

101

附錄三 程式碼

GraphAlgorithm.java

package emnet.algorithm;

import java.util.Vector;

import emnet.graph.Graph;

import emnet.graph.Node;

import emnet.graph.Edge;

import java.util.Iterator;

import emnet.thread.Center;

import emnet.thread.Roamer;

import emnet.thread.Detourist;

import emnet.thread.DetourManager;

public class GraphAlgorithm {

 public GraphAlgorithm() {

 try {

 jbInit();

 }

 catch (Exception ex) {

 ex.printStackTrace();

 }

 }

 public static Graph copyGraph(Graph oldGraph){

 Vector oldNodeSet,oldEdgeSet;

 oldNodeSet=oldGraph.getNodeSet();

 oldEdgeSet=oldGraph.getEdgeSet();

 return copyGraph(oldNodeSet,oldEdgeSet);

 }

 public static Graph copyGraph(Vector oldNodeSet,Vector oldEdgeSet){

 Vector newNodeSet=new Vector(),newEdgeSet=new Vector();

 for(int i=0;i<oldNodeSet.size();i++){

 // new node setting:

 // 1. check label

102

GraphAlgorithm.java

 // 2. check supply/demand

 // 3. check visit

 Node tempOldNode=(Node)oldNodeSet.elementAt(i);

 Node tempNewNode=new Node(i);

 if(tempOldNode.isSupply()){

 tempNewNode.setSupply();

 }else if(tempOldNode.isDemand()){

 tempNewNode.setDemand();

 }

 if(tempOldNode.isVisited()){

 tempNewNode.visit();

 }

 newNodeSet.addElement(tempNewNode);

 }

 for(int i=0;i<oldEdgeSet.size();i++){

 // new edge setting:

 // 1. check label

 // 2. check n1/n2

 // 3. set weight

 // 4. set previous node

 // 5. check fast

 // 6. check detour

 // 7. check visit

 Edge tempOldEdge=(Edge)oldEdgeSet.elementAt(i);

 int n1=tempOldEdge.getN1Label(),n2=tempOldEdge.getN2Label();

 double weight=tempOldEdge.getWeight();

 Edge tempNewEdge=new

Edge(i,(Node)newNodeSet.elementAt(n1),(Node)newNodeSet.elementAt(n2),weight);

 if(tempOldEdge.isFastEdge()){

 tempNewEdge.setFastEdge();

 }

 if(tempOldEdge.isDetourEdge()){

 tempNewEdge.setDetourEdge();

 }

103

GraphAlgorithm.java

 if(tempOldEdge.isVisited()){

 tempNewEdge.visit();

 }

 newEdgeSet.addElement(tempNewEdge);

 }

 return new Graph(newNodeSet,newEdgeSet);

 }

 public static Graph getSubtreeWithCertainNode(Graph tree,Node certainNode,Edge ruinedEdge){

 Vector nodeSet=new Vector(),edgeSet=new Vector();

 Vector currAdjacentNodes,currIncidentEdges;

 Node currNode=certainNode;

 int maxLabel=0;

 Vector tempTreeNodeSet=tree.getNodeSet();

 Node tempTreeNode;

 for(int i=0;i<tempTreeNodeSet.size();i++){

 tempTreeNode=(Node)tempTreeNodeSet.elementAt(i);

 if(tempTreeNode.getLabel()>maxLabel)

 maxLabel=tempTreeNode.getLabel();

 }

 Vector preNodes=new Vector(maxLabel+1);

 for(int i=0;i<(maxLabel+1);i++)

 preNodes.addElement(null);

 boolean finish=false;

 do{

 currAdjacentNodes=tree.adjacentNodeSet(currNode);

 currIncidentEdges=tree.incidentEdgeSet(currNode);

 if(currIncidentEdges.contains(ruinedEdge)){

 currIncidentEdges.removeElement(ruinedEdge);

 currAdjacentNodes.removeElement(ruinedEdge.theOtherNode(currNode));

 }

 Iterator itrAdjacentNodes=currAdjacentNodes.iterator();

 if(!nodeSet.contains(currNode))

104

GraphAlgorithm.java

 nodeSet.addElement(currNode);

 int i=0;

 currNodeAssign:

 do{

 if(itrAdjacentNodes.hasNext()){

 Node tempNode=(Node)itrAdjacentNodes.next();

 if(!nodeSet.contains(tempNode)){

 preNodes.setElementAt(currNode,tempNode.getLabel());

 currNode=tempNode;

 break currNodeAssign;

 }else{

 i++;

 if(i==currAdjacentNodes.size()){

 if(currNode==certainNode){

 finish=true;

 break currNodeAssign;

 }

 Edge

tempEdge=tree.getEdge(currNode,(Node)preNodes.elementAt(currNode.getLabel()));

 if(!edgeSet.contains(tempEdge)){

 edgeSet.addElement(tempEdge);

 }

 currNode=(Node)preNodes.elementAt(currNode.getLabel());

 }

 }

 }else{

 finish=true;

 //break currNodeAssign;

 }

 }while(itrAdjacentNodes.hasNext());

 }while(!finish);

 return new Graph(nodeSet,edgeSet);

 }

 public static Vector getAdjacentNodes(Graph graph,Node currNode){

 return graph.adjacentNodeSet(currNode);

 }

 public static Vector getIncidnetEdges(Graph graph,Node currNode){

 return graph.incidentEdgeSet(currNode);

105

GraphAlgorithm.java

 }

 public static Graph getSubtreeWithoutSupply(Graph tree,Edge ruinedEdge){

 Graph subtreeWithoutSupply=null;

 Graph subtreeN1=getSubtreeWithCertainNode(tree,ruinedEdge.getN1(),ruinedEdge);

 Graph subtreeN2=getSubtreeWithCertainNode(tree,ruinedEdge.getN2(),ruinedEdge);

 Vector subtreeNodeSetN1=subtreeN1.getNodeSet();

 Node tempNode;

 for(int i=0;i<subtreeNodeSetN1.size();i++){

 tempNode=(Node)subtreeNodeSetN1.elementAt(i);

 if(tempNode.isSupply())

 subtreeWithoutSupply=subtreeN2;

 }

 if(subtreeWithoutSupply!=subtreeN2)

 subtreeWithoutSupply=subtreeN1;

 return subtreeWithoutSupply;

 }

 public static Graph getSubtreeWithSupply(Graph tree,Edge ruinedEdge){

 Graph subtreeWithSupply=null;

 Graph subtreeN1=getSubtreeWithCertainNode(tree,ruinedEdge.getN1(),ruinedEdge);

 Graph subtreeN2=getSubtreeWithCertainNode(tree,ruinedEdge.getN2(),ruinedEdge);

 Vector subtreeNodeSetN1=subtreeN1.getNodeSet();

 Node tempNode;

 for(int i=0;i<subtreeNodeSetN1.size();i++){

 tempNode=(Node)subtreeNodeSetN1.elementAt(i);

 if(tempNode.isSupply())

 subtreeWithSupply=subtreeN1;

 }

 if(subtreeWithSupply!=subtreeN1)

 subtreeWithSupply=subtreeN2;

 return subtreeWithSupply;

 }

 private void jbInit() throws Exception {

 }

 public static Vector getIncidentEdgeSet(Roamer roamer,Vector nodeSet){

 Center center=roamer.getCenter();

 Graph graph=center.getGraph();

106

GraphAlgorithm.java

 Edge myEdge=center.getMyEdge(roamer);

 Vector visitorSequence;

 Vector edgeSet=new Vector();

 Edge tempEdge;

 Node n1,n2;

 for(int i=0;i<nodeSet.size();i++){

 Vector tempEdgeSet=graph.incidentEdgeSet((Node)nodeSet.elementAt(i));

 for(int j=0;j<tempEdgeSet.size();j++){

 if(!edgeSet.contains(tempEdgeSet.elementAt(j))){

 edgeSet.addElement(tempEdgeSet.elementAt(j));

 tempEdge=(Edge)tempEdgeSet.elementAt(j);

 n1=tempEdge.getN1();

 n2=tempEdge.getN2();

 //remove edges included in the routeEdgeSet

 if(nodeSet.contains(n1) && nodeSet.contains(n2))

 edgeSet.removeElement(tempEdge);

 //remove dummyEdges

 if(n1==center.getDummyNode() || n2==center.getDummyNode())

 edgeSet.removeElement(tempEdge);

 //remove visited edge

 if(nodeSet.contains(n1)){

 visitorSequence=center.getVisitorSequence(n2);

 if(visitorSequence.contains(roamer))

 edgeSet.removeElement(tempEdge);

 }else if(nodeSet.contains(n2)){

 visitorSequence=center.getVisitorSequence(n1);

 if(visitorSequence.contains(roamer))

 edgeSet.removeElement(tempEdge);

 }

 }

 }

 }

 if(edgeSet.contains(myEdge))

 edgeSet.removeElement(myEdge);

 return edgeSet;

 }

 public static Vector getIncidentEdges(Detourist detourist,Vector nodeSet){

 Graph usableGraph=detourist.getUsableGraph();

107

GraphAlgorithm.java

 DetourManager dmr=detourist.getDetourManager();

 Center center=dmr.getCenter();

 Edge myEdge=dmr.getMyEdge(detourist);

 Vector incidentEdges=new Vector();

 Edge tempEdge;

 Node n1,n2;

 for(int i=0;i<nodeSet.size();i++){

 Vector tempEdgeSet=usableGraph.incidentEdgeSet((Node)nodeSet.elementAt(i));

 for(int j=0;j<tempEdgeSet.size();j++){

 tempEdge=(Edge)tempEdgeSet.elementAt(j);

 if(!incidentEdges.contains(tempEdge))

 incidentEdges.addElement(tempEdge);

 n1=tempEdge.getN1();

 n2=tempEdge.getN2();

 if(nodeSet.contains(n1) && nodeSet.contains(n2))

 incidentEdges.removeElement(tempEdge);

 if(n1==center.getDummyNode() || n2==center.getDummyNode())

 incidentEdges.removeElement(tempEdge);

 }

 }

 if(incidentEdges.contains(myEdge))

 incidentEdges.removeElement(myEdge);

 return incidentEdges;

 }

 public static Vector getInterfaceNodes(Graph subject,Graph environment){

 Vector interfaceNodes=new Vector();

 Vector environmentEdgeSet=environment.getEdgeSet();

 Edge tempEdge;

 Node n1,n2;

 for(int i=0;i<environmentEdgeSet.size();i++){

 tempEdge=(Edge)environmentEdgeSet.elementAt(i);

 n1=tempEdge.getN1();

 n2=tempEdge.getN2();

 if(subject.hasNode(n1) && !subject.hasNode(n2)){

108

GraphAlgorithm.java

 if(!interfaceNodes.contains(n1))

 interfaceNodes.addElement(n1);

 }

 if(subject.hasNode(n2) && !subject.hasNode(n1)){

 if(!interfaceNodes.contains(n2))

 interfaceNodes.addElement(n2);

 }

 }

 return interfaceNodes;

 }

 public static double networkCost(Graph graph){

 Vector edgeSet=graph.getEdgeSet();

 Edge edge;

 double networkCost=0.0;

 for(int i=0;i<edgeSet.size();i++){

 edge=(Edge)edgeSet.elementAt(i);

 networkCost=networkCost+edge.getWeight();

 }

 return networkCost;

 }

 public static double pathCost(Vector edgeSet){

 double pathkCost=0.0;

 Edge edge;

 for(int i=0;i<edgeSet.size();i++){

 edge=(Edge)edgeSet.elementAt(i);

 pathkCost=pathkCost+edge.getWeight();

 }

 return pathkCost;

 }

 public static Vector intersection(Vector set0,Vector set1){

 Vector intersection=new Vector();

 Object temp;

 for(int i=0;i<set0.size();i++){

 temp=set0.elementAt(i);

 if(set1.contains(temp))

 intersection.addElement(temp);

 }

 return intersection;

109

GraphAlgorithm.java

 }

 public static Vector union(Vector set0,Vector set1){

 Vector union=new Vector();

 Object temp;

 for(int i=0;i<set0.size();i++){

 temp=set0.elementAt(i);

 union.addElement(temp);

 }

 for(int i=0;i<set1.size();i++){

 temp=set1.elementAt(i);

 if(!union.contains(temp))

 union.addElement(temp);

 }

 return union;

 }

 //detour

 public static double getMergeCost(Detourist detourist,Node node){

 Center center=detourist.getDetourManager().getCenter();

 double mergeCost=0.0;

 Graph downstream=detourist.getDownstream();

 Vector downstreamDemandNodeSet=downstream.getDemandNodeSet();

 Graph mergeNodeToSupplyPath=getPathToSupply(node,center);

 Vector mergeNodeToSupplyEdgeSet=mergeNodeToSupplyPath.getEdgeSet();

 Vector tempEdgeSetUnion=new Vector(),tempEdgeSetIntersection=new Vector();

 Node tempDemand;

 Graph tempDemandToSupplyPath;

 Vector tempDemandToSupplyEdgeSet;

 for(int i=0;i<downstreamDemandNodeSet.size();i++){

 tempDemand=(Node)downstreamDemandNodeSet.elementAt(i);

 tempDemandToSupplyPath=getPathToSupply(tempDemand,center);

 tempDemandToSupplyEdgeSet=tempDemandToSupplyPath.getEdgeSet();

 tempEdgeSetUnion=union(mergeNodeToSupplyEdgeSet,tempDemandToSupplyEdgeSet);

110

GraphAlgorithm.java

tempEdgeSetIntersection=intersection(mergeNodeToSupplyEdgeSet,tempDemandToSupplyEdgeSet);

 mergeCost=mergeCost+pathCost(tempEdgeSetUnion)-pathCost(tempEdgeSetIntersection);

 }

 return mergeCost;

 }

 public static Graph getPathToSupply(Node node,Center center){

 Vector nodeSet=new Vector();

 Vector edgeSet=new Vector();

 Node currNode=node;

 Edge preEdge;

 while(currNode!=center.getDummyNode()){

 preEdge=center.getPreEdge(currNode);

 if(center.getPreNode(currNode)!=center.getDummyNode()){

 if(!nodeSet.contains(currNode))

 nodeSet.addElement(currNode);

 if(!edgeSet.contains(preEdge))

 edgeSet.addElement(preEdge);

 }else{

 if(!nodeSet.contains(currNode))

 nodeSet.addElement(currNode);

 }

 currNode=preEdge.theOtherNode(currNode);

 }

 return new Graph(nodeSet,edgeSet);

 }

}

111

Graph.java

package emnet.graph;

import java.util.Vector;

public class Graph {

 private Vector nodeSet,edgeSet;

 int supplyNodeNum,demandNodeNum;

 public Graph(Vector nodeSet, Vector edgeSet){

 this.nodeSet=nodeSet;

 this.edgeSet=edgeSet;

 }

 public Vector getNodeSet(){

 return this.nodeSet;

 }

 public Vector getEdgeSet(){

 return this.edgeSet;

 }

 //incident edges of node n

 public Vector incidentEdgeSet(Node node){

 Vector incidentEdgeSet=new Vector();

 for(int i=0;i<this.edgeSet.size();i++){

 Edge tempEdge=(Edge)edgeSet.elementAt(i);

 if(tempEdge.getN1()==node || tempEdge.getN2()==node){

 if(!incidentEdgeSet.contains(tempEdge)){

 incidentEdgeSet.addElement(tempEdge);

 }

 }

 }

 return incidentEdgeSet;

 }

 //adjacent nodes of node n

 public Vector adjacentNodeSet(Node n){

 Vector adjacentNodeSet=new Vector();

 for(int i=0;i<this.edgeSet.size();i++){

 Edge tempEdge=(Edge)edgeSet.elementAt(i);

 if(tempEdge.getN1()==n && !adjacentNodeSet.contains(tempEdge.getN2())){

112

Graph.java

 adjacentNodeSet.addElement(tempEdge.getN2());

 }else if(tempEdge.getN2()==n && !adjacentNodeSet.contains(tempEdge.getN1())){

 adjacentNodeSet.addElement(tempEdge.getN1());

 }

 }

 return adjacentNodeSet;

 }

 public Vector getSupplyNodeSet(){

 Vector supplyNodeSet=new Vector();

 for(int i=0;i<this.nodeSet.size();i++){

 Node tempNode=(Node)nodeSet.elementAt(i);

 if(tempNode.isSupply())

 supplyNodeSet.addElement(tempNode);

 }

 return supplyNodeSet;

 }

 public int getSupplyNodeNum(){

 return getSupplyNodeSet().size();

 }

 public Vector getDemandNodeSet(){

 Vector demandNodeSet=new Vector();

 for(int i=0;i<this.nodeSet.size();i++){

 Node tempNode=(Node)nodeSet.elementAt(i);

 if(tempNode.isDemand())

 demandNodeSet.addElement(tempNode);

 }

 return demandNodeSet;

 }

 public int getDemandNodeNum(){

 return getDemandNodeSet().size();

 }

 public Edge getEdge(Node n1,Node n2){

 Edge edge;

 for(int i=0;i<edgeSet.size();i++){

 edge=(Edge)edgeSet.elementAt(i);

 if(edge.getN1()==n1){

 if(edge.theOtherNode(edge.getN1())==n2)

113

Graph.java

 return edge;

 }else if(edge.getN1()==n2){

 if(edge.theOtherNode(edge.getN1())==n1)

 return edge;

 }

 }

 System.out.println("error: no edge can be returned!");

 return null;

 }

 public void addNode(Node node){

 if(!nodeSet.contains(node))

 this.nodeSet.addElement(node);

 }

 public void addEdge(Edge edge){

 if(!edgeSet.contains(edge))

 this.edgeSet.addElement(edge);

 }

 public boolean hasNode(Node node){

 if(nodeSet.contains(node)){

 return true;

 }else{

 return false;

 }

 }

 public boolean hasEdge(Edge edge){

 if(edgeSet.contains(edge)){

 return true;

 }else{

 return false;

 }

 }

 public void removeNode(Node node){

 if(nodeSet.contains(node)){

 Vector incidentEdges=this.incidentEdgeSet(node);

 Edge tempIncidentEdge;

 for(int i=0;i<incidentEdges.size();i++){

 tempIncidentEdge=(Edge)incidentEdges.elementAt(i);

114

Graph.java

 if(edgeSet.contains(tempIncidentEdge))

 edgeSet.removeElement(tempIncidentEdge);

 }

 nodeSet.removeElement(node);

 }

 }

 public void removeEdge(Edge edge){

 if(edgeSet.contains(edge))

 edgeSet.removeElement(edge);

 }

}

115

Node.java

package emnet.graph;

public class Node{

 private int label;

 private double x,y;

 private boolean demand,supply,merge,access,source,dummy;

 private boolean visit,occupy;

 public Node(int label){

 this.label=label;

 this.demand=false;

 this.supply=false;

 this.merge=false;

 this.access=false;

 this.source=false;

 this.dummy=false;

 this.visit=false;

 this.occupy=false;

 }

 public Node(int label,double x,double y){

 this(label);

 setX(x);

 setY(y);

 }

 public void setDemand(){

 this.demand=true;

 }

 public void setSupply(){

 this.supply=true;

 }

 public void setNeutral(){

 this.supply=false;

 this.demand=false;

 }

 public void setMerge(){

 this.merge=true;

116

Node.java

 }

 public void setAccess(){

 this.access=true;

 }

 public void setSource(){

 this.source=true;

 }

 public void setDummy(){

 this.dummy=true;

 }

 public synchronized void visit(){

 this.visit=true;

 }

 public synchronized void occupy(){

 this.occupy=true;

 }

 public synchronized void unOccupied(){

 this.occupy=false;

 }

 public synchronized void leave(){

 this.occupy=false;

 }

 public boolean isOccupied(){

 return this.occupy;

 }

 public boolean isDemand(){

 return this.demand;

 }

 public boolean isSupply(){

 return this.supply;

 }

117

Node.java

 public boolean isMerge(){

 return this.merge;

 }

 public boolean isAccess(){

 return this.access;

 }

 public boolean isSource(){

 return this.source;

 }

 public boolean isDummy(){

 return this.dummy;

 }

 public boolean isVisited(){

 return this.visit;

 }

 public int getLabel(){

 return label;

 }

 public void setX(double x){

 this.x=x;

 }

 public void setY(double y){

 this.y=y;

 }

 public double getX(){

 return this.x;

 }

 public double getY(){

 return this.y;

 }

}

118

Edge.java

package emnet.graph;

public class Edge {

 private int label;

 private double weight;

 private Node n1,n2;

 private boolean fastEdge,detourEdge,testEdge,detourTestEdge,dummyEdge,maTestEdge,maEdge;

 private boolean visit;

 public Edge(int label,Node n1,Node n2){

 this.label=label;

 this.weight=0.0;

 this.n1=n1;

 this.n2=n2;

 this.fastEdge=false;

 this.detourEdge=false;

 this.testEdge=false;

 this.detourTestEdge=false;

 this.dummyEdge=false;

 this.maTestEdge=false;

 this.maEdge=false;

 this.visit=false;

 }

 public Edge(int label,Node n1,Node n2,double weight){

 this(label,n1,n2);

 this.weight=weight;

 }

 public synchronized void setFastEdge(){

 this.fastEdge=true;

 }

 public boolean isFastEdge(){

 return this.fastEdge;

 }

 public synchronized void setDetourEdge(){

 this.detourEdge=true;

 }

119

Edge.java

 public boolean isDetourEdge(){

 return this.detourEdge;

 }

 public synchronized void setTestEdge(){

 this.testEdge=true;

 }

 public boolean isTestEdge(){

 return this.testEdge;

 }

 public synchronized void setDetourTestEdge(boolean detourTestEdge){

 this.detourTestEdge=detourTestEdge;

 }

 public boolean isDetourTestEdge(){

 return detourTestEdge;

 }

 public synchronized void setDummyEdge(){

 this.dummyEdge=true;

 }

 public boolean isDummyEdge(){

 return dummyEdge;

 }

 public synchronized void setMATestEdge(boolean maTestEdge){

 this.maTestEdge=maTestEdge;

 }

 public boolean isMATestEdge(){

 return maTestEdge;

 }

 public synchronized void setMAEdge(){

 this.maEdge=true;

 }

 public boolean isMAEdge(){

 return maEdge;

120

Edge.java

 }

 public synchronized void setNeutralEdge(){

 this.fastEdge=false;

 this.detourEdge=false;

 this.maEdge=false;

 this.testEdge=false;

 this.detourTestEdge=false;

 this.maTestEdge=false;

 }

 public void setWeight(double weight){

 this.weight=weight;

 }

 public double getWeight(){

 return this.weight;

 }

 public Node getN1(){

 return this.n1;

 }

 public Node getN2(){

 return this.n2;

 }

 public Node theOtherNode(Node n){

 if(n==this.n1){

 return this.n2;

 }else if(n==this.n2){

 return this.n1;

 }

 return null;

 }

 public synchronized void visit(){

 this.visit=true;

 }

 public boolean isVisited(){

 return this.visit;

121

Edge.java

 }

 public int getN1Label(){

 return n1.getLabel();

