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附錄三 程式碼 

 
GraphAlgorithm.java 

package emnet.algorithm; 

 

import java.util.Vector; 

import emnet.graph.Graph; 

import emnet.graph.Node; 

import emnet.graph.Edge; 

import java.util.Iterator; 

import emnet.thread.Center; 

import emnet.thread.Roamer; 

import emnet.thread.Detourist; 

import emnet.thread.DetourManager; 

 

 

public class GraphAlgorithm { 

    public GraphAlgorithm() { 

        try { 

            jbInit(); 

        } 

        catch (Exception ex) { 

            ex.printStackTrace(); 

        } 

    } 

 

    public static Graph copyGraph(Graph oldGraph){ 

        Vector oldNodeSet,oldEdgeSet; 

 

        oldNodeSet=oldGraph.getNodeSet(); 

        oldEdgeSet=oldGraph.getEdgeSet(); 

 

        return copyGraph(oldNodeSet,oldEdgeSet); 

    } 

 

    public static Graph copyGraph(Vector oldNodeSet,Vector oldEdgeSet){ 

        Vector newNodeSet=new Vector(),newEdgeSet=new Vector(); 

 

        for(int i=0;i<oldNodeSet.size();i++){ 

 

            // new node setting: 

            // 1. check label 
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            // 2. check supply/demand 

            // 3. check visit 

            Node tempOldNode=(Node)oldNodeSet.elementAt(i); 

            Node tempNewNode=new Node(i); 

 

            if(tempOldNode.isSupply()){ 

                tempNewNode.setSupply(); 

            }else if(tempOldNode.isDemand()){ 

                tempNewNode.setDemand(); 

            } 

 

            if(tempOldNode.isVisited()){ 

                tempNewNode.visit(); 

            } 

 

            newNodeSet.addElement(tempNewNode); 

        } 

 

        for(int i=0;i<oldEdgeSet.size();i++){ 

 

            // new edge setting: 

            // 1. check label 

            // 2. check n1/n2 

            // 3. set weight 

            // 4. set previous node 

            // 5. check fast 

            // 6. check detour 

            // 7. check visit 

            Edge tempOldEdge=(Edge)oldEdgeSet.elementAt(i); 

            int n1=tempOldEdge.getN1Label(),n2=tempOldEdge.getN2Label(); 

            double weight=tempOldEdge.getWeight(); 

            Edge tempNewEdge=new 

Edge(i,(Node)newNodeSet.elementAt(n1),(Node)newNodeSet.elementAt(n2),weight); 

 

            if(tempOldEdge.isFastEdge()){ 

                tempNewEdge.setFastEdge(); 

            } 

 

            if(tempOldEdge.isDetourEdge()){ 

                tempNewEdge.setDetourEdge(); 

            } 
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            if(tempOldEdge.isVisited()){ 

                tempNewEdge.visit(); 

            } 

 

            newEdgeSet.addElement(tempNewEdge); 

        } 

        return new Graph(newNodeSet,newEdgeSet); 

    } 

 

    public static Graph getSubtreeWithCertainNode(Graph tree,Node certainNode,Edge ruinedEdge){ 

 

        Vector nodeSet=new Vector(),edgeSet=new Vector(); 

        Vector currAdjacentNodes,currIncidentEdges; 

        Node currNode=certainNode; 

 

        int maxLabel=0; 

        Vector tempTreeNodeSet=tree.getNodeSet(); 

        Node tempTreeNode; 

        for(int i=0;i<tempTreeNodeSet.size();i++){ 

            tempTreeNode=(Node)tempTreeNodeSet.elementAt(i); 

            if(tempTreeNode.getLabel()>maxLabel) 

                maxLabel=tempTreeNode.getLabel(); 

        } 

 

        Vector preNodes=new Vector(maxLabel+1); 

        for(int i=0;i<(maxLabel+1);i++) 

            preNodes.addElement(null); 

 

        boolean finish=false; 

 

        do{ 

            currAdjacentNodes=tree.adjacentNodeSet(currNode); 

            currIncidentEdges=tree.incidentEdgeSet(currNode); 

 

            if(currIncidentEdges.contains(ruinedEdge)){ 

                currIncidentEdges.removeElement(ruinedEdge); 

                currAdjacentNodes.removeElement(ruinedEdge.theOtherNode(currNode)); 

            } 

 

            Iterator itrAdjacentNodes=currAdjacentNodes.iterator(); 

 

            if(!nodeSet.contains(currNode)) 
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                nodeSet.addElement(currNode); 

 

            int i=0; 

            currNodeAssign: 

            do{ 

                if(itrAdjacentNodes.hasNext()){ 

                    Node tempNode=(Node)itrAdjacentNodes.next(); 

 

                    if(!nodeSet.contains(tempNode)){ 

                        preNodes.setElementAt(currNode,tempNode.getLabel()); 

                        currNode=tempNode; 

                        break currNodeAssign; 

                    }else{ 

                        i++; 

                        if(i==currAdjacentNodes.size()){ 

                            if(currNode==certainNode){ 

                                finish=true; 

                                break currNodeAssign; 

                            } 

                            Edge 

tempEdge=tree.getEdge(currNode,(Node)preNodes.elementAt(currNode.getLabel())); 

                            if(!edgeSet.contains(tempEdge)){ 

                                edgeSet.addElement(tempEdge); 

                            } 

                            currNode=(Node)preNodes.elementAt(currNode.getLabel()); 

                        } 

                    } 

                }else{ 

                    finish=true; 

                    //break currNodeAssign; 

                } 

            }while(itrAdjacentNodes.hasNext()); 

        }while(!finish); 

        return new Graph(nodeSet,edgeSet); 

    } 

 

    public static Vector getAdjacentNodes(Graph graph,Node currNode){ 

        return graph.adjacentNodeSet(currNode); 

    } 

 

    public static Vector getIncidnetEdges(Graph graph,Node currNode){ 

        return graph.incidentEdgeSet(currNode); 
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    } 

 

 

    public static Graph getSubtreeWithoutSupply(Graph tree,Edge ruinedEdge){ 

        Graph subtreeWithoutSupply=null; 

        Graph subtreeN1=getSubtreeWithCertainNode(tree,ruinedEdge.getN1(),ruinedEdge); 

        Graph subtreeN2=getSubtreeWithCertainNode(tree,ruinedEdge.getN2(),ruinedEdge); 

        Vector subtreeNodeSetN1=subtreeN1.getNodeSet(); 

        Node tempNode; 

        for(int i=0;i<subtreeNodeSetN1.size();i++){ 

            tempNode=(Node)subtreeNodeSetN1.elementAt(i); 

            if(tempNode.isSupply()) 

                subtreeWithoutSupply=subtreeN2; 

        } 

        if(subtreeWithoutSupply!=subtreeN2) 

            subtreeWithoutSupply=subtreeN1; 

        return subtreeWithoutSupply; 

    } 

 

    public static Graph getSubtreeWithSupply(Graph tree,Edge ruinedEdge){ 

        Graph subtreeWithSupply=null; 

        Graph subtreeN1=getSubtreeWithCertainNode(tree,ruinedEdge.getN1(),ruinedEdge); 

        Graph subtreeN2=getSubtreeWithCertainNode(tree,ruinedEdge.getN2(),ruinedEdge); 

        Vector subtreeNodeSetN1=subtreeN1.getNodeSet(); 

        Node tempNode; 

        for(int i=0;i<subtreeNodeSetN1.size();i++){ 

            tempNode=(Node)subtreeNodeSetN1.elementAt(i); 

            if(tempNode.isSupply()) 

                subtreeWithSupply=subtreeN1; 

        } 

        if(subtreeWithSupply!=subtreeN1) 

            subtreeWithSupply=subtreeN2; 

        return subtreeWithSupply; 

    } 

 

 

    private void jbInit() throws Exception { 

    } 

 

    public static Vector getIncidentEdgeSet(Roamer roamer,Vector nodeSet){ 

        Center center=roamer.getCenter(); 

        Graph graph=center.getGraph(); 
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        Edge myEdge=center.getMyEdge(roamer); 

        Vector visitorSequence; 

 

        Vector edgeSet=new Vector(); 

        Edge tempEdge; 

        Node n1,n2; 

        for(int i=0;i<nodeSet.size();i++){ 

            Vector tempEdgeSet=graph.incidentEdgeSet((Node)nodeSet.elementAt(i)); 

            for(int j=0;j<tempEdgeSet.size();j++){ 

                if(!edgeSet.contains(tempEdgeSet.elementAt(j))){ 

                    edgeSet.addElement(tempEdgeSet.elementAt(j)); 

 

                    tempEdge=(Edge)tempEdgeSet.elementAt(j); 

                    n1=tempEdge.getN1(); 

                    n2=tempEdge.getN2(); 

                    //remove edges included in the routeEdgeSet 

                    if(nodeSet.contains(n1) && nodeSet.contains(n2)) 

                        edgeSet.removeElement(tempEdge); 

                    //remove dummyEdges 

                    if(n1==center.getDummyNode() || n2==center.getDummyNode()) 

                        edgeSet.removeElement(tempEdge); 

                    //remove visited edge 

                    if(nodeSet.contains(n1)){ 

                        visitorSequence=center.getVisitorSequence(n2); 

                        if(visitorSequence.contains(roamer)) 

                            edgeSet.removeElement(tempEdge); 

                    }else if(nodeSet.contains(n2)){ 

                        visitorSequence=center.getVisitorSequence(n1); 

                        if(visitorSequence.contains(roamer)) 

                            edgeSet.removeElement(tempEdge); 

                    } 

                } 

            } 

        } 

        if(edgeSet.contains(myEdge)) 

            edgeSet.removeElement(myEdge); 

 

        return edgeSet; 

    } 

 

    public static Vector getIncidentEdges(Detourist detourist,Vector nodeSet){ 

        Graph usableGraph=detourist.getUsableGraph(); 
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        DetourManager dmr=detourist.getDetourManager(); 

        Center center=dmr.getCenter(); 

        Edge myEdge=dmr.getMyEdge(detourist); 

 

        Vector incidentEdges=new Vector(); 

        Edge tempEdge; 

        Node n1,n2; 

 

        for(int i=0;i<nodeSet.size();i++){ 

            Vector tempEdgeSet=usableGraph.incidentEdgeSet((Node)nodeSet.elementAt(i)); 

            for(int j=0;j<tempEdgeSet.size();j++){ 

                tempEdge=(Edge)tempEdgeSet.elementAt(j); 

                if(!incidentEdges.contains(tempEdge)) 

                    incidentEdges.addElement(tempEdge); 

 

                n1=tempEdge.getN1(); 

                n2=tempEdge.getN2(); 

                if(nodeSet.contains(n1) && nodeSet.contains(n2)) 

                    incidentEdges.removeElement(tempEdge); 

                if(n1==center.getDummyNode() || n2==center.getDummyNode()) 

                    incidentEdges.removeElement(tempEdge); 

            } 

        } 

        if(incidentEdges.contains(myEdge)) 

            incidentEdges.removeElement(myEdge); 

 

        return incidentEdges; 

    } 

 

    public static Vector getInterfaceNodes(Graph subject,Graph environment){ 

        Vector interfaceNodes=new Vector(); 

        Vector environmentEdgeSet=environment.getEdgeSet(); 

 

        Edge tempEdge; 

        Node n1,n2; 

 

        for(int i=0;i<environmentEdgeSet.size();i++){ 

            tempEdge=(Edge)environmentEdgeSet.elementAt(i); 

            n1=tempEdge.getN1(); 

            n2=tempEdge.getN2(); 

 

            if(subject.hasNode(n1) && !subject.hasNode(n2)){ 
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                if(!interfaceNodes.contains(n1)) 

                    interfaceNodes.addElement(n1); 

            } 

            if(subject.hasNode(n2) && !subject.hasNode(n1)){ 

                if(!interfaceNodes.contains(n2)) 

                    interfaceNodes.addElement(n2); 

            } 

        } 

        return interfaceNodes; 

    } 

 

 

    public static double networkCost(Graph graph){ 

        Vector edgeSet=graph.getEdgeSet(); 

        Edge edge; 

        double networkCost=0.0; 

        for(int i=0;i<edgeSet.size();i++){ 

            edge=(Edge)edgeSet.elementAt(i); 

            networkCost=networkCost+edge.getWeight(); 

        } 

        return networkCost; 

    } 

 

    public static double pathCost(Vector edgeSet){ 

        double pathkCost=0.0; 

        Edge edge; 

        for(int i=0;i<edgeSet.size();i++){ 

            edge=(Edge)edgeSet.elementAt(i); 

            pathkCost=pathkCost+edge.getWeight(); 

        } 

        return pathkCost; 

    } 

 

    public static Vector intersection(Vector set0,Vector set1){ 

        Vector intersection=new Vector(); 

        Object temp; 

        for(int i=0;i<set0.size();i++){ 

            temp=set0.elementAt(i); 

            if(set1.contains(temp)) 

                intersection.addElement(temp); 

        } 

        return intersection; 
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    } 

 

    public static Vector union(Vector set0,Vector set1){ 

        Vector union=new Vector(); 

        Object temp; 

        for(int i=0;i<set0.size();i++){ 

            temp=set0.elementAt(i); 

            union.addElement(temp); 

        } 

        for(int i=0;i<set1.size();i++){ 

            temp=set1.elementAt(i); 

            if(!union.contains(temp)) 

                union.addElement(temp); 

        } 

        return union; 

    } 

 

    //detour 

    public static double getMergeCost(Detourist detourist,Node node){ 

 

        Center center=detourist.getDetourManager().getCenter(); 

        double mergeCost=0.0; 

 

        Graph downstream=detourist.getDownstream(); 

        Vector downstreamDemandNodeSet=downstream.getDemandNodeSet(); 

 

        Graph mergeNodeToSupplyPath=getPathToSupply(node,center); 

        Vector mergeNodeToSupplyEdgeSet=mergeNodeToSupplyPath.getEdgeSet(); 

 

        Vector tempEdgeSetUnion=new Vector(),tempEdgeSetIntersection=new Vector(); 

 

        Node tempDemand; 

        Graph tempDemandToSupplyPath; 

        Vector tempDemandToSupplyEdgeSet; 

        for(int i=0;i<downstreamDemandNodeSet.size();i++){ 

            tempDemand=(Node)downstreamDemandNodeSet.elementAt(i); 

 

            tempDemandToSupplyPath=getPathToSupply(tempDemand,center); 

            tempDemandToSupplyEdgeSet=tempDemandToSupplyPath.getEdgeSet(); 

 

            tempEdgeSetUnion=union(mergeNodeToSupplyEdgeSet,tempDemandToSupplyEdgeSet); 
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tempEdgeSetIntersection=intersection(mergeNodeToSupplyEdgeSet,tempDemandToSupplyEdgeSet); 

 

            mergeCost=mergeCost+pathCost(tempEdgeSetUnion)-pathCost(tempEdgeSetIntersection); 

        } 

        return mergeCost; 

    } 

 

    public static Graph getPathToSupply(Node node,Center center){ 

        Vector nodeSet=new Vector(); 

        Vector edgeSet=new Vector(); 

 

        Node currNode=node; 

        Edge preEdge; 

        while(currNode!=center.getDummyNode()){ 

            preEdge=center.getPreEdge(currNode); 

 

            if(center.getPreNode(currNode)!=center.getDummyNode()){ 

                if(!nodeSet.contains(currNode)) 

                    nodeSet.addElement(currNode); 

                if(!edgeSet.contains(preEdge)) 

                    edgeSet.addElement(preEdge); 

            }else{ 

                if(!nodeSet.contains(currNode)) 

                    nodeSet.addElement(currNode); 

            } 

            currNode=preEdge.theOtherNode(currNode); 

        } 

        return new Graph(nodeSet,edgeSet); 

    } 

} 
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Graph.java 

package emnet.graph; 

 

import java.util.Vector; 

 

public class Graph { 

    private Vector nodeSet,edgeSet; 

    int supplyNodeNum,demandNodeNum; 

 

    public Graph(Vector nodeSet, Vector edgeSet){ 

        this.nodeSet=nodeSet; 

        this.edgeSet=edgeSet; 

    } 

 

    public Vector getNodeSet(){ 

        return this.nodeSet; 

    } 

 

    public Vector getEdgeSet(){ 

        return this.edgeSet; 

    } 

 

    //incident edges of node n 

    public Vector incidentEdgeSet(Node node){ 

        Vector incidentEdgeSet=new Vector(); 

        for(int i=0;i<this.edgeSet.size();i++){ 

            Edge tempEdge=(Edge)edgeSet.elementAt(i); 

            if(tempEdge.getN1()==node || tempEdge.getN2()==node){ 

                if(!incidentEdgeSet.contains(tempEdge)){ 

                    incidentEdgeSet.addElement(tempEdge); 

                } 

            } 

        } 

        return incidentEdgeSet; 

    } 

 

    //adjacent nodes of node n 

    public Vector adjacentNodeSet(Node n){ 

        Vector adjacentNodeSet=new Vector(); 

        for(int i=0;i<this.edgeSet.size();i++){ 

            Edge tempEdge=(Edge)edgeSet.elementAt(i); 

            if(tempEdge.getN1()==n && !adjacentNodeSet.contains(tempEdge.getN2())){ 
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                adjacentNodeSet.addElement(tempEdge.getN2()); 

            }else if(tempEdge.getN2()==n && !adjacentNodeSet.contains(tempEdge.getN1())){ 

                adjacentNodeSet.addElement(tempEdge.getN1()); 

            } 

        } 

        return adjacentNodeSet; 

    } 

 

    public Vector getSupplyNodeSet(){ 

        Vector supplyNodeSet=new Vector(); 

        for(int i=0;i<this.nodeSet.size();i++){ 

            Node tempNode=(Node)nodeSet.elementAt(i); 

            if(tempNode.isSupply()) 

                supplyNodeSet.addElement(tempNode); 

        } 

        return supplyNodeSet; 

