W%k= BN

GraphAlgorithm.java

package emnet.algorithm;

import java.util.Vector;

import emnet.graph.Graph;
import emnet.graph.Node;
import emnet.graph.Edge;
import java.util.lterator;

import emnet.thread.Center;
import emnet.thread.Roamer;
import emnet.thread.Detourist;

import emnet.thread.DetourManager;

public class GraphAlgorithm {
public GraphAlgorithm() {

try {
jblnit();

}

catch (Exception ex) {

ex.printStackTrace();

public static Graph copyGraph(Graph oldGraph){
Vector oldNodeSet,oldEdgeSet;

oldNodeSet=o0ldGraph.getNodeSet();
oldEdgeSet=oldGraph.getEdgeSet();

return copyGraph(oldNodeSet,oldEdgeSet);

public static Graph copyGraph(Vector oldNodeSet,Vector oldEdgeSet){
Vector newNodeSet=new Vector(),newEdgeSet=new Vector();
for(int i=0;i<oldNodeSet.size();i++){

/I new node setting:
/1 1. check label

101

GraphAlgorithm.java

/I 2. check supply/demand
/I 3. check visit
Node tempOldNode=(Node)oldNodeSet.elementAt(i);

Node tempNewNode=new Node(i);

if(tempOIldNode.isSupply(){
tempNewNode.setSupply();
lelse if(tempOldNode.isDemand())

tempNewNode.setDemand();

if(tempOldNode.isVisited()){

tempNewNode.visit();

newNodeSet.addElement(tempNewNode);

for(int i=0;i<oldEdgeSet.size();i++)

/I new edge setting:

/1 1. check label

/1 2. check n1/n2

Il 3. set weight

/I 4. set previous node

/1'5. check fast

/1'6. check detour

11'7. check visit

Edge tempOIldEdge=(Edge)oldEdgeSet.elementAt(i);

int n1=tempOIdEdge.getN1Label(),n2=tempOIdEdge.getN2Label();

double weight=tempOIdEdge.getWeight();

Edge tempNewEdge=new
Edge(i,(Node)newNodeSet.elementAt(n1),(Node)newNodeSet.elementAt(n2),weight);

if(tempOIdEdge.isFastEdge() X
tempNewEdge.setFastEdge();

if(tempOIdEdge.isDetourEdge()){
tempNewEdge.setDetourEdge();

102

GraphAlgorithm.java

if(tempOIdEdge.isVisited(){
tempNewEdge.visit();

newEdgeSet.addElement(tempNewEdge);
}

return new Graph(newNodeSet,newEdgeSet);

public static Graph getSubtreeWithCertainNode(Graph tree,Node certainNode,Edge ruinedEdge){

Vector nodeSet=new Vector(),edgeSet=new Vector();
Vector currAdjacentNodes,currincidentEdges;

Node currNode=certainNode;

int maxLabel=0;

Vector tempTreeNodeSet=tree.getNodeSet();

Node tempTreeNode;

for(int i=0;i<tempTreeNodeSet.size();i++){
tempTreeNode=(Node)tempTreeNodeSet.elementAt(i);
if(tempTreeNode.getLabel()>maxLabel)

maxLabel=tempTreeNode.getLabel();

Vector preNodes=new Vector(maxLabel+1);

for(int i=0;i<(maxLabel+1);i++)
preNodes.addElement(null);

boolean finish=false;

do{
currAdjacentNodes=tree.adjacentNodeSet(currNode);
currincidentEdges=tree.incidentEdgeSet(currNode);
if(currincidentEdges.contains(ruinedEdge))

currincidentEdges.removeElement(ruinedEdge);

currAdjacentNodes.removeElement(ruinedEdge.theOtherNode(currNode));

Iterator itrAdjacentNodes=currAdjacentNodes.iterator();

if(lnodeSet.contains(currNode))

103

GraphAlgorithm.java

nodeSet.addElement(currNode);

int i=0;
currNodeAssign:
do{
if(itrAdjacentNodes.hasNext(){
Node tempNode=(Node)itrAdjacentNodes.next();

if(lnodeSet.contains(tempNode) ¥
preNodes.setElementAt(currNode,tempNode.getLabel());
currNode=tempNode;
break currNodeAssign;
telse{
i++;
if(i==currAdjacentNodes.size()
if(currNode==certainNode){
finish=true;
break currNodeAssign;
}
Edge
tempEdge=tree.getEdge(currNode,(Node)preNodes.elementAt(currNode:getLabel()));
if(ledgeSet.contains(tempEdge)){
edgeSet.addElement(tempEdge);

}
currNode=(Node)preNodes.elementAt(currNode.getLabel());
}
}
telse{
finish=true;

/Ibreak currNodeAssign;

}
twhile(itrAdjacentNodes.hasNext());

Jwhile('finish);

return new Graph(nodeSet,edgeSet);

public static Vector getAdjacentNodes(Graph graph,Node currNode){

return graph.adjacentNodeSet(currNode);

public static Vector getincidnetEdges(Graph graph,Node currNode)}{
return graph.incidentEdgeSet(currNode);

104

GraphAlgorithm.java

}

public static Graph getSubtreeWithoutSupply(Graph tree,Edge ruinedEdge {
Graph subtreeWithoutSupply=null;
Graph subtreeN1=getSubtreeWithCertainNode(tree,ruinedEdge.getN1(),ruinedEdge);
Graph subtreeN2=getSubtreeWithCertainNode(tree,ruinedEdge.getN2(),ruinedEdge);
Vector subtreeNodeSetN1=subtreeN1.getNodeSet();
Node tempNode;
for(int i=0;i<subtreeNodeSetN1.size();i++)
tempNode=(Node)subtreeNodeSetN1.elementAt(i);
if(tempNode.isSupply())
subtreeWithoutSupply=subtreeN2;
}
if(subtreeWithoutSupply!=subtreeN2)
subtreeWithoutSupply=subtreeN1;
return subtreeWithoutSupply;

public static Graph getSubtreeWithSupply(Graph tree,Edge ruinedEdge){
Graph subtreeWithSupply=null;
Graph subtreeN1=getSubtreeWithCertainNode(tree,ruinedEdge.getN1(),ruinedEdge);
Graph subtreeN2=getSubtreeWithCertainNode(tree ruinedEdge.getN2(),ruinedEdge);
Vector subtreeNodeSetN1=subtreeN1.getNodeSet();
Node tempNode;
for(int i=0;i<subtreeNodeSetN1.size();i++)
tempNode=(Node)subtreeNodeSetN1.elementAt(i);
if(tempNode.isSupply())
subtreeWithSupply=subtreeN1;
}
if(subtreeWithSupply!=subtreeN1)
subtreeWithSupply=subtreeN2;
return subtreeWithSupply;

private void jbinit() throws Exception {

}

public static Vector getincidentEdgeSet(Roamer roamer,Vector nodeSet)
Center center=roamer.getCenter();

Graph graph=center.getGraph();

105

GraphAlgorithm.java

Edge myEdge=center.getMyEdge(roamer);

Vector visitorSequence;

Vector edgeSet=new Vector();

Edge tempEdge;

Node n1,n2;

for(int i=0;i<nodeSet.size();i++)
Vector tempEdgeSet=graph.incidentEdgeSet((Node)nodeSet.elementAt(i));
for(int j=0;j<tempEdgeSet.size();j++){

if(ledgeSet.contains(tempEdgeSet.elementAt(j))
edgeSet.addElement(tempEdgeSet.elementAt(j));

tempEdge=(Edge)tempEdgeSet.elementAt(j);

n1=tempEdge.getN1();

n2=tempEdge.getN2();

/Iremove edges included in the routeEdgeSet

if(nodeSet.contains(n1) && nodeSet.contains(n2))
edgeSet.removeElement(tempEdge);

/Iremove dummyEdges

if(n1==center.getDummyNode() || n2==center.getDummyNode())
edgeSet.removeElement(tempEdge);

/Iremove visited edge

if(nodeSet.contains(n1)){
visitorSequence=center.getVisitorSequence(n2);
if(visitorSequence.contains(roamer))

edgeSet.removeElement(tempEdge);

}else if(nodeSet.contains(n2)){
visitorSequence=center.getVisitorSequence(n1);
if(visitorSequence.contains(roamer))

edgeSet.removeElement(tempEdge);

}

if(edgeSet.contains(myEdge))
edgeSet.removeElement(myEdge);

return edgeSet;

public static Vector getincidentEdges(Detourist detourist,Vector nodeSet){

Graph usableGraph=detourist.getUsableGraph();

106

GraphAlgorithm.java

DetourManager dmr=detourist.getDetourManager();
Center center=dmr.getCenter();

Edge myEdge=dmr.getMyEdge(detourist);

Vector incidentEdges=new Vector();
Edge tempEdge;
Node n1,n2;

for(int i=0;i<nodeSet.size();i++)X
Vector tempEdgeSet=usableGraph.incidentEdgeSet((Node)nodeSet.elementAt(i));
for(int j=0;j<tempEdgeSet.size();j++){
tempEdge=(Edge)tempEdgeSet.elementAt(j);
if(lincidentEdges.contains(tempEdge))
incidentEdges.addElement(tempEdge);

n1=tempEdge.getN1();

n2=tempEdge.getN2();

if(nodeSet.contains(n1) && nodeSeticontains(n2))
incidentEdges.removeElement(tempEdge);

if(n1==center.getDummyNode() ||:-n2==center.getDummyNode())

incidentEdges.removeElement(tempEdge);

}
if(incidentEdges.contains(myEdge))

incidentEdges.removeElement(myEdge);
return incidentEdges;
public static Vector getinterfaceNodes(Graph subject,Graph environment){
Vector interfaceNodes=new Vector();

Vector environmentEdgeSet=environment.getEdgeSet();

Edge tempEdge;
Node n1,n2;

for(int i=0;i<environmentEdgeSet.size();i++){
tempEdge=(Edge)environmentEdgeSet.elementAt(i);
n1=tempEdge.getN1();

n2=tempEdge.getN2();

if(subject.hasNode(n1) && !subject.hasNode(n2))

107

GraphAlgorithm.java

if(linterfaceNodes.contains(n1))
interfaceNodes.addElement(n1);
}
if(subject.hasNode(n2) && !subject.hasNode(n1))
if(linterfaceNodes.contains(n2))

interfaceNodes.addElement(n2);

}

return interfaceNodes;

public static double networkCost(Graph graph){

Vector edgeSet=graph.getEdgeSet();

Edge edge;

double networkCost=0.0;

for(int i=0;i<edgeSet.size();i++)
edge=(Edge)edgeSet.elementAt(i);
networkCost=networkCost+edge.getWeight();

}

return networkCost;

public static double pathCost(Vector edgeSet){
double pathkCost=0.0;
Edge edge;
for(int i=0;i<edgeSet.size();i++)X
edge=(Edge)edgeSet.elementAt(i);
pathkCost=pathkCost+edge.getWeight();

}
return pathkCost;

public static Vector intersection(Vector set0,Vector set1){
Vector intersection=new Vector();
Object temp;
for(int i=0;i<set0.size();i++){
temp=set0.elementAt(i);
if(set1.contains(temp))
intersection.addElement(temp);

}

return intersection;

108

GraphAlgorithm.java

}

public static Vector union(Vector set0,Vector set1){
Vector union=new Vector();
Object temp;
for(int i=0;i<set0.size();i++){
temp=set0.elementAt(i);
union.addElement(temp);

}

for(int i=0;i<set1.size();i++

{
i);
)

union.addElement(temp);

—~ ~

temp=set1.elementAt

if(lunion.contains(temp

}

return union;
}
/Idetour

public static double getMergeCost(Detourist detourist,Node node){

Center center=detourist.getDetourManager().getCenter();

double mergeCost=0.0;

Graph downstream=detourist.getDownstream();

Vector downstreamDemandNodeSet=downstream.getDemandNodeSet();

Graph mergeNode ToSupplyPath=getPathToSupply(node,center);
Vector mergeNode ToSupplyEdgeSet=mergeNode ToSupplyPath.getEdgeSet();

Vector tempEdgeSetUnion=new Vector(),tempEdgeSetintersection=new Vector();
Node tempDemand;

Graph tempDemandToSupplyPath;

Vector tempDemandToSupplyEdgeSet;

for(int i=0;i<downstreamDemandNodeSet.size();i++){

tempDemand=(Node)downstreamDemandNodeSet.elementAt(i);

tempDemandToSupplyPath=getPathToSupply(tempDemand,center);
tempDemandToSupplyEdgeSet=tempDemand ToSupplyPath.getEdgeSet();

tempEdgeSetUnion=union(mergeNode ToSupplyEdgeSet,tempDemandToSupplyEdgeSet);

109

GraphAlgorithm.java

tempEdgeSetintersection=intersection(mergeNode ToSupplyEdgeSet,tempDemand ToSupplyEdgeSet);

mergeCost=mergeCost+pathCost(tempEdgeSetUnion)-pathCost(tempEdgeSetintersection);
}

return mergeCost;

public static Graph getPathToSupply(Node node,Center center){
Vector nodeSet=new Vector();

Vector edgeSet=new Vector();

Node currNode=node;
Edge preEdge;
while(currNode!=center.getDummyNode()){

preEdge=center.getPreEdge(currNode);

if(center.getPreNode(currNode)!=center.getDummyNode()){
if(lnodeSet.contains(currNode))
nodeSet.addElement(currNode);
if(ledgeSet.contains(preEdge))
edgeSet.addElement(preEdge);
telse{
if('InodeSet.contains(currNode?))
nodeSet.addElement(currNode);
}
currNode=preEdge.theOtherNode(currNode);
}

return new Graph(nodeSet,edgeSet);

110

Graph.java

package emnet.graph;
import java.util.Vector;

public class Graph {
private Vector nodeSet,edgeSet;

int supplyNodeNum,demandNodeNum;

public Graph(Vector nodeSet, Vector edgeSet){
this.nodeSet=nodeSet;

this.edgeSet=edgeSet;

public Vector getNodeSet(){

return this.nodeSet;

public Vector getEdgeSet(){

return this.edgeSet;

/lincident edges of node n
public Vector incidentEdgeSet(Node node){
Vector incidentEdgeSet=new Vector();
for(int i=0;i<this.edgeSet.size();i++){
Edge tempEdge=(Edge)edgeSet.elementAt(i);
if(tempEdge.getN1()==node || tempEdge.getN2()==node)}{
if(lincidentEdgeSet.contains(tempEdge)){
incidentEdgeSet.addElement(tempEdge);

}

return incidentEdgeSet;

/ladjacent nodes of node n
public Vector adjacentNodeSet(Node n){
Vector adjacentNodeSet=new Vector();
for(int i=0;i<this.edgeSet.size();i++){
Edge tempEdge=(Edge)edgeSet.elementAt(i);
if(tempEdge.getN1()==n && !adjacentNodeSet.contains(tempEdge.getN2()){

111

Graph.java
adjacentNodeSet.addElement(tempEdge.getN2());

lelse if(tempEdge.getN2()==n && !adjacentNodeSet.contains(tempEdge.getN1())){
adjacentNodeSet.addElement(tempEdge.getN1());

}

return adjacentNodeSet;

public Vector getSupplyNodeSet(){
Vector supplyNodeSet=new Vector();
for(int i=0;i<this.nodeSet.size();i++){
Node tempNode=(Node)nodeSet.elementAt(i);
if(tempNode.isSupply())
supplyNodeSet.addElement(tempNode);

}
return supplyNodeSet;

public int getSupplyNodeNum(){
return getSupplyNodeSet().size();

public Vector getDemandNodeSet(}
Vector demandNodeSet=new Vector();
for(int i=0;i<this.nodeSet.size();i++){
Node tempNode=(Node)nodeSet.elementAt(i);
if(tempNode.isDemand())
demandNodeSet.addElement(tempNode);
}

return demandNodeSet;

public int getDemandNodeNum(){

return getDemandNodeSet().size();

public Edge getEdge(Node n1,Node n2){
Edge edge;
for(int i=0;i<edgeSet.size();i++)
edge=(Edge)edgeSet.elementAt(i);
if(ledge.getN1()==n1){
if(ledge.theOtherNode(edge.getN1())==n2)

112

Graph.java

return edge;
lelse if(edge.getN1()==n2)
if(edge.theOtherNode(edge.getN1())==n1)

return edge;

}
System.out.printin("error: no edge can be returned!");

return null;

public void addNode(Node node){
if(lnodeSet.contains(node))

this.nodeSet.addElement(node);

public void addEdge(Edge edge){
if(ledgeSet.contains(edge))
this.edgeSet.addElement(edge);

public boolean hasNode(Node node){
if(nodeSet.contains(node) X
return true;
telse{

return false;

public boolean hasEdge(Edge edge){
if(edgeSet.contains(edge)X
return true;
telse{

return false;

public void removeNode(Node node){
if(nodeSet.contains(node) X
Vector incidentEdges=this.incidentEdgeSet(node);
Edge templincidentEdge;
for(int i=0;i<incidentEdges.size();i++){

templincidentEdge=(Edge)incidentEdges.elementAt(i);

113

Graph.java

if(edgeSet.contains(templncidentEdge))

edgeSet.removeElement(tempincidentEdge);

}

nodeSet.removeElement(node);

public void removeEdge(Edge edge){
if(edgeSet.contains(edge))

edgeSet.removeElement(edge);

114

package emnet.graph;

public class Node{
private int label;
private double x,y;
private boolean demand,supply,merge,access,source,dummy;

private boolean visit,occupy;

public Node(int label){
this.label=label;
this.demand=false;
this.supply=false;
this.merge=false;
this.access=false;
this.source=false;
this.dummy=false;
this.visit=false;

this.occupy=false;

public Node(int label,double x,double'y X
this(label);
setX(x);
setY(y);

public void setDemand(){

this.demand=true;

public void setSupply(){
this.supply=true;

public void setNeutral(){
this.supply=false;

this.demand=false;

public void setMerge(){

this.merge=true;

115

}

public void setAccess(}

this.access=true;

public void setSource(){

this.source=true;

public void setDummy(){

this.dummy=true;

public synchronized void visit(){

this.visit=true;

public synchronized void occupy(X

this.occupy=true;

public synchronized void unOccupied(){

this.occupy=false;

public synchronized void leave(){

this.occupy=false;

public boolean isOccupied(}

return this.occupy;

public boolean isDemand(){

return this.demand;

public boolean isSupply()

return this.supply;

116

public boolean isMerge(){

return this.merge;

public boolean isAccess(){

return this.access;

public boolean isSource(){

return this.source;

public boolean isDummy/(){

return this.dummy;

public boolean isVisited()}

return this.visit;

public int getLabel(){

return label;

public void setX(double x){

this.x=x;

public void setY(double y){
this.y=y;

public double getX(){

return this.x;

public double getY(){

return this.y;

17

Edge.java

package emnet.graph;

public class Edge {
private int label;
private double weight;
private Node n1,n2;
private boolean fastEdge,detourEdge,testEdge,detourTestEdge,dummyEdge,maTestEdge,maEdge;

private boolean visit;

public Edge(int label,Node n1,Node n2){
this.label=label;
this.weight=0.0;
this.n1=n1;
this.n2=n2;
this.fastEdge=false;
this.detourEdge=false;
this.testEdge=false;
this.detourTestEdge=false;
this.dummyEdge=false;
this.maTestEdge=false;
this.maEdge=false;

this.visit=false;

public Edge(int label,Node n1,Node n2,double weight){
this(label,n1,n2);
this.weight=weight;

public synchronized void setFastEdge(){
this.fastEdge=true;

public boolean isFastEdge(){
return this.fastEdge;

public synchronized void setDetourEdge(){

this.detourEdge=true;

118

Edge.java

public boolean isDetourEdge(){

return this.detourEdge;

public synchronized void setTestEdge(){
this.testEdge=true;

public boolean isTestEdge(){

return this.testEdge;

public synchronized void setDetourTestEdge(boolean detourTestEdge){

this.detourTestEdge=detourTestEdge;

public boolean isDetourTestEdge(){

return detourTestEdge;

public synchronized void setDummyEdge()}
this.dummyEdge=true;

public boolean isDummyEdge(){

return dummyEdge;

public synchronized void setMATestEdge(boolean maTestEdge){
this.maTestEdge=maTestEdge;

public boolean isMATestEdge(){

return maTestEdge;

public synchronized void setMAEdge(){

this.maEdge=true;

public boolean isMAEdge ()}

return maEdge;

119

Edge.java

}

public synchronized void setNeutralEdge(){
this.fastEdge=false;
this.detourEdge=false;
this.maEdge=false;
this.testEdge=false;
this.detourTestEdge=false;

this.maTestEdge=false;

public void setWeight(double weight){
this.weight=weight;

public double getWeight(){

return this.weight;

public Node getN1(){

return this.n1;

public Node getN2(){

return this.n2;

public Node theOtherNode(Node n){
if(n==this.n1)
return this.n2;
lelse if(n==this.n2){
return this.n1;

}

return null;

public synchronized void visit(){

this.visit=true;

public boolean isVisited(}

return this.visit;

120

Edge.java

}

public int getN1Label(){

return n1.getLabel();

public int getN2Label(){
return n2.getLabel();

public int getLabel(){

return this.label;

121

package emnet.gui;

import emnet.graph.Graph;

import emnet.graph.Node;

import emnet.graph.Edge;

import javax.swing.JPanel;

import java.awt.BorderLayout;
import java.awt.Dimension;

import java.util.Vector;

import java.awt.Graphics;

import java.awt.Color;

import java.awt.event.MouseEvent;
import java.awt.event.MouseAdapter;
import emnet.Frame;

import java.text.DecimalFormat;

import java.awt.Font;

public class Map extends javax.swing.JPanel{
Frame frame;
JPanel map=new JPanel();
Graph graph;
boolean dataln;
boolean supply,demand,neutral;