 }

 public int getN2Label(){

 return n2.getLabel();

 }

 public int getLabel(){

 return this.label;

 }

}

122

Map.java

package emnet.gui;

import emnet.graph.Graph;

import emnet.graph.Node;

import emnet.graph.Edge;

import javax.swing.JPanel;

import java.awt.BorderLayout;

import java.awt.Dimension;

import java.util.Vector;

import java.awt.Graphics;

import java.awt.Color;

import java.awt.event.MouseEvent;

import java.awt.event.MouseAdapter;

import emnet.Frame;

import java.text.DecimalFormat;

import java.awt.Font;

public class Map extends javax.swing.JPanel{

 Frame frame;

 JPanel map=new JPanel();

 Graph graph;

 boolean dataIn;

 boolean supply,demand,neutral;

 DecimalFormat myFormatter=new DecimalFormat("###,###.#");

 public Map(){

 init();

 }

 public void init(){

 this.setLayout(new BorderLayout());

 this.setSize(new Dimension(600,400));

 this.setPreferredSize(new Dimension(600,400));

 this.add(map,BorderLayout.CENTER);

 this.dataIn=false;

 this.addMouseListener(new Map_MouseAdapter(this));

 }

 public void paint(Graphics g){

 if(dataIn){

123

Map.java

 drawNodes(graph,g);

 drawEdges(graph,g);

 frame.setSeperator(graph);

 }else{

 g.drawString("n/a",this.getWidth()/2,this.getHeight()/2);

 }

 }

 public void setGraph(Graph graph){

 this.graph=graph;

 this.dataIn=true;

 this.repaint();

 }

 public Graph getGraph(){

 return this.graph;

 }

 public void sentFrame(Frame frame){

 this.frame=frame;

 }

 public Map getMap(){

 return this;

 }

 private void drawNodes(Graph graph,Graphics g){

 double ratio=scaledRatio(graph);

 double newOX=newOX(graph);

 double newOY=newOY(graph);

 int l=12,m=10,s=8;

 g.setFont(new Font(null,Font.PLAIN,12));

 Vector nodeSet=graph.getNodeSet();

 Node node;

 for(int i=0;i<nodeSet.size();i++){

 node=(Node)nodeSet.elementAt(i);

 if(node.isSupply()){

 g.setColor(Color.RED);

 g.drawOval(new Double((node.getX()-newOX)*ratio).intValue()-l/2,new

Double((node.getY()-newOY)*ratio).intValue()-l/2,l,l);

124

Map.java

 }else if(node.isDemand()){

 g.setColor(Color.BLUE);

 g.drawRect(new Double((node.getX()-newOX)*ratio).intValue()-m/2,new

Double((node.getY()-newOY)*ratio).intValue()-m/2,m,m);

 }else{

 g.setColor(Color.LIGHT_GRAY);

 }

 g.drawString(""+node.getLabel(),new Double((node.getX()-newOX)*ratio).intValue(),new

Double((node.getY()-newOY)*ratio).intValue());

 if(node.isAccess() && node.isMerge()){

 g.setColor(Color.DARK_GRAY);

 g.drawString("A & M",new Double((node.getX()-newOX)*ratio).intValue(),new

Double((node.getY()-newOY)*ratio).intValue()+20);

 }else if(node.isAccess()){

 g.setColor(Color.DARK_GRAY);

 g.drawString("A",new Double((node.getX()-newOX)*ratio).intValue(),new

Double((node.getY()-newOY)*ratio).intValue()+20);

 }else if(node.isMerge()){

 g.setColor(Color.DARK_GRAY);

 g.drawString("M",new Double((node.getX()-newOX)*ratio).intValue(),new

Double((node.getY()-newOY)*ratio).intValue()+20);

 }

 if(node.isSource()){

 g.setColor(Color.DARK_GRAY);

 g.drawString("$rc",new Double((node.getX()-newOX)*ratio).intValue(),new

Double((node.getY()-newOY)*ratio).intValue()+20);

 }

 }

 }

 private void drawEdges(Graph graph,Graphics g){

 double ratio=scaledRatio(graph);

 double newOX=newOX(graph);

 double newOY=newOY(graph);

 Vector edgeSet=graph.getEdgeSet();

 Edge edge;

 g.setFont(new Font(null,Font.PLAIN,10));

125

Map.java

 for(int i=0;i<edgeSet.size();i++){

 edge=(Edge)edgeSet.elementAt(i);

 Node n1=edge.getN1(),n2=edge.getN2();

 int n1x=new Double((n1.getX()-newOX)*ratio).intValue();

 int n1y=new Double((n1.getY()-newOY)*ratio).intValue();

 int n2x=new Double((n2.getX()-newOX)*ratio).intValue();

 int n2y=new Double((n2.getY()-newOY)*ratio).intValue();

 if(edge.isFastEdge()){

 g.setColor(Color.BLACK);

 }else if(edge.isDetourEdge()){

 g.setColor(Color.ORANGE);

 }else if(edge.isMAEdge()){

 g.setColor(Color.GREEN);

 }else if(edge.isTestEdge()){

 g.setColor(Color.MAGENTA);

 }else if(edge.isDetourTestEdge()){

 g.setColor(Color.CYAN);

 }else if(edge.isMATestEdge()){

 g.setColor(Color.MAGENTA);

 }else{

 g.setColor(Color.LIGHT_GRAY);

 }

 if(!edge.isDummyEdge()){

 Double weight;

 if(edge.isMAEdge()){

 g.setFont(new Font(null,Font.BOLD,11));

 g.drawLine(n1x,n1y,n2x,n2y);

 weight=new Double(edge.getWeight());

 g.drawString(""+edge.getLabel()+":"+myFormatter.format(weight)+" @B",new

Double((n1x+n2x)/2).intValue(),new Double((n1y+n2y)/2).intValue());

 g.setFont(new Font(null,Font.PLAIN,10));

 }else{

 g.drawLine(n1x,n1y,n2x,n2y);

 weight=new Double(edge.getWeight());

 g.drawString(""+edge.getLabel()+":"+myFormatter.format(weight),new

Double((n1x+n2x)/2).intValue(),new Double((n1y+n2y)/2).intValue());

 }

 }

 }

 }

126

Map.java

 private double scaledRatio(Graph graph){

 Vector nodeSet=graph.getNodeSet();

 double maxX=0.0,maxY=0.0;

 double newOX=newOX(graph),newOY=newOY(graph);

 Node node;

 for(int i=0;i<nodeSet.size();i++){

 node=(Node)nodeSet.elementAt(i);

 if((node.getX()-newOX)>maxX){

 maxX=node.getX()-newOX;

 }else if((node.getY()-newOY)>maxY){

 maxY=node.getY()-newOY;

 }

 }

 return Math.min(map.getWidth()/maxX,map.getHeight()/maxY);

 }

 private double newOX(Graph graph){

 Vector nodeSet=graph.getNodeSet();

 Node node=(Node)nodeSet.elementAt(0);

 double minX=node.getX();

 for(int i=1;i<nodeSet.size();i++){

 node=(Node)nodeSet.elementAt(i);

 if(node.getX()<minX){

 minX=node.getX();

 }

 }

 return minX;

 }

 private double newOY(Graph graph){

 Vector nodeSet=graph.getNodeSet();

 Node node=(Node)nodeSet.elementAt(0);

 double minY=node.getY();

 for(int i=1;i<nodeSet.size();i++){

 node=(Node)nodeSet.elementAt(i);

 if(node.getY()<minY){

 minY=node.getY();

 }

 }

 return minY;

 }

127

Map.java

 public void nodeSetting(boolean supply,boolean demand,boolean neutral){

 this.supply=supply;

 this.demand=demand;

 this.neutral=neutral;

 }

 void mouse_clicked_actionPerformed(MouseEvent e){

 double ratio=scaledRatio(graph);

 double newOX=newOX(graph),newOY=newOY(graph);

 Vector nodeSet=graph.getNodeSet();

 Node node;

 int err=10;

 for(int i=0;i<nodeSet.size();i++){

 node=(Node)nodeSet.elementAt(i);

 int x=new Double((node.getX()-newOX)*ratio).intValue();

 int y=new Double((node.getY()-newOY)*ratio).intValue();

 if(Math.abs(e.getX()-x)<err && Math.abs(e.getY()-y)<err){

 if(supply){

 node.setNeutral();

 node.setSupply();

 }

 if(demand){

 node.setNeutral();

 node.setDemand();

 }

 if(neutral){

 node.setNeutral();

 }

 }

 }

 }

}

class Map_MouseAdapter extends MouseAdapter{

 Map adaptee;

 Map_MouseAdapter(Map adaptee){

 this.adaptee=adaptee;

 }

 public void mouseClicked(MouseEvent e){

128

Map.java

 this.adaptee.mouse_clicked_actionPerformed(e);

 }

}

129

IOGraph.java

package emnet.io;

import emnet.graph.Graph;

import emnet.graph.Node;

import emnet.graph.Edge;

import java.util.Vector;

import java.io.File;

import java.io.FileReader;

import java.io.IOException;

import java.io.BufferedReader;

import java.util.StringTokenizer;

public class IOGraph {

 private Graph g;

 public IOGraph(String dirName,String nodeFile,String edgeFile) throws IOException {

 File inputNodeFile=new File(dirName,nodeFile);

 File inputEdgeFile=new File(dirName,edgeFile);

 Vector nodeSet=new Vector();

 Vector edgeSet=new Vector();

 g=new Graph(nodeSet,edgeSet);

 //read node.txt

 FileReader nodeIn=new FileReader(inputNodeFile);

 BufferedReader buffNodeIn=new BufferedReader(nodeIn);

 String strLine;

 Node node;

 while((strLine=buffNodeIn.readLine())!=null){

 //delimiter of Tab is "\t"

 StringTokenizer strToken=new StringTokenizer(strLine,"\t",false);

 String[] nodeAttr=new String[3];

 for(int i=0;i<3;i++){

 nodeAttr[i]=strToken.nextToken();

 }

 node=new

Node(Integer.parseInt(nodeAttr[0]),Double.parseDouble(nodeAttr[1]),Double.parseDouble(nodeAttr[2]));

 nodeSet.addElement(node);

 }

130

IOGraph.java

 buffNodeIn.close();

 nodeIn.close();

 //read edge.txt

 FileReader edgeIn=new FileReader(inputEdgeFile);

 BufferedReader buffEdgeIn=new BufferedReader(edgeIn);

 Edge edge;

 while((strLine=buffEdgeIn.readLine())!=null){

 //delimiter of Tab is "\t"

 StringTokenizer strToken=new StringTokenizer(strLine,"\t",false);

 String[] edgeAttr=new String[3];

 for(int i=0;i<3;i++){

 edgeAttr[i]=strToken.nextToken();

 }

 Node n1=(Node)nodeSet.elementAt(Integer.parseInt(edgeAttr[1]));

 Node n2=(Node)nodeSet.elementAt(Integer.parseInt(edgeAttr[2]));

 double

weight=Math.sqrt((n1.getX()-n2.getX())*(n1.getX()-n2.getX())+(n1.getY()-n2.getY())*(n1.getY()-n2.getY()));

 edge=new Edge(Integer.parseInt(edgeAttr[0]),n1,n2,weight);

 edgeSet.addElement(edge);

 }

 buffEdgeIn.close();

 edgeIn.close();

 }

 public Graph getGraph(){

 return this.g;

 }

}

131

Center.java

package emnet.thread;

import java.util.Vector;

import emnet.graph.Graph;

import emnet.graph.Node;

import emnet.graph.Edge;

import emnet.Frame;

import emnet.algorithm.GraphAlgorithm;

public class Center extends Thread{

 //Center

 Graph graph;

 Frame frame;

 boolean finish,available,detourCenterFinish,maCenterFinish;

 Node dummyNode;

 //nodeCenter

 int nodeNum;

 Object[][] nodeCenter;

 //roamerCenter

 int roamerNum;

 Object[][] roamerCenter;

 //fastCenter

 Object[][] fastCenter;

 //detourCenter

 int edgeNum,detourManagerNum;

 Object[][] detourCenter;

 //MutualAssistanceCenter

 Graph emnet;

 int maManagerNum;

 Object[][] maCenter;

 public Center(Graph graph,Frame frame){

 //Center

 this.graph=graph;

 this.frame=frame;

 finish=false;

132

Center.java

 available=true;

 //nodeCenter

 //nodeCenter[node][0]: occupy(Boolean)

 //nodeCenter[node][1]: distance(Double)

 //nodeCenter[node][2]: preNode(Node)

 //nodeCenter[node][3]: preEdge(Edge)

 //nodeCenter[node][4]: visitorSequence(Vector)

 //nodeCenter[node][5]: supply(Node)

 //nodeCenter[node][6]: detourDist(Double)???

 nodeNum=this.graph.getNodeSet().size();

 nodeCenter=new Object[(nodeNum+1)][6];

 dummyNode=new Node(nodeNum,0.0,0.0);

 for(int i=0;i<(nodeNum+1);i++){

 nodeCenter[i][0]=new Boolean(false);

 nodeCenter[i][1]=new Double(0.0);

 nodeCenter[i][2]=null;

 nodeCenter[i][3]=null;

 nodeCenter[i][4]=new Vector();

 nodeCenter[i][5]=null;

 }

 //roamerCenter

 //roamerCenter[roamer][0]: myNode(Node)

 //roamerCenter[roamer][1]: myEdge(Edge)

 //roamerCenter[roamer][2]: currNode(Node)

 //roamerCenter[roamer][3]: routeSet(Graph)

 roamerNum=graph.getSupplyNodeSet().size();

 roamerCenter=new Object[roamerNum][4];

 for(int i=0;i<roamerNum;i++){

 roamerCenter[i][0]=dummyNode;

 roamerCenter[i][1]=null;

 roamerCenter[i][2]=null;

 roamerCenter[i][3]=null;

 }

 //fastCenter

 //fastCenter[demand][0]: fastPath(Graph)

 //fastCenter[demand][1]: supply(Node)

 //fastCenter[demand][2]: fastPathLength(Double)

133

Center.java

 fastCenter=new Object[nodeNum][3];

 for(int i=0;i<nodeNum;i++){

 fastCenter[i][0]=null;

 fastCenter[i][1]=null;

 fastCenter[i][2]=null;

 }

 //detourCenter

 //detourCenter[edge][0]: downstream(Graph)

 //detourCenter[edge][1]: upstream(Graph)

 //detourCenter[edge][2]: mergeNode(Node)

 //detourCenter[edge][3]: accessNode(Node)

 //detourCenter[edge][4]: detourPath(Graph)

 //detourCenter[edge][5]: systematicDetourCost(Double)

 //detourCenter[edge][6]: mergeCost(Vector)

 edgeNum=graph.getEdgeSet().size();

 detourManagerNum=graph.getSupplyNodeSet().size();

 detourCenter=new Object[edgeNum][7];

 for(int i=0;i<edgeNum;i++){

 detourCenter[i][0]=null;

 detourCenter[i][1]=null;

 detourCenter[i][2]=null;

 detourCenter[i][3]=null;

 detourCenter[i][4]=null;

 detourCenter[i][5]=new Double(0.0);

 detourCenter[i][6]=new Vector(nodeNum);

 }

 //mutualAssistantCenter

 //maCenter[supply][0]: fastTree(Graph)

 //maCenter[supply][1]: territory(Graph) 2ECON

 //maCenter[supply][2]: source(Node)

 //maCenter[supply][3]: icpSet(Vector)

 //maCenter[supply][4]: maPath(Graph)

 //maCenter[supply][5]: within territory supply-demand ratio(Double)

 //maCenter[supply][6]: mutual assistant supply-demand ratio(Double)

 //maCenter[supply][7]: maCost > source to supply

 maManagerNum=graph.getSupplyNodeNum();

 maCenter=new Object[nodeNum][8];

 for(int i=0;i<nodeNum;i++){

 maCenter[i][0]=null;

 maCenter[i][1]=null;

134

Center.java

 maCenter[i][2]=null;

 maCenter[i][3]=new Vector();

 maCenter[i][4]=null;

 maCenter[i][5]=new Vector();

 maCenter[i][6]=new Double(0.0);

 maCenter[i][7]=new Double(0.0);

 }

 }

 public void run(){

 startRoamerCenter();

 startFastCenter();

 startDetourCenter();

 startMutualAssistanceCenter();

 startOutputReport();

 }

 //center method

 void startRoamerCenter(){

 //roamerCenter

 //send roamers to find fast paths (Shortest Path Forest, SPF)

 sendRoamer();

 Vector nodeSet=graph.getNodeSet();

 int demandNodeNum=graph.getDemandNodeNum();

 do{

 int totalTimes=0;

 watching:

 for(int i=0;i<nodeNum;i++){

 Node tempNode=(Node)nodeSet.elementAt(i);

 //finish condition is focused on demand nodes only

 if(tempNode.isDemand()){

 if(getVisitorNum(tempNode)==roamerNum){

 totalTimes=totalTimes+roamerNum;

 if(totalTimes==(demandNodeNum*roamerNum))

 finish=true;

 }

 else{

 finish=false;

 break watching;

 }

 }

135

Center.java

 }

 }while(!finish);

 //roamer center finished!

 }

 void startFastCenter(){

 //fastCenter

 //fastCenter[demand][0]: fastPath(Graph)

 //fastCenter[demand][1]: supply(Node)

 //fastCenter[demand][2]: fastPathLength(Double)

 //finding fast paths from demand nodes to the dummyNode

 try{

 sleep(1);

 }catch(InterruptedException ex){

 //fast center cannot sleep!

 }

 Vector demandNodeSet=graph.getDemandNodeSet();

 Node tempDemand,tempNode;

 Edge tempPreEdge,tempEdge;

 double length;

 Vector tempFastNodeSet,tempFastEdgeSet;

 for(int i=0;i<demandNodeSet.size();i++){

 tempDemand=(Node)demandNodeSet.elementAt(i);

 tempNode=tempDemand;

 tempFastNodeSet=new Vector();

 tempFastEdgeSet=new Vector();

 find:

 while(tempNode!=dummyNode){

 tempPreEdge=(Edge)getPreEdge(tempNode);

 if(tempNode.isSupply()){

 fastCenter[tempDemand.getLabel()][1]=tempNode;

 if(!tempFastNodeSet.contains(tempNode))

 tempFastNodeSet.addElement(tempNode);

 //node of fast route belong to the same supply

 Node tempNode2;

 for(int j=0;j<tempFastNodeSet.size();j++){

136

Center.java

 tempNode2=(Node)tempFastNodeSet.elementAt(j);

 nodeCenter[tempNode2.getLabel()][5]=tempNode;

 }

 break find;

 }else{

 if(!tempFastNodeSet.contains(tempNode))

 tempFastNodeSet.addElement(tempNode);

 if(!tempFastEdgeSet.contains(tempPreEdge))

 tempFastEdgeSet.addElement(tempPreEdge);

 tempPreEdge.setFastEdge();

 }

 tempNode=tempPreEdge.theOtherNode(tempNode);

 }

 fastCenter[tempDemand.getLabel()][0]=new Graph(tempFastNodeSet,tempFastEdgeSet);

 length=0.0;

 for(int j=0;j<tempFastEdgeSet.size();j++){

 tempEdge=(Edge)tempFastEdgeSet.elementAt(j);

 length=length+tempEdge.getWeight();

 }

 fastCenter[tempDemand.getLabel()][2]=new Double(length);

 }

 //maCenter[supply][0]: fastTree(Graph)

 Vector fastTreeSupplyNodeSet=graph.getSupplyNodeSet();

 Node tempFastTreeSupply;

 Vector fastTreeDemandNodeSet=graph.getDemandNodeSet();

 Node tempFastTreeDemand;

 Graph tempFastPath;

 Vector tempFastPathNodeSet;

 Node tempFastPathNode;

 Vector tempFastPathEdgeSet;

 Edge tempFastPathEdge;

 Vector tempFastTreeNodeSet;

 Vector tempFastTreeEdgeSet;

 for(int i=0;i<fastTreeSupplyNodeSet.size();i++){

 tempFastTreeNodeSet=new Vector();

 tempFastTreeEdgeSet=new Vector();

137

Center.java

 tempFastTreeSupply=(Node)fastTreeSupplyNodeSet.elementAt(i);

 if(!tempFastTreeNodeSet.contains(tempFastTreeSupply))

 tempFastTreeNodeSet.addElement(tempFastTreeSupply);

 for(int j=0;j<fastTreeDemandNodeSet.size();j++){

 tempFastTreeDemand=(Node)fastTreeDemandNodeSet.elementAt(j);

 //fast paths with different demands of the same supply

 if(fastCenter[tempFastTreeDemand.getLabel()][1]==tempFastTreeSupply){

 tempFastPath=(Graph)fastCenter[tempFastTreeDemand.getLabel()][0];

 tempFastPathEdgeSet=tempFastPath.getEdgeSet();

 for(int k=0;k<tempFastPathEdgeSet.size();k++){

 tempFastPathEdge=(Edge)tempFastPathEdgeSet.elementAt(k);

 if(!tempFastTreeEdgeSet.contains(tempFastPathEdge)){

 tempFastTreeEdgeSet.addElement(tempFastPathEdge);

 }

 }

 tempFastPathNodeSet=tempFastPath.getNodeSet();

 for(int k=0;k<tempFastPathNodeSet.size();k++){

 tempFastPathNode=(Node)tempFastPathNodeSet.elementAt(k);

 if(!tempFastTreeNodeSet.contains(tempFastPathNode)){

 tempFastTreeNodeSet.addElement(tempFastPathNode);

 }

 }

 }

 }

 maCenter[tempFastTreeSupply.getLabel()][0]=new

Graph(tempFastTreeNodeSet,tempFastTreeEdgeSet);

 //maCenter[supply][5]: within territory supply-demand ratio(Double)

 if(getFastTree(tempFastTreeSupply).getDemandNodeNum()!=0){

this.setTerritorySDR(tempFastTreeSupply,1.0/getFastTree(tempFastTreeSupply).getDemandNodeNum());

 }else{

 this.setTerritorySDR(tempFastTreeSupply,1.0);

 }

 }

 //fast center finished!

 //finalization

138

Center.java

 Vector edgeSet=graph.getEdgeSet();

 Edge clearEdge;

 for(int i=0;i<edgeSet.size();i++){

 clearEdge=(Edge)edgeSet.elementAt(i);

 if(!clearEdge.isFastEdge())

 clearEdge.setNeutralEdge();

 }

 }

 void startDetourCenter(){

 //detourCenter

 try{

 sleep(1);

 }catch(InterruptedException ex){

 //detour center cannot sleep!

 }

 detourCenterFinish=false;

 Vector supplyNodeSet=graph.getSupplyNodeSet();

 Node tempSupply;

 for(int i=0;i<supplyNodeSet.size();i++){

 tempSupply=(Node)supplyNodeSet.elementAt(i);

 new DetourManager(i,this,tempSupply).start();

 }

 while(!detourCenterFinish){

 //detour center waiting for detour managers finish their jobs

 }

 //detour center finished!