    } 

 

    public int getSupplyNodeNum(){ 

        return getSupplyNodeSet().size(); 

    } 

 

    public Vector getDemandNodeSet(){ 

        Vector demandNodeSet=new Vector(); 

        for(int i=0;i<this.nodeSet.size();i++){ 

            Node tempNode=(Node)nodeSet.elementAt(i); 

            if(tempNode.isDemand()) 

                demandNodeSet.addElement(tempNode); 

        } 

        return demandNodeSet; 

    } 

 

    public int getDemandNodeNum(){ 

        return getDemandNodeSet().size(); 

    } 

 

    public Edge getEdge(Node n1,Node n2){ 

        Edge edge; 

        for(int i=0;i<edgeSet.size();i++){ 

            edge=(Edge)edgeSet.elementAt(i); 

            if(edge.getN1()==n1){ 

                if(edge.theOtherNode(edge.getN1())==n2) 
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                    return edge; 

            }else if(edge.getN1()==n2){ 

                if(edge.theOtherNode(edge.getN1())==n1) 

                    return edge; 

            } 

        } 

        System.out.println("error: no edge can be returned!"); 

        return null; 

    } 

 

    public void addNode(Node node){ 

        if(!nodeSet.contains(node)) 

            this.nodeSet.addElement(node); 

    } 

 

    public void addEdge(Edge edge){ 

        if(!edgeSet.contains(edge)) 

            this.edgeSet.addElement(edge); 

    } 

 

    public boolean hasNode(Node node){ 

        if(nodeSet.contains(node)){ 

            return true; 

        }else{ 

            return false; 

        } 

    } 

 

    public boolean hasEdge(Edge edge){ 

        if(edgeSet.contains(edge)){ 

            return true; 

        }else{ 

            return false; 

        } 

    } 

 

    public void removeNode(Node node){ 

        if(nodeSet.contains(node)){ 

            Vector incidentEdges=this.incidentEdgeSet(node); 

            Edge tempIncidentEdge; 

            for(int i=0;i<incidentEdges.size();i++){ 

                tempIncidentEdge=(Edge)incidentEdges.elementAt(i); 
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                if(edgeSet.contains(tempIncidentEdge)) 

                    edgeSet.removeElement(tempIncidentEdge); 

            } 

            nodeSet.removeElement(node); 

        } 

    } 

 

    public void removeEdge(Edge edge){ 

        if(edgeSet.contains(edge)) 

            edgeSet.removeElement(edge); 

    } 

} 
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Node.java 

package emnet.graph; 

 

public class Node{ 

    private int label; 

    private double x,y; 

    private boolean demand,supply,merge,access,source,dummy; 

    private boolean visit,occupy; 

 

    public Node(int label){ 

        this.label=label; 

        this.demand=false; 

        this.supply=false; 

        this.merge=false; 

        this.access=false; 

        this.source=false; 

        this.dummy=false; 

        this.visit=false; 

        this.occupy=false; 

    } 

 

    public Node(int label,double x,double y){ 

        this(label); 

        setX(x); 

        setY(y); 

    } 

 

    public void setDemand(){ 

        this.demand=true; 

    } 

 

    public void setSupply(){ 

        this.supply=true; 

    } 

 

    public void setNeutral(){ 

        this.supply=false; 

        this.demand=false; 

    } 

 

    public void setMerge(){ 

        this.merge=true; 
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    } 

 

    public void setAccess(){ 

        this.access=true; 

    } 

 

    public void setSource(){ 

        this.source=true; 

    } 

 

    public void setDummy(){ 

        this.dummy=true; 

    } 

 

    public synchronized void visit(){ 

        this.visit=true; 

    } 

 

    public synchronized void occupy(){ 

        this.occupy=true; 

    } 

 

    public synchronized void unOccupied(){ 

        this.occupy=false; 

    } 

 

    public synchronized void leave(){ 

        this.occupy=false; 

    } 

 

    public boolean isOccupied(){ 

        return this.occupy; 

    } 

 

    public boolean isDemand(){ 

        return this.demand; 

    } 

 

    public boolean isSupply(){ 

        return this.supply; 

    } 
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    public boolean isMerge(){ 

        return this.merge; 

    } 

 

    public boolean isAccess(){ 

        return this.access; 

    } 

 

    public boolean isSource(){ 

        return this.source; 

    } 

 

    public boolean isDummy(){ 

        return this.dummy; 

    } 

 

    public boolean isVisited(){ 

        return this.visit; 

    } 

 

    public int getLabel(){ 

        return label; 

    } 

 

    public void setX(double x){ 

        this.x=x; 

    } 

 

    public void setY(double y){ 

        this.y=y; 

    } 

 

    public double getX(){ 

        return this.x; 

    } 

 

    public double getY(){ 

        return this.y; 

    } 

} 
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Edge.java 

package emnet.graph; 

 

public class Edge { 

    private int label; 

    private double weight; 

    private Node n1,n2; 

    private boolean fastEdge,detourEdge,testEdge,detourTestEdge,dummyEdge,maTestEdge,maEdge; 

    private boolean visit; 

 

    public Edge(int label,Node n1,Node n2){ 

        this.label=label; 

        this.weight=0.0; 

        this.n1=n1; 

        this.n2=n2; 

        this.fastEdge=false; 

        this.detourEdge=false; 

        this.testEdge=false; 

        this.detourTestEdge=false; 

        this.dummyEdge=false; 

        this.maTestEdge=false; 

        this.maEdge=false; 

        this.visit=false; 

    } 

 

    public Edge(int label,Node n1,Node n2,double weight){ 

        this(label,n1,n2); 

        this.weight=weight; 

    } 

 

    public synchronized void setFastEdge(){ 

        this.fastEdge=true; 

    } 

 

    public boolean isFastEdge(){ 

        return this.fastEdge; 

    } 

 

    public synchronized void setDetourEdge(){ 

        this.detourEdge=true; 

    } 
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    public boolean isDetourEdge(){ 

        return this.detourEdge; 

    } 

 

    public synchronized void setTestEdge(){ 

        this.testEdge=true; 

    } 

 

    public boolean isTestEdge(){ 

        return this.testEdge; 

    } 

 

    public synchronized void setDetourTestEdge(boolean detourTestEdge){ 

        this.detourTestEdge=detourTestEdge; 

    } 

 

    public boolean isDetourTestEdge(){ 

        return detourTestEdge; 

    } 

 

    public synchronized void setDummyEdge(){ 

        this.dummyEdge=true; 

    } 

 

    public boolean isDummyEdge(){ 

        return dummyEdge; 

    } 

 

    public synchronized void setMATestEdge(boolean maTestEdge){ 

        this.maTestEdge=maTestEdge; 

    } 

 

    public boolean isMATestEdge(){ 

        return maTestEdge; 

    } 

 

    public synchronized void setMAEdge(){ 

        this.maEdge=true; 

    } 

 

    public boolean isMAEdge(){ 

        return maEdge; 
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    } 

 

    public synchronized void setNeutralEdge(){ 

        this.fastEdge=false; 

        this.detourEdge=false; 

        this.maEdge=false; 

        this.testEdge=false; 

        this.detourTestEdge=false; 

        this.maTestEdge=false; 

    } 

 

    public void setWeight(double weight){ 

        this.weight=weight; 

    } 

 

    public double getWeight(){ 

        return this.weight; 

    } 

 

    public Node getN1(){ 

        return this.n1; 

    } 

 

    public Node getN2(){ 

        return this.n2; 

    } 

 

    public Node theOtherNode(Node n){ 

        if(n==this.n1){ 

            return this.n2; 

        }else if(n==this.n2){ 

            return this.n1; 

        } 

        return null; 

    } 

 

    public synchronized void visit(){ 

        this.visit=true; 

    } 

 

    public boolean isVisited(){ 

        return this.visit; 
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    } 

 

    public int getN1Label(){ 

        return n1.getLabel(); 

    } 

 

    public int getN2Label(){ 

        return n2.getLabel(); 

    } 

 

    public int getLabel(){ 

        return this.label; 

    } 

} 
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package emnet.gui; 

 

import emnet.graph.Graph; 

import emnet.graph.Node; 

import emnet.graph.Edge; 

import javax.swing.JPanel; 

import java.awt.BorderLayout; 

import java.awt.Dimension; 

import java.util.Vector; 

import java.awt.Graphics; 

import java.awt.Color; 

import java.awt.event.MouseEvent; 

import java.awt.event.MouseAdapter; 

import emnet.Frame; 

import java.text.DecimalFormat; 

import java.awt.Font; 

 

public class Map extends javax.swing.JPanel{ 

    Frame frame; 

    JPanel map=new JPanel(); 

    Graph graph; 

    boolean dataIn; 

    boolean supply,demand,neutral; 

    DecimalFormat myFormatter=new DecimalFormat("###,###.#"); 

 

    public Map(){ 

        init(); 

    } 

 

    public void init(){ 

        this.setLayout(new BorderLayout()); 

        this.setSize(new Dimension(600,400)); 

        this.setPreferredSize(new Dimension(600,400)); 

        this.add(map,BorderLayout.CENTER); 

        this.dataIn=false; 

 

        this.addMouseListener(new Map_MouseAdapter(this)); 

    } 

 

    public void paint(Graphics g){ 

        if(dataIn){ 
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            drawNodes(graph,g); 

            drawEdges(graph,g); 

            frame.setSeperator(graph); 

        }else{ 

            g.drawString("n/a",this.getWidth()/2,this.getHeight()/2); 

        } 

    } 

 

    public void setGraph(Graph graph){ 

        this.graph=graph; 

        this.dataIn=true; 

        this.repaint(); 

    } 

 

    public Graph getGraph(){ 

        return this.graph; 

    } 

    public void sentFrame(Frame frame){ 

        this.frame=frame; 

    } 

 

    public Map getMap(){ 

        return this; 

    } 

 

    private void drawNodes(Graph graph,Graphics g){ 

        double ratio=scaledRatio(graph); 

        double newOX=newOX(graph); 

        double newOY=newOY(graph); 

        int l=12,m=10,s=8; 

 

        g.setFont(new Font(null,Font.PLAIN,12)); 

 

        Vector nodeSet=graph.getNodeSet(); 

        Node node; 

        for(int i=0;i<nodeSet.size();i++){ 

            node=(Node)nodeSet.elementAt(i); 

 

            if(node.isSupply()){ 

                g.setColor(Color.RED); 

                g.drawOval(new Double((node.getX()-newOX)*ratio).intValue()-l/2,new 

Double((node.getY()-newOY)*ratio).intValue()-l/2,l,l); 
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            }else if(node.isDemand()){ 

                g.setColor(Color.BLUE); 

                g.drawRect(new Double((node.getX()-newOX)*ratio).intValue()-m/2,new 

Double((node.getY()-newOY)*ratio).intValue()-m/2,m,m); 

            }else{ 

                g.setColor(Color.LIGHT_GRAY); 

            } 

            g.drawString(""+node.getLabel(),new Double((node.getX()-newOX)*ratio).intValue(),new 

Double((node.getY()-newOY)*ratio).intValue()); 

 

            if(node.isAccess() && node.isMerge()){ 

                g.setColor(Color.DARK_GRAY); 

                g.drawString("A & M",new Double((node.getX()-newOX)*ratio).intValue(),new 

Double((node.getY()-newOY)*ratio).intValue()+20); 

            }else if(node.isAccess()){ 

                g.setColor(Color.DARK_GRAY); 

                g.drawString("A",new Double((node.getX()-newOX)*ratio).intValue(),new 

Double((node.getY()-newOY)*ratio).intValue()+20); 

            }else if(node.isMerge()){ 

                g.setColor(Color.DARK_GRAY); 

                g.drawString("M",new Double((node.getX()-newOX)*ratio).intValue(),new 

Double((node.getY()-newOY)*ratio).intValue()+20); 

            } 

 

            if(node.isSource()){ 

                g.setColor(Color.DARK_GRAY); 

                g.drawString("$rc",new Double((node.getX()-newOX)*ratio).intValue(),new 

Double((node.getY()-newOY)*ratio).intValue()+20); 

            } 

        } 

    } 

 

    private void drawEdges(Graph graph,Graphics g){ 

        double ratio=scaledRatio(graph); 

        double newOX=newOX(graph); 

        double newOY=newOY(graph); 

 

        Vector edgeSet=graph.getEdgeSet(); 

        Edge edge; 

 

        g.setFont(new Font(null,Font.PLAIN,10)); 
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        for(int i=0;i<edgeSet.size();i++){ 

            edge=(Edge)edgeSet.elementAt(i); 

            Node n1=edge.getN1(),n2=edge.getN2(); 

            int n1x=new Double((n1.getX()-newOX)*ratio).intValue(); 

            int n1y=new Double((n1.getY()-newOY)*ratio).intValue(); 

            int n2x=new Double((n2.getX()-newOX)*ratio).intValue(); 

            int n2y=new Double((n2.getY()-newOY)*ratio).intValue(); 

 

            if(edge.isFastEdge()){ 

                g.setColor(Color.BLACK); 

            }else if(edge.isDetourEdge()){ 

                g.setColor(Color.ORANGE); 

            }else if(edge.isMAEdge()){ 

                g.setColor(Color.GREEN); 

            }else if(edge.isTestEdge()){ 

                g.setColor(Color.MAGENTA); 

            }else if(edge.isDetourTestEdge()){ 

                g.setColor(Color.CYAN); 

            }else if(edge.isMATestEdge()){ 

                g.setColor(Color.MAGENTA); 

            }else{ 

                g.setColor(Color.LIGHT_GRAY); 

            } 

 

            if(!edge.isDummyEdge()){ 

                Double weight; 

                if(edge.isMAEdge()){ 

                    g.setFont(new Font(null,Font.BOLD,11)); 

                    g.drawLine(n1x,n1y,n2x,n2y); 

                    weight=new Double(edge.getWeight()); 

                    g.drawString(""+edge.getLabel()+":"+myFormatter.format(weight)+" @B",new 

Double((n1x+n2x)/2).intValue(),new Double((n1y+n2y)/2).intValue()); 

                    g.setFont(new Font(null,Font.PLAIN,10)); 

                }else{ 

                    g.drawLine(n1x,n1y,n2x,n2y); 

                    weight=new Double(edge.getWeight()); 

                    g.drawString(""+edge.getLabel()+":"+myFormatter.format(weight),new 

Double((n1x+n2x)/2).intValue(),new Double((n1y+n2y)/2).intValue()); 

                } 

            } 

        } 

    } 
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    private double scaledRatio(Graph graph){ 

        Vector nodeSet=graph.getNodeSet(); 

        double maxX=0.0,maxY=0.0; 

        double newOX=newOX(graph),newOY=newOY(graph); 

        Node node; 

        for(int i=0;i<nodeSet.size();i++){ 

            node=(Node)nodeSet.elementAt(i); 

            if((node.getX()-newOX)>maxX){ 

                maxX=node.getX()-newOX; 

            }else if((node.getY()-newOY)>maxY){ 

                maxY=node.getY()-newOY; 

            } 

        } 

        return Math.min(map.getWidth()/maxX,map.getHeight()/maxY); 

    } 

 

    private double newOX(Graph graph){ 

        Vector nodeSet=graph.getNodeSet(); 

        Node node=(Node)nodeSet.elementAt(0); 

        double minX=node.getX(); 

        for(int i=1;i<nodeSet.size();i++){ 

            node=(Node)nodeSet.elementAt(i); 

            if(node.getX()<minX){ 

                minX=node.getX(); 

            } 

        } 

        return minX; 

    } 

 

    private double newOY(Graph graph){ 

        Vector nodeSet=graph.getNodeSet(); 

        Node node=(Node)nodeSet.elementAt(0); 

        double minY=node.getY(); 

        for(int i=1;i<nodeSet.size();i++){ 

            node=(Node)nodeSet.elementAt(i); 

            if(node.getY()<minY){ 

                minY=node.getY(); 

            } 

        } 

        return minY; 

    } 
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    public void nodeSetting(boolean supply,boolean demand,boolean neutral){ 

        this.supply=supply; 

        this.demand=demand; 

        this.neutral=neutral; 

    } 

 

    void mouse_clicked_actionPerformed(MouseEvent e){ 

        double ratio=scaledRatio(graph); 

        double newOX=newOX(graph),newOY=newOY(graph); 

        Vector nodeSet=graph.getNodeSet(); 

        Node node; 

        int err=10; 

        for(int i=0;i<nodeSet.size();i++){ 

            node=(Node)nodeSet.elementAt(i); 

            int x=new Double((node.getX()-newOX)*ratio).intValue(); 

            int y=new Double((node.getY()-newOY)*ratio).intValue(); 

            if(Math.abs(e.getX()-x)<err && Math.abs(e.getY()-y)<err){ 

                if(supply){ 

                    node.setNeutral(); 

                    node.setSupply(); 

                } 

                if(demand){ 

                    node.setNeutral(); 

                    node.setDemand(); 

                } 

                if(neutral){ 

                    node.setNeutral(); 

                } 

            } 

        } 

    } 

} 

 

class Map_MouseAdapter extends MouseAdapter{ 

    Map adaptee; 

 

    Map_MouseAdapter(Map adaptee){ 

        this.adaptee=adaptee; 

    } 

 

    public void mouseClicked(MouseEvent e){ 
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        this.adaptee.mouse_clicked_actionPerformed(e); 

    } 

} 
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IOGraph.java 

package emnet.io; 

 

import emnet.graph.Graph; 

import emnet.graph.Node; 

import emnet.graph.Edge; 

import java.util.Vector; 

import java.io.File; 

import java.io.FileReader; 

import java.io.IOException; 

import java.io.BufferedReader; 

import java.util.StringTokenizer; 

 

public class IOGraph { 

 

    private Graph g; 

 

    public IOGraph(String dirName,String nodeFile,String edgeFile) throws IOException { 

        File inputNodeFile=new File(dirName,nodeFile); 

        File inputEdgeFile=new File(dirName,edgeFile); 