DecimalFormat myFormatter=new DecimalFormat("### ### #");

public Map(){
init();

public void init(){
this.setLayout(new BorderLayout());
this.setSize(new Dimension(600,400));
this.setPreferredSize(new Dimension(600,400));
this.add(map,BorderLayout. CENTER);

this.dataln=false;

this.addMouseListener(new Map_MouseAdapter(this));

public void paint(Graphics g){
if(dataln){

122

drawNodes(graph,g);
drawEdges(graph,g);
frame.setSeperator(graph);
telse{
g.drawString("n/a",this.getWidth()/2,this.getHeight()/2);

public void setGraph(Graph graph){
this.graph=graph;
this.dataln=true;

this.repaint();

public Graph getGraph(){
return this.graph;
}
public void sentFrame(Frame frame){

this.frame=frame;

public Map getMap(){

return this;

private void drawNodes(Graph graph,Graphics g){
double ratio=scaledRatio(graph);
double newOX=newOX(graph);
double newOY=newOQY(graph);
int1=12,m=10,s=8;

g.setFont(new Font(null,Font.PLAIN,12));

Vector nodeSet=graph.getNodeSet();
Node node;
for(int i=0;i<nodeSet.size();i++)X

node=(Node)nodeSet.elementAt(i);

if(node.isSupply(){
g.setColor(Color.RED);
g.drawOval(new Double((node.getX()-newOX)*ratio).intValue()-1/2,new
Double((node.getY()-newQY)*ratio).intValue()-1/2,1,1);

123

}else if(node.isDemand()){
g.setColor(Color.BLUE);
g.drawRect(new Double((node.getX()-newOX)*ratio).intValue()-m/2,new
Double((node.getY()-newQY)*ratio).intValue()-m/2,m,m);
telse{
g.setColor(Color.LIGHT_GRAY);
}
g.drawString(""+node.getLabel(),new Double((node.getX()-newOX)*ratio).intValue(),new
Double((node.getY()-newQY))*ratio).intValue());

if(node.isAccess() && node.isMerge()){
g.setColor(Color.DARK_GRAY);
g.drawString("A & M",new Double((node.getX()-newOX)*ratio).intValue(),new
Double((node.getY()-newQY)*ratio).intValue()+20);
}else if(node.isAccess()){
g.setColor(Color.DARK_GRAY);
g.drawString("A",new Double((node.getX()-newOX)*ratio).intValue(),new
Double((node.getY()-newQY)*ratio).intValue()+20);
lelse if(node.isMerge(){
g.setColor(Color.DARK_GRAY);
g.drawString("M",new Double((node.getX()-newOX)*ratio).intValue(),new
Double((node.getY()-newQY)*ratio).intValue()+20);

}

if(node.isSource(){
g.setColor(Color.DARK_GRAY);
g.drawString("$rc",new Double(

Double((node.getY()-newQY)*ratio).intValue()+20
}

node.getX()-newOX)*ratio).intValue(),new

)

(
)

private void drawEdges(Graph graph,Graphics g){
double ratio=scaledRatio(graph);
double newOX=newOX(graph);
double newOY=newOQY(graph);

Vector edgeSet=graph.getEdgeSet();
Edge edge;

g.setFont(new Font(null,Font.PLAIN,10));

124

for(int i=0;i<edgeSet.size();i++)
edge=(Edge)edgeSet.elementAt(i);
Node n1=edge.getN1(),n2=edge.getN2();
int n1x=new Double((n1.getX()-newOX)*ratio).intValue();
newQY)*ratio).intValue();
)
)

int n1y=new Double((n1.getY

(()-
(n2.getX()-newOX ;
(()-

)

int n2x=new Double intValue

0
0
0
0

)

newQY)*ratio).intValue

(
()
(*ratio)
()

int n2y=new Double((n2.getY

if(edge.isFastEdge()){
g.setColor(Color.BLACK);
else if(edge.isDetourEdge()){
g.setColor(Color.ORANGE);
lelse if(edge.isMAEdge()){
g.setColor(Color.GREEN);
lelse if(edge.isTestEdge(){
g.setColor(Color.MAGENTA);
lelse if(edge.isDetourTestEdge()){
g.setColor(Color.CYAN);
lelse if(edge.isMATestEdge()){
g.setColor(Color.MAGENTA);
telse{
g.setColor(Color.LIGHT, GRAY));

if(ledge.isDummyEdge() X

Double weight;

if(edge.isMAEdge(){
g.setFont(new Font(null,Font.BOLD,11));
g.drawLine(n1x,n1y,n2x,n2y);
weight=new Double(edge.getWeight());
g.drawString(""+edge.getLabel()+":"+myFormatter.format(weight)+" @B",new

Double((n1x+n2x)/2).intValue(),new Double((n1y+n2y)/2).intValue());

g.setFont(new Font(null,Font.PLAIN,10));

telse{
g.drawLine(n1x,n1y,n2x,n2y);
weight=new Double(edge.getWeight());
g.drawString(""+edge.getLabel()+":"+myFormatter.format(weight),new

Double((n1x+n2x)/2).intValue(),new Double((n1y+n2y)/2).intValue());
}

125

private double scaledRatio(Graph graph){
Vector nodeSet=graph.getNodeSet();
double maxX=0.0,maxY=0.0;
double newOX=newOX(graph),newOY=newQY(graph);
Node node;
for(int i=0;i<nodeSet.size();i++)
node=(Node)nodeSet.elementAt(i);
if((node.getX()-newOX)>maxX){
maxX=node.getX()-newOX;
lelse if((node.getY()-newOY)>maxY)
maxY=node.getY()-newOY;

}
return Math.min(map.getWidth()/maxX,map.getHeight()/maxY);

private double newOX(Graph graph){

Vector nodeSet=graph.getNodeSet();

Node node=(Node)nodeSet.elementAt(0);

double minX=node.getX();

for(int i=1;i<nodeSet.size();i++)
node=(Node)nodeSet.elementAt(i);
if(node.getX()<minX){

minX=node.getX();

}

return minX;

private double newOY (Graph graph){

Vector nodeSet=graph.getNodeSet();

Node node=(Node)nodeSet.elementAt(0);

double minY=node.getY();

for(int i=1;i<nodeSet.size();i++)
node=(Node)nodeSet.elementAt(i);
if(node.getY ()<minY){

minY=node.getY();

}

return minY;

126

public void nodeSetting(boolean supply,boolean demand,boolean neutral){
this.supply=supply;
this.demand=demand;

this.neutral=neutral,;

void mouse_clicked_actionPerformed(MouseEvent e){

double ratio=scaledRatio(graph);

double newOX=newOX(graph),newOY=newQY(graph);

Vector nodeSet=graph.getNodeSet();

Node node;

interr=10;

for(int i=0;i<nodeSet.size();i++)
node=(Node)nodeSet.elementAt(i);
int x=new Double((node.getX()-newOX)*ratio).intValue();
int y=new Double((node.getY()-newOY)*ratio).intValue();
if(Math.abs(e.getX()-x)<err && Math:abs(e.getY ()-y)<err){

if(supply){
node.setNeutral();

node.setSupply();

}

if([demand){
node.setNeutral();
node.setDemand();

}

if(neutral){

node.setNeutral();

class Map_MouseAdapter extends MouseAdapter{

Map adaptee;

Map_MouseAdapter(Map adaptee){

this.adaptee=adaptee;

public void mouseClicked(MouseEvent e){

127

this.adaptee.mouse_clicked_actionPerformed(e);

128

I0Graph.java

package emnet.io;

import emnet.graph.Graph;
import emnet.graph.Node;
import emnet.graph.Edge;
import java.util.Vector;

import java.io.File;

import java.io.FileReader;
import java.io.lOException;
import java.io.BufferedReader;

import java.util.String Tokenizer;
public class I0Graph {
private Graph g;

public IOGraph(String dirName,String nodeFile;String edgeFile) throws IOException {
File inputNodeFile=new File(dirName,nodeFile);
File inputEdgeFile=new File(dirName,edgeFile);
Vector nodeSet=new Vector();
Vector edgeSet=new Vector();

g=new Graph(nodeSet,edgeSet);

/Iread node.txt
FileReader nodeln=new FileReader(inputNodeFile);

BufferedReader buffNodeln=new BufferedReader(nodeln);

String strLine;

Node node;

while((strLine=buffNodeln.readLine())!=null){
//delimiter of Tab is "\t"

String Tokenizer strToken=new String Tokenizer(strLine,"\t" ,false);

String[] nodeAttr=new String[3];
for(int i=0;i<3;i++){
nodeAttr[i]=strToken.nextToken();

}

node=new
Node(Integer.parselnt(nodeAttr[0]),Double.parseDouble(nodeAttr[1]),Double.parseDouble(nodeAttr[2]));

nodeSet.addElement(node);

129

I0Graph.java

buffNodeln.close();

nodeln.close();

/Iread edge.txt
FileReader edgeln=new FileReader(inputEdgeFile);
BufferedReader buffEdgeln=new BufferedReader(edgeln);

Edge edge;
while((strLine=buffEdgeln.readLine())!=null){
//delimiter of Tab is "\t"

String Tokenizer strToken=new String Tokenizer(strLine,"\t",false);

String[] edgeAttr=new String[3];
for(int i=0;i<3;i++){
edgeAttr{i]=strToken.nextToken();

Node n1=(Node)nodeSet.elementAt(Integerniparseint(edgeAttr[1]));
Node n2=(Node)nodeSet.elementAt(Integer.parselnt(edgeAttr[2]));
double
weight=Math.sqrt((n1.getX()-n2.getX())*(n1.getX()-n2.getX())£(n1.getY()-n2.getY())*(n1.getY()-n2.getY()));
edge=new Edge(Integer.parselnt(edgeAttr[0});n1,n2;weight);
edgeSet.addElement(edge);
}
buffEdgeln.close();

edgeln.close();

public Graph getGraph(){

return this.g;

130

package emnet.thread;

import java.util.Vector;
import emnet.graph.Graph;
import emnet.graph.Node;
import emnet.graph.Edge;
import emnet.Frame;

import emnet.algorithm.GraphAlgorithm;

public class Center extends Thread{
/ICenter
Graph graph;
Frame frame;
boolean finish,available,detourCenterFinish,maCenterFinish;

Node dummyNode;

/InodeCenter
int nodeNum;
Object[][] nodeCenter;

/IroamerCenter
int roamerNum;

Object[][] roamerCenter;

/lfastCenter
Object[][] fastCenter;

/ldetourCenter
int edgeNum,detourManagerNum;
Object[][] detourCenter;

/IMutualAssistanceCenter
Graph emnet;

int maManagerNum;
Object[][] maCenter;

public Center(Graph graph,Frame frame){
/ICenter
this.graph=graph;
this.frame=frame;

finish=false;

131

available=true;

/InodeCenter

/InodeCenter[node][0]: occupy(Boolean)
/InodeCenter[node][1]: distance(Double)
/InodeCenter[node][2]: preNode(Node)
/InodeCenter[node][3]: preEdge(Edge)
/InodeCenter[node][4]: visitorSequence(Vector)
/InodeCenter[node][5]: supply(Node)

/InodeCenter[node][6]: detourDist(Double)???

nodeNum=this.graph.getNodeSet().size();
nodeCenter=new Object[(nodeNum+1)][6];

dummyNode=new Node(nodeNum,0.0,0.0);

for(int i=0;i<(nodeNum+1);i++){
nodeCenter[i][0]=new Boolean(false);
nodeCenter[i][1]=new Double(0.0);
nodeCenter|i][2]=null;
nodeCenter|[i][3]=null;
nodeCenter[i][4]=new Vector();

nodeCenter|i][5]=null;

/l[roamerCenter
/IroamerCenter[roamer][0]: myNode(Node)
/[roamerCenter[roamer][1]: myEdge(Edge)
/IroamerCenter[roamer][2]: currNode(Node)
/froamerCenter[roamer][3]: routeSet(Graph)
roamerNum=graph.getSupplyNodeSet().size();
roamerCenter=new Object[roamerNum][4];
for(int i=0;i<roamerNum;i++){
roamerCenter[i][0]=dummyNode;
roamerCenter][i][1]=null;
roamerCenter]i][2]=null;

roamerCenter][i][3]=null;

/lfastCenter

/[fastCenter[demand][0]: fastPath(Graph)
/[fastCenter[demand][1]: supply(Node)
/[fastCenter[demand][2]: fastPathLength(Double)

132

fastCenter=new Object[nodeNum][3];

for(int i=0;i<nodeNum;i++){
fastCenter [i][0]=null;
fastCenterfi][1]=null;
fastCenter(i][2]=null;

/ldetourCenter
//detourCenter[edge][0]: downstream(Graph)
//detourCenter[edge][1]: upstream(Graph)
//detourCenter[edge][2]: mergeNode(Node)
//detourCenter[edge][3]: accessNode(Node)
//detourCenter[edge][4]: detourPath(Graph)
//detourCenter[edge][5]: systematicDetourCost(Double)
//detourCenter[edge][6]: mergeCost(Vector)
edgeNum=graph.getEdgeSet().size();
detourManagerNum=graph.getSupplyNodeSet().size();
detourCenter=new Object[edgeNum][7];
for(int i=0;i<edgeNum;i++){

detourCenter[i][0]=null;

detourCenter[i][1]=null;

detourCenter{i][2]=null;

detourCenter[i][3]=null;

detourCenter{i][4]=null;

detourCenter]i][5]=new Double(0.0);

detourCenter[i][6]=new Vector(nodeNum);

//mutualAssistantCenter
/ImaCenter[supply][0]: fastTree(Graph)
/ImaCenter[supply][1]: territory(Graph) 2ECON
/ImaCenter[supply][2]: source(Node)
/ImaCenter[supply][3]: icpSet(Vector)
/ImaCenter[supply][4]: maPath(Graph)
/ImaCenter[supply][5]: within territory supply-demand ratio(Double)
/ImaCenter[supply][6]: mutual assistant supply-demand ratio(Double)
/ImaCenter[supply][7]: maCost > source to supply
maManagerNum=graph.getSupplyNodeNum();
maCenter=new ObjectinodeNum][8];
for(int i=0;i<nodeNum;i++){

maCenter]i][0]=null;

maCenter]i][1]=null;

133

maCenter]i][2]=null;
maCenter[i][3]=new Vector();
maCenter]i][4]=null;
maCenter[i][5]=new Vector();
macCenter[i][6]=new Double(0.0);
maCenter[i][7]=new Double(0.0);

public void run(){
startRoamerCenter();
startFastCenter();
startDetourCenter();
startMutualAssistanceCenter();
startOutputReport();

/lcenter method
void startRoamerCenter(){
/l[roamerCenter
//send roamers to find fast paths (Shortest Path Forest; SPF)

sendRoamer();

Vector nodeSet=graph.getNodeSet();
int demandNodeNum=graph.getDemandNodeNum();
do{
int total Times=0;
watching:
for(int i=0;i<nodeNum;i++){
Node tempNode=(Node)nodeSet.elementAt(i);
/ffinish condition is focused on demand nodes only
if(tempNode.isDemand()){
if(getVisitorNum(tempNode)==roamerNum){
totalTimes=totalTimes+roamerNum;

if(totalTimes==(demandNodeNum®*roamerNum))

finish=true;
}
else{
finish=false;
break watching;
}

134

}
Jwhile('finish);

/Iroamer center finished!

void startFastCenter(){
/lfastCenter
/[fastCenter[demand][0]: fastPath(Graph)
/[fastCenter[demand][1]: supply(Node)
/[fastCenter[demand][2]: fastPathLength(Double)

/ffinding fast paths from demand nodes to the dummyNode
try{

sleep(1);
}catch(InterruptedException ex){

/[fast center cannot sleep!

Vector demandNodeSet=graph.getDemandNodeSet();
Node tempDemand,tempNode;

Edge tempPreEdge,tempEdge;

double length;

Vector tempFastNodeSet,tempFastEdgeSet;

for(int i=0;i<demandNodeSet.size();i++){
tempDemand=(Node)demandNodeSet.elementAt(i);

tempNode=tempDemand;

tempFastNodeSet=new Vector();

tempFastEdgeSet=new Vector();

find:
while(tempNode!=dummyNode){
tempPreEdge=(Edge)getPreEdge(tempNode);
if(tempNode.isSupply()X
fastCenter[tempDemand.getLabel()][1]=tempNode;
if('tempFastNodeSet.contains(tempNode))
tempFastNodeSet.addElement(tempNode);

/Inode of fast route belong to the same supply

Node tempNode2;
for(int j=0;j<tempFastNodeSet.size();j++)

135

tempNode2=(Node)tempFastNodeSet.elementAt(j);
nodeCenter[tempNode2.getLabel()][5]=tempNode;

}

break find;

telse{

if('tempFastNodeSet.contains(tempNode))
tempFastNodeSet.addElement(tempNode);

if('tempFastEdgeSet.contains(tempPreEdge))
tempFastEdgeSet.addElement(tempPreEdge);

tempPreEdge.setFastEdge();

}
tempNode=tempPreEdge.theOtherNode(tempNode);

fastCenter[tempDemand.getLabel()][0]=new Graph(tempFastNodeSet,tempFastEdgeSet);

length=0.0;

for(int j=0;j<tempFastEdgeSet.size();j++){
tempEdge=(Edge)tempFastEdgeSet.elementAt(j);
length=length+tempEdge.getWeight();

}

fastCenter[tempDemand.getLabel()][2]=new Double(length);

/ImaCenter[supply][0]: fastTree(Graph)

Vector fastTreeSupplyNodeSet=graph.getSupplyNodeSet();
Node tempFastTreeSupply;

Vector fastTreeDemandNodeSet=graph.getDemandNodeSet();

Node tempFastTreeDemand;

Graph tempFastPath;

Vector tempFastPathNodeSet;
Node tempFastPathNode;
Vector tempFastPathEdgeSet;
Edge tempFastPathEdge;

Vector tempFastTreeNodeSet;

Vector tempFastTreeEdgeSet;
for(int i=0;i<fastTreeSupplyNodeSet.size();i++){

tempFastTreeNodeSet=new Vector();

tempFastTreeEdgeSet=new Vector();

136

tempFastTreeSupply=(Node)fastTreeSupplyNodeSet.elementAt(i);
if('tempFastTreeNodeSet.contains(tempFastTreeSupply))
tempFastTreeNodeSet.addElement(tempFastTreeSupply);

for(int j=0;j<fastTreeDemandNodeSet.size();j++)X

tempFastTreeDemand=(Node)fastTreeDemandNodeSet.elementAt(j);

/[fast paths with different demands of the same supply
if(fastCenter[tempFastTreeDemand.getLabel()][1]==tempFastTreeSupply
tempFastPath=(Graph)fastCenter[tempFastTreeDemand.getLabel()][0];
tempFastPathEdgeSet=tempFastPath.getEdgeSet();
for(int k=0;k<tempFastPathEdgeSet.size();k++){
tempFastPathEdge=(Edge)tempFastPathEdgeSet.elementAt(k);
if('tempFastTreeEdgeSet.contains(tempFastPathEdge)){
tempFastTreeEdgeSet.addElement(tempFastPathEdge);

tempFastPathNodeSet=tempFastPath.getNodeSet();
for(int k=0;k<tempFastPathNodeSet.size();k++){
tempFastPathNode=(Node)tempFastPathNodeSet.elementAt(k);
if('tempFastTreeNodeSet.contains(tempFastPathNode) X
tempFastTreeNadeSet:addElement(tempFastPathNode);

}
maCenter[tempFastTreeSupply.getLabel()][0]=new

Graph(tempFastTreeNodeSet,tempFastTreeEdgeSet);

/ImaCenter[supply][5]: within territory supply-demand ratio(Double)
if(getFastTree(tempFastTreeSupply).getDemandNodeNum()!=0){

this.setTerritorySDR(tempFastTreeSupply,1.0/getFastTree(tempFastTreeSupply).getDemandNodeNum());

telse{

this.setTerritorySDR(tempFastTreeSupply,1.0);

/[fast center finished!

/ffinalization

137

Vector edgeSet=graph.getEdgeSet();
Edge clearEdge;
for(int i=0;i<edgeSet.size();i++)X
clearEdge=(Edge)edgeSet.elementAt(i);
if(IclearEdge.isFastEdge())
clearEdge.setNeutralEdge();

void startDetourCenter(){
/ldetourCenter
try{
sleep(1);
}catch(InterruptedException ex){

/ldetour center cannot sleep!

detourCenterFinish=false;

Vector supplyNodeSet=graph.getSupplyNodeSet();

Node tempSupply;

for(int i=0;i<supplyNodeSet.size();i++){
tempSupply=(Node)supplyNodeSet.elementAt(i);
new DetourManager(i,this,tempSupply).start();

while(!detourCenterFinish){
//detour center waiting for detour managers finish their jobs

}

/ldetour center finished!

void startMutualAssistanceCenter(){
try{
sleep(1);
}catch(InterruptedException ex){

/Imutual assistance center cannot sleep!

