelse if((node.getY()-newOY)>maxY )
maxY=node.getY()-newOY;

}
return Math.min(map.getWidth()/maxX,map.getHeight()/maxY);

private double newOX(Graph graph){

Vector nodeSet=graph.getNodeSet();

Node node=(Node)nodeSet.elementAt(0);

double minX=node.getX();

for(int i=1;i<nodeSet.size();i++ )
node=(Node)nodeSet.elementAt(i);
if(node.getX()<minX){

minX=node.getX();

}

return minX;

private double newOY (Graph graph){

Vector nodeSet=graph.getNodeSet();

Node node=(Node)nodeSet.elementAt(0);

double minY=node.getY();

for(int i=1;i<nodeSet.size();i++ )
node=(Node)nodeSet.elementAt(i);
if(node.getY ()<minY){

minY=node.getY();

}

return minY;
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public void nodeSetting(boolean supply,boolean demand,boolean neutral){
this.supply=supply;
this.demand=demand;

this.neutral=neutral,;

void mouse_clicked_actionPerformed(MouseEvent e){

double ratio=scaledRatio(graph);

double newOX=newOX(graph),newOY=newQY(graph);

Vector nodeSet=graph.getNodeSet();

Node node;

interr=10;

for(int i=0;i<nodeSet.size();i++ )
node=(Node)nodeSet.elementAt(i);
int x=new Double((node.getX()-newOX)*ratio).intValue();
int y=new Double((node.getY()-newOY)*ratio).intValue();
if(Math.abs(e.getX()-x)<err && Math:abs(e.getY ()-y)<err){

if(supply){
node.setNeutral();

node.setSupply();

}

if([demand){
node.setNeutral();
node.setDemand();

}

if(neutral){

node.setNeutral();

class Map_MouseAdapter extends MouseAdapter{

Map adaptee;

Map_MouseAdapter(Map adaptee){

this.adaptee=adaptee;

public void mouseClicked(MouseEvent e){
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this.adaptee.mouse_clicked_actionPerformed(e);

128



I0Graph.java

package emnet.io;

import emnet.graph.Graph;
import emnet.graph.Node;
import emnet.graph.Edge;
import java.util.Vector;

import java.io.File;

import java.io.FileReader;
import java.io.lOException;
import java.io.BufferedReader;

import java.util.String Tokenizer;
public class I0Graph {
private Graph g;

public IOGraph(String dirName,String nodeFile;String edgeFile) throws IOException {
File inputNodeFile=new File(dirName,nodeFile);
File inputEdgeFile=new File(dirName,edgeFile);
Vector nodeSet=new Vector();
Vector edgeSet=new Vector();

g=new Graph(nodeSet,edgeSet);

/Iread node.txt
FileReader nodeln=new FileReader(inputNodeFile);

BufferedReader buffNodeln=new BufferedReader(nodeln);

String strLine;

Node node;

while((strLine=buffNodeln.readLine())!=null){
//delimiter of Tab is "\t"

String Tokenizer strToken=new String Tokenizer(strLine,"\t" ,false);

String[] nodeAttr=new String[3];
for(int i=0;i<3;i++){
nodeAttr[i]=strToken.nextToken();

}

node=new
Node(Integer.parselnt(nodeAttr[0]),Double.parseDouble(nodeAttr[1]),Double.parseDouble(nodeAttr[2]));

nodeSet.addElement(node);
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I0Graph.java

buffNodeln.close();

nodeln.close();

/Iread edge.txt
FileReader edgeln=new FileReader(inputEdgeFile);
BufferedReader buffEdgeln=new BufferedReader(edgeln);

Edge edge;
while((strLine=buffEdgeln.readLine())!=null){
//delimiter of Tab is "\t"

String Tokenizer strToken=new String Tokenizer(strLine,"\t",false);

String[] edgeAttr=new String[3];
for(int i=0;i<3;i++){
edgeAttr{i]=strToken.nextToken();

Node n1=(Node)nodeSet.elementAt(Integerniparseint(edgeAttr[1]));
Node n2=(Node)nodeSet.elementAt(Integer.parselnt(edgeAttr[2]));
double
weight=Math.sqrt((n1.getX()-n2.getX())*(n1.getX()-n2.getX())£(n1.getY()-n2.getY())*(n1.getY()-n2.getY()));
edge=new Edge(Integer.parselnt(edgeAttr[0});n1,n2;weight);
edgeSet.addElement(edge);
}
buffEdgeln.close();

edgeln.close();

public Graph getGraph(){

return this.g;
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package emnet.thread;

import java.util.Vector;
import emnet.graph.Graph;
import emnet.graph.Node;
import emnet.graph.Edge;
import emnet.Frame;

import emnet.algorithm.GraphAlgorithm;

public class Center extends Thread{
/ICenter
Graph graph;
Frame frame;
boolean finish,available,detourCenterFinish,maCenterFinish;

Node dummyNode;

/InodeCenter
int nodeNum;
Object[][] nodeCenter;

/IroamerCenter
int roamerNum;

Object[][] roamerCenter;

/lfastCenter
Object[][] fastCenter;

/ldetourCenter
int edgeNum,detourManagerNum;
Object[][] detourCenter;

/IMutualAssistanceCenter
Graph emnet;

int maManagerNum;
Object[][] maCenter;

public Center(Graph graph,Frame frame){
/ICenter
this.graph=graph;
this.frame=frame;

finish=false;
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available=true;

/InodeCenter

/InodeCenter[node][0]: occupy(Boolean)
/InodeCenter[node][1]: distance(Double)
/InodeCenter[node][2]: preNode(Node)
/InodeCenter[node][3]: preEdge(Edge)
/InodeCenter[node][4]: visitorSequence(Vector)
/InodeCenter[node][5]: supply(Node)

/InodeCenter[node][6]: detourDist(Double)???

nodeNum=this.graph.getNodeSet().size();
nodeCenter=new Object[(nodeNum+1)][6];

dummyNode=new Node(nodeNum,0.0,0.0);

for(int i=0;i<(nodeNum+1);i++){
nodeCenter[i][0]=new Boolean(false);
nodeCenter[i][1]=new Double(0.0);
nodeCenter|i][2]=null;
nodeCenter|[i][3]=null;
nodeCenter[i][4]=new Vector();

nodeCenter|i][5]=null;

/l[roamerCenter
/IroamerCenter[roamer][0]: myNode(Node)
/[roamerCenter[roamer][1]: myEdge(Edge)
/IroamerCenter[roamer][2]: currNode(Node)
/froamerCenter[roamer][3]: routeSet(Graph)
roamerNum=graph.getSupplyNodeSet().size();
roamerCenter=new Object[roamerNum][4];
for(int i=0;i<roamerNum;i++){
roamerCenter[i][0]=dummyNode;
roamerCenter][i][1]=null;
roamerCenter]i][2]=null;

roamerCenter][i][3]=null;

/lfastCenter

/[fastCenter[demand][0]: fastPath(Graph)
/[fastCenter[demand][1]: supply(Node)
/[fastCenter[demand][2]: fastPathLength(Double)
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fastCenter=new Object[nodeNum][3];

for(int i=0;i<nodeNum;i++){
fastCenter [i][0]=null;
fastCenterfi][1]=null;
fastCenter(i][2]=null;

/ldetourCenter
//detourCenter[edge][0]: downstream(Graph)
//detourCenter[edge][1]: upstream(Graph)
//detourCenter[edge][2]: mergeNode(Node)
//detourCenter[edge][3]: accessNode(Node)
//detourCenter[edge][4]: detourPath(Graph)
//detourCenter[edge][5]: systematicDetourCost(Double)
//detourCenter[edge][6]: mergeCost(Vector)
edgeNum=graph.getEdgeSet().size();
detourManagerNum=graph.getSupplyNodeSet().size();
detourCenter=new Object[edgeNum][7];
for(int i=0;i<edgeNum;i++){

detourCenter[i][0]=null;

detourCenter[i][1]=null;

detourCenter{i][2]=null;

detourCenter[i][3]=null;

detourCenter{i][4]=null;

detourCenter]i][5]=new Double(0.0);

detourCenter[i][6]=new Vector(nodeNum);

//mutualAssistantCenter
/ImaCenter[supply][0]: fastTree(Graph)
/ImaCenter[supply][1]: territory(Graph) 2ECON
/ImaCenter[supply][2]: source(Node)
/ImaCenter[supply][3]: icpSet(Vector)
/ImaCenter[supply][4]: maPath(Graph)
/ImaCenter[supply][5]: within territory supply-demand ratio(Double)
/ImaCenter[supply][6]: mutual assistant supply-demand ratio(Double)
/ImaCenter[supply][7]: maCost > source to supply
maManagerNum=graph.getSupplyNodeNum();
maCenter=new ObjectinodeNum][8];
for(int i=0;i<nodeNum;i++){

maCenter]i][0]=null;

maCenter]i][1]=null;
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maCenter]i][2]=null;
maCenter[i][3]=new Vector();
maCenter]i][4]=null;
maCenter[i][5]=new Vector();
macCenter[i][6]=new Double(0.0);
maCenter[i][7]=new Double(0.0);

public void run(){
startRoamerCenter();
startFastCenter();
startDetourCenter();
startMutualAssistanceCenter();
startOutputReport();

/lcenter method
void startRoamerCenter(){
/l[roamerCenter
//send roamers to find fast paths (Shortest Path Forest; SPF)

sendRoamer();

Vector nodeSet=graph.getNodeSet();
int demandNodeNum=graph.getDemandNodeNum();
do{
int total Times=0;
watching:
for(int i=0;i<nodeNum;i++){
Node tempNode=(Node)nodeSet.elementAt(i);
/ffinish condition is focused on demand nodes only
if(tempNode.isDemand()){
if(getVisitorNum(tempNode)==roamerNum){
totalTimes=totalTimes+roamerNum;

if(totalTimes==(demandNodeNum®*roamerNum))

finish=true;
}
else{
finish=false;
break watching;
}
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}
Jwhile('finish);

/Iroamer center finished!

void startFastCenter(){
/lfastCenter
/[fastCenter[demand][0]: fastPath(Graph)
/[fastCenter[demand][1]: supply(Node)
/[fastCenter[demand][2]: fastPathLength(Double)

/ffinding fast paths from demand nodes to the dummyNode
try{

sleep(1);
}catch(InterruptedException ex){

/[fast center cannot sleep!

Vector demandNodeSet=graph.getDemandNodeSet();
Node tempDemand,tempNode;

Edge tempPreEdge,tempEdge;

double length;

Vector tempFastNodeSet,tempFastEdgeSet;

for(int i=0;i<demandNodeSet.size();i++){
tempDemand=(Node)demandNodeSet.elementAt(i);

tempNode=tempDemand;

tempFastNodeSet=new Vector();

tempFastEdgeSet=new Vector();

find:
while(tempNode!=dummyNode){
tempPreEdge=(Edge)getPreEdge(tempNode);
if(tempNode.isSupply()X
fastCenter[tempDemand.getLabel()][1]=tempNode;
if('tempFastNodeSet.contains(tempNode))
tempFastNodeSet.addElement(tempNode);

/Inode of fast route belong to the same supply

Node tempNode2;
for(int j=0;j<tempFastNodeSet.size();j++)
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tempNode2=(Node)tempFastNodeSet.elementAt(j);
nodeCenter[tempNode2.getLabel()][5]=tempNode;

}

break find;

telse{

if('tempFastNodeSet.contains(tempNode))
tempFastNodeSet.addElement(tempNode);

if('tempFastEdgeSet.contains(tempPreEdge))
tempFastEdgeSet.addElement(tempPreEdge);

tempPreEdge.setFastEdge();

}
tempNode=tempPreEdge.theOtherNode(tempNode);

fastCenter[tempDemand.getLabel()][0]=new Graph(tempFastNodeSet,tempFastEdgeSet);

length=0.0;

for(int j=0;j<tempFastEdgeSet.size();j++){
tempEdge=(Edge)tempFastEdgeSet.elementAt(j);
length=length+tempEdge.getWeight();

}

fastCenter[tempDemand.getLabel()][2]=new Double(length);

/ImaCenter[supply][0]: fastTree(Graph)

Vector fastTreeSupplyNodeSet=graph.getSupplyNodeSet();
Node tempFastTreeSupply;

Vector fastTreeDemandNodeSet=graph.getDemandNodeSet();

Node tempFastTreeDemand;

Graph tempFastPath;

Vector tempFastPathNodeSet;
Node tempFastPathNode;
Vector tempFastPathEdgeSet;
Edge tempFastPathEdge;

Vector tempFastTreeNodeSet;

Vector tempFastTreeEdgeSet;
for(int i=0;i<fastTreeSupplyNodeSet.size();i++){

tempFastTreeNodeSet=new Vector();

tempFastTreeEdgeSet=new Vector();
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tempFastTreeSupply=(Node)fastTreeSupplyNodeSet.elementAt(i);
if('tempFastTreeNodeSet.contains(tempFastTreeSupply))
tempFastTreeNodeSet.addElement(tempFastTreeSupply);

for(int j=0;j<fastTreeDemandNodeSet.size();j++ )X

tempFastTreeDemand=(Node)fastTreeDemandNodeSet.elementAt(j);

/[fast paths with different demands of the same supply
if(fastCenter[tempFastTreeDemand.getLabel()][1]==tempFastTreeSupply
tempFastPath=(Graph)fastCenter[tempFastTreeDemand.getLabel()][0];
tempFastPathEdgeSet=tempFastPath.getEdgeSet();
for(int k=0;k<tempFastPathEdgeSet.size();k++){
tempFastPathEdge=(Edge)tempFastPathEdgeSet.elementAt(k);
if('tempFastTreeEdgeSet.contains(tempFastPathEdge)){
tempFastTreeEdgeSet.addElement(tempFastPathEdge);

tempFastPathNodeSet=tempFastPath.getNodeSet();
for(int k=0;k<tempFastPathNodeSet.size();k++){
tempFastPathNode=(Node)tempFastPathNodeSet.elementAt(k);
if('tempFastTreeNodeSet.contains(tempFastPathNode) X
tempFastTreeNadeSet:addElement(tempFastPathNode);

}
maCenter[tempFastTreeSupply.getLabel()][0]=new

Graph(tempFastTreeNodeSet,tempFastTreeEdgeSet);

/ImaCenter[supply][5]: within territory supply-demand ratio(Double)
if(getFastTree(tempFastTreeSupply).getDemandNodeNum()!=0){

this.setTerritorySDR(tempFastTreeSupply,1.0/getFastTree(tempFastTreeSupply).getDemandNodeNum());

telse{

this.setTerritorySDR(tempFastTreeSupply,1.0);

/[fast center finished!

/ffinalization

137



Vector edgeSet=graph.getEdgeSet();
Edge clearEdge;
for(int i=0;i<edgeSet.size();i++ )X
clearEdge=(Edge)edgeSet.elementAt(i);
if(IclearEdge.isFastEdge())
clearEdge.setNeutralEdge();

void startDetourCenter(){
/ldetourCenter
try{
sleep(1);
}catch(InterruptedException ex){

/ldetour center cannot sleep!

detourCenterFinish=false;

Vector supplyNodeSet=graph.getSupplyNodeSet();

Node tempSupply;

for(int i=0;i<supplyNodeSet.size();i++){
tempSupply=(Node)supplyNodeSet.elementAt(i);
new DetourManager(i,this,tempSupply).start();

while(!detourCenterFinish){
//detour center waiting for detour managers finish their jobs

}

/ldetour center finished!

void startMutualAssistanceCenter(){
try{
sleep(1);
}catch(InterruptedException ex){

/Imutual assistance center cannot sleep!