        Vector nodeSet=new Vector(); 

        Vector edgeSet=new Vector(); 

        g=new Graph(nodeSet,edgeSet); 

 

        //read node.txt 

        FileReader nodeIn=new FileReader(inputNodeFile); 

        BufferedReader buffNodeIn=new BufferedReader(nodeIn); 

 

        String strLine; 

        Node node; 

        while((strLine=buffNodeIn.readLine())!=null){ 

            //delimiter of Tab is "\t" 

            StringTokenizer strToken=new StringTokenizer(strLine,"\t",false); 

 

            String[] nodeAttr=new String[3]; 

            for(int i=0;i<3;i++){ 

                nodeAttr[i]=strToken.nextToken(); 

            } 

            node=new 

Node(Integer.parseInt(nodeAttr[0]),Double.parseDouble(nodeAttr[1]),Double.parseDouble(nodeAttr[2])); 

            nodeSet.addElement(node); 

        } 
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        buffNodeIn.close(); 

        nodeIn.close(); 

 

        //read edge.txt 

        FileReader edgeIn=new FileReader(inputEdgeFile); 

        BufferedReader buffEdgeIn=new BufferedReader(edgeIn); 

 

        Edge edge; 

        while((strLine=buffEdgeIn.readLine())!=null){ 

            //delimiter of Tab is "\t" 

            StringTokenizer strToken=new StringTokenizer(strLine,"\t",false); 

 

            String[] edgeAttr=new String[3]; 

            for(int i=0;i<3;i++){ 

                edgeAttr[i]=strToken.nextToken(); 

            } 

 

            Node n1=(Node)nodeSet.elementAt(Integer.parseInt(edgeAttr[1])); 

            Node n2=(Node)nodeSet.elementAt(Integer.parseInt(edgeAttr[2])); 

            double 

weight=Math.sqrt((n1.getX()-n2.getX())*(n1.getX()-n2.getX())+(n1.getY()-n2.getY())*(n1.getY()-n2.getY())); 

            edge=new Edge(Integer.parseInt(edgeAttr[0]),n1,n2,weight); 

            edgeSet.addElement(edge); 

        } 

        buffEdgeIn.close(); 

        edgeIn.close(); 

    } 

 

    public Graph getGraph(){ 

        return this.g; 

    } 

 

} 
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package emnet.thread; 

 

import java.util.Vector; 

import emnet.graph.Graph; 

import emnet.graph.Node; 

import emnet.graph.Edge; 

import emnet.Frame; 

import emnet.algorithm.GraphAlgorithm; 

 

public class Center extends Thread{ 

    //Center 

    Graph graph; 

    Frame frame; 

    boolean finish,available,detourCenterFinish,maCenterFinish; 

    Node dummyNode; 

 

    //nodeCenter 

    int nodeNum; 

    Object[][] nodeCenter; 

 

    //roamerCenter 

    int roamerNum; 

    Object[][] roamerCenter; 

 

    //fastCenter 

    Object[][] fastCenter; 

 

    //detourCenter 

    int edgeNum,detourManagerNum; 

    Object[][] detourCenter; 

 

    //MutualAssistanceCenter 

    Graph emnet; 

    int maManagerNum; 

    Object[][] maCenter; 

 

    public Center(Graph graph,Frame frame){ 

        //Center 

        this.graph=graph; 

        this.frame=frame; 

        finish=false; 
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        available=true; 

 

        //nodeCenter 

        //nodeCenter[node][0]: occupy(Boolean) 

        //nodeCenter[node][1]: distance(Double) 

        //nodeCenter[node][2]: preNode(Node) 

        //nodeCenter[node][3]: preEdge(Edge) 

        //nodeCenter[node][4]: visitorSequence(Vector) 

        //nodeCenter[node][5]: supply(Node) 

        //nodeCenter[node][6]: detourDist(Double)??? 

 

        nodeNum=this.graph.getNodeSet().size(); 

        nodeCenter=new Object[(nodeNum+1)][6]; 

        dummyNode=new Node(nodeNum,0.0,0.0); 

 

        for(int i=0;i<(nodeNum+1);i++){ 

            nodeCenter[i][0]=new Boolean(false); 

            nodeCenter[i][1]=new Double(0.0); 

            nodeCenter[i][2]=null; 

            nodeCenter[i][3]=null; 

            nodeCenter[i][4]=new Vector(); 

            nodeCenter[i][5]=null; 

        } 

 

        //roamerCenter 

        //roamerCenter[roamer][0]: myNode(Node) 

        //roamerCenter[roamer][1]: myEdge(Edge) 

        //roamerCenter[roamer][2]: currNode(Node) 

        //roamerCenter[roamer][3]: routeSet(Graph) 

        roamerNum=graph.getSupplyNodeSet().size(); 

        roamerCenter=new Object[roamerNum][4]; 

        for(int i=0;i<roamerNum;i++){ 

            roamerCenter[i][0]=dummyNode; 

            roamerCenter[i][1]=null; 

            roamerCenter[i][2]=null; 

            roamerCenter[i][3]=null; 

        } 

 

        //fastCenter 

        //fastCenter[demand][0]: fastPath(Graph) 

        //fastCenter[demand][1]: supply(Node) 

        //fastCenter[demand][2]: fastPathLength(Double) 
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        fastCenter=new Object[nodeNum][3]; 

        for(int i=0;i<nodeNum;i++){ 

            fastCenter[i][0]=null; 

            fastCenter[i][1]=null; 

            fastCenter[i][2]=null; 

        } 

 

        //detourCenter 

        //detourCenter[edge][0]: downstream(Graph) 

        //detourCenter[edge][1]: upstream(Graph) 

        //detourCenter[edge][2]: mergeNode(Node) 

        //detourCenter[edge][3]: accessNode(Node) 

        //detourCenter[edge][4]: detourPath(Graph) 

        //detourCenter[edge][5]: systematicDetourCost(Double) 

        //detourCenter[edge][6]: mergeCost(Vector) 

        edgeNum=graph.getEdgeSet().size(); 

        detourManagerNum=graph.getSupplyNodeSet().size(); 

        detourCenter=new Object[edgeNum][7]; 

        for(int i=0;i<edgeNum;i++){ 

            detourCenter[i][0]=null; 

            detourCenter[i][1]=null; 

            detourCenter[i][2]=null; 

            detourCenter[i][3]=null; 

            detourCenter[i][4]=null; 

            detourCenter[i][5]=new Double(0.0); 

            detourCenter[i][6]=new Vector(nodeNum); 

        } 

 

        //mutualAssistantCenter 

        //maCenter[supply][0]: fastTree(Graph) 

        //maCenter[supply][1]: territory(Graph) 2ECON 

        //maCenter[supply][2]: source(Node) 

        //maCenter[supply][3]: icpSet(Vector) 

        //maCenter[supply][4]: maPath(Graph) 

        //maCenter[supply][5]: within territory supply-demand ratio(Double) 

        //maCenter[supply][6]: mutual assistant supply-demand ratio(Double) 

        //maCenter[supply][7]: maCost > source to supply 

        maManagerNum=graph.getSupplyNodeNum(); 

        maCenter=new Object[nodeNum][8]; 

        for(int i=0;i<nodeNum;i++){ 

            maCenter[i][0]=null; 

            maCenter[i][1]=null; 
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            maCenter[i][2]=null; 

            maCenter[i][3]=new Vector(); 

            maCenter[i][4]=null; 

            maCenter[i][5]=new Vector(); 

            maCenter[i][6]=new Double(0.0); 

            maCenter[i][7]=new Double(0.0); 

        } 

    } 

 

    public void run(){ 

        startRoamerCenter(); 

        startFastCenter(); 

        startDetourCenter(); 

        startMutualAssistanceCenter(); 

        startOutputReport(); 

    } 

 

    //center method 

    void startRoamerCenter(){ 

        //roamerCenter 

        //send roamers to find fast paths (Shortest Path Forest, SPF) 

        sendRoamer(); 

 

        Vector nodeSet=graph.getNodeSet(); 

        int demandNodeNum=graph.getDemandNodeNum(); 

        do{ 

            int totalTimes=0; 

            watching: 

                for(int i=0;i<nodeNum;i++){ 

                Node tempNode=(Node)nodeSet.elementAt(i); 

                //finish condition is focused on demand nodes only 

                if(tempNode.isDemand()){ 

                    if(getVisitorNum(tempNode)==roamerNum){ 

                        totalTimes=totalTimes+roamerNum; 

                        if(totalTimes==(demandNodeNum*roamerNum)) 

                            finish=true; 

                    } 

                    else{ 

                        finish=false; 

                        break watching; 

                    } 

                } 
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            } 

        }while(!finish); 

        //roamer center finished! 

    } 

 

    void startFastCenter(){ 

        //fastCenter 

        //fastCenter[demand][0]: fastPath(Graph) 

        //fastCenter[demand][1]: supply(Node) 

        //fastCenter[demand][2]: fastPathLength(Double) 

 

        //finding fast paths from demand nodes to the dummyNode 

        try{ 

            sleep(1); 

        }catch(InterruptedException ex){ 

            //fast center cannot sleep! 

        } 

 

        Vector demandNodeSet=graph.getDemandNodeSet(); 

        Node tempDemand,tempNode; 

        Edge tempPreEdge,tempEdge; 

        double length; 

        Vector tempFastNodeSet,tempFastEdgeSet; 

 

        for(int i=0;i<demandNodeSet.size();i++){ 

            tempDemand=(Node)demandNodeSet.elementAt(i); 

            tempNode=tempDemand; 

 

            tempFastNodeSet=new Vector(); 

            tempFastEdgeSet=new Vector(); 

 

            find: 

            while(tempNode!=dummyNode){ 

                tempPreEdge=(Edge)getPreEdge(tempNode); 

                if(tempNode.isSupply()){ 

                    fastCenter[tempDemand.getLabel()][1]=tempNode; 

                    if(!tempFastNodeSet.contains(tempNode)) 

                        tempFastNodeSet.addElement(tempNode); 

 

                    //node of fast route belong to the same supply 

                    Node tempNode2; 

                    for(int j=0;j<tempFastNodeSet.size();j++){ 
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                        tempNode2=(Node)tempFastNodeSet.elementAt(j); 

                        nodeCenter[tempNode2.getLabel()][5]=tempNode; 

                    } 

                    break find; 

                }else{ 

                    if(!tempFastNodeSet.contains(tempNode)) 

                        tempFastNodeSet.addElement(tempNode); 

                    if(!tempFastEdgeSet.contains(tempPreEdge)) 

                        tempFastEdgeSet.addElement(tempPreEdge); 

                    tempPreEdge.setFastEdge(); 

                } 

                tempNode=tempPreEdge.theOtherNode(tempNode); 

            } 

 

            fastCenter[tempDemand.getLabel()][0]=new Graph(tempFastNodeSet,tempFastEdgeSet); 

            length=0.0; 

            for(int j=0;j<tempFastEdgeSet.size();j++){ 

                tempEdge=(Edge)tempFastEdgeSet.elementAt(j); 

                length=length+tempEdge.getWeight(); 

            } 

            fastCenter[tempDemand.getLabel()][2]=new Double(length); 

        } 

 

        //maCenter[supply][0]: fastTree(Graph) 

        Vector fastTreeSupplyNodeSet=graph.getSupplyNodeSet(); 

        Node tempFastTreeSupply; 

        Vector fastTreeDemandNodeSet=graph.getDemandNodeSet(); 

        Node tempFastTreeDemand; 

 

        Graph tempFastPath; 

        Vector tempFastPathNodeSet; 

        Node tempFastPathNode; 

        Vector tempFastPathEdgeSet; 

        Edge tempFastPathEdge; 

 

        Vector tempFastTreeNodeSet; 

        Vector tempFastTreeEdgeSet; 

 

        for(int i=0;i<fastTreeSupplyNodeSet.size();i++){ 

            tempFastTreeNodeSet=new Vector(); 

            tempFastTreeEdgeSet=new Vector(); 
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            tempFastTreeSupply=(Node)fastTreeSupplyNodeSet.elementAt(i); 

            if(!tempFastTreeNodeSet.contains(tempFastTreeSupply)) 

                tempFastTreeNodeSet.addElement(tempFastTreeSupply); 

 

            for(int j=0;j<fastTreeDemandNodeSet.size();j++){ 

                tempFastTreeDemand=(Node)fastTreeDemandNodeSet.elementAt(j); 

 

                //fast paths with different demands of the same supply 

                if(fastCenter[tempFastTreeDemand.getLabel()][1]==tempFastTreeSupply){ 

                    tempFastPath=(Graph)fastCenter[tempFastTreeDemand.getLabel()][0]; 

                    tempFastPathEdgeSet=tempFastPath.getEdgeSet(); 

                    for(int k=0;k<tempFastPathEdgeSet.size();k++){ 

                        tempFastPathEdge=(Edge)tempFastPathEdgeSet.elementAt(k); 

                        if(!tempFastTreeEdgeSet.contains(tempFastPathEdge)){ 

                            tempFastTreeEdgeSet.addElement(tempFastPathEdge); 

                        } 

                    } 

 

                    tempFastPathNodeSet=tempFastPath.getNodeSet(); 

                    for(int k=0;k<tempFastPathNodeSet.size();k++){ 

                        tempFastPathNode=(Node)tempFastPathNodeSet.elementAt(k); 

                        if(!tempFastTreeNodeSet.contains(tempFastPathNode)){ 

                            tempFastTreeNodeSet.addElement(tempFastPathNode); 

                        } 

                    } 

                } 

            } 

            maCenter[tempFastTreeSupply.getLabel()][0]=new 

Graph(tempFastTreeNodeSet,tempFastTreeEdgeSet); 

 

            //maCenter[supply][5]: within territory supply-demand ratio(Double) 

            if(getFastTree(tempFastTreeSupply).getDemandNodeNum()!=0){ 

                

this.setTerritorySDR(tempFastTreeSupply,1.0/getFastTree(tempFastTreeSupply).getDemandNodeNum()); 

            }else{ 

                this.setTerritorySDR(tempFastTreeSupply,1.0); 

            } 

 

        } 

 

        //fast center finished! 

        //finalization 
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        Vector edgeSet=graph.getEdgeSet(); 

        Edge clearEdge; 

        for(int i=0;i<edgeSet.size();i++){ 

            clearEdge=(Edge)edgeSet.elementAt(i); 

            if(!clearEdge.isFastEdge()) 

                clearEdge.setNeutralEdge(); 

        } 

    } 

 

    void startDetourCenter(){ 

        //detourCenter 

        try{ 

            sleep(1); 

        }catch(InterruptedException ex){ 

            //detour center cannot sleep! 

        } 

 

        detourCenterFinish=false; 

        Vector supplyNodeSet=graph.getSupplyNodeSet(); 

 

        Node tempSupply; 

        for(int i=0;i<supplyNodeSet.size();i++){ 

            tempSupply=(Node)supplyNodeSet.elementAt(i); 

            new DetourManager(i,this,tempSupply).start(); 

        } 

 

        while(!detourCenterFinish){ 

            //detour center waiting for detour managers finish their jobs 

        } 

        //detour center finished! 

    } 

 

    void startMutualAssistanceCenter(){ 

        try{ 

            sleep(1); 

        }catch(InterruptedException ex){ 

            //mutual assistance center cannot sleep! 

        } 

 

        //where are supply nodes: 

        Vector nodeSet=graph.getNodeSet(); 

        Node tempNode; 
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        for(int i=0;i<nodeSet.size();i++){ 

            tempNode=(Node)nodeSet.elementAt(i); 

        } 

 

        //initialization 

        Vector edgeSet=graph.getEdgeSet(); 

        Edge tempEdge; 

        for(int i=0;i<edgeSet.size();i++){ 

            tempEdge=(Edge)edgeSet.elementAt(i); 

            if(!tempEdge.isFastEdge() && !tempEdge.isDetourEdge()) 

                tempEdge.setNeutralEdge(); 

        } 

 

        maCenterFinish=false; 

        Vector supplyNodeSet=graph.getSupplyNodeSet(); 

 

        Node tempSupply; 

        for(int i=0;i<supplyNodeSet.size();i++){ 

            tempSupply=(Node)supplyNodeSet.elementAt(i); 

            new MAManager(i,this,tempSupply).start(); 

        } 

 

        while(!maCenterFinish){ 

            //ma center waiting for detour managers finish their jobs 

        } 

 

        //emnet 

        Vector emnetNodeSet=new Vector(); 

        Vector emnetEdgeSet=new Vector(); 

 

        Graph tempTerritory; 

        Vector tempTerritoryNodeSet; 

        Vector tempTerritoryEdgeSet; 

 

        Graph tempMAPath; 

        Vector tempMAPathNodeSet; 

        Vector tempMAPathEdgeSet; 

 

        for(int i=0;i<supplyNodeSet.size();i++){ 

            tempSupply=(Node)supplyNodeSet.elementAt(i); 

 

            tempTerritory=this.getTerritory(tempSupply); 
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            tempTerritoryNodeSet=tempTerritory.getNodeSet(); 

            tempTerritoryEdgeSet=tempTerritory.getEdgeSet(); 

 

            emnetNodeSet=GraphAlgorithm.union(emnetNodeSet,tempTerritoryNodeSet); 

            emnetEdgeSet=GraphAlgorithm.union(emnetEdgeSet,tempTerritoryEdgeSet); 

 

            tempMAPath=this.getMAPath(tempSupply); 

            tempMAPathNodeSet=tempMAPath.getNodeSet(); 

            tempMAPathEdgeSet=tempMAPath.getEdgeSet(); 

 

            emnetNodeSet=GraphAlgorithm.union(emnetNodeSet,tempMAPathNodeSet); 

            emnetEdgeSet=GraphAlgorithm.union(emnetEdgeSet,tempMAPathEdgeSet); 

        } 

        emnet=new Graph(emnetNodeSet,emnetEdgeSet); 

 

        //ma center finished! 