/lwhere are supply nodes:
Vector nodeSet=graph.getNodeSet();
Node tempNode;

138

for(int i=0;i<nodeSet.size();i++)X

tempNode=(Node)nodeSet.elementAt(i);

/linitialization
Vector edgeSet=graph.getEdgeSet();
Edge tempEdge;
for(int i=0;i<edgeSet.size();i++)X
tempEdge=(Edge)edgeSet.elementAt(i);
if('tempEdge.isFastEdge() && !tempEdge.isDetourEdge())
tempEdge.setNeutralEdge();

maCenterFinish=false;

Vector supplyNodeSet=graph.getSupplyNodeSet();

Node tempSupply;

for(int i=0;i<supplyNodeSet.size();i++){
tempSupply=(Node)supplyNodeSet.elementAt(i);
new MAManager(i,this,tempSupply).start();

while(!maCenterFinish){

/Ima center waiting for detour managers finish their jobs

/lemnet
Vector emnetNodeSet=new Vector();

Vector emnetEdgeSet=new Vector();
Graph tempTerritory;

Vector tempTerritoryNodeSet;
Vector tempTerritoryEdgeSet;

Graph tempMAPath;

Vector tempMAPathNodeSet;

Vector tempMAPathEdgeSet;

for(int i=0;i<supplyNodeSet.size();i++){
tempSupply=(Node)supplyNodeSet.elementAt(i);

tempTerritory=this.getTerritory(tempSupply);

139

tempTerritoryNodeSet=tempTerritory.getNodeSet();
tempTerritoryEdgeSet=tempTerritory.getEdgeSet();

emnetNodeSet=GraphAlgorithm.union(emnetNodeSet,tempTerritoryNodeSet);
emnetEdgeSet=GraphAlgorithm.union(emnetEdgeSet,tempTerritoryEdgeSet);

tempMAPath=this.getMAPath(tempSupply);
tempMAPathNodeSet=tempMAPath.getNodeSet();
tempMAPathEdgeSet=tempMAPath.getEdgeSet();

emnetNodeSet=GraphAlgorithm.union(emnetNodeSet,tempMAPathNodeSet);
emnetEdgeSet=GraphAlgorithm.union(emnetEdgeSet,tempMAPathEdgeSet);
}

emnet=new Graph(emnetNodeSet,emnetEdgeSet);

//ma center finished!
/ffinalization
for(int i=0;i<edgeSet.size();i++)
tempEdge=(Edge)edgeSet.elementAt(i);
if(tempEdge.isFastEdge() && !tempEdge.isDetourEdge() && 'tempEdge.isMAEdge())
tempEdge.setNeutralEdge();
}

/Ima center closed!

void startOutputReport(){
/ImaCenter[supply][6]: mutual assistant supply-demand ratio(Double)
double 1d=0.0;
Vector supplyNodeSet=graph.getSupplyNodeSet();
Node tempSupply;
Vector tempFastTreeEdgeSet;
Edge tempRuinedEdge;
for(int i=0;i<supplyNodeSet.size();i++){
tempSupply=(Node)supplyNodeSet.elementAt(i);
tempFastTreeEdgeSet=this.getFastTree(tempSupply).getEdgeSet();
for(int j=0;j<tempFastTreeEdgeSet.size();j++){
tempRuinedEdge=(Edge)tempFastTreeEdgeSet.elementAt(j);
if(this.getSystematicDetourCost(tempRuinedEdge)>Id)
Id=this.getSystematicDetourCost(tempRuinedEdge);

}
frame.setLD(Id);

140

double mac=0.0;

for(int i=0;i<supplyNodeSet.size();i++){
tempSupply=(Node)supplyNodeSet.elementAt(i);
mac=mac+this.getMACost(tempSupply);

}

frame.setAMAC(mac/supplyNodeSet.size());

frame.setNC(GraphAlgorithm.networkCost(emnet));

double fastCost=0.0;

double maxFastCost=0.0;

Vector demandNodeSet=graph.getDemandNodeSet();
Node tempDemand;

for(int i=0;i<demandNodeSet.size();i++){

tempDemand=(Node)demandNodeSet.elementAt(i);

if(getFastCost(tempDemand)>maxFastCost)

maxFastCost=getFastCost(tempDemand);

fastCost=fastCost+this.getFastCost(tempDemand);
}
frame.setATC(fastCost/demandNodeSet:size());

frame.setMTC(maxFastCost);

/lcenter field:
public synchronized Graph getGraph(){

return this.graph;

public synchronized boolean isFinished(){

return this.finish;

void sendRoamer(){
Node supply;
for(int i=0;i<this.graph.getSupplyNodeSet().size();i++)
supply=(Node)this.graph.getSupplyNodeSet().elementAt(i);
roamerCenter[i][0]=supply;

new Roamer(i,supply,this).start();

141

public Node getDummyNode(){

return this.dummyNode;

public synchronized void takeKey(Roamer roamer){
if(Mfinish){
while(lavailable){
try{
/roamer is waiting to take!
wait(1);
}catch(InterruptedException e){

/ltakeKey: cannot wait!

}

/[roamer took the key!

available=false;
telse{

available=false;

/lroamer took the key, but center is finished!

public synchronized void putKey(Roamer roamer){
if(Mfinish){
while(available){
try{
/roamer is waiting to put...
wait(1);
}catch(InterruptedException e){

/IputKey: cannot wait!

}

/lroamer put the key!
available=true;
telse{
/lroamer put the key & center is already finished!

available=true;

//detour manager take key

142

public synchronized void takeKey(DetourManager dmr){
if('detourCenterFinish){
while(lavailable){
try{
//dmr is waiting to take!
wait(1);
}catch(InterruptedException e){

/ltakeKey: cannot wait!

}

/l[dmr took the key!

available=false;
telse{

available=false;

//[dmr took the key, but detour center is finished!

public synchronized void putKey(DetourManager dmr){
if('detourCenterFinish){
while(available){
try{
/ldmr is waiting to put...
wait(1);
}catch(InterruptedException e){

/IputKey: cannot wait!

}
/l[dmr put the key!
available=true;
telse{
/ldmr put the key! detour center is already finished!

available=true;

//ma manager take key
public synchronized void takeKey(MAManager maMr){
if(lmaCenterFinish){
while(lavailable){

try{
//maMr is waiting to take!

143

wait(1);
}catch(InterruptedException e){

/ltakeKey: cannot wait!

}
//maMr took the key!

available=false;
telse{
available=false;

/ImaMr took the key but maCenter is already finished!

public synchronized void putKey(MAManager maMr){
if(lmaCenterFinish){
while(available){
try{
//maMr is waiting to put...
wait(1);
}catch(InterruptedException €){

/IputKey: cannot wait!

}
//maMr put the key!

available=true;
telse{
//maMr put the key! and maCenter already finished!

available=true;

public void updateDetourCondition(){
detourManagerNum--;
if(detourManagerNum==0)

detourCenterFinish=true;

public void updateMACondition(){
maManagerNum--;
iflmaManagerNum==0)

maCenterFinish=true;

144

/InodeCenter method:

/InodeCenter[node][0]: occupy(Boolean)

public synchronized void setOccupy(Node node,boolean occupy){
nodeCenter[node.getLabel()][0]=new Boolean(occupy);
notifyAll();

/InodeCenter[node][1]: distance(Double)
public synchronized void setDistance(Node node,double distance){

nodeCenter[node.getLabel()][1]=new Double(distance);

public synchronized double getDistance(Node node){
Double distance=(Double)nodeCenter[node.getLabel()][1];

return distance.doubleValue();

/InodeCenter[node][2]: preNode(Node)
public synchronized void setPreNode(Node node,Node preNode){

nodeCenter[node.getLabel()][2]=preNode;

public synchronized Node getPreNode(Node node){
Node preNode=(Node)nodeCenter[node.getLabel()][2];

return preNode;

/InodeCenter[node][3]: preEdge(Edge)
public synchronized void setPreEdge(Node node,Edge preEdge){
nodeCenter[node.getLabel()][3]=preEdge;

public synchronized Edge getPreEdge(Node node){
Edge preEdge=(Edge)nodeCenter[node.getLabel()][3];

return preEdge;

/InodeCenter[node][4]: visitorSequence(Vector)
public synchronized void addViditor(Node node,Roamer roamer){
Vector visitorSequence=(Vector)nodeCenter[node.getLabel()][4];

if(lvisitorSequence.contains(roamer))

145

visitorSequence.addElement(roamer);

nodeCenter[node.getLabel()][4]=visitorSequence;

public synchronized Vector getVisitorSequence(Node node){
Vector visitorSequence=(Vector)nodeCenter[node.getLabel()][4];

return visitorSequence;

public synchronized int getVisitorNum(Node node){
Vector visitorSequence=(Vector)nodeCenter[node.getLabel()][4];
int visitorNum=visitorSequence.size();

return visitorNum;

public synchronized Roamer lastVisitor(Node node){
Vector visitorSequence=(Vector)nodeCenter[node.getLabel()][4];
Roamer lastVisitor=(Roamer)visitorSequence.lastElement();

return lastVisitor;

/InodeCenter[node][5]: supply(Node)
public Node getSupply(Node node){
return (Node)nodeCenter[node.getLabel()][5];

/[roamerCenter method:
/froamerCenter[roamer][0]: myNode(Node)
public synchronized void setMyNode(Roamer roamer,Node myNode}{

roamerCenter[roamer.getID()][0]=myNode;

public synchronized Node getMyNode(Roamer roamer){
Node myNode=(Node)roamerCenter[roamer.getID()][0];

return myNode;

/[roamerCenter[roamer][1]: myEdge(Edge)
public synchronized void setMyEdge(Roamer roamer,Edge myEdge}{

roamerCenter[roamer.getID()][1]=myEdge;

146

public synchronized Edge getMyEdge(Roamer roamer){
Edge myEdge=(Edge)roamerCenter[roamer.getID()][1];

return myEdge;

/IroamerCenter[roamer][2]: currNode(Node)
public synchronized void setCurrNode(Roamer roamer,Node currNode }{

roamerCenter[roamer.getID()][2]=currNode;

public synchronized Node getCurrNode(Roamer roamer){
Node currNode=(Node)roamerCenter[roamer.getID()][2];

return currNode;

/froamerCenter[roamer][3]: routeSet(Graph)
public synchronized void setRouteSet(Roamer roamer,Graph routeSet){

roamerCenter[roamer.getlD()][3]=routeSet;

public synchronized void setRouteSet(Roamer roamer,VectorrouteNodeSet,Vector routeEdgeSet){

roamerCenter[roamer.getID()][8]=new Graph(routeNodeSet,routeEdgeSet);

public synchronized Graph getRouteSet(Roamer roamer){
Graph routeSet=(Graph)roamerCenter[roamer.getID()][3];

return routeSet;

public synchronized Vector getRouteNodeSet(Roamer roamer){
Graph routeSet=(Graph)roamerCenter[roamer.getID()][3];
Vector routeNodeSet=routeSet.getNodeSet();

return routeNodeSet;

public synchronized Vector getRouteEdgeSet(Roamer roamer){
Graph routeSet=(Graph)roamerCenter[roamer.getID()][3];
Vector routeEdgeSet=routeSet.getEdgeSet();

return routeEdgeSet;

public synchronized void addEdge(Roamer roamer,Edge edge){

147

Graph routeSet=this.getRouteSet(roamer);
Vector routeNodeSet=routeSet.getNodeSet();
Vector routeEdgeSet=routeSet.getEdgeSet();
if(IrouteEdgeSet.contains(edge))
routeEdgeSet.addElement(edge);

this.setRouteSet(roamer,routeNodeSet,routeEdgeSet);

public synchronized void addNode(Roamer roamer,Node node){
Graph routeSet=this.getRouteSet(roamer);
Vector routeNodeSet=routeSet.getNodeSet();
Vector routeEdgeSet=routeSet.getEdgeSet();
if(IrouteNodeSet.contains(node))
routeNodeSet.addElement(node);

this.setRouteSet(roamer,routeNodeSet,routeEdgeSet);

public synchronized void removeEdge(Roamer roamer,Edge edge {
Graph routeSet=this.getRouteSet(roamer);
Vector routeNodeSet=routeSet.getNodeSet();
Vector routeEdgeSet=routeSet.getEdgeSet();
if(routeEdgeSet.contains(edge)){
routeEdgeSet.removeElement(edge);

}

this.setRouteSet(roamer,routeNodeSet,routeEdgeSet);

public synchronized void removeSubtree(Roamer roamer,Graph subtree){
Graph routeSet=(Graph)this.roamerCenter[roamer.getID()][3];
Vector tempNodeSet1=routeSet.getNodeSet();
Vector tempEdgeSet1=routeSet.getEdgeSet();
Vector tempNodeSet2=subtree.getNodeSet();
Vector tempEdgeSet2=subtree.getEdgeSet();

Node tempNode;
for(int i=0;i<tempNodeSet2.size();i++){
tempNode=(Node)tempNodeSet2.elementAt(i);

boolean nodeExist=tempNodeSet1.removeElement(tempNode);

Edge tempEdge;
for(int i=0;i<tempEdgeSet2.size();i++){

148

tempEdge=(Edge)tempEdgeSet2.elementAt(i);

boolean edgeExist=tempEdgeSet1.removeElement(tempEdge);

public synchronized void addSubtree(Roamer roamer,Graph subtree)}{

Graph visitedRouteSet=(Graph)this.roamerCenter[roamer.getID()][3];

Vector tempNodeSet1=visitedRouteSet.getNodeSet();

Vector tempEdgeSet1=visitedRouteSet.getEdgeSet();

Vector tempNodeSet2=subtree.getNodeSet();

Vector tempEdgeSet2=subtree.getEdgeSet();

Node tempNode;

for(int i=0;i<tempNodeSet2.size();i++){
tempNode=(Node)tempNodeSet2.elementAt(i);
if(tempNodeSet1.contains(tempNode) ¥
telse{

tempNodeSet1.addElement(tempNode);

Edge tempEdge;

for(int i=0;i<tempEdgeSet2.size();i++){
tempEdge=(Edge)tempEdgeSet2.elementAt(i);
if(tempEdgeSet1.contains(tempEdge)){
telse{

tempEdgeSet1.addElement(tempEdge);

/lfastCenter
/[fastCenter[demand][0]: fastPath(Graph)
/[fastCenter[demand][1]: supply(Node)
/[fastCenter[demand][2]: fastPathLength(Double)
public double getFastCost(Node demand){
Double fastCost=(Double)fastCenter[demand.getLabel()][2];

return fastCost.doubleValue();

//detourCenter[edge][0]: downstream(Graph)
public void setDownstream(Edge ruinedEdge,Graph downstream){

detourCenter[ruinedEdge.getLabel()][0]=downstream;

149

}

public Graph getDownstream(Edge ruinedEdge){
return (Graph)detourCenter[ruinedEdge.getLabel()][0];

//detourCenter[edge][1]: upstream(Graph)
public void setUpstream(Edge ruinedEdge,Graph upstream){
detourCenter[ruinedEdge.getLabel()][1]=upstream;

public Graph getUpstream(Edge ruinedEdge{
return (Graph)detourCenter[ruinedEdge.getLabel()][1];

//detourCenter[edge][2]: mergeNode(Node)
public void setMergeNode(Edge ruinedEdge,Node mergeNode){
detourCenter[ruinedEdge.getLabel()][2]=mergeNode;

public Node getMergeNode(Edge ruinedEdge){
return (Node)detourCenter[ruinedEdge.getLabel()][2];

//detourCenter[edge][3]: accessNode(Node)
public void setAccessNode(Edge ruinedEdge,Node accessNode){

detourCenter[ruinedEdge.getLabel()][3]=accessNode;

public Node getAccessNode(Edge ruinedEdge){
return (Node)detourCenter[ruinedEdge.getLabel()][3];

//detourCenter[edge][4]: detourPath(Graph)
public void setDetourPath(Edge ruinedEdge,Graph detourPath){
detourCenter[ruinedEdge.getLabel()][4]=detourPath;

public Graph getDetourPath(Edge ruinedEdge){
return (Graph)detourCenter[ruinedEdge.getLabel()][4];

150

//detourCenter[edge][5]: systematicDetourCost(Double)
public void setSystematicDetourCost(Edge ruinedEdge,double sdc){
detourCenter[ruinedEdge.getLabel()][5]=new Double(sdc);

public double getSystematicDetourCost(Edge ruinedEdge{
Double tempDouble=(Double)detourCenter[ruinedEdge.getLabel()][5];

return tempDouble.doubleValue();

//detourCenter[edge][6]: mergeCost(Vector)
public void setMergeCost(Edge ruinedEdge,double cost){
detourCenter[ruinedEdge.getLabel()][6]=new Double(cost);

public double getMergeCost(Edge ruinedEdge{
Double mergeCost=(Double)detourCenter[ruinedEdge.getLabel()][6];

return mergeCost.doubleValue();

/ImaCenter
/ImaCenter[supply][0]: fastTree(Graph)
public Graph getFastTree(Node supply){
return (Graph)maCenter[supply.getltabel()][0];

/ImaCenter[supply][1]: territory(Graph) 2ECON
public synchronized void setTerritory(Node supply,Graph territory){
maCenter[supply.getLabel()][1]=territory;

public Graph getTerritory(Node supply){
return (Graph)maCenter[supply.getLabel()][1];

/ImaCenter[supply][2]: source(Node)
public synchronized void setSource(Node supply,Node source){

maCenter[supply.getLabel()][2]=source;

public Node getSource(Node supply){
return (Node)maCenter[supply.getLabel()][2];

151

}

/ImaCenter[supply][3]: icpSet(Vector)
public synchronized void setICPSet(Node supply,Vector icpSet)
maCenter[supply.getLabel()][3]=icpSet;

public Vector getICPSet(Node supply
return (Vector)maCenter[supply.getLabel()][3];

public int getiCPNum(Node supply){
Vector icpSet=(Vector)maCenter[supply.getLabel()][3];

return icpSet.size();

/ImaCenter[supply][4]: maPath(Graph)
public synchronized void setMAPath(Node supply,GraphimaPath){
maCenter[supply.getLabel()][4]=maPath;

public Graph getMAPath(Node supply
return (Graph)maCenter[supply.getLabel()][4];

/ImaCenter[supply][5]: within territory supply-demand ratio(Double)
public synchronized void setTerritorySDR(Node supply,double territorySDR){
maCenter[supply.getLabel()][5]=new Double(territorySDR);

public double getTerritorySDR(Node supply
Double territorySDR=(Double)maCenter[supply.getLabel()][5];
return territorySDR.doubleValue();

/ImaCenter[supply][6]: mutual assistant supply-demand ratio(Double)
public synchronized void setMAsdr(Node supply,double maSDR)
maCenter[supply.getLabel()][6]=new Double(maSDR);

public double getMAsdr(Node supply){
Double maSDR=(Double)maCenter[supply.getLabel()][6];

152

return maSDR.doubleValue();

/ImaCenter[supply][7]: maCost > source to supply

/lincluding maPath cost & merge cost with respect to territory demandNum

public synchronized void setMACost(Node supply,double maCost){
maCenter[supply.getLabel()][7]=new Double(maCost);

public double getMACost(Node supply){
Double maCost=(Double)maCenter[supply.getLabel()][7];

return maCost.doubleValue();

153

Detourist.java

package emnet.thread;

import emnet.graph.Node;

import emnet.graph.Graph;

import java.util.Vector;

import emnet.graph.Edge;

import emnet.algorithm.GraphAlgorithm;

public class Detourist extends Thread{
intid;
Node start,supply,access;
DetourManager dmr;

Center center;

Node currNode,preNode,myNode;
Edge preEdge,myEdge,currRuinedEdge;
Graph usableGraph,downstream,upstream,bridge,routeSet,detourPath;

Vector routeNodeSet,routeEdgeSet,upstreamNodeSet;

int downstreamDemandNum;

double mergeCost,systematicDetourCost;

boolean detouristFinish;

public Detourist(int id,Node start,DetourManager dmr){
super(""'+id);
this.id=id;
this.start=start;
this.dmr=dmr;

center=dmr.getCenter();

supply=dmr.getSupply();

int edgeNum=dmr.getGraph().getEdgeSet().size();

Node dummyNode=this.center.getDummyNode();
dummyNode.setDummy();

Edge dummyEdge=new Edge(edgeNum,start,dummyNode,0.0);
dummyEdge.setDummyEdge();

dmr.getGraph().addNode(dummyNode);

154

Detourist.java

dmr.getGraph().addEdge(dummyEdge);

Vector routeNodeSet=new Vector();
routeNodeSet.addElement(dummyNode);

Vector routeEdgeSet=new Vector();
routeEdgeSet.addElement(dummyEdge);
dmr.setRouteSet(this,routeNodeSet,routeEdgeSet);

dmr.setMyNode(this,dummyNode);
dmr.setMyEdge(this,dummyEdge);

dmr.setCurrNode(this,start);

Vector nodeSet=dmr.getGraph().getNodeSet();

Vector edgeSet=dmr.getGraph().getEdgeSet();

Vector usableEdgeSet=new Vector();

Edge tempEdge;

for(int i=0;i<edgeSet.size();i++)
tempEdge=(Edge)edgeSet.elementAt(i);
if(tempEdge!=dmr.getCurrRuinedEdge())

usableEdgeSet.addElément(tempEdge);

}
usableGraph=new Graph(nodeSet,usableEdgeSet);

downstream=dmr.getCurrDownstream();
upstream=dmr.getCurrUpstream();

upstreamNodeSet=upstream.getNodeSet();

currRuinedEdge=dmr.getCurrRuinedEdge();
downstreamDemandNum=dmr.getDownstreamDemandNum();
mergeCost=GraphAlgorithm.getMergeCost(this,start);

systematicDetourCost=0.0;
dmr.setCurrDetourCost(this,dmr.getMyNode(this),mergeCost);
dmr.setPreNode(this,start,dummyNode);
dmr.setPreEdge(this,start,dummyEdge);

detouristFinish=false;

public int getID()}

return id;