 }

 void startMutualAssistanceCenter(){

 try{

 sleep(1);

 }catch(InterruptedException ex){

 //mutual assistance center cannot sleep!

 }

 //where are supply nodes:

 Vector nodeSet=graph.getNodeSet();

 Node tempNode;

139

Center.java

 for(int i=0;i<nodeSet.size();i++){

 tempNode=(Node)nodeSet.elementAt(i);

 }

 //initialization

 Vector edgeSet=graph.getEdgeSet();

 Edge tempEdge;

 for(int i=0;i<edgeSet.size();i++){

 tempEdge=(Edge)edgeSet.elementAt(i);

 if(!tempEdge.isFastEdge() && !tempEdge.isDetourEdge())

 tempEdge.setNeutralEdge();

 }

 maCenterFinish=false;

 Vector supplyNodeSet=graph.getSupplyNodeSet();

 Node tempSupply;

 for(int i=0;i<supplyNodeSet.size();i++){

 tempSupply=(Node)supplyNodeSet.elementAt(i);

 new MAManager(i,this,tempSupply).start();

 }

 while(!maCenterFinish){

 //ma center waiting for detour managers finish their jobs

 }

 //emnet

 Vector emnetNodeSet=new Vector();

 Vector emnetEdgeSet=new Vector();

 Graph tempTerritory;

 Vector tempTerritoryNodeSet;

 Vector tempTerritoryEdgeSet;

 Graph tempMAPath;

 Vector tempMAPathNodeSet;

 Vector tempMAPathEdgeSet;

 for(int i=0;i<supplyNodeSet.size();i++){

 tempSupply=(Node)supplyNodeSet.elementAt(i);

 tempTerritory=this.getTerritory(tempSupply);

140

Center.java

 tempTerritoryNodeSet=tempTerritory.getNodeSet();

 tempTerritoryEdgeSet=tempTerritory.getEdgeSet();

 emnetNodeSet=GraphAlgorithm.union(emnetNodeSet,tempTerritoryNodeSet);

 emnetEdgeSet=GraphAlgorithm.union(emnetEdgeSet,tempTerritoryEdgeSet);

 tempMAPath=this.getMAPath(tempSupply);

 tempMAPathNodeSet=tempMAPath.getNodeSet();

 tempMAPathEdgeSet=tempMAPath.getEdgeSet();

 emnetNodeSet=GraphAlgorithm.union(emnetNodeSet,tempMAPathNodeSet);

 emnetEdgeSet=GraphAlgorithm.union(emnetEdgeSet,tempMAPathEdgeSet);

 }

 emnet=new Graph(emnetNodeSet,emnetEdgeSet);

 //ma center finished!

 //finalization

 for(int i=0;i<edgeSet.size();i++){

 tempEdge=(Edge)edgeSet.elementAt(i);

 if(!tempEdge.isFastEdge() && !tempEdge.isDetourEdge() && !tempEdge.isMAEdge())

 tempEdge.setNeutralEdge();

 }

 //ma center closed!

 }

 void startOutputReport(){

 //maCenter[supply][6]: mutual assistant supply-demand ratio(Double)

 double ld=0.0;

 Vector supplyNodeSet=graph.getSupplyNodeSet();

 Node tempSupply;

 Vector tempFastTreeEdgeSet;

 Edge tempRuinedEdge;

 for(int i=0;i<supplyNodeSet.size();i++){

 tempSupply=(Node)supplyNodeSet.elementAt(i);

 tempFastTreeEdgeSet=this.getFastTree(tempSupply).getEdgeSet();

 for(int j=0;j<tempFastTreeEdgeSet.size();j++){

 tempRuinedEdge=(Edge)tempFastTreeEdgeSet.elementAt(j);

 if(this.getSystematicDetourCost(tempRuinedEdge)>ld)

 ld=this.getSystematicDetourCost(tempRuinedEdge);

 }

 }

 frame.setLD(ld);

141

Center.java

 double mac=0.0;

 for(int i=0;i<supplyNodeSet.size();i++){

 tempSupply=(Node)supplyNodeSet.elementAt(i);

 mac=mac+this.getMACost(tempSupply);

 }

 frame.setAMAC(mac/supplyNodeSet.size());

 frame.setNC(GraphAlgorithm.networkCost(emnet));

 double fastCost=0.0;

 double maxFastCost=0.0;

 Vector demandNodeSet=graph.getDemandNodeSet();

 Node tempDemand;

 for(int i=0;i<demandNodeSet.size();i++){

 tempDemand=(Node)demandNodeSet.elementAt(i);

 if(getFastCost(tempDemand)>maxFastCost)

 maxFastCost=getFastCost(tempDemand);

 fastCost=fastCost+this.getFastCost(tempDemand);

 }

 frame.setATC(fastCost/demandNodeSet.size());

 frame.setMTC(maxFastCost);

 }

 //center field:

 public synchronized Graph getGraph(){

 return this.graph;

 }

 public synchronized boolean isFinished(){

 return this.finish;

 }

 void sendRoamer(){

 Node supply;

 for(int i=0;i<this.graph.getSupplyNodeSet().size();i++){

 supply=(Node)this.graph.getSupplyNodeSet().elementAt(i);

 roamerCenter[i][0]=supply;

 new Roamer(i,supply,this).start();

 }

 }

142

Center.java

 public Node getDummyNode(){

 return this.dummyNode;

 }

 public synchronized void takeKey(Roamer roamer){

 if(!finish){

 while(!available){

 try{

 //roamer is waiting to take!

 wait(1);

 }catch(InterruptedException e){

 //takeKey: cannot wait!

 }

 }

 //roamer took the key!

 available=false;

 }else{

 available=false;

 //roamer took the key, but center is finished!

 }

 }

 public synchronized void putKey(Roamer roamer){

 if(!finish){

 while(available){

 try{

 //roamer is waiting to put...

 wait(1);

 }catch(InterruptedException e){

 //putKey: cannot wait!

 }

 }

 //roamer put the key!

 available=true;

 }else{

 //roamer put the key & center is already finished!

 available=true;

 }

 }

 //detour manager take key

143

Center.java

 public synchronized void takeKey(DetourManager dmr){

 if(!detourCenterFinish){

 while(!available){

 try{

 //dmr is waiting to take!

 wait(1);

 }catch(InterruptedException e){

 //takeKey: cannot wait!

 }

 }

 //dmr took the key!

 available=false;

 }else{

 available=false;

 //dmr took the key, but detour center is finished!

 }

 }

 public synchronized void putKey(DetourManager dmr){

 if(!detourCenterFinish){

 while(available){

 try{

 //dmr is waiting to put...

 wait(1);

 }catch(InterruptedException e){

 //putKey: cannot wait!

 }

 }

 //dmr put the key!

 available=true;

 }else{

 //dmr put the key! detour center is already finished!

 available=true;

 }

 }

 //ma manager take key

 public synchronized void takeKey(MAManager maMr){

 if(!maCenterFinish){

 while(!available){

 try{

 //maMr is waiting to take!

144

Center.java

 wait(1);

 }catch(InterruptedException e){

 //takeKey: cannot wait!

 }

 }

 //maMr took the key!

 available=false;

 }else{

 available=false;

 //maMr took the key but maCenter is already finished!

 }

 }

 public synchronized void putKey(MAManager maMr){

 if(!maCenterFinish){

 while(available){

 try{

 //maMr is waiting to put...

 wait(1);

 }catch(InterruptedException e){

 //putKey: cannot wait!

 }

 }

 //maMr put the key!

 available=true;

 }else{

 //maMr put the key! and maCenter already finished!

 available=true;

 }

 }

 public void updateDetourCondition(){

 detourManagerNum--;

 if(detourManagerNum==0)

 detourCenterFinish=true;

 }

 public void updateMACondition(){

 maManagerNum--;

 if(maManagerNum==0)

 maCenterFinish=true;

 }

145

Center.java

 //nodeCenter method:

 //nodeCenter[node][0]: occupy(Boolean)

 public synchronized void setOccupy(Node node,boolean occupy){

 nodeCenter[node.getLabel()][0]=new Boolean(occupy);

 notifyAll();

 }

 //nodeCenter[node][1]: distance(Double)

 public synchronized void setDistance(Node node,double distance){

 nodeCenter[node.getLabel()][1]=new Double(distance);

 }

 public synchronized double getDistance(Node node){

 Double distance=(Double)nodeCenter[node.getLabel()][1];

 return distance.doubleValue();

 }

 //nodeCenter[node][2]: preNode(Node)

 public synchronized void setPreNode(Node node,Node preNode){

 nodeCenter[node.getLabel()][2]=preNode;

 }

 public synchronized Node getPreNode(Node node){

 Node preNode=(Node)nodeCenter[node.getLabel()][2];

 return preNode;

 }

 //nodeCenter[node][3]: preEdge(Edge)

 public synchronized void setPreEdge(Node node,Edge preEdge){

 nodeCenter[node.getLabel()][3]=preEdge;

 }

 public synchronized Edge getPreEdge(Node node){

 Edge preEdge=(Edge)nodeCenter[node.getLabel()][3];

 return preEdge;

 }

 //nodeCenter[node][4]: visitorSequence(Vector)

 public synchronized void addViditor(Node node,Roamer roamer){

 Vector visitorSequence=(Vector)nodeCenter[node.getLabel()][4];

 if(!visitorSequence.contains(roamer))

146

Center.java

 visitorSequence.addElement(roamer);

 nodeCenter[node.getLabel()][4]=visitorSequence;

 }

 public synchronized Vector getVisitorSequence(Node node){

 Vector visitorSequence=(Vector)nodeCenter[node.getLabel()][4];

 return visitorSequence;

 }

 public synchronized int getVisitorNum(Node node){

 Vector visitorSequence=(Vector)nodeCenter[node.getLabel()][4];

 int visitorNum=visitorSequence.size();

 return visitorNum;

 }

 public synchronized Roamer lastVisitor(Node node){

 Vector visitorSequence=(Vector)nodeCenter[node.getLabel()][4];

 Roamer lastVisitor=(Roamer)visitorSequence.lastElement();

 return lastVisitor;

 }

 //nodeCenter[node][5]: supply(Node)

 public Node getSupply(Node node){

 return (Node)nodeCenter[node.getLabel()][5];

 }

 //roamerCenter method:

 //roamerCenter[roamer][0]: myNode(Node)

 public synchronized void setMyNode(Roamer roamer,Node myNode){

 roamerCenter[roamer.getID()][0]=myNode;

 }

 public synchronized Node getMyNode(Roamer roamer){

 Node myNode=(Node)roamerCenter[roamer.getID()][0];

 return myNode;

 }

 //roamerCenter[roamer][1]: myEdge(Edge)

 public synchronized void setMyEdge(Roamer roamer,Edge myEdge){

 roamerCenter[roamer.getID()][1]=myEdge;

 }

147

Center.java

 public synchronized Edge getMyEdge(Roamer roamer){

 Edge myEdge=(Edge)roamerCenter[roamer.getID()][1];

 return myEdge;

 }

 //roamerCenter[roamer][2]: currNode(Node)

 public synchronized void setCurrNode(Roamer roamer,Node currNode){

 roamerCenter[roamer.getID()][2]=currNode;

 }

 public synchronized Node getCurrNode(Roamer roamer){

 Node currNode=(Node)roamerCenter[roamer.getID()][2];

 return currNode;

 }

 //roamerCenter[roamer][3]: routeSet(Graph)

 public synchronized void setRouteSet(Roamer roamer,Graph routeSet){

 roamerCenter[roamer.getID()][3]=routeSet;

 }

 public synchronized void setRouteSet(Roamer roamer,Vector routeNodeSet,Vector routeEdgeSet){

 roamerCenter[roamer.getID()][3]=new Graph(routeNodeSet,routeEdgeSet);

 }

 public synchronized Graph getRouteSet(Roamer roamer){

 Graph routeSet=(Graph)roamerCenter[roamer.getID()][3];

 return routeSet;

 }

 public synchronized Vector getRouteNodeSet(Roamer roamer){

 Graph routeSet=(Graph)roamerCenter[roamer.getID()][3];

 Vector routeNodeSet=routeSet.getNodeSet();

 return routeNodeSet;

 }

 public synchronized Vector getRouteEdgeSet(Roamer roamer){

 Graph routeSet=(Graph)roamerCenter[roamer.getID()][3];

 Vector routeEdgeSet=routeSet.getEdgeSet();

 return routeEdgeSet;

 }

 public synchronized void addEdge(Roamer roamer,Edge edge){

148

Center.java

 Graph routeSet=this.getRouteSet(roamer);

 Vector routeNodeSet=routeSet.getNodeSet();

 Vector routeEdgeSet=routeSet.getEdgeSet();

 if(!routeEdgeSet.contains(edge))

 routeEdgeSet.addElement(edge);

 this.setRouteSet(roamer,routeNodeSet,routeEdgeSet);

 }

 public synchronized void addNode(Roamer roamer,Node node){

 Graph routeSet=this.getRouteSet(roamer);

 Vector routeNodeSet=routeSet.getNodeSet();

 Vector routeEdgeSet=routeSet.getEdgeSet();

 if(!routeNodeSet.contains(node))

 routeNodeSet.addElement(node);

 this.setRouteSet(roamer,routeNodeSet,routeEdgeSet);

 }

 public synchronized void removeEdge(Roamer roamer,Edge edge){

 Graph routeSet=this.getRouteSet(roamer);

 Vector routeNodeSet=routeSet.getNodeSet();

 Vector routeEdgeSet=routeSet.getEdgeSet();

 if(routeEdgeSet.contains(edge)){

 routeEdgeSet.removeElement(edge);

 }

 this.setRouteSet(roamer,routeNodeSet,routeEdgeSet);

 }

 public synchronized void removeSubtree(Roamer roamer,Graph subtree){

 Graph routeSet=(Graph)this.roamerCenter[roamer.getID()][3];

 Vector tempNodeSet1=routeSet.getNodeSet();

 Vector tempEdgeSet1=routeSet.getEdgeSet();

 Vector tempNodeSet2=subtree.getNodeSet();

 Vector tempEdgeSet2=subtree.getEdgeSet();

 Node tempNode;

 for(int i=0;i<tempNodeSet2.size();i++){

 tempNode=(Node)tempNodeSet2.elementAt(i);

 boolean nodeExist=tempNodeSet1.removeElement(tempNode);

 }

 Edge tempEdge;

 for(int i=0;i<tempEdgeSet2.size();i++){

149

Center.java

 tempEdge=(Edge)tempEdgeSet2.elementAt(i);

 boolean edgeExist=tempEdgeSet1.removeElement(tempEdge);

 }

 }

 public synchronized void addSubtree(Roamer roamer,Graph subtree){

 Graph visitedRouteSet=(Graph)this.roamerCenter[roamer.getID()][3];

 Vector tempNodeSet1=visitedRouteSet.getNodeSet();

 Vector tempEdgeSet1=visitedRouteSet.getEdgeSet();

 Vector tempNodeSet2=subtree.getNodeSet();

 Vector tempEdgeSet2=subtree.getEdgeSet();

 Node tempNode;

 for(int i=0;i<tempNodeSet2.size();i++){

 tempNode=(Node)tempNodeSet2.elementAt(i);

 if(tempNodeSet1.contains(tempNode)){

 }else{

 tempNodeSet1.addElement(tempNode);

 }

 }

 Edge tempEdge;

 for(int i=0;i<tempEdgeSet2.size();i++){

 tempEdge=(Edge)tempEdgeSet2.elementAt(i);

 if(tempEdgeSet1.contains(tempEdge)){

 }else{

 tempEdgeSet1.addElement(tempEdge);

 }

 }

 }

 //fastCenter

 //fastCenter[demand][0]: fastPath(Graph)

 //fastCenter[demand][1]: supply(Node)

 //fastCenter[demand][2]: fastPathLength(Double)

 public double getFastCost(Node demand){

 Double fastCost=(Double)fastCenter[demand.getLabel()][2];

 return fastCost.doubleValue();

 }

 //detourCenter[edge][0]: downstream(Graph)

 public void setDownstream(Edge ruinedEdge,Graph downstream){

 detourCenter[ruinedEdge.getLabel()][0]=downstream;

150

Center.java

 }

 public Graph getDownstream(Edge ruinedEdge){

 return (Graph)detourCenter[ruinedEdge.getLabel()][0];

 }

 //detourCenter[edge][1]: upstream(Graph)

 public void setUpstream(Edge ruinedEdge,Graph upstream){

 detourCenter[ruinedEdge.getLabel()][1]=upstream;

 }

 public Graph getUpstream(Edge ruinedEdge){

 return (Graph)detourCenter[ruinedEdge.getLabel()][1];

 }

 //detourCenter[edge][2]: mergeNode(Node)

 public void setMergeNode(Edge ruinedEdge,Node mergeNode){

 detourCenter[ruinedEdge.getLabel()][2]=mergeNode;

 }

 public Node getMergeNode(Edge ruinedEdge){

 return (Node)detourCenter[ruinedEdge.getLabel()][2];

 }

 //detourCenter[edge][3]: accessNode(Node)

 public void setAccessNode(Edge ruinedEdge,Node accessNode){

 detourCenter[ruinedEdge.getLabel()][3]=accessNode;

 }

 public Node getAccessNode(Edge ruinedEdge){

 return (Node)detourCenter[ruinedEdge.getLabel()][3];

 }

 //detourCenter[edge][4]: detourPath(Graph)

 public void setDetourPath(Edge ruinedEdge,Graph detourPath){

 detourCenter[ruinedEdge.getLabel()][4]=detourPath;

 }

 public Graph getDetourPath(Edge ruinedEdge){

 return (Graph)detourCenter[ruinedEdge.getLabel()][4];

 }

151

Center.java

 //detourCenter[edge][5]: systematicDetourCost(Double)

 public void setSystematicDetourCost(Edge ruinedEdge,double sdc){

 detourCenter[ruinedEdge.getLabel()][5]=new Double(sdc);

 }

 public double getSystematicDetourCost(Edge ruinedEdge){

 Double tempDouble=(Double)detourCenter[ruinedEdge.getLabel()][5];

 return tempDouble.doubleValue();

 }

 //detourCenter[edge][6]: mergeCost(Vector)

 public void setMergeCost(Edge ruinedEdge,double cost){

 detourCenter[ruinedEdge.getLabel()][6]=new Double(cost);

 }

 public double getMergeCost(Edge ruinedEdge){

 Double mergeCost=(Double)detourCenter[ruinedEdge.getLabel()][6];

 return mergeCost.doubleValue();

 }

 //maCenter

 //maCenter[supply][0]: fastTree(Graph)

 public Graph getFastTree(Node supply){

 return (Graph)maCenter[supply.getLabel()][0];

 }

 //maCenter[supply][1]: territory(Graph) 2ECON

 public synchronized void setTerritory(Node supply,Graph territory){

 maCenter[supply.getLabel()][1]=territory;

 }

 public Graph getTerritory(Node supply){

 return (Graph)maCenter[supply.getLabel()][1];

 }

 //maCenter[supply][2]: source(Node)

 public synchronized void setSource(Node supply,Node source){

 maCenter[supply.getLabel()][2]=source;

 }

 public Node getSource(Node supply){

 return (Node)maCenter[supply.getLabel()][2];

152

Center.java

 }

 //maCenter[supply][3]: icpSet(Vector)

 public synchronized void setICPSet(Node supply,Vector icpSet){

 maCenter[supply.getLabel()][3]=icpSet;

 }

 public Vector getICPSet(Node supply){

 return (Vector)maCenter[supply.getLabel()][3];

 }

 public int getICPNum(Node supply){

 Vector icpSet=(Vector)maCenter[supply.getLabel()][3];

 return icpSet.size();

 }

 //maCenter[supply][4]: maPath(Graph)

 public synchronized void setMAPath(Node supply,Graph maPath){

 maCenter[supply.getLabel()][4]=maPath;

 }

 public Graph getMAPath(Node supply){

 return (Graph)maCenter[supply.getLabel()][4];

 }

 //maCenter[supply][5]: within territory supply-demand ratio(Double)

 public synchronized void setTerritorySDR(Node supply,double territorySDR){

 maCenter[supply.getLabel()][5]=new Double(territorySDR);

 }

 public double getTerritorySDR(Node supply){

 Double territorySDR=(Double)maCenter[supply.getLabel()][5];

 return territorySDR.doubleValue();

 }

 //maCenter[supply][6]: mutual assistant supply-demand ratio(Double)

 public synchronized void setMAsdr(Node supply,double maSDR){

 maCenter[supply.getLabel()][6]=new Double(maSDR);

 }

 public double getMAsdr(Node supply){

 Double maSDR=(Double)maCenter[supply.getLabel()][6];

153

Center.java

 return maSDR.doubleValue();

 }

 //maCenter[supply][7]: maCost > source to supply

 //including maPath cost & merge cost with respect to territory demandNum

 public synchronized void setMACost(Node supply,double maCost){

 maCenter[supply.getLabel()][7]=new Double(maCost);

 }

 public double getMACost(Node supply){

 Double maCost=(Double)maCenter[supply.getLabel()][7];

 return maCost.doubleValue();

 }

}

154

Detourist.java

package emnet.thread;

import emnet.graph.Node;

import emnet.graph.Graph;

import java.util.Vector;

import emnet.graph.Edge;

import emnet.algorithm.GraphAlgorithm;

public class Detourist extends Thread{

 int id;

 Node start,supply,access;

 DetourManager dmr;

 Center center;

 Node currNode,preNode,myNode;

 Edge preEdge,myEdge,currRuinedEdge;

 Graph usableGraph,downstream,upstream,bridge,routeSet,detourPath;

 Vector routeNodeSet,routeEdgeSet,upstreamNodeSet;

 int downstreamDemandNum;

 double mergeCost,systematicDetourCost;

 boolean detouristFinish;

 public Detourist(int id,Node start,DetourManager dmr){

 super(""+id);

 this.id=id;

 this.start=start;

 this.dmr=dmr;

 center=dmr.getCenter();

 supply=dmr.getSupply();

 int edgeNum=dmr.getGraph().getEdgeSet().size();

 Node dummyNode=this.center.getDummyNode();

 dummyNode.setDummy();

 Edge dummyEdge=new Edge(edgeNum,start,dummyNode,0.0);

 dummyEdge.setDummyEdge();

 dmr.getGraph().addNode(dummyNode);

155

Detourist.java

 dmr.getGraph().addEdge(dummyEdge);

 Vector routeNodeSet=new Vector();

 routeNodeSet.addElement(dummyNode);

 Vector routeEdgeSet=new Vector();

 routeEdgeSet.addElement(dummyEdge);

 dmr.setRouteSet(this,routeNodeSet,routeEdgeSet);

 dmr.setMyNode(this,dummyNode);

 dmr.setMyEdge(this,dummyEdge);

 dmr.setCurrNode(this,start);

 Vector nodeSet=dmr.getGraph().getNodeSet();

 Vector edgeSet=dmr.getGraph().getEdgeSet();

 Vector usableEdgeSet=new Vector();