/lwhere are supply nodes:
Vector nodeSet=graph.getNodeSet();
Node tempNode;
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for(int i=0;i<nodeSet.size();i++ )X

tempNode=(Node)nodeSet.elementAt(i);

/linitialization
Vector edgeSet=graph.getEdgeSet();
Edge tempEdge;
for(int i=0;i<edgeSet.size();i++ )X
tempEdge=(Edge)edgeSet.elementAt(i);
if('tempEdge.isFastEdge() && !tempEdge.isDetourEdge())
tempEdge.setNeutralEdge();

maCenterFinish=false;

Vector supplyNodeSet=graph.getSupplyNodeSet();

Node tempSupply;

for(int i=0;i<supplyNodeSet.size();i++){
tempSupply=(Node)supplyNodeSet.elementAt(i);
new MAManager(i,this,tempSupply).start();

while(!maCenterFinish){

/Ima center waiting for detour managers finish their jobs

/lemnet
Vector emnetNodeSet=new Vector();

Vector emnetEdgeSet=new Vector();
Graph tempTerritory;

Vector tempTerritoryNodeSet;
Vector tempTerritoryEdgeSet;

Graph tempMAPath;

Vector tempMAPathNodeSet;

Vector tempMAPathEdgeSet;

for(int i=0;i<supplyNodeSet.size();i++){
tempSupply=(Node)supplyNodeSet.elementAt(i);

tempTerritory=this.getTerritory(tempSupply);
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tempTerritoryNodeSet=tempTerritory.getNodeSet();
tempTerritoryEdgeSet=tempTerritory.getEdgeSet();

emnetNodeSet=GraphAlgorithm.union(emnetNodeSet,tempTerritoryNodeSet);
emnetEdgeSet=GraphAlgorithm.union(emnetEdgeSet,tempTerritoryEdgeSet);

tempMAPath=this.getMAPath(tempSupply);
tempMAPathNodeSet=tempMAPath.getNodeSet();
tempMAPathEdgeSet=tempMAPath.getEdgeSet();

emnetNodeSet=GraphAlgorithm.union(emnetNodeSet,tempMAPathNodeSet);
emnetEdgeSet=GraphAlgorithm.union(emnetEdgeSet,tempMAPathEdgeSet);
}

emnet=new Graph(emnetNodeSet,emnetEdgeSet);

//ma center finished!
/ffinalization
for(int i=0;i<edgeSet.size();i++ )
tempEdge=(Edge)edgeSet.elementAt(i);
if(tempEdge.isFastEdge() && !tempEdge.isDetourEdge() && 'tempEdge.isMAEdge())
tempEdge.setNeutralEdge();
}

/Ima center closed!

void startOutputReport(){
/ImaCenter[supply][6]: mutual assistant supply-demand ratio(Double)
double 1d=0.0;
Vector supplyNodeSet=graph.getSupplyNodeSet();
Node tempSupply;
Vector tempFastTreeEdgeSet;
Edge tempRuinedEdge;
for(int i=0;i<supplyNodeSet.size();i++){
tempSupply=(Node)supplyNodeSet.elementAt(i);
tempFastTreeEdgeSet=this.getFastTree(tempSupply).getEdgeSet();
for(int j=0;j<tempFastTreeEdgeSet.size();j++){
tempRuinedEdge=(Edge)tempFastTreeEdgeSet.elementAt(j);
if(this.getSystematicDetourCost(tempRuinedEdge)>Id)
Id=this.getSystematicDetourCost(tempRuinedEdge);

}
frame.setLD(Id);
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double mac=0.0;

for(int i=0;i<supplyNodeSet.size();i++){
tempSupply=(Node)supplyNodeSet.elementAt(i);
mac=mac+this.getMACost(tempSupply);

}

frame.setAMAC(mac/supplyNodeSet.size());

frame.setNC(GraphAlgorithm.networkCost(emnet));

double fastCost=0.0;

double maxFastCost=0.0;

Vector demandNodeSet=graph.getDemandNodeSet();
Node tempDemand;

for(int i=0;i<demandNodeSet.size();i++){

tempDemand=(Node)demandNodeSet.elementAt(i);

if(getFastCost(tempDemand)>maxFastCost)

maxFastCost=getFastCost(tempDemand);

fastCost=fastCost+this.getFastCost(tempDemand);
}
frame.setATC(fastCost/demandNodeSet:size());

frame.setMTC(maxFastCost);

/lcenter field:
public synchronized Graph getGraph(){

return this.graph;

public synchronized boolean isFinished(){

return this.finish;

void sendRoamer(){
Node supply;
for(int i=0;i<this.graph.getSupplyNodeSet().size();i++)
supply=(Node)this.graph.getSupplyNodeSet().elementAt(i);
roamerCenter[i][0]=supply;

new Roamer(i,supply,this).start();
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public Node getDummyNode(){

return this.dummyNode;

public synchronized void takeKey(Roamer roamer){
if(Mfinish){
while(lavailable){
try{
/roamer is waiting to take!
wait(1);
}catch(InterruptedException e){

/ltakeKey: cannot wait!

}

/[roamer took the key!

available=false;
telse{

available=false;

/lroamer took the key, but center is finished!

public synchronized void putKey(Roamer roamer){
if(Mfinish){
while(available){
try{
/roamer is waiting to put...
wait(1);
}catch(InterruptedException e){

/IputKey: cannot wait!

}

/lroamer put the key!
available=true;
telse{
/lroamer put the key & center is already finished!

available=true;

//detour manager take key
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public synchronized void takeKey(DetourManager dmr){
if('detourCenterFinish){
while(lavailable){
try{
//dmr is waiting to take!
wait(1);
}catch(InterruptedException e){

/ltakeKey: cannot wait!

}

/l[dmr took the key!

available=false;
telse{

available=false;

//[dmr took the key, but detour center is finished!

public synchronized void putKey(DetourManager dmr){
if('detourCenterFinish){
while(available){
try{
/ldmr is waiting to put...
wait(1);
}catch(InterruptedException e){

/IputKey: cannot wait!

}
/l[dmr put the key!
available=true;
telse{
/ldmr put the key! detour center is already finished!

available=true;

//ma manager take key
public synchronized void takeKey(MAManager maMr){
if(lmaCenterFinish){
while(lavailable){

try{
//maMr is waiting to take!
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wait(1);
}catch(InterruptedException e){

/ltakeKey: cannot wait!

}
//maMr took the key!

available=false;
telse{
available=false;

/ImaMr took the key but maCenter is already finished!

public synchronized void putKey(MAManager maMr){
if(lmaCenterFinish){
while(available){
try{
//maMr is waiting to put...
wait(1);
}catch(InterruptedException €){

/IputKey: cannot wait!

}
//maMr put the key!

available=true;
telse{
//maMr put the key! and maCenter already finished!

available=true;

public void updateDetourCondition(){
detourManagerNum--;
if(detourManagerNum==0)

detourCenterFinish=true;

public void updateMACondition(){
maManagerNum--;
iflmaManagerNum==0)

maCenterFinish=true;

144



/InodeCenter method:

/InodeCenter[node][0]: occupy(Boolean)

public synchronized void setOccupy(Node node,boolean occupy){
nodeCenter[node.getLabel()][0]=new Boolean(occupy);
notifyAll();

/InodeCenter[node][1]: distance(Double)
public synchronized void setDistance(Node node,double distance){

nodeCenter[node.getLabel()][1]=new Double(distance);

public synchronized double getDistance(Node node){
Double distance=(Double)nodeCenter[node.getLabel()][1];

return distance.doubleValue();

/InodeCenter[node][2]: preNode(Node)
public synchronized void setPreNode(Node node,Node preNode){

nodeCenter[node.getLabel()][2]=preNode;

public synchronized Node getPreNode(Node node){
Node preNode=(Node)nodeCenter[node.getLabel()][2];

return preNode;

/InodeCenter[node][3]: preEdge(Edge)
public synchronized void setPreEdge(Node node,Edge preEdge){
nodeCenter[node.getLabel()][3]=preEdge;

public synchronized Edge getPreEdge(Node node){
Edge preEdge=(Edge)nodeCenter[node.getLabel()][3];

return preEdge;

/InodeCenter[node][4]: visitorSequence(Vector)
public synchronized void addViditor(Node node,Roamer roamer){
Vector visitorSequence=(Vector)nodeCenter[node.getLabel()][4];

if(lvisitorSequence.contains(roamer))
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visitorSequence.addElement(roamer);

nodeCenter[node.getLabel()][4]=visitorSequence;

public synchronized Vector getVisitorSequence(Node node){
Vector visitorSequence=(Vector)nodeCenter[node.getLabel()][4];

return visitorSequence;

public synchronized int getVisitorNum(Node node){
Vector visitorSequence=(Vector)nodeCenter[node.getLabel()][4];
int visitorNum=visitorSequence.size();

return visitorNum;

public synchronized Roamer lastVisitor(Node node){
Vector visitorSequence=(Vector)nodeCenter[node.getLabel()][4];
Roamer lastVisitor=(Roamer)visitorSequence.lastElement();

return lastVisitor;

/InodeCenter[node][5]: supply(Node)
public Node getSupply(Node node){
return (Node)nodeCenter[node.getLabel()][5];

/[roamerCenter method:
/froamerCenter[roamer][0]: myNode(Node)
public synchronized void setMyNode(Roamer roamer,Node myNode}{

roamerCenter[roamer.getID()][0]=myNode;

public synchronized Node getMyNode(Roamer roamer){
Node myNode=(Node)roamerCenter[roamer.getID()][0];

return myNode;

/[roamerCenter[roamer][1]: myEdge(Edge)
public synchronized void setMyEdge(Roamer roamer,Edge myEdge}{

roamerCenter[roamer.getID()][1]=myEdge;
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public synchronized Edge getMyEdge(Roamer roamer){
Edge myEdge=(Edge)roamerCenter[roamer.getID()][1];

return myEdge;

/IroamerCenter[roamer][2]: currNode(Node)
public synchronized void setCurrNode(Roamer roamer,Node currNode }{

roamerCenter[roamer.getID()][2]=currNode;

public synchronized Node getCurrNode(Roamer roamer){
Node currNode=(Node)roamerCenter[roamer.getID()][2];

return currNode;

/froamerCenter[roamer][3]: routeSet(Graph)
public synchronized void setRouteSet(Roamer roamer,Graph routeSet){

roamerCenter[roamer.getlD()][3]=routeSet;

public synchronized void setRouteSet(Roamer roamer,VectorrouteNodeSet,Vector routeEdgeSet){

roamerCenter[roamer.getID()][8]=new Graph(routeNodeSet,routeEdgeSet);

public synchronized Graph getRouteSet(Roamer roamer){
Graph routeSet=(Graph)roamerCenter[roamer.getID()][3];

return routeSet;

public synchronized Vector getRouteNodeSet(Roamer roamer){
Graph routeSet=(Graph)roamerCenter[roamer.getID()][3];
Vector routeNodeSet=routeSet.getNodeSet();

return routeNodeSet;

public synchronized Vector getRouteEdgeSet(Roamer roamer){
Graph routeSet=(Graph)roamerCenter[roamer.getID()][3];
Vector routeEdgeSet=routeSet.getEdgeSet();

return routeEdgeSet;

public synchronized void addEdge(Roamer roamer,Edge edge){
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Graph routeSet=this.getRouteSet(roamer);
Vector routeNodeSet=routeSet.getNodeSet();
Vector routeEdgeSet=routeSet.getEdgeSet();
if(IrouteEdgeSet.contains(edge))
routeEdgeSet.addElement(edge);

this.setRouteSet(roamer,routeNodeSet,routeEdgeSet);

public synchronized void addNode(Roamer roamer,Node node){
Graph routeSet=this.getRouteSet(roamer);
Vector routeNodeSet=routeSet.getNodeSet();
Vector routeEdgeSet=routeSet.getEdgeSet();
if(IrouteNodeSet.contains(node))
routeNodeSet.addElement(node);

this.setRouteSet(roamer,routeNodeSet,routeEdgeSet);

public synchronized void removeEdge(Roamer roamer,Edge edge {
Graph routeSet=this.getRouteSet(roamer);
Vector routeNodeSet=routeSet.getNodeSet();
Vector routeEdgeSet=routeSet.getEdgeSet();
if(routeEdgeSet.contains(edge)){
routeEdgeSet.removeElement(edge);

}

this.setRouteSet(roamer,routeNodeSet,routeEdgeSet);

public synchronized void removeSubtree(Roamer roamer,Graph subtree){
Graph routeSet=(Graph)this.roamerCenter[roamer.getID()][3];
Vector tempNodeSet1=routeSet.getNodeSet();
Vector tempEdgeSet1=routeSet.getEdgeSet();
Vector tempNodeSet2=subtree.getNodeSet();
Vector tempEdgeSet2=subtree.getEdgeSet();

Node tempNode;
for(int i=0;i<tempNodeSet2.size();i++){
tempNode=(Node)tempNodeSet2.elementAt(i);

boolean nodeExist=tempNodeSet1.removeElement(tempNode);

Edge tempEdge;
for(int i=0;i<tempEdgeSet2.size();i++){
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tempEdge=(Edge)tempEdgeSet2.elementAt(i);

boolean edgeExist=tempEdgeSet1.removeElement(tempEdge);

public synchronized void addSubtree(Roamer roamer,Graph subtree)}{

Graph visitedRouteSet=(Graph)this.roamerCenter[roamer.getID()][3];

Vector tempNodeSet1=visitedRouteSet.getNodeSet();

Vector tempEdgeSet1=visitedRouteSet.getEdgeSet();

Vector tempNodeSet2=subtree.getNodeSet();

Vector tempEdgeSet2=subtree.getEdgeSet();

Node tempNode;

for(int i=0;i<tempNodeSet2.size();i++){
tempNode=(Node)tempNodeSet2.elementAt(i);
if(tempNodeSet1.contains(tempNode) ¥
telse{

tempNodeSet1.addElement(tempNode);

Edge tempEdge;

for(int i=0;i<tempEdgeSet2.size();i++){
tempEdge=(Edge)tempEdgeSet2.elementAt(i);
if(tempEdgeSet1.contains(tempEdge)){
telse{

tempEdgeSet1.addElement(tempEdge);

/lfastCenter
/[fastCenter[demand][0]: fastPath(Graph)
/[fastCenter[demand][1]: supply(Node)
/[fastCenter[demand][2]: fastPathLength(Double)
public double getFastCost(Node demand){
Double fastCost=(Double)fastCenter[demand.getLabel()][2];

return fastCost.doubleValue();

//detourCenter[edge][0]: downstream(Graph)
public void setDownstream(Edge ruinedEdge,Graph downstream){

detourCenter[ruinedEdge.getLabel()][0]=downstream;
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}

public Graph getDownstream(Edge ruinedEdge){
return (Graph)detourCenter[ruinedEdge.getLabel()][0];

//detourCenter[edge][1]: upstream(Graph)
public void setUpstream(Edge ruinedEdge,Graph upstream){
detourCenter[ruinedEdge.getLabel()][1]=upstream;

public Graph getUpstream(Edge ruinedEdge{
return (Graph)detourCenter[ruinedEdge.getLabel()][1];

//detourCenter[edge][2]: mergeNode(Node)
public void setMergeNode(Edge ruinedEdge,Node mergeNode){
detourCenter[ruinedEdge.getLabel()][2]=mergeNode;

public Node getMergeNode(Edge ruinedEdge){
return (Node)detourCenter[ruinedEdge.getLabel()][2];

//detourCenter[edge][3]: accessNode(Node)
public void setAccessNode(Edge ruinedEdge,Node accessNode){

detourCenter[ruinedEdge.getLabel()][3]=accessNode;

public Node getAccessNode(Edge ruinedEdge){
return (Node)detourCenter[ruinedEdge.getLabel()][3];

//detourCenter[edge][4]: detourPath(Graph)
public void setDetourPath(Edge ruinedEdge,Graph detourPath){
detourCenter[ruinedEdge.getLabel()][4]=detourPath;

public Graph getDetourPath(Edge ruinedEdge){
return (Graph)detourCenter[ruinedEdge.getLabel()][4];
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//detourCenter[edge][5]: systematicDetourCost(Double)
public void setSystematicDetourCost(Edge ruinedEdge,double sdc){
detourCenter[ruinedEdge.getLabel()][5]=new Double(sdc);

public double getSystematicDetourCost(Edge ruinedEdge{
Double tempDouble=(Double)detourCenter[ruinedEdge.getLabel()][5];

return tempDouble.doubleValue();

//detourCenter[edge][6]: mergeCost(Vector)
public void setMergeCost(Edge ruinedEdge,double cost){
detourCenter[ruinedEdge.getLabel()][6]=new Double(cost);

public double getMergeCost(Edge ruinedEdge{
Double mergeCost=(Double)detourCenter[ruinedEdge.getLabel()][6];

return mergeCost.doubleValue();

/ImaCenter
/ImaCenter[supply][0]: fastTree(Graph)
public Graph getFastTree(Node supply){
return (Graph)maCenter[supply.getltabel()][0];

/ImaCenter[supply][1]: territory(Graph) 2ECON
public synchronized void setTerritory(Node supply,Graph territory){
maCenter[supply.getLabel()][1]=territory;

public Graph getTerritory(Node supply){
return (Graph)maCenter[supply.getLabel()][1];

/ImaCenter[supply][2]: source(Node)
public synchronized void setSource(Node supply,Node source){

maCenter[supply.getLabel()][2]=source;

public Node getSource(Node supply){
return (Node)maCenter[supply.getLabel()][2];

151



}

/ImaCenter[supply][3]: icpSet(Vector)
public synchronized void setICPSet(Node supply,Vector icpSet)
maCenter[supply.getLabel()][3]=icpSet;

public Vector getICPSet(Node supply
return (Vector)maCenter[supply.getLabel()][3];

public int getiCPNum(Node supply){
Vector icpSet=(Vector)maCenter[supply.getLabel()][3];

return icpSet.size();

/ImaCenter[supply][4]: maPath(Graph)
public synchronized void setMAPath(Node supply,GraphimaPath){
maCenter[supply.getLabel()][4]=maPath;

public Graph getMAPath(Node supply
return (Graph)maCenter[supply.getLabel()][4];

/ImaCenter[supply][5]: within territory supply-demand ratio(Double)
public synchronized void setTerritorySDR(Node supply,double territorySDR){
maCenter[supply.getLabel()][5]=new Double(territorySDR);

public double getTerritorySDR(Node supply
Double territorySDR=(Double)maCenter[supply.getLabel()][5];
return territorySDR.doubleValue();

/ImaCenter[supply][6]: mutual assistant supply-demand ratio(Double)
public synchronized void setMAsdr(Node supply,double maSDR)
maCenter[supply.getLabel()][6]=new Double(maSDR);

public double getMAsdr(Node supply){
Double maSDR=(Double)maCenter[supply.getLabel()][6];
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return maSDR.doubleValue();

/ImaCenter[supply][7]: maCost > source to supply

/lincluding maPath cost & merge cost with respect to territory demandNum

public synchronized void setMACost(Node supply,double maCost){
maCenter[supply.getLabel()][7]=new Double(maCost);

public double getMACost(Node supply){
Double maCost=(Double)maCenter[supply.getLabel()][7];

return maCost.doubleValue();
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package emnet.thread;

import emnet.graph.Node;

import emnet.graph.Graph;

import java.util.Vector;

import emnet.graph.Edge;

import emnet.algorithm.GraphAlgorithm;

public class Detourist extends Thread{
intid;
Node start,supply,access;
DetourManager dmr;