155

Detourist.java

public Graph getUsableGraph(){

return usableGraph;

public Graph getDownstream(){

return downstream;

public Graph getUpstream()}{

return upstream;

public DetourManager getDetourManager(){

return dmr;

public Center getCenter(){

return center;

public Node getMergeNode(){

return start;

public Node getAccessNode(){

return access;

public Edge getRuinedEdge(){

return currRuinedEdge;

public double getMergeCost(}

return mergeCost;

public double getSystematicDetourCost(){

return systematicDetourCost;

public Graph getDetourPath(){

156

Detourist.java

return detourPath;

public void run(){
dmr.takeKey(this);

/l::map init::
Vector edgeSet=center.getGraph().getEdgeSet();
Edge tempEdge;
for(int i=0;i<edgeSet.size();i++)
tempEdge=(Edge)edgeSet.elementAt(i);
if('tempEdge.isFastEdge() && !ltempEdge.isDetourEdge() && !tempEdge.isMAEdge())
tempEdge.setNeutralEdge();
}

[/l::map init::

detouring:
while(!detouristFinish){
if(dmr.getCurrNode(this)==supply){
double
sdc=dmr.getCurrDetourCost(this,dmr.getMyNode(this))+dmr.getMyEdge(this).getWeight()*downstreamDemandNum;
dmr.setCurrDetourCost(this,dmr.getCurrNode(this),sdc);

dmr.addNode(this,supply);
dmr.addEdge(this,dmr.getMyEdge(this));

dmr.setPreNode(this,supply,dmr.getMyNode(this));
dmr.setPreEdge(this,supply,dmr.getMyEdge(this));

dmr.updatMinSDC(this,dmr.getCurrDetourCost(this,dmr.getSupply()));
dmr.getMyEdge(this).setDetourTestEdge(true);

break detouring;

lelse if(dmr.getMinSDC(this)!=0.0 &&

dmr.getMinSDC(this)<dmr.getCurrDetourCost(this,dmr.getMyNode(this)))

/lsome detourist has already found a shorter detour path
break detouring;

telse{
dmr.addNode(this,dmr.getCurrNode(this));
dmr.addEdge(this,dmr.getMyEdge(this));

157

Detourist.java

dmr.setPreNode(this,dmr.getCurrNode(this),dmr.getMyNode(this));
dmr.setPreEdge(this,dmr.getCurrNode(this),dmr.getMyEdge(this));

double
sdc=dmr.getCurrDetourCost(this,dmr.getMyNode(this))+dmr.getMyEdge(this).getWeight()*downstreamDemandNum;
dmr.setCurrDetourCost(this,dmr.getCurrNode(this),sdc);

dmr.getMyEdge(this).setDetourTestEdge(true);
dmr.setMyNode(this,dmr.getCurrNode(this));

/ffind currEdge & currNode, assign new myNode
dijkstra(null);

try{
sleep(1);
}catch(InterruptedException ex){

}

/Iset access node

Vector detourPathNodeSet=new Vector(),detourPathEdgeSet=new Vector();
Node tempCurrNode=dmr.getSupply();
detourPathNodeSet.addElement(tempCurrNode);

Edge tempPreEdge;
Node n1,n2;
do{
tempPreEdge=dmr.getPreEdge(this,tempCurrNode);

if('detourPathEdgeSet.contains(tempPreEdge))
detourPathEdgeSet.addElement(tempPreEdge);

n1=tempPreEdge.getN1();
n2=tempPreEdge.getN2();

if(ldetourPathNodeSet.contains(n1))

detourPathNodeSet.addElement(n1);
if(ldetourPathNodeSet.contains(n2))

158

Detourist.java

detourPathNodeSet.addElement(n2);

if(lupstreamNodeSet.contains(n1) && lupstreamNodeSet.contains(n2)){
access=n1;

lelse if(upstreamNodeSet.contains(n2) && lupstreamNodeSet.contains(n1)){
access=n2;

telse{

access=null;

tempCurrNode=dmr.getPreNode(this,tempCurrNode);

twhile(tempCurrNode!=start);

if(ldetourPathNodeSet.contains(start))
detourPathNodeSet.addElement(start);

/Iset detourPath
detourPath=new Graph(detourPathNodeSet,detourPathEdgeSet);

/Iset sdc
systematicDetourCost=dmr.getCurrDetourCost{(this,supply);

dmr.setSystematicDetourCost(this,systematicDetourCost);

dmr.updateCurrRuinedEdgeFinish();

dmr.updateDetourCenter(this);

dmr.putKey(this);

void dijkstra(Edge canceledEdge){

/ffind out the best incident edge
//define new myEdge & currNode

Vector tempRouteNodeSet=(Vector)dmr.getRouteNodeSet(this);

Vector incidentEdgeSet=GraphAlgorithm.getincidentEdges(this,tempRouteNodeSet);

Vector exclusivelncidentEdgeSet=new Vector();

for(int i=0;i<incidentEdgeSet.size();i++){
if(ldmr.getRouteEdgeSet(this).contains(incidentEdgeSet.elementAt(i))){

exclusivelncidentEdgeSet.addElement(incidentEdgeSet.elementAt(i));

159

Detourist.java

Edge tempEdge;
Node n1,n2;

if(exclusivelncidentEdgeSet.size()>1){

tempEdge=(Edge)exclusivelncidentEdgeSet.elementAt(0);

dmr.setMyEdge(this,tempEdge);

n1=tempEdge.getN1();

n2=tempEdge.getN2();

if(tempRouteNodeSet.contains(n1) && !tempRouteNodeSet.contains(n2)){
dmr.setMyNode(this,n1);
dmr.setCurrNode(this,n2);

}lelse if(tempRouteNodeSet.contains(n2) && !tempRouteNodeSet.contains(n1)){
dmr.setMyNode(this,n2);
dmr.setCurrNode(this,n1);

telse{

/[dijkstra error 1: not incident edge! check GraphAlgorithm.getincidentEdgeSet()

double

min=dmr.getCurrDetourCost(this,dmr.getMyNode(this))+dmr.getMyEdge(this).getWeight()*downstreamDemandNum;

for(int i=1;i<exclusivelncidentEdgeSet:.size();i++)
tempEdge=(Edge)exclusivelncidentEdgeSet.elementAt(i);
n1=tempEdge.getN1();
n2=tempEdge.getN2();
if(tempRouteNodeSet.contains(n1) && !tempRouteNodeSet.contains(n2)){
if((dmr.getCurrDetourCost(this,n1)+tempEdge.getWeight()*downstreamDemandNum)<min){
min=dmr.getCurrDetourCost(this,n1)+tempEdge.getWeight()*downstreamDemandNum;
dmr.setMyEdge(this,tempEdge);
dmr.setMyNode(this,n1);
dmr.setCurrNode(this,n2);
}
}else if(tempRouteNodeSet.contains(n2) && ltempRouteNodeSet.contains(n1)){
if((dmr.getCurrDetourCost(this,n2)+tempEdge.getWeight()*downstreamDemandNum)<min){
min=dmr.getCurrDetourCost(this,n2)+tempEdge.getWeight()*downstreamDemandNum;
dmr.setMyEdge(this,tempEdge);
dmr.setMyNode(this,n2);
dmr.setCurrNode(this,n1);
}
else{

//dijkstra error 2: incident edge error!

160

Detourist.java
}

lelse if(exclusivelncidentEdgeSet.size()==1)
tempEdge=(Edge)exclusivelncidentEdgeSet.elementAt(0);
dmr.setMyEdge(this,tempEdge);
n1=tempEdge.getN1();
n2=tempEdge.getN2();
if(tempRouteNodeSet.contains(n1) && !tempRouteNodeSet.contains(n2)){
dmr.setMyNode(this,n1);
dmr.setCurrNode(this,n2);
lelse if(tempRouteNodeSet.contains(n2) && !tempRouteNodeSet.contains(n1)){
dmr.setMyNode(this,n2);
dmr.setCurrNode(this,n1);
telse{
/[dijkstra error 3: not incident edge! check GraphAlgorithm.getincidentEdgeSet()
}

telse{
detouristFinish=true;

/Irenders all nodes visited

161

DetourManager.java

package emnet.thread;

import emnet.graph.Node;

import emnet.graph.Graph;

import java.util.Vector;

import emnet.graph.Edge;

import emnet.algorithm.GraphAlgorithm;

public class DetourManager extends Thread{

intid;

Center center;

Node supply;

Graph graph,fastTree,territory;

Vector edgeSet,nodeSet,fastTreeEdgeSet,fastTreeNodeSet,detourists,territoryNodeSet, territoryEdgeSet;

int detouristNum,downstreamDemandNum;

/InodeDept

/InodeDept[detourist][node][0]: currDetourDist
/InodeDept[detourist][node][1]: preNode
/InodeDept[detourist][node][2]: preEdge
Object[][][] nodeDept;

/ldetourDept

//detourDept[detourist][0]: myNode(Node)
//detourDept[detourist][1]: myEdge(Edge)
//detourDept[detourist][2]: currNode(Node)
//detourDept[detourist][3]: routeSet(Graph)
//detourDept[detourist][4]: detourLength(Double)
//deoutrDept[detourist][5]: bridge(Graph)
Object[][] detourDept;

/IsdcDept

//sdcDept[ruinedEdge][0]: minSDC
Object[][] sdcDept;

Edge currRuinedEdge;

Graph currUpstream,currDownstream;

Vector currDownstreamNodeSet;

boolean currRuinedEdgeFinish,available;

162

DetourManager.java

/lone manager controls one territory

public DetourManager(int id,Center center,Node supply){
this.id=id;
this.center=center;

this.supply=supply;

graph=center.getGraph();
edgeSet=graph.getEdgeSet();
nodeSet=graph.getNodeSet();

fastTree=center.getFastTree(supply);
fastTreeEdgeSet=fastTree.getEdgeSet();
fastTreeNodeSet=fastTree.getNodeSet();

I detouristNum=fastTreeNodeSet.size();

nodeDept=new Object[fastTreeNodeSet.size()j[nodeSet.size()][3];
detourDept=new Object[fastTreeNodeSet.size()][6];

if(fastTreeEdgeSet.size()!=0){
Edge tempFastTreeEdge=(Edge)fastTreeEdgeSet.elementAt(0);
int maxEdgelLabel=tempFastTreeEdge:getLabel();
for(int j=1;j<fastTreeEdgeSet.size();j++){
tempFastTreeEdge=(Edge)fastTreeEdgeSet.elementAt(j);
if(tempFastTreeEdge.getLabel()>maxEdgeLabel)
maxEdgelLabel=tempFastTreeEdge.getLabel();

}
sdcDept=new Object[maxEdgeLabel+1][1];

public void run(){

if(fastTreeEdgeSet==null){
center.updateDetourCondition();
destroy();

}

center.takeKey(this);

for(int i=0;i<fastTreeEdgeSet.size();i++){

163

DetourManager.java

/linitialization
currRuinedEdgeFinish=false;

available=true;

for(int j=0;j<fastTreeNodeSet.size();j++){
Node tempNode;
for(int k=0;j<fastTreeNodeSet.size();j++)
tempNode=(Node)fastTreeNodeSet.elementAt(j);
nodeDept[jl[tempNode.getLabel()][0]=new Double(0.0);

for(int j=0;j<detouristNum;j++){
detourDept[j][0]=null;
detourDept[j][1]=null;
detourDept[j][2]=null;
detourDept[j][3]=null;
detourDept[j][4]=new Double(0.0);
detourDept[j][5]=null;

Edge tempFastTreeEdge;

for(int j=0;j<fastTreeEdgeSet.size();j++){
tempFastTreeEdge=(Edge)fastTreeEdgeSet.elementAt(j);
sdcDept[tempFastTreeEdge.getLabel()][0]=new Double(0.0);

currRuinedEdge=(Edge)fastTreeEdgeSet.elementAt(i);
currUpstream=GraphAlgorithm.getSubtreeWithSupply(fastTree,currRuinedEdge);
currDownstream=GraphAlgorithm.getSubtreeWithoutSupply(fastTree,currRuinedEdge);
currDownstreamNodeSet=currDownstream.getNodeSet();

detouristNum=currDownstreamNodeSet.size();

Node tempNode;

downstreamDemandNum=0;

for(int k=0;k<currDownstreamNodeSet.size();k++){
tempNode=(Node)currDownstreamNodeSet.elementAt(k);
if(tempNode.isDemand())

downstreamDemandNum++;

/lone detourist tests from one node when one currRuinedEdge is simulated

164

DetourManager.java

Detourist tempDetourist;

detourists=new Vector();

for(int j=0;j<currDownstreamNodeSet.size();j++){
tempNode=(Node)currDownstreamNodeSet.elementAt(j);
tempDetourist=new Detourist(j,tempNode,this);
detourists.addElement(tempDetourist);

tempDetourist.start();

//dmr waiting the currRuinedEdge finish
while(!currRuinedEdgeFinish){
}

/lcurrRuinedEdge finish: all situations simulated

//set detour edges on the shortest detour route

Detourist bestDetourist=(Detourist)detourists.elementAt(0);

Detourist tempDetourist1;

double minSDC=bestDetourist.getSystematicDetourCost();

for(int j=1;j<detourists.size();j++){
tempDetourist1=(Detourist)detourists.elementAt();
if(tempDetourist1.getSystematicDetourCost()<minSDC)

minSDC=tempDetourist1.getSystematicDetourCost();

bestDetourist=tempDetouristT;

Vector bestDetourPathEdgeSet=bestDetourist.getDetourPath().getEdgeSet();

Edge tempEdge1;

for(int j=0;j<bestDetourPathEdgeSet.size();j++){
tempEdge1=(Edge)bestDetourPathEdgeSet.elementAt(j);
tempEdge1.setDetourEdge();

/I::maCenter[supply][1]: territory(Graph) 2ECON::

Graph territory=fastTree;

Edge tempRuinedEdge;

Graph tempDetourPath;

Vector tempDetourPathNodeSet,tempDetourPathEdgeSet;
Node tempDetourPathNode;

Edge tempDetourPathEdge;

for(int i=0;i<fastTreeEdgeSet.size();i++){

165

DetourManager.java

tempRuinedEdge=(Edge)fastTreeEdgeSet.elementAt(i);
tempDetourPath=center.getDetourPath(tempRuinedEdge);
if(tempDetourPath!=null){
tempDetourPathNodeSet=tempDetourPath.getNodeSet();
tempDetourPathEdgeSet=tempDetourPath.getEdgeSet();
if(tempDetourPathNodeSet!=null){
for(int j=0;j<tempDetourPathNodeSet.size();j++)
tempDetourPathNode=(Node)tempDetourPathNodeSet.elementAt(j);
if(territory.hasNode(tempDetourPathNode))
territory.addNode(tempDetourPathNode);

}
if(tempDetourPathEdgeSet!=null){

for(int j=0;j<tempDetourPathEdgeSet.size();j++){
tempDetourPathEdge=(Edge)tempDetourPathEdgeSet.elementAt(j);
if(territory.hasEdge(tempDetourPathEdge))
territory.addEdge(tempDetourPathEdge);

}

telse{

/ltempDetourPath is null!

center.setTerritory(supply,territory);
/I::maCenter[supply][1]: territory(Graph) 2ECON::

center.updateDetourCondition();

center.putKey(this);

/IdetourDept method:
public synchronized void takeKey(Detourist detourist){
if(lcurrRuinedEdgeFinish){
while(lavailable){
try{
wait(1);
}catch(InterruptedException e){

/ltakeKey: cannot wait!

}

available=false;

166

DetourManager.java

telse{

available=false;

public synchronized void putKey(Detourist detourist){
if(lisCurrRuinedEdgeFinish()){
while(available){
try{
wait(1);
}catch(InterruptedException e){

/IputKey: cannot wait!

}

available=true;
telse{

available=true;

public synchronized boolean isFinished(){

return currRuinedEdgeFinish;

void sendDetourist(Graph downstream){
Vector fastTreeNodeSet=downstream.getNodeSet();
Node tempNode;
for(int i=0;i<fastTreeNodeSet.size();i++){
tempNode=(Node)fastTreeNodeSet.elementAt(i);

new Detourist(i,tempNode,this).start();

public synchronized void setCurrRuinedEdgeFinish(boolean currRuinedEdgeFinish){

this.currRuinedEdgeFinish=currRuinedEdgeFinish;

public Edge getCurrRuinedEdge(}

return currRuinedEdge;

public Graph getCurrUpstream(){

167

DetourManager.java

return currUpstream;

public Graph getCurrDownstream(){

return currDownstream;

public Graph getGraph(){

return center.getGraph();

public void setPreNode(Detourist detourist,Node node,Node preNode){

nodeDept[detourist.getID()][node.getLabel()][1]=preNode;

public Node getPreNode(Detourist detourist,Node node)}{
return (Node)nodeDept[detourist.getID()][node.getLabel()][1];

public void setPreEdge(Detourist detourist,Node node;Edge preEdge {
nodeDept[detourist.getlD()][node.getl:abel()][2]=preEdge;

public Edge getPreEdge(Detourist detourist,Node node){
return (Edge)nodeDept[detourist.getID()][node.getLabel()][2];

public int getDownstreamDemandNum()}{

return downstreamDemandNum;

public Center getCenter(){

return center;

public Node getSupply()}{

return supply;

public int getID()}

return id;

168

DetourManager.java

public synchronized void updateCurrRuinedEdgeFinish(){
detouristNum--;
if(detouristNum==0){
currRuinedEdgeFinish=true;
telse{

currRuinedEdgeFinish=false;

public synchronized boolean isCurrRuinedEdgeFinish()}

return currRuinedEdgeFinish;

public synchronized void updateDetourCenter(Detourist detourist){
Center center=detourist.getCenter();
DetourManager dmr=detourist.getDetourManager();

Edge ruinedEdge=detourist.getRuinedEdge();

/ldetourCenter[edge][0]: downstream(Graph)
/ldetourCenter[edge][1]: upstream(Graph)
//detourCenter[edge][2]: mergeNode(Node)
/ldetourCenter{edge][3]: accessNode(Node)
/ldetourCenter[edge][4]: detourPath(Graph)
//detourCenter[edge][5]: systematicDetourCost(Double)
//detourCenter[edge][6]: mergeCost(Vector)

/ImaCenter[supply][1]: territory(Graph) 2ECON

double detouristDetourLength=dmr.getSystematicDetourCost(detourist);
double centerDetourLengthRecord=center.getSystematicDetourCost(detourist.getRuinedEdge());

if(centerDetourLengthRecord==0.0 || detouristDetourLength<centerDetourLengthRecord){

center.setDownstream(ruinedEdge,detourist.getDownstream());
center.setUpstream(ruinedEdge,detourist.getUpstream());
center.setMergeNode(ruinedEdge,detourist.getMergeNode());
center.setAccessNode(ruinedEdge,detourist.getAccessNode());
center.setDetourPath(ruinedEdge,detourist.getDetourPath());
center.setSystematicDetourCost(ruinedEdge,detouristDetourLength);

center.setMergeCost(ruinedEdge,detourist.getMergeCost());

//detouristDetourLength is smaller than center record

169

DetourManager.java

telse{

//detouristDetourLength is larger than center record

/ldetourDept method:
//detourDept[detourist][0]: myNode(Node)
public synchronized void setMyNode(Detourist detourist,Node myNode){

detourDept[detourist.getID()][0]=myNode;

public synchronized Node getMyNode(Detourist detourist){
Node myNode=(Node)detourDept[detourist.getID()][0];

return myNode;

//detourDept[detourist][1]: myEdge(Edge)
public synchronized void setMyEdge(Detourist detourist,Edge myEdge
detourDept[detourist.getID()][1]=myEdge;

public synchronized Edge getMyEdge(Detourist detourist){
Edge myEdge=(Edge)detourDept[detourist.getiD()][1];

return myEdge;

//detourDept[detourist][2]: currNode(Node)
public synchronized void setCurrNode(Detourist detourist,Node currNode){

detourDept[detourist.getID()][2]=currNode;

public synchronized Node getCurrNode(Detourist detourist){
Node currNode=(Node)detourDept[detourist.getID()]1[2];

return currNode;

//detourDept[detourist][3]: routeSet(Graph)
public synchronized void setRouteSet(Detourist detourist,Graph routeSet){
detourDept[detourist.getID()][3]=routeSet;

public synchronized void setRouteSet(Detourist detourist,Vector routeNodeSet,Vector routeEdgeSet){

170

DetourManager.java

detourDept[detourist.getID()][3]=new Graph(routeNodeSet,routeEdgeSet);

public synchronized Graph getRouteSet(Detourist detourist){
Graph routeSet=(Graph)detourDept[detourist.getID()][3];

return routeSet;

public synchronized Vector getRouteNodeSet(Detourist detourist){
Graph routeSet=(Graph)detourDept[detourist.getID()][3];
Vector routeNodeSet=routeSet.getNodeSet();

return routeNodeSet;

public synchronized Vector getRouteEdgeSet(Detourist detourist){
Graph routeSet=(Graph)detourDept[detourist.getID()][3];
Vector routeEdgeSet=routeSet.getEdgeSet();

return routeEdgeSet;

public synchronized void addEdge(Detourist detourist,Edge edge){
Graph routeSet=this.getRouteSet(detourist);
Vector routeNodeSet=routeSet.getNodeSet();
Vector routeEdgeSet=routeSet.getEdgeSet();
if(IrouteEdgeSet.contains(edge))
routeEdgeSet.addElement(edge);
this.setRouteSet(detourist,routeNodeSet,routeEdgeSet);

public synchronized void addNode(Detourist detourist,Node node){
Graph routeSet=this.getRouteSet(detourist);
Vector routeNodeSet=routeSet.getNodeSet();
Vector routeEdgeSet=routeSet.getEdgeSet();
if(IrouteNodeSet.contains(node))
routeNodeSet.addElement(node);

this.setRouteSet(detourist,routeNodeSet,routeEdgeSet);

public synchronized void removeEdge(Detourist detourist,Edge edge){
Graph routeSet=this.getRouteSet(detourist);
Vector routeNodeSet=routeSet.getNodeSet();
Vector routeEdgeSet=routeSet.getEdgeSet();