 Edge tempEdge;

 for(int i=0;i<edgeSet.size();i++){

 tempEdge=(Edge)edgeSet.elementAt(i);

 if(tempEdge!=dmr.getCurrRuinedEdge())

 usableEdgeSet.addElement(tempEdge);

 }

 usableGraph=new Graph(nodeSet,usableEdgeSet);

 downstream=dmr.getCurrDownstream();

 upstream=dmr.getCurrUpstream();

 upstreamNodeSet=upstream.getNodeSet();

 currRuinedEdge=dmr.getCurrRuinedEdge();

 downstreamDemandNum=dmr.getDownstreamDemandNum();

 mergeCost=GraphAlgorithm.getMergeCost(this,start);

 systematicDetourCost=0.0;

 dmr.setCurrDetourCost(this,dmr.getMyNode(this),mergeCost);

 dmr.setPreNode(this,start,dummyNode);

 dmr.setPreEdge(this,start,dummyEdge);

 detouristFinish=false;

 }

 public int getID(){

 return id;

 }

156

Detourist.java

 public Graph getUsableGraph(){

 return usableGraph;

 }

 public Graph getDownstream(){

 return downstream;

 }

 public Graph getUpstream(){

 return upstream;

 }

 public DetourManager getDetourManager(){

 return dmr;

 }

 public Center getCenter(){

 return center;

 }

 public Node getMergeNode(){

 return start;

 }

 public Node getAccessNode(){

 return access;

 }

 public Edge getRuinedEdge(){

 return currRuinedEdge;

 }

 public double getMergeCost(){

 return mergeCost;

 }

 public double getSystematicDetourCost(){

 return systematicDetourCost;

 }

 public Graph getDetourPath(){

157

Detourist.java

 return detourPath;

 }

 public void run(){

 dmr.takeKey(this);

 //::map init::

 Vector edgeSet=center.getGraph().getEdgeSet();

 Edge tempEdge;

 for(int i=0;i<edgeSet.size();i++){

 tempEdge=(Edge)edgeSet.elementAt(i);

 if(!tempEdge.isFastEdge() && !tempEdge.isDetourEdge() && !tempEdge.isMAEdge())

 tempEdge.setNeutralEdge();

 }

 //::map init::

 detouring:

 while(!detouristFinish){

 if(dmr.getCurrNode(this)==supply){

 double

sdc=dmr.getCurrDetourCost(this,dmr.getMyNode(this))+dmr.getMyEdge(this).getWeight()*downstreamDemandNum;

 dmr.setCurrDetourCost(this,dmr.getCurrNode(this),sdc);

 dmr.addNode(this,supply);

 dmr.addEdge(this,dmr.getMyEdge(this));

 dmr.setPreNode(this,supply,dmr.getMyNode(this));

 dmr.setPreEdge(this,supply,dmr.getMyEdge(this));

 dmr.updatMinSDC(this,dmr.getCurrDetourCost(this,dmr.getSupply()));

 dmr.getMyEdge(this).setDetourTestEdge(true);

 break detouring;

 }else if(dmr.getMinSDC(this)!=0.0 &&

dmr.getMinSDC(this)<dmr.getCurrDetourCost(this,dmr.getMyNode(this))){

 //some detourist has already found a shorter detour path

 break detouring;

 }else{

 dmr.addNode(this,dmr.getCurrNode(this));

 dmr.addEdge(this,dmr.getMyEdge(this));

158

Detourist.java

 dmr.setPreNode(this,dmr.getCurrNode(this),dmr.getMyNode(this));

 dmr.setPreEdge(this,dmr.getCurrNode(this),dmr.getMyEdge(this));

 double

sdc=dmr.getCurrDetourCost(this,dmr.getMyNode(this))+dmr.getMyEdge(this).getWeight()*downstreamDemandNum;

 dmr.setCurrDetourCost(this,dmr.getCurrNode(this),sdc);

 dmr.getMyEdge(this).setDetourTestEdge(true);

 dmr.setMyNode(this,dmr.getCurrNode(this));

 //find currEdge & currNode, assign new myNode

 dijkstra(null);

 try{

 sleep(1);

 }catch(InterruptedException ex){

 }

 }

 }

 //set access node

 Vector detourPathNodeSet=new Vector(),detourPathEdgeSet=new Vector();

 Node tempCurrNode=dmr.getSupply();

 detourPathNodeSet.addElement(tempCurrNode);

 Edge tempPreEdge;

 Node n1,n2;

 do{

 tempPreEdge=dmr.getPreEdge(this,tempCurrNode);

 if(!detourPathEdgeSet.contains(tempPreEdge))

 detourPathEdgeSet.addElement(tempPreEdge);

 n1=tempPreEdge.getN1();

 n2=tempPreEdge.getN2();

 if(!detourPathNodeSet.contains(n1))

 detourPathNodeSet.addElement(n1);

 if(!detourPathNodeSet.contains(n2))

159

Detourist.java

 detourPathNodeSet.addElement(n2);

 if(upstreamNodeSet.contains(n1) && !upstreamNodeSet.contains(n2)){

 access=n1;

 }else if(upstreamNodeSet.contains(n2) && !upstreamNodeSet.contains(n1)){

 access=n2;

 }else{

 access=null;

 }

 tempCurrNode=dmr.getPreNode(this,tempCurrNode);

 }while(tempCurrNode!=start);

 if(!detourPathNodeSet.contains(start))

 detourPathNodeSet.addElement(start);

 //set detourPath

 detourPath=new Graph(detourPathNodeSet,detourPathEdgeSet);

 //set sdc

 systematicDetourCost=dmr.getCurrDetourCost(this,supply);

 dmr.setSystematicDetourCost(this,systematicDetourCost);

 dmr.updateCurrRuinedEdgeFinish();

 dmr.updateDetourCenter(this);

 dmr.putKey(this);

 }

 void dijkstra(Edge canceledEdge){

 //find out the best incident edge

 //define new myEdge & currNode

 Vector tempRouteNodeSet=(Vector)dmr.getRouteNodeSet(this);

 Vector incidentEdgeSet=GraphAlgorithm.getIncidentEdges(this,tempRouteNodeSet);

 Vector exclusiveIncidentEdgeSet=new Vector();

 for(int i=0;i<incidentEdgeSet.size();i++){

 if(!dmr.getRouteEdgeSet(this).contains(incidentEdgeSet.elementAt(i))){

 exclusiveIncidentEdgeSet.addElement(incidentEdgeSet.elementAt(i));

 }

 }

160

Detourist.java

 Edge tempEdge;

 Node n1,n2;

 if(exclusiveIncidentEdgeSet.size()>1){

 tempEdge=(Edge)exclusiveIncidentEdgeSet.elementAt(0);

 dmr.setMyEdge(this,tempEdge);

 n1=tempEdge.getN1();

 n2=tempEdge.getN2();

 if(tempRouteNodeSet.contains(n1) && !tempRouteNodeSet.contains(n2)){

 dmr.setMyNode(this,n1);

 dmr.setCurrNode(this,n2);

 }else if(tempRouteNodeSet.contains(n2) && !tempRouteNodeSet.contains(n1)){

 dmr.setMyNode(this,n2);

 dmr.setCurrNode(this,n1);

 }else{

 //dijkstra error 1: not incident edge! check GraphAlgorithm.getIncidentEdgeSet()

 }

 double

min=dmr.getCurrDetourCost(this,dmr.getMyNode(this))+dmr.getMyEdge(this).getWeight()*downstreamDemandNum;

 for(int i=1;i<exclusiveIncidentEdgeSet.size();i++){

 tempEdge=(Edge)exclusiveIncidentEdgeSet.elementAt(i);

 n1=tempEdge.getN1();

 n2=tempEdge.getN2();

 if(tempRouteNodeSet.contains(n1) && !tempRouteNodeSet.contains(n2)){

 if((dmr.getCurrDetourCost(this,n1)+tempEdge.getWeight()*downstreamDemandNum)<min){

 min=dmr.getCurrDetourCost(this,n1)+tempEdge.getWeight()*downstreamDemandNum;

 dmr.setMyEdge(this,tempEdge);

 dmr.setMyNode(this,n1);

 dmr.setCurrNode(this,n2);

 }

 }else if(tempRouteNodeSet.contains(n2) && !tempRouteNodeSet.contains(n1)){

 if((dmr.getCurrDetourCost(this,n2)+tempEdge.getWeight()*downstreamDemandNum)<min){

 min=dmr.getCurrDetourCost(this,n2)+tempEdge.getWeight()*downstreamDemandNum;

 dmr.setMyEdge(this,tempEdge);

 dmr.setMyNode(this,n2);

 dmr.setCurrNode(this,n1);

 }

 }else{

 //dijkstra error 2: incident edge error!

161

Detourist.java

 }

 }

 }else if(exclusiveIncidentEdgeSet.size()==1){

 tempEdge=(Edge)exclusiveIncidentEdgeSet.elementAt(0);

 dmr.setMyEdge(this,tempEdge);

 n1=tempEdge.getN1();

 n2=tempEdge.getN2();

 if(tempRouteNodeSet.contains(n1) && !tempRouteNodeSet.contains(n2)){

 dmr.setMyNode(this,n1);

 dmr.setCurrNode(this,n2);

 }else if(tempRouteNodeSet.contains(n2) && !tempRouteNodeSet.contains(n1)){

 dmr.setMyNode(this,n2);

 dmr.setCurrNode(this,n1);

 }else{

 //dijkstra error 3: not incident edge! check GraphAlgorithm.getIncidentEdgeSet()

 }

 }else{

 detouristFinish=true;

 //renders all nodes visited

 }

 }

}

162

DetourManager.java

package emnet.thread;

import emnet.graph.Node;

import emnet.graph.Graph;

import java.util.Vector;

import emnet.graph.Edge;

import emnet.algorithm.GraphAlgorithm;

public class DetourManager extends Thread{

 int id;

 Center center;

 Node supply;

 Graph graph,fastTree,territory;

 Vector edgeSet,nodeSet,fastTreeEdgeSet,fastTreeNodeSet,detourists,territoryNodeSet,territoryEdgeSet;

 int detouristNum,downstreamDemandNum;

 //nodeDept

 //nodeDept[detourist][node][0]: currDetourDist

 //nodeDept[detourist][node][1]: preNode

 //nodeDept[detourist][node][2]: preEdge

 Object[][][] nodeDept;

 //detourDept

 //detourDept[detourist][0]: myNode(Node)

 //detourDept[detourist][1]: myEdge(Edge)

 //detourDept[detourist][2]: currNode(Node)

 //detourDept[detourist][3]: routeSet(Graph)

 //detourDept[detourist][4]: detourLength(Double)

 //deoutrDept[detourist][5]: bridge(Graph)

 Object[][] detourDept;

 //sdcDept

 //sdcDept[ruinedEdge][0]: minSDC

 Object[][] sdcDept;

 Edge currRuinedEdge;

 Graph currUpstream,currDownstream;

 Vector currDownstreamNodeSet;

 boolean currRuinedEdgeFinish,available;

163

DetourManager.java

 //one manager controls one territory

 public DetourManager(int id,Center center,Node supply){

 this.id=id;

 this.center=center;

 this.supply=supply;

 graph=center.getGraph();

 edgeSet=graph.getEdgeSet();

 nodeSet=graph.getNodeSet();

 fastTree=center.getFastTree(supply);

 fastTreeEdgeSet=fastTree.getEdgeSet();

 fastTreeNodeSet=fastTree.getNodeSet();

// detouristNum=fastTreeNodeSet.size();

 nodeDept=new Object[fastTreeNodeSet.size()][nodeSet.size()][3];

 detourDept=new Object[fastTreeNodeSet.size()][6];

 if(fastTreeEdgeSet.size()!=0){

 Edge tempFastTreeEdge=(Edge)fastTreeEdgeSet.elementAt(0);

 int maxEdgeLabel=tempFastTreeEdge.getLabel();

 for(int j=1;j<fastTreeEdgeSet.size();j++){

 tempFastTreeEdge=(Edge)fastTreeEdgeSet.elementAt(j);

 if(tempFastTreeEdge.getLabel()>maxEdgeLabel)

 maxEdgeLabel=tempFastTreeEdge.getLabel();

 }

 sdcDept=new Object[maxEdgeLabel+1][1];

 }

 }

 public void run(){

 if(fastTreeEdgeSet==null){

 center.updateDetourCondition();

 destroy();

 }

 center.takeKey(this);

 for(int i=0;i<fastTreeEdgeSet.size();i++){

164

DetourManager.java

 //initialization

 currRuinedEdgeFinish=false;

 available=true;

 for(int j=0;j<fastTreeNodeSet.size();j++){

 Node tempNode;

 for(int k=0;j<fastTreeNodeSet.size();j++){

 tempNode=(Node)fastTreeNodeSet.elementAt(j);

 nodeDept[j][tempNode.getLabel()][0]=new Double(0.0);

 }

 }

 for(int j=0;j<detouristNum;j++){

 detourDept[j][0]=null;

 detourDept[j][1]=null;

 detourDept[j][2]=null;

 detourDept[j][3]=null;

 detourDept[j][4]=new Double(0.0);

 detourDept[j][5]=null;

 }

 Edge tempFastTreeEdge;

 for(int j=0;j<fastTreeEdgeSet.size();j++){

 tempFastTreeEdge=(Edge)fastTreeEdgeSet.elementAt(j);

 sdcDept[tempFastTreeEdge.getLabel()][0]=new Double(0.0);

 }

 currRuinedEdge=(Edge)fastTreeEdgeSet.elementAt(i);

 currUpstream=GraphAlgorithm.getSubtreeWithSupply(fastTree,currRuinedEdge);

 currDownstream=GraphAlgorithm.getSubtreeWithoutSupply(fastTree,currRuinedEdge);

 currDownstreamNodeSet=currDownstream.getNodeSet();

 detouristNum=currDownstreamNodeSet.size();

 Node tempNode;

 downstreamDemandNum=0;

 for(int k=0;k<currDownstreamNodeSet.size();k++){

 tempNode=(Node)currDownstreamNodeSet.elementAt(k);

 if(tempNode.isDemand())

 downstreamDemandNum++;

 }

 //one detourist tests from one node when one currRuinedEdge is simulated

165

DetourManager.java

 Detourist tempDetourist;

 detourists=new Vector();

 for(int j=0;j<currDownstreamNodeSet.size();j++){

 tempNode=(Node)currDownstreamNodeSet.elementAt(j);

 tempDetourist=new Detourist(j,tempNode,this);

 detourists.addElement(tempDetourist);

 tempDetourist.start();

 }

 //dmr waiting the currRuinedEdge finish

 while(!currRuinedEdgeFinish){

 }

 //currRuinedEdge finish: all situations simulated

 //set detour edges on the shortest detour route

 Detourist bestDetourist=(Detourist)detourists.elementAt(0);

 Detourist tempDetourist1;

 double minSDC=bestDetourist.getSystematicDetourCost();

 for(int j=1;j<detourists.size();j++){

 tempDetourist1=(Detourist)detourists.elementAt(j);

 if(tempDetourist1.getSystematicDetourCost()<minSDC){

 minSDC=tempDetourist1.getSystematicDetourCost();

 bestDetourist=tempDetourist1;

 }

 }

 Vector bestDetourPathEdgeSet=bestDetourist.getDetourPath().getEdgeSet();

 Edge tempEdge1;

 for(int j=0;j<bestDetourPathEdgeSet.size();j++){

 tempEdge1=(Edge)bestDetourPathEdgeSet.elementAt(j);

 tempEdge1.setDetourEdge();

 }

 }

 //::maCenter[supply][1]: territory(Graph) 2ECON::

 Graph territory=fastTree;

 Edge tempRuinedEdge;

 Graph tempDetourPath;

 Vector tempDetourPathNodeSet,tempDetourPathEdgeSet;

 Node tempDetourPathNode;

 Edge tempDetourPathEdge;

 for(int i=0;i<fastTreeEdgeSet.size();i++){

166

DetourManager.java

 tempRuinedEdge=(Edge)fastTreeEdgeSet.elementAt(i);

 tempDetourPath=center.getDetourPath(tempRuinedEdge);

 if(tempDetourPath!=null){

 tempDetourPathNodeSet=tempDetourPath.getNodeSet();

 tempDetourPathEdgeSet=tempDetourPath.getEdgeSet();

 if(tempDetourPathNodeSet!=null){

 for(int j=0;j<tempDetourPathNodeSet.size();j++){

 tempDetourPathNode=(Node)tempDetourPathNodeSet.elementAt(j);

 if(!territory.hasNode(tempDetourPathNode))

 territory.addNode(tempDetourPathNode);

 }

 }

 if(tempDetourPathEdgeSet!=null){

 for(int j=0;j<tempDetourPathEdgeSet.size();j++){

 tempDetourPathEdge=(Edge)tempDetourPathEdgeSet.elementAt(j);

 if(!territory.hasEdge(tempDetourPathEdge))

 territory.addEdge(tempDetourPathEdge);

 }

 }

 }else{

 //tempDetourPath is null!

 }

 }

 center.setTerritory(supply,territory);

 //::maCenter[supply][1]: territory(Graph) 2ECON::

 center.updateDetourCondition();

 center.putKey(this);

 }

 //detourDept method:

 public synchronized void takeKey(Detourist detourist){

 if(!currRuinedEdgeFinish){

 while(!available){

 try{

 wait(1);

 }catch(InterruptedException e){

 //takeKey: cannot wait!

 }

 }

 available=false;

167

DetourManager.java

 }else{

 available=false;

 }

 }

 public synchronized void putKey(Detourist detourist){

 if(!isCurrRuinedEdgeFinish()){

 while(available){

 try{

 wait(1);

 }catch(InterruptedException e){

 //putKey: cannot wait!

 }

 }

 available=true;

 }else{

 available=true;

 }

 }

 public synchronized boolean isFinished(){

 return currRuinedEdgeFinish;

 }

 void sendDetourist(Graph downstream){

 Vector fastTreeNodeSet=downstream.getNodeSet();

 Node tempNode;

 for(int i=0;i<fastTreeNodeSet.size();i++){

 tempNode=(Node)fastTreeNodeSet.elementAt(i);

 new Detourist(i,tempNode,this).start();

 }

 }

 public synchronized void setCurrRuinedEdgeFinish(boolean currRuinedEdgeFinish){

 this.currRuinedEdgeFinish=currRuinedEdgeFinish;

 }

 public Edge getCurrRuinedEdge(){

 return currRuinedEdge;

 }

 public Graph getCurrUpstream(){

168

DetourManager.java

 return currUpstream;

 }

 public Graph getCurrDownstream(){

 return currDownstream;

 }

 public Graph getGraph(){

 return center.getGraph();

 }

 public void setPreNode(Detourist detourist,Node node,Node preNode){

 nodeDept[detourist.getID()][node.getLabel()][1]=preNode;

 }

 public Node getPreNode(Detourist detourist,Node node){

 return (Node)nodeDept[detourist.getID()][node.getLabel()][1];

 }

 public void setPreEdge(Detourist detourist,Node node,Edge preEdge){

 nodeDept[detourist.getID()][node.getLabel()][2]=preEdge;

 }

 public Edge getPreEdge(Detourist detourist,Node node){

 return (Edge)nodeDept[detourist.getID()][node.getLabel()][2];

 }

 public int getDownstreamDemandNum(){

 return downstreamDemandNum;

 }

 public Center getCenter(){

 return center;

 }

 public Node getSupply(){

 return supply;

 }

 public int getID(){

 return id;

 }

169

DetourManager.java

 public synchronized void updateCurrRuinedEdgeFinish(){

 detouristNum--;

 if(detouristNum==0){

 currRuinedEdgeFinish=true;

 }else{

 currRuinedEdgeFinish=false;

 }

 }

 public synchronized boolean isCurrRuinedEdgeFinish(){

 return currRuinedEdgeFinish;

 }

 public synchronized void updateDetourCenter(Detourist detourist){

 Center center=detourist.getCenter();

 DetourManager dmr=detourist.getDetourManager();

 Edge ruinedEdge=detourist.getRuinedEdge();

 //detourCenter[edge][0]: downstream(Graph)

 //detourCenter[edge][1]: upstream(Graph)

 //detourCenter[edge][2]: mergeNode(Node)

 //detourCenter[edge][3]: accessNode(Node)

 //detourCenter[edge][4]: detourPath(Graph)

 //detourCenter[edge][5]: systematicDetourCost(Double)

 //detourCenter[edge][6]: mergeCost(Vector)

 //maCenter[supply][1]: territory(Graph) 2ECON

 double detouristDetourLength=dmr.getSystematicDetourCost(detourist);

 double centerDetourLengthRecord=center.getSystematicDetourCost(detourist.getRuinedEdge());

 if(centerDetourLengthRecord==0.0 || detouristDetourLength<centerDetourLengthRecord){

 center.setDownstream(ruinedEdge,detourist.getDownstream());

 center.setUpstream(ruinedEdge,detourist.getUpstream());

 center.setMergeNode(ruinedEdge,detourist.getMergeNode());

 center.setAccessNode(ruinedEdge,detourist.getAccessNode());

 center.setDetourPath(ruinedEdge,detourist.getDetourPath());

 center.setSystematicDetourCost(ruinedEdge,detouristDetourLength);

 center.setMergeCost(ruinedEdge,detourist.getMergeCost());

 //detouristDetourLength is smaller than center record

170

DetourManager.java

 }else{

 //detouristDetourLength is larger than center record

 }

 }

 //detourDept method:

 //detourDept[detourist][0]: myNode(Node)

 public synchronized void setMyNode(Detourist detourist,Node myNode){

 detourDept[detourist.getID()][0]=myNode;

 }

 public synchronized Node getMyNode(Detourist detourist){

 Node myNode=(Node)detourDept[detourist.getID()][0];

 return myNode;

 }

 //detourDept[detourist][1]: myEdge(Edge)

 public synchronized void setMyEdge(Detourist detourist,Edge myEdge){

 detourDept[detourist.getID()][1]=myEdge;

 }

 public synchronized Edge getMyEdge(Detourist detourist){

 Edge myEdge=(Edge)detourDept[detourist.getID()][1];

 return myEdge;

 }

 //detourDept[detourist][2]: currNode(Node)

 public synchronized void setCurrNode(Detourist detourist,Node currNode){

 detourDept[detourist.getID()][2]=currNode;

 }

 public synchronized Node getCurrNode(Detourist detourist){

 Node currNode=(Node)detourDept[detourist.getID()][2];

 return currNode;

 }

 //detourDept[detourist][3]: routeSet(Graph)

 public synchronized void setRouteSet(Detourist detourist,Graph routeSet){

 detourDept[detourist.getID()][3]=routeSet;

 }

 public synchronized void setRouteSet(Detourist detourist,Vector routeNodeSet,Vector routeEdgeSet){

171

DetourManager.java

 detourDept[detourist.getID()][3]=new Graph(routeNodeSet,routeEdgeSet);

 }

 public synchronized Graph getRouteSet(Detourist detourist){

 Graph routeSet=(Graph)detourDept[detourist.getID()][3];

 return routeSet;