Center center;

Node currNode,preNode,myNode;
Edge preEdge,myEdge,currRuinedEdge;
Graph usableGraph,downstream,upstream,bridge,routeSet,detourPath;

Vector routeNodeSet,routeEdgeSet,upstreamNodeSet;

int downstreamDemandNum;

double mergeCost,systematicDetourCost;

boolean detouristFinish;

public Detourist(int id,Node start,DetourManager dmr){
super(""'+id);
this.id=id;
this.start=start;
this.dmr=dmr;

center=dmr.getCenter();

supply=dmr.getSupply();

int edgeNum=dmr.getGraph().getEdgeSet().size();

Node dummyNode=this.center.getDummyNode();
dummyNode.setDummy();

Edge dummyEdge=new Edge(edgeNum,start,dummyNode,0.0);
dummyEdge.setDummyEdge();

dmr.getGraph().addNode(dummyNode);
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dmr.getGraph().addEdge(dummyEdge);

Vector routeNodeSet=new Vector();
routeNodeSet.addElement(dummyNode);

Vector routeEdgeSet=new Vector();
routeEdgeSet.addElement(dummyEdge);
dmr.setRouteSet(this,routeNodeSet,routeEdgeSet);

dmr.setMyNode(this,dummyNode);
dmr.setMyEdge(this,dummyEdge);

dmr.setCurrNode(this,start);

Vector nodeSet=dmr.getGraph().getNodeSet();

Vector edgeSet=dmr.getGraph().getEdgeSet();

Vector usableEdgeSet=new Vector();

Edge tempEdge;

for(int i=0;i<edgeSet.size();i++)
tempEdge=(Edge)edgeSet.elementAt(i);
if(tempEdge!=dmr.getCurrRuinedEdge())

usableEdgeSet.addElément(tempEdge);

}
usableGraph=new Graph(nodeSet,usableEdgeSet);

downstream=dmr.getCurrDownstream();
upstream=dmr.getCurrUpstream();

upstreamNodeSet=upstream.getNodeSet();

currRuinedEdge=dmr.getCurrRuinedEdge();
downstreamDemandNum=dmr.getDownstreamDemandNum();
mergeCost=GraphAlgorithm.getMergeCost(this,start);

systematicDetourCost=0.0;
dmr.setCurrDetourCost(this,dmr.getMyNode(this),mergeCost);
dmr.setPreNode(this,start,dummyNode);
dmr.setPreEdge(this,start,dummyEdge);

detouristFinish=false;

public int getID()}

return id;
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public Graph getUsableGraph(){

return usableGraph;

public Graph getDownstream(){

return downstream;

public Graph getUpstream()}{

return upstream;

public DetourManager getDetourManager(){

return dmr;

public Center getCenter(){

return center;

public Node getMergeNode(){

return start;

public Node getAccessNode(){

return access;

public Edge getRuinedEdge(){

return currRuinedEdge;

public double getMergeCost(}

return mergeCost;

public double getSystematicDetourCost(){

return systematicDetourCost;

public Graph getDetourPath(){
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return detourPath;

public void run(){
dmr.takeKey(this);

/l::map init::
Vector edgeSet=center.getGraph().getEdgeSet();
Edge tempEdge;
for(int i=0;i<edgeSet.size();i++ )
tempEdge=(Edge)edgeSet.elementAt(i);
if('tempEdge.isFastEdge() && !ltempEdge.isDetourEdge() && !tempEdge.isMAEdge())
tempEdge.setNeutralEdge();
}

[/l::map init::

detouring:
while(!detouristFinish){
if(dmr.getCurrNode(this)==supply){
double
sdc=dmr.getCurrDetourCost(this,dmr.getMyNode(this))+dmr.getMyEdge(this).getWeight()*downstreamDemandNum;
dmr.setCurrDetourCost(this,dmr.getCurrNode(this),sdc);

dmr.addNode(this,supply);
dmr.addEdge(this,dmr.getMyEdge(this));

dmr.setPreNode(this,supply,dmr.getMyNode(this));
dmr.setPreEdge(this,supply,dmr.getMyEdge(this));

dmr.updatMinSDC(this,dmr.getCurrDetourCost(this,dmr.getSupply()));
dmr.getMyEdge(this).setDetourTestEdge(true);

break detouring;

lelse if(dmr.getMinSDC(this)!=0.0 &&

dmr.getMinSDC(this)<dmr.getCurrDetourCost(this,dmr.getMyNode(this)) )

/lsome detourist has already found a shorter detour path
break detouring;

telse{
dmr.addNode(this,dmr.getCurrNode(this));
dmr.addEdge(this,dmr.getMyEdge(this));
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dmr.setPreNode(this,dmr.getCurrNode(this),dmr.getMyNode(this));
dmr.setPreEdge(this,dmr.getCurrNode(this),dmr.getMyEdge(this));

double
sdc=dmr.getCurrDetourCost(this,dmr.getMyNode(this))+dmr.getMyEdge(this).getWeight()*downstreamDemandNum;
dmr.setCurrDetourCost(this,dmr.getCurrNode(this),sdc);

dmr.getMyEdge(this).setDetourTestEdge(true);
dmr.setMyNode(this,dmr.getCurrNode(this));

/ffind currEdge & currNode, assign new myNode
dijkstra(null);

try{
sleep(1);
}catch(InterruptedException ex){

}

/Iset access node

Vector detourPathNodeSet=new Vector(),detourPathEdgeSet=new Vector();
Node tempCurrNode=dmr.getSupply();
detourPathNodeSet.addElement(tempCurrNode);

Edge tempPreEdge;
Node n1,n2;
do{
tempPreEdge=dmr.getPreEdge(this,tempCurrNode);

if('detourPathEdgeSet.contains(tempPreEdge))
detourPathEdgeSet.addElement(tempPreEdge);

n1=tempPreEdge.getN1();
n2=tempPreEdge.getN2();

if(ldetourPathNodeSet.contains(n1))

detourPathNodeSet.addElement(n1);
if(ldetourPathNodeSet.contains(n2))
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detourPathNodeSet.addElement(n2);

if(lupstreamNodeSet.contains(n1) && lupstreamNodeSet.contains(n2)){
access=n1;

lelse if(upstreamNodeSet.contains(n2) && lupstreamNodeSet.contains(n1)){
access=n2;

telse{

access=null;

tempCurrNode=dmr.getPreNode(this,tempCurrNode);

twhile(tempCurrNode!=start);

if(ldetourPathNodeSet.contains(start))
detourPathNodeSet.addElement(start);

/Iset detourPath
detourPath=new Graph(detourPathNodeSet,detourPathEdgeSet);

/Iset sdc
systematicDetourCost=dmr.getCurrDetourCost{(this,supply);

dmr.setSystematicDetourCost(this,systematicDetourCost);

dmr.updateCurrRuinedEdgeFinish();

dmr.updateDetourCenter(this);

dmr.putKey(this);

void dijkstra(Edge canceledEdge){

/ffind out the best incident edge
//define new myEdge & currNode

Vector tempRouteNodeSet=(Vector)dmr.getRouteNodeSet(this);

Vector incidentEdgeSet=GraphAlgorithm.getincidentEdges(this,tempRouteNodeSet);

Vector exclusivelncidentEdgeSet=new Vector();

for(int i=0;i<incidentEdgeSet.size();i++){
if(ldmr.getRouteEdgeSet(this).contains(incidentEdgeSet.elementAt(i))){

exclusivelncidentEdgeSet.addElement(incidentEdgeSet.elementAt(i));
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Edge tempEdge;
Node n1,n2;

if(exclusivelncidentEdgeSet.size()>1){

tempEdge=(Edge)exclusivelncidentEdgeSet.elementAt(0);

dmr.setMyEdge(this,tempEdge);

n1=tempEdge.getN1();

n2=tempEdge.getN2();

if(tempRouteNodeSet.contains(n1) && !tempRouteNodeSet.contains(n2)){
dmr.setMyNode(this,n1);
dmr.setCurrNode(this,n2);

}lelse if(tempRouteNodeSet.contains(n2) && !tempRouteNodeSet.contains(n1)){
dmr.setMyNode(this,n2);
dmr.setCurrNode(this,n1);

telse{

/[dijkstra error 1: not incident edge! check GraphAlgorithm.getincidentEdgeSet()

double

min=dmr.getCurrDetourCost(this,dmr.getMyNode(this))+dmr.getMyEdge(this).getWeight()*downstreamDemandNum;

for(int i=1;i<exclusivelncidentEdgeSet:.size();i++)
tempEdge=(Edge)exclusivelncidentEdgeSet.elementAt(i);
n1=tempEdge.getN1();
n2=tempEdge.getN2();
if(tempRouteNodeSet.contains(n1) && !tempRouteNodeSet.contains(n2)){
if((dmr.getCurrDetourCost(this,n1)+tempEdge.getWeight()*downstreamDemandNum)<min){
min=dmr.getCurrDetourCost(this,n1)+tempEdge.getWeight()*downstreamDemandNum;
dmr.setMyEdge(this,tempEdge);
dmr.setMyNode(this,n1);
dmr.setCurrNode(this,n2);
}
}else if(tempRouteNodeSet.contains(n2) && ltempRouteNodeSet.contains(n1)){
if((dmr.getCurrDetourCost(this,n2)+tempEdge.getWeight()*downstreamDemandNum)<min){
min=dmr.getCurrDetourCost(this,n2)+tempEdge.getWeight()*downstreamDemandNum;
dmr.setMyEdge(this,tempEdge);
dmr.setMyNode(this,n2);
dmr.setCurrNode(this,n1);
}
else{

//dijkstra error 2: incident edge error!
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}

lelse if(exclusivelncidentEdgeSet.size()==1)
tempEdge=(Edge)exclusivelncidentEdgeSet.elementAt(0);
dmr.setMyEdge(this,tempEdge);
n1=tempEdge.getN1();
n2=tempEdge.getN2();
if(tempRouteNodeSet.contains(n1) && !tempRouteNodeSet.contains(n2)){
dmr.setMyNode(this,n1);
dmr.setCurrNode(this,n2);
lelse if(tempRouteNodeSet.contains(n2) && !tempRouteNodeSet.contains(n1)){
dmr.setMyNode(this,n2);
dmr.setCurrNode(this,n1);
telse{
/[dijkstra error 3: not incident edge! check GraphAlgorithm.getincidentEdgeSet()
}

telse{
detouristFinish=true;

/Irenders all nodes visited
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package emnet.thread;

import emnet.graph.Node;

import emnet.graph.Graph;

import java.util.Vector;

import emnet.graph.Edge;

import emnet.algorithm.GraphAlgorithm;

public class DetourManager extends Thread{

intid;

Center center;

Node supply;

Graph graph,fastTree,territory;

Vector edgeSet,nodeSet,fastTreeEdgeSet,fastTreeNodeSet,detourists,territoryNodeSet, territoryEdgeSet;

int detouristNum,downstreamDemandNum;

/InodeDept

/InodeDept[detourist][node][0]: currDetourDist
/InodeDept[detourist][node][1]: preNode
/InodeDept[detourist][node][2]: preEdge
Object[][][] nodeDept;

/ldetourDept

//detourDept[detourist][0]: myNode(Node)
//detourDept[detourist][1]: myEdge(Edge)
//detourDept[detourist][2]: currNode(Node)
//detourDept[detourist][3]: routeSet(Graph)
//detourDept[detourist][4]: detourLength(Double)
//deoutrDept[detourist][5]: bridge(Graph)
Object[][] detourDept;

/IsdcDept

//sdcDept[ruinedEdge][0]: minSDC
Object[][] sdcDept;

Edge currRuinedEdge;

Graph currUpstream,currDownstream;

Vector currDownstreamNodeSet;

boolean currRuinedEdgeFinish,available;
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/lone manager controls one territory

public DetourManager(int id,Center center,Node supply){
this.id=id;
this.center=center;

this.supply=supply;

graph=center.getGraph();
edgeSet=graph.getEdgeSet();
nodeSet=graph.getNodeSet();

fastTree=center.getFastTree(supply);
fastTreeEdgeSet=fastTree.getEdgeSet();
fastTreeNodeSet=fastTree.getNodeSet();

I detouristNum=fastTreeNodeSet.size();

nodeDept=new Object[fastTreeNodeSet.size()j[nodeSet.size()][3];
detourDept=new Object[fastTreeNodeSet.size()][6];

if(fastTreeEdgeSet.size()!=0){
Edge tempFastTreeEdge=(Edge)fastTreeEdgeSet.elementAt(0);
int maxEdgelLabel=tempFastTreeEdge:getLabel();
for(int j=1;j<fastTreeEdgeSet.size();j++){
tempFastTreeEdge=(Edge)fastTreeEdgeSet.elementAt(j);
if(tempFastTreeEdge.getLabel()>maxEdgeLabel)
maxEdgelLabel=tempFastTreeEdge.getLabel();

}
sdcDept=new Object[maxEdgeLabel+1][1];

public void run(){

if(fastTreeEdgeSet==null){
center.updateDetourCondition();
destroy();

}

center.takeKey(this);

for(int i=0;i<fastTreeEdgeSet.size();i++){
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/linitialization
currRuinedEdgeFinish=false;

available=true;

for(int j=0;j<fastTreeNodeSet.size();j++){
Node tempNode;
for(int k=0;j<fastTreeNodeSet.size();j++)
tempNode=(Node)fastTreeNodeSet.elementAt(j);
nodeDept[jl[tempNode.getLabel()][0]=new Double(0.0);

for(int j=0;j<detouristNum;j++){
detourDept[j][0]=null;
detourDept[j][1]=null;
detourDept[j][2]=null;
detourDept[j][3]=null;
detourDept[j][4]=new Double(0.0);
detourDept[j][5]=null;

Edge tempFastTreeEdge;

for(int j=0;j<fastTreeEdgeSet.size();j++){
tempFastTreeEdge=(Edge)fastTreeEdgeSet.elementAt(j);
sdcDept[tempFastTreeEdge.getLabel()][0]=new Double(0.0);

currRuinedEdge=(Edge)fastTreeEdgeSet.elementAt(i);
currUpstream=GraphAlgorithm.getSubtreeWithSupply(fastTree,currRuinedEdge);
currDownstream=GraphAlgorithm.getSubtreeWithoutSupply(fastTree,currRuinedEdge);
currDownstreamNodeSet=currDownstream.getNodeSet();

detouristNum=currDownstreamNodeSet.size();

Node tempNode;

downstreamDemandNum=0;

for(int k=0;k<currDownstreamNodeSet.size();k++){
tempNode=(Node)currDownstreamNodeSet.elementAt(k);
if(tempNode.isDemand())

downstreamDemandNum++;

/lone detourist tests from one node when one currRuinedEdge is simulated
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Detourist tempDetourist;

detourists=new Vector();

for(int j=0;j<currDownstreamNodeSet.size();j++){
tempNode=(Node)currDownstreamNodeSet.elementAt(j);
tempDetourist=new Detourist(j,tempNode,this);
detourists.addElement(tempDetourist);

tempDetourist.start();

//dmr waiting the currRuinedEdge finish
while(!currRuinedEdgeFinish){
}

/lcurrRuinedEdge finish: all situations simulated

//set detour edges on the shortest detour route

Detourist bestDetourist=(Detourist)detourists.elementAt(0);

Detourist tempDetourist1;

double minSDC=bestDetourist.getSystematicDetourCost();

for(int j=1;j<detourists.size();j++){
tempDetourist1=(Detourist)detourists.elementAt();
if(tempDetourist1.getSystematicDetourCost()<minSDC )

minSDC=tempDetourist1.getSystematicDetourCost();

bestDetourist=tempDetouristT;

Vector bestDetourPathEdgeSet=bestDetourist.getDetourPath().getEdgeSet();

Edge tempEdge1;

for(int j=0;j<bestDetourPathEdgeSet.size();j++){
tempEdge1=(Edge)bestDetourPathEdgeSet.elementAt(j);
tempEdge1.setDetourEdge();

/I::maCenter[supply][1]: territory(Graph) 2ECON::

Graph territory=fastTree;

Edge tempRuinedEdge;

Graph tempDetourPath;

Vector tempDetourPathNodeSet,tempDetourPathEdgeSet;
Node tempDetourPathNode;

Edge tempDetourPathEdge;

for(int i=0;i<fastTreeEdgeSet.size();i++){
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tempRuinedEdge=(Edge)fastTreeEdgeSet.elementAt(i);
tempDetourPath=center.getDetourPath(tempRuinedEdge);
if(tempDetourPath!=null){
tempDetourPathNodeSet=tempDetourPath.getNodeSet();
tempDetourPathEdgeSet=tempDetourPath.getEdgeSet();
if(tempDetourPathNodeSet!=null){
for(int j=0;j<tempDetourPathNodeSet.size();j++)
tempDetourPathNode=(Node)tempDetourPathNodeSet.elementAt(j);
if(territory.hasNode(tempDetourPathNode))
territory.addNode(tempDetourPathNode);

}
if(tempDetourPathEdgeSet!=null){

for(int j=0;j<tempDetourPathEdgeSet.size();j++){
tempDetourPathEdge=(Edge)tempDetourPathEdgeSet.elementAt(j);
if(territory.hasEdge(tempDetourPathEdge))
territory.addEdge(tempDetourPathEdge);

}

telse{

/ltempDetourPath is null!

center.setTerritory(supply,territory);
/I::maCenter[supply][1]: territory(Graph) 2ECON::

center.updateDetourCondition();

center.putKey(this);

/IdetourDept method:
public synchronized void takeKey(Detourist detourist){
if(lcurrRuinedEdgeFinish){
while(lavailable){
try{
wait(1);
}catch(InterruptedException e){

/ltakeKey: cannot wait!