171

DetourManager.java

if(routeEdgeSet.contains(edge)){
routeEdgeSet.removeElement(edge);

}
this.setRouteSet(detourist,routeNodeSet,routeEdgeSet);

public synchronized void removeSubtree(Detourist detourist,Graph subtree }{
Graph routeSet=(Graph)this.detourDept[detourist.getID()][3];
Vector tempNodeSet1=routeSet.getNodeSet();
Vector tempEdgeSet1=routeSet.getEdgeSet();
Vector tempNodeSet2=subtree.getNodeSet();
Vector tempEdgeSet2=subtree.getEdgeSet();

Node tempNode;
for(int i=0;i<tempNodeSet2.size();i++){
tempNode=(Node)tempNodeSet2.elementAt(i);

boolean nodeExist=tempNodeSet1.removeElement(tempNode);

Edge tempEdge;
for(int i=0;i<tempEdgeSet2.size();i++){
tempEdge=(Edge)tempEdgeSet2:elementAt(i);

boolean edgeExist=tempEdgeSett.removeElement(tempEdge);

public synchronized void addSubtree(Detourist detourist,Graph subtree){

Graph visitedRouteSet=(Graph)this.detourDept[detourist.getID()][3];
Vector tempNodeSet1=visitedRouteSet.getNodeSet();

Vector tempEdgeSet1=visitedRouteSet.getEdgeSet();

Vector tempNodeSet2=subtree.getNodeSet();

Vector tempEdgeSet2=subtree.getEdgeSet();

Node tempNode;

for(int i=0;i<tempNodeSet2.size();i++){
tempNode=(Node)tempNodeSet2.elementAt(i);
if(tempNodeSet1.contains(tempNode) ¥
telse{

tempNodeSet1.addElement(tempNode);

172

DetourManager.java

Edge tempEdge;

for(int i=0;i<tempEdgeSet2.size();i++){
tempEdge=(Edge)tempEdgeSet2.elementAt(i);
if(tempEdgeSet1.contains(tempEdge))
telse{

tempEdgeSet1.addElement(tempEdge);

//detourDept[detourist][4]: detourLength(Double)
public void setSystematicDetourCost(Detourist detourist, double sdc){

detourDept[detourist.getID()][4]=new Double(sdc);

public double getSystematicDetourCost(Detourist detourist){
Double sdc=(Double)detourDept[detourist.getlD()][4];

return sdc.doubleValue();

public void setCurrDetourCost(Detourist detourist;Node node,double sdc){
nodeDept[detourist.getID()][node.getLabel()][0]=new Double(sdc);

public double getCurrDetourCost(Detourist detourist,Node node){
Double tempDouble=(Double)nodeDept[detourist.getID()][node.getLabel()][0];

return tempDouble.doubleValue();

/ldetourCenter:

public synchronized void updateMinSDC(double sdc){
double currSDC=center.getSystematicDetourCost(currRuinedEdge);
if(currSDC==0.0 || sdc<currSDC)

center.setSystematicDetourCost(currRuinedEdge,sdc);

public synchronized double getMinSDC(){

return center.getSystematicDetourCost(currRuinedEdge);

173

DetourManager.java

//deoutrDept[detourist][5]: bridge(Graph)
/IsdcDept
//sdcDept[ruinedEdge][0]: minSDC
public synchronized void updatMinSDC(Detourist detourist,double sdc){
Edge ruinedEdge=detourist.getRuinedEdge();
DetourManager dmr=detourist.getDetourManager();
double currSDC=dmr.getMinSDC(detourist);
if(sdc<currSDC)
sdcDept[ruinedEdge.getLabel()][0]=new Double(sdc);

public synchronized double getMinSDC(Detourist detourist){
Edge ruinedEdge=detourist.getRuinedEdge();
Double minSDC=(Double)sdcDept[ruinedEdge.getLabel()][0];

return minSDC.doubleValue();

174

Helper.java

package emnet.thread;

import java.util.Vector;
import emnet.graph.Node;
import emnet.graph.Graph;
import emnet.graph.Edge;

public class Helper extends Thread{
intid;
MAManager maMr;

Node start,source;

Node currNode,preNode,myNode;

Edge preEdge,myEdge;

Graph maPath;

/ImaCost = mergeCost + demandNum:* bridgeLength(maPath)

double maCost;

/ffor merge cost
/lwalkerCenter[node][]:
/InodeDept
/InodeDept[node][0]: currCost
/InodeDept[node][1]: preNode
/InodeDept[node][2]: preEdge
Object[][] nodeDept;

/lwalkerDept

/lwalkerDept[0]: myNode(Node)
/lwalkerDept[1]: myEdge(Edge)
/lwalkerDept[2]: currNode(Node)
/IwalkerDept[3]: routeSet(Graph)
Object[] walkerDept;

boolean helperFinish,longer,exclusivelsZero;

public Helper(int id,Node start, MAManager maMr){

this.id=id,;

this.start=start;

175

Helper.java

this.maMr=maMr;

this.source=null;

/InodeDept
nodeDept=new ObjectmaMr.getGraph().getNodeSet().size()][3];

/lwalkerDept
walkerDept=new Object[4];

Node dummyNode=maMr.getCenter().getDummyNode();
dummyNode.setDummy();

int edgeNum=maMr.getGraph().getEdgeSet().size();

Edge dummyEdge=new Edge(edgeNum,start,dummyNode,0.0);
dummyEdge.setDummyEdge();

maMr.getGraph().addNode(dummyNode);
maMr.getGraph().addEdge(dummyEdge);

/Ihelper init, set to maMr

Vector routeNodeSet=new Vector();
routeNodeSet.addElement(dummyNode);
Vector routeEdgeSet=new Vector();

routeEdgeSet.addElement(dummyEdge);

maMr.setRouteSet(this,routeNodeSet,routeEdgeSet);
maMr.setMyNode(this,dummyNode);
maMr.setMyEdge(this,dummyEdge);
maMr.setCurrNode(this,start);

double mergeCost=getECONMergeCost(start);

maMr.setCurrMACost(this,maMr.getMyNode(this),mergeCost);
maMr.setPreNode(this,start,dummyNode);
maMr.setPreEdge(this,start,dummyEdge);

maCost=0.0;

helperFinish=false;

longer=false;

exclusivelsZero=false;

public int getID()}

return id;

176

Helper.java

}

public Node getStart(){

return start;

public MAManager getMAManger(){

return maMr;

public double getMACost(}

return maCost;

public Graph getMAPath(){

return maPath;

public Node getSource(){

return source;

public void run(){
maMr.takeKey(this);

/l::map init::
Vector edgeSet=maMr.getCenter().getGraph().getEdgeSet();
Edge tempEdge;
for(int i=0;i<edgeSet.size();i++)
tempEdge=(Edge)edgeSet.elementAt(i);
if('tempEdge.isFastEdge() && !ltempEdge.isDetourEdge() && !tempEdge.isMAEdge())
tempEdge.setNeutralEdge();
}

/l::map init::

maHelping:

while(!helperFinish){
if(maMr.getCurrNode(this).isSupply() && maMr.getCurrNode(this)!l=maMr.getSupply() X

source=maMr.getCurrNode(this);

177

Helper.java

double
currMACost=maMr.getCurrMACost(this,maMr.getMyNode(this))+maMr.getMyEdge(this).getWeight()*maMr.getDemanNum();
maMr.setCurrMACost(this,maMr.getCurrNode(this),currMACost);

maMr.addNode(this,maMr.getCurrNode(this));
maMr.addEdge(this,maMr.getMyEdge(this));

maMr.setPreNode(this,maMr.getCurrNode(this),maMr.getMyNode(this));
maMr.setPreEdge(this,maMr.getCurrNode(this),maMr.getMyEdge(this));

maMr.updateMinMACost(maMr.getCurrMACost(this,maMr.getCurrNode(this)));
maMr.getMyEdge(this).setMATestEdge(true);

break maHelping;

lelse if(maMr.getMinMACost()!'=0.0 &&

maMr.getMinMACost()<maMr.getCurrMACost(this,maMr.getMyNode(this))){

/lsome detourist has already found a,shorter:detour path
longer=true;
break maHelping;

telse{
maMr.addNode(this,maMr.getCurrNode(this));
maMr.addEdge(this,maMr.getMyEdge(this));

maMr.setPreNode(this,maMr.getCurrNode(this),maMr.getMyNode(this));
maMr.setPreEdge(this,maMr.getCurrNode(this),maMr.getMyEdge(this));

double
currMACost=maMr.getCurrMACost(this,maMr.getMyNode(this))+maMr.getMyEdge(this).getWeight()*maMr.getDemanNum();
maMr.setCurrMACost(this,maMr.getCurrNode(this),currMACost);

maMr.getMyEdge(this).setMATestEdge(true);
maMr.setMyNode(this,maMr.getCurrNode(this));

/ffind currEdge & currNode, assign new myNode
dijkstra();

try{
sleep(1);
}catch(InterruptedException ex){

System.out.printin("maMr "+maMr.getID()+", helper "+getID()+" cannot sleep: "+ex);

178

Helper.java

}

/Ihelper finished!
/ImaPath setting:
if(llonger && lexclusivelsZero){
Vector maPathNodeSet=new Vector();

Vector maPathEdgeSet=new Vector();

Node tempCurrNode=maMr.getCurrNode(this);
Edge tempPreEdge;

maPathSetting:
do{
if(lmaPathNodeSet.contains(tempCurrNode))
maPathNodeSet.addElement(tempCurrNode);

tempPreEdge=maMr.getPreEdge(this;tempCurrNode);

/ltempPreEdge!=null
if('tempPreEdge.isDummyEdge() §
if(lmaPathEdgeSet.contains{tempPreEdge))
maPathEdgeSet.addElement(tempPreEdge);

tempCurrNode=maMr.getPreNode(this,tempCurrNode);
telse{

break maPathSetting;

twhile(tempCurrNode!=start);

if(lmaPathNodeSet.contains(start))
maPathNodeSet.addElement(start);

maPath=new Graph(maPathNodeSet,maPathEdgeSet);

/lupdate mutual assistant path to center
/ImaCost setting:
maCost=maMr.getCurrMACost(this,maMr.getCurrNode(this));
}
maMr.updateMAFinish();
maMr.putKey(this);

179

Helper.java

}

void dijkstra(){
/ffind out the best incident edge
//define new myEdge & currNode
Graph tempRouteSet=(Graph)maMr.getRouteSet(this);
Vector tempRouteNodeSet=(Vector)tempRouteSet.getNodeSet();

Vector incidentEdgeSet=getincidentEdgeSet(maMr.getUsableGraph(),tempRouteNodeSet);

Vector exclusivelncidentEdgeSet=new Vector();
for(int i=0;i<incidentEdgeSet.size();i++){
if(lmaMr.getRouteEdgeSet(this).contains(incidentEdgeSet.elementAt(i)) X

exclusivelncidentEdgeSet.addElement(incidentEdgeSet.elementAt(i));

Edge tempEdge;
Node n1,n2;

if(exclusivelncidentEdgeSet.size()>1){
tempEdge=(Edge)exclusivelncidentEdgeSet.elementAt(0);
maMr.setMyEdge(this,tempEdge);
n1=tempEdge.getN1();
n2=tempEdge.getN2();
if(tempRouteNodeSet.contains(n1) && !tempRouteNodeSet.contains(n2)){
maMr.setMyNode(this,n1);
maMr.setCurrNode(this,n2);
lelse if(tempRouteNodeSet.contains(n2) && !tempRouteNodeSet.contains(n1)){
maMr.setMyNode(this,n2);
maMr.setCurrNode(this,n1);
telse{
/[dijkstra error 1: not incident edge! check GraphAlgorithm.getincidentEdgeSet()
}
double
min=maMr.getCurrMACost(this,maMr.getMyNode(this))+maMr.getMyEdge(this).getWeight()*maMr.getDemanNum();
for(int i=1;i<exclusivelncidentEdgeSet.size();i++)
tempEdge=(Edge)exclusivelncidentEdgeSet.elementAt(i);
n1=tempEdge.getN1();
n2=tempEdge.getN2();
if(tempRouteNodeSet.contains(n1) && !tempRouteNodeSet.contains(n2)){
if(maMr.getCurrMACost(this,n1)+tempEdge.getWeight()*maMr.getDemanNum()<min{

180

Helper.java

min=maMr.getCurrMACost(this,n1)+tempEdge.getWeight()*maMr.getDemanNum();

maMr.setMyEdge(this,tempEdge);
maMr.setMyNode(this,n1);
maMr.setCurrNode(this,n2);
}
lelse if(tempRouteNodeSet.contains(n2) && !tempRouteNodeSet.contains(n1)){
if(maMr.getCurrMACost(this,n2)+tempEdge.getWeight()*maMr.getDemanNum()<min{
min=maMr.getCurrMACost(this,n2)+tempEdge.getWeight()*maMr.getDemanNum();
maMr.setMyEdge(this,tempEdge);
maMr.setMyNode(this,n2);
maMr.setCurrNode(this,n1);
}
else{

/[dijkstra error 2: incident edge error!"

}

lelse if(exclusivelncidentEdgeSet.size()==1){
tempEdge=(Edge)exclusivelncidentEdgeSet.elementAt(0);
maMr.setMyEdge(this,tempEdge);
n1=tempEdge.getN1();
n2=tempEdge.getN2();
if(tempRouteNodeSet.contains(n1) &<empRouteNodeSet.contains(n2)){
maMr.setMyNode(this,h1);
maMr.setCurrNode(this,n2);
}lelse if(tempRouteNodeSet.contains(n2) && !tempRouteNodeSet.contains(n1)){
maMr.setMyNode(this,n2);
maMr.setCurrNode(this,n1);
telse{
/[dijkstra error 3: not incident edge! check GraphAlgorithm.getincidentEdgeSet()
}
else{
exclusivelsZero=true;
helperFinish=true;

/Irenders all nodes visited

double getECONMergeCost(Node node){
Walker walker=new Walker(this,node);

walker.start();

181

Helper.java

while(walker.isFinish()){
/Iwait for walker to calculate merge cost

}

return walker.getTerritoryMergeCost();

Vector getincidentEdgeSet(Graph usableGraph,Vector routeNodeSet){
Edge myEdge=maMr.getMyEdge(this);

Vector incidentEdges=new Vector();
Edge tempEdge;
Node n1,n2;

for(int i=0;i<routeNodeSet.size();i++){
Vector tempEdgeSet=usableGraph.incidentEdgeSet((Node)routeNodeSet.elementAt(i));
for(int j=0;j<tempEdgeSet.size();j++){
tempEdge=(Edge)tempEdgeSet.elementAt(j);
if(lincidentEdges.contains(tempEdge))
incidentEdges.addElement(tempEdge);

n1=tempEdge.getN1();

n2=tempEdge.getN2();

if(routeNodeSet.contains(n1) && routeNodeSet.contains(n2))
incidentEdges.removeElement(tempEdge);

if(n1==maMr.getCenter().getDummyNode() || n2==maMr.getCenter().getDummyNode())

incidentEdges.removeElement(tempEdge);

}
if(incidentEdges.contains(myEdge))

incidentEdges.removeElement(myEdge);
return incidentEdges;
/lwalker methods:
/InodeDept[node][0]: currCost

public void setCurrCost(Node node,double cost){

nodeDept[node.getLabel()][0]=new Double(cost);

public double getCurrCost(Node node){
Double tempDouble=(Double)nodeDept[node.getLabel()][0];

182

Helper.java

return tempDouble.doubleValue();

/InodeDept[node][1]: preNode
public void setPreNode(Node node,Node preNode){
nodeDept[node.getLabel()][1]=preNode;

public Node getPreNode(Node node){
return (Node)nodeDept[node.getLabel()][1];

/InodeDept[node][2]: preEdge
public void setPreEdge(Node node,Edge preEdge){
nodeDept[node.getLabel()][2]=preEdge;

public Edge getPreEdge(Node node){
return (Edge)nodeDept[node.getlLabel()][2];

/lwalkerDept[0]: myNode(Node)
public void setMyNode(Node node){
walkerDept[0]=node;

public Node getMyNode(){
return (Node)walkerDept[0];

/lwalkerDept[1]: myEdge(Edge)
public void setMyEdge(Edge edge)
walkerDept[1]=edge;

public Edge getMyEdge(){
return (Edge)walkerDept[1];

/lwalkerDept[2]: currNode(Node)
public void setCurrNode(Node node){
walkerDept[2]=node;

183

Helper.java

}

public Node getCurrNode(){
return (Node)walkerDept[2];

/IwalkerDept[3]: routeSet(Graph)
public void setRouteSet(Vector nodeSet,Vector edgeSet){
walkerDept[3]=new Graph(nodeSet,edgeSet);

public Graph getRouteSet(){
return (Graph)walkerDept[3];

public void addNode(Node node){
Graph routeSet=(Graph)walkerDept[3];
Vector nodeSet=routeSet.getNodeSet();
if(lnodeSet.contains(node))

nodeSet.addElement(node);

public void addEdge(Edge edge){
Graph routeSet=(Graph)walkerDept[3];
Vector edgeSet=routeSet.getEdgeSet();
if(ledgeSet.contains(edge))
edgeSet.addElement(edge);

184

MAManager.java

package emnet.thread;

import java.util.Vector;

import emnet.graph.Node;

import emnet.graph.Graph;

import emnet.graph.Edge;

import emnet.algorithm.GraphAlgorithm;

public class MAManager extends Thread{

intid;

Center center;

Node supply;
Graph territory,usableGraph;
Vector icp,helpers,usableGraphNodeSet,usableGraphEdgeSet,interfaceNodes;

int demandNum,helperNum;

/InodeDept

/InodeDept[helper][node][0]: currMACost
/InodeDept[helper][node][1]: preNode
/InodeDept[helper][node][2]: preEdge
Object[][][] nodeDept;

/ImaDept

/ImaDept[helper][0]: myNode(Node)
/ImaDept[helper][1]: myEdge(Edge)
/ImaDept[helper][2]: currNode(Node)
/ImaDept[helper][3]: routeSet(Graph)
Object[][] maDept;

/ImaCost
double minMACost;

boolean available,maFinish;
public MAManager(int id,Center center,Node supply){
this.id=id;

this.center=center;

this.supply=supply;

185

MAManager.java

territory=center.getTerritory(supply);

if(territory.getDemandNodeSet().size()!=0){

demandNum-=territory.getDemandNodeSet().size();
Vector territoryNodeSet=territory.getNodeSet();

/licp init, usableGraph init
Graph graph=center.getGraph();
Vector graphEdgeSet=graph.getEdgeSet();

usableGraphNodeSet=new Vector();
usableGraphEdgeSet=new Vector();

icp=new Vector();

Edge tempEdge;

Node n1,n2;

for(int i=0;i<graphEdgeSet.size();i++)}
tempEdge=(Edge)graphEdgeSet.elementAt(i);
n1=tempEdge.getN1();
n2=tempEdge.getN2();

if(lterritoryNodeSet.contains(n1) && territoryNodeSet.contains(n2)X
if(lusableGraphEdgeSet.contains(tempEdge))
usableGraphEdgeSet.addElement(tempEdge);
if(lusableGraphNodeSet.contains(n1))
usableGraphNodeSet.addElement(n1);
if(lusableGraphNodeSet.contains(n2))
usableGraphNodeSet.addElement(n2);

if(territoryNodeSet.contains(n1) && !territoryNodeSet.contains(n2)¥
if(lusableGraphEdgeSet.contains(tempEdge))
usableGraphEdgeSet.addElement(tempEdge);
if(lusableGraphNodeSet.contains(n1))
usableGraphNodeSet.addElement(n1);
if(lusableGraphNodeSet.contains(n2))
usableGraphNodeSet.addElement(n2);
if('tempEdge.isDummyEdge()){
if(licp.contains(n1))

icp.addElement(n1);

186

MAManager.java

}

if(territoryNodeSet.contains(n1) && territoryNodeSet.contains(n2)X
if(lusableGraphEdgeSet.contains(tempEdge))
usableGraphEdgeSet.addElement(tempEdge);
if(lusableGraphNodeSet.contains(n1))
usableGraphNodeSet.addElement(n1);
if(lusableGraphNodeSet.contains(n2))
usableGraphNodeSet.addElement(n2);
if('tempEdge.isDummyEdge()){
if(licp.contains(n2))

icp.addElement(n2);

/Iwhile territory is not convex
if(territory.hasEdge(tempEdge) && lusable GraphEdgeSet.contains(tempEdge))
usableGraphEdgeSet.addElement(tempEdge);
if(lusableGraphNodeSet.contains(nt))
usableGraphNodeSet.addElement(n1);
if(lusableGraphNodeSet.contains(n2))
usableGraphNodeSet:addElement(n2);
if('tempEdge.isDummyEdge()){
if(licp.contains(n1))
icp.addElement(n1);
if(licp.contains(n2))

icp.addElement(n2);