 }

 public synchronized Vector getRouteNodeSet(Detourist detourist){

 Graph routeSet=(Graph)detourDept[detourist.getID()][3];

 Vector routeNodeSet=routeSet.getNodeSet();

 return routeNodeSet;

 }

 public synchronized Vector getRouteEdgeSet(Detourist detourist){

 Graph routeSet=(Graph)detourDept[detourist.getID()][3];

 Vector routeEdgeSet=routeSet.getEdgeSet();

 return routeEdgeSet;

 }

 public synchronized void addEdge(Detourist detourist,Edge edge){

 Graph routeSet=this.getRouteSet(detourist);

 Vector routeNodeSet=routeSet.getNodeSet();

 Vector routeEdgeSet=routeSet.getEdgeSet();

 if(!routeEdgeSet.contains(edge))

 routeEdgeSet.addElement(edge);

 this.setRouteSet(detourist,routeNodeSet,routeEdgeSet);

 }

 public synchronized void addNode(Detourist detourist,Node node){

 Graph routeSet=this.getRouteSet(detourist);

 Vector routeNodeSet=routeSet.getNodeSet();

 Vector routeEdgeSet=routeSet.getEdgeSet();

 if(!routeNodeSet.contains(node))

 routeNodeSet.addElement(node);

 this.setRouteSet(detourist,routeNodeSet,routeEdgeSet);

 }

 public synchronized void removeEdge(Detourist detourist,Edge edge){

 Graph routeSet=this.getRouteSet(detourist);

 Vector routeNodeSet=routeSet.getNodeSet();

 Vector routeEdgeSet=routeSet.getEdgeSet();

172

DetourManager.java

 if(routeEdgeSet.contains(edge)){

 routeEdgeSet.removeElement(edge);

 }

 this.setRouteSet(detourist,routeNodeSet,routeEdgeSet);

 }

 public synchronized void removeSubtree(Detourist detourist,Graph subtree){

 Graph routeSet=(Graph)this.detourDept[detourist.getID()][3];

 Vector tempNodeSet1=routeSet.getNodeSet();

 Vector tempEdgeSet1=routeSet.getEdgeSet();

 Vector tempNodeSet2=subtree.getNodeSet();

 Vector tempEdgeSet2=subtree.getEdgeSet();

 Node tempNode;

 for(int i=0;i<tempNodeSet2.size();i++){

 tempNode=(Node)tempNodeSet2.elementAt(i);

 boolean nodeExist=tempNodeSet1.removeElement(tempNode);

 }

 Edge tempEdge;

 for(int i=0;i<tempEdgeSet2.size();i++){

 tempEdge=(Edge)tempEdgeSet2.elementAt(i);

 boolean edgeExist=tempEdgeSet1.removeElement(tempEdge);

 }

 }

 public synchronized void addSubtree(Detourist detourist,Graph subtree){

 Graph visitedRouteSet=(Graph)this.detourDept[detourist.getID()][3];

 Vector tempNodeSet1=visitedRouteSet.getNodeSet();

 Vector tempEdgeSet1=visitedRouteSet.getEdgeSet();

 Vector tempNodeSet2=subtree.getNodeSet();

 Vector tempEdgeSet2=subtree.getEdgeSet();

 Node tempNode;

 for(int i=0;i<tempNodeSet2.size();i++){

 tempNode=(Node)tempNodeSet2.elementAt(i);

 if(tempNodeSet1.contains(tempNode)){

 }else{

 tempNodeSet1.addElement(tempNode);

 }

 }

173

DetourManager.java

 Edge tempEdge;

 for(int i=0;i<tempEdgeSet2.size();i++){

 tempEdge=(Edge)tempEdgeSet2.elementAt(i);

 if(tempEdgeSet1.contains(tempEdge)){

 }else{

 tempEdgeSet1.addElement(tempEdge);

 }

 }

 }

 //detourDept[detourist][4]: detourLength(Double)

 public void setSystematicDetourCost(Detourist detourist, double sdc){

 detourDept[detourist.getID()][4]=new Double(sdc);

 }

 public double getSystematicDetourCost(Detourist detourist){

 Double sdc=(Double)detourDept[detourist.getID()][4];

 return sdc.doubleValue();

 }

 public void setCurrDetourCost(Detourist detourist,Node node,double sdc){

 nodeDept[detourist.getID()][node.getLabel()][0]=new Double(sdc);

 }

 public double getCurrDetourCost(Detourist detourist,Node node){

 Double tempDouble=(Double)nodeDept[detourist.getID()][node.getLabel()][0];

 return tempDouble.doubleValue();

 }

 //detourCenter:

 public synchronized void updateMinSDC(double sdc){

 double currSDC=center.getSystematicDetourCost(currRuinedEdge);

 if(currSDC==0.0 || sdc<currSDC)

 center.setSystematicDetourCost(currRuinedEdge,sdc);

 }

 public synchronized double getMinSDC(){

 return center.getSystematicDetourCost(currRuinedEdge);

 }

174

DetourManager.java

 //deoutrDept[detourist][5]: bridge(Graph)

 //sdcDept

 //sdcDept[ruinedEdge][0]: minSDC

 public synchronized void updatMinSDC(Detourist detourist,double sdc){

 Edge ruinedEdge=detourist.getRuinedEdge();

 DetourManager dmr=detourist.getDetourManager();

 double currSDC=dmr.getMinSDC(detourist);

 if(sdc<currSDC)

 sdcDept[ruinedEdge.getLabel()][0]=new Double(sdc);

 }

 public synchronized double getMinSDC(Detourist detourist){

 Edge ruinedEdge=detourist.getRuinedEdge();

 Double minSDC=(Double)sdcDept[ruinedEdge.getLabel()][0];

 return minSDC.doubleValue();

 }

}

175

Helper.java

package emnet.thread;

import java.util.Vector;

import emnet.graph.Node;

import emnet.graph.Graph;

import emnet.graph.Edge;

public class Helper extends Thread{

 int id;

 MAManager maMr;

 Node start,source;

 Node currNode,preNode,myNode;

 Edge preEdge,myEdge;

 Graph maPath;

 //maCost = mergeCost + demandNum * bridgeLength(maPath)

 double maCost;

 //for merge cost

 //walkerCenter[node][]:

 //nodeDept

 //nodeDept[node][0]: currCost

 //nodeDept[node][1]: preNode

 //nodeDept[node][2]: preEdge

 Object[][] nodeDept;

 //walkerDept

 //walkerDept[0]: myNode(Node)

 //walkerDept[1]: myEdge(Edge)

 //walkerDept[2]: currNode(Node)

 //walkerDept[3]: routeSet(Graph)

 Object[] walkerDept;

 boolean helperFinish,longer,exclusiveIsZero;

 public Helper(int id,Node start,MAManager maMr){

 this.id=id;

 this.start=start;

176

Helper.java

 this.maMr=maMr;

 this.source=null;

 //nodeDept

 nodeDept=new Object[maMr.getGraph().getNodeSet().size()][3];

 //walkerDept

 walkerDept=new Object[4];

 Node dummyNode=maMr.getCenter().getDummyNode();

 dummyNode.setDummy();

 int edgeNum=maMr.getGraph().getEdgeSet().size();

 Edge dummyEdge=new Edge(edgeNum,start,dummyNode,0.0);

 dummyEdge.setDummyEdge();

 maMr.getGraph().addNode(dummyNode);

 maMr.getGraph().addEdge(dummyEdge);

 //helper init, set to maMr

 Vector routeNodeSet=new Vector();

 routeNodeSet.addElement(dummyNode);

 Vector routeEdgeSet=new Vector();

 routeEdgeSet.addElement(dummyEdge);

 maMr.setRouteSet(this,routeNodeSet,routeEdgeSet);

 maMr.setMyNode(this,dummyNode);

 maMr.setMyEdge(this,dummyEdge);

 maMr.setCurrNode(this,start);

 double mergeCost=getECONMergeCost(start);

 maMr.setCurrMACost(this,maMr.getMyNode(this),mergeCost);

 maMr.setPreNode(this,start,dummyNode);

 maMr.setPreEdge(this,start,dummyEdge);

 maCost=0.0;

 helperFinish=false;

 longer=false;

 exclusiveIsZero=false;

 }

 public int getID(){

 return id;

177

Helper.java

 }

 public Node getStart(){

 return start;

 }

 public MAManager getMAManger(){

 return maMr;

 }

 public double getMACost(){

 return maCost;

 }

 public Graph getMAPath(){

 return maPath;

 }

 public Node getSource(){

 return source;

 }

 public void run(){

 maMr.takeKey(this);

 //::map init::

 Vector edgeSet=maMr.getCenter().getGraph().getEdgeSet();

 Edge tempEdge;

 for(int i=0;i<edgeSet.size();i++){

 tempEdge=(Edge)edgeSet.elementAt(i);

 if(!tempEdge.isFastEdge() && !tempEdge.isDetourEdge() && !tempEdge.isMAEdge())

 tempEdge.setNeutralEdge();

 }

 //::map init::

 maHelping:

 while(!helperFinish){

 if(maMr.getCurrNode(this).isSupply() && maMr.getCurrNode(this)!=maMr.getSupply()){

 source=maMr.getCurrNode(this);

178

Helper.java

 double

currMACost=maMr.getCurrMACost(this,maMr.getMyNode(this))+maMr.getMyEdge(this).getWeight()*maMr.getDemanNum();

 maMr.setCurrMACost(this,maMr.getCurrNode(this),currMACost);

 maMr.addNode(this,maMr.getCurrNode(this));

 maMr.addEdge(this,maMr.getMyEdge(this));

 maMr.setPreNode(this,maMr.getCurrNode(this),maMr.getMyNode(this));

 maMr.setPreEdge(this,maMr.getCurrNode(this),maMr.getMyEdge(this));

 maMr.updateMinMACost(maMr.getCurrMACost(this,maMr.getCurrNode(this)));

 maMr.getMyEdge(this).setMATestEdge(true);

 break maHelping;

 }else if(maMr.getMinMACost()!=0.0 &&

maMr.getMinMACost()<maMr.getCurrMACost(this,maMr.getMyNode(this))){

 //some detourist has already found a shorter detour path

 longer=true;

 break maHelping;

 }else{

 maMr.addNode(this,maMr.getCurrNode(this));

 maMr.addEdge(this,maMr.getMyEdge(this));

 maMr.setPreNode(this,maMr.getCurrNode(this),maMr.getMyNode(this));

 maMr.setPreEdge(this,maMr.getCurrNode(this),maMr.getMyEdge(this));

 double

currMACost=maMr.getCurrMACost(this,maMr.getMyNode(this))+maMr.getMyEdge(this).getWeight()*maMr.getDemanNum();

 maMr.setCurrMACost(this,maMr.getCurrNode(this),currMACost);

 maMr.getMyEdge(this).setMATestEdge(true);

 maMr.setMyNode(this,maMr.getCurrNode(this));

 //find currEdge & currNode, assign new myNode

 dijkstra();

 try{

 sleep(1);

 }catch(InterruptedException ex){

 System.out.println("maMr "+maMr.getID()+", helper "+getID()+" cannot sleep: "+ex);

 }

179

Helper.java

 }

 }

 //helper finished!

 //maPath setting:

 if(!longer && !exclusiveIsZero){

 Vector maPathNodeSet=new Vector();

 Vector maPathEdgeSet=new Vector();

 Node tempCurrNode=maMr.getCurrNode(this);

 Edge tempPreEdge;

 maPathSetting:

 do{

 if(!maPathNodeSet.contains(tempCurrNode))

 maPathNodeSet.addElement(tempCurrNode);

 tempPreEdge=maMr.getPreEdge(this,tempCurrNode);

 //tempPreEdge!=null

 if(!tempPreEdge.isDummyEdge()){

 if(!maPathEdgeSet.contains(tempPreEdge))

 maPathEdgeSet.addElement(tempPreEdge);

 tempCurrNode=maMr.getPreNode(this,tempCurrNode);

 }else{

 break maPathSetting;

 }

 }while(tempCurrNode!=start);

 if(!maPathNodeSet.contains(start))

 maPathNodeSet.addElement(start);

 maPath=new Graph(maPathNodeSet,maPathEdgeSet);

 //update mutual assistant path to center

 //maCost setting:

 maCost=maMr.getCurrMACost(this,maMr.getCurrNode(this));

 }

 maMr.updateMAFinish();

 maMr.putKey(this);

180

Helper.java

 }

 void dijkstra(){

 //find out the best incident edge

 //define new myEdge & currNode

 Graph tempRouteSet=(Graph)maMr.getRouteSet(this);

 Vector tempRouteNodeSet=(Vector)tempRouteSet.getNodeSet();

 Vector incidentEdgeSet=getIncidentEdgeSet(maMr.getUsableGraph(),tempRouteNodeSet);

 Vector exclusiveIncidentEdgeSet=new Vector();

 for(int i=0;i<incidentEdgeSet.size();i++){

 if(!maMr.getRouteEdgeSet(this).contains(incidentEdgeSet.elementAt(i))){

 exclusiveIncidentEdgeSet.addElement(incidentEdgeSet.elementAt(i));

 }

 }

 Edge tempEdge;

 Node n1,n2;

 if(exclusiveIncidentEdgeSet.size()>1){

 tempEdge=(Edge)exclusiveIncidentEdgeSet.elementAt(0);

 maMr.setMyEdge(this,tempEdge);

 n1=tempEdge.getN1();

 n2=tempEdge.getN2();

 if(tempRouteNodeSet.contains(n1) && !tempRouteNodeSet.contains(n2)){

 maMr.setMyNode(this,n1);

 maMr.setCurrNode(this,n2);

 }else if(tempRouteNodeSet.contains(n2) && !tempRouteNodeSet.contains(n1)){

 maMr.setMyNode(this,n2);

 maMr.setCurrNode(this,n1);

 }else{

 //dijkstra error 1: not incident edge! check GraphAlgorithm.getIncidentEdgeSet()

 }

 double

min=maMr.getCurrMACost(this,maMr.getMyNode(this))+maMr.getMyEdge(this).getWeight()*maMr.getDemanNum();

 for(int i=1;i<exclusiveIncidentEdgeSet.size();i++){

 tempEdge=(Edge)exclusiveIncidentEdgeSet.elementAt(i);

 n1=tempEdge.getN1();

 n2=tempEdge.getN2();

 if(tempRouteNodeSet.contains(n1) && !tempRouteNodeSet.contains(n2)){

 if(maMr.getCurrMACost(this,n1)+tempEdge.getWeight()*maMr.getDemanNum()<min){

181

Helper.java

 min=maMr.getCurrMACost(this,n1)+tempEdge.getWeight()*maMr.getDemanNum();

 maMr.setMyEdge(this,tempEdge);

 maMr.setMyNode(this,n1);

 maMr.setCurrNode(this,n2);

 }

 }else if(tempRouteNodeSet.contains(n2) && !tempRouteNodeSet.contains(n1)){

 if(maMr.getCurrMACost(this,n2)+tempEdge.getWeight()*maMr.getDemanNum()<min){

 min=maMr.getCurrMACost(this,n2)+tempEdge.getWeight()*maMr.getDemanNum();

 maMr.setMyEdge(this,tempEdge);

 maMr.setMyNode(this,n2);

 maMr.setCurrNode(this,n1);

 }

 }else{

 //dijkstra error 2: incident edge error!"

 }

 }

 }else if(exclusiveIncidentEdgeSet.size()==1){

 tempEdge=(Edge)exclusiveIncidentEdgeSet.elementAt(0);

 maMr.setMyEdge(this,tempEdge);

 n1=tempEdge.getN1();

 n2=tempEdge.getN2();

 if(tempRouteNodeSet.contains(n1) && !tempRouteNodeSet.contains(n2)){

 maMr.setMyNode(this,n1);

 maMr.setCurrNode(this,n2);

 }else if(tempRouteNodeSet.contains(n2) && !tempRouteNodeSet.contains(n1)){

 maMr.setMyNode(this,n2);

 maMr.setCurrNode(this,n1);

 }else{

 //dijkstra error 3: not incident edge! check GraphAlgorithm.getIncidentEdgeSet()

 }

 }else{

 exclusiveIsZero=true;

 helperFinish=true;

 //renders all nodes visited

 }

 }

 double getECONMergeCost(Node node){

 Walker walker=new Walker(this,node);

 walker.start();

182

Helper.java

 while(!walker.isFinish()){

 //wait for walker to calculate merge cost

 }

 return walker.getTerritoryMergeCost();

 }

 Vector getIncidentEdgeSet(Graph usableGraph,Vector routeNodeSet){

 Edge myEdge=maMr.getMyEdge(this);

 Vector incidentEdges=new Vector();

 Edge tempEdge;

 Node n1,n2;

 for(int i=0;i<routeNodeSet.size();i++){

 Vector tempEdgeSet=usableGraph.incidentEdgeSet((Node)routeNodeSet.elementAt(i));

 for(int j=0;j<tempEdgeSet.size();j++){

 tempEdge=(Edge)tempEdgeSet.elementAt(j);

 if(!incidentEdges.contains(tempEdge))

 incidentEdges.addElement(tempEdge);

 n1=tempEdge.getN1();

 n2=tempEdge.getN2();

 if(routeNodeSet.contains(n1) && routeNodeSet.contains(n2))

 incidentEdges.removeElement(tempEdge);

 if(n1==maMr.getCenter().getDummyNode() || n2==maMr.getCenter().getDummyNode())

 incidentEdges.removeElement(tempEdge);

 }

 }

 if(incidentEdges.contains(myEdge))

 incidentEdges.removeElement(myEdge);

 return incidentEdges;

 }

 //walker methods:

 //nodeDept[node][0]: currCost

 public void setCurrCost(Node node,double cost){

 nodeDept[node.getLabel()][0]=new Double(cost);

 }

 public double getCurrCost(Node node){

 Double tempDouble=(Double)nodeDept[node.getLabel()][0];

183

Helper.java

 return tempDouble.doubleValue();

 }

 //nodeDept[node][1]: preNode

 public void setPreNode(Node node,Node preNode){

 nodeDept[node.getLabel()][1]=preNode;

 }

 public Node getPreNode(Node node){

 return (Node)nodeDept[node.getLabel()][1];

 }

 //nodeDept[node][2]: preEdge

 public void setPreEdge(Node node,Edge preEdge){

 nodeDept[node.getLabel()][2]=preEdge;

 }

 public Edge getPreEdge(Node node){

 return (Edge)nodeDept[node.getLabel()][2];

 }

 //walkerDept[0]: myNode(Node)

 public void setMyNode(Node node){

 walkerDept[0]=node;

 }

 public Node getMyNode(){

 return (Node)walkerDept[0];

 }

 //walkerDept[1]: myEdge(Edge)

 public void setMyEdge(Edge edge){

 walkerDept[1]=edge;

 }

 public Edge getMyEdge(){

 return (Edge)walkerDept[1];

 }

 //walkerDept[2]: currNode(Node)

 public void setCurrNode(Node node){

 walkerDept[2]=node;

184

Helper.java

 }

 public Node getCurrNode(){

 return (Node)walkerDept[2];

 }

 //walkerDept[3]: routeSet(Graph)

 public void setRouteSet(Vector nodeSet,Vector edgeSet){

 walkerDept[3]=new Graph(nodeSet,edgeSet);

 }

 public Graph getRouteSet(){

 return (Graph)walkerDept[3];

 }

 public void addNode(Node node){

 Graph routeSet=(Graph)walkerDept[3];

 Vector nodeSet=routeSet.getNodeSet();

 if(!nodeSet.contains(node))

 nodeSet.addElement(node);

 }

 public void addEdge(Edge edge){

 Graph routeSet=(Graph)walkerDept[3];

 Vector edgeSet=routeSet.getEdgeSet();

 if(!edgeSet.contains(edge))

 edgeSet.addElement(edge);

 }

}

185

MAManager.java

package emnet.thread;

import java.util.Vector;

import emnet.graph.Node;

import emnet.graph.Graph;

import emnet.graph.Edge;

import emnet.algorithm.GraphAlgorithm;

public class MAManager extends Thread{

 int id;

 Center center;

 Node supply;

 Graph territory,usableGraph;

 Vector icp,helpers,usableGraphNodeSet,usableGraphEdgeSet,interfaceNodes;

 int demandNum,helperNum;

 //nodeDept

 //nodeDept[helper][node][0]: currMACost

 //nodeDept[helper][node][1]: preNode

 //nodeDept[helper][node][2]: preEdge

 Object[][][] nodeDept;

 //maDept

 //maDept[helper][0]: myNode(Node)

 //maDept[helper][1]: myEdge(Edge)

 //maDept[helper][2]: currNode(Node)

 //maDept[helper][3]: routeSet(Graph)

 Object[][] maDept;

 //maCost

 double minMACost;

 boolean available,maFinish;

 public MAManager(int id,Center center,Node supply){

 this.id=id;

 this.center=center;

 this.supply=supply;

186

MAManager.java

 territory=center.getTerritory(supply);

 if(territory.getDemandNodeSet().size()!=0){

 demandNum=territory.getDemandNodeSet().size();

 Vector territoryNodeSet=territory.getNodeSet();

 //icp init, usableGraph init

 Graph graph=center.getGraph();

 Vector graphEdgeSet=graph.getEdgeSet();

 usableGraphNodeSet=new Vector();

 usableGraphEdgeSet=new Vector();

 icp=new Vector();

 Edge tempEdge;

 Node n1,n2;

 for(int i=0;i<graphEdgeSet.size();i++){

 tempEdge=(Edge)graphEdgeSet.elementAt(i);

 n1=tempEdge.getN1();

 n2=tempEdge.getN2();

 if(!territoryNodeSet.contains(n1) && !territoryNodeSet.contains(n2)){

 if(!usableGraphEdgeSet.contains(tempEdge))

 usableGraphEdgeSet.addElement(tempEdge);

 if(!usableGraphNodeSet.contains(n1))

 usableGraphNodeSet.addElement(n1);

 if(!usableGraphNodeSet.contains(n2))

 usableGraphNodeSet.addElement(n2);

 }

 if(territoryNodeSet.contains(n1) && !territoryNodeSet.contains(n2)){

 if(!usableGraphEdgeSet.contains(tempEdge))

 usableGraphEdgeSet.addElement(tempEdge);

 if(!usableGraphNodeSet.contains(n1))

 usableGraphNodeSet.addElement(n1);

 if(!usableGraphNodeSet.contains(n2))

 usableGraphNodeSet.addElement(n2);

 if(!tempEdge.isDummyEdge()){

 if(!icp.contains(n1))

 icp.addElement(n1);

187

MAManager.java

 }

 }

 if(!territoryNodeSet.contains(n1) && territoryNodeSet.contains(n2)){

 if(!usableGraphEdgeSet.contains(tempEdge))

 usableGraphEdgeSet.addElement(tempEdge);

 if(!usableGraphNodeSet.contains(n1))

 usableGraphNodeSet.addElement(n1);

 if(!usableGraphNodeSet.contains(n2))

 usableGraphNodeSet.addElement(n2);

 if(!tempEdge.isDummyEdge()){

 if(!icp.contains(n2))

 icp.addElement(n2);