        //finalization 

        for(int i=0;i<edgeSet.size();i++){ 

            tempEdge=(Edge)edgeSet.elementAt(i); 

            if(!tempEdge.isFastEdge() && !tempEdge.isDetourEdge() && !tempEdge.isMAEdge()) 

                tempEdge.setNeutralEdge(); 

        } 

        //ma center closed! 

    } 

 

    void startOutputReport(){ 

        //maCenter[supply][6]: mutual assistant supply-demand ratio(Double) 

        double ld=0.0; 

        Vector supplyNodeSet=graph.getSupplyNodeSet(); 

        Node tempSupply; 

        Vector tempFastTreeEdgeSet; 

        Edge tempRuinedEdge; 

        for(int i=0;i<supplyNodeSet.size();i++){ 

            tempSupply=(Node)supplyNodeSet.elementAt(i); 

            tempFastTreeEdgeSet=this.getFastTree(tempSupply).getEdgeSet(); 

            for(int j=0;j<tempFastTreeEdgeSet.size();j++){ 

                tempRuinedEdge=(Edge)tempFastTreeEdgeSet.elementAt(j); 

                if(this.getSystematicDetourCost(tempRuinedEdge)>ld) 

                    ld=this.getSystematicDetourCost(tempRuinedEdge); 

            } 

        } 

        frame.setLD(ld); 



 

141 

Center.java 

 

        double mac=0.0; 

        for(int i=0;i<supplyNodeSet.size();i++){ 

            tempSupply=(Node)supplyNodeSet.elementAt(i); 

            mac=mac+this.getMACost(tempSupply); 

        } 

        frame.setAMAC(mac/supplyNodeSet.size()); 

        frame.setNC(GraphAlgorithm.networkCost(emnet)); 

 

        double fastCost=0.0; 

        double maxFastCost=0.0; 

        Vector demandNodeSet=graph.getDemandNodeSet(); 

        Node tempDemand; 

        for(int i=0;i<demandNodeSet.size();i++){ 

            tempDemand=(Node)demandNodeSet.elementAt(i); 

 

            if(getFastCost(tempDemand)>maxFastCost) 

                maxFastCost=getFastCost(tempDemand); 

 

            fastCost=fastCost+this.getFastCost(tempDemand); 

        } 

        frame.setATC(fastCost/demandNodeSet.size()); 

        frame.setMTC(maxFastCost); 

    } 

 

    //center field: 

    public synchronized Graph getGraph(){ 

        return this.graph; 

    } 

 

    public synchronized boolean isFinished(){ 

        return this.finish; 

    } 

 

    void sendRoamer(){ 

        Node supply; 

        for(int i=0;i<this.graph.getSupplyNodeSet().size();i++){ 

            supply=(Node)this.graph.getSupplyNodeSet().elementAt(i); 

            roamerCenter[i][0]=supply; 

            new Roamer(i,supply,this).start(); 

        } 

    } 
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    public Node getDummyNode(){ 

        return this.dummyNode; 

    } 

 

    public synchronized void takeKey(Roamer roamer){ 

        if(!finish){ 

            while(!available){ 

                try{ 

                    //roamer is waiting to take! 

                    wait(1); 

                }catch(InterruptedException e){ 

                    //takeKey: cannot wait! 

                } 

            } 

            //roamer took the key! 

            available=false; 

        }else{ 

            available=false; 

            //roamer took the key, but center is finished! 

        } 

    } 

 

    public synchronized void putKey(Roamer roamer){ 

        if(!finish){ 

            while(available){ 

                try{ 

                    //roamer is waiting to put... 

                    wait(1); 

                }catch(InterruptedException e){ 

                    //putKey: cannot wait! 

                } 

            } 

            //roamer put the key! 

            available=true; 

        }else{ 

            //roamer put the key & center is already finished! 

            available=true; 

        } 

    } 

 

    //detour manager take key 
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    public synchronized void takeKey(DetourManager dmr){ 

        if(!detourCenterFinish){ 

            while(!available){ 

                try{ 

                    //dmr is waiting to take! 

                    wait(1); 

                }catch(InterruptedException e){ 

                    //takeKey: cannot wait! 

                } 

            } 

            //dmr took the key! 

            available=false; 

        }else{ 

            available=false; 

            //dmr took the key, but detour center is finished! 

        } 

    } 

 

    public synchronized void putKey(DetourManager dmr){ 

        if(!detourCenterFinish){ 

            while(available){ 

                try{ 

                    //dmr is waiting to put... 

                    wait(1); 

                }catch(InterruptedException e){ 

                    //putKey: cannot wait! 

                } 

            } 

            //dmr put the key! 

            available=true; 

        }else{ 

            //dmr put the key! detour center is already finished! 

            available=true; 

        } 

    } 

 

    //ma manager take key 

    public synchronized void takeKey(MAManager maMr){ 

        if(!maCenterFinish){ 

            while(!available){ 

                try{ 

                    //maMr is waiting to take! 
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                    wait(1); 

                }catch(InterruptedException e){ 

                    //takeKey: cannot wait! 

                } 

            } 

            //maMr took the key! 

            available=false; 

        }else{ 

            available=false; 

            //maMr took the key but maCenter is already finished! 

        } 

    } 

 

    public synchronized void putKey(MAManager maMr){ 

        if(!maCenterFinish){ 

            while(available){ 

                try{ 

                    //maMr is waiting to put... 

                    wait(1); 

                }catch(InterruptedException e){ 

                    //putKey: cannot wait! 

                } 

            } 

            //maMr put the key! 

            available=true; 

        }else{ 

            //maMr put the key! and maCenter already finished! 

            available=true; 

        } 

    } 

 

    public void updateDetourCondition(){ 

        detourManagerNum--; 

        if(detourManagerNum==0) 

            detourCenterFinish=true; 

    } 

 

    public void updateMACondition(){ 

        maManagerNum--; 

        if(maManagerNum==0) 

            maCenterFinish=true; 

    } 
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    //nodeCenter method: 

    //nodeCenter[node][0]: occupy(Boolean) 

    public synchronized void setOccupy(Node node,boolean occupy){ 

        nodeCenter[node.getLabel()][0]=new Boolean(occupy); 

        notifyAll(); 

    } 

 

    //nodeCenter[node][1]: distance(Double) 

    public synchronized void setDistance(Node node,double distance){ 

        nodeCenter[node.getLabel()][1]=new Double(distance); 

    } 

 

    public synchronized double getDistance(Node node){ 

        Double distance=(Double)nodeCenter[node.getLabel()][1]; 

        return distance.doubleValue(); 

    } 

 

    //nodeCenter[node][2]: preNode(Node) 

    public synchronized void setPreNode(Node node,Node preNode){ 

        nodeCenter[node.getLabel()][2]=preNode; 

    } 

 

    public synchronized Node getPreNode(Node node){ 

        Node preNode=(Node)nodeCenter[node.getLabel()][2]; 

        return preNode; 

    } 

 

    //nodeCenter[node][3]: preEdge(Edge) 

    public synchronized void setPreEdge(Node node,Edge preEdge){ 

        nodeCenter[node.getLabel()][3]=preEdge; 

    } 

 

    public synchronized Edge getPreEdge(Node node){ 

        Edge preEdge=(Edge)nodeCenter[node.getLabel()][3]; 

        return preEdge; 

    } 

 

    //nodeCenter[node][4]: visitorSequence(Vector) 

    public synchronized void addViditor(Node node,Roamer roamer){ 

        Vector visitorSequence=(Vector)nodeCenter[node.getLabel()][4]; 

        if(!visitorSequence.contains(roamer)) 
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            visitorSequence.addElement(roamer); 

        nodeCenter[node.getLabel()][4]=visitorSequence; 

    } 

 

    public synchronized Vector getVisitorSequence(Node node){ 

        Vector visitorSequence=(Vector)nodeCenter[node.getLabel()][4]; 

        return visitorSequence; 

    } 

 

    public synchronized int getVisitorNum(Node node){ 

        Vector visitorSequence=(Vector)nodeCenter[node.getLabel()][4]; 

        int visitorNum=visitorSequence.size(); 

        return visitorNum; 

    } 

 

    public synchronized Roamer lastVisitor(Node node){ 

        Vector visitorSequence=(Vector)nodeCenter[node.getLabel()][4]; 

        Roamer lastVisitor=(Roamer)visitorSequence.lastElement(); 

        return lastVisitor; 

    } 

 

    //nodeCenter[node][5]: supply(Node) 

    public Node getSupply(Node node){ 

        return (Node)nodeCenter[node.getLabel()][5]; 

    } 

 

    //roamerCenter method: 

    //roamerCenter[roamer][0]: myNode(Node) 

    public synchronized void setMyNode(Roamer roamer,Node myNode){ 

        roamerCenter[roamer.getID()][0]=myNode; 

    } 

 

    public synchronized Node getMyNode(Roamer roamer){ 

        Node myNode=(Node)roamerCenter[roamer.getID()][0]; 

        return myNode; 

    } 

 

    //roamerCenter[roamer][1]: myEdge(Edge) 

    public synchronized void setMyEdge(Roamer roamer,Edge myEdge){ 

        roamerCenter[roamer.getID()][1]=myEdge; 

    } 
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    public synchronized Edge getMyEdge(Roamer roamer){ 

        Edge myEdge=(Edge)roamerCenter[roamer.getID()][1]; 

        return myEdge; 

    } 

 

    //roamerCenter[roamer][2]: currNode(Node) 

    public synchronized void setCurrNode(Roamer roamer,Node currNode){ 

        roamerCenter[roamer.getID()][2]=currNode; 

    } 

 

    public synchronized Node getCurrNode(Roamer roamer){ 

        Node currNode=(Node)roamerCenter[roamer.getID()][2]; 

        return currNode; 

    } 

 

    //roamerCenter[roamer][3]: routeSet(Graph) 

    public synchronized void setRouteSet(Roamer roamer,Graph routeSet){ 

        roamerCenter[roamer.getID()][3]=routeSet; 

    } 

 

    public synchronized void setRouteSet(Roamer roamer,Vector routeNodeSet,Vector routeEdgeSet){ 

        roamerCenter[roamer.getID()][3]=new Graph(routeNodeSet,routeEdgeSet); 

    } 

 

    public synchronized Graph getRouteSet(Roamer roamer){ 

        Graph routeSet=(Graph)roamerCenter[roamer.getID()][3]; 

        return routeSet; 

    } 

 

    public synchronized Vector getRouteNodeSet(Roamer roamer){ 

        Graph routeSet=(Graph)roamerCenter[roamer.getID()][3]; 

        Vector routeNodeSet=routeSet.getNodeSet(); 

        return routeNodeSet; 

    } 

 

    public synchronized Vector getRouteEdgeSet(Roamer roamer){ 

        Graph routeSet=(Graph)roamerCenter[roamer.getID()][3]; 

        Vector routeEdgeSet=routeSet.getEdgeSet(); 

        return routeEdgeSet; 

    } 

 

    public synchronized void addEdge(Roamer roamer,Edge edge){ 
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        Graph routeSet=this.getRouteSet(roamer); 

        Vector routeNodeSet=routeSet.getNodeSet(); 

        Vector routeEdgeSet=routeSet.getEdgeSet(); 

        if(!routeEdgeSet.contains(edge)) 

            routeEdgeSet.addElement(edge); 

        this.setRouteSet(roamer,routeNodeSet,routeEdgeSet); 

    } 

 

    public synchronized void addNode(Roamer roamer,Node node){ 

        Graph routeSet=this.getRouteSet(roamer); 

        Vector routeNodeSet=routeSet.getNodeSet(); 

        Vector routeEdgeSet=routeSet.getEdgeSet(); 

        if(!routeNodeSet.contains(node)) 

            routeNodeSet.addElement(node); 

        this.setRouteSet(roamer,routeNodeSet,routeEdgeSet); 

    } 

 

    public synchronized void removeEdge(Roamer roamer,Edge edge){ 

        Graph routeSet=this.getRouteSet(roamer); 

        Vector routeNodeSet=routeSet.getNodeSet(); 

        Vector routeEdgeSet=routeSet.getEdgeSet(); 

        if(routeEdgeSet.contains(edge)){ 

            routeEdgeSet.removeElement(edge); 

        } 

        this.setRouteSet(roamer,routeNodeSet,routeEdgeSet); 

    } 

 

    public synchronized void removeSubtree(Roamer roamer,Graph subtree){ 

        Graph routeSet=(Graph)this.roamerCenter[roamer.getID()][3]; 

        Vector tempNodeSet1=routeSet.getNodeSet(); 

        Vector tempEdgeSet1=routeSet.getEdgeSet(); 

        Vector tempNodeSet2=subtree.getNodeSet(); 

        Vector tempEdgeSet2=subtree.getEdgeSet(); 

 

        Node tempNode; 

        for(int i=0;i<tempNodeSet2.size();i++){ 

            tempNode=(Node)tempNodeSet2.elementAt(i); 

            boolean nodeExist=tempNodeSet1.removeElement(tempNode); 

        } 

 

        Edge tempEdge; 

        for(int i=0;i<tempEdgeSet2.size();i++){ 
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            tempEdge=(Edge)tempEdgeSet2.elementAt(i); 

            boolean edgeExist=tempEdgeSet1.removeElement(tempEdge); 

        } 

    } 

 

    public synchronized void addSubtree(Roamer roamer,Graph subtree){ 

        Graph visitedRouteSet=(Graph)this.roamerCenter[roamer.getID()][3]; 

        Vector tempNodeSet1=visitedRouteSet.getNodeSet(); 

        Vector tempEdgeSet1=visitedRouteSet.getEdgeSet(); 

        Vector tempNodeSet2=subtree.getNodeSet(); 

        Vector tempEdgeSet2=subtree.getEdgeSet(); 

        Node tempNode; 

        for(int i=0;i<tempNodeSet2.size();i++){ 

            tempNode=(Node)tempNodeSet2.elementAt(i); 

            if(tempNodeSet1.contains(tempNode)){ 

            }else{ 

                tempNodeSet1.addElement(tempNode); 

            } 

        } 

 

        Edge tempEdge; 

        for(int i=0;i<tempEdgeSet2.size();i++){ 

            tempEdge=(Edge)tempEdgeSet2.elementAt(i); 

            if(tempEdgeSet1.contains(tempEdge)){ 

            }else{ 

                tempEdgeSet1.addElement(tempEdge); 

            } 

        } 

    } 

 

    //fastCenter 

    //fastCenter[demand][0]: fastPath(Graph) 

    //fastCenter[demand][1]: supply(Node) 

    //fastCenter[demand][2]: fastPathLength(Double) 

    public double getFastCost(Node demand){ 

        Double fastCost=(Double)fastCenter[demand.getLabel()][2]; 

        return fastCost.doubleValue(); 

    } 

 

    //detourCenter[edge][0]: downstream(Graph) 

    public void setDownstream(Edge ruinedEdge,Graph downstream){ 

        detourCenter[ruinedEdge.getLabel()][0]=downstream; 
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    } 

 

    public Graph getDownstream(Edge ruinedEdge){ 

        return (Graph)detourCenter[ruinedEdge.getLabel()][0]; 

    } 

 

    //detourCenter[edge][1]: upstream(Graph) 

    public void setUpstream(Edge ruinedEdge,Graph upstream){ 

        detourCenter[ruinedEdge.getLabel()][1]=upstream; 

    } 

 

    public Graph getUpstream(Edge ruinedEdge){ 

        return (Graph)detourCenter[ruinedEdge.getLabel()][1]; 

    } 

 

    //detourCenter[edge][2]: mergeNode(Node) 

    public void setMergeNode(Edge ruinedEdge,Node mergeNode){ 

        detourCenter[ruinedEdge.getLabel()][2]=mergeNode; 

    } 

 

    public Node getMergeNode(Edge ruinedEdge){ 

        return (Node)detourCenter[ruinedEdge.getLabel()][2]; 

    } 

 

    //detourCenter[edge][3]: accessNode(Node) 

    public void setAccessNode(Edge ruinedEdge,Node accessNode){ 

        detourCenter[ruinedEdge.getLabel()][3]=accessNode; 

    } 

 

    public Node getAccessNode(Edge ruinedEdge){ 

        return (Node)detourCenter[ruinedEdge.getLabel()][3]; 

    } 

 

    //detourCenter[edge][4]: detourPath(Graph) 

    public void setDetourPath(Edge ruinedEdge,Graph detourPath){ 

        detourCenter[ruinedEdge.getLabel()][4]=detourPath; 

    } 

 

    public Graph getDetourPath(Edge ruinedEdge){ 

        return (Graph)detourCenter[ruinedEdge.getLabel()][4]; 

    } 
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    //detourCenter[edge][5]: systematicDetourCost(Double) 

    public void setSystematicDetourCost(Edge ruinedEdge,double sdc){ 

        detourCenter[ruinedEdge.getLabel()][5]=new Double(sdc); 

    } 

 

    public double getSystematicDetourCost(Edge ruinedEdge){ 

        Double tempDouble=(Double)detourCenter[ruinedEdge.getLabel()][5]; 

        return tempDouble.doubleValue(); 

    } 

 

    //detourCenter[edge][6]: mergeCost(Vector) 

    public void setMergeCost(Edge ruinedEdge,double cost){ 

        detourCenter[ruinedEdge.getLabel()][6]=new Double(cost); 

    } 

 

    public double getMergeCost(Edge ruinedEdge){ 

        Double mergeCost=(Double)detourCenter[ruinedEdge.getLabel()][6]; 

        return mergeCost.doubleValue(); 

    } 

 

    //maCenter 

    //maCenter[supply][0]: fastTree(Graph) 

    public Graph getFastTree(Node supply){ 

        return (Graph)maCenter[supply.getLabel()][0]; 

    } 

 

    //maCenter[supply][1]: territory(Graph) 2ECON 

    public synchronized void setTerritory(Node supply,Graph territory){ 

        maCenter[supply.getLabel()][1]=territory; 