}
usableGraph=new Graph(usableGraphNodeSet,usableGraphEdgeSet);
interfaceNodes=GraphAlgorithm.getinterfaceNodes(territory,graph);
helperNum=icp.size();
nodeDept=new Obiject[icp.size()][graph.getNodeSet().size()][3];
for(int i=0;i<icp.size();i++){

for(int j=0;j<graph.getNodeSet().size();j++){

nodeDept[i][jl[0]=new Double(0.0);

}

maDept=new Object[icp.size()][4];
minMACost=0.0;

187

MAManager.java

available=true;
maFinish=false;
telse{

maFinish=true;

public void run(){
center.takeKey(this);

/Imap init
Vector edgeSet=center.getGraph().getEdgeSet();
Edge tempEdge;
for(int i=0;i<edgeSet.size();i++)
tempEdge=(Edge)edgeSet.elementAt(i);
if('tempEdge.isFastEdge() && !ltempEdge.isDetourEdge() && !tempEdge.isMAEdge())
tempEdge.setNeutralEdge();

if(territory.getDemandNodeSet().size()!=0){

helpers=new Vector();

Node tempNode;

Helper tempHelper;

for(int i=0;i<icp.size();i++){
tempNode=(Node)icp.elementAt(i);
tempHelper=new Helper(i,tempNode,this);
helpers.addElement(tempHelper);
tempHelper.start();

while(!maFinish){

/lwatching

/ffinding supply source finished: all situations simulated
//set ma edges on the shortest ma route
/ffind a subject helper
Helper bestHelper=(Helper)helpers.elementAt(0);
for(int j=1;j<helpers.size();j++){
if(bestHelper.getMACost()==0.0)
bestHelper=(Helper)helpers.elementAt(j);

188

MAManager.java

}

/ffind a competitor helper
Helper tempHelper1;
double minMACost=bestHelper.getMACost();
for(int j=1;j<helpers.size();j++){
tempHelper1=(Helper)helpers.elementAt(j);
if(tempHelper1.getMACost()!=0.0 && tempHelper1.getMACost()<minMACost){
minMACost=tempHelper1.getMACost();
bestHelper=tempHelper1;

updateMACenter(bestHelper);

Vector bestMAPathEdgeSet=bestHelper.getMAPath().getEdgeSet();
if(bestMAPathEdgeSet.size()>0){
Edge tempEdge1;
Node n1,n2;
Node source=bestHelper.getSource();
Graph source Territory=center.getTerritory(source);
for(int j=0;j<bestMAPathEdgeSet:size();j++){
tempEdge1=(Edge)bestMAPathEdgeSet.elementAt(j);
tempEdge1.setMAEdge();

n1=tempEdge1.getN1();

n2=tempEdge1.getN2();

if(territory.hasNode(n1) && !territory.hasNode(n2))
n1.setMerge();

if(territory.hasNode(n2) && !territory.hasNode(n1))
n2.setMerge();

if(sourceTerritory.hasNode(n1) && !source Territory.hasNode(n2))
n1.setAccess();

if(sourceTerritory.hasNode(n2) && !source Territory.hasNode(n1))

n2.setAccess();

if(j==(bestMAPathEdgeSet.size()-1)){
if(territory.hasNode(n1) && sourceTerritory.hasNode(n1)){
n1.setAccess();

n1.setMerge();

}
if(territory.hasNode(n2) && sourceTerritory.hasNode(n2)){

189

MAManager.java

n2.setAccess();

n2.setMerge();

}

telse{
bestHelper.getSource().setSource();
}
telse{
//demandNum=0

//mutualAssistantCenter

/ImaCenter[supply][2]: source(Node)
/ImaCenter[supply][3]: icpSet(Vector)
/ImaCenter[supply][4]: maPath(Graph)
/ImaCenter[supply][7]: maCost > source to supply
center.setSource(supply,supply);
center.setlCPSet(supply,territory.getNodeSet());
center.setMAPath(supply,territory);
center.setMACost(supply,0.0);

//ma manager finish its job!
center.updateMACondition();
center.putKey(this);

public int getID()}

return id;

public Center getCenter(){

return center;

public Node getSupply()}{

return supply;

public Graph getGraph(){

return center.getGraph();

190

MAManager.java

public Graph getUsableGraph(){

return usableGraph;

public Graph getTerritory(){

return territory;

public int getDemanNum(){

return demandNum;

public int getICP(){

return interfaceNodes.size();

public synchronized void updateMinMACost(double eurrMACost){
if(minMACost==0.0 || currMACost<minMACost)
minMACost=currMACost;

public double getMinMACost(){

return minMACost;

public void updateMAFinish(){
helperNum--;
if(helperNum==0){

maFinish=true;

public synchronized void takeKey(Helper helper){
if(lmaFinish){
while(lavailable){
try{
wait(1);
}catch(InterruptedException e){

/ltakeKey: cannot wait!

191

MAManager.java

available=false;
telse{
available=false;

/Ihelper took the key, but center is finished!

public synchronized void putKey(Helper helper){
if(lmaFinish){
while(available){
try{
/Ihelper is waiting to put...
wait(1);
}catch(InterruptedException e){

/IputKey: cannot wait!

}
/Ihelper put the key!

available=true;
telse{
/Ihelper put the key, maFinish=true!

available=true;

/InodeDept

/InodeDept[helper][node][0]: currMACost

public void setCurrMACost(Helper helper,Node node,double maCost){
nodeDept[helper.getID()][node.getLabel()][0]=new Double(maCost);

public double getCurrMACost(Helper helper,Node node){
Double maCost=(Double)nodeDept[helper.getiD()][node.getLabel()][0];

return maCost.doubleValue();

/InodeDept[helper][node][1]: preNode
public void setPreNode(Helper helper,Node node,Node preNode){
nodeDept[helper.getID()][node.getLabel()][1]=preNode;

public Node getPreNode(Helper helper,Node node){

192

MAManager.java

return (Node)nodeDept[helper.getlD()][node.getLabel()][1];

/InodeDept[helper][node][2]: preEdge
public void setPreEdge(Helper helper,Node node,Edge preEdge){
nodeDept[helper.getID()][node.getLabel()][2]=preEdge;

public Edge getPreEdge(Helper helper,Node node){
return (Edge)nodeDeptlhelper.getiD()][node.getLabel()][2];

/ImaDept

/ImaDept[helper][0]: myNode(Node)

public void setMyNode(Helper helper,Node myNode){
maDept[helper.getlD()][0]=myNode;

public Node getMyNode(Helper helper){
return (Node)maDept[helper.getiD()][0];

/ImaDept[helper][1]: myEdge(Edge)
public void setMyEdge(Helper helper,Edge myEdge){
maDept[helper.getID()][1]=myEdge;

public Edge getMyEdge(Helper helper){
return (Edge)maDept[helper.getID()][1];

/ImaDept[helper][2]: currNode(Node)
public void setCurrNode(Helper helper,Node currNode){
maDept[helper.getID()][2]=currNode;

public Node getCurrNode(Helper helper){
return (Node)maDept[helper.getID()][2];

/ImaDept[helper][3]: routeSet(Graph)
public void setRouteSet(Helper helper,Vector routeNodeSet,Vector routeEdgeSet){

193

MAManager.java

maDept[helper.getID()][3]=new Graph(routeNodeSet,routeEdgeSet);

public Graph getRouteSet(Helper helper){
return (Graph)maDept[helper.getID()][3];

public Vector getRouteEdgeSet(Helper helper){
Graph routeSet=getRouteSet(helper);
return routeSet.getEdgeSet();

public synchronized void addEdge(Helper helper,Edge edge){
Graph routeSet=this.getRouteSet(helper);
Vector routeNodeSet=routeSet.getNodeSet();
Vector routeEdgeSet=routeSet.getEdgeSet();
if(IrouteEdgeSet.contains(edge))
routeEdgeSet.addElement(edge);
this.setRouteSet(helper,routeNodeSet,routeEdgeSet);

public synchronized void addNode(Helpershelper,Node'node){
Graph routeSet=this.getRouteSet(helper);
Vector routeNodeSet=routeSet.getNodeSet();
Vector routeEdgeSet=routeSet.getEdgeSet();
if(IrouteNodeSet.contains(node))
routeNodeSet.addElement(node);

this.setRouteSet(helper,routeNodeSet,routeEdgeSet);

public synchronized void updateMACenter(Helper helper){
//mutualAssistantCenter
/ImaCenter[supply][2]: source(Node)
/ImaCenter[supply][3]: icpSet(Vector)
/ImaCenter[supply][4]: maPath(Graph)

/ImaCenter[supply][7]: maCost > source to supply
MAManager maMr=helper.getMAManger();
Center center=maMr.getCenter();

Node supply=maMr.getSupply();

center.setSource(supply,helper.getSource());

194

MAManager.java

center.setlCPSet(supply,interfaceNodes);
center.setMAPath(supply,helper.getMAPath());
center.setMACost(supply,helper.getMACost());

195

Roamer.java

package emnet.thread;

import emnet.graph.Node;

import emnet.graph.Edge;

import java.util.Vector;

import emnet.algorithm.GraphAlgorithm;
import emnet.graph.Graph;

public class Roamer extends Thread{
Node supply;
intid;
Center center;

boolean roamerFinish;

Node currNode,preNode,myNode;
Edge preEdge,myEdge;
Graph graph,routeSet;

Vector routeNodeSet,routeEdgeSet;

public Roamer(int id,Node supply,Center center){
super("'+id);
this.id=id;
this.supply=supply;
this.center=center;
roamerFinish=false;
graph=center.getGraph();
int nodeNum=graph.getNodeSet().size();
int edgeNum=graph.getEdgeSet().size();

/l[roamerCenter init
/IroamerCenter[roamer][0]: myNode(Node)
/[roamerCenter[roamer][1]: myEdge(Edge)
/IroamerCenter[roamer][2]: currNode(Node)

/froamerCenter[roamer][3]: routeSet(Graph)

Node dummyNode=this.center.getDummyNode();
dummyNode.setDummy();

Edge dummyEdge=new Edge(edgeNum,supply,dummyNode,0.0);

dummyEdge.setDummyEdge();

this.graph.addNode(dummyNode);

196

Roamer.java

this.graph.addEdge(dummyEdge);

Vector routeNodeSet=new Vector();
routeNodeSet.addElement(dummyNode);
Vector routeEdgeSet=new Vector();
routeEdgeSet.addElement(dummyEdge);

this.center.setRouteSet(this,routeNodeSet,routeEdgeSet);

this.center.setMyNode(this,dummyNode);
this.center.setMyEdge(this,dummyEdge);
this.center.setCurrNode(this,supply);

/InodeCenter init

/InodeCenter[node][0]: occupy(Boolean)
/InodeCenter[node][1]: distance(Double)
/InodeCenter[node][2]: preNode(Node)
/InodeCenter[node][3]: preEdge(Edge)

/InodeCenter[node][4]: visitorSequence(Vectar)

this.center.setDistance(supply,0:0);
this.center.setPreNode(supply;dummyNode);
this.center.setPreEdge(supply;dummyEdge);
this.center.addViditor(supply, this);

public int getID()}

return this.id;

public Node getSupply()}{

return this.supply;

public Center getCenter(){
return this.center;

public void run(){
roaming:

while(!center.isFinished() && !roamerFinish){

/ltake the key to have the right to run

197

Roamer.java

center.takeKey(this);

if(center.isFinished()){
center.putKey(this);

break roaming;

/ltest currNode is visited or not
if(lcenter.getCurrNode(this).isVisited()
/lcurrNode is not visited
center.getCurrNode(this).visit();
updateVisitorSequence(0,this,center.getCurrNode(this));

/lupdate myEdge, myNode, currNode, preNode
/lupdate currNode distance by myNode & myEdge
/lupdate routeSet (myNode, myEdge)

//set fast edge
center.addNode(this,center.getCurrNode(this));
center.addEdge(this,center.getMyEdge(this));

center.setPreNode(center.getCurrNode(this),center.getMyNode(this));
center.setPreEdge(center.getCurrNode(this),center.getMyEdge(this));

double distance=center.getDistance(center.getMyNode(this))+center.getMyEdge(this).getWeight();
center.setDistance(center.getCurrNode(this),distance);

center.getMyEdge(this).setTestEdge();

center.setMyNode(this,center.getCurrNode(this));

dijkstra();
telse{
/lcurrNode is visited
//Comparison: change to new location to find myEdge to find currNode, and update to myNode
Vector visitorSequence=center.getVisitorSequence(center.getCurrNode(this));
if(lvisitorSequence.contains(this)){
/lcomparison
double currDistance=center.getDistance(center.getCurrNode(this));
double myDistance=center.getDistance(center.getMyNode(this));
if(myDistance+center.getMyEdge(this).getWeight()<currDistance){
/[closer! subtree finding!
/1. find out who the last roamer is

Roamer lastRoamer=center.lastVisitor(center.getCurrNode(this));

/12. update visitor sequence [finish condition]

198

Roamer.java

updateVisitorSequence(1,this,center.getCurrNode(this));

/13. find out where the last roamer is now

Node lastRoamerLocation=center.getCurrNode(lastRoamer);

/4. remove last roamer's subtree

Graph lastRoamerRouteSet=center.getRouteSet(lastRoamer);

Graph
subtree=GraphAlgorithm.getSubtreeWithCertainNode(lastRoamerRouteSet,center.getCurrNode(this),center.getPreEd
ge(center.getCurrNode(this)));

center.removeSubtree(lastRoamer,subtree);
center.removeEdge(lastRoamer,center.getPreEdge(center.getCurrNode(this)));

center.getPreEdge(center.getCurrNode(this)).setNeutralEdge();

//5. add myEdge and the subtree to current roamer's RouteSet
center.setPreEdge(center.getCurrNode(this),center.getMyEdge(this));
center.setPreNode(center.getCurrNode(this),center.getMyNode(this));
center.addSubtree(this,subtree);
center.addEdge(this,center.getMyEdge(this));
center.getMyEdge(this).setTestEdge();

/6. relocate last roamer's‘place to-preNode to prevent missing, relocate current roamer
using dijkstra

center.setCurrNode(lastRoamer,center.getPreNode(center.getCurrNode(this)));

/I7. update the distance in the subtree

Vector subtreeNodeSet=subtree.getNodeSet();
Node tempNode;

double saving;

for(int i=0;i<subtreeNodeSet.size();i++){

tempNode=(Node)subtreeNodeSet.elementAt(i);

saving=center.getDistance(center.getCurrNode(this))-(center.getDistance(center.getMyNode(this))+center.getMyEdg
e(this).getWeight());

center.setDistance(tempNode,center.getDistance(tempNode)-saving);

dijkstra();
telse{
/Inot closer, remove myEdge from routeEdgeSet, find new myEdge

/lupdate visitor sequence: downstream subree

199

Roamer.java

updateVisitorSequence(1,this,center.getCurrNode(this));
center.removeEdge(this,center.getMyEdge(this));

dijkstra();
}
telse{
/I visited this node before
dijkstra();

}
center.putKey(this);

try{
sleep(1);
}catch(InterruptedException ex){

/Iroamer cannot sleep

}

/lroamer finished his job!

void dijkstra(){
/ffind out the best incident edge
//define new myEdge & currNode
Graph tempRouteSet=(Graph)center.getRouteSet(this);
Vector tempRouteNodeSet=(Vector)tempRouteSet.getNodeSet();

Vector incidentEdgeSet=GraphAlgorithm.getincidentEdgeSet(this,tempRouteNodeSet);

Vector exclusivelncidentEdgeSet=new Vector();

for(int i=0;i<incidentEdgeSet.size();i++){
if(lcenter.getRouteEdgeSet(this).contains(incidentEdgeSet.elementAt(i)) X

exclusivelncidentEdgeSet.addElement(incidentEdgeSet.elementAt(i));

Edge tempEdge;

Node n1,n2;

if(exclusivelncidentEdgeSet.size()>1){
tempEdge=(Edge)exclusivelncidentEdgeSet.elementAt(0);
center.setMyEdge(this,tempEdge);
n1=tempEdge.getN1();

200

n2=tempEdge.getN2();

if(tempRouteNodeSet.contains(n1) && !tempRouteNodeSet.contains(n2)){
center.setMyNode(this,n1);
center.setCurrNode(this,n2);

lelse if(tempRouteNodeSet.contains(n2) && !tempRouteNodeSet.contains(n1)){
center.setMyNode(this,n2);
center.setCurrNode(this,n1);

telse{

/[dijkstra error 1: not incident edge! check GraphAlgorithm.getincidentEdgeSet()

double min=center.getDistance(center.getMyNode(this))+center.getMyEdge(this).getWeight();
for(int i=1;i<exclusivelncidentEdgeSet.size();i++)
tempEdge=(Edge)exclusivelncidentEdgeSet.elementAt(i);
n1=tempEdge.getN1();
n2=tempEdge.getN2();
if(tempRouteNodeSet.contains(n1) && !tempRouteNodeSet.contains(n2)){
if(center.getDistance(n1)+tempEdge.getWeight()<min){
min=center.getDistance(n1)+tempEdge.getWeight();
center.setMyEdge(this,tempEdge);
center.setMyNode(this,n1);
center.setCurrNode(this;n2);
}
}else if(tempRouteNodeSet.contains(n2) && tempRouteNodeSet.contains(n1)){
if(center.getDistance(n2)+tempEdge.getWeight()<min){
min=center.getDistance(n2)+tempEdge.getWeight();
center.setMyEdge(this,tempEdge);
center.setMyNode(this,n2);
center.setCurrNode(this,n1);
}
else{

/[dijkstra error 2: incident edge error!

}

lelse if(exclusivelncidentEdgeSet.size()==1){
tempEdge=(Edge)exclusivelncidentEdgeSet.elementAt(0);
center.setMyEdge(this,tempEdge);
n1=tempEdge.getN1();
n2=tempEdge.getN2();
if(tempRouteNodeSet.contains(n1) && !tempRouteNodeSet.contains(n2)){
center.setMyNode(this,n1);

center.setCurrNode(this,n2);

201

Roamer.java

lelse if(tempRouteNodeSet.contains(n2) && !tempRouteNodeSet.contains(n1)){
center.setMyNode(this,n2);
center.setCurrNode(this,n1);
telse{
/[dijkstra error 3: not incident edge! check GraphAlgorithm.getincidentEdgeSet()
}
else{
roamerFinish=true;
/Irenders all nodes visited
Vector nodeSet=graph.getNodeSet();
Node tempNode;
for(int i=0;i<nodeSet.size();i++)
tempNode=(Node)nodeSet.elementAt(i);
center.addViditor(tempNode, this);

void updateVisitorSequence(int sort,Roamer roamer,Node currNode }{
/Iroamer to be updated....
//selection choice:
/lcase 0: currNode is never visited

/Icase 1: currNode is visited

Vector myVisitorSequence=center.getVisitorSequence(center.getMyNode(this));
Graph routeSet,subtree;

Edge preEdge;

Vector subtreeNodeSet,tempSubtreeNodeVisitorSequence;

Node tempSubtreeNode,tempPreNode;

Roamer lastRoamer,tempRoamer;

switch(sort){
case 0:
/lcase 0: currNode is never visited
center.addViditor(currNode,roamer);

break;

case 1:
/lcase 1: currNode is visited
//add visiotrs to downstream: subtree
/Isubtree of currNode

lastRoamer=center.lastVisitor(currNode);

202

Roamer.java

routeSet=center.getRouteSet(lastRoamer);
preEdge=center.getPreEdge(currNode);
tempPreNode=center.getPreNode(currNode);
subtree=GraphAlgorithm.getSubtreeWithCertainNode(routeSet,currNode,preEdge);
subtreeNodeSet=subtree.getNodeSet();

for(int i=0;i<myVisitorSequence.size();i++){
tempRoamer=(Roamer)myVisitorSequence.elementAt(i);
for(int j=0;j<subtreeNodeSet.size();j++){
tempSubtreeNode=(Node)subtreeNodeSet.elementAt(j);
tempSubtreeNodeVisitorSequence=center.getVisitorSequence(tempSubtreeNode);
if('tempSubtreeNodeVisitorSequence.contains(tempRoamer))

center.addViditor(tempSubtreeNode,tempRoamer);

}

break;

}

/lupdate visitorSequence finish!