 }

 }

 //while territory is not convex

 if(!territory.hasEdge(tempEdge) && !usableGraphEdgeSet.contains(tempEdge)){

 usableGraphEdgeSet.addElement(tempEdge);

 if(!usableGraphNodeSet.contains(n1))

 usableGraphNodeSet.addElement(n1);

 if(!usableGraphNodeSet.contains(n2))

 usableGraphNodeSet.addElement(n2);

 if(!tempEdge.isDummyEdge()){

 if(!icp.contains(n1))

 icp.addElement(n1);

 if(!icp.contains(n2))

 icp.addElement(n2);

 }

 }

 }

 usableGraph=new Graph(usableGraphNodeSet,usableGraphEdgeSet);

 interfaceNodes=GraphAlgorithm.getInterfaceNodes(territory,graph);

 helperNum=icp.size();

 nodeDept=new Object[icp.size()][graph.getNodeSet().size()][3];

 for(int i=0;i<icp.size();i++){

 for(int j=0;j<graph.getNodeSet().size();j++){

 nodeDept[i][j][0]=new Double(0.0);

 }

 }

 maDept=new Object[icp.size()][4];

 minMACost=0.0;

188

MAManager.java

 available=true;

 maFinish=false;

 }else{

 maFinish=true;

 }

 }

 public void run(){

 center.takeKey(this);

 //map init

 Vector edgeSet=center.getGraph().getEdgeSet();

 Edge tempEdge;

 for(int i=0;i<edgeSet.size();i++){

 tempEdge=(Edge)edgeSet.elementAt(i);

 if(!tempEdge.isFastEdge() && !tempEdge.isDetourEdge() && !tempEdge.isMAEdge())

 tempEdge.setNeutralEdge();

 }

 if(territory.getDemandNodeSet().size()!=0){

 helpers=new Vector();

 Node tempNode;

 Helper tempHelper;

 for(int i=0;i<icp.size();i++){

 tempNode=(Node)icp.elementAt(i);

 tempHelper=new Helper(i,tempNode,this);

 helpers.addElement(tempHelper);

 tempHelper.start();

 }

 while(!maFinish){

 //watching

 }

 //finding supply source finished: all situations simulated

 //set ma edges on the shortest ma route

 //find a subject helper

 Helper bestHelper=(Helper)helpers.elementAt(0);

 for(int j=1;j<helpers.size();j++){

 if(bestHelper.getMACost()==0.0)

 bestHelper=(Helper)helpers.elementAt(j);

189

MAManager.java

 }

 //find a competitor helper

 Helper tempHelper1;

 double minMACost=bestHelper.getMACost();

 for(int j=1;j<helpers.size();j++){

 tempHelper1=(Helper)helpers.elementAt(j);

 if(tempHelper1.getMACost()!=0.0 && tempHelper1.getMACost()<minMACost){

 minMACost=tempHelper1.getMACost();

 bestHelper=tempHelper1;

 }

 }

 updateMACenter(bestHelper);

 Vector bestMAPathEdgeSet=bestHelper.getMAPath().getEdgeSet();

 if(bestMAPathEdgeSet.size()>0){

 Edge tempEdge1;

 Node n1,n2;

 Node source=bestHelper.getSource();

 Graph sourceTerritory=center.getTerritory(source);

 for(int j=0;j<bestMAPathEdgeSet.size();j++){

 tempEdge1=(Edge)bestMAPathEdgeSet.elementAt(j);

 tempEdge1.setMAEdge();

 n1=tempEdge1.getN1();

 n2=tempEdge1.getN2();

 if(territory.hasNode(n1) && !territory.hasNode(n2))

 n1.setMerge();

 if(territory.hasNode(n2) && !territory.hasNode(n1))

 n2.setMerge();

 if(sourceTerritory.hasNode(n1) && !sourceTerritory.hasNode(n2))

 n1.setAccess();

 if(sourceTerritory.hasNode(n2) && !sourceTerritory.hasNode(n1))

 n2.setAccess();

 if(j==(bestMAPathEdgeSet.size()-1)){

 if(territory.hasNode(n1) && sourceTerritory.hasNode(n1)){

 n1.setAccess();

 n1.setMerge();

 }

 if(territory.hasNode(n2) && sourceTerritory.hasNode(n2)){

190

MAManager.java

 n2.setAccess();

 n2.setMerge();

 }

 }

 }

 }else{

 bestHelper.getSource().setSource();

 }

 }else{

 //demandNum=0

 //mutualAssistantCenter

 //maCenter[supply][2]: source(Node)

 //maCenter[supply][3]: icpSet(Vector)

 //maCenter[supply][4]: maPath(Graph)

 //maCenter[supply][7]: maCost > source to supply

 center.setSource(supply,supply);

 center.setICPSet(supply,territory.getNodeSet());

 center.setMAPath(supply,territory);

 center.setMACost(supply,0.0);

 }

 //ma manager finish its job!

 center.updateMACondition();

 center.putKey(this);

 }

 public int getID(){

 return id;

 }

 public Center getCenter(){

 return center;

 }

 public Node getSupply(){

 return supply;

 }

 public Graph getGraph(){

 return center.getGraph();

 }

191

MAManager.java

 public Graph getUsableGraph(){

 return usableGraph;

 }

 public Graph getTerritory(){

 return territory;

 }

 public int getDemanNum(){

 return demandNum;

 }

 public int getICP(){

 return interfaceNodes.size();

 }

 public synchronized void updateMinMACost(double currMACost){

 if(minMACost==0.0 || currMACost<minMACost)

 minMACost=currMACost;

 }

 public double getMinMACost(){

 return minMACost;

 }

 public void updateMAFinish(){

 helperNum--;

 if(helperNum==0){

 maFinish=true;

 }

 }

 public synchronized void takeKey(Helper helper){

 if(!maFinish){

 while(!available){

 try{

 wait(1);

 }catch(InterruptedException e){

 //takeKey: cannot wait!

 }

 }

192

MAManager.java

 available=false;

 }else{

 available=false;

 //helper took the key, but center is finished!

 }

 }

 public synchronized void putKey(Helper helper){

 if(!maFinish){

 while(available){

 try{

 //helper is waiting to put...

 wait(1);

 }catch(InterruptedException e){

 //putKey: cannot wait!

 }

 }

 //helper put the key!

 available=true;

 }else{

 //helper put the key, maFinish=true!

 available=true;

 }

 }

 //nodeDept

 //nodeDept[helper][node][0]: currMACost

 public void setCurrMACost(Helper helper,Node node,double maCost){

 nodeDept[helper.getID()][node.getLabel()][0]=new Double(maCost);

 }

 public double getCurrMACost(Helper helper,Node node){

 Double maCost=(Double)nodeDept[helper.getID()][node.getLabel()][0];

 return maCost.doubleValue();

 }

 //nodeDept[helper][node][1]: preNode

 public void setPreNode(Helper helper,Node node,Node preNode){

 nodeDept[helper.getID()][node.getLabel()][1]=preNode;

 }

 public Node getPreNode(Helper helper,Node node){

193

MAManager.java

 return (Node)nodeDept[helper.getID()][node.getLabel()][1];

 }

 //nodeDept[helper][node][2]: preEdge

 public void setPreEdge(Helper helper,Node node,Edge preEdge){

 nodeDept[helper.getID()][node.getLabel()][2]=preEdge;

 }

 public Edge getPreEdge(Helper helper,Node node){

 return (Edge)nodeDept[helper.getID()][node.getLabel()][2];

 }

 //maDept

 //maDept[helper][0]: myNode(Node)

 public void setMyNode(Helper helper,Node myNode){

 maDept[helper.getID()][0]=myNode;

 }

 public Node getMyNode(Helper helper){

 return (Node)maDept[helper.getID()][0];

 }

 //maDept[helper][1]: myEdge(Edge)

 public void setMyEdge(Helper helper,Edge myEdge){

 maDept[helper.getID()][1]=myEdge;

 }

 public Edge getMyEdge(Helper helper){

 return (Edge)maDept[helper.getID()][1];

 }

 //maDept[helper][2]: currNode(Node)

 public void setCurrNode(Helper helper,Node currNode){

 maDept[helper.getID()][2]=currNode;

 }

 public Node getCurrNode(Helper helper){

 return (Node)maDept[helper.getID()][2];

 }

 //maDept[helper][3]: routeSet(Graph)

 public void setRouteSet(Helper helper,Vector routeNodeSet,Vector routeEdgeSet){

194

MAManager.java

 maDept[helper.getID()][3]=new Graph(routeNodeSet,routeEdgeSet);

 }

 public Graph getRouteSet(Helper helper){

 return (Graph)maDept[helper.getID()][3];

 }

 public Vector getRouteEdgeSet(Helper helper){

 Graph routeSet=getRouteSet(helper);

 return routeSet.getEdgeSet();

 }

 public synchronized void addEdge(Helper helper,Edge edge){

 Graph routeSet=this.getRouteSet(helper);

 Vector routeNodeSet=routeSet.getNodeSet();

 Vector routeEdgeSet=routeSet.getEdgeSet();

 if(!routeEdgeSet.contains(edge))

 routeEdgeSet.addElement(edge);

 this.setRouteSet(helper,routeNodeSet,routeEdgeSet);

 }

 public synchronized void addNode(Helper helper,Node node){

 Graph routeSet=this.getRouteSet(helper);

 Vector routeNodeSet=routeSet.getNodeSet();

 Vector routeEdgeSet=routeSet.getEdgeSet();

 if(!routeNodeSet.contains(node))

 routeNodeSet.addElement(node);

 this.setRouteSet(helper,routeNodeSet,routeEdgeSet);

 }

 public synchronized void updateMACenter(Helper helper){

 //mutualAssistantCenter

 //maCenter[supply][2]: source(Node)

 //maCenter[supply][3]: icpSet(Vector)

 //maCenter[supply][4]: maPath(Graph)

 //maCenter[supply][7]: maCost > source to supply

 MAManager maMr=helper.getMAManger();

 Center center=maMr.getCenter();

 Node supply=maMr.getSupply();

 center.setSource(supply,helper.getSource());

195

MAManager.java

 center.setICPSet(supply,interfaceNodes);

 center.setMAPath(supply,helper.getMAPath());

 center.setMACost(supply,helper.getMACost());

 }

}

196

Roamer.java

package emnet.thread;

import emnet.graph.Node;

import emnet.graph.Edge;

import java.util.Vector;

import emnet.algorithm.GraphAlgorithm;

import emnet.graph.Graph;

public class Roamer extends Thread{

 Node supply;

 int id;

 Center center;

 boolean roamerFinish;

 Node currNode,preNode,myNode;

 Edge preEdge,myEdge;

 Graph graph,routeSet;

 Vector routeNodeSet,routeEdgeSet;

 public Roamer(int id,Node supply,Center center){

 super(""+id);

 this.id=id;

 this.supply=supply;

 this.center=center;

 roamerFinish=false;

 graph=center.getGraph();

 int nodeNum=graph.getNodeSet().size();

 int edgeNum=graph.getEdgeSet().size();

 //roamerCenter init

 //roamerCenter[roamer][0]: myNode(Node)

 //roamerCenter[roamer][1]: myEdge(Edge)

 //roamerCenter[roamer][2]: currNode(Node)

 //roamerCenter[roamer][3]: routeSet(Graph)

 Node dummyNode=this.center.getDummyNode();

 dummyNode.setDummy();

 Edge dummyEdge=new Edge(edgeNum,supply,dummyNode,0.0);

 dummyEdge.setDummyEdge();

 this.graph.addNode(dummyNode);

197

Roamer.java

 this.graph.addEdge(dummyEdge);

 Vector routeNodeSet=new Vector();

 routeNodeSet.addElement(dummyNode);

 Vector routeEdgeSet=new Vector();

 routeEdgeSet.addElement(dummyEdge);

 this.center.setRouteSet(this,routeNodeSet,routeEdgeSet);

 this.center.setMyNode(this,dummyNode);

 this.center.setMyEdge(this,dummyEdge);

 this.center.setCurrNode(this,supply);

 //nodeCenter init

 //nodeCenter[node][0]: occupy(Boolean)

 //nodeCenter[node][1]: distance(Double)

 //nodeCenter[node][2]: preNode(Node)

 //nodeCenter[node][3]: preEdge(Edge)

 //nodeCenter[node][4]: visitorSequence(Vector)

 this.center.setDistance(supply,0.0);

 this.center.setPreNode(supply,dummyNode);

 this.center.setPreEdge(supply,dummyEdge);

 this.center.addViditor(supply,this);

 }

 public int getID(){

 return this.id;

 }

 public Node getSupply(){

 return this.supply;

 }

 public Center getCenter(){

 return this.center;

 }

 public void run(){

 roaming:

 while(!center.isFinished() && !roamerFinish){

 //take the key to have the right to run

198

Roamer.java

 center.takeKey(this);

 if(center.isFinished()){

 center.putKey(this);

 break roaming;

 }

 //test currNode is visited or not

 if(!center.getCurrNode(this).isVisited()){

 //currNode is not visited

 center.getCurrNode(this).visit();

 updateVisitorSequence(0,this,center.getCurrNode(this));

 //update myEdge, myNode, currNode, preNode

 //update currNode distance by myNode & myEdge

 //update routeSet (myNode, myEdge)

 //set fast edge

 center.addNode(this,center.getCurrNode(this));

 center.addEdge(this,center.getMyEdge(this));

 center.setPreNode(center.getCurrNode(this),center.getMyNode(this));

 center.setPreEdge(center.getCurrNode(this),center.getMyEdge(this));

 double distance=center.getDistance(center.getMyNode(this))+center.getMyEdge(this).getWeight();

 center.setDistance(center.getCurrNode(this),distance);

 center.getMyEdge(this).setTestEdge();

 center.setMyNode(this,center.getCurrNode(this));

 dijkstra();

 }else{

 //currNode is visited

 //Comparison: change to new location to find myEdge to find currNode, and update to myNode

 Vector visitorSequence=center.getVisitorSequence(center.getCurrNode(this));

 if(!visitorSequence.contains(this)){

 //comparison

 double currDistance=center.getDistance(center.getCurrNode(this));

 double myDistance=center.getDistance(center.getMyNode(this));

 if(myDistance+center.getMyEdge(this).getWeight()<currDistance){

 //closer! subtree finding!

 //1. find out who the last roamer is

 Roamer lastRoamer=center.lastVisitor(center.getCurrNode(this));

 //2. update visitor sequence [finish condition]

199

Roamer.java

 updateVisitorSequence(1,this,center.getCurrNode(this));

 //3. find out where the last roamer is now

 Node lastRoamerLocation=center.getCurrNode(lastRoamer);

 //4. remove last roamer's subtree

 Graph lastRoamerRouteSet=center.getRouteSet(lastRoamer);

 Graph

subtree=GraphAlgorithm.getSubtreeWithCertainNode(lastRoamerRouteSet,center.getCurrNode(this),center.getPreEd

ge(center.getCurrNode(this)));

 center.removeSubtree(lastRoamer,subtree);

 center.removeEdge(lastRoamer,center.getPreEdge(center.getCurrNode(this)));

 center.getPreEdge(center.getCurrNode(this)).setNeutralEdge();

 //5. add myEdge and the subtree to current roamer's RouteSet

 center.setPreEdge(center.getCurrNode(this),center.getMyEdge(this));

 center.setPreNode(center.getCurrNode(this),center.getMyNode(this));

 center.addSubtree(this,subtree);

 center.addEdge(this,center.getMyEdge(this));

 center.getMyEdge(this).setTestEdge();

 //6. relocate last roamer's place to preNode to prevent missing, relocate current roamer

using dijkstra

 center.setCurrNode(lastRoamer,center.getPreNode(center.getCurrNode(this)));

 //7. update the distance in the subtree

 Vector subtreeNodeSet=subtree.getNodeSet();

 Node tempNode;

 double saving;

 for(int i=0;i<subtreeNodeSet.size();i++){

 tempNode=(Node)subtreeNodeSet.elementAt(i);

saving=center.getDistance(center.getCurrNode(this))-(center.getDistance(center.getMyNode(this))+center.getMyEdg

e(this).getWeight());

 center.setDistance(tempNode,center.getDistance(tempNode)-saving);

 }

 dijkstra();

 }else{

 //not closer, remove myEdge from routeEdgeSet, find new myEdge

 //update visitor sequence: downstream subree

200

Roamer.java

 updateVisitorSequence(1,this,center.getCurrNode(this));

 center.removeEdge(this,center.getMyEdge(this));

 dijkstra();

 }

 }else{

 //I visited this node before

 dijkstra();

 }

 }

 center.putKey(this);

 try{

 sleep(1);

 }catch(InterruptedException ex){

 //roamer cannot sleep

 }

 }

 //roamer finished his job!

 }

 void dijkstra(){

 //find out the best incident edge

 //define new myEdge & currNode

 Graph tempRouteSet=(Graph)center.getRouteSet(this);

 Vector tempRouteNodeSet=(Vector)tempRouteSet.getNodeSet();

 Vector incidentEdgeSet=GraphAlgorithm.getIncidentEdgeSet(this,tempRouteNodeSet);

 Vector exclusiveIncidentEdgeSet=new Vector();

 for(int i=0;i<incidentEdgeSet.size();i++){

 if(!center.getRouteEdgeSet(this).contains(incidentEdgeSet.elementAt(i))){

 exclusiveIncidentEdgeSet.addElement(incidentEdgeSet.elementAt(i));

 }

 }

 Edge tempEdge;

 Node n1,n2;

 if(exclusiveIncidentEdgeSet.size()>1){

 tempEdge=(Edge)exclusiveIncidentEdgeSet.elementAt(0);

 center.setMyEdge(this,tempEdge);

 n1=tempEdge.getN1();

201

Roamer.java

 n2=tempEdge.getN2();

 if(tempRouteNodeSet.contains(n1) && !tempRouteNodeSet.contains(n2)){

 center.setMyNode(this,n1);

 center.setCurrNode(this,n2);

 }else if(tempRouteNodeSet.contains(n2) && !tempRouteNodeSet.contains(n1)){

 center.setMyNode(this,n2);

 center.setCurrNode(this,n1);

 }else{

 //dijkstra error 1: not incident edge! check GraphAlgorithm.getIncidentEdgeSet()

 }

 double min=center.getDistance(center.getMyNode(this))+center.getMyEdge(this).getWeight();

 for(int i=1;i<exclusiveIncidentEdgeSet.size();i++){

 tempEdge=(Edge)exclusiveIncidentEdgeSet.elementAt(i);

 n1=tempEdge.getN1();

 n2=tempEdge.getN2();

 if(tempRouteNodeSet.contains(n1) && !tempRouteNodeSet.contains(n2)){

 if(center.getDistance(n1)+tempEdge.getWeight()<min){

 min=center.getDistance(n1)+tempEdge.getWeight();

 center.setMyEdge(this,tempEdge);

 center.setMyNode(this,n1);

 center.setCurrNode(this,n2);

 }

 }else if(tempRouteNodeSet.contains(n2) && !tempRouteNodeSet.contains(n1)){

 if(center.getDistance(n2)+tempEdge.getWeight()<min){

 min=center.getDistance(n2)+tempEdge.getWeight();

 center.setMyEdge(this,tempEdge);

 center.setMyNode(this,n2);

 center.setCurrNode(this,n1);

 }

 }else{

 //dijkstra error 2: incident edge error!

 }

 }

 }else if(exclusiveIncidentEdgeSet.size()==1){

 tempEdge=(Edge)exclusiveIncidentEdgeSet.elementAt(0);

 center.setMyEdge(this,tempEdge);

 n1=tempEdge.getN1();

 n2=tempEdge.getN2();

 if(tempRouteNodeSet.contains(n1) && !tempRouteNodeSet.contains(n2)){

 center.setMyNode(this,n1);

 center.setCurrNode(this,n2);

202

Roamer.java

 }else if(tempRouteNodeSet.contains(n2) && !tempRouteNodeSet.contains(n1)){

 center.setMyNode(this,n2);

 center.setCurrNode(this,n1);

 }else{

 //dijkstra error 3: not incident edge! check GraphAlgorithm.getIncidentEdgeSet()

 }

 }else{

 roamerFinish=true;

 //renders all nodes visited

 Vector nodeSet=graph.getNodeSet();

 Node tempNode;

 for(int i=0;i<nodeSet.size();i++){

 tempNode=(Node)nodeSet.elementAt(i);

 center.addViditor(tempNode,this);

 }

 }

 }

 void updateVisitorSequence(int sort,Roamer roamer,Node currNode){

 //roamer to be updated....

 //selection choice:

 //case 0: currNode is never visited

 //case 1: currNode is visited

 Vector myVisitorSequence=center.getVisitorSequence(center.getMyNode(this));

 Graph routeSet,subtree;

 Edge preEdge;

 Vector subtreeNodeSet,tempSubtreeNodeVisitorSequence;

 Node tempSubtreeNode,tempPreNode;

 Roamer lastRoamer,tempRoamer;

 switch(sort){

 case 0:

 //case 0: currNode is never visited

 center.addViditor(currNode,roamer);

 break;

 case 1:

 //case 1: currNode is visited

 //add visiotrs to downstream: subtree

 //subtree of currNode

 lastRoamer=center.lastVisitor(currNode);

203

Roamer.java

 routeSet=center.getRouteSet(lastRoamer);

 preEdge=center.getPreEdge(currNode);

 tempPreNode=center.getPreNode(currNode);

 subtree=GraphAlgorithm.getSubtreeWithCertainNode(routeSet,currNode,preEdge);

 subtreeNodeSet=subtree.getNodeSet();

 for(int i=0;i<myVisitorSequence.size();i++){

 tempRoamer=(Roamer)myVisitorSequence.elementAt(i);

 for(int j=0;j<subtreeNodeSet.size();j++){

 tempSubtreeNode=(Node)subtreeNodeSet.elementAt(j);

 tempSubtreeNodeVisitorSequence=center.getVisitorSequence(tempSubtreeNode);

 if(!tempSubtreeNodeVisitorSequence.contains(tempRoamer))

 center.addViditor(tempSubtreeNode,tempRoamer);

 }

 }

 break;

 }

 //update visitorSequence finish!