    } 

 

    public Graph getTerritory(Node supply){ 

        return (Graph)maCenter[supply.getLabel()][1]; 

    } 

 

    //maCenter[supply][2]: source(Node) 

    public synchronized void setSource(Node supply,Node source){ 

        maCenter[supply.getLabel()][2]=source; 

    } 

 

    public Node getSource(Node supply){ 

        return (Node)maCenter[supply.getLabel()][2]; 
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    } 

 

    //maCenter[supply][3]: icpSet(Vector) 

    public synchronized void setICPSet(Node supply,Vector icpSet){ 

        maCenter[supply.getLabel()][3]=icpSet; 

    } 

 

    public Vector getICPSet(Node supply){ 

        return (Vector)maCenter[supply.getLabel()][3]; 

    } 

 

    public int getICPNum(Node supply){ 

        Vector icpSet=(Vector)maCenter[supply.getLabel()][3]; 

        return icpSet.size(); 

    } 

 

    //maCenter[supply][4]: maPath(Graph) 

    public synchronized void setMAPath(Node supply,Graph maPath){ 

        maCenter[supply.getLabel()][4]=maPath; 

    } 

 

    public Graph getMAPath(Node supply){ 

        return (Graph)maCenter[supply.getLabel()][4]; 

    } 

 

    //maCenter[supply][5]: within territory supply-demand ratio(Double) 

    public synchronized void setTerritorySDR(Node supply,double territorySDR){ 

        maCenter[supply.getLabel()][5]=new Double(territorySDR); 

    } 

 

    public double getTerritorySDR(Node supply){ 

        Double territorySDR=(Double)maCenter[supply.getLabel()][5]; 

        return territorySDR.doubleValue(); 

    } 

 

    //maCenter[supply][6]: mutual assistant supply-demand ratio(Double) 

    public synchronized void setMAsdr(Node supply,double maSDR){ 

        maCenter[supply.getLabel()][6]=new Double(maSDR); 

    } 

 

    public double getMAsdr(Node supply){ 

        Double maSDR=(Double)maCenter[supply.getLabel()][6]; 
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        return maSDR.doubleValue(); 

    } 

 

    //maCenter[supply][7]: maCost > source to supply 

    //including maPath cost & merge cost with respect to territory demandNum 

    public synchronized void setMACost(Node supply,double maCost){ 

        maCenter[supply.getLabel()][7]=new Double(maCost); 

    } 

 

    public double getMACost(Node supply){ 

        Double maCost=(Double)maCenter[supply.getLabel()][7]; 

        return maCost.doubleValue(); 

    } 

} 
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package emnet.thread; 

 

import emnet.graph.Node; 

import emnet.graph.Graph; 

import java.util.Vector; 

import emnet.graph.Edge; 

import emnet.algorithm.GraphAlgorithm; 

 

public class Detourist extends Thread{ 

    int id; 

    Node start,supply,access; 

    DetourManager dmr; 

    Center center; 

 

    Node currNode,preNode,myNode; 

    Edge preEdge,myEdge,currRuinedEdge; 

    Graph usableGraph,downstream,upstream,bridge,routeSet,detourPath; 

    Vector routeNodeSet,routeEdgeSet,upstreamNodeSet; 

 

    int downstreamDemandNum; 

    double mergeCost,systematicDetourCost; 

 

    boolean detouristFinish; 

 

 

 

    public Detourist(int id,Node start,DetourManager dmr){ 

        super(""+id); 

        this.id=id; 

        this.start=start; 

        this.dmr=dmr; 

        center=dmr.getCenter(); 

        supply=dmr.getSupply(); 

 

        int edgeNum=dmr.getGraph().getEdgeSet().size(); 

        Node dummyNode=this.center.getDummyNode(); 

        dummyNode.setDummy(); 

        Edge dummyEdge=new Edge(edgeNum,start,dummyNode,0.0); 

        dummyEdge.setDummyEdge(); 

 

        dmr.getGraph().addNode(dummyNode); 
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        dmr.getGraph().addEdge(dummyEdge); 

 

        Vector routeNodeSet=new Vector(); 

        routeNodeSet.addElement(dummyNode); 

        Vector routeEdgeSet=new Vector(); 

        routeEdgeSet.addElement(dummyEdge); 

        dmr.setRouteSet(this,routeNodeSet,routeEdgeSet); 

 

        dmr.setMyNode(this,dummyNode); 

        dmr.setMyEdge(this,dummyEdge); 

        dmr.setCurrNode(this,start); 

 

        Vector nodeSet=dmr.getGraph().getNodeSet(); 

        Vector edgeSet=dmr.getGraph().getEdgeSet(); 

        Vector usableEdgeSet=new Vector(); 

        Edge tempEdge; 

        for(int i=0;i<edgeSet.size();i++){ 

            tempEdge=(Edge)edgeSet.elementAt(i); 

            if(tempEdge!=dmr.getCurrRuinedEdge()) 

                usableEdgeSet.addElement(tempEdge); 

        } 

        usableGraph=new Graph(nodeSet,usableEdgeSet); 

 

        downstream=dmr.getCurrDownstream(); 

        upstream=dmr.getCurrUpstream(); 

        upstreamNodeSet=upstream.getNodeSet(); 

 

        currRuinedEdge=dmr.getCurrRuinedEdge(); 

        downstreamDemandNum=dmr.getDownstreamDemandNum(); 

        mergeCost=GraphAlgorithm.getMergeCost(this,start); 

        systematicDetourCost=0.0; 

 

        dmr.setCurrDetourCost(this,dmr.getMyNode(this),mergeCost); 

        dmr.setPreNode(this,start,dummyNode); 

        dmr.setPreEdge(this,start,dummyEdge); 

 

        detouristFinish=false; 

    } 

 

    public int getID(){ 

        return id; 

    } 
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    public Graph getUsableGraph(){ 

        return usableGraph; 

    } 

 

    public Graph getDownstream(){ 

        return downstream; 

    } 

 

    public Graph getUpstream(){ 

        return upstream; 

    } 

 

    public DetourManager getDetourManager(){ 

        return dmr; 

    } 

 

    public Center getCenter(){ 

        return center; 

    } 

 

    public Node getMergeNode(){ 

        return start; 

    } 

 

    public Node getAccessNode(){ 

        return access; 

    } 

 

    public Edge getRuinedEdge(){ 

        return currRuinedEdge; 

    } 

 

    public double getMergeCost(){ 

        return mergeCost; 

    } 

 

    public double getSystematicDetourCost(){ 

        return systematicDetourCost; 

    } 

 

    public Graph getDetourPath(){ 
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        return detourPath; 

    } 

 

    public void run(){ 

 

        dmr.takeKey(this); 

 

        //::map init:: 

        Vector edgeSet=center.getGraph().getEdgeSet(); 

        Edge tempEdge; 

        for(int i=0;i<edgeSet.size();i++){ 

            tempEdge=(Edge)edgeSet.elementAt(i); 

            if(!tempEdge.isFastEdge() && !tempEdge.isDetourEdge() && !tempEdge.isMAEdge()) 

                tempEdge.setNeutralEdge(); 

        } 

        //::map init:: 

 

        detouring: 

        while(!detouristFinish){ 

            if(dmr.getCurrNode(this)==supply){ 

                double 

sdc=dmr.getCurrDetourCost(this,dmr.getMyNode(this))+dmr.getMyEdge(this).getWeight()*downstreamDemandNum; 

                dmr.setCurrDetourCost(this,dmr.getCurrNode(this),sdc); 

 

                dmr.addNode(this,supply); 

                dmr.addEdge(this,dmr.getMyEdge(this)); 

 

                dmr.setPreNode(this,supply,dmr.getMyNode(this)); 

                dmr.setPreEdge(this,supply,dmr.getMyEdge(this)); 

 

                dmr.updatMinSDC(this,dmr.getCurrDetourCost(this,dmr.getSupply())); 

 

                dmr.getMyEdge(this).setDetourTestEdge(true); 

 

                break detouring; 

            }else if(dmr.getMinSDC(this)!=0.0 && 

dmr.getMinSDC(this)<dmr.getCurrDetourCost(this,dmr.getMyNode(this))){ 

                //some detourist has already found a shorter detour path 

                break detouring; 

            }else{ 

                dmr.addNode(this,dmr.getCurrNode(this)); 

                dmr.addEdge(this,dmr.getMyEdge(this)); 
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                dmr.setPreNode(this,dmr.getCurrNode(this),dmr.getMyNode(this)); 

                dmr.setPreEdge(this,dmr.getCurrNode(this),dmr.getMyEdge(this)); 

 

                double 

sdc=dmr.getCurrDetourCost(this,dmr.getMyNode(this))+dmr.getMyEdge(this).getWeight()*downstreamDemandNum; 

                dmr.setCurrDetourCost(this,dmr.getCurrNode(this),sdc); 

 

                dmr.getMyEdge(this).setDetourTestEdge(true); 

                dmr.setMyNode(this,dmr.getCurrNode(this)); 

 

                //find currEdge & currNode, assign new myNode 

                dijkstra(null); 

 

                try{ 

                    sleep(1); 

                }catch(InterruptedException ex){ 

                } 

 

            } 

 

        } 

 

        //set access node 

        Vector detourPathNodeSet=new Vector(),detourPathEdgeSet=new Vector(); 

        Node tempCurrNode=dmr.getSupply(); 

        detourPathNodeSet.addElement(tempCurrNode); 

 

        Edge tempPreEdge; 

        Node n1,n2; 

        do{ 

            tempPreEdge=dmr.getPreEdge(this,tempCurrNode); 

 

            if(!detourPathEdgeSet.contains(tempPreEdge)) 

                detourPathEdgeSet.addElement(tempPreEdge); 

 

            n1=tempPreEdge.getN1(); 

            n2=tempPreEdge.getN2(); 

 

            if(!detourPathNodeSet.contains(n1)) 

                detourPathNodeSet.addElement(n1); 

            if(!detourPathNodeSet.contains(n2)) 
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                detourPathNodeSet.addElement(n2); 

 

            if(upstreamNodeSet.contains(n1) && !upstreamNodeSet.contains(n2)){ 

                access=n1; 

            }else if(upstreamNodeSet.contains(n2) && !upstreamNodeSet.contains(n1)){ 

                access=n2; 

            }else{ 

                access=null; 

            } 

 

            tempCurrNode=dmr.getPreNode(this,tempCurrNode); 

        }while(tempCurrNode!=start); 

 

        if(!detourPathNodeSet.contains(start)) 

            detourPathNodeSet.addElement(start); 

 

        //set detourPath 

        detourPath=new Graph(detourPathNodeSet,detourPathEdgeSet); 

 

        //set sdc 

        systematicDetourCost=dmr.getCurrDetourCost(this,supply); 

        dmr.setSystematicDetourCost(this,systematicDetourCost); 

 

        dmr.updateCurrRuinedEdgeFinish(); 

        dmr.updateDetourCenter(this); 

 

        dmr.putKey(this); 

    } 

 

    void dijkstra(Edge canceledEdge){ 

 

        //find out the best incident edge 

        //define new myEdge & currNode 

        Vector tempRouteNodeSet=(Vector)dmr.getRouteNodeSet(this); 

 

        Vector incidentEdgeSet=GraphAlgorithm.getIncidentEdges(this,tempRouteNodeSet); 

        Vector exclusiveIncidentEdgeSet=new Vector(); 

        for(int i=0;i<incidentEdgeSet.size();i++){ 

            if(!dmr.getRouteEdgeSet(this).contains(incidentEdgeSet.elementAt(i))){ 

                exclusiveIncidentEdgeSet.addElement(incidentEdgeSet.elementAt(i)); 

            } 

        } 
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        Edge tempEdge; 

        Node n1,n2; 

 

        if(exclusiveIncidentEdgeSet.size()>1){ 

            tempEdge=(Edge)exclusiveIncidentEdgeSet.elementAt(0); 

            dmr.setMyEdge(this,tempEdge); 

            n1=tempEdge.getN1(); 

            n2=tempEdge.getN2(); 

            if(tempRouteNodeSet.contains(n1) && !tempRouteNodeSet.contains(n2)){ 

                dmr.setMyNode(this,n1); 

                dmr.setCurrNode(this,n2); 

            }else if(tempRouteNodeSet.contains(n2) && !tempRouteNodeSet.contains(n1)){ 

                dmr.setMyNode(this,n2); 

                dmr.setCurrNode(this,n1); 

            }else{ 

                //dijkstra error 1: not incident edge! check GraphAlgorithm.getIncidentEdgeSet() 

            } 

 

            double 

min=dmr.getCurrDetourCost(this,dmr.getMyNode(this))+dmr.getMyEdge(this).getWeight()*downstreamDemandNum; 

 

            for(int i=1;i<exclusiveIncidentEdgeSet.size();i++){ 

                tempEdge=(Edge)exclusiveIncidentEdgeSet.elementAt(i); 

                n1=tempEdge.getN1(); 

                n2=tempEdge.getN2(); 

                if(tempRouteNodeSet.contains(n1) && !tempRouteNodeSet.contains(n2)){ 

                    if((dmr.getCurrDetourCost(this,n1)+tempEdge.getWeight()*downstreamDemandNum)<min){ 

                        min=dmr.getCurrDetourCost(this,n1)+tempEdge.getWeight()*downstreamDemandNum; 

                        dmr.setMyEdge(this,tempEdge); 

                        dmr.setMyNode(this,n1); 

                        dmr.setCurrNode(this,n2); 

                    } 

                }else if(tempRouteNodeSet.contains(n2) && !tempRouteNodeSet.contains(n1)){ 

                    if((dmr.getCurrDetourCost(this,n2)+tempEdge.getWeight()*downstreamDemandNum)<min){ 

                        min=dmr.getCurrDetourCost(this,n2)+tempEdge.getWeight()*downstreamDemandNum; 

                        dmr.setMyEdge(this,tempEdge); 

                        dmr.setMyNode(this,n2); 

                        dmr.setCurrNode(this,n1); 

                    } 

                }else{ 

                    //dijkstra error 2: incident edge error! 
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                } 

            } 

 

        }else if(exclusiveIncidentEdgeSet.size()==1){ 

            tempEdge=(Edge)exclusiveIncidentEdgeSet.elementAt(0); 

            dmr.setMyEdge(this,tempEdge); 

            n1=tempEdge.getN1(); 

            n2=tempEdge.getN2(); 

            if(tempRouteNodeSet.contains(n1) && !tempRouteNodeSet.contains(n2)){ 

                dmr.setMyNode(this,n1); 

                dmr.setCurrNode(this,n2); 

            }else if(tempRouteNodeSet.contains(n2) && !tempRouteNodeSet.contains(n1)){ 

                dmr.setMyNode(this,n2); 

                dmr.setCurrNode(this,n1); 

            }else{ 

                //dijkstra error 3: not incident edge! check GraphAlgorithm.getIncidentEdgeSet() 

            } 

        }else{ 

            detouristFinish=true; 

            //renders all nodes visited 

        } 

    } 

} 
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package emnet.thread; 

 

import emnet.graph.Node; 

import emnet.graph.Graph; 

import java.util.Vector; 

import emnet.graph.Edge; 

import emnet.algorithm.GraphAlgorithm; 

 

public class DetourManager extends Thread{ 

 

    int id; 

    Center center; 

    Node supply; 

    Graph graph,fastTree,territory; 

    Vector edgeSet,nodeSet,fastTreeEdgeSet,fastTreeNodeSet,detourists,territoryNodeSet,territoryEdgeSet; 

    int detouristNum,downstreamDemandNum; 

 

    //nodeDept 

    //nodeDept[detourist][node][0]: currDetourDist 

    //nodeDept[detourist][node][1]: preNode 

    //nodeDept[detourist][node][2]: preEdge 

    Object[][][] nodeDept; 

 

    //detourDept 

    //detourDept[detourist][0]: myNode(Node) 

    //detourDept[detourist][1]: myEdge(Edge) 

    //detourDept[detourist][2]: currNode(Node) 

    //detourDept[detourist][3]: routeSet(Graph) 

    //detourDept[detourist][4]: detourLength(Double) 

    //deoutrDept[detourist][5]: bridge(Graph) 

    Object[][] detourDept; 

 

    //sdcDept 

    //sdcDept[ruinedEdge][0]: minSDC 

    Object[][] sdcDept; 

 

    Edge currRuinedEdge; 

    Graph currUpstream,currDownstream; 

    Vector currDownstreamNodeSet; 

 

    boolean currRuinedEdgeFinish,available; 
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    //one manager controls one territory 

    public DetourManager(int id,Center center,Node supply){ 

        this.id=id; 

        this.center=center; 

        this.supply=supply; 

 

        graph=center.getGraph(); 

        edgeSet=graph.getEdgeSet(); 

        nodeSet=graph.getNodeSet(); 

 

        fastTree=center.getFastTree(supply); 

        fastTreeEdgeSet=fastTree.getEdgeSet(); 

        fastTreeNodeSet=fastTree.getNodeSet(); 

 

//        detouristNum=fastTreeNodeSet.size(); 

 

        nodeDept=new Object[fastTreeNodeSet.size()][nodeSet.size()][3]; 

        detourDept=new Object[fastTreeNodeSet.size()][6]; 

 

        if(fastTreeEdgeSet.size()!=0){ 

            Edge tempFastTreeEdge=(Edge)fastTreeEdgeSet.elementAt(0); 

            int maxEdgeLabel=tempFastTreeEdge.getLabel(); 

            for(int j=1;j<fastTreeEdgeSet.size();j++){ 

                tempFastTreeEdge=(Edge)fastTreeEdgeSet.elementAt(j); 

                if(tempFastTreeEdge.getLabel()>maxEdgeLabel) 

                    maxEdgeLabel=tempFastTreeEdge.getLabel(); 

            } 

            sdcDept=new Object[maxEdgeLabel+1][1]; 

        } 

    } 

 

    public void run(){ 

 

        if(fastTreeEdgeSet==null){ 

            center.updateDetourCondition(); 

            destroy(); 