}

available=false;
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telse{

available=false;

public synchronized void putKey(Detourist detourist){
if(lisCurrRuinedEdgeFinish()){
while(available){
try{
wait(1);
}catch(InterruptedException e){

/IputKey: cannot wait!

}

available=true;
telse{

available=true;

public synchronized boolean isFinished(){

return currRuinedEdgeFinish;

void sendDetourist(Graph downstream){
Vector fastTreeNodeSet=downstream.getNodeSet();
Node tempNode;
for(int i=0;i<fastTreeNodeSet.size();i++){
tempNode=(Node)fastTreeNodeSet.elementAt(i);

new Detourist(i,tempNode,this).start();

public synchronized void setCurrRuinedEdgeFinish(boolean currRuinedEdgeFinish){

this.currRuinedEdgeFinish=currRuinedEdgeFinish;

public Edge getCurrRuinedEdge(}

return currRuinedEdge;

public Graph getCurrUpstream(){
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return currUpstream;

public Graph getCurrDownstream(){

return currDownstream;

public Graph getGraph(){

return center.getGraph();

public void setPreNode(Detourist detourist,Node node,Node preNode){

nodeDept[detourist.getID()][node.getLabel()][1]=preNode;

public Node getPreNode(Detourist detourist,Node node)}{
return (Node)nodeDept[detourist.getID()][node.getLabel()][1];

public void setPreEdge(Detourist detourist,Node node;Edge preEdge {
nodeDept[detourist.getlD()][node.getl:abel()][2]=preEdge;

public Edge getPreEdge(Detourist detourist,Node node){
return (Edge)nodeDept[detourist.getID()][node.getLabel()][2];

public int getDownstreamDemandNum()}{

return downstreamDemandNum;

public Center getCenter(){

return center;

public Node getSupply()}{

return supply;

public int getID()}

return id;
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public synchronized void updateCurrRuinedEdgeFinish(){
detouristNum--;
if(detouristNum==0){
currRuinedEdgeFinish=true;
telse{

currRuinedEdgeFinish=false;

public synchronized boolean isCurrRuinedEdgeFinish()}

return currRuinedEdgeFinish;

public synchronized void updateDetourCenter(Detourist detourist){
Center center=detourist.getCenter();
DetourManager dmr=detourist.getDetourManager();

Edge ruinedEdge=detourist.getRuinedEdge();

/ldetourCenter[edge][0]: downstream(Graph)
/ldetourCenter[edge][1]: upstream(Graph)
//detourCenter[edge][2]: mergeNode(Node)
/ldetourCenter{edge][3]: accessNode(Node)
/ldetourCenter[edge][4]: detourPath(Graph)
//detourCenter[edge][5]: systematicDetourCost(Double)
//detourCenter[edge][6]: mergeCost(Vector)

/ImaCenter[supply][1]: territory(Graph) 2ECON

double detouristDetourLength=dmr.getSystematicDetourCost(detourist);
double centerDetourLengthRecord=center.getSystematicDetourCost(detourist.getRuinedEdge());

if(centerDetourLengthRecord==0.0 || detouristDetourLength<centerDetourLengthRecord){

center.setDownstream(ruinedEdge,detourist.getDownstream());
center.setUpstream(ruinedEdge,detourist.getUpstream());
center.setMergeNode(ruinedEdge,detourist.getMergeNode());
center.setAccessNode(ruinedEdge,detourist.getAccessNode());
center.setDetourPath(ruinedEdge,detourist.getDetourPath());
center.setSystematicDetourCost(ruinedEdge,detouristDetourLength);

center.setMergeCost(ruinedEdge,detourist.getMergeCost());

//detouristDetourLength is smaller than center record
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telse{

//detouristDetourLength is larger than center record

/ldetourDept method:
//detourDept[detourist][0]: myNode(Node)
public synchronized void setMyNode(Detourist detourist,Node myNode){

detourDept[detourist.getID()][0]=myNode;

public synchronized Node getMyNode(Detourist detourist){
Node myNode=(Node)detourDept[detourist.getID()][0];

return myNode;

//detourDept[detourist][1]: myEdge(Edge)
public synchronized void setMyEdge(Detourist detourist,Edge myEdge
detourDept[detourist.getID()][1]=myEdge;

public synchronized Edge getMyEdge(Detourist detourist){
Edge myEdge=(Edge)detourDept[detourist.getiD()][1];

return myEdge;

//detourDept[detourist][2]: currNode(Node)
public synchronized void setCurrNode(Detourist detourist,Node currNode){

detourDept[detourist.getID()][2]=currNode;

public synchronized Node getCurrNode(Detourist detourist){
Node currNode=(Node)detourDept[detourist.getID()]1[2];

return currNode;

//detourDept[detourist][3]: routeSet(Graph)
public synchronized void setRouteSet(Detourist detourist,Graph routeSet){
detourDept[detourist.getID()][3]=routeSet;

public synchronized void setRouteSet(Detourist detourist,Vector routeNodeSet,Vector routeEdgeSet){
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detourDept[detourist.getID()][3]=new Graph(routeNodeSet,routeEdgeSet);

public synchronized Graph getRouteSet(Detourist detourist){
Graph routeSet=(Graph)detourDept[detourist.getID()][3];

return routeSet;

public synchronized Vector getRouteNodeSet(Detourist detourist){
Graph routeSet=(Graph)detourDept[detourist.getID()][3];
Vector routeNodeSet=routeSet.getNodeSet();

return routeNodeSet;

public synchronized Vector getRouteEdgeSet(Detourist detourist){
Graph routeSet=(Graph)detourDept[detourist.getID()][3];
Vector routeEdgeSet=routeSet.getEdgeSet();

return routeEdgeSet;

public synchronized void addEdge(Detourist detourist,Edge edge){
Graph routeSet=this.getRouteSet(detourist);
Vector routeNodeSet=routeSet.getNodeSet();
Vector routeEdgeSet=routeSet.getEdgeSet();
if(IrouteEdgeSet.contains(edge))
routeEdgeSet.addElement(edge);
this.setRouteSet(detourist,routeNodeSet,routeEdgeSet);

public synchronized void addNode(Detourist detourist,Node node){
Graph routeSet=this.getRouteSet(detourist);
Vector routeNodeSet=routeSet.getNodeSet();
Vector routeEdgeSet=routeSet.getEdgeSet();
if(IrouteNodeSet.contains(node))
routeNodeSet.addElement(node);

this.setRouteSet(detourist,routeNodeSet,routeEdgeSet);

public synchronized void removeEdge(Detourist detourist,Edge edge){
Graph routeSet=this.getRouteSet(detourist);
Vector routeNodeSet=routeSet.getNodeSet();
Vector routeEdgeSet=routeSet.getEdgeSet();
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if(routeEdgeSet.contains(edge)){
routeEdgeSet.removeElement(edge);

}
this.setRouteSet(detourist,routeNodeSet,routeEdgeSet);

public synchronized void removeSubtree(Detourist detourist,Graph subtree }{
Graph routeSet=(Graph)this.detourDept[detourist.getID()][3];
Vector tempNodeSet1=routeSet.getNodeSet();
Vector tempEdgeSet1=routeSet.getEdgeSet();
Vector tempNodeSet2=subtree.getNodeSet();
Vector tempEdgeSet2=subtree.getEdgeSet();

Node tempNode;
for(int i=0;i<tempNodeSet2.size();i++){
tempNode=(Node)tempNodeSet2.elementAt(i);

boolean nodeExist=tempNodeSet1.removeElement(tempNode);

Edge tempEdge;
for(int i=0;i<tempEdgeSet2.size();i++){
tempEdge=(Edge)tempEdgeSet2:elementAt(i);

boolean edgeExist=tempEdgeSett.removeElement(tempEdge);

public synchronized void addSubtree(Detourist detourist,Graph subtree){

Graph visitedRouteSet=(Graph)this.detourDept[detourist.getID()][3];
Vector tempNodeSet1=visitedRouteSet.getNodeSet();

Vector tempEdgeSet1=visitedRouteSet.getEdgeSet();

Vector tempNodeSet2=subtree.getNodeSet();

Vector tempEdgeSet2=subtree.getEdgeSet();

Node tempNode;

for(int i=0;i<tempNodeSet2.size();i++){
tempNode=(Node)tempNodeSet2.elementAt(i);
if(tempNodeSet1.contains(tempNode) ¥
telse{

tempNodeSet1.addElement(tempNode);
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Edge tempEdge;

for(int i=0;i<tempEdgeSet2.size();i++){
tempEdge=(Edge)tempEdgeSet2.elementAt(i);
if(tempEdgeSet1.contains(tempEdge))
telse{

tempEdgeSet1.addElement(tempEdge);

//detourDept[detourist][4]: detourLength(Double)
public void setSystematicDetourCost(Detourist detourist, double sdc){

detourDept[detourist.getID()][4]=new Double(sdc);

public double getSystematicDetourCost(Detourist detourist){
Double sdc=(Double)detourDept[detourist.getlD()][4];

return sdc.doubleValue();

public void setCurrDetourCost(Detourist detourist;Node node,double sdc){
nodeDept[detourist.getID()][node.getLabel()][0]=new Double(sdc);

public double getCurrDetourCost(Detourist detourist,Node node){
Double tempDouble=(Double)nodeDept[detourist.getID()][node.getLabel()][0];

return tempDouble.doubleValue();

/ldetourCenter:

public synchronized void updateMinSDC(double sdc){
double currSDC=center.getSystematicDetourCost(currRuinedEdge);
if(currSDC==0.0 || sdc<currSDC)

center.setSystematicDetourCost(currRuinedEdge,sdc);

public synchronized double getMinSDC(){

return center.getSystematicDetourCost(currRuinedEdge);
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//deoutrDept[detourist][5]: bridge(Graph)
/IsdcDept
//sdcDept[ruinedEdge][0]: minSDC
public synchronized void updatMinSDC(Detourist detourist,double sdc){
Edge ruinedEdge=detourist.getRuinedEdge();
DetourManager dmr=detourist.getDetourManager();
double currSDC=dmr.getMinSDC(detourist);
if(sdc<currSDC)
sdcDept[ruinedEdge.getLabel()][0]=new Double(sdc);

public synchronized double getMinSDC(Detourist detourist){
Edge ruinedEdge=detourist.getRuinedEdge();
Double minSDC=(Double)sdcDept[ruinedEdge.getLabel()][0];

return minSDC.doubleValue();
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package emnet.thread;

import java.util.Vector;
import emnet.graph.Node;
import emnet.graph.Graph;
import emnet.graph.Edge;

public class Helper extends Thread{
intid;
MAManager maMr;

Node start,source;

Node currNode,preNode,myNode;

Edge preEdge,myEdge;

Graph maPath;

/ImaCost = mergeCost + demandNum:* bridgeLength(maPath)

double maCost;

/ffor merge cost
/lwalkerCenter[node][]:
/InodeDept
/InodeDept[node][0]: currCost
/InodeDept[node][1]: preNode
/InodeDept[node][2]: preEdge
Object[][] nodeDept;

/lwalkerDept

/lwalkerDept[0]: myNode(Node)
/lwalkerDept[1]: myEdge(Edge)
/lwalkerDept[2]: currNode(Node)
/IwalkerDept[3]: routeSet(Graph)
Object[] walkerDept;

boolean helperFinish,longer,exclusivelsZero;

public Helper(int id,Node start, MAManager maMr){

this.id=id,;

this.start=start;
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this.maMr=maMr;

this.source=null;

/InodeDept
nodeDept=new ObjectmaMr.getGraph().getNodeSet().size()][3];

/lwalkerDept
walkerDept=new Object[4];

Node dummyNode=maMr.getCenter().getDummyNode();
dummyNode.setDummy();

int edgeNum=maMr.getGraph().getEdgeSet().size();

Edge dummyEdge=new Edge(edgeNum,start,dummyNode,0.0);
dummyEdge.setDummyEdge();

maMr.getGraph().addNode(dummyNode);
maMr.getGraph().addEdge(dummyEdge);

/Ihelper init, set to maMr

Vector routeNodeSet=new Vector();
routeNodeSet.addElement(dummyNode);
Vector routeEdgeSet=new Vector();

routeEdgeSet.addElement(dummyEdge);

maMr.setRouteSet(this,routeNodeSet,routeEdgeSet);
maMr.setMyNode(this,dummyNode);
maMr.setMyEdge(this,dummyEdge);
maMr.setCurrNode(this,start);

double mergeCost=getECONMergeCost(start);

maMr.setCurrMACost(this,maMr.getMyNode(this),mergeCost);
maMr.setPreNode(this,start,dummyNode);
maMr.setPreEdge(this,start,dummyEdge);

maCost=0.0;

helperFinish=false;

longer=false;

exclusivelsZero=false;

public int getID()}

return id;
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}

public Node getStart(){

return start;

public MAManager getMAManger(){

return maMr;

public double getMACost(}

return maCost;

public Graph getMAPath(){

return maPath;

public Node getSource(){

return source;

public void run(){
maMr.takeKey(this);

/l::map init::
Vector edgeSet=maMr.getCenter().getGraph().getEdgeSet();
Edge tempEdge;
for(int i=0;i<edgeSet.size();i++)
tempEdge=(Edge)edgeSet.elementAt(i);
if('tempEdge.isFastEdge() && !ltempEdge.isDetourEdge() && !tempEdge.isMAEdge())
tempEdge.setNeutralEdge();
}

/l::map init::

maHelping:

while(!helperFinish){
if(maMr.getCurrNode(this).isSupply() && maMr.getCurrNode(this)!l=maMr.getSupply() X

source=maMr.getCurrNode(this);
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double
currMACost=maMr.getCurrMACost(this,maMr.getMyNode(this))+maMr.getMyEdge(this).getWeight()*maMr.getDemanNum();
maMr.setCurrMACost(this,maMr.getCurrNode(this),currMACost);

maMr.addNode(this,maMr.getCurrNode(this));
maMr.addEdge(this,maMr.getMyEdge(this));

maMr.setPreNode(this,maMr.getCurrNode(this),maMr.getMyNode(this));
maMr.setPreEdge(this,maMr.getCurrNode(this),maMr.getMyEdge(this));

maMr.updateMinMACost(maMr.getCurrMACost(this,maMr.getCurrNode(this)));
maMr.getMyEdge(this).setMATestEdge(true);

break maHelping;

lelse if(maMr.getMinMACost()!'=0.0 &&

maMr.getMinMACost()<maMr.getCurrMACost(this,maMr.getMyNode(this))){

/lsome detourist has already found a,shorter:detour path
longer=true;
break maHelping;

telse{
maMr.addNode(this,maMr.getCurrNode(this));
maMr.addEdge(this,maMr.getMyEdge(this));

maMr.setPreNode(this,maMr.getCurrNode(this),maMr.getMyNode(this));
maMr.setPreEdge(this,maMr.getCurrNode(this),maMr.getMyEdge(this));

double
currMACost=maMr.getCurrMACost(this,maMr.getMyNode(this))+maMr.getMyEdge(this).getWeight()*maMr.getDemanNum();
maMr.setCurrMACost(this,maMr.getCurrNode(this),currMACost);

maMr.getMyEdge(this).setMATestEdge(true);
maMr.setMyNode(this,maMr.getCurrNode(this));

/ffind currEdge & currNode, assign new myNode
dijkstra();

try{
sleep(1);
}catch(InterruptedException ex){

System.out.printin("maMr "+maMr.getID()+", helper "+getID()+" cannot sleep: "+ex);
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}

/Ihelper finished!
/ImaPath setting:
if(llonger && lexclusivelsZero){
Vector maPathNodeSet=new Vector();

Vector maPathEdgeSet=new Vector();

Node tempCurrNode=maMr.getCurrNode(this);
Edge tempPreEdge;

maPathSetting:
do{
if(lmaPathNodeSet.contains(tempCurrNode))
maPathNodeSet.addElement(tempCurrNode);

tempPreEdge=maMr.getPreEdge(this;tempCurrNode);

/ltempPreEdge!=null
if('tempPreEdge.isDummyEdge() §
if(lmaPathEdgeSet.contains{tempPreEdge))
maPathEdgeSet.addElement(tempPreEdge);

tempCurrNode=maMr.getPreNode(this,tempCurrNode);
telse{

break maPathSetting;

twhile(tempCurrNode!=start);

if(lmaPathNodeSet.contains(start))
maPathNodeSet.addElement(start);

maPath=new Graph(maPathNodeSet,maPathEdgeSet);

/lupdate mutual assistant path to center
/ImaCost setting:
maCost=maMr.getCurrMACost(this,maMr.getCurrNode(this));
}
maMr.updateMAFinish();
maMr.putKey(this);
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}

void dijkstra(){
/ffind out the best incident edge
//define new myEdge & currNode
Graph tempRouteSet=(Graph)maMr.getRouteSet(this);
Vector tempRouteNodeSet=(Vector)tempRouteSet.getNodeSet();

Vector incidentEdgeSet=getincidentEdgeSet(maMr.getUsableGraph(),tempRouteNodeSet);

Vector exclusivelncidentEdgeSet=new Vector();
for(int i=0;i<incidentEdgeSet.size();i++){
if(lmaMr.getRouteEdgeSet(this).contains(incidentEdgeSet.elementAt(i)) X

exclusivelncidentEdgeSet.addElement(incidentEdgeSet.elementAt(i));

Edge tempEdge;
Node n1,n2;

if(exclusivelncidentEdgeSet.size()>1){
tempEdge=(Edge)exclusivelncidentEdgeSet.elementAt(0);
maMr.setMyEdge(this,tempEdge);
n1=tempEdge.getN1();
n2=tempEdge.getN2();
if(tempRouteNodeSet.contains(n1) && !tempRouteNodeSet.contains(n2)){
maMr.setMyNode(this,n1);
maMr.setCurrNode(this,n2);
lelse if(tempRouteNodeSet.contains(n2) && !tempRouteNodeSet.contains(n1)){
maMr.setMyNode(this,n2);
maMr.setCurrNode(this,n1);
telse{
/[dijkstra error 1: not incident edge! check GraphAlgorithm.getincidentEdgeSet()
}
double
min=maMr.getCurrMACost(this,maMr.getMyNode(this))+maMr.getMyEdge(this).getWeight()*maMr.getDemanNum();
for(int i=1;i<exclusivelncidentEdgeSet.size();i++ )
tempEdge=(Edge)exclusivelncidentEdgeSet.elementAt(i);
n1=tempEdge.getN1();
n2=tempEdge.getN2();
if(tempRouteNodeSet.contains(n1) && !tempRouteNodeSet.contains(n2)){
if(maMr.getCurrMACost(this,n1)+tempEdge.getWeight()*maMr.getDemanNum()<min{

180



Helper.java

min=maMr.getCurrMACost(this,n1)+tempEdge.getWeight()*maMr.getDemanNum();

maMr.setMyEdge(this,tempEdge);
maMr.setMyNode(this,n1);
maMr.setCurrNode(this,n2);
}
lelse if(tempRouteNodeSet.contains(n2) && !tempRouteNodeSet.contains(n1)){
if(maMr.getCurrMACost(this,n2)+tempEdge.getWeight()*maMr.getDemanNum()<min{
min=maMr.getCurrMACost(this,n2)+tempEdge.getWeight()*maMr.getDemanNum();
maMr.setMyEdge(this,tempEdge);
maMr.setMyNode(this,n2);
maMr.setCurrNode(this,n1);
}
else{

/[dijkstra error 2: incident edge error!"