 }

}

204

Walker.java

package emnet.thread;

import emnet.graph.Graph;

import emnet.graph.Node;

import emnet.graph.Edge;

import java.util.Vector;

public class Walker extends Thread{

 double territoryMergeCost;

 Helper helper;

 MAManager maMr;

 Graph territory;

 int demandNum;

 boolean finish;

 public Walker(Helper helper,Node start){

 territoryMergeCost=0.0;

 this.helper=helper;

 maMr=helper.getMAManger();

 territory=maMr.getTerritory();

 demandNum=territory.getDemandNodeNum();

 int edgeNum=maMr.getCenter().getGraph().getEdgeSet().size();

 Node dummyNode=maMr.getCenter().getDummyNode();

 dummyNode.setDummy();

 Edge dummyEdge=new Edge(edgeNum,start,dummyNode,0.0);

 dummyEdge.setDummyEdge();

 maMr.getGraph().addNode(dummyNode);

 maMr.getGraph().addEdge(dummyEdge);

 //helper init, set to maMr

 Vector routeNodeSet=new Vector();

 routeNodeSet.addElement(dummyNode);

 Vector routeEdgeSet=new Vector();

 routeEdgeSet.addElement(dummyEdge);

 helper.setRouteSet(routeNodeSet,routeEdgeSet);

205

Walker.java

 helper.setMyNode(dummyNode);

 helper.setMyEdge(dummyEdge);

 helper.setCurrNode(start);

 helper.setCurrCost(helper.getMyNode(),0.0);

 helper.setPreNode(start,dummyNode);

 helper.setPreEdge(start,dummyEdge);

 finish=false;

 }

 public double getTerritoryMergeCost(){

 return territoryMergeCost;

 }

 public void run(){

 walking:

 while(!finish){

 if(helper.getCurrNode().isDemand()){

 updateFinish();

 helper.addNode(helper.getCurrNode());

 helper.addEdge(helper.getMyEdge());

 helper.setPreNode(helper.getCurrNode(),helper.getMyNode());

 helper.setPreEdge(helper.getCurrNode(),helper.getMyEdge());

 double currCost=helper.getCurrCost(helper.getMyNode())+helper.getMyEdge().getWeight();

 helper.setCurrCost(helper.getCurrNode(),currCost);

 territoryMergeCost=territoryMergeCost+currCost;

 if(!finish){

 helper.setMyNode(helper.getCurrNode());

 dijkstra();

 }else{

 break walking;

 }

 }else{

206

Walker.java

 helper.addNode(helper.getCurrNode());

 helper.addEdge(helper.getMyEdge());

 helper.setPreNode(helper.getCurrNode(),helper.getMyNode());

 helper.setPreEdge(helper.getCurrNode(),helper.getMyEdge());

 double currCost=helper.getCurrCost(helper.getMyNode())+helper.getMyEdge().getWeight();

 helper.setCurrCost(helper.getCurrNode(),currCost);

 helper.setMyNode(helper.getCurrNode());

 dijkstra();

 }

 }

 }

 void updateFinish(){

 demandNum--;

 if(demandNum==0)

 finish=true;

 }

 public boolean isFinish(){

 return finish;

 }

 void dijkstra(){

 Graph tempRouteSet=(Graph)helper.getRouteSet();

 Vector tempRouteNodeSet=(Vector)tempRouteSet.getNodeSet();

 Vector incidentEdgeSet=getIncidentEdgeSet(territory,tempRouteNodeSet);

 Vector exclusiveIncidentEdgeSet=new Vector();

 for(int i=0;i<incidentEdgeSet.size();i++){

 if(!helper.getRouteSet().hasEdge((Edge)incidentEdgeSet.elementAt(i))){

 exclusiveIncidentEdgeSet.addElement(incidentEdgeSet.elementAt(i));

 }

 }

 Edge tempEdge;

 Node n1,n2;

 if(exclusiveIncidentEdgeSet.size()>1){

 tempEdge=(Edge)exclusiveIncidentEdgeSet.elementAt(0);

 helper.setMyEdge(tempEdge);

207

Walker.java

 n1=tempEdge.getN1();

 n2=tempEdge.getN2();

 if(tempRouteNodeSet.contains(n1) && !tempRouteNodeSet.contains(n2)){

 helper.setMyNode(n1);

 helper.setCurrNode(n2);

 }else if(tempRouteNodeSet.contains(n2) && !tempRouteNodeSet.contains(n1)){

 helper.setMyNode(n2);

 helper.setCurrNode(n1);

 }

 double min=helper.getCurrCost(helper.getMyNode())+helper.getMyEdge().getWeight();

 for(int i=1;i<exclusiveIncidentEdgeSet.size();i++){

 tempEdge=(Edge)exclusiveIncidentEdgeSet.elementAt(i);

 n1=tempEdge.getN1();

 n2=tempEdge.getN2();

 if(tempRouteNodeSet.contains(n1) && !tempRouteNodeSet.contains(n2)){

 if(helper.getCurrCost(n1)+tempEdge.getWeight()<min){

 min=helper.getCurrCost(n1)+tempEdge.getWeight();

 helper.setMyEdge(tempEdge);

 helper.setMyNode(n1);

 helper.setCurrNode(n2);

 }

 }else if(tempRouteNodeSet.contains(n2) && !tempRouteNodeSet.contains(n1)){

 if(helper.getCurrCost(n2)+tempEdge.getWeight()<min){

 min=helper.getCurrCost(n2)+tempEdge.getWeight();

 helper.setMyEdge(tempEdge);

 helper.setMyNode(n2);

 helper.setCurrNode(n1);

 }

 }

 }

 }else if(exclusiveIncidentEdgeSet.size()==1){

 tempEdge=(Edge)exclusiveIncidentEdgeSet.elementAt(0);

 helper.setMyEdge(tempEdge);

 n1=tempEdge.getN1();

 n2=tempEdge.getN2();

 if(tempRouteNodeSet.contains(n1) && !tempRouteNodeSet.contains(n2)){

 helper.setMyNode(n1);

 helper.setCurrNode(n2);

 }else if(tempRouteNodeSet.contains(n2) && !tempRouteNodeSet.contains(n1)){

 helper.setMyNode(n2);

 helper.setCurrNode(n1);

 }

208

Walker.java

 }else{

 finish=true;

 //renders all nodes visited

 }

 }

 Vector getIncidentEdgeSet(Graph usableGraph,Vector routeNodeSet){

 Edge myEdge=helper.getMyEdge();

 Vector incidentEdges=new Vector();

 Edge tempEdge;

 Node n1,n2;

 for(int i=0;i<routeNodeSet.size();i++){

 Vector tempEdgeSet=usableGraph.incidentEdgeSet((Node)routeNodeSet.elementAt(i));

 for(int j=0;j<tempEdgeSet.size();j++){

 tempEdge=(Edge)tempEdgeSet.elementAt(j);

 if(!incidentEdges.contains(tempEdge))

 incidentEdges.addElement(tempEdge);

 n1=tempEdge.getN1();

 n2=tempEdge.getN2();

 if(routeNodeSet.contains(n1) && routeNodeSet.contains(n2))

 incidentEdges.removeElement(tempEdge);

 if(n1==maMr.getCenter().getDummyNode() || n2==maMr.getCenter().getDummyNode())

 incidentEdges.removeElement(tempEdge);

 }

 }

 if(incidentEdges.contains(myEdge))

 incidentEdges.removeElement(myEdge);

 return incidentEdges;

 }

}

209

App.java

package emnet;

import java.awt.Toolkit;

import javax.swing.SwingUtilities;

import javax.swing.UIManager;

import java.awt.Dimension;

public class App {

 boolean packFrame = false;

 /**

 * Construct and show the application.

 */

 public App() {

 Frame frame = new Frame();

 // Validate frames that have preset sizes

 // Pack frames that have useful preferred size info, e.g. from their layout

 if (packFrame) {

 frame.pack();

 }

 else {

 frame.validate();

 }

 // Center the window

 Dimension screenSize = Toolkit.getDefaultToolkit().getScreenSize();

 Dimension frameSize = frame.getSize();

 if (frameSize.height > screenSize.height) {

 frameSize.height = screenSize.height;

 }

 if (frameSize.width > screenSize.width) {

 frameSize.width = screenSize.width;

 }

 frame.setLocation((screenSize.width - frameSize.width) / 2,

 (screenSize.height - frameSize.height) / 2);

 frame.setVisible(true);

 }

 /**

 * Application entry point.

 *

210

App.java

 * @param args String[]

 */

 public static void main(String[] args) {

 SwingUtilities.invokeLater(new Runnable() {

 public void run() {

 try {

 UIManager.setLookAndFeel(UIManager.getSystemLookAndFeelClassName());

 }

 catch (Exception exception) {

 exception.printStackTrace();

 }

 //read in node & edge data

 //add to table

 //picture the map

 //frame.add table & map

 //set supply & demand nodes

 //response in map

 //after press "start" button, new ant & antCommunicationCenter

 //show fast routes, detour routes, mutual assistant routes

 //show evaluation indices

 //input expert acceptable time

 //illustrate radar digram and standardized evaluation value

 new App();

 }

 });

 }

}

211

Frame_AboutBox.java

package emnet;

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

public class Frame_AboutBox

 extends JDialog implements ActionListener {

 JPanel panel1 = new JPanel();

 JPanel panel2 = new JPanel();

 JPanel insetsPanel1 = new JPanel();

 JPanel insetsPanel2 = new JPanel();

 JPanel insetsPanel3 = new JPanel();

 JButton button1 = new JButton();

 JLabel imageLabel = new JLabel();

 JLabel label1 = new JLabel();

 JLabel label2 = new JLabel();

 JLabel label3 = new JLabel();

 JLabel label4 = new JLabel();

 ImageIcon image1 = new ImageIcon();

 BorderLayout borderLayout1 = new BorderLayout();

 BorderLayout borderLayout2 = new BorderLayout();

 FlowLayout flowLayout1 = new FlowLayout();

 GridLayout gridLayout1 = new GridLayout();

 String product = "Earthquake Mitigation Network Design";

 String version = "version 1.0, percy.itt.nctu.tw";

 String copyright = "Copyright (c) 2006";

 String comments = "Decision Making Tool for Network Design";

 public Frame_AboutBox(Frame parent) {

 super(parent);

 try {

 setDefaultCloseOperation(DISPOSE_ON_CLOSE);

 jbInit();

 }

 catch (Exception exception) {

 exception.printStackTrace();

 }

 }

 public Frame_AboutBox() {

212

Frame_AboutBox.java

 this(null);

 }

 /**

 * Component initialization.

 *

 * @throws java.lang.Exception

 */

 private void jbInit() throws Exception {

 image1 = new ImageIcon(emnet.Frame.class.getResource("about.png"));

 imageLabel.setIcon(image1);

 setTitle("About");

 panel1.setLayout(borderLayout1);

 panel2.setLayout(borderLayout2);

 insetsPanel1.setLayout(flowLayout1);

 insetsPanel2.setLayout(flowLayout1);

 insetsPanel2.setBorder(BorderFactory.createEmptyBorder(10, 10, 10, 10));

 gridLayout1.setRows(4);

 gridLayout1.setColumns(1);

 label1.setText(product);

 label2.setText(version);

 label3.setText(copyright);

 label4.setText(comments);

 insetsPanel3.setLayout(gridLayout1);

 insetsPanel3.setBorder(BorderFactory.createEmptyBorder(10, 60, 10, 10));

 button1.setText("OK");

 button1.addActionListener(this);

 insetsPanel2.add(imageLabel, null);

 panel2.add(insetsPanel2, BorderLayout.WEST);

 getContentPane().add(panel1, null);

 insetsPanel3.add(label1, null);

 insetsPanel3.add(label2, null);

 insetsPanel3.add(label3, null);

 insetsPanel3.add(label4, null);

 panel2.add(insetsPanel3, BorderLayout.CENTER);

 insetsPanel1.add(button1, null);

 panel1.add(insetsPanel1, BorderLayout.SOUTH);

 panel1.add(panel2, BorderLayout.NORTH);

 setResizable(true);

 }

 /**

213

Frame_AboutBox.java

 * Close the dialog on a button event.

 *

 * @param actionEvent ActionEvent

 */

 public void actionPerformed(ActionEvent actionEvent) {

 if (actionEvent.getSource() == button1) {

 dispose();

 }

 }

}

214

Frame_TermBox.java

package emnet;

import javax.swing.JDialog;

import java.awt.GridLayout;

import javax.swing.JLabel;

import java.awt.Dimension;

public class Frame_TermBox extends JDialog{

 JLabel

 label_eva=new JLabel(" E: Overall Evaluation"),

 label_ld=new JLabel(" LD: Longest Detour Cost"),

 label_amac=new JLabel(" AMAC: Average Mutal Assistance Cost"),

 label_nc=new JLabel(" NC: Network Cost"),

 label_atc=new JLabel(" ATC: Average Travel Cost"),

 label_mtc=new JLabel(" MTC: Maximum Travel Cost");

 public Frame_TermBox(Frame parent){

 super(parent);

 try {

 setDefaultCloseOperation(DISPOSE_ON_CLOSE);

 jbInit();

 }

 catch (Exception exception) {

 exception.printStackTrace();

 }

 }

 void jbInit(){

 Dimension d=new Dimension(250,25);

 this.setTitle("Terminology");

 this.getContentPane().setLayout(new GridLayout(6,1,5,5));

 label_eva.setPreferredSize(d);

 label_ld.setPreferredSize(d);

 label_amac.setPreferredSize(d);

 label_nc.setPreferredSize(d);

 label_atc.setPreferredSize(d);

 label_mtc.setPreferredSize(d);

 this.getContentPane().add(label_atc);

 this.getContentPane().add(label_mtc);

215

 this.getContentPane().add(label_ld);

 this.getContentPane().add(label_amac);

 this.getContentPane().add(label_nc);

 this.getContentPane().add(label_eva);

 this.setResizable(false);

 }

}

216

Frame.java

package emnet;

import java.awt.*;

import java.awt.event.*;

import javax.swing.JFrame;

import javax.swing.JPanel;

import javax.swing.JMenuBar;

import javax.swing.JMenu;

import javax.swing.JMenuItem;

import javax.swing.JLabel;

import emnet.gui.Map;

import emnet.graph.Graph;

import java.util.Vector;

import java.io.IOException;

import emnet.io.IOGraph;

import javax.swing.JTextField;

import javax.swing.JButton;

import javax.swing.SwingConstants;

import javax.swing.JTabbedPane;

import javax.swing.JRadioButton;

import javax.swing.ButtonGroup;

import javax.swing.JSplitPane;

import javax.swing.table.DefaultTableModel;

import javax.swing.JTable;

import javax.swing.JScrollPane;

import emnet.graph.Node;

import emnet.graph.Edge;

import emnet.thread.Center;

import java.text.DecimalFormat;

public class Frame

 extends JFrame {

 JPanel contentPane;

 BorderLayout borderLayout1 = new BorderLayout();

 JMenuBar jMenuBar1 = new JMenuBar();

 JMenu jMenuFile = new JMenu();

 JMenuItem jMenuFileExit = new JMenuItem();

 JMenu jMenuHelp = new JMenu();

 JMenuItem jMenuHelpAbout = new JMenuItem();

 JMenuItem jMenuHelpTerm=new JMenuItem();

217

Frame.java

 JPanel panel_gridbag=new JPanel(new GridLayout(4,1,2,2));

 JPanel panel_setting=new JPanel(new BorderLayout());

 JLabel label_dir=new JLabel("common dir: ");

 JTextField txt_dir=new JTextField();

 JLabel label_node=new JLabel("node file: ");

 JTextField txt_node=new JTextField();

 JLabel label_edge=new JLabel("edge file: ");

 JTextField txt_edge=new JTextField();

 JLabel label_dataIn=new JLabel("2econ?");

 DefaultTableModel nodeTableModel,edgeTableModel;

 JTable

 nodeTable=new JTable(nodeTableModel),

 edgeTable=new JTable(edgeTableModel);

 JLabel seperator=new JLabel("[no graph]",SwingConstants.CENTER);

 JRadioButton radio_supply=new JRadioButton("supply");

 JRadioButton radio_demand=new JRadioButton("demand");

 JRadioButton radio_neutral=new JRadioButton("neutral");

 ButtonGroup radioGroup=new ButtonGroup();

 JButton button_run=new JButton("run");

 JTextField

 txt_atc_low=new JTextField(),txt_mtc_low=new JTextField(),

 txt_ld_low=new JTextField(),txt_amac_low=new JTextField(),

 txt_nc_low=new JTextField(),

 txt_atc_up=new JTextField(),txt_mtc_up=new JTextField(),

 txt_ld_up=new JTextField(),txt_amac_up=new JTextField(),

 txt_nc_up=new JTextField();

 JLabel

 atc_output=new JLabel("0.0 "),mtc_output=new JLabel("0.0 "),

 ld_output=new JLabel("0.0 "),amac_output=new JLabel("0.0 "),

 nc_output=new JLabel("0.0 "),e_output=new JLabel("[pls fill \"expert\" tab] ");

 JLabel save_dir=new JLabel();

 Map map=new Map();

218

Frame.java

 Graph graph;

 Center center;

 DecimalFormat myFormatter=new DecimalFormat("###,###.##");

 public Frame() {

 try {

 setDefaultCloseOperation(EXIT_ON_CLOSE);

 jbInit();

 }

 catch (Exception exception) {

 exception.printStackTrace();

 }

 }

 //Component initialization

 private void jbInit() throws Exception {

 contentPane = (JPanel) getContentPane();

 contentPane.setLayout(borderLayout1);

 setSize(new Dimension(600, 700));

 setTitle(":: EMNet 2006 :: ");

 jMenuFile.setText("File");

 jMenuFileExit.setText("Exit");

 jMenuFileExit.addActionListener(new Frame_jMenuFileExit_ActionAdapter(this));

 jMenuHelp.setText("Help");

 jMenuHelpAbout.setText("About");

 jMenuHelpAbout.addActionListener(new Frame_jMenuHelpAbout_ActionAdapter(this));

 jMenuHelpTerm.setText("Term");

 jMenuHelpTerm.addActionListener(new Frame_jMenuHelpTerm_ActionAdapter(this));

 jMenuBar1.add(jMenuFile);

 jMenuFile.add(jMenuFileExit);

 jMenuBar1.add(jMenuHelp);

 jMenuHelp.add(jMenuHelpAbout);

 jMenuHelp.add(jMenuHelpTerm);

 setJMenuBar(jMenuBar1);

 Dimension big=new Dimension(146,20),big2=new Dimension(185,20),med=new

Dimension(100,20),small=new Dimension(65,20),xs=new Dimension(30,20);

 JPanel panel_bottom=new JPanel(new BorderLayout());

 JPanel panel_left=new JPanel(new BorderLayout());

 panel_gridbag.setPreferredSize(new Dimension(275,120));

219

Frame.java

 label_dir.setHorizontalAlignment(SwingConstants.RIGHT);

 label_dir.setPreferredSize(med);

 txt_dir.setPreferredSize(big2);

 txt_dir.setText("/Users/percyhou/Desktop/graphFiles");

 JPanel gridBag1=new JPanel(new GridBagLayout());

 gridBag1.add(label_dir);

 gridBag1.add(txt_dir);

 label_node.setHorizontalAlignment(SwingConstants.RIGHT);

 label_node.setPreferredSize(med);

 txt_node.setPreferredSize(big2);

 txt_node.setText("node_grid.txt");

 JPanel gridBag2=new JPanel(new GridBagLayout());

 gridBag2.add(label_node);

 gridBag2.add(txt_node);

 label_edge.setHorizontalAlignment(SwingConstants.RIGHT);

 label_edge.setPreferredSize(med);

 txt_edge.setPreferredSize(big2);

 txt_edge.setText("edge_grid.txt");

 JPanel gridBag3=new JPanel(new GridBagLayout());

 gridBag3.add(label_edge);

 gridBag3.add(txt_edge);

 label_dataIn.setHorizontalAlignment(SwingConstants.RIGHT);

 label_dataIn.setPreferredSize(med);

 JButton button_import=new JButton("import");

 button_import.addActionListener(new Frame_button_import_ActionAdapter(this));

 JPanel panel_import=new JPanel(new BorderLayout());

 panel_import.add(label_dataIn,BorderLayout.WEST);

 panel_import.add(button_import,BorderLayout.EAST);

 panel_gridbag.add(gridBag1);

 panel_gridbag.add(gridBag2);

 panel_gridbag.add(gridBag3);

 panel_gridbag.add(panel_import);

 panel_left.add(panel_gridbag,BorderLayout.NORTH);

 JTabbedPane jtabbedPane=new JTabbedPane();

220

Frame.java

 jtabbedPane.setPreferredSize(new Dimension(300,300));

 JScrollPane tab_node=new JScrollPane(nodeTable);

 JScrollPane tab_edge=new JScrollPane(edgeTable);

 jtabbedPane.add(tab_node,"node");

 jtabbedPane.add(tab_edge,"edge");

 panel_left.add(jtabbedPane,BorderLayout.CENTER);

 panel_bottom.add(panel_left,BorderLayout.WEST);

 JPanel panel_right=new JPanel(new BorderLayout());

 //radio buttons: supply, demand, neutral

 panel_setting.setPreferredSize(new Dimension(300,120));

 radio_supply.addActionListener(new Frame_radio_ActionAdapter(this));

 radio_demand.addActionListener(new Frame_radio_ActionAdapter(this));

 radio_neutral.addActionListener(new Frame_radio_ActionAdapter(this));

 button_run.addActionListener(new Frame_button_run_ActionAdapter(this));

 JPanel panel_radio=new JPanel(new GridBagLayout());

 radioGroup.add(radio_supply);

 radioGroup.add(radio_demand);

 radioGroup.add(radio_neutral);

 panel_radio.add(radio_supply);

 panel_radio.add(radio_demand);

 panel_radio.add(radio_neutral);

 panel_radio.add(button_run);

 panel_setting.add(panel_radio,BorderLayout.NORTH);

 //expert bounds

 JTabbedPane jtabbedPane_right=new JTabbedPane();

 jtabbedPane_right.setPreferredSize(new Dimension(300,200));

 JPanel tab_index=new JPanel(new BorderLayout());

 JPanel panel_index=new JPanel(new GridLayout(9,1,2,2));

 JPanel tab_result=new JPanel(new GridLayout(9,1,2,2));

 tab_index.add(panel_index,BorderLayout.NORTH);

 jtabbedPane_right.add(tab_result,"result");

 jtabbedPane_right.add(tab_index,"expert");

 JPanel panel_expert0=new JPanel(new BorderLayout());

 JPanel panel_expert1=new JPanel(new GridBagLayout());

221

Frame.java

 JPanel panel_expert2=new JPanel(new GridBagLayout());

 JPanel panel_expert3=new JPanel(new GridBagLayout());

 JPanel panel_expert4=new JPanel(new GridBagLayout());

 JPanel panel_expert5=new JPanel(new GridBagLayout());

 JPanel panel_expert6=new JPanel(new BorderLayout());

 JLabel

 label_mtc=new JLabel(" MTC: ",SwingConstants.RIGHT),

 label_atc=new JLabel(" ATC: ",SwingConstants.RIGHT),

 label_ld=new JLabel(" LD: ",SwingConstants.RIGHT),

 label_amac=new JLabel(" AMAC: ",SwingConstants.RIGHT),

 label_nc=new JLabel(" NC: ",SwingConstants.RIGHT);