        } 

        center.takeKey(this); 

 

        for(int i=0;i<fastTreeEdgeSet.size();i++){ 
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            //initialization 

            currRuinedEdgeFinish=false; 

            available=true; 

 

            for(int j=0;j<fastTreeNodeSet.size();j++){ 

                Node tempNode; 

                for(int k=0;j<fastTreeNodeSet.size();j++){ 

                    tempNode=(Node)fastTreeNodeSet.elementAt(j); 

                    nodeDept[j][tempNode.getLabel()][0]=new Double(0.0); 

                } 

            } 

 

            for(int j=0;j<detouristNum;j++){ 

                detourDept[j][0]=null; 

                detourDept[j][1]=null; 

                detourDept[j][2]=null; 

                detourDept[j][3]=null; 

                detourDept[j][4]=new Double(0.0); 

                detourDept[j][5]=null; 

            } 

 

            Edge tempFastTreeEdge; 

            for(int j=0;j<fastTreeEdgeSet.size();j++){ 

                tempFastTreeEdge=(Edge)fastTreeEdgeSet.elementAt(j); 

                sdcDept[tempFastTreeEdge.getLabel()][0]=new Double(0.0); 

            } 

 

            currRuinedEdge=(Edge)fastTreeEdgeSet.elementAt(i); 

            currUpstream=GraphAlgorithm.getSubtreeWithSupply(fastTree,currRuinedEdge); 

            currDownstream=GraphAlgorithm.getSubtreeWithoutSupply(fastTree,currRuinedEdge); 

            currDownstreamNodeSet=currDownstream.getNodeSet(); 

            detouristNum=currDownstreamNodeSet.size(); 

 

            Node tempNode; 

            downstreamDemandNum=0; 

            for(int k=0;k<currDownstreamNodeSet.size();k++){ 

                tempNode=(Node)currDownstreamNodeSet.elementAt(k); 

                if(tempNode.isDemand()) 

                    downstreamDemandNum++; 

            } 

 

            //one detourist tests from one node when one currRuinedEdge is simulated 
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            Detourist tempDetourist; 

            detourists=new Vector(); 

            for(int j=0;j<currDownstreamNodeSet.size();j++){ 

                tempNode=(Node)currDownstreamNodeSet.elementAt(j); 

                tempDetourist=new Detourist(j,tempNode,this); 

                detourists.addElement(tempDetourist); 

                tempDetourist.start(); 

            } 

 

            //dmr waiting the currRuinedEdge finish 

            while(!currRuinedEdgeFinish){ 

            } 

 

            //currRuinedEdge finish: all situations simulated 

            //set detour edges on the shortest detour route 

            Detourist bestDetourist=(Detourist)detourists.elementAt(0); 

            Detourist tempDetourist1; 

            double minSDC=bestDetourist.getSystematicDetourCost(); 

            for(int j=1;j<detourists.size();j++){ 

                tempDetourist1=(Detourist)detourists.elementAt(j); 

                if(tempDetourist1.getSystematicDetourCost()<minSDC){ 

                    minSDC=tempDetourist1.getSystematicDetourCost(); 

                    bestDetourist=tempDetourist1; 

                } 

            } 

 

            Vector bestDetourPathEdgeSet=bestDetourist.getDetourPath().getEdgeSet(); 

            Edge tempEdge1; 

            for(int j=0;j<bestDetourPathEdgeSet.size();j++){ 

                tempEdge1=(Edge)bestDetourPathEdgeSet.elementAt(j); 

                tempEdge1.setDetourEdge(); 

            } 

        } 

 

        //::maCenter[supply][1]: territory(Graph) 2ECON:: 

        Graph territory=fastTree; 

        Edge tempRuinedEdge; 

        Graph tempDetourPath; 

        Vector tempDetourPathNodeSet,tempDetourPathEdgeSet; 

        Node tempDetourPathNode; 

        Edge tempDetourPathEdge; 

        for(int i=0;i<fastTreeEdgeSet.size();i++){ 
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            tempRuinedEdge=(Edge)fastTreeEdgeSet.elementAt(i); 

            tempDetourPath=center.getDetourPath(tempRuinedEdge); 

            if(tempDetourPath!=null){ 

                tempDetourPathNodeSet=tempDetourPath.getNodeSet(); 

                tempDetourPathEdgeSet=tempDetourPath.getEdgeSet(); 

                if(tempDetourPathNodeSet!=null){ 

                    for(int j=0;j<tempDetourPathNodeSet.size();j++){ 

                        tempDetourPathNode=(Node)tempDetourPathNodeSet.elementAt(j); 

                        if(!territory.hasNode(tempDetourPathNode)) 

                            territory.addNode(tempDetourPathNode); 

                    } 

                } 

                if(tempDetourPathEdgeSet!=null){ 

                    for(int j=0;j<tempDetourPathEdgeSet.size();j++){ 

                        tempDetourPathEdge=(Edge)tempDetourPathEdgeSet.elementAt(j); 

                        if(!territory.hasEdge(tempDetourPathEdge)) 

                            territory.addEdge(tempDetourPathEdge); 

                    } 

                } 

            }else{ 

                //tempDetourPath is null! 

            } 

        } 

 

        center.setTerritory(supply,territory); 

        //::maCenter[supply][1]: territory(Graph) 2ECON:: 

 

        center.updateDetourCondition(); 

        center.putKey(this); 

    } 

 

    //detourDept method: 

    public synchronized void takeKey(Detourist detourist){ 

        if(!currRuinedEdgeFinish){ 

            while(!available){ 

                try{ 

                    wait(1); 

                }catch(InterruptedException e){ 

                    //takeKey: cannot wait! 

                } 

            } 

            available=false; 
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        }else{ 

            available=false; 

        } 

    } 

 

    public synchronized void putKey(Detourist detourist){ 

        if(!isCurrRuinedEdgeFinish()){ 

            while(available){ 

                try{ 

                    wait(1); 

                }catch(InterruptedException e){ 

                    //putKey: cannot wait! 

                } 

            } 

            available=true; 

        }else{ 

            available=true; 

        } 

    } 

 

    public synchronized boolean isFinished(){ 

        return currRuinedEdgeFinish; 

    } 

 

    void sendDetourist(Graph downstream){ 

        Vector fastTreeNodeSet=downstream.getNodeSet(); 

        Node tempNode; 

        for(int i=0;i<fastTreeNodeSet.size();i++){ 

            tempNode=(Node)fastTreeNodeSet.elementAt(i); 

            new Detourist(i,tempNode,this).start(); 

        } 

    } 

 

    public synchronized void setCurrRuinedEdgeFinish(boolean currRuinedEdgeFinish){ 

        this.currRuinedEdgeFinish=currRuinedEdgeFinish; 

    } 

 

    public Edge getCurrRuinedEdge(){ 

        return currRuinedEdge; 

    } 

 

    public Graph getCurrUpstream(){ 
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        return currUpstream; 

    } 

 

    public Graph getCurrDownstream(){ 

        return currDownstream; 

    } 

 

    public Graph getGraph(){ 

        return center.getGraph(); 

    } 

 

    public void setPreNode(Detourist detourist,Node node,Node preNode){ 

        nodeDept[detourist.getID()][node.getLabel()][1]=preNode; 

    } 

 

    public Node getPreNode(Detourist detourist,Node node){ 

        return (Node)nodeDept[detourist.getID()][node.getLabel()][1]; 

    } 

 

    public void setPreEdge(Detourist detourist,Node node,Edge preEdge){ 

        nodeDept[detourist.getID()][node.getLabel()][2]=preEdge; 

    } 

 

    public Edge getPreEdge(Detourist detourist,Node node){ 

        return (Edge)nodeDept[detourist.getID()][node.getLabel()][2]; 

    } 

 

    public int getDownstreamDemandNum(){ 

        return downstreamDemandNum; 

    } 

 

    public Center getCenter(){ 

        return center; 

    } 

 

    public Node getSupply(){ 

        return supply; 

    } 

 

    public int getID(){ 

        return id; 

    } 
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    public synchronized void updateCurrRuinedEdgeFinish(){ 

        detouristNum--; 

        if(detouristNum==0){ 

            currRuinedEdgeFinish=true; 

        }else{ 

            currRuinedEdgeFinish=false; 

        } 

    } 

 

    public synchronized boolean isCurrRuinedEdgeFinish(){ 

        return currRuinedEdgeFinish; 

    } 

 

    public synchronized void updateDetourCenter(Detourist detourist){ 

        Center center=detourist.getCenter(); 

        DetourManager dmr=detourist.getDetourManager(); 

        Edge ruinedEdge=detourist.getRuinedEdge(); 

 

        //detourCenter[edge][0]: downstream(Graph) 

        //detourCenter[edge][1]: upstream(Graph) 

        //detourCenter[edge][2]: mergeNode(Node) 

        //detourCenter[edge][3]: accessNode(Node) 

        //detourCenter[edge][4]: detourPath(Graph) 

        //detourCenter[edge][5]: systematicDetourCost(Double) 

        //detourCenter[edge][6]: mergeCost(Vector) 

 

        //maCenter[supply][1]: territory(Graph) 2ECON 

 

        double detouristDetourLength=dmr.getSystematicDetourCost(detourist); 

        double centerDetourLengthRecord=center.getSystematicDetourCost(detourist.getRuinedEdge()); 

        if(centerDetourLengthRecord==0.0 || detouristDetourLength<centerDetourLengthRecord){ 

 

            center.setDownstream(ruinedEdge,detourist.getDownstream()); 

            center.setUpstream(ruinedEdge,detourist.getUpstream()); 

            center.setMergeNode(ruinedEdge,detourist.getMergeNode()); 

            center.setAccessNode(ruinedEdge,detourist.getAccessNode()); 

            center.setDetourPath(ruinedEdge,detourist.getDetourPath()); 

            center.setSystematicDetourCost(ruinedEdge,detouristDetourLength); 

            center.setMergeCost(ruinedEdge,detourist.getMergeCost()); 

 

            //detouristDetourLength is smaller than center record 
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        }else{ 

            //detouristDetourLength is larger than center record 

        } 

    } 

 

    //detourDept method: 

    //detourDept[detourist][0]: myNode(Node) 

    public synchronized void setMyNode(Detourist detourist,Node myNode){ 

        detourDept[detourist.getID()][0]=myNode; 

    } 

 

    public synchronized Node getMyNode(Detourist detourist){ 

        Node myNode=(Node)detourDept[detourist.getID()][0]; 

        return myNode; 

    } 

 

    //detourDept[detourist][1]: myEdge(Edge) 

    public synchronized void setMyEdge(Detourist detourist,Edge myEdge){ 

        detourDept[detourist.getID()][1]=myEdge; 

    } 

 

    public synchronized Edge getMyEdge(Detourist detourist){ 

        Edge myEdge=(Edge)detourDept[detourist.getID()][1]; 

        return myEdge; 

    } 

 

    //detourDept[detourist][2]: currNode(Node) 

    public synchronized void setCurrNode(Detourist detourist,Node currNode){ 

        detourDept[detourist.getID()][2]=currNode; 

    } 

 

    public synchronized Node getCurrNode(Detourist detourist){ 

        Node currNode=(Node)detourDept[detourist.getID()][2]; 

        return currNode; 

    } 

 

    //detourDept[detourist][3]: routeSet(Graph) 

    public synchronized void setRouteSet(Detourist detourist,Graph routeSet){ 

        detourDept[detourist.getID()][3]=routeSet; 

    } 

 

    public synchronized void setRouteSet(Detourist detourist,Vector routeNodeSet,Vector routeEdgeSet){ 
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        detourDept[detourist.getID()][3]=new Graph(routeNodeSet,routeEdgeSet); 

    } 

 

    public synchronized Graph getRouteSet(Detourist detourist){ 

        Graph routeSet=(Graph)detourDept[detourist.getID()][3]; 

        return routeSet; 

    } 

 

    public synchronized Vector getRouteNodeSet(Detourist detourist){ 

        Graph routeSet=(Graph)detourDept[detourist.getID()][3]; 

        Vector routeNodeSet=routeSet.getNodeSet(); 

        return routeNodeSet; 

    } 

 

    public synchronized Vector getRouteEdgeSet(Detourist detourist){ 

        Graph routeSet=(Graph)detourDept[detourist.getID()][3]; 

        Vector routeEdgeSet=routeSet.getEdgeSet(); 

        return routeEdgeSet; 

    } 

 

    public synchronized void addEdge(Detourist detourist,Edge edge){ 

        Graph routeSet=this.getRouteSet(detourist); 

        Vector routeNodeSet=routeSet.getNodeSet(); 

        Vector routeEdgeSet=routeSet.getEdgeSet(); 

        if(!routeEdgeSet.contains(edge)) 

            routeEdgeSet.addElement(edge); 

        this.setRouteSet(detourist,routeNodeSet,routeEdgeSet); 

    } 

 

    public synchronized void addNode(Detourist detourist,Node node){ 

        Graph routeSet=this.getRouteSet(detourist); 

        Vector routeNodeSet=routeSet.getNodeSet(); 

        Vector routeEdgeSet=routeSet.getEdgeSet(); 

        if(!routeNodeSet.contains(node)) 

            routeNodeSet.addElement(node); 

        this.setRouteSet(detourist,routeNodeSet,routeEdgeSet); 

    } 

 

    public synchronized void removeEdge(Detourist detourist,Edge edge){ 

        Graph routeSet=this.getRouteSet(detourist); 

        Vector routeNodeSet=routeSet.getNodeSet(); 

        Vector routeEdgeSet=routeSet.getEdgeSet(); 
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        if(routeEdgeSet.contains(edge)){ 

            routeEdgeSet.removeElement(edge); 

        } 

        this.setRouteSet(detourist,routeNodeSet,routeEdgeSet); 

    } 

 

    public synchronized void removeSubtree(Detourist detourist,Graph subtree){ 

        Graph routeSet=(Graph)this.detourDept[detourist.getID()][3]; 

        Vector tempNodeSet1=routeSet.getNodeSet(); 

        Vector tempEdgeSet1=routeSet.getEdgeSet(); 

        Vector tempNodeSet2=subtree.getNodeSet(); 

        Vector tempEdgeSet2=subtree.getEdgeSet(); 

 

        Node tempNode; 

        for(int i=0;i<tempNodeSet2.size();i++){ 

            tempNode=(Node)tempNodeSet2.elementAt(i); 

            boolean nodeExist=tempNodeSet1.removeElement(tempNode); 

        } 

 

        Edge tempEdge; 

        for(int i=0;i<tempEdgeSet2.size();i++){ 

            tempEdge=(Edge)tempEdgeSet2.elementAt(i); 

            boolean edgeExist=tempEdgeSet1.removeElement(tempEdge); 

        } 

    } 

 

    public synchronized void addSubtree(Detourist detourist,Graph subtree){ 

 

        Graph visitedRouteSet=(Graph)this.detourDept[detourist.getID()][3]; 

        Vector tempNodeSet1=visitedRouteSet.getNodeSet(); 

        Vector tempEdgeSet1=visitedRouteSet.getEdgeSet(); 

        Vector tempNodeSet2=subtree.getNodeSet(); 

        Vector tempEdgeSet2=subtree.getEdgeSet(); 

 

        Node tempNode; 

        for(int i=0;i<tempNodeSet2.size();i++){ 

            tempNode=(Node)tempNodeSet2.elementAt(i); 

            if(tempNodeSet1.contains(tempNode)){ 

            }else{ 

                tempNodeSet1.addElement(tempNode); 

            } 

        } 
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        Edge tempEdge; 

        for(int i=0;i<tempEdgeSet2.size();i++){ 

            tempEdge=(Edge)tempEdgeSet2.elementAt(i); 

            if(tempEdgeSet1.contains(tempEdge)){ 

            }else{ 

                tempEdgeSet1.addElement(tempEdge); 

            } 

        } 

    } 

 

    //detourDept[detourist][4]: detourLength(Double) 

    public void setSystematicDetourCost(Detourist detourist, double sdc){ 

        detourDept[detourist.getID()][4]=new Double(sdc); 

    } 

 

    public double getSystematicDetourCost(Detourist detourist){ 

        Double sdc=(Double)detourDept[detourist.getID()][4]; 

        return sdc.doubleValue(); 

    } 

 

 

    public void setCurrDetourCost(Detourist detourist,Node node,double sdc){ 

        nodeDept[detourist.getID()][node.getLabel()][0]=new Double(sdc); 

    } 

 

    public double getCurrDetourCost(Detourist detourist,Node node){ 

        Double tempDouble=(Double)nodeDept[detourist.getID()][node.getLabel()][0]; 

        return tempDouble.doubleValue(); 

    } 

 

    //detourCenter: 

    public synchronized void updateMinSDC(double sdc){ 

        double currSDC=center.getSystematicDetourCost(currRuinedEdge); 

        if(currSDC==0.0 || sdc<currSDC) 

            center.setSystematicDetourCost(currRuinedEdge,sdc); 

    } 

 

    public synchronized double getMinSDC(){ 

        return center.getSystematicDetourCost(currRuinedEdge); 

    } 
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    //deoutrDept[detourist][5]: bridge(Graph) 

    //sdcDept 

    //sdcDept[ruinedEdge][0]: minSDC 

    public synchronized void updatMinSDC(Detourist detourist,double sdc){ 

        Edge ruinedEdge=detourist.getRuinedEdge(); 

        DetourManager dmr=detourist.getDetourManager(); 

        double currSDC=dmr.getMinSDC(detourist); 

        if(sdc<currSDC) 

            sdcDept[ruinedEdge.getLabel()][0]=new Double(sdc); 

    } 

 

    public synchronized double getMinSDC(Detourist detourist){ 

        Edge ruinedEdge=detourist.getRuinedEdge(); 

        Double minSDC=(Double)sdcDept[ruinedEdge.getLabel()][0]; 

        return minSDC.doubleValue(); 

    } 

} 

 



 