}

lelse if(exclusivelncidentEdgeSet.size()==1){
tempEdge=(Edge)exclusivelncidentEdgeSet.elementAt(0);
maMr.setMyEdge(this,tempEdge);
n1=tempEdge.getN1();
n2=tempEdge.getN2();
if(tempRouteNodeSet.contains(n1) &&ltempRouteNodeSet.contains(n2)){
maMr.setMyNode(this,h1);
maMr.setCurrNode(this,n2);
}lelse if(tempRouteNodeSet.contains(n2) && !tempRouteNodeSet.contains(n1)){
maMr.setMyNode(this,n2);
maMr.setCurrNode(this,n1);
telse{
/[dijkstra error 3: not incident edge! check GraphAlgorithm.getincidentEdgeSet()
}
else{
exclusivelsZero=true;
helperFinish=true;

/Irenders all nodes visited

double getECONMergeCost(Node node){
Walker walker=new Walker(this,node);

walker.start();
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while(walker.isFinish()){
/Iwait for walker to calculate merge cost

}

return walker.getTerritoryMergeCost();

Vector getincidentEdgeSet(Graph usableGraph,Vector routeNodeSet){
Edge myEdge=maMr.getMyEdge(this);

Vector incidentEdges=new Vector();
Edge tempEdge;
Node n1,n2;

for(int i=0;i<routeNodeSet.size();i++){
Vector tempEdgeSet=usableGraph.incidentEdgeSet((Node)routeNodeSet.elementAt(i));
for(int j=0;j<tempEdgeSet.size();j++){
tempEdge=(Edge)tempEdgeSet.elementAt(j);
if(lincidentEdges.contains(tempEdge))
incidentEdges.addElement(tempEdge);

n1=tempEdge.getN1();

n2=tempEdge.getN2();

if(routeNodeSet.contains(n1) && routeNodeSet.contains(n2))
incidentEdges.removeElement(tempEdge);

if(n1==maMr.getCenter().getDummyNode() || n2==maMr.getCenter().getDummyNode())

incidentEdges.removeElement(tempEdge);

}
if(incidentEdges.contains(myEdge))

incidentEdges.removeElement(myEdge);
return incidentEdges;
/lwalker methods:
/InodeDept[node][0]: currCost

public void setCurrCost(Node node,double cost){

nodeDept[node.getLabel()][0]=new Double(cost);

public double getCurrCost(Node node){
Double tempDouble=(Double)nodeDept[node.getLabel()][0];
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return tempDouble.doubleValue();

/InodeDept[node][1]: preNode
public void setPreNode(Node node,Node preNode){
nodeDept[node.getLabel()][1]=preNode;

public Node getPreNode(Node node){
return (Node)nodeDept[node.getLabel()][1];

/InodeDept[node][2]: preEdge
public void setPreEdge(Node node,Edge preEdge){
nodeDept[node.getLabel()][2]=preEdge;

public Edge getPreEdge(Node node){
return (Edge)nodeDept[node.getlLabel()][2];

/lwalkerDept[0]: myNode(Node)
public void setMyNode(Node node){
walkerDept[0]=node;

public Node getMyNode(){
return (Node)walkerDept[0];

/lwalkerDept[1]: myEdge(Edge)
public void setMyEdge(Edge edge )
walkerDept[1]=edge;

public Edge getMyEdge(){
return (Edge)walkerDept[1];

/lwalkerDept[2]: currNode(Node)
public void setCurrNode(Node node){
walkerDept[2]=node;
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}

public Node getCurrNode(){
return (Node)walkerDept[2];

/IwalkerDept[3]: routeSet(Graph)
public void setRouteSet(Vector nodeSet,Vector edgeSet){
walkerDept[3]=new Graph(nodeSet,edgeSet);

public Graph getRouteSet(){
return (Graph)walkerDept[3];

public void addNode(Node node){
Graph routeSet=(Graph)walkerDept[3];
Vector nodeSet=routeSet.getNodeSet();
if(lnodeSet.contains(node))

nodeSet.addElement(node);

public void addEdge(Edge edge){
Graph routeSet=(Graph)walkerDept[3];
Vector edgeSet=routeSet.getEdgeSet();
if(ledgeSet.contains(edge))
edgeSet.addElement(edge);
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package emnet.thread;

import java.util.Vector;

import emnet.graph.Node;

import emnet.graph.Graph;

import emnet.graph.Edge;

import emnet.algorithm.GraphAlgorithm;

public class MAManager extends Thread{

intid;

Center center;

Node supply;
Graph territory,usableGraph;
Vector icp,helpers,usableGraphNodeSet,usableGraphEdgeSet,interfaceNodes;

int demandNum,helperNum;

/InodeDept

/InodeDept[helper][node][0]: currMACost
/InodeDept[helper][node][1]: preNode
/InodeDept[helper][node][2]: preEdge
Object[][][] nodeDept;

/ImaDept

/ImaDept[helper][0]: myNode(Node)
/ImaDept[helper][1]: myEdge(Edge)
/ImaDept[helper][2]: currNode(Node)
/ImaDept[helper][3]: routeSet(Graph)
Object[][] maDept;

/ImaCost
double minMACost;

boolean available,maFinish;
public MAManager(int id,Center center,Node supply){
this.id=id;

this.center=center;

this.supply=supply;
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territory=center.getTerritory(supply);

if(territory.getDemandNodeSet().size()!=0){

demandNum-=territory.getDemandNodeSet().size();
Vector territoryNodeSet=territory.getNodeSet();

/licp init, usableGraph init
Graph graph=center.getGraph();
Vector graphEdgeSet=graph.getEdgeSet();

usableGraphNodeSet=new Vector();
usableGraphEdgeSet=new Vector();

icp=new Vector();

Edge tempEdge;

Node n1,n2;

for(int i=0;i<graphEdgeSet.size();i++)}
tempEdge=(Edge)graphEdgeSet.elementAt(i);
n1=tempEdge.getN1();
n2=tempEdge.getN2();

if(lterritoryNodeSet.contains(n1) && territoryNodeSet.contains(n2)X
if(lusableGraphEdgeSet.contains(tempEdge))
usableGraphEdgeSet.addElement(tempEdge);
if(lusableGraphNodeSet.contains(n1))
usableGraphNodeSet.addElement(n1);
if(lusableGraphNodeSet.contains(n2))
usableGraphNodeSet.addElement(n2);

if(territoryNodeSet.contains(n1) && !territoryNodeSet.contains(n2)¥
if(lusableGraphEdgeSet.contains(tempEdge))
usableGraphEdgeSet.addElement(tempEdge);
if(lusableGraphNodeSet.contains(n1))
usableGraphNodeSet.addElement(n1);
if(lusableGraphNodeSet.contains(n2))
usableGraphNodeSet.addElement(n2);
if('tempEdge.isDummyEdge()){
if(licp.contains(n1))

icp.addElement(n1);
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}

if(territoryNodeSet.contains(n1) && territoryNodeSet.contains(n2)X
if(lusableGraphEdgeSet.contains(tempEdge))
usableGraphEdgeSet.addElement(tempEdge);
if(lusableGraphNodeSet.contains(n1))
usableGraphNodeSet.addElement(n1);
if(lusableGraphNodeSet.contains(n2))
usableGraphNodeSet.addElement(n2);
if('tempEdge.isDummyEdge()){
if(licp.contains(n2))

icp.addElement(n2);

/Iwhile territory is not convex
if(territory.hasEdge(tempEdge) && lusable GraphEdgeSet.contains(tempEdge) )
usableGraphEdgeSet.addElement(tempEdge);
if(lusableGraphNodeSet.contains(nt))
usableGraphNodeSet.addElement(n1);
if(lusableGraphNodeSet.contains(n2))
usableGraphNodeSet:addElement(n2);
if('tempEdge.isDummyEdge()){
if(licp.contains(n1))
icp.addElement(n1);
if(licp.contains(n2))

icp.addElement(n2);

}
usableGraph=new Graph(usableGraphNodeSet,usableGraphEdgeSet);
interfaceNodes=GraphAlgorithm.getinterfaceNodes(territory,graph);
helperNum=icp.size();
nodeDept=new Obiject[icp.size()][graph.getNodeSet().size()][3];
for(int i=0;i<icp.size();i++){

for(int j=0;j<graph.getNodeSet().size();j++){

nodeDept[i][jl[0]=new Double(0.0);

}

maDept=new Object[icp.size()][4];
minMACost=0.0;
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available=true;
maFinish=false;
telse{

maFinish=true;

public void run(){
center.takeKey(this);

/Imap init
Vector edgeSet=center.getGraph().getEdgeSet();
Edge tempEdge;
for(int i=0;i<edgeSet.size();i++ )
tempEdge=(Edge)edgeSet.elementAt(i);
if('tempEdge.isFastEdge() && !ltempEdge.isDetourEdge() && !tempEdge.isMAEdge())
tempEdge.setNeutralEdge();

if(territory.getDemandNodeSet().size()!=0){

helpers=new Vector();

Node tempNode;

Helper tempHelper;

for(int i=0;i<icp.size();i++){
tempNode=(Node)icp.elementAt(i);
tempHelper=new Helper(i,tempNode,this);
helpers.addElement(tempHelper);
tempHelper.start();

while(!maFinish){

/lwatching

/ffinding supply source finished: all situations simulated
//set ma edges on the shortest ma route
/ffind a subject helper
Helper bestHelper=(Helper)helpers.elementAt(0);
for(int j=1;j<helpers.size();j++){
if(bestHelper.getMACost()==0.0)
bestHelper=(Helper)helpers.elementAt(j);

188



MAManager.java

}

/ffind a competitor helper
Helper tempHelper1;
double minMACost=bestHelper.getMACost();
for(int j=1;j<helpers.size();j++){
tempHelper1=(Helper)helpers.elementAt(j);
if(tempHelper1.getMACost()!=0.0 && tempHelper1.getMACost()<minMACost){
minMACost=tempHelper1.getMACost();
bestHelper=tempHelper1;

updateMACenter(bestHelper);

Vector bestMAPathEdgeSet=bestHelper.getMAPath().getEdgeSet();
if(bestMAPathEdgeSet.size()>0){
Edge tempEdge1;
Node n1,n2;
Node source=bestHelper.getSource();
Graph source Territory=center.getTerritory(source);
for(int j=0;j<bestMAPathEdgeSet:size();j++){
tempEdge1=(Edge)bestMAPathEdgeSet.elementAt(j);
tempEdge1.setMAEdge();

n1=tempEdge1.getN1();

n2=tempEdge1.getN2();

if(territory.hasNode(n1) && !territory.hasNode(n2))
n1.setMerge();

if(territory.hasNode(n2) && !territory.hasNode(n1))
n2.setMerge();

if(sourceTerritory.hasNode(n1) && !source Territory.hasNode(n2))
n1.setAccess();

if(sourceTerritory.hasNode(n2) && !source Territory.hasNode(n1))

n2.setAccess();

if(j==(bestMAPathEdgeSet.size()-1)){
if(territory.hasNode(n1) && sourceTerritory.hasNode(n1)){
n1.setAccess();

n1.setMerge();

}
if(territory.hasNode(n2) && sourceTerritory.hasNode(n2)){
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n2.setAccess();

n2.setMerge();

}

telse{
bestHelper.getSource().setSource();
}
telse{
//demandNum=0

//mutualAssistantCenter

/ImaCenter[supply][2]: source(Node)
/ImaCenter[supply][3]: icpSet(Vector)
/ImaCenter[supply][4]: maPath(Graph)
/ImaCenter[supply][7]: maCost > source to supply
center.setSource(supply,supply);
center.setlCPSet(supply,territory.getNodeSet());
center.setMAPath(supply,territory);
center.setMACost(supply,0.0);

//ma manager finish its job!
center.updateMACondition();
center.putKey(this);

public int getID()}

return id;

public Center getCenter(){

return center;

public Node getSupply()}{

return supply;

public Graph getGraph(){

return center.getGraph();
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public Graph getUsableGraph(){

return usableGraph;

public Graph getTerritory(){

return territory;

public int getDemanNum(){

return demandNum;

public int getICP(){

return interfaceNodes.size();

public synchronized void updateMinMACost(double eurrMACost){
if(minMACost==0.0 || currMACost<minMACost)
minMACost=currMACost;

public double getMinMACost(){

return minMACost;

public void updateMAFinish(){
helperNum--;
if(helperNum==0){

maFinish=true;

public synchronized void takeKey(Helper helper){
if(lmaFinish){
while(lavailable){
try{
wait(1);
}catch(InterruptedException e){

/ltakeKey: cannot wait!
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available=false;
telse{
available=false;

/Ihelper took the key, but center is finished!

public synchronized void putKey(Helper helper){
if(lmaFinish){
while(available){
try{
/Ihelper is waiting to put...
wait(1);
}catch(InterruptedException e){

/IputKey: cannot wait!