203

Walker.java

package emnet.thread;

import emnet.graph.Graph;
import emnet.graph.Node;
import emnet.graph.Edge;

import java.util.Vector;

public class Walker extends Thread{

double territoryMergeCost;

Helper helper;
MAManager maMr;
Graph territory;

int demandNum;
boolean finish;

public Walker(Helper helper,Node start){
territoryMergeCost=0.0;

this.helper=helper;
maMr=helper.getMAManger();
territory=maMr.getTerritory();

demandNum-=territory.getDemandNodeNum();

int edgeNum=maMr.getCenter().getGraph().getEdgeSet().size();
Node dummyNode=maMr.getCenter().getDummyNode();
dummyNode.setDummy();

Edge dummyEdge=new Edge(edgeNum,start,dummyNode,0.0);
dummyEdge.setDummyEdge();

maMr.getGraph().addNode(dummyNode);
maMr.getGraph().addEdge(dummyEdge);

/Ihelper init, set to maMr

Vector routeNodeSet=new Vector();
routeNodeSet.addElement(dummyNode);
Vector routeEdgeSet=new Vector();

routeEdgeSet.addElement(dummyEdge);

helper.setRouteSet(routeNodeSet,routeEdgeSet);

204

Walker.java

helper.setMyNode(dummyNode);
helper.setMyEdge(dummyEdge);
helper.setCurrNode(start);

helper.setCurrCost(helper.getMyNode(),0.0);

helper.setPreNode(start,dummyNode);
helper.setPreEdge(start,dummyEdge);

finish=false;
public double getTerritoryMergeCost(){
return territoryMergeCost;
public void run(){
walking:
while(!finish){
if(helper.getCurrNode().isDemand()){
updateFinish();

helper.addNode(helper.getCurrNode());
helper.addEdge(helper.getMyEdge());

helper.setPreNode(helper.getCurrNode(),helper.getMyNode());
helper.setPreEdge(helper.getCurrNode(),helper.getMyEdge());

double currCost=helper.getCurrCost(helper.getMyNode())+helper.getMyEdge().getWeight();
helper.setCurrCost(helper.getCurrNode(),currCost);

territoryMergeCost=territoryMergeCost+currCost;

if(Mfinish){
helper.setMyNode(helper.getCurrNode());
dijkstra();

telse{

break walking;

telse{

205

Walker.java

helper.addNode(helper.getCurrNode());
helper.addEdge(helper.getMyEdge());

helper.setPreNode(helper.getCurrNode(),helper.getMyNode());
helper.setPreEdge(helper.getCurrNode(),helper.getMyEdge());

double currCost=helper.getCurrCost(helper.getMyNode())+helper.getMyEdge().getWeight();
helper.setCurrCost(helper.getCurrNode(),currCost);

helper.setMyNode(helper.getCurrNode());
dijkstra();

void updateFinish(){

demandNum--;

if(demandNum==0)

finish=true;

public boolean isFinish(){

return finish;

void dijkstra(){
Graph tempRouteSet=(Graph)helper.getRouteSet();
Vector tempRouteNodeSet=(Vector)tempRouteSet.getNodeSet();
Vector incidentEdgeSet=getincidentEdgeSet(territory,tempRouteNodeSet);
Vector exclusivelncidentEdgeSet=new Vector();
for(int i=0;i<incidentEdgeSet.size();i++){
if(lhelper.getRouteSet().hasEdge((Edge)incidentEdgeSet.elementAt(i)) X

exclusivelncidentEdgeSet.addElement(incidentEdgeSet.elementAt(i));

Edge tempEdge;

Node n1,n2;

if(exclusivelncidentEdgeSet.size()>1){
tempEdge=(Edge)exclusivelncidentEdgeSet.elementAt(0);
helper.setMyEdge(tempEdge);

206

Walker.java

n1=tempEdge.getN1();
n2=tempEdge.getN2();
if(tempRouteNodeSet.contains(n1) && !tempRouteNodeSet.contains(n2)){
helper.setMyNode(n1);
helper.setCurrNode(n2);
lelse if(tempRouteNodeSet.contains(n2) && !tempRouteNodeSet.contains(n1)){
helper.setMyNode(n2);
helper.setCurrNode(n1);
}
double min=helper.getCurrCost(helper.getMyNode())+helper.getMyEdge().getWeight();
for(int i=1;i<exclusivelncidentEdgeSet.size();i++)
tempEdge=(Edge)exclusivelncidentEdgeSet.elementAt(i);
n1=tempEdge.getN1();
n2=tempEdge.getN2();
if(tempRouteNodeSet.contains(n1) && !tempRouteNodeSet.contains(n2)){
if(helper.getCurrCost(n1)+tempEdge.getWeight()<min)}{
min=helper.getCurrCost(n1)+tempEdge.getWeight();
helper.setMyEdge(tempEdge);
helper.setMyNode(n1);
helper.setCufrNode(n2);
}
lelse if(tempRouteNodeSet.contains(n2)-&& tempRouteNodeSet.contains(n1)){
if(helper.getCurrCast(n2)+tempEdge.getWeight()<min)}{
min=helper.getCurrCost(n2)+tempEdge.getWeight();
helper.setMyEdge(tempEdge);
helper.setMyNode(n2);
helper.setCurrNode(n1);

}

lelse if(exclusivelncidentEdgeSet.size()==1)

tempEdge=(Edge)exclusivelncidentEdgeSet.elementAt(0);

helper.setMyEdge(tempEdge);

n1=tempEdge.getN1();

n2=tempEdge.getN2();

if(tempRouteNodeSet.contains(n1) && !tempRouteNodeSet.contains(n2)){
helper.setMyNode(n1);
helper.setCurrNode(n2);

lelse if(tempRouteNodeSet.contains(n2) && !tempRouteNodeSet.contains(n1)){
helper.setMyNode(n2);
helper.setCurrNode(n1);

207

Walker.java

telse{
finish=true;

/Irenders all nodes visited

Vector getincidentEdgeSet(Graph usableGraph,Vector routeNodeSet){
Edge myEdge=helper.getMyEdge();

Vector incidentEdges=new Vector();
Edge tempEdge;
Node n1,n2;

for(int i=0;i<routeNodeSet.size();i++){
Vector tempEdgeSet=usableGraph.incidentEdgeSet((Node)routeNodeSet.elementAt(i));
for(int j=0;j<tempEdgeSet.size();j++){
tempEdge=(Edge)tempEdgeSet.elementAt(j);
if(lincidentEdges.contains(tempEdge))
incidentEdges.addElement(tempEdge);

n1=tempEdge.getN1();

n2=tempEdge.getN2();

if(routeNodeSet.contains(n1) && routeNodeSet.contains(n2))
incidentEdges.removeElement(tempEdge);

if(n1==maMr.getCenter().getDummyNode() || n2==maMr.getCenter().getDummyNode())

incidentEdges.removeElement(tempEdge);

}
if(incidentEdges.contains(myEdge))

incidentEdges.removeElement(myEdge);

return incidentEdges;

208

App.java

package emnet;

import java.awt. Toolkit;
import javax.swing.SwingUltilities;
import javax.swing.UIManager;

import java.awt.Dimension;

public class App {

boolean packFrame = false;

[r*
* Construct and show the application.
*/
public App() {
Frame frame = new Frame();
/I Validate frames that have preset sizes
/I Pack frames that have useful preferred sizerinfoj e:g. from their layout
if (packFrame) {
frame.pack();
}
else {

frame.validate();

/I Center the window
Dimension screenSize = Toolkit.getDefaultToolkit().getScreenSize();
Dimension frameSize = frame.getSize();
if (frameSize.height > screenSize.height) {
frameSize.height = screenSize.height;
}
if (frameSize.width > screenSize.width) {
frameSize.width = screenSize.width;
}
frame.setLocation((screenSize.width - frameSize.width) / 2,
(screenSize.height - frameSize.height) / 2);

frame.setVisible(true);

/**
* Application entry point.

*

209

App.java

* @param args String[]
*/
public static void main(String[] args) {
SwingUtilities.invokeLater(new Runnable() {
public void run() {
try {
UIManager.setLookAndFeel(UIManager.getSystemLookAndFeelClassName());

}
catch (Exception exception) {

exception.printStackTrace();

/Iread in node & edge data

//add to table

/Ipicture the map

/lframe.add table & map

/Iset supply & demand nodes

/Iresponse in map

/lafter press "start" button, new ant & ant€ommunicationCenter
/Ishow fast routes, detour routes, mutual assistant:routes
/Ishow evaluation indices

/linput expert acceptable time

/lillustrate radar digram and standardized evaluation valte

new App();

210

Frame_AboutBox.java

package emnet;

import java.awt.*;
import java.awt.event.”;

import javax.swing.*;

public class Frame_AboutBox
extends JDialog implements ActionListener {

JPanel panel1 = new JPanel();
JPanel panel2 = new JPanel();
JPanel insetsPanel1 = new JPanel();
JPanel insetsPanel2 = new JPanel();
JPanel insetsPanel3 = new JPanel();
JButton button1 = new JButton();
JLabel imageLabel = new JLabel();
JLabel label1 = new JLabel();
JLabel label2 = new JLabel();
JLabel label3 = new JLabel();
JLabel label4 = new JLabel();
Imagelcon image1 = new Imagelcon();
BorderLayout borderLayout1 = new BorderLayout();
BorderLayout borderLayout2 = new BorderLayout();
FlowLayout flowLayout1 = new FlowLayout();
GridLayout gridLayout1 = new GridLayout();
String product = "Earthquake Mitigation Network Design";
String version = "version 1.0, percy.itt.nctu.tw";
String copyright = "Copyright (c) 2006";

String comments = "Decision Making Tool for Network Design";

public Frame_AboutBox(Frame parent) {
super(parent);
try {
setDefaultCloseOperation(DISPOSE_ON_CLOSE);
jblInit();
}
catch (Exception exception) {

exception.printStackTrace();

public Frame_AboutBox() {

211

Frame_AboutBox.java

this(null);

[r*

* Component initialization.

* @throws java.lang.Exception

*/

private void jbinit() throws Exception {

image1 = new Imagelcon(emnet.Frame.class.getResource("about.png"));
imageLabel.setlcon(image1);
setTitle("About");
panell.setLayout(borderLayout1);
panel2.setLayout(borderLayout2);
insetsPanel1.setLayout(flowLayout1);
insetsPanel2.setLayout(flowLayout1);
insetsPanel2.setBorder(BorderFactory.createEmptyBorder(10, 10, 10, 10));
gridLayout1.setRows(4);
gridLayout1.setColumns(1);
label1.setText(product);
label2.setText(version);
label3.setText(copyright);
label4.setText(comments);
insetsPanel3.setLayout(gridLayout1);
insetsPanel3.setBorder(BorderFactory.createEmptyBorder(10, 60, 10, 10));
button1.setText("OK");
button1.addActionListener(this);
insetsPanel2.add(imageLabel, null);
panel2.add(insetsPanel2, BorderLayout. WEST);
getContentPane().add(panel1, null);
insetsPanel3.add(label1, null);
insetsPanel3.add(label2, null);
insetsPanel3.add(label3, null);
insetsPanel3.add(label4, null);
panel2.add(insetsPanel3, BorderLayout. CENTER);
insetsPanel1.add(button1, null);
panell.add(insetsPanel1, BorderLayout.SOUTH);
panell.add(panel2, BorderLayout. NORTH);

setResizable(true);

/**

212

Frame_AboutBox.java

* Close the dialog on a button event.
* @param actionEvent ActionEvent
*
public void actionPerformed(ActionEvent actionEvent) {
if (actionEvent.getSource() == button1) {

dispose();

213

Frame_TermBox.java

package emnet;

import javax.swing.JDialog;
import java.awt.GridLayout;
import javax.swing.JLabel;

import java.awt.Dimension;
public class Frame_TermBox extends JDialog{

JLabel
label_eva=new JLabel(" E: Overall Evaluation"),
label_Id=new JLabel(" LD: Longest Detour Cost"),
label_amac=new JLabel(" AMAC: Average Mutal Assistance Cost"),
label_nc=new JLabel(" NC: Network Cost"),
label_atc=new JLabel(" ATC: Average Travel Cost"),

label_mtc=new JLabel(" MTC: Maximum Travel Cost");

public Frame_TermBox(Frame parent){
super(parent);
try {
setDefaultCloseOperation(DISPOSE_ON ,CLOSE);
jblInit();
}
catch (Exception exception) {

exception.printStackTrace();

void jblnit(){
Dimension d=new Dimension(250,25);
this.setTitle("Terminology");
this.getContentPane().setLayout(new GridLayout(6,1,5,5));
label_eva.setPreferredSize(d);
label_Id.setPreferredSize(d);
label_amac.setPreferredSize(d);
label_nc.setPreferredSize(d);
label_atc.setPreferredSize(d);

label_mtc.setPreferredSize(d);

this.getContentPane().add(label_atc);
this.getContentPane().add(label_mtc);

214

this.getContentPane().add(label_ld);
this.getContentPane().add(label_amac);
this.getContentPane().add(label_nc);
this.getContentPane().add(label_eva);

this.setResizable(false);

215

Frame.java

package emnet;

import java.awt.*;

import java.awt.event.”;

import javax.swing.JFrame;
import javax.swing.JPanel;
import javax.swing.JMenuBar;
import javax.swing.JMenu;
import javax.swing.JMenultem;

import javax.swing.JLabel;

import emnet.gui.Map;

import emnet.graph.Graph;

import java.util.Vector;

import java.io.lOException;

import emnet.io.lIOGraph;

import javax.swing.J TextField;
import javax.swing.JButton;

import javax.swing.SwingConstants;
import javax.swing.J TabbedPane;
import javax.swing.JRadioButton;
import javax.swing.ButtonGroup;
import javax.swing.JSplitPane;
import javax.swing.table.DefaultTableModel;
import javax.swing.JTable;

import javax.swing.JScrollPane;
import emnet.graph.Node;

import emnet.graph.Edge;

import emnet.thread.Center;

import java.text.DecimalFormat;

public class Frame
extends JFrame {
JPanel contentPane;
BorderLayout borderLayout1 = new BorderLayout();
JMenuBar jMenuBar1 = new JMenuBar();
JMenu jMenuFile = new JMenu();
JMenultem jMenuFileExit = new JMenultem();
JMenu jMenuHelp = new JMenu();
JMenultem jMenuHelpAbout = new JMenultem();

JMenultem jMenuHelpTerm=new JMenultem();

216

Frame.java

JPanel panel_gridbag=new JPanel(new GridLayout(4,1,2,2));

JPanel panel_setting=new JPanel(new BorderLayout());

JLabel label_dir=new JLabel("common dir: ");
JTextField txt_dir=new JTextField();

JLabel label_node=new JLabel("node file: ");
JTextField txt_node=new JTextField();
JLabel label_edge=new JLabel("edge file: ");
JTextField txt_edge=new JTextField();

JLabel label_dataln=new JLabel("2econ?");

DefaultTableModel node TableModel,edge TableModel;
JTable
nodeTable=new JTable(nodeTableModel),
edgeTable=new JTable(edgeTableModel);

JLabel seperator=new JLabel("[no graph]",SwingConstants. CENTER);

JRadioButton radio_supply=new JRadioButton("supply");
JRadioButton radio_demand=new JRadioButton("demand");
JRadioButton radio_neutral=new JRadioButton("neutral®);
ButtonGroup radioGroup=new ButtonGroup();

JButton button_run=new JButton("run");

JTextField
txt_atc_low=new JTextField(),txt_mtc_low=new JTextField(),
txt_ld_low=new JTextField(),txt_amac_low=new JTextField(),

txt_nc_low=new JTextField(),

txt_atc_up=new JTextField(),txt_mtc_up=new JTextField(),
txt_Id_up=new JTextField(),txt_amac_up=new JTextField(),

txt_nc_up=new JTextField();

JLabel
atc_output=new JLabel("0.0 "),mtc_output=new JLabel("0.0 ",
Id_output=new JLabel("0.0 "),amac_output=new JLabel("0.0 ",
nc_output=new JLabel("0.0 "),e_output=new JLabel("[pls fill \"expert\" tab] ");

JLabel save_dir=new JLabel();

Map map=new Map();

217

Frame.java

Graph graph;
Center center;

DecimalFormat myFormatter=new DecimalFormat("### ### ##");

public Frame() {
try {
setDefaultCloseOperation(EXIT_ON_CLOSE);
jblnit();
}
catch (Exception exception) {

exception.printStackTrace();

/I[Component initialization
private void jbinit() throws Exception {
contentPane = (JPanel) getContentPane();
contentPane.setLayout(borderLayout1);
setSize(new Dimension(600, 700));
setTitle(":: EMNet 2006 ::");
jMenuFile.setText("File");
jMenuFileExit.setText("Exit");
jMenuFileExit.addActionListener(new Frame_jMenuFileExit “ActionAdapter(this));
jMenuHelp.setText("Help");
jMenuHelpAbout.setText("About");
jMenuHelpAbout.addActionListener(new Frame_jMenuHelpAbout_ActionAdapter(this));
jMenuHelpTerm.setText("Term");
jMenuHelpTerm.addActionListener(new Frame_jMenuHelpTerm_ActionAdapter(this));
jMenuBar1.add(jMenuFile);
jMenuFile.add(jMenuFileExit);
jMenuBar1.add(jMenuHelp);
jMenuHelp.add(jMenuHelpAbout);
jMenuHelp.add(jMenuHelpTerm);
setdMenuBar(jMenuBar1);

Dimension big=new Dimension(146,20),big2=new Dimension(185,20),med=new

Dimension(100,20),small=new Dimension(65,20),xs=new Dimension(30,20);

JPanel panel_bottom=new JPanel(new BorderLayout());

JPanel panel_left=new JPanel(new BorderLayout());

panel_gridbag.setPreferredSize(new Dimension(275,120));

218

Frame.java

label_dir.setHorizontalAlignment(SwingConstants.RIGHT);
label_dir.setPreferredSize(med);
txt_dir.setPreferredSize(big2);
txt_dir.setText("/Users/percyhou/Desktop/graphFiles");
JPanel gridBag1=new JPanel(new GridBagLayout());
gridBag1.add(label_dir);

gridBag1.add(txt_dir);

label_node.setHorizontalAlignment(SwingConstants.RIGHT);
label_node.setPreferredSize(med);
txt_node.setPreferredSize(big2);
txt_node.setText("node_grid.txt");

JPanel gridBag2=new JPanel(new GridBagLayout());
gridBag2.add(label_node);

gridBag2.add(txt_node);

label_edge.setHorizontalAlignment(SwingConstants:RIGHT);
label_edge.setPreferredSize(med);
txt_edge.setPreferredSize(big2);
txt_edge.setText("edge_grid.ixt");

JPanel gridBag3=new JPanel(new ‘GridBagLayout());
gridBag3.add(label_edge);

gridBag3.add(ixt_edge);

label_dataln.setHorizontalAlignment(SwingConstants.RIGHT);
label_dataln.setPreferredSize(med);
JButton button_import=new JButton("import");

button_import.addActionListener(new Frame_button_import_ActionAdapter(this));

JPanel panel_import=new JPanel(new BorderLayout());
panel_import.add(label_dataln,BorderLayout. WEST);
panel_import.add(button_import,BorderLayout.EAST);

panel_gridbag.add(gridBag1);
gridBag?2);
gridBag3);
panel_gridbag.add(panel_import);

panel_gridbag.add

(
(
panel_gridbag.add(
(

panel_left.add(panel_gridbag,BorderLayout. NORTH);

JTabbedPane jtabbedPane=new JTabbedPane();

219

Frame.java

jtabbedPane.setPreferredSize(new Dimension(300,300));
JScrollPane tab_node=new JScrollPane(node Table);
JScrollPane tab_edge=new JScrollPane(edge Table);
jtabbedPane.add(tab_node,"node");
jtabbedPane.add(tab_edge,"edge");

panel_left.add(jtabbedPane,BorderLayout. CENTER);
panel_bottom.add(panel_left,BorderLayout. WEST);

JPanel panel_right=new JPanel(new BorderLayout());

/Iradio buttons: supply, demand, neutral

panel_setting.setPreferredSize(new Dimension(300,120));

radio_supply.addActionListener(new Frame_radio_ActionAdapter(this));
radio_demand.addActionListener(new Frame_radio_ActionAdapter(this));
radio_neutral.addActionListener(new Frame_radio_ActionAdapter(this));

button_run.addActionListener(new Frame_button .runtActionAdapter(this));

JPanel panel_radio=new JPanel(new GridBagLayout());
radioGroup.add(radio_supply);
radioGroup.add(radio_demand);
radioGroup.add(radio_neutral);
panel_radio.add(radio_supply);
panel_radio.add(radio_demand);
panel_radio.add(radio_neutral);
(

panel_radio.add(button_run);
panel_setting.add(panel_radio,BorderLayout. NORTH);

/lexpert bounds

JTabbedPane jtabbedPane_right=new JTabbedPane();
jtabbedPane_right.setPreferredSize(new Dimension(300,200));
JPanel tab_index=new JPanel(new BorderLayout());

JPanel panel_index=new JPanel(new GridLayout(9,1,2,2));
JPanel tab_result=new JPanel(new GridLayout(9,1,2,2));
tab_index.add(panel_index,BorderLayout. NORTH);
jtabbedPane_right.add(tab_result,"result");
jtabbedPane_right.add(tab_index,"expert");

JPanel panel_expertO=new JPanel(new BorderLayout());

JPanel panel_expert1=new JPanel(new GridBagLayout());

220

Frame.java

JPanel panel_expert2=new JPanel(new GridBagLayout

JPanel panel_expert3=new JPanel(new GridBagLayout());

)

)

)

)
)
)
JPanel panel_expert5=new JPanel(new GridBagLayout())

)

((
((
JPanel panel_expert4=new JPanel(new GridBagLayout(
((
JPanel panel_expert6=new JPanel(new BorderLayout())

JLabel
label_mtc=new JLabel(" MTC: ",SwingConstants.RIGHT),
label_atc=new JLabel(" ATC: ",SwingConstants.RIGHT),
label_Id=new JLabel(" LD: ",SwingConstants.RIGHT),
label_amac=new JLabel(" AMAC: ",SwingConstants.RIGHT),
label_nc=new JLabel(" NC: ",SwingConstants.RIGHT);