 JLabel

 label_atc_unit=new JLabel(" m",SwingConstants.LEFT),

 label_mtc_unit=new JLabel(" m",SwingConstants.LEFT),

 label_ld_unit=new JLabel(" m",SwingConstants.LEFT),

 label_amac_unit=new JLabel(" m",SwingConstants.LEFT),

 label_nc_unit=new JLabel(" m",SwingConstants.LEFT);

 label_atc.setPreferredSize(small);

 label_mtc.setPreferredSize(small);

 label_ld.setPreferredSize(small);

 label_amac.setPreferredSize(small);

 label_nc.setPreferredSize(small);

 txt_atc_low.setPreferredSize(small);

 txt_mtc_low.setPreferredSize(small);

 txt_ld_low.setPreferredSize(small);

 txt_amac_low.setPreferredSize(small);

 txt_nc_low.setPreferredSize(small);

 txt_atc_up.setPreferredSize(small);

 txt_mtc_up.setPreferredSize(small);

 txt_ld_up.setPreferredSize(small);

 txt_amac_up.setPreferredSize(small);

 txt_nc_up.setPreferredSize(small);

 label_atc_unit.setPreferredSize(xs);

 label_mtc_unit.setPreferredSize(xs);

 label_ld_unit.setPreferredSize(xs);

 label_amac_unit.setPreferredSize(xs);

222

Frame.java

 label_nc_unit.setPreferredSize(xs);

 JButton button_set=new JButton("set");

 button_set.addActionListener(new Frame_button_set_ActionAdapter(this));

 panel_expert0.add(new JLabel(" acceptable range:"),BorderLayout.WEST);

 panel_expert1.add(label_atc);

 panel_expert1.add(txt_atc_low);

 panel_expert1.add(new JLabel(" ~ "));

 panel_expert1.add(txt_atc_up);

 panel_expert2.add(label_mtc);

 panel_expert2.add(txt_mtc_low);

 panel_expert2.add(new JLabel(" ~ "));

 panel_expert2.add(txt_mtc_up);

 panel_expert3.add(label_ld);

 panel_expert3.add(txt_ld_low);

 panel_expert3.add(new JLabel(" ~ "));

 panel_expert3.add(txt_ld_up);

 panel_expert4.add(label_amac);

 panel_expert4.add(txt_amac_low);

 panel_expert4.add(new JLabel(" ~ "));

 panel_expert4.add(txt_amac_up);

 panel_expert5.add(label_nc);

 panel_expert5.add(txt_nc_low);

 panel_expert5.add(new JLabel(" ~ "));

 panel_expert5.add(txt_nc_up);

 panel_expert6.add(button_set,BorderLayout.EAST);

 panel_index.add(panel_expert0);

 panel_index.add(panel_expert1);

 panel_index.add(panel_expert2);

 panel_index.add(panel_expert3);

 panel_index.add(panel_expert4);

 panel_index.add(panel_expert5);

 panel_index.add(panel_expert6);

223

Frame.java

 JTextField txtField=new JTextField("[indices]",15);

 txtField.setBackground(Color.WHITE);

 txtField.setEditable(false);

 JPanel panel_output0=new JPanel(new GridBagLayout());

 JPanel panel_output3=new JPanel(new GridBagLayout());

// JPanel panel_output29=new JPanel(new GridBagLayout());

 JPanel panel_output4=new JPanel(new GridBagLayout());

// JPanel panel_output49=new JPanel(new GridBagLayout());

 JPanel panel_output5=new JPanel(new GridBagLayout());

 JPanel panel_output1=new JPanel(new GridBagLayout());

 JPanel panel_output2=new JPanel(new GridBagLayout());

 JPanel panel_output6=new JPanel(new BorderLayout());

 JLabel

 label_atc1=new JLabel(" ATC: ",SwingConstants.RIGHT),

 label_mtc1=new JLabel(" MTC: ",SwingConstants.RIGHT),

 label_ld1=new JLabel(" LD: ",SwingConstants.RIGHT),

 label_amac1=new JLabel(" AMAC: ",SwingConstants.RIGHT),

 label_nc1=new JLabel(" NC: ",SwingConstants.RIGHT),

 label_e=new JLabel(" E: ",SwingConstants.RIGHT);

 JLabel

 label_atc_unit1=new JLabel(" ",SwingConstants.LEFT),

 label_mtc_unit1=new JLabel(" ",SwingConstants.LEFT),

 label_ld_unit1=new JLabel(" ",SwingConstants.LEFT),

 label_amac_unit1=new JLabel(" ",SwingConstants.LEFT),

 label_nc_unit1=new JLabel(" ",SwingConstants.LEFT),

 label_e_unit1=new JLabel();

 label_atc1.setPreferredSize(small);

 label_mtc1.setPreferredSize(small);

 label_ld1.setPreferredSize(small);

 label_amac1.setPreferredSize(small);

 label_nc1.setPreferredSize(small);

 label_e.setPreferredSize(small);

 atc_output.setPreferredSize(big);

 mtc_output.setPreferredSize(big);

 ld_output.setPreferredSize(big);

 amac_output.setPreferredSize(big);

 nc_output.setPreferredSize(big);

224

Frame.java

 e_output.setPreferredSize(big);

 atc_output.setHorizontalAlignment(SwingConstants.RIGHT);

 mtc_output.setHorizontalAlignment(SwingConstants.RIGHT);

 ld_output.setHorizontalAlignment(SwingConstants.RIGHT);

 amac_output.setHorizontalAlignment(SwingConstants.RIGHT);

 nc_output.setHorizontalAlignment(SwingConstants.RIGHT);

 e_output.setHorizontalAlignment(SwingConstants.RIGHT);

 label_atc_unit1.setPreferredSize(xs);

 label_mtc_unit1.setPreferredSize(xs);

 label_ld_unit1.setPreferredSize(xs);

 label_amac_unit1.setPreferredSize(xs);

 label_nc_unit1.setPreferredSize(xs);

 label_e_unit1.setPreferredSize(xs);

 panel_output0.add(label_e);

 panel_output0.add(e_output);

 panel_output0.add(label_e_unit1);

 panel_output1.add(label_atc1);

 panel_output1.add(atc_output);

 panel_output1.add(label_atc_unit1);

 panel_output2.add(label_mtc1);

 panel_output2.add(mtc_output);

 panel_output2.add(label_mtc_unit1);

 panel_output3.add(label_ld1);

 panel_output3.add(ld_output);

 panel_output3.add(label_ld_unit1);

 panel_output4.add(label_amac1);

 panel_output4.add(amac_output);

 panel_output4.add(label_amac_unit1);

 panel_output5.add(label_nc1);

 panel_output5.add(nc_output);

 panel_output5.add(label_nc_unit1);

 save_dir.setPreferredSize(new Dimension(200,20));

 JButton button_save=new JButton("save");

225

Frame.java

// button_save.addActionListener(this);

 panel_output6.add(save_dir,BorderLayout.WEST);

 panel_output6.add(button_save,BorderLayout.EAST);

 tab_result.add(panel_output1);

 tab_result.add(panel_output2);

 tab_result.add(panel_output3);

 tab_result.add(panel_output4);

 tab_result.add(panel_output5);

 tab_result.add(panel_output0);

 tab_result.add(panel_output6);

 panel_setting.add(jtabbedPane_right,BorderLayout.CENTER);

 panel_right.add(panel_setting,BorderLayout.EAST);

 panel_bottom.add(panel_right,BorderLayout.CENTER);

 panel_bottom.add(seperator,BorderLayout.NORTH);

 map.sentFrame(this);

 JSplitPane sp=new JSplitPane(JSplitPane.VERTICAL_SPLIT,map,panel_bottom);

 sp.setDividerSize(8);

 sp.setDividerLocation(270);

 sp.setResizeWeight(0.5);

 sp.setContinuousLayout(true);

 sp.setOneTouchExpandable(true);

 contentPane.add(sp,BorderLayout.CENTER);

 }

 public void setATC(double atc){

 atc_output.setText(myFormatter.format(atc)+" ");

 txt_atc_low.setText(myFormatter.format(atc*0.8));

 txt_atc_up.setText(myFormatter.format(atc*1.2));

 }

 public void setMTC(double mtc){

 mtc_output.setText(myFormatter.format(mtc)+" ");

 txt_mtc_low.setText(myFormatter.format(mtc*0.8));

 txt_mtc_up.setText(myFormatter.format(mtc*1.2));

 }

 public void setLD(double ld){

226

Frame.java

 ld_output.setText(myFormatter.format(ld)+" ");

 txt_ld_low.setText(myFormatter.format(ld*0.8));

 txt_ld_up.setText(myFormatter.format(ld*1.2));

 }

 public void setAMAC(double amac){

 amac_output.setText(myFormatter.format(amac)+" ");

 txt_amac_low.setText(myFormatter.format(amac*0.8));

 txt_amac_up.setText(myFormatter.format(amac*1.2));

 }

 public void setNC(double nc){

 nc_output.setText(myFormatter.format(nc)+" ");

 txt_nc_low.setText(myFormatter.format(nc*0.8));

 txt_nc_up.setText(myFormatter.format(nc*1.2));

 }

 public void setE(double e){

 e_output.setText(myFormatter.format(e)+" ");

 }

 void jMenuFileExit_actionPerformed(ActionEvent actionEvent) {

 System.exit(0);

 }

 void jMenuHelpAbout_actionPerformed(ActionEvent actionEvent) {

 Frame_AboutBox dlg = new Frame_AboutBox(this);

 Dimension dlgSize = dlg.getPreferredSize();

 Dimension frmSize = getSize();

 Point loc = getLocation();

 dlg.setLocation((frmSize.width - dlgSize.width) / 2 + loc.x,

 (frmSize.height - dlgSize.height) / 2 + loc.y);

 dlg.setModal(true);

 dlg.pack();

 dlg.show();

 }

 void jMenuHelpTerm_actionPerformed(ActionEvent actionEvent) {

 Frame_TermBox dlg = new Frame_TermBox(this);

 Dimension dlgSize = dlg.getPreferredSize();

 Dimension frmSize = getSize();

 Point loc = getLocation();

227

Frame.java

 dlg.setLocation((frmSize.width - dlgSize.width) / 2 + loc.x,

 (frmSize.height - dlgSize.height) / 2 + loc.y);

 dlg.setModal(true);

 dlg.pack();

 dlg.show();

 }

 void button_import_actionPerformed(ActionEvent actionEvent){

 setATC(0.0);

 setMTC(0.0);

 setLD(0.0);

 setAMAC(0.0);

 setNC(0.0);

 setE(0.0);

 //read in files: node.txt & edge.txt, assign to field argument

 try {

 IOGraph ioGraph=new IOGraph(txt_dir.getText(),txt_node.getText(),txt_edge.getText());

 this.graph=ioGraph.getGraph();

 Vector nodeSet=graph.getNodeSet();

 Vector edgeSet=graph.getEdgeSet();

 Node tempNode;

 boolean econ=true;

 for(int i=0;i<nodeSet.size();i++){

 tempNode=(Node)nodeSet.elementAt(i);

 if(graph.incidentEdgeSet(tempNode).size()<2){

 econ=false;

 }

 }

 if(econ){

 label_dataIn.setText("2econ!");

 }else{

 label_dataIn.setText("not 2econ!");

 }

 }

 catch (IOException ex) {

 System.out.println("Data Read-In Problem!");

 ex.printStackTrace();

 }

228

Frame.java

 save_dir.setText("dir: "+txt_dir.getText());

 map.setGraph(graph);

 this.seperator.setText("[graph components: "+graph.getNodeSet().size()+" nodes,

"+graph.getEdgeSet().size()+" edges]");

 this.fleshTable(graph);

 this.repaint();

 }

 void radio_actionPerformed(ActionEvent actionEvent){

 map.nodeSetting(radio_supply.isSelected(),radio_demand.isSelected(),radio_neutral.isSelected());

 this.repaint();

 }

 void button_run_actionPerformed(ActionEvent actionEvent){

 center=new Center(graph,this);

 center.start();

 this.repaint();

 }

 void button_set_actionPerformed(ActionEvent actionEvent){

 double e=1.0;

 double atc=new Double(atc_output.getText()).doubleValue();

 double low_atc=new Double(txt_atc_low.getText()).doubleValue();

 double up_atc=new Double(txt_atc_up.getText()).doubleValue();

 double std_atc=standardN(atc,low_atc,up_atc);

 double mtc=new Double(mtc_output.getText()).doubleValue();

 double low_mtc=new Double(txt_mtc_low.getText()).doubleValue();

 double up_mtc=new Double(txt_mtc_up.getText()).doubleValue();

 double std_mtc=standardN(mtc,low_mtc,up_mtc);

 double amac=new Double(amac_output.getText()).doubleValue();

 double low_amac=new Double(txt_amac_low.getText()).doubleValue();

 double up_amac=new Double(txt_amac_up.getText()).doubleValue();

 double std_amac=standardN(amac,low_amac,up_amac);

 double ld=new Double(ld_output.getText()).doubleValue();

229

Frame.java

 double low_ld=new Double(txt_ld_low.getText()).doubleValue();

 double up_ld=new Double(txt_ld_up.getText()).doubleValue();

 double std_ld=standardN(ld,low_ld,up_ld);

 double nc=new Double(nc_output.getText()).doubleValue();

 double low_nc=new Double(txt_nc_low.getText()).doubleValue();

 double up_nc=new Double(txt_nc_up.getText()).doubleValue();

 double std_nc=standardP(nc,low_nc,up_nc);

 e=(1.0/3.0)*((std_atc + std_mtc)/2.0 + (std_ld + std_amac)/2.0 + std_nc);

 this.setE(e);

 }

 //positive

 double standardP(double x,double low,double up){

 if(up<=x){

 return 1.0;

 }else if(low<=x && x<up){

 return (x-low)/(up-low);

 }else{

 return 0.0;

 }

 }

 //negative

 double standardN(double x,double low,double up){

 if(x<low){

 return 1.0;

 }else if(low<=x && x<up){

 return (low-x)/(low-up);

 }else{

 return 0.0;

 }

 }

 public void setSeperator(Graph graph){

 int nodeNum=0,edgeNum=0;

 Vector nodeSet=graph.getNodeSet();

 Vector edgeSet=graph.getEdgeSet();

230

Frame.java

 Node tempNode;

 for(int i=0;i<nodeSet.size();i++){

 tempNode=(Node)nodeSet.elementAt(i);

 if(!tempNode.isDummy())

 nodeNum++;

 }

 Edge tempEdge;

 for(int i=0;i<edgeSet.size();i++){

 tempEdge=(Edge)edgeSet.elementAt(i);

 if(!tempEdge.isDummyEdge())

 edgeNum++;

 }

 seperator.setText("[graph components: "+nodeNum+" nodes, "+edgeNum+" edges | supply

"+graph.getSupplyNodeNum()+" , demand "+graph.getDemandNodeNum()+"]");

 this.repaint();

 }

 public Map getMap(){

 return this.map;

 }

 void fleshTable(Graph graph){

 Vector nodeSet=graph.getNodeSet(),edgeSet=graph.getEdgeSet();

 Object nodeData[]=new Object[3];

 DefaultTableModel nodeTableModel=new DefaultTableModel();

 nodeTableModel.addColumn("label");

 nodeTableModel.addColumn("x");

 nodeTableModel.addColumn("y");

 for(int i=0;i<nodeSet.size();i++){

 Node node=(Node)nodeSet.elementAt(i);

 nodeData[0]=""+node.getLabel();

 nodeData[1]=""+node.getX();

 nodeData[2]=""+node.getY();

 nodeTableModel.addRow(nodeData);

 }

 this.nodeTable.setModel(nodeTableModel);

 Object edgeData[]=new Object[3];

 DefaultTableModel edgeTableModel=new DefaultTableModel();

 edgeTableModel.addColumn("label");

231

Frame.java

 edgeTableModel.addColumn("n1");

 edgeTableModel.addColumn("n2");

 for(int i=0;i<edgeSet.size();i++){

 Edge edge=(Edge)edgeSet.elementAt(i);

 edgeData[0]=""+edge.getLabel();

 edgeData[1]=""+edge.getN1().getLabel();

 edgeData[2]=""+edge.getN2().getLabel();

 edgeTableModel.addRow(edgeData);

 }

 this.edgeTable.setModel(edgeTableModel);

 }

}

class Frame_jMenuFileExit_ActionAdapter

 implements ActionListener {

 Frame adaptee;

 Frame_jMenuFileExit_ActionAdapter(Frame adaptee) {

 this.adaptee = adaptee;

 }

 public void actionPerformed(ActionEvent actionEvent) {

 adaptee.jMenuFileExit_actionPerformed(actionEvent);

 }

}

class Frame_jMenuHelpAbout_ActionAdapter

 implements ActionListener {

 Frame adaptee;

 Frame_jMenuHelpAbout_ActionAdapter(Frame adaptee) {

 this.adaptee = adaptee;

 }

 public void actionPerformed(ActionEvent actionEvent) {

 adaptee.jMenuHelpAbout_actionPerformed(actionEvent);

 }

}

class Frame_jMenuHelpTerm_ActionAdapter

232

Frame.java

 implements ActionListener {

 Frame adaptee;

 Frame_jMenuHelpTerm_ActionAdapter(Frame adaptee) {

 this.adaptee = adaptee;

 }

 public void actionPerformed(ActionEvent actionEvent) {

 adaptee.jMenuHelpTerm_actionPerformed(actionEvent);

 }

}

class Frame_button_import_ActionAdapter implements ActionListener{

 Frame adaptee;

 Frame_button_import_ActionAdapter(Frame adaptee){

 this.adaptee=adaptee;

 }

 public void actionPerformed(ActionEvent actionEvent){

 adaptee.button_import_actionPerformed(actionEvent);

 }

}

class Frame_radio_ActionAdapter implements ActionListener{

 Frame adaptee;

 Frame_radio_ActionAdapter(Frame adaptee){

 this.adaptee=adaptee;

 }

 public void actionPerformed(ActionEvent actionEvent){

 adaptee.radio_actionPerformed(actionEvent);

 }

}

class Frame_button_run_ActionAdapter implements ActionListener{

 Frame adaptee;

 Frame_button_run_ActionAdapter(Frame adaptee){

 this.adaptee=adaptee;

 }

233

Frame.java

 public void actionPerformed(ActionEvent actionEvent){

 adaptee.button_run_actionPerformed(actionEvent);

 }

}

class Frame_button_set_ActionAdapter implements ActionListener{

 Frame adaptee;

 Frame_button_set_ActionAdapter(Frame adaptee){

 this.adaptee=adaptee;

 }

 public void actionPerformed(ActionEvent actionEvent){

 adaptee.button_set_actionPerformed(actionEvent);

 }

}

234

235

個人簡歷

侯鵬曦

交通大學交通運輸研究所 博士 （90.09~95.12）
交通大學交通運輸研究所 碩士 （88.09~90.06）
台灣大學土木工程學系 學士 （84.09~88.06）

A. 期刊論文

1. 侯鵬曦、徐淵靜，「Survivable network design model for earthquake disaster」，中國土木水利工
程學刊（已接受）。

2. Hsu, Y.C. and Hou, P.H. “Finding dominant links of emergency network with respect to
earthquake disaster”, Journal of the Eastern Asia Society for Transportation Studies, 6, pp.
77-90, 2005.

3. 徐淵靜、侯鵬曦，「高雄市防災路網研擬之研究—地理資訊系統之應用」，中華道路，第四十二卷，
第二三四期，頁10-20，民國92年。

B. 研討會論文

4. Hou, P.H. “Network planning for earthquake disaster in Kaohsiung City”, 2006 International
Conference on Deep Ocean Water and Industrial Development, Kaohsiung, Taiwan, 2006.

5. Hou, P.H., Lien, Barry C.S. and Chen, Johnny J.Y. “ITS-based road network application:
Finding shortest time path under traffic signal system”, The 13th World Congress & Exhibition
on Intelligent Transport Systems and Services, London, England, 2006.

6. Lien, Barry C.S., Chen, Johnny J.Y. and Hou, P.H. “Advanced timetable query system in
Taiwan railway transportation”, The 13th World Congress & Exhibition on Intelligent Transport
Systems and Services, London, England, 2006.

7. Lien, Barry C.S., Chen, Johnny J.Y. and Hou, P.H. “Implementation of dynamic navigation
system with real-time traffic events using digital audio broadcasting (DAB) as the
communication system”, The 13th World Congress & Exhibition on Intelligent Transport
Systems and Services, London, England, 2006.

8. 侯鵬曦，「以虛擬身分構築線上購物之安全環境」，2006電子商務與數位生活研討會，台北大學三
峽校區，民國95年。

9. 侯鵬曦，「數位生活之險境—數位落差形成原因之初探」，2006電子商務與數位生活研討會，台北
大學三峽校區，民國95年。

10. Hou, H.S. and Hou, P.H. “Establishment of Taiwan Hub Port”, Proceedings of the 9th HKSTS
Conference, Hong Kong, China, 2004.

11. Hou, H.S. and Hou, P.H. “Integrated Development Project of Ports in Taiwan”, Proceedings of

236

the 9th HKSTS Conference, Hong Kong, China, 2004.

12. 徐淵靜、侯鵬曦，「路網配置之防震災品質評估」，第十九屆中華民國運輸研討會，台南長榮大學，
民國93年。

13. Hsu, Y.C. and Hou, P.H. “Rescue network design with respect to earthquake”, Proceedings of
International Symposium on City Planning 2004, Sapporo, Japan, 2004.

14. Hsu, Y.C., Hsia, L.M., Hsu, M.C. and Hou, P.H. “ Urban location characteristics concerned by
enterprises: A case in Taipei”, Proceedings of International Symposium on City Planning 2004,
Sapporo, Japan, 2004.

15. 徐淵靜、侯鵬曦，「以消費者導向構建電子商店之付費系統」，2004海峽兩岸智慧型運輸系統論文
研討會論文集，中國哈爾濱，民國93年。

16. Hou, H.S. and Hou, P.H. “Integrated Planning of Kaohsiung Port”, Proceedings of PACON
2004, Hawaii, USA, 2004.

17. 徐淵靜、侯鵬曦，「防災路網模式構建」，第十八屆中華民國運輸研討會論文集，新竹交通大學，
民國92年。

18. Hou, H.S. and Hou, P.H. “Environmental impact of redevelopment of port of Keelung”,
Proceedings of PACON 2003, Kaohsiung, Taiwan, 2003.

19. Hou, H.S. and Hou, P.H. “Transportation policy: Case study of Kaohsiung city, Proceedings of
the 5th EAST, Fukuoka, Japan, 2003.

20. Hou, H.S. and Hou, P.H. “Offshore zone reclamation: Kaohsiung South Star Plan, Proceedings
of PACON 2002, Chiba, Japan, 2002.

C. 研究報告及其他

21. 高齡社會的來臨：為2025年的台灣社會規劃之整合研究「高齡社會之交通與運輸」，國科會專題
研究，民國95年。

22. 市區道路防災服務水準之評估II，國科會專題研究，民國94年。

23. 防災路網服務水準之評估模式I，國科會專題研究，民國93年。

24. 都市防災道路系統之研究，國科會專題研究，民國91年。

25. 台北縣交通空氣污染改善減量成效評估計畫，北縣環保局，民國91年。

26. 機場噪音輔助執行項目分析評估，空軍總部，民國91年。