}
/Ihelper put the key!

available=true;
telse{
/Ihelper put the key, maFinish=true!

available=true;

/InodeDept

/InodeDept[helper][node][0]: currMACost

public void setCurrMACost(Helper helper,Node node,double maCost){
nodeDept[helper.getID()][node.getLabel()][0]=new Double(maCost);

public double getCurrMACost(Helper helper,Node node){
Double maCost=(Double)nodeDept[helper.getiD()][node.getLabel()][0];

return maCost.doubleValue();

/InodeDept[helper][node][1]: preNode
public void setPreNode(Helper helper,Node node,Node preNode){
nodeDept[helper.getID()][node.getLabel()][1]=preNode;

public Node getPreNode(Helper helper,Node node){

192



MAManager.java

return (Node)nodeDept[helper.getlD()][node.getLabel()][1];

/InodeDept[helper][node][2]: preEdge
public void setPreEdge(Helper helper,Node node,Edge preEdge){
nodeDept[helper.getID()][node.getLabel()][2]=preEdge;

public Edge getPreEdge(Helper helper,Node node){
return (Edge)nodeDeptlhelper.getiD()][node.getLabel()][2];

/ImaDept

/ImaDept[helper][0]: myNode(Node)

public void setMyNode(Helper helper,Node myNode){
maDept[helper.getlD()][0]=myNode;

public Node getMyNode(Helper helper){
return (Node)maDept[helper.getiD()][0];

/ImaDept[helper][1]: myEdge(Edge)
public void setMyEdge(Helper helper,Edge myEdge){
maDept[helper.getID()][1]=myEdge;

public Edge getMyEdge(Helper helper){
return (Edge)maDept[helper.getID()][1];

/ImaDept[helper][2]: currNode(Node)
public void setCurrNode(Helper helper,Node currNode){
maDept[helper.getID()][2]=currNode;

public Node getCurrNode(Helper helper){
return (Node)maDept[helper.getID()][2];

/ImaDept[helper][3]: routeSet(Graph)
public void setRouteSet(Helper helper,Vector routeNodeSet,Vector routeEdgeSet){
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maDept[helper.getID()][3]=new Graph(routeNodeSet,routeEdgeSet);

public Graph getRouteSet(Helper helper){
return (Graph)maDept[helper.getID()][3];

public Vector getRouteEdgeSet(Helper helper){
Graph routeSet=getRouteSet(helper);
return routeSet.getEdgeSet();

public synchronized void addEdge(Helper helper,Edge edge){
Graph routeSet=this.getRouteSet(helper);
Vector routeNodeSet=routeSet.getNodeSet();
Vector routeEdgeSet=routeSet.getEdgeSet();
if(IrouteEdgeSet.contains(edge))
routeEdgeSet.addElement(edge);
this.setRouteSet(helper,routeNodeSet,routeEdgeSet);

public synchronized void addNode(Helpershelper,Node'node){
Graph routeSet=this.getRouteSet(helper);
Vector routeNodeSet=routeSet.getNodeSet();
Vector routeEdgeSet=routeSet.getEdgeSet();
if(IrouteNodeSet.contains(node))
routeNodeSet.addElement(node);

this.setRouteSet(helper,routeNodeSet,routeEdgeSet);

public synchronized void updateMACenter(Helper helper){
//mutualAssistantCenter
/ImaCenter[supply][2]: source(Node)
/ImaCenter[supply][3]: icpSet(Vector)
/ImaCenter[supply][4]: maPath(Graph)

/ImaCenter[supply][7]: maCost > source to supply
MAManager maMr=helper.getMAManger();
Center center=maMr.getCenter();

Node supply=maMr.getSupply();

center.setSource(supply,helper.getSource());
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center.setlCPSet(supply,interfaceNodes);
center.setMAPath(supply,helper.getMAPath());
center.setMACost(supply,helper.getMACost());
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package emnet.thread;

import emnet.graph.Node;

import emnet.graph.Edge;

import java.util.Vector;

import emnet.algorithm.GraphAlgorithm;
import emnet.graph.Graph;

public class Roamer extends Thread{
Node supply;
intid;
Center center;

boolean roamerFinish;

Node currNode,preNode,myNode;
Edge preEdge,myEdge;
Graph graph,routeSet;

Vector routeNodeSet,routeEdgeSet;

public Roamer(int id,Node supply,Center center){
super("'+id);
this.id=id;
this.supply=supply;
this.center=center;
roamerFinish=false;
graph=center.getGraph();
int nodeNum=graph.getNodeSet().size();
int edgeNum=graph.getEdgeSet().size();

/l[roamerCenter init
/IroamerCenter[roamer][0]: myNode(Node)
/[roamerCenter[roamer][1]: myEdge(Edge)
/IroamerCenter[roamer][2]: currNode(Node)

/froamerCenter[roamer][3]: routeSet(Graph)

Node dummyNode=this.center.getDummyNode();
dummyNode.setDummy();

Edge dummyEdge=new Edge(edgeNum,supply,dummyNode,0.0);

dummyEdge.setDummyEdge();

this.graph.addNode(dummyNode);
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this.graph.addEdge(dummyEdge);

Vector routeNodeSet=new Vector();
routeNodeSet.addElement(dummyNode);
Vector routeEdgeSet=new Vector();
routeEdgeSet.addElement(dummyEdge);

this.center.setRouteSet(this,routeNodeSet,routeEdgeSet);

this.center.setMyNode(this,dummyNode);
this.center.setMyEdge(this,dummyEdge);
this.center.setCurrNode(this,supply);

/InodeCenter init

/InodeCenter[node][0]: occupy(Boolean)
/InodeCenter[node][1]: distance(Double)
/InodeCenter[node][2]: preNode(Node)
/InodeCenter[node][3]: preEdge(Edge)

/InodeCenter[node][4]: visitorSequence(Vectar)

this.center.setDistance(supply,0:0);
this.center.setPreNode(supply;dummyNode);
this.center.setPreEdge(supply;dummyEdge);
this.center.addViditor(supply, this);

public int getID()}

return this.id;

public Node getSupply()}{

return this.supply;

public Center getCenter(){
return this.center;

public void run(){
roaming:

while(!center.isFinished() && !roamerFinish){

/ltake the key to have the right to run
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center.takeKey(this);

if(center.isFinished()){
center.putKey(this);

break roaming;

/ltest currNode is visited or not
if(lcenter.getCurrNode(this).isVisited()
/lcurrNode is not visited
center.getCurrNode(this).visit();
updateVisitorSequence(0,this,center.getCurrNode(this));

/lupdate myEdge, myNode, currNode, preNode
/lupdate currNode distance by myNode & myEdge
/lupdate routeSet (myNode, myEdge)

//set fast edge
center.addNode(this,center.getCurrNode(this));
center.addEdge(this,center.getMyEdge(this));

center.setPreNode(center.getCurrNode(this),center.getMyNode(this));
center.setPreEdge(center.getCurrNode(this),center.getMyEdge(this));

double distance=center.getDistance(center.getMyNode(this))+center.getMyEdge(this).getWeight();
center.setDistance(center.getCurrNode(this),distance);

center.getMyEdge(this).setTestEdge();

center.setMyNode(this,center.getCurrNode(this));

dijkstra();
telse{
/lcurrNode is visited
//Comparison: change to new location to find myEdge to find currNode, and update to myNode
Vector visitorSequence=center.getVisitorSequence(center.getCurrNode(this));
if(lvisitorSequence.contains(this)){
/lcomparison
double currDistance=center.getDistance(center.getCurrNode(this));
double myDistance=center.getDistance(center.getMyNode(this));
if(myDistance+center.getMyEdge(this).getWeight()<currDistance){
/[closer! subtree finding!
/1. find out who the last roamer is

Roamer lastRoamer=center.lastVisitor(center.getCurrNode(this));

/12. update visitor sequence [finish condition]
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updateVisitorSequence(1,this,center.getCurrNode(this));

/13. find out where the last roamer is now

Node lastRoamerLocation=center.getCurrNode(lastRoamer);

/4. remove last roamer's subtree

Graph lastRoamerRouteSet=center.getRouteSet(lastRoamer);

Graph
subtree=GraphAlgorithm.getSubtreeWithCertainNode(lastRoamerRouteSet,center.getCurrNode(this),center.getPreEd
ge(center.getCurrNode(this)));

center.removeSubtree(lastRoamer,subtree);
center.removeEdge(lastRoamer,center.getPreEdge(center.getCurrNode(this)));

center.getPreEdge(center.getCurrNode(this)).setNeutralEdge();

//5. add myEdge and the subtree to current roamer's RouteSet
center.setPreEdge(center.getCurrNode(this),center.getMyEdge(this));
center.setPreNode(center.getCurrNode(this),center.getMyNode(this));
center.addSubtree(this,subtree);
center.addEdge(this,center.getMyEdge(this));
center.getMyEdge(this).setTestEdge();

/6. relocate last roamer's‘place to-preNode to prevent missing, relocate current roamer
using dijkstra

center.setCurrNode(lastRoamer,center.getPreNode(center.getCurrNode(this)));

/I7. update the distance in the subtree

Vector subtreeNodeSet=subtree.getNodeSet();
Node tempNode;

double saving;

for(int i=0;i<subtreeNodeSet.size();i++){

tempNode=(Node)subtreeNodeSet.elementAt(i);

saving=center.getDistance(center.getCurrNode(this))-(center.getDistance(center.getMyNode(this))+center.getMyEdg
e(this).getWeight());

center.setDistance(tempNode,center.getDistance(tempNode)-saving);

dijkstra();
telse{
/Inot closer, remove myEdge from routeEdgeSet, find new myEdge

/lupdate visitor sequence: downstream subree

199



Roamer.java

updateVisitorSequence(1,this,center.getCurrNode(this));
center.removeEdge(this,center.getMyEdge(this));

dijkstra();
}
telse{
/I visited this node before
dijkstra();

}
center.putKey(this);

try{
sleep(1);
}catch(InterruptedException ex){

/Iroamer cannot sleep

}

/lroamer finished his job!

void dijkstra(){
/ffind out the best incident edge
//define new myEdge & currNode
Graph tempRouteSet=(Graph)center.getRouteSet(this);
Vector tempRouteNodeSet=(Vector)tempRouteSet.getNodeSet();

Vector incidentEdgeSet=GraphAlgorithm.getincidentEdgeSet(this,tempRouteNodeSet);

Vector exclusivelncidentEdgeSet=new Vector();

for(int i=0;i<incidentEdgeSet.size();i++){
if(lcenter.getRouteEdgeSet(this).contains(incidentEdgeSet.elementAt(i)) X

exclusivelncidentEdgeSet.addElement(incidentEdgeSet.elementAt(i));

Edge tempEdge;

Node n1,n2;

if(exclusivelncidentEdgeSet.size()>1){
tempEdge=(Edge)exclusivelncidentEdgeSet.elementAt(0);
center.setMyEdge(this,tempEdge);
n1=tempEdge.getN1();

200



n2=tempEdge.getN2();

if(tempRouteNodeSet.contains(n1) && !tempRouteNodeSet.contains(n2)){
center.setMyNode(this,n1);
center.setCurrNode(this,n2);

lelse if(tempRouteNodeSet.contains(n2) && !tempRouteNodeSet.contains(n1)){
center.setMyNode(this,n2);
center.setCurrNode(this,n1);

telse{

/[dijkstra error 1: not incident edge! check GraphAlgorithm.getincidentEdgeSet()

double min=center.getDistance(center.getMyNode(this))+center.getMyEdge(this).getWeight();
for(int i=1;i<exclusivelncidentEdgeSet.size();i++ )
tempEdge=(Edge)exclusivelncidentEdgeSet.elementAt(i);
n1=tempEdge.getN1();
n2=tempEdge.getN2();
if(tempRouteNodeSet.contains(n1) && !tempRouteNodeSet.contains(n2)){
if(center.getDistance(n1)+tempEdge.getWeight()<min){
min=center.getDistance(n1)+tempEdge.getWeight();
center.setMyEdge(this,tempEdge);
center.setMyNode(this,n1);
center.setCurrNode(this;n2);
}
}else if(tempRouteNodeSet.contains(n2) && tempRouteNodeSet.contains(n1)){
if(center.getDistance(n2)+tempEdge.getWeight()<min){
min=center.getDistance(n2)+tempEdge.getWeight();
center.setMyEdge(this,tempEdge);
center.setMyNode(this,n2);
center.setCurrNode(this,n1);
}
else{

/[dijkstra error 2: incident edge error!

}

lelse if(exclusivelncidentEdgeSet.size()==1){
tempEdge=(Edge)exclusivelncidentEdgeSet.elementAt(0);
center.setMyEdge(this,tempEdge);
n1=tempEdge.getN1();
n2=tempEdge.getN2();
if(tempRouteNodeSet.contains(n1) && !tempRouteNodeSet.contains(n2)){
center.setMyNode(this,n1);

center.setCurrNode(this,n2);
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lelse if(tempRouteNodeSet.contains(n2) && !tempRouteNodeSet.contains(n1)){
center.setMyNode(this,n2);
center.setCurrNode(this,n1);
telse{
/[dijkstra error 3: not incident edge! check GraphAlgorithm.getincidentEdgeSet()
}
else{
roamerFinish=true;
/Irenders all nodes visited
Vector nodeSet=graph.getNodeSet();
Node tempNode;
for(int i=0;i<nodeSet.size();i++ )
tempNode=(Node)nodeSet.elementAt(i);
center.addViditor(tempNode, this);

void updateVisitorSequence(int sort,Roamer roamer,Node currNode }{
/Iroamer to be updated....
//selection choice:
/lcase 0: currNode is never visited

/Icase 1: currNode is visited

Vector myVisitorSequence=center.getVisitorSequence(center.getMyNode(this));
Graph routeSet,subtree;

Edge preEdge;

Vector subtreeNodeSet,tempSubtreeNodeVisitorSequence;

Node tempSubtreeNode,tempPreNode;

Roamer lastRoamer,tempRoamer;

switch(sort){
case 0:
/lcase 0: currNode is never visited
center.addViditor(currNode,roamer);

break;

case 1:
/lcase 1: currNode is visited
//add visiotrs to downstream: subtree
/Isubtree of currNode

lastRoamer=center.lastVisitor(currNode);
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routeSet=center.getRouteSet(lastRoamer);
preEdge=center.getPreEdge(currNode);
tempPreNode=center.getPreNode(currNode);
subtree=GraphAlgorithm.getSubtreeWithCertainNode(routeSet,currNode,preEdge);
subtreeNodeSet=subtree.getNodeSet();

for(int i=0;i<myVisitorSequence.size();i++){
tempRoamer=(Roamer)myVisitorSequence.elementAt(i);
for(int j=0;j<subtreeNodeSet.size();j++){
tempSubtreeNode=(Node)subtreeNodeSet.elementAt(j);
tempSubtreeNodeVisitorSequence=center.getVisitorSequence(tempSubtreeNode);
if('tempSubtreeNodeVisitorSequence.contains(tempRoamer))

center.addViditor(tempSubtreeNode,tempRoamer);

}

break;

}

/lupdate visitorSequence finish!
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package emnet.thread;

import emnet.graph.Graph;
import emnet.graph.Node;
import emnet.graph.Edge;

import java.util.Vector;

public class Walker extends Thread{

double territoryMergeCost;

Helper helper;
MAManager maMr;
Graph territory;

int demandNum;
boolean finish;

public Walker(Helper helper,Node start){
territoryMergeCost=0.0;

this.helper=helper;
maMr=helper.getMAManger();
territory=maMr.getTerritory();

demandNum-=territory.getDemandNodeNum();

int edgeNum=maMr.getCenter().getGraph().getEdgeSet().size();
Node dummyNode=maMr.getCenter().getDummyNode();
dummyNode.setDummy();

Edge dummyEdge=new Edge(edgeNum,start,dummyNode,0.0);
dummyEdge.setDummyEdge();

maMr.getGraph().addNode(dummyNode);
maMr.getGraph().addEdge(dummyEdge);

/Ihelper init, set to maMr

Vector routeNodeSet=new Vector();
routeNodeSet.addElement(dummyNode);
Vector routeEdgeSet=new Vector();

routeEdgeSet.addElement(dummyEdge);

helper.setRouteSet(routeNodeSet,routeEdgeSet);
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helper.setMyNode(dummyNode);
helper.setMyEdge(dummyEdge);
helper.setCurrNode(start);

helper.setCurrCost(helper.getMyNode(),0.0);

helper.setPreNode(start,dummyNode);
helper.setPreEdge(start,dummyEdge);

finish=false;
public double getTerritoryMergeCost(){
return territoryMergeCost;
public void run(){
walking:
while(!finish){
if(helper.getCurrNode().isDemand()){
updateFinish();

helper.addNode(helper.getCurrNode());
helper.addEdge(helper.getMyEdge());

helper.setPreNode(helper.getCurrNode(),helper.getMyNode());
helper.setPreEdge(helper.getCurrNode(),helper.getMyEdge());

double currCost=helper.getCurrCost(helper.getMyNode())+helper.getMyEdge().getWeight();
helper.setCurrCost(helper.getCurrNode(),currCost);

territoryMergeCost=territoryMergeCost+currCost;

if(Mfinish){
helper.setMyNode(helper.getCurrNode());
dijkstra();

telse{

break walking;

telse{
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helper.addNode(helper.getCurrNode());
helper.addEdge(helper.getMyEdge());

helper.setPreNode(helper.getCurrNode(),helper.getMyNode());
helper.setPreEdge(helper.getCurrNode(),helper.getMyEdge());

double currCost=helper.getCurrCost(helper.getMyNode())+helper.getMyEdge().getWeight();
helper.setCurrCost(helper.getCurrNode(),currCost);

helper.setMyNode(helper.getCurrNode());
dijkstra();

void updateFinish(){

demandNum--;

if(demandNum==0)

finish=true;

public boolean isFinish(){

return finish;

void dijkstra(){
Graph tempRouteSet=(Graph)helper.getRouteSet();
Vector tempRouteNodeSet=(Vector)tempRouteSet.getNodeSet();
Vector incidentEdgeSet=getincidentEdgeSet(territory,tempRouteNodeSet);
Vector exclusivelncidentEdgeSet=new Vector();
for(int i=0;i<incidentEdgeSet.size();i++){
if(lhelper.getRouteSet().hasEdge((Edge)incidentEdgeSet.elementAt(i)) X

exclusivelncidentEdgeSet.addElement(incidentEdgeSet.elementAt(i));

Edge tempEdge;

Node n1,n2;

if(exclusivelncidentEdgeSet.size()>1){
tempEdge=(Edge)exclusivelncidentEdgeSet.elementAt(0);
helper.setMyEdge(tempEdge);
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n1=tempEdge.getN1();
n2=tempEdge.getN2();
if(tempRouteNodeSet.contains(n1) && !tempRouteNodeSet.contains(n2)){
helper.setMyNode(n1);
helper.setCurrNode(n2);
lelse if(tempRouteNodeSet.contains(n2) && !tempRouteNodeSet.contains(n1)){
helper.setMyNode(n2);
helper.setCurrNode(n1);
}
double min=helper.getCurrCost(helper.getMyNode())+helper.getMyEdge().getWeight();
for(int i=1;i<exclusivelncidentEdgeSet.size();i++ )
tempEdge=(Edge)exclusivelncidentEdgeSet.elementAt(i);
n1=tempEdge.getN1();
n2=tempEdge.getN2();
if(tempRouteNodeSet.contains(n1) && !tempRouteNodeSet.contains(n2)){
if(helper.getCurrCost(n1)+tempEdge.getWeight()<min)}{
min=helper.getCurrCost(n1)+tempEdge.getWeight();
helper.setMyEdge(tempEdge);
helper.setMyNode(n1);
helper.setCufrNode(n2);
}
lelse if(tempRouteNodeSet.contains(n2)-&& tempRouteNodeSet.contains(n1)){
if(helper.getCurrCast(n2)+tempEdge.getWeight()<min )}{
min=helper.getCurrCost(n2)+tempEdge.getWeight();
helper.setMyEdge(tempEdge);
helper.setMyNode(n2);
helper.setCurrNode(n1);