JLabel
label_atc_unit=new JLabel(" m",SwingConstants.LEFT),
label_mtc_unit=new JLabel(" m",SwingConstants.LEFT),
label_Id_unit=new JLabel(" m",SwingConstants.LEFT),
label_amac_unit=new JLabel(" m",SwingConstants.LEFT),

label_nc_unit=new JLabel(" m",SwingConstants.LEFT);

label_atc.setPreferredSize(small);
label_mtc.setPreferredSize(small);
label_Id.setPreferredSize(small);
label_amac.setPreferredSize(small);

label_nc.setPreferredSize(small);

txt_atc_low.setPreferredSize(small);
txt_mtc_low.setPreferredSize(small);
txt_ld_low.setPreferredSize(small);
txt_amac_low.setPreferredSize(small);

txt_nc_low.setPreferredSize(small);

txt_atc_up.setPreferredSize(small);
txt_mtc_up.setPreferredSize(small);
txt_ld_up.setPreferredSize(small);
txt_amac_up.setPreferredSize(small);

txt_nc_up.setPreferredSize(small);

label_atc_unit.setPreferredSize(xs);
label_mtc_unit.setPreferredSize(xs);
label_Id_unit.setPreferredSize(xs);

label_amac_unit.setPreferredSize(xs);

221

Frame.java

label_nc_unit.setPreferredSize(xs);

JButton button_set=new JButton("set");

button_set.addActionListener(new Frame_button_set_ActionAdapter(this));
panel_expert0.add(new JLabel(" acceptable range:"),BorderLayout. WEST);

panel_expert1.add(label_atc);
panel_expert1.add(txt_atc_low);
new JLabel(" ~"));

panel_expert1.add(txt_atc_up);

(
(
panel_expert1.add(
(
panel_expert2.add(label_mtc);
panel_expert2.add(txt_mtc_low);

new JLabel(" ~"));
panel_expert2.add(txt_mtc_up);

(
(
panel_expert2.add(
(
panel_expert3.add(label_ld);

txt_ld_low);

new JLabel(" ~"));
panel_expert3.add(txt_Id_up);

(
panel_expert3.add(
panel_expert3.add(
(
panel_expert4.add(label_amac);
panel_expert4.add(txt_amac_low);

new JLabel(" ~"));

panel_expert4.add(txt_amac_up);

(
(
panel_expert4.add(
(

panel_expert5.add(label_nc);

panel_expert5.add(txt_nc_low);

(
(
panel_expert5.add(new JLabel(" ~ "));
panel_expert5.add(txt_nc_up);

panel_expert6.add(button_set,BorderLayout.EAST);

)

panel_index.add(panel_expert0

)

panel_index.add(panel_expert1

)

panel_index.add(panel_expert2

panel_index.add(panel_expert4

)

panel_index.add(panel_expert5

)

()
()
()
panel_index.add(panel_expert3);
()
()
()

panel_index.add(panel_expert6

)

222

Frame.java

JTextField txtField=new JTextField("[indices]",15);
txtField.setBackground(Color.WHITE);
txtField.setEditable(false);

JPanel panel_outputO=new JPanel(new GridBagLayout());
JPanel panel_output3=new JPanel(new GridBagLayout());

1 JPanel panel_output29=new JPanel(new GridBagLayout());
JPanel panel_output4=new JPanel(new GridBagLayout());

I JPanel panel_output49=new JPanel(new GridBagLayout());
JPanel panel_output5=new JPanel(new GridBagLayout());
JPanel panel_output1=new JPanel(new GridBagLayout());
JPanel panel_output2=new JPanel(new GridBagLayout());

()

JPanel panel_output6=new JPanel(new BorderLayout());

JLabel
label_atc1=new JLabel(" ATC: ",SwingConstants.RIGHT),
label_mtc1=new JLabel(" MTC: ",SwingConstants.RIGHT),
label_Id1=new JLabel(" LD: ",SwingConstants/RIGHT),
label_amac1=new JLabel(" AMAC: ",SwingConstants:RIGHT),
label_nc1=new JLabel(" NC: ",SwingConstants.RIGHT);
label_e=new JLabel(" E: ",SwingConstants.RIGHT);

JLabel
label_atc_unit1=new JLabel(" ",SwingConstants:LEFT),
label_mtc_unit1=new JLabel(" ",SwingConstants.LEFT),
label_Id_unit1=new JLabel(" ",SwingConstants.LEFT),
label_amac_unit1=new JLabel(" ",SwingConstants.LEFT),
label_nc_unit1=new JLabel(" ",SwingConstants.LEFT),

label_e_unit1=new JLabel();

label_atc1.setPreferredSize(small);
label_mtc1.setPreferredSize(small);
label_Id1.setPreferredSize(small);
label_amac1.setPreferredSize(small);
label_nc1.setPreferredSize(small);

label_e.setPreferredSize(small);

atc_output.setPreferredSize(big);
mtc_output.setPreferredSize(big);
Id_output.setPreferredSize(big);
amac_output.setPreferredSize(big);

nc_output.setPreferredSize(big);

223

Frame.java

e_output.setPreferredSize(big);

atc_output.setHorizontalAlignment(SwingConstants.RIGHT);
mtc_output.setHorizontalAlignment(SwingConstants.RIGHT);
Id_output.setHorizontal Alignment(SwingConstants.RIGHT);
amac_output.setHorizontalAlignment(SwingConstants.RIGHT);
nc_output.setHorizontalAlignment(SwingConstants.RIGHT);

e_output.setHorizontalAlignment(SwingConstants.RIGHT);

label_atc_unit1.setPreferredSize(xs);
label_mtc_unit1.setPreferredSize(xs);
label_Id_unit1.setPreferredSize(xs);
label_amac_unit1.setPreferredSize(xs);
label_nc_unit1.setPreferredSize(xs);

label_e_unit1.setPreferredSize(xs);

panel_output0.add(label_e);
panel_output0.add(e_output);
panel_output0.add(label_e_unit1);

panel_output1.add(label_atc1);
panel_output1.add(atc_output);

panel_output1.add(label_atc_unit1);

panel_output2.add(label_mtc1);
panel_output2.add(mtc_output);

panel_output2.add(label_mtc_unit1);

panel_output3.add(label_ld1);
panel_output3.add(ld_output);
panel_output3.add(label_Id_unit1);

panel_output4.add(label_amac1);
panel_output4.add(amac_output);

panel_output4.add(label_amac_unit1);
panel_output5.add(label_nc1);
panel_output5.add(nc_output);

panel_output5.add(label_nc_unit1);

save_dir.setPreferredSize(new Dimension(200,20));

JButton button_save=new JButton("save");

224

Frame.java

I button_save.addActionListener(this);

panel_output6.add(save_dir,BorderLayout. WEST);
panel_output6.add(button_save,BorderLayout.EAST);

)

tab_result.add(panel_output1

)

tab_result.add(panel_output2

)

tab_result.add(panel_output3

tab_result.add(panel_output5

)

tab_result.add(panel_outputO

)

()
()
()
tab_result.add(panel_output4);
()
()
()

tab_result.add(panel_output6);
panel_setting.add(jtabbedPane_right,BorderLayout. CENTER);
panel_right.add(panel_setting,BorderLayout.EAST);
panel_bottom.add(panel_right,BorderLayout. CENTER);
panel_bottom.add(seperator,BorderLayout. NORTH);

map.sentFrame(this);

JSplitPane sp=new JSplitPane(JSplitPane.VERTICAL_SPLIT;map,panel_bottom);
sp.setDividerSize(8);

sp.setDividerLocation(270);

sp.setResizeWeight(0.5);

sp.setContinuousLayout(true);

sp.setOne TouchExpandable(true);

contentPane.add(sp,BorderLayout. CENTER);

public void setATC(double atc){
atc_output.setText(myFormatter.format(atc)+" ");
txt_atc_low.setText(myFormatter.format(atc*0.8));

txt_atc_up.setText(myFormatter.format(atc*1.2));

public void setMTC(double mtc)
mtc_output.setText(myFormatter.format(mtc)+" ");
txt_mtc_low.setText(myFormatter.format(mtc*0.8));

txt_mtc_up.setText(myFormatter.format(mtc*1.2));

public void setLD(double Id){

225

Frame.java

Id_output.setText(myFormatter.format(ld)+" ");
txt_ld_low.setText(myFormatter.format(ld*0.8));

txt_ld_up.setText(myFormatter.format(ld*1.2));

public void setAMAC (double amac){
amac_output.setText(myFormatter.format(amac)+" ");
txt_amac_low.setText(myFormatter.format(amac*0.8));

txt_amac_up.setText(myFormatter.format(amac*1.2));

public void setNC(double nc){
nc_output.setText(myFormatter.format(nc)+" ");
txt_nc_low.setText(myFormatter.format(nc*0.8));

txt_nc_up.setText(myFormatter.format(nc*1.2));

public void setE(double e){

e_output.setText(myFormatter.format(e)+" ");

void jMenuFileExit_actionPerformed(ActionEvent actionEvent) {

System.exit(0);

void jMenuHelpAbout_actionPerformed(ActionEvent actionEvent) {
Frame_AboutBox dlg = new Frame_AboutBox(this);
Dimension dlgSize = dlg.getPreferredSize();
Dimension frmSize = getSize();
Point loc = getLocation();
dlg.setLocation((frmSize.width - digSize.width) / 2 + loc.x,
(frmSize.height - dIgSize.height) / 2 + loc.y);
dlg.setModal(true);
dlg.pack();
dlg.show();

void jMenuHelp Term_actionPerformed(ActionEvent actionEvent) {
Frame_TermBox dlg = new Frame_TermBox(this);
Dimension dlgSize = dlg.getPreferredSize();
Dimension frmSize = getSize();

Point loc = getLocation();

226

Frame.java

dlg.setLocation((frmSize.width - digSize.width) / 2 + loc.x,
(frmSize.height - dIgSize.height) / 2 + loc.y);

dlg.setModal(true);

dlg.pack();

dlg.show();

void button_import_actionPerformed(ActionEvent actionEvent){

setATC(0.0);
setMTC(0.0);
setLD(0.0);
setAMAC(0.0);
setNC(0.0);
setE(0.0);

/lread in files: node.ixt & edge.ixt, assign to field argument
try {
I0OGraph ioGraph=new |IOGraph(ixt_dir.getText(),txt_node.getText(),ixt_edge.getText());
this.graph=ioGraph.getGraphi();
Vector nodeSet=graph.getNodeSet();
Vector edgeSet=graph.getEdgeSet();

Node tempNode;

boolean econ=true;

for(int i=0;i<nodeSet.size();i++){
tempNode=(Node)nodeSet.elementAt(i);
if(graph.incidentEdgeSet(tempNode).size()<2){

econ=false;

if(econ){
label_dataln.setText("2econ!");
telsef

label_dataln.setText("not 2econ!");

}
catch (IOException ex) {

System.out.printin("Data Read-In Problem!");

ex.printStackTrace();

227

Frame.java

save_dir.setText("dir: "+txt_dir.getText());

map.setGraph(graph);
this.seperator.setText("[graph components: "+graph.getNodeSet().size()+" nodes,

"+graph.getEdgeSet().size()+" edges]");

this.fleshTable(graph);
this.repaint();

void radio_actionPerformed(ActionEvent actionEvent){
map.nodeSetting(radio_supply.isSelected(),radio_demand.isSelected(),radio_neutral.isSelected());

this.repaint();

void button_run_actionPerformed(ActionEvent actionEvent){
center=new Center(graph,this);

center.start();

this.repaint();

void button_set_actionPerformed(ActionEvent actionEvent){
double e=1.0;

double atc=new Double(atc_output.getText()).doubleValue();
double low_atc=new Double(txt_atc_low.getText()).doubleValue();
double up_atc=new Double(txt_atc_up.getText()).doubleValue();

double std_atc=standardN(atc,low_atc,up_atc);

double mtc=new Double(mtc_output.getText()).doubleValue();
double low_mtc=new Double(txt_mtc_low.getText()).doubleValue();
double up_mtc=new Double(txt_mtc_up.getText()).doubleValue();

double std_mtc=standardN(mtc,low_mtc,up_mtc);

double amac=new Double(amac_output.getText()).doubleValue();
double low_amac=new Double(txt_amac_low.getText()).doubleValue();
double up_amac=new Double(txt_amac_up.getText()).doubleValue();

double std_amac=standardN(amac,low_amac,up_amac);

double Id=new Double(ld_output.getText()).doubleValue();

228

Frame.java

double low_ld=new Double(txt_Id_low.getText()).doubleValue();
double up_ld=new Double(txt_Id_up.getText()).doubleValue();
double std_ld=standardN(ld,low_Id,up_lId);

double nc=new Double(nc_output.getText()).doubleValue();
double low_nc=new Double(txt_nc_low.getText()).doubleValue();
double up_nc=new Double(txt_nc_up.getText()).doubleValue();

double std_nc=standardP(nc,low_nc,up_nc);
e=(1.0/3.0)*((std_atc + std_mtc)/2.0 + (std_Id + std_amac)/2.0 + std_nc);

this.setE(e);

/lIpositive
double standardP(double x,double low,double up){
if(up<=x){
return 1.0;
lelse if(low<=x && x<up)}

return (x-low)/(up-low);

telsef
return 0.0;
}
}
/Inegative

double standardN(double x,double low,double up){
if(x<low){
return 1.0;
lelse if(low<=x && x<up)}{
return (low-x)/(low-up);
telsef

return 0.0;

public void setSeperator(Graph graph){
int nodeNum=0,edgeNum=0;

Vector nodeSet=graph.getNodeSet();
Vector edgeSet=graph.getEdgeSet();

229

Frame.java

Node tempNode;

for(int i=0;i<nodeSet.size();i++){
tempNode=(Node)nodeSet.elementAt(i);
if(ltempNode.isDummy())

nodeNum++;

Edge tempEdge;

for(int i=0;i<edgeSet.size();i++){
tempEdge=(Edge)edgeSet.elementAt(i);
if(ltempEdge.isDummyEdge())

edgeNum++;

seperator.setText("[graph components: "+nodeNum+" nodes, "+edgeNum+" edges | supply
"+graph.getSupplyNodeNum()+" , demand "+graph.getDemandNodeNum()+" 1");
this.repaint();

public Map getMap(){

return this.map;

void fleshTable(Graph graph){
Vector nodeSet=graph.getNodeSet(),edgeSet=graph.getEdgeSet();
Object nodeData[]=new Object[3];
DefaultTableModel node TableModel=new DefaultTableModel();
nodeTableModel.addColumn("label");
nodeTableModel.addColumn("x");
nodeTableModel.addColumn("y");
for(int i=0;i<nodeSet.size();i++){
Node node=(Node)nodeSet.elementAt(i);
nodeData[0]=""+node.getLabel();
nodeData[1]=""+node.getX();
nodeData[2]=""+node.getY();
nodeTableModel.addRow(nodeData);

}
this.node Table.setModel(node TableModel);

Object edgeData[]=new Object[3];

DefaultTableModel edge TableModel=new DefaultTableModel();
edgeTableModel.addColumn("label");

230

Frame.java

edge TableModel.addColumn("n1");

edge TableModel.addColumn("n2");

for(int i=0;i<edgeSet.size();i++){
Edge edge=(Edge)edgeSet.elementAt(i);
edgeData[0]=""+edge.getLabel();
edgeData[1]=""+edge.getN1().getLabel();
edgeData[2]=""+edge.getN2().getLabel();
edgeTableModel.addRow(edgeData);

}
this.edge Table.setModel(edge TableModel);

class Frame_jMenuFileExit_ActionAdapter
implements ActionListener {

Frame adaptee;
Frame_jMenuFileExit_ActionAdapter(Frame adaptee) {

this.adaptee = adaptee;

public void actionPerformed(ActionEvent actionEvent){

adaptee.jMenuFileExit_actionPerformed(actionEvent);

class Frame_jMenuHelpAbout_ActionAdapter
implements ActionListener {
Frame adaptee;
Frame_jMenuHelpAbout_ActionAdapter(Frame adaptee) {

this.adaptee = adaptee;

public void actionPerformed(ActionEvent actionEvent) {

adaptee.jMenuHelpAbout_actionPerformed(actionEvent);

class Frame_jMenuHelpTerm_ActionAdapter

231

Frame.java

implements ActionListener {

Frame adaptee;

Frame_jMenuHelpTerm_ActionAdapter(Frame adaptee) {

this.adaptee = adaptee;

public void actionPerformed(ActionEvent actionEvent) {

adaptee.jMenuHelpTerm_actionPerformed(actionEvent);

class Frame_button_import_ActionAdapter implements ActionListener{
Frame adaptee;
Frame_button_import_ActionAdapter(Frame adaptee){

this.adaptee=adaptee;

public void actionPerformed(ActionEvent actionEvent){

adaptee.button_import_actionPerformed(actionEvent);

class Frame_radio_ActionAdapter implements ActionListener{
Frame adaptee;
Frame_radio_ActionAdapter(Frame adaptee){

this.adaptee=adaptee;

public void actionPerformed(ActionEvent actionEvent){

adaptee.radio_actionPerformed(actionEvent);

class Frame_button_run_ActionAdapter implements ActionListener{
Frame adaptee;
Frame_button_run_ActionAdapter(Frame adaptee){

this.adaptee=adaptee;

232

Frame.java

public void actionPerformed(ActionEvent actionEvent){

adaptee.button_run_actionPerformed(actionEvent);

class Frame_button_set_ActionAdapter implements ActionListener{
Frame adaptee;
Frame_button_set_ActionAdapter(Frame adaptee)}{

this.adaptee=adaptee;

public void actionPerformed(ActionEvent actionEvent){

adaptee.button_set_actionPerformed(actionEvent);

233

234

- UN

(E= B 5

R ERS RS AT ML (90.09~95.12)
S REEARL %@%Jﬁﬂnﬁﬁ B (88.09~90.06)
BERETARTESZSR 2L (84.09~88.06)

A. BTIESC

1.

FENEEE ~ 42)5F - T Survivable network design model for earthquake disaster | » 515+ AR/KF] T
12T (E2) -
Hsu, Y.C. and Hou, P.H. “Finding dominant links of emergency network with respect to

earthquake disaster”, Journal of the Eastern Asia Society for Transportation Studies, 6, pp.
77-90, 2005.

TR - GEIEE > T T I S R e TP AR A 0 PR S0 %
DU > EH10-20 - [REI924F: -

B. Wi ErigsC

4.

10.

11.

Hou, P.H. “Network planning for earthquake disaster in Kaohsiung City”, 2006 International
Conference on Deep Ocean Water and Industrial Development, Kaohsiung, Taiwan, 2006.

Hou, P.H., Lien, Barry C.S. and Chen, Johnny J.Y. “ITS-based road network application:
Finding shortest time path under traffic signal system”, The 13th World Congress & Exhibition
on Intelligent Transport Systems and Services, London, England, 2006.

Lien, Barry C.S., Chen, Johnny J.Y. and Hou, P.H. “Advanced timetable query system in
Taiwan railway transportation”, The 13th World Congress & Exhibition on Intelligent Transport
Systems and Services, London, England, 2006.

Lien, Barry C.S., Chen, Johnny J.Y. and Hou, P.H. “Implementation of dynamic navigation
system with real-time traffic events using digital audio broadcasting (DAB) as the
communication system”, The 13th World Congress & Exhibition on Intelligent Transport
Systems and Services, London, England, 2006.

AN - T DUREBES o fsRar Y 2 e tin | > 2006 1 B R B i AR VRIS & > ALK =
el - EREI9SAE -

{ZEMENE » T B ARV 2 s — B A AT R R 2 WP | 200678 TR 5 e (i A ST g - 5t
REZPHRLE - REJISHE -

Hou, H.S. and Hou, P.H. “Establishment of Taiwan Hub Port”, Proceedings of the 9th HKSTS
Conference, Hong Kong, China, 2004.

Hou, H.S. and Hou, P.H. “Integrated Development Project of Ports in Taiwan”, Proceedings of

235

12.

13.

14.

15.

16.

17.

18.

19.

20.

the 9th HKSTS Conference, Hong Kong, China, 2004.

TR ~ GBI T BSEICE 2 PIRE K E G 0 S UEP ERBUERAS & G REAE
EREO34E -

Hsu, Y.C. and Hou, P.H. “Rescue network design with respect to earthquake”, Proceedings of
International Symposium on City Planning 2004, Sapporo, Japan, 2004.

Hsu, Y.C., Hsia, L.M., Hsu, M.C. and Hou, P.H. “ Urban location characteristics concerned by

enterprises: A case in Taipei”, Proceedings of International Symposium on City Planning 2004,
Sapporo, Japan, 2004.

TR - GBI - T LUMBE BB A EE T IE)IE 28 R4 200451000 8 S0 i 2 4w
W Eram ol - PRIGHVE - B934 -

Hou, H.S. and Hou, P.H. “Integrated Planning of Kaohsiung Port’, Proceedings of PACON
2004, Hawaii, USA, 2004.

TRRAR ~ GEMGIE - B KRR AR 0 BB/ VEH E REDER S & im s kBT somRg
ERE924F -

Hou, H.S. and Hou, P.H. “Environmental impact of redevelopment of port of Keelung”,
Proceedings of PACON 2003, Kaohsiung, Taiwan, 2003.

Hou, H.S. and Hou, P.H. “Transportation policy: Case study of Kaohsiung city, Proceedings of
the 5th EAST, Fukuoka, Japan, 2003.

Hou, H.S. and Hou, P.H. “Offshore zone reclamation: Kaohsiung South Star Plan, Proceedings
of PACON 2002, Chiba, Japan, 2002:

C. Mot R
21, St EHIRER © R2025FE K GETHEME Rt | sttt 2 son iy, 0 BN EHE

22.
23.
24.
25.
26.

BH5E » RREI95H -

il B RERT SRR KA B4k BIRE BT IE - REI944E -

B3 K e 4k 5 /K 4 2 BRAL AR R - B S EEATT - REI934F -

H P SEERE AR 29T - BIRFE EEMIT - REI914E -
BALRAOEZE BT ICE R E G ETE - LR - R4 -
HIG RS EHEh ST I H o M e Rl - 22 LR - REI914E -

236