175 

 
Helper.java 

package emnet.thread; 

 

import java.util.Vector; 

import emnet.graph.Node; 

import emnet.graph.Graph; 

import emnet.graph.Edge; 

 

public class Helper extends Thread{ 

    int id; 

    MAManager maMr; 

    Node start,source; 

 

    Node currNode,preNode,myNode; 

    Edge preEdge,myEdge; 

 

    Graph maPath; 

 

    //maCost = mergeCost + demandNum * bridgeLength(maPath) 

    double maCost; 

 

    //for merge cost 

    //walkerCenter[node][]: 

    //nodeDept 

    //nodeDept[node][0]: currCost 

    //nodeDept[node][1]: preNode 

    //nodeDept[node][2]: preEdge 

    Object[][] nodeDept; 

 

    //walkerDept 

    //walkerDept[0]: myNode(Node) 

    //walkerDept[1]: myEdge(Edge) 

    //walkerDept[2]: currNode(Node) 

    //walkerDept[3]: routeSet(Graph) 

    Object[] walkerDept; 

 

    boolean helperFinish,longer,exclusiveIsZero; 

 

    public Helper(int id,Node start,MAManager maMr){ 

 

        this.id=id; 

        this.start=start; 



 

176 

Helper.java 

        this.maMr=maMr; 

        this.source=null; 

 

        //nodeDept 

        nodeDept=new Object[maMr.getGraph().getNodeSet().size()][3]; 

 

        //walkerDept 

        walkerDept=new Object[4]; 

 

        Node dummyNode=maMr.getCenter().getDummyNode(); 

        dummyNode.setDummy(); 

        int edgeNum=maMr.getGraph().getEdgeSet().size(); 

        Edge dummyEdge=new Edge(edgeNum,start,dummyNode,0.0); 

        dummyEdge.setDummyEdge(); 

 

        maMr.getGraph().addNode(dummyNode); 

        maMr.getGraph().addEdge(dummyEdge); 

 

        //helper init, set to maMr 

        Vector routeNodeSet=new Vector(); 

        routeNodeSet.addElement(dummyNode); 

        Vector routeEdgeSet=new Vector(); 

        routeEdgeSet.addElement(dummyEdge); 

 

        maMr.setRouteSet(this,routeNodeSet,routeEdgeSet); 

        maMr.setMyNode(this,dummyNode); 

        maMr.setMyEdge(this,dummyEdge); 

        maMr.setCurrNode(this,start); 

 

        double mergeCost=getECONMergeCost(start); 

 

        maMr.setCurrMACost(this,maMr.getMyNode(this),mergeCost); 

        maMr.setPreNode(this,start,dummyNode); 

        maMr.setPreEdge(this,start,dummyEdge); 

        maCost=0.0; 

        helperFinish=false; 

        longer=false; 

        exclusiveIsZero=false; 

    } 

 

    public int getID(){ 

        return id; 
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    } 

 

    public Node getStart(){ 

        return start; 

    } 

 

    public MAManager getMAManger(){ 

        return maMr; 

    } 

 

    public double getMACost(){ 

        return maCost; 

    } 

 

    public Graph getMAPath(){ 

        return maPath; 

    } 

 

    public Node getSource(){ 

        return source; 

    } 

 

    public void run(){ 

        maMr.takeKey(this); 

 

        //::map init:: 

        Vector edgeSet=maMr.getCenter().getGraph().getEdgeSet(); 

        Edge tempEdge; 

        for(int i=0;i<edgeSet.size();i++){ 

            tempEdge=(Edge)edgeSet.elementAt(i); 

            if(!tempEdge.isFastEdge() && !tempEdge.isDetourEdge() && !tempEdge.isMAEdge()) 

                tempEdge.setNeutralEdge(); 

        } 

        //::map init:: 

 

        maHelping: 

        while(!helperFinish){ 

 

            if(maMr.getCurrNode(this).isSupply() && maMr.getCurrNode(this)!=maMr.getSupply()){ 

 

                source=maMr.getCurrNode(this); 
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                double 

currMACost=maMr.getCurrMACost(this,maMr.getMyNode(this))+maMr.getMyEdge(this).getWeight()*maMr.getDemanNum(); 

                maMr.setCurrMACost(this,maMr.getCurrNode(this),currMACost); 

 

                maMr.addNode(this,maMr.getCurrNode(this)); 

                maMr.addEdge(this,maMr.getMyEdge(this)); 

 

                maMr.setPreNode(this,maMr.getCurrNode(this),maMr.getMyNode(this)); 

                maMr.setPreEdge(this,maMr.getCurrNode(this),maMr.getMyEdge(this)); 

 

                maMr.updateMinMACost(maMr.getCurrMACost(this,maMr.getCurrNode(this))); 

 

                maMr.getMyEdge(this).setMATestEdge(true); 

 

                break maHelping; 

            }else if(maMr.getMinMACost()!=0.0 && 

maMr.getMinMACost()<maMr.getCurrMACost(this,maMr.getMyNode(this))){ 

                //some detourist has already found a shorter detour path 

                longer=true; 

                break maHelping; 

            }else{ 

                maMr.addNode(this,maMr.getCurrNode(this)); 

                maMr.addEdge(this,maMr.getMyEdge(this)); 

 

                maMr.setPreNode(this,maMr.getCurrNode(this),maMr.getMyNode(this)); 

                maMr.setPreEdge(this,maMr.getCurrNode(this),maMr.getMyEdge(this)); 

 

                double 

currMACost=maMr.getCurrMACost(this,maMr.getMyNode(this))+maMr.getMyEdge(this).getWeight()*maMr.getDemanNum(); 

                maMr.setCurrMACost(this,maMr.getCurrNode(this),currMACost); 

 

                maMr.getMyEdge(this).setMATestEdge(true); 

                maMr.setMyNode(this,maMr.getCurrNode(this)); 

 

                //find currEdge & currNode, assign new myNode 

                dijkstra(); 

 

                try{ 

                    sleep(1); 

                }catch(InterruptedException ex){ 

                    System.out.println("maMr "+maMr.getID()+", helper "+getID()+" cannot sleep: "+ex); 

                } 
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            } 

        } 

 

        //helper finished! 

        //maPath setting: 

        if(!longer && !exclusiveIsZero){ 

            Vector maPathNodeSet=new Vector(); 

            Vector maPathEdgeSet=new Vector(); 

 

            Node tempCurrNode=maMr.getCurrNode(this); 

            Edge tempPreEdge; 

 

            maPathSetting: 

            do{ 

                if(!maPathNodeSet.contains(tempCurrNode)) 

                    maPathNodeSet.addElement(tempCurrNode); 

 

                tempPreEdge=maMr.getPreEdge(this,tempCurrNode); 

 

                //tempPreEdge!=null 

                if(!tempPreEdge.isDummyEdge()){ 

                    if(!maPathEdgeSet.contains(tempPreEdge)) 

                        maPathEdgeSet.addElement(tempPreEdge); 

 

                    tempCurrNode=maMr.getPreNode(this,tempCurrNode); 

                }else{ 

                    break maPathSetting; 

                } 

 

            }while(tempCurrNode!=start); 

 

            if(!maPathNodeSet.contains(start)) 

                maPathNodeSet.addElement(start); 

 

            maPath=new Graph(maPathNodeSet,maPathEdgeSet); 

 

            //update mutual assistant path to center 

            //maCost setting: 

            maCost=maMr.getCurrMACost(this,maMr.getCurrNode(this)); 

        } 

        maMr.updateMAFinish(); 

        maMr.putKey(this); 
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    } 

 

    void dijkstra(){ 

        //find out the best incident edge 

        //define new myEdge & currNode 

        Graph tempRouteSet=(Graph)maMr.getRouteSet(this); 

        Vector tempRouteNodeSet=(Vector)tempRouteSet.getNodeSet(); 

 

        Vector incidentEdgeSet=getIncidentEdgeSet(maMr.getUsableGraph(),tempRouteNodeSet); 

 

        Vector exclusiveIncidentEdgeSet=new Vector(); 

        for(int i=0;i<incidentEdgeSet.size();i++){ 

            if(!maMr.getRouteEdgeSet(this).contains(incidentEdgeSet.elementAt(i))){ 

                exclusiveIncidentEdgeSet.addElement(incidentEdgeSet.elementAt(i)); 

            } 

        } 

 

        Edge tempEdge; 

        Node n1,n2; 

 

        if(exclusiveIncidentEdgeSet.size()>1){ 

            tempEdge=(Edge)exclusiveIncidentEdgeSet.elementAt(0); 

            maMr.setMyEdge(this,tempEdge); 

            n1=tempEdge.getN1(); 

            n2=tempEdge.getN2(); 

            if(tempRouteNodeSet.contains(n1) && !tempRouteNodeSet.contains(n2)){ 

                maMr.setMyNode(this,n1); 

                maMr.setCurrNode(this,n2); 

            }else if(tempRouteNodeSet.contains(n2) && !tempRouteNodeSet.contains(n1)){ 

                maMr.setMyNode(this,n2); 

                maMr.setCurrNode(this,n1); 

            }else{ 

                //dijkstra error 1: not incident edge! check GraphAlgorithm.getIncidentEdgeSet() 

            } 

            double 

min=maMr.getCurrMACost(this,maMr.getMyNode(this))+maMr.getMyEdge(this).getWeight()*maMr.getDemanNum(); 

            for(int i=1;i<exclusiveIncidentEdgeSet.size();i++){ 

                tempEdge=(Edge)exclusiveIncidentEdgeSet.elementAt(i); 

                n1=tempEdge.getN1(); 

                n2=tempEdge.getN2(); 

                if(tempRouteNodeSet.contains(n1) && !tempRouteNodeSet.contains(n2)){ 

                    if(maMr.getCurrMACost(this,n1)+tempEdge.getWeight()*maMr.getDemanNum()<min){ 
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                        min=maMr.getCurrMACost(this,n1)+tempEdge.getWeight()*maMr.getDemanNum(); 

                        maMr.setMyEdge(this,tempEdge); 

                        maMr.setMyNode(this,n1); 

                        maMr.setCurrNode(this,n2); 

                    } 

                }else if(tempRouteNodeSet.contains(n2) && !tempRouteNodeSet.contains(n1)){ 

                    if(maMr.getCurrMACost(this,n2)+tempEdge.getWeight()*maMr.getDemanNum()<min){ 

                        min=maMr.getCurrMACost(this,n2)+tempEdge.getWeight()*maMr.getDemanNum(); 

                        maMr.setMyEdge(this,tempEdge); 

                        maMr.setMyNode(this,n2); 

                        maMr.setCurrNode(this,n1); 

                    } 

                }else{ 

                    //dijkstra error 2: incident edge error!" 

                } 

            } 

        }else if(exclusiveIncidentEdgeSet.size()==1){ 

            tempEdge=(Edge)exclusiveIncidentEdgeSet.elementAt(0); 

            maMr.setMyEdge(this,tempEdge); 

            n1=tempEdge.getN1(); 

            n2=tempEdge.getN2(); 

            if(tempRouteNodeSet.contains(n1) && !tempRouteNodeSet.contains(n2)){ 

                maMr.setMyNode(this,n1); 

                maMr.setCurrNode(this,n2); 

            }else if(tempRouteNodeSet.contains(n2) && !tempRouteNodeSet.contains(n1)){ 

                maMr.setMyNode(this,n2); 

                maMr.setCurrNode(this,n1); 

            }else{ 

                //dijkstra error 3: not incident edge! check GraphAlgorithm.getIncidentEdgeSet() 

            } 

        }else{ 

            exclusiveIsZero=true; 

            helperFinish=true; 

            //renders all nodes visited 

        } 

 

    } 

 

    double getECONMergeCost(Node node){ 

        Walker walker=new Walker(this,node); 

        walker.start(); 
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        while(!walker.isFinish()){ 

            //wait for walker to calculate merge cost 

        } 

        return walker.getTerritoryMergeCost(); 

    } 

 

    Vector getIncidentEdgeSet(Graph usableGraph,Vector routeNodeSet){ 

        Edge myEdge=maMr.getMyEdge(this); 

 

        Vector incidentEdges=new Vector(); 

        Edge tempEdge; 

        Node n1,n2; 

 

        for(int i=0;i<routeNodeSet.size();i++){ 

            Vector tempEdgeSet=usableGraph.incidentEdgeSet((Node)routeNodeSet.elementAt(i)); 

            for(int j=0;j<tempEdgeSet.size();j++){ 

                tempEdge=(Edge)tempEdgeSet.elementAt(j); 

                if(!incidentEdges.contains(tempEdge)) 

                    incidentEdges.addElement(tempEdge); 

 

                n1=tempEdge.getN1(); 

                n2=tempEdge.getN2(); 

                if(routeNodeSet.contains(n1) && routeNodeSet.contains(n2)) 

                    incidentEdges.removeElement(tempEdge); 

                if(n1==maMr.getCenter().getDummyNode() || n2==maMr.getCenter().getDummyNode()) 

                    incidentEdges.removeElement(tempEdge); 

            } 

        } 

        if(incidentEdges.contains(myEdge)) 

            incidentEdges.removeElement(myEdge); 

 

        return incidentEdges; 

    } 

 

    //walker methods: 

    //nodeDept[node][0]: currCost 

    public void setCurrCost(Node node,double cost){ 

        nodeDept[node.getLabel()][0]=new Double(cost); 

    } 

 

    public double getCurrCost(Node node){ 

        Double tempDouble=(Double)nodeDept[node.getLabel()][0]; 



 

183 

Helper.java 

        return tempDouble.doubleValue(); 

    } 

 

    //nodeDept[node][1]: preNode 

    public void setPreNode(Node node,Node preNode){ 

        nodeDept[node.getLabel()][1]=preNode; 

    } 

 

    public Node getPreNode(Node node){ 

        return (Node)nodeDept[node.getLabel()][1]; 

    } 

 

    //nodeDept[node][2]: preEdge 

    public void setPreEdge(Node node,Edge preEdge){ 

        nodeDept[node.getLabel()][2]=preEdge; 

    } 

 

    public Edge getPreEdge(Node node){ 

        return (Edge)nodeDept[node.getLabel()][2]; 

    } 

 

    //walkerDept[0]: myNode(Node) 

    public void setMyNode(Node node){ 

        walkerDept[0]=node; 

    } 

 

    public Node getMyNode(){ 

        return (Node)walkerDept[0]; 

    } 

 

    //walkerDept[1]: myEdge(Edge) 

    public void setMyEdge(Edge edge){ 

        walkerDept[1]=edge; 

    } 

 

    public Edge getMyEdge(){ 

        return (Edge)walkerDept[1]; 

    } 

 

    //walkerDept[2]: currNode(Node) 

    public void setCurrNode(Node node){ 

        walkerDept[2]=node; 
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    } 

 

    public Node getCurrNode(){ 

        return (Node)walkerDept[2]; 

    } 

 

    //walkerDept[3]: routeSet(Graph) 

    public void setRouteSet(Vector nodeSet,Vector edgeSet){ 

        walkerDept[3]=new Graph(nodeSet,edgeSet); 

    } 

 

    public Graph getRouteSet(){ 

        return (Graph)walkerDept[3]; 

    } 

 

    public void addNode(Node node){ 

        Graph routeSet=(Graph)walkerDept[3]; 

        Vector nodeSet=routeSet.getNodeSet(); 

        if(!nodeSet.contains(node)) 

            nodeSet.addElement(node); 

    } 

 

    public void addEdge(Edge edge){ 

        Graph routeSet=(Graph)walkerDept[3]; 

        Vector edgeSet=routeSet.getEdgeSet(); 

        if(!edgeSet.contains(edge)) 

            edgeSet.addElement(edge); 

    } 

 

} 
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package emnet.thread; 

 

import java.util.Vector; 

import emnet.graph.Node; 

import emnet.graph.Graph; 

import emnet.graph.Edge; 

import emnet.algorithm.GraphAlgorithm; 

 

public class MAManager extends Thread{ 

 

    int id; 

    Center center; 

 

    Node supply; 

    Graph territory,usableGraph; 

    Vector icp,helpers,usableGraphNodeSet,usableGraphEdgeSet,interfaceNodes; 

    int demandNum,helperNum; 

 

    //nodeDept 

    //nodeDept[helper][node][0]: currMACost 

    //nodeDept[helper][node][1]: preNode 

    //nodeDept[helper][node][2]: preEdge 

    Object[][][] nodeDept; 

 

    //maDept 

    //maDept[helper][0]: myNode(Node) 

    //maDept[helper][1]: myEdge(Edge) 

    //maDept[helper][2]: currNode(Node) 

    //maDept[helper][3]: routeSet(Graph) 

    Object[][] maDept; 

 

    //maCost 

    double minMACost; 

 

    boolean available,maFinish; 

 

    public MAManager(int id,Center center,Node supply){ 

        this.id=id; 

        this.center=center; 

        this.supply=supply; 
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        territory=center.getTerritory(supply); 

 

 

        if(territory.getDemandNodeSet().size()!=0){ 

            demandNum=territory.getDemandNodeSet().size(); 

 

            Vector territoryNodeSet=territory.getNodeSet(); 

 

            //icp init, usableGraph init 

            Graph graph=center.getGraph(); 

            Vector graphEdgeSet=graph.getEdgeSet(); 

 

            usableGraphNodeSet=new Vector(); 

            usableGraphEdgeSet=new Vector(); 

            icp=new Vector(); 

 

            Edge tempEdge; 

            Node n1,n2; 

            for(int i=0;i<graphEdgeSet.size();i++){ 

                tempEdge=(Edge)graphEdgeSet.elementAt(i); 

                n1=tempEdge.getN1(); 

                n2=tempEdge.getN2(); 

 

                if(!territoryNodeSet.contains(n1) && !territoryNodeSet.contains(n2)){ 

                    if(!usableGraphEdgeSet.contains(tempEdge)) 

                        usableGraphEdgeSet.addElement(tempEdge); 

                    if(!usableGraphNodeSet.contains(n1)) 