}

lelse if(exclusivelncidentEdgeSet.size()==1)

tempEdge=(Edge)exclusivelncidentEdgeSet.elementAt(0);

helper.setMyEdge(tempEdge);

n1=tempEdge.getN1();

n2=tempEdge.getN2();

if(tempRouteNodeSet.contains(n1) && !tempRouteNodeSet.contains(n2)){
helper.setMyNode(n1);
helper.setCurrNode(n2);

lelse if(tempRouteNodeSet.contains(n2) && !tempRouteNodeSet.contains(n1)){
helper.setMyNode(n2);
helper.setCurrNode(n1);
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telse{
finish=true;

/Irenders all nodes visited

Vector getincidentEdgeSet(Graph usableGraph,Vector routeNodeSet){
Edge myEdge=helper.getMyEdge();

Vector incidentEdges=new Vector();
Edge tempEdge;
Node n1,n2;

for(int i=0;i<routeNodeSet.size();i++){
Vector tempEdgeSet=usableGraph.incidentEdgeSet((Node)routeNodeSet.elementAt(i));
for(int j=0;j<tempEdgeSet.size();j++){
tempEdge=(Edge)tempEdgeSet.elementAt(j);
if(lincidentEdges.contains(tempEdge))
incidentEdges.addElement(tempEdge);

n1=tempEdge.getN1();

n2=tempEdge.getN2();

if(routeNodeSet.contains(n1) && routeNodeSet.contains(n2))
incidentEdges.removeElement(tempEdge);

if(n1==maMr.getCenter().getDummyNode() || n2==maMr.getCenter().getDummyNode())

incidentEdges.removeElement(tempEdge);

}
if(incidentEdges.contains(myEdge))

incidentEdges.removeElement(myEdge);

return incidentEdges;
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package emnet;

import java.awt. Toolkit;
import javax.swing.SwingUltilities;
import javax.swing.UIManager;

import java.awt.Dimension;

public class App {

boolean packFrame = false;

[r*
* Construct and show the application.
*/
public App() {
Frame frame = new Frame();
/I Validate frames that have preset sizes
/I Pack frames that have useful preferred sizerinfoj e:g. from their layout
if (packFrame) {
frame.pack();
}
else {

frame.validate();

/I Center the window
Dimension screenSize = Toolkit.getDefaultToolkit().getScreenSize();
Dimension frameSize = frame.getSize();
if (frameSize.height > screenSize.height) {
frameSize.height = screenSize.height;
}
if (frameSize.width > screenSize.width) {
frameSize.width = screenSize.width;
}
frame.setLocation( (screenSize.width - frameSize.width) / 2,
(screenSize.height - frameSize.height) / 2);

frame.setVisible(true);

/**
* Application entry point.

*
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* @param args String[]
*/
public static void main(String[] args) {
SwingUtilities.invokeLater(new Runnable() {
public void run() {
try {
UIManager.setLookAndFeel(UIManager.getSystemLookAndFeelClassName());

}
catch (Exception exception) {

exception.printStackTrace();

/Iread in node & edge data

//add to table

/Ipicture the map

/lframe.add table & map

/Iset supply & demand nodes

/Iresponse in map

/lafter press "start" button, new ant & ant€ommunicationCenter
/Ishow fast routes, detour routes, mutual assistant:routes
/Ishow evaluation indices

/linput expert acceptable time

/lillustrate radar digram and standardized evaluation valte

new App();
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package emnet;

import java.awt.*;
import java.awt.event.”;

import javax.swing.*;

public class Frame_AboutBox
extends JDialog implements ActionListener {

JPanel panel1 = new JPanel();
JPanel panel2 = new JPanel();
JPanel insetsPanel1 = new JPanel();
JPanel insetsPanel2 = new JPanel();
JPanel insetsPanel3 = new JPanel();
JButton button1 = new JButton();
JLabel imageLabel = new JLabel();
JLabel label1 = new JLabel();
JLabel label2 = new JLabel();
JLabel label3 = new JLabel();
JLabel label4 = new JLabel();
Imagelcon image1 = new Imagelcon();
BorderLayout borderLayout1 = new BorderLayout();
BorderLayout borderLayout2 = new BorderLayout();
FlowLayout flowLayout1 = new FlowLayout();
GridLayout gridLayout1 = new GridLayout();
String product = "Earthquake Mitigation Network Design";
String version = "version 1.0, percy.itt.nctu.tw";
String copyright = "Copyright (c) 2006";

String comments = "Decision Making Tool for Network Design";

public Frame_AboutBox(Frame parent) {
super(parent);
try {
setDefaultCloseOperation(DISPOSE_ON_CLOSE);
jblInit();
}
catch (Exception exception) {

exception.printStackTrace();

public Frame_AboutBox() {
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this(null);

[r*

* Component initialization.

* @throws java.lang.Exception

*/

private void jbinit() throws Exception {

image1 = new Imagelcon(emnet.Frame.class.getResource("about.png"));
imageLabel.setlcon(image1);
setTitle("About");
panell.setLayout(borderLayout1);
panel2.setLayout(borderLayout2);
insetsPanel1.setLayout(flowLayout1);
insetsPanel2.setLayout(flowLayout1);
insetsPanel2.setBorder(BorderFactory.createEmptyBorder(10, 10, 10, 10));
gridLayout1.setRows(4);
gridLayout1.setColumns(1);
label1.setText(product);
label2.setText(version);
label3.setText(copyright);
label4.setText(comments);
insetsPanel3.setLayout(gridLayout1);
insetsPanel3.setBorder(BorderFactory.createEmptyBorder(10, 60, 10, 10));
button1.setText("OK");
button1.addActionListener(this);
insetsPanel2.add(imageLabel, null);
panel2.add(insetsPanel2, BorderLayout. WEST);
getContentPane().add(panel1, null);
insetsPanel3.add(label1, null);
insetsPanel3.add(label2, null);
insetsPanel3.add(label3, null);
insetsPanel3.add(label4, null);
panel2.add(insetsPanel3, BorderLayout. CENTER);
insetsPanel1.add(button1, null);
panell.add(insetsPanel1, BorderLayout.SOUTH);
panell.add(panel2, BorderLayout. NORTH);

setResizable(true);

/**
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* Close the dialog on a button event.
* @param actionEvent ActionEvent
*
public void actionPerformed(ActionEvent actionEvent) {
if (actionEvent.getSource() == button1) {

dispose();
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package emnet;

import javax.swing.JDialog;
import java.awt.GridLayout;
import javax.swing.JLabel;

import java.awt.Dimension;
public class Frame_TermBox extends JDialog{

JLabel
label_eva=new JLabel(" E: Overall Evaluation"),
label_Id=new JLabel(" LD: Longest Detour Cost"),
label_amac=new JLabel(" AMAC: Average Mutal Assistance Cost"),
label_nc=new JLabel(" NC: Network Cost"),
label_atc=new JLabel(" ATC: Average Travel Cost"),

label_mtc=new JLabel(" MTC: Maximum Travel Cost");

public Frame_TermBox(Frame parent){
super(parent);
try {
setDefaultCloseOperation(DISPOSE_ON ,CLOSE);
jblInit();
}
catch (Exception exception) {

exception.printStackTrace();

void jblnit(){
Dimension d=new Dimension(250,25);
this.setTitle("Terminology");
this.getContentPane().setLayout(new GridLayout(6,1,5,5));
label_eva.setPreferredSize(d);
label_Id.setPreferredSize(d);
label_amac.setPreferredSize(d);
label_nc.setPreferredSize(d);
label_atc.setPreferredSize(d);

label_mtc.setPreferredSize(d);

this.getContentPane().add(label_atc);
this.getContentPane().add(label_mtc);
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this.getContentPane().add(label_ld);
this.getContentPane().add(label_amac);
this.getContentPane().add(label_nc);
this.getContentPane().add(label_eva);

this.setResizable(false);
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package emnet;

import java.awt.*;

import java.awt.event.”;

import javax.swing.JFrame;
import javax.swing.JPanel;
import javax.swing.JMenuBar;
import javax.swing.JMenu;
import javax.swing.JMenultem;

import javax.swing.JLabel;

import emnet.gui.Map;

import emnet.graph.Graph;

import java.util.Vector;

import java.io.lOException;

import emnet.io.lIOGraph;

import javax.swing.J TextField;
import javax.swing.JButton;

import javax.swing.SwingConstants;
import javax.swing.J TabbedPane;
import javax.swing.JRadioButton;
import javax.swing.ButtonGroup;
import javax.swing.JSplitPane;
import javax.swing.table.DefaultTableModel;
import javax.swing.JTable;

import javax.swing.JScrollPane;
import emnet.graph.Node;

import emnet.graph.Edge;

import emnet.thread.Center;

import java.text.DecimalFormat;

public class Frame
extends JFrame {
JPanel contentPane;
BorderLayout borderLayout1 = new BorderLayout();
JMenuBar jMenuBar1 = new JMenuBar();
JMenu jMenuFile = new JMenu();
JMenultem jMenuFileExit = new JMenultem();
JMenu jMenuHelp = new JMenu();
JMenultem jMenuHelpAbout = new JMenultem();

JMenultem jMenuHelpTerm=new JMenultem();
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JPanel panel_gridbag=new JPanel(new GridLayout(4,1,2,2));

JPanel panel_setting=new JPanel(new BorderLayout());

JLabel label_dir=new JLabel("common dir: ");
JTextField txt_dir=new JTextField();

JLabel label_node=new JLabel("node file: ");
JTextField txt_node=new JTextField();
JLabel label_edge=new JLabel("edge file: ");
JTextField txt_edge=new JTextField();

JLabel label_dataln=new JLabel("2econ?");

DefaultTableModel node TableModel,edge TableModel;
JTable
nodeTable=new JTable(nodeTableModel),
edgeTable=new JTable(edgeTableModel);

JLabel seperator=new JLabel("[ no graph ]",SwingConstants. CENTER);

JRadioButton radio_supply=new JRadioButton("supply");
JRadioButton radio_demand=new JRadioButton("demand");
JRadioButton radio_neutral=new JRadioButton("neutral®);
ButtonGroup radioGroup=new ButtonGroup();

JButton button_run=new JButton("run");

JTextField
txt_atc_low=new JTextField(),txt_mtc_low=new JTextField(),
txt_ld_low=new JTextField(),txt_amac_low=new JTextField(),

txt_nc_low=new JTextField(),

txt_atc_up=new JTextField(),txt_mtc_up=new JTextField(),
txt_Id_up=new JTextField(),txt_amac_up=new JTextField(),

txt_nc_up=new JTextField();

JLabel
atc_output=new JLabel("0.0 "),mtc_output=new JLabel("0.0 ",
Id_output=new JLabel("0.0 "),amac_output=new JLabel("0.0 ",
nc_output=new JLabel("0.0 "),e_output=new JLabel("[ pls fill \"expert\" tab ] ");

JLabel save_dir=new JLabel();

Map map=new Map();
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Graph graph;
Center center;

DecimalFormat myFormatter=new DecimalFormat("### ### ##");

public Frame() {
try {
setDefaultCloseOperation(EXIT_ON_CLOSE);
jblnit();
}
catch (Exception exception) {

exception.printStackTrace();

/I[Component initialization
private void jbinit() throws Exception {
contentPane = (JPanel) getContentPane();
contentPane.setLayout(borderLayout1);
setSize(new Dimension(600, 700));
setTitle(":: EMNet 2006 ::");
jMenuFile.setText("File");
jMenuFileExit.setText("Exit");
jMenuFileExit.addActionListener(new Frame_jMenuFileExit “ActionAdapter(this));
jMenuHelp.setText("Help");
jMenuHelpAbout.setText("About");
jMenuHelpAbout.addActionListener(new Frame_jMenuHelpAbout_ActionAdapter(this));
jMenuHelpTerm.setText("Term");
jMenuHelpTerm.addActionListener(new Frame_jMenuHelpTerm_ActionAdapter(this));
jMenuBar1.add(jMenuFile);
jMenuFile.add(jMenuFileExit);
jMenuBar1.add(jMenuHelp);
jMenuHelp.add(jMenuHelpAbout);
jMenuHelp.add(jMenuHelpTerm);
setdMenuBar(jMenuBar1);

Dimension big=new Dimension(146,20),big2=new Dimension(185,20),med=new

Dimension(100,20),small=new Dimension(65,20),xs=new Dimension(30,20);

JPanel panel_bottom=new JPanel(new BorderLayout());

JPanel panel_left=new JPanel(new BorderLayout());

panel_gridbag.setPreferredSize(new Dimension(275,120));
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label_dir.setHorizontalAlignment(SwingConstants.RIGHT);
label_dir.setPreferredSize(med);
txt_dir.setPreferredSize(big2);
txt_dir.setText("/Users/percyhou/Desktop/graphFiles");
JPanel gridBag1=new JPanel(new GridBagLayout());
gridBag1.add(label_dir);

gridBag1.add(txt_dir);

label_node.setHorizontalAlignment(SwingConstants.RIGHT);
label_node.setPreferredSize(med);
txt_node.setPreferredSize(big2);
txt_node.setText("node_grid.txt");

JPanel gridBag2=new JPanel(new GridBagLayout());
gridBag2.add(label_node);

gridBag2.add(txt_node);

label_edge.setHorizontalAlignment(SwingConstants:RIGHT);
label_edge.setPreferredSize(med);
txt_edge.setPreferredSize(big2);
txt_edge.setText("edge_grid.ixt");

JPanel gridBag3=new JPanel(new ‘GridBagLayout());
gridBag3.add(label_edge);

gridBag3.add(ixt_edge);

label_dataln.setHorizontalAlignment(SwingConstants.RIGHT);
label_dataln.setPreferredSize(med);
JButton button_import=new JButton("import");

button_import.addActionListener(new Frame_button_import_ActionAdapter(this));

JPanel panel_import=new JPanel(new BorderLayout());
panel_import.add(label_dataln,BorderLayout. WEST);
panel_import.add(button_import,BorderLayout.EAST);

panel_gridbag.add(gridBag1);
gridBag?2);
gridBag3);
panel_gridbag.add(panel_import);

panel_gridbag.add

(
(
panel_gridbag.add(
(

panel_left.add(panel_gridbag,BorderLayout. NORTH);

JTabbedPane jtabbedPane=new JTabbedPane();
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jtabbedPane.setPreferredSize(new Dimension(300,300));
JScrollPane tab_node=new JScrollPane(node Table);
JScrollPane tab_edge=new JScrollPane(edge Table);
jtabbedPane.add(tab_node,"node");
jtabbedPane.add(tab_edge,"edge");

panel_left.add(jtabbedPane,BorderLayout. CENTER);
panel_bottom.add(panel_left,BorderLayout. WEST);

JPanel panel_right=new JPanel(new BorderLayout());

/Iradio buttons: supply, demand, neutral

panel_setting.setPreferredSize(new Dimension(300,120));

radio_supply.addActionListener(new Frame_radio_ActionAdapter(this));
radio_demand.addActionListener(new Frame_radio_ActionAdapter(this));
radio_neutral.addActionListener(new Frame_radio_ActionAdapter(this));

button_run.addActionListener(new Frame_button .runtActionAdapter(this));

JPanel panel_radio=new JPanel(new GridBagLayout());
radioGroup.add(radio_supply);
radioGroup.add(radio_demand);
radioGroup.add(radio_neutral);
panel_radio.add(radio_supply);
panel_radio.add(radio_demand);
panel_radio.add(radio_neutral);
(

panel_radio.add(button_run);
panel_setting.add(panel_radio,BorderLayout. NORTH);

/lexpert bounds

JTabbedPane jtabbedPane_right=new JTabbedPane();
jtabbedPane_right.setPreferredSize(new Dimension(300,200));
JPanel tab_index=new JPanel(new BorderLayout());

JPanel panel_index=new JPanel(new GridLayout(9,1,2,2));
JPanel tab_result=new JPanel(new GridLayout(9,1,2,2));
tab_index.add(panel_index,BorderLayout. NORTH);
jtabbedPane_right.add(tab_result,"result");
jtabbedPane_right.add(tab_index,"expert");

JPanel panel_expertO=new JPanel(new BorderLayout());

JPanel panel_expert1=new JPanel(new GridBagLayout());
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JPanel panel_expert2=new JPanel(new GridBagLayout

JPanel panel_expert3=new JPanel(new GridBagLayout());

)

)

)

)
)
)
JPanel panel_expert5=new JPanel(new GridBagLayout())

)

( (
( (
JPanel panel_expert4=new JPanel(new GridBagLayout(
( (
JPanel panel_expert6=new JPanel(new BorderLayout())

JLabel
label_mtc=new JLabel(" MTC: ",SwingConstants.RIGHT),
label_atc=new JLabel(" ATC: ",SwingConstants.RIGHT),
label_Id=new JLabel(" LD: ",SwingConstants.RIGHT),
label_amac=new JLabel(" AMAC: ",SwingConstants.RIGHT),
label_nc=new JLabel(" NC: ",SwingConstants.RIGHT);

JLabel
label_atc_unit=new JLabel(" m",SwingConstants.LEFT),
label_mtc_unit=new JLabel(" m",SwingConstants.LEFT),
label_Id_unit=new JLabel(" m",SwingConstants.LEFT),
label_amac_unit=new JLabel(" m",SwingConstants.LEFT),

label_nc_unit=new JLabel(" m",SwingConstants.LEFT);

label_atc.setPreferredSize(small);
label_mtc.setPreferredSize(small);
label_Id.setPreferredSize(small);
label_amac.setPreferredSize(small);

label_nc.setPreferredSize(small);

txt_atc_low.setPreferredSize(small);
txt_mtc_low.setPreferredSize(small);
txt_ld_low.setPreferredSize(small);
txt_amac_low.setPreferredSize(small);

txt_nc_low.setPreferredSize(small);

txt_atc_up.setPreferredSize(small);
txt_mtc_up.setPreferredSize(small);
txt_ld_up.setPreferredSize(small);
txt_amac_up.setPreferredSize(small);

txt_nc_up.setPreferredSize(small);

label_atc_unit.setPreferredSize(xs);
label_mtc_unit.setPreferredSize(xs);
label_Id_unit.setPreferredSize(xs);

label_amac_unit.setPreferredSize(xs);
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label_nc_unit.setPreferredSize(xs);

JButton button_set=new JButton("set");

button_set.addActionListener(new Frame_button_set_ActionAdapter(this));
panel_expert0.add(new JLabel(" acceptable range:"),BorderLayout. WEST);

panel_expert1.add(label_atc);
panel_expert1.add(txt_atc_low);
new JLabel(" ~"));

panel_expert1.add(txt_atc_up);

(
(
panel_expert1.add(
(
panel_expert2.add(label_mtc);
panel_expert2.add(txt_mtc_low);

new JLabel(" ~"));
panel_expert2.add(txt_mtc_up);

(
(
panel_expert2.add(
(
panel_expert3.add(label_ld);

txt_ld_low);

new JLabel(" ~"));
panel_expert3.add(txt_Id_up);

(
panel_expert3.add(
panel_expert3.add(
(
panel_expert4.add(label_amac);
panel_expert4.add(txt_amac_low);

new JLabel(" ~"));

panel_expert4.add(txt_amac_up);

(
(
panel_expert4.add(
(

panel_expert5.add(label_nc);

panel_expert5.add(txt_nc_low);

(
(
panel_expert5.add(new JLabel(" ~ "));
panel_expert5.add(txt_nc_up);

panel_expert6.add(button_set,BorderLayout.EAST);

)

panel_index.add(panel_expert0

)

panel_index.add(panel_expert1

)

panel_index.add(panel_expert2

panel_index.add(panel_expert4

)

panel_index.add(panel_expert5

)

( )
( )
( )
panel_index.add(panel_expert3);
( )
( )
( )

panel_index.add(panel_expert6

)
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JTextField txtField=new JTextField("[indices]",15);
txtField.setBackground(Color.WHITE);
txtField.setEditable(false);

JPanel panel_outputO=new JPanel(new GridBagLayout());
JPanel panel_output3=new JPanel(new GridBagLayout());

1 JPanel panel_output29=new JPanel(new GridBagLayout());
JPanel panel_output4=new JPanel(new GridBagLayout());

I JPanel panel_output49=new JPanel(new GridBagLayout());
JPanel panel_output5=new JPanel(new GridBagLayout());
JPanel panel_output1=new JPanel(new GridBagLayout());
JPanel panel_output2=new JPanel(new GridBagLayout());

( )

JPanel panel_output6=new JPanel(new BorderLayout());

JLabel
label_atc1=new JLabel(" ATC: ",SwingConstants.RIGHT),
label_mtc1=new JLabel(" MTC: ",SwingConstants.RIGHT),
label_Id1=new JLabel(" LD: ",SwingConstants/RIGHT),
label_amac1=new JLabel(" AMAC: ",SwingConstants:RIGHT),
label_nc1=new JLabel(" NC: ",SwingConstants.RIGHT);
label_e=new JLabel(" E: ",SwingConstants.RIGHT);

JLabel
label_atc_unit1=new JLabel(" ",SwingConstants:LEFT),
label_mtc_unit1=new JLabel(" ",SwingConstants.LEFT),
label_Id_unit1=new JLabel(" ",SwingConstants.LEFT),
label_amac_unit1=new JLabel(" ",SwingConstants.LEFT),
label_nc_unit1=new JLabel(" ",SwingConstants.LEFT),

label_e_unit1=new JLabel();

label_atc1.setPreferredSize(small);
label_mtc1.setPreferredSize(small);
label_Id1.setPreferredSize(small);
label_amac1.setPreferredSize(small);
label_nc1.setPreferredSize(small);

label_e.setPreferredSize(small);

atc_output.setPreferredSize(big);
mtc_output.setPreferredSize(big);
Id_output.setPreferredSize(big);
amac_output.setPreferredSize(big);

nc_output.setPreferredSize(big);
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e_output.setPreferredSize(big);

atc_output.setHorizontalAlignment(SwingConstants.RIGHT);
mtc_output.setHorizontalAlignment(SwingConstants.RIGHT);
Id_output.setHorizontal Alignment(SwingConstants.RIGHT);
amac_output.setHorizontalAlignment(SwingConstants.RIGHT);
nc_output.setHorizontalAlignment(SwingConstants.RIGHT);

e_output.setHorizontalAlignment(SwingConstants.RIGHT);

label_atc_unit1.setPreferredSize(xs);
label_mtc_unit1.setPreferredSize(xs);
label_Id_unit1.setPreferredSize(xs);
label_amac_unit1.setPreferredSize(xs);
label_nc_unit1.setPreferredSize(xs);

label_e_unit1.setPreferredSize(xs);

panel_output0.add(label_e);
panel_output0.add(e_output);
panel_output0.add(label_e_unit1);

panel_output1.add(label_atc1);
panel_output1.add(atc_output);

panel_output1.add(label_atc_unit1);

panel_output2.add(label_mtc1);
panel_output2.add(mtc_output);

panel_output2.add(label_mtc_unit1);

panel_output3.add(label_ld1);
panel_output3.add(ld_output);
panel_output3.add(label_Id_unit1);

panel_output4.add(label_amac1);
panel_output4.add(amac_output);

panel_output4.add(label_amac_unit1);
panel_output5.add(label_nc1);
panel_output5.add(nc_output);

panel_output5.add(label_nc_unit1);

save_dir.setPreferredSize(new Dimension(200,20));

JButton button_save=new JButton("save");
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I button_save.addActionListener(this);

panel_output6.add(save_dir,BorderLayout. WEST);
panel_output6.add(button_save,BorderLayout.EAST);

)

tab_result.add(panel_output1

)

tab_result.add(panel_output2

)

tab_result.add(panel_output3

tab_result.add(panel_output5

)

tab_result.add(panel_outputO

)

( )
( )
( )
tab_result.add(panel_output4);
( )
( )
( )

tab_result.add(panel_output6);
panel_setting.add(jtabbedPane_right,BorderLayout. CENTER);
panel_right.add(panel_setting,BorderLayout.EAST);
panel_bottom.add(panel_right,BorderLayout. CENTER);
panel_bottom.add(seperator,BorderLayout. NORTH);

map.sentFrame(this);

JSplitPane sp=new JSplitPane(JSplitPane.VERTICAL_SPLIT;map,panel_bottom);
sp.setDividerSize(8);

sp.setDividerLocation(270);

sp.setResizeWeight(0.5);

sp.setContinuousLayout(true);

sp.setOne TouchExpandable(true);

contentPane.add(sp,BorderLayout. CENTER);

public void setATC(double atc){
atc_output.setText(myFormatter.format(atc)+" ");
txt_atc_low.setText(myFormatter.format(atc*0.8));

txt_atc_up.setText(myFormatter.format(atc*1.2));

public void setMTC(double mtc)
mtc_output.setText(myFormatter.format(mtc)+" ");
txt_mtc_low.setText(myFormatter.format(mtc*0.8));

txt_mtc_up.setText(myFormatter.format(mtc*1.2));

public void setLD(double Id){
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Id_output.setText(myFormatter.format(ld)+" ");
txt_ld_low.setText(myFormatter.format(ld*0.8));

txt_ld_up.setText(myFormatter.format(ld*1.2));

public void setAMAC (double amac){
amac_output.setText(myFormatter.format(amac)+" ");
txt_amac_low.setText(myFormatter.format(amac*0.8));

txt_amac_up.setText(myFormatter.format(amac*1.2));

public void setNC(double nc){
nc_output.setText(myFormatter.format(nc)+" ");
txt_nc_low.setText(myFormatter.format(nc*0.8));

txt_nc_up.setText(myFormatter.format(nc*1.2));

public void setE(double e){

e_output.setText(myFormatter.format(e)+" ");

void jMenuFileExit_actionPerformed(ActionEvent actionEvent) {

System.exit(0);

void jMenuHelpAbout_actionPerformed(ActionEvent actionEvent) {
Frame_AboutBox dlg = new Frame_AboutBox(this);
Dimension dlgSize = dlg.getPreferredSize();
Dimension frmSize = getSize();
Point loc = getLocation();
dlg.setLocation( (frmSize.width - digSize.width) / 2 + loc.x,
(frmSize.height - dIgSize.height) / 2 + loc.y);
dlg.setModal(true);
dlg.pack();
dlg.show();

void jMenuHelp Term_actionPerformed(ActionEvent actionEvent) {
Frame_TermBox dlg = new Frame_TermBox(this);
Dimension dlgSize = dlg.getPreferredSize();
Dimension frmSize = getSize();

Point loc = getLocation();
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dlg.setLocation( (frmSize.width - digSize.width) / 2 + loc.x,
(frmSize.height - dIgSize.height) / 2 + loc.y);

dlg.setModal(true);

dlg.pack();

dlg.show();

void button_import_actionPerformed(ActionEvent actionEvent){

setATC(0.0);
setMTC(0.0);
setLD(0.0);
setAMAC(0.0);
setNC(0.0);
setE(0.0);

/lread in files: node.ixt & edge.ixt, assign to field argument
try {
I0OGraph ioGraph=new |IOGraph(ixt_dir.getText(),txt_node.getText(),ixt_edge.getText());
this.graph=ioGraph.getGraphi();
Vector nodeSet=graph.getNodeSet();
Vector edgeSet=graph.getEdgeSet();

Node tempNode;

boolean econ=true;

for(int i=0;i<nodeSet.size();i++){
tempNode=(Node)nodeSet.elementAt(i);
if(graph.incidentEdgeSet(tempNode).size()<2){

econ=false;

if(econ){
label_dataln.setText("2econ!");
telsef

label_dataln.setText("not 2econ!");

}
catch (IOException ex) {

System.out.printin("Data Read-In Problem!");

ex.printStackTrace();
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save_dir.setText("dir: "+txt_dir.getText());

map.setGraph(graph);
this.seperator.setText("[ graph components: "+graph.getNodeSet().size()+" nodes,

"+graph.getEdgeSet().size()+" edges ]");

this.fleshTable(graph);
this.repaint();

void radio_actionPerformed(ActionEvent actionEvent){
map.nodeSetting(radio_supply.isSelected(),radio_demand.isSelected(),radio_neutral.isSelected());

this.repaint();

void button_run_actionPerformed(ActionEvent actionEvent){
center=new Center(graph,this);

center.start();

this.repaint();

void button_set_actionPerformed(ActionEvent actionEvent){
double e=1.0;

double atc=new Double(atc_output.getText()).doubleValue();
double low_atc=new Double(txt_atc_low.getText()).doubleValue();
double up_atc=new Double(txt_atc_up.getText()).doubleValue();

double std_atc=standardN(atc,low_atc,up_atc);

double mtc=new Double(mtc_output.getText()).doubleValue();
double low_mtc=new Double(txt_mtc_low.getText()).doubleValue();
double up_mtc=new Double(txt_mtc_up.getText()).doubleValue();

double std_mtc=standardN(mtc,low_mtc,up_mtc);

double amac=new Double(amac_output.getText()).doubleValue();
double low_amac=new Double(txt_amac_low.getText()).doubleValue();
double up_amac=new Double(txt_amac_up.getText()).doubleValue();

double std_amac=standardN(amac,low_amac,up_amac);

double Id=new Double(ld_output.getText()).doubleValue();
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double low_ld=new Double(txt_Id_low.getText()).doubleValue();
double up_ld=new Double(txt_Id_up.getText()).doubleValue();
double std_ld=standardN(ld,low_Id,up_lId);

double nc=new Double(nc_output.getText()).doubleValue();
double low_nc=new Double(txt_nc_low.getText()).doubleValue();
double up_nc=new Double(txt_nc_up.getText()).doubleValue();

double std_nc=standardP(nc,low_nc,up_nc);
e=(1.0/3.0)*((std_atc + std_mtc)/2.0 + (std_Id + std_amac)/2.0 + std_nc);

this.setE(e);

/lIpositive
double standardP(double x,double low,double up){
if(up<=x){
return 1.0;
lelse if(low<=x && x<up)}

return (x-low)/(up-low);

telsef
return 0.0;
}
}
/Inegative

double standardN(double x,double low,double up){
if(x<low){
return 1.0;
lelse if(low<=x && x<up)}{
return (low-x)/(low-up);
telsef

return 0.0;

public void setSeperator(Graph graph){
int nodeNum=0,edgeNum=0;

Vector nodeSet=graph.getNodeSet();
Vector edgeSet=graph.getEdgeSet();
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Node tempNode;

for(int i=0;i<nodeSet.size();i++){
tempNode=(Node)nodeSet.elementAt(i);
if(ltempNode.isDummy())

nodeNum++;

Edge tempEdge;

for(int i=0;i<edgeSet.size();i++){
tempEdge=(Edge)edgeSet.elementAt(i);
if(ltempEdge.isDummyEdge())

edgeNum++;

seperator.setText("[ graph components: "+nodeNum+" nodes, "+edgeNum+" edges | supply
"+graph.getSupplyNodeNum()+" , demand "+graph.getDemandNodeNum()+" 1");
this.repaint();

public Map getMap(){

return this.map;

void fleshTable(Graph graph){
Vector nodeSet=graph.getNodeSet(),edgeSet=graph.getEdgeSet();
Object nodeData[]=new Object[3];
DefaultTableModel node TableModel=new DefaultTableModel();
nodeTableModel.addColumn("label");
nodeTableModel.addColumn("x");
nodeTableModel.addColumn("y");
for(int i=0;i<nodeSet.size();i++){
Node node=(Node)nodeSet.elementAt(i);
nodeData[0]=""+node.getLabel();
nodeData[1]=""+node.getX();
nodeData[2]=""+node.getY();
nodeTableModel.addRow(nodeData);

}
this.node Table.setModel(node TableModel);

Object edgeData[]=new Object[3];

DefaultTableModel edge TableModel=new DefaultTableModel();
edgeTableModel.addColumn("label");
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edge TableModel.addColumn("n1");

edge TableModel.addColumn("n2");

for(int i=0;i<edgeSet.size();i++){
Edge edge=(Edge)edgeSet.elementAt(i);
edgeData[0]=""+edge.getLabel();
edgeData[1]=""+edge.getN1().getLabel();
edgeData[2]=""+edge.getN2().getLabel();
edgeTableModel.addRow(edgeData);

}
this.edge Table.setModel(edge TableModel);

class Frame_jMenuFileExit_ActionAdapter
implements ActionListener {

Frame adaptee;
Frame_jMenuFileExit_ActionAdapter(Frame adaptee) {

this.adaptee = adaptee;

public void actionPerformed(ActionEvent actionEvent){

adaptee.jMenuFileExit_actionPerformed(actionEvent);

class Frame_jMenuHelpAbout_ActionAdapter
implements ActionListener {
Frame adaptee;
Frame_jMenuHelpAbout_ActionAdapter(Frame adaptee) {

this.adaptee = adaptee;

public void actionPerformed(ActionEvent actionEvent) {

adaptee.jMenuHelpAbout_actionPerformed(actionEvent);

class Frame_jMenuHelpTerm_ActionAdapter
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implements ActionListener {

Frame adaptee;

Frame_jMenuHelpTerm_ActionAdapter(Frame adaptee) {

this.adaptee = adaptee;

public void actionPerformed(ActionEvent actionEvent) {

adaptee.jMenuHelpTerm_actionPerformed(actionEvent);

class Frame_button_import_ActionAdapter implements ActionListener{
Frame adaptee;
Frame_button_import_ActionAdapter(Frame adaptee){

this.adaptee=adaptee;

public void actionPerformed(ActionEvent actionEvent){

adaptee.button_import_actionPerformed(actionEvent);

class Frame_radio_ActionAdapter implements ActionListener{
Frame adaptee;
Frame_radio_ActionAdapter(Frame adaptee){

this.adaptee=adaptee;

public void actionPerformed(ActionEvent actionEvent){

adaptee.radio_actionPerformed(actionEvent);

class Frame_button_run_ActionAdapter implements ActionListener{
Frame adaptee;
Frame_button_run_ActionAdapter(Frame adaptee){

this.adaptee=adaptee;
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public void actionPerformed(ActionEvent actionEvent){

adaptee.button_run_actionPerformed(actionEvent);

class Frame_button_set_ActionAdapter implements ActionListener{
Frame adaptee;
Frame_button_set_ActionAdapter(Frame adaptee)}{

this.adaptee=adaptee;

public void actionPerformed(ActionEvent actionEvent){

adaptee.button_set_actionPerformed(actionEvent);
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