                        usableGraphNodeSet.addElement(n1); 

                    if(!usableGraphNodeSet.contains(n2)) 

                        usableGraphNodeSet.addElement(n2); 

                } 

 

                if(territoryNodeSet.contains(n1) && !territoryNodeSet.contains(n2)){ 

                    if(!usableGraphEdgeSet.contains(tempEdge)) 

                        usableGraphEdgeSet.addElement(tempEdge); 

                    if(!usableGraphNodeSet.contains(n1)) 

                        usableGraphNodeSet.addElement(n1); 

                    if(!usableGraphNodeSet.contains(n2)) 

                        usableGraphNodeSet.addElement(n2); 

                    if(!tempEdge.isDummyEdge()){ 

                        if(!icp.contains(n1)) 

                            icp.addElement(n1); 
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                    } 

                } 

 

                if(!territoryNodeSet.contains(n1) && territoryNodeSet.contains(n2)){ 

                    if(!usableGraphEdgeSet.contains(tempEdge)) 

                        usableGraphEdgeSet.addElement(tempEdge); 

                    if(!usableGraphNodeSet.contains(n1)) 

                        usableGraphNodeSet.addElement(n1); 

                    if(!usableGraphNodeSet.contains(n2)) 

                        usableGraphNodeSet.addElement(n2); 

                    if(!tempEdge.isDummyEdge()){ 

                        if(!icp.contains(n2)) 

                            icp.addElement(n2); 

                    } 

                } 

 

                //while territory is not convex 

                if(!territory.hasEdge(tempEdge) && !usableGraphEdgeSet.contains(tempEdge)){ 

                    usableGraphEdgeSet.addElement(tempEdge); 

                    if(!usableGraphNodeSet.contains(n1)) 

                        usableGraphNodeSet.addElement(n1); 

                    if(!usableGraphNodeSet.contains(n2)) 

                        usableGraphNodeSet.addElement(n2); 

                    if(!tempEdge.isDummyEdge()){ 

                        if(!icp.contains(n1)) 

                            icp.addElement(n1); 

                        if(!icp.contains(n2)) 

                            icp.addElement(n2); 

                    } 

                } 

            } 

            usableGraph=new Graph(usableGraphNodeSet,usableGraphEdgeSet); 

            interfaceNodes=GraphAlgorithm.getInterfaceNodes(territory,graph); 

            helperNum=icp.size(); 

            nodeDept=new Object[icp.size()][graph.getNodeSet().size()][3]; 

            for(int i=0;i<icp.size();i++){ 

                for(int j=0;j<graph.getNodeSet().size();j++){ 

                    nodeDept[i][j][0]=new Double(0.0); 

                } 

            } 

            maDept=new Object[icp.size()][4]; 

            minMACost=0.0; 
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            available=true; 

            maFinish=false; 

        }else{ 

            maFinish=true; 

        } 

 

    } 

 

    public void run(){ 

        center.takeKey(this); 

 

        //map init 

        Vector edgeSet=center.getGraph().getEdgeSet(); 

        Edge tempEdge; 

        for(int i=0;i<edgeSet.size();i++){ 

            tempEdge=(Edge)edgeSet.elementAt(i); 

            if(!tempEdge.isFastEdge() && !tempEdge.isDetourEdge() && !tempEdge.isMAEdge()) 

                tempEdge.setNeutralEdge(); 

        } 

 

        if(territory.getDemandNodeSet().size()!=0){ 

            helpers=new Vector(); 

            Node tempNode; 

            Helper tempHelper; 

            for(int i=0;i<icp.size();i++){ 

                tempNode=(Node)icp.elementAt(i); 

                tempHelper=new Helper(i,tempNode,this); 

                helpers.addElement(tempHelper); 

                tempHelper.start(); 

            } 

 

            while(!maFinish){ 

                //watching 

            } 

 

            //finding supply source finished: all situations simulated 

            //set ma edges on the shortest ma route 

            //find a subject helper 

            Helper bestHelper=(Helper)helpers.elementAt(0); 

            for(int j=1;j<helpers.size();j++){ 

                if(bestHelper.getMACost()==0.0) 

                    bestHelper=(Helper)helpers.elementAt(j); 
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            } 

 

            //find a competitor helper 

            Helper tempHelper1; 

            double minMACost=bestHelper.getMACost(); 

            for(int j=1;j<helpers.size();j++){ 

                tempHelper1=(Helper)helpers.elementAt(j); 

                if(tempHelper1.getMACost()!=0.0 && tempHelper1.getMACost()<minMACost){ 

                    minMACost=tempHelper1.getMACost(); 

                    bestHelper=tempHelper1; 

                } 

            } 

 

            updateMACenter(bestHelper); 

 

            Vector bestMAPathEdgeSet=bestHelper.getMAPath().getEdgeSet(); 

            if(bestMAPathEdgeSet.size()>0){ 

                Edge tempEdge1; 

                Node n1,n2; 

                Node source=bestHelper.getSource(); 

                Graph sourceTerritory=center.getTerritory(source); 

                for(int j=0;j<bestMAPathEdgeSet.size();j++){ 

                    tempEdge1=(Edge)bestMAPathEdgeSet.elementAt(j); 

                    tempEdge1.setMAEdge(); 

 

                    n1=tempEdge1.getN1(); 

                    n2=tempEdge1.getN2(); 

                    if(territory.hasNode(n1) && !territory.hasNode(n2)) 

                        n1.setMerge(); 

                    if(territory.hasNode(n2) && !territory.hasNode(n1)) 

                        n2.setMerge(); 

                    if(sourceTerritory.hasNode(n1) && !sourceTerritory.hasNode(n2)) 

                        n1.setAccess(); 

                    if(sourceTerritory.hasNode(n2) && !sourceTerritory.hasNode(n1)) 

                        n2.setAccess(); 

 

                    if(j==(bestMAPathEdgeSet.size()-1)){ 

                        if(territory.hasNode(n1) && sourceTerritory.hasNode(n1)){ 

                            n1.setAccess(); 

                            n1.setMerge(); 

                        } 

                        if(territory.hasNode(n2) && sourceTerritory.hasNode(n2)){ 
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                            n2.setAccess(); 

                            n2.setMerge(); 

                        } 

                    } 

                } 

            }else{ 

                bestHelper.getSource().setSource(); 

            } 

        }else{ 

            //demandNum=0 

 

            //mutualAssistantCenter 

            //maCenter[supply][2]: source(Node) 

            //maCenter[supply][3]: icpSet(Vector) 

            //maCenter[supply][4]: maPath(Graph) 

            //maCenter[supply][7]: maCost > source to supply 

            center.setSource(supply,supply); 

            center.setICPSet(supply,territory.getNodeSet()); 

            center.setMAPath(supply,territory); 

            center.setMACost(supply,0.0); 

        } 

 

        //ma manager finish its job! 

        center.updateMACondition(); 

        center.putKey(this); 

    } 

 

    public int getID(){ 

        return id; 

    } 

 

    public Center getCenter(){ 

        return center; 

    } 

 

    public Node getSupply(){ 

        return supply; 

    } 

 

    public Graph getGraph(){ 

        return center.getGraph(); 

    } 
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    public Graph getUsableGraph(){ 

        return usableGraph; 

    } 

 

    public Graph getTerritory(){ 

        return territory; 

    } 

 

    public int getDemanNum(){ 

        return demandNum; 

    } 

 

    public int getICP(){ 

        return interfaceNodes.size(); 

    } 

 

    public synchronized void updateMinMACost(double currMACost){ 

        if(minMACost==0.0 || currMACost<minMACost) 

            minMACost=currMACost; 

    } 

 

    public double getMinMACost(){ 

        return minMACost; 

    } 

 

    public void updateMAFinish(){ 

        helperNum--; 

        if(helperNum==0){ 

            maFinish=true; 

        } 

    } 

 

    public synchronized void takeKey(Helper helper){ 

        if(!maFinish){ 

            while(!available){ 

                try{ 

                    wait(1); 

                }catch(InterruptedException e){ 

                    //takeKey: cannot wait! 

                } 

            } 
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            available=false; 

        }else{ 

            available=false; 

            //helper took the key, but center is finished! 

        } 

    } 

 

    public synchronized void putKey(Helper helper){ 

        if(!maFinish){ 

            while(available){ 

                try{ 

                    //helper is waiting to put... 

                    wait(1); 

                }catch(InterruptedException e){ 

                    //putKey: cannot wait! 

                } 

            } 

            //helper put the key! 

            available=true; 

        }else{ 

            //helper put the key, maFinish=true! 

            available=true; 

        } 

    } 

 

    //nodeDept 

    //nodeDept[helper][node][0]: currMACost 

    public void setCurrMACost(Helper helper,Node node,double maCost){ 

        nodeDept[helper.getID()][node.getLabel()][0]=new Double(maCost); 

    } 

 

    public double getCurrMACost(Helper helper,Node node){ 

        Double maCost=(Double)nodeDept[helper.getID()][node.getLabel()][0]; 

        return maCost.doubleValue(); 

    } 

 

    //nodeDept[helper][node][1]: preNode 

    public void setPreNode(Helper helper,Node node,Node preNode){ 

        nodeDept[helper.getID()][node.getLabel()][1]=preNode; 

    } 

 

    public Node getPreNode(Helper helper,Node node){ 
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        return (Node)nodeDept[helper.getID()][node.getLabel()][1]; 

    } 

 

    //nodeDept[helper][node][2]: preEdge 

    public void setPreEdge(Helper helper,Node node,Edge preEdge){ 

        nodeDept[helper.getID()][node.getLabel()][2]=preEdge; 

    } 

 

    public Edge getPreEdge(Helper helper,Node node){ 

        return (Edge)nodeDept[helper.getID()][node.getLabel()][2]; 

    } 

 

    //maDept 

    //maDept[helper][0]: myNode(Node) 

    public void setMyNode(Helper helper,Node myNode){ 

        maDept[helper.getID()][0]=myNode; 

    } 

 

    public Node getMyNode(Helper helper){ 

        return (Node)maDept[helper.getID()][0]; 

    } 

 

    //maDept[helper][1]: myEdge(Edge) 

    public void setMyEdge(Helper helper,Edge myEdge){ 

        maDept[helper.getID()][1]=myEdge; 

    } 

 

    public Edge getMyEdge(Helper helper){ 

        return (Edge)maDept[helper.getID()][1]; 

    } 

 

    //maDept[helper][2]: currNode(Node) 

    public void setCurrNode(Helper helper,Node currNode){ 

        maDept[helper.getID()][2]=currNode; 

    } 

 

    public Node getCurrNode(Helper helper){ 

        return (Node)maDept[helper.getID()][2]; 

    } 

 

    //maDept[helper][3]: routeSet(Graph) 

    public void setRouteSet(Helper helper,Vector routeNodeSet,Vector routeEdgeSet){ 
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        maDept[helper.getID()][3]=new Graph(routeNodeSet,routeEdgeSet); 

    } 

 

    public Graph getRouteSet(Helper helper){ 

        return (Graph)maDept[helper.getID()][3]; 

    } 

 

    public Vector getRouteEdgeSet(Helper helper){ 

        Graph routeSet=getRouteSet(helper); 

        return routeSet.getEdgeSet(); 

    } 

 

    public synchronized void addEdge(Helper helper,Edge edge){ 

        Graph routeSet=this.getRouteSet(helper); 

        Vector routeNodeSet=routeSet.getNodeSet(); 

        Vector routeEdgeSet=routeSet.getEdgeSet(); 

        if(!routeEdgeSet.contains(edge)) 

            routeEdgeSet.addElement(edge); 

        this.setRouteSet(helper,routeNodeSet,routeEdgeSet); 

    } 

 

    public synchronized void addNode(Helper helper,Node node){ 

        Graph routeSet=this.getRouteSet(helper); 

        Vector routeNodeSet=routeSet.getNodeSet(); 

        Vector routeEdgeSet=routeSet.getEdgeSet(); 

        if(!routeNodeSet.contains(node)) 

            routeNodeSet.addElement(node); 

        this.setRouteSet(helper,routeNodeSet,routeEdgeSet); 

    } 

 

    public synchronized void updateMACenter(Helper helper){ 

        //mutualAssistantCenter 

        //maCenter[supply][2]: source(Node) 

        //maCenter[supply][3]: icpSet(Vector) 

        //maCenter[supply][4]: maPath(Graph) 

        //maCenter[supply][7]: maCost > source to supply 

 

        MAManager maMr=helper.getMAManger(); 

        Center center=maMr.getCenter(); 

        Node supply=maMr.getSupply(); 

 

        center.setSource(supply,helper.getSource()); 



 

195 

MAManager.java 

        center.setICPSet(supply,interfaceNodes); 

        center.setMAPath(supply,helper.getMAPath()); 

        center.setMACost(supply,helper.getMACost()); 

    } 

} 
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Roamer.java 

package emnet.thread; 

 

import emnet.graph.Node; 

import emnet.graph.Edge; 

import java.util.Vector; 

import emnet.algorithm.GraphAlgorithm; 

import emnet.graph.Graph; 

 

public class Roamer extends Thread{ 

    Node supply; 

    int id; 

    Center center; 

    boolean roamerFinish; 

 

    Node currNode,preNode,myNode; 

    Edge preEdge,myEdge; 

    Graph graph,routeSet; 

    Vector routeNodeSet,routeEdgeSet; 

 

    public Roamer(int id,Node supply,Center center){ 

        super(""+id); 

        this.id=id; 

        this.supply=supply; 

        this.center=center; 

        roamerFinish=false; 

        graph=center.getGraph(); 

        int nodeNum=graph.getNodeSet().size(); 

        int edgeNum=graph.getEdgeSet().size(); 

 

        //roamerCenter init 

        //roamerCenter[roamer][0]: myNode(Node) 

        //roamerCenter[roamer][1]: myEdge(Edge) 

        //roamerCenter[roamer][2]: currNode(Node) 

        //roamerCenter[roamer][3]: routeSet(Graph) 

 

        Node dummyNode=this.center.getDummyNode(); 

        dummyNode.setDummy(); 

        Edge dummyEdge=new Edge(edgeNum,supply,dummyNode,0.0); 

        dummyEdge.setDummyEdge(); 

 

        this.graph.addNode(dummyNode); 
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        this.graph.addEdge(dummyEdge); 

 

        Vector routeNodeSet=new Vector(); 

        routeNodeSet.addElement(dummyNode); 

        Vector routeEdgeSet=new Vector(); 

        routeEdgeSet.addElement(dummyEdge); 

        this.center.setRouteSet(this,routeNodeSet,routeEdgeSet); 

 

        this.center.setMyNode(this,dummyNode); 

        this.center.setMyEdge(this,dummyEdge); 

        this.center.setCurrNode(this,supply); 

 

        //nodeCenter init 

        //nodeCenter[node][0]: occupy(Boolean) 

        //nodeCenter[node][1]: distance(Double) 

        //nodeCenter[node][2]: preNode(Node) 

        //nodeCenter[node][3]: preEdge(Edge) 

        //nodeCenter[node][4]: visitorSequence(Vector) 

 

        this.center.setDistance(supply,0.0); 

        this.center.setPreNode(supply,dummyNode); 

        this.center.setPreEdge(supply,dummyEdge); 

        this.center.addViditor(supply,this); 

    } 

 

    public int getID(){ 

        return this.id; 

    } 

 

    public Node getSupply(){ 

        return this.supply; 

    } 

 

    public Center getCenter(){ 

        return this.center; 

    } 

 

    public void run(){ 

 

        roaming: 

        while(!center.isFinished() && !roamerFinish){ 

            //take the key to have the right to run 
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            center.takeKey(this); 

 

            if(center.isFinished()){ 

                center.putKey(this); 

                break roaming; 

            } 

 

            //test currNode is visited or not 

            if(!center.getCurrNode(this).isVisited()){ 

                //currNode is not visited 

                center.getCurrNode(this).visit(); 

                updateVisitorSequence(0,this,center.getCurrNode(this)); 

 

                //update myEdge, myNode, currNode, preNode 

                //update currNode distance by myNode & myEdge 

                //update routeSet (myNode, myEdge) 

                //set fast edge 

                center.addNode(this,center.getCurrNode(this)); 

                center.addEdge(this,center.getMyEdge(this)); 

 

                center.setPreNode(center.getCurrNode(this),center.getMyNode(this)); 

                center.setPreEdge(center.getCurrNode(this),center.getMyEdge(this)); 

                double distance=center.getDistance(center.getMyNode(this))+center.getMyEdge(this).getWeight(); 

                center.setDistance(center.getCurrNode(this),distance); 

                center.getMyEdge(this).setTestEdge(); 

                center.setMyNode(this,center.getCurrNode(this)); 

 

                dijkstra(); 

            }else{ 

                //currNode is visited 

                //Comparison: change to new location to find myEdge to find currNode, and update to myNode 

                Vector visitorSequence=center.getVisitorSequence(center.getCurrNode(this)); 

                if(!visitorSequence.contains(this)){ 

                    //comparison 

                    double currDistance=center.getDistance(center.getCurrNode(this)); 

                    double myDistance=center.getDistance(center.getMyNode(this)); 

                    if(myDistance+center.getMyEdge(this).getWeight()<currDistance){ 

                        //closer! subtree finding! 

                        //1. find out who the last roamer is 

                        Roamer lastRoamer=center.lastVisitor(center.getCurrNode(this)); 

 

                        //2. update visitor sequence [finish condition] 
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                        updateVisitorSequence(1,this,center.getCurrNode(this)); 

 

                        //3. find out where the last roamer is now 

                        Node lastRoamerLocation=center.getCurrNode(lastRoamer); 

 

                        //4. remove last roamer's subtree 

                        Graph lastRoamerRouteSet=center.getRouteSet(lastRoamer); 

                        Graph 

subtree=GraphAlgorithm.getSubtreeWithCertainNode(lastRoamerRouteSet,center.getCurrNode(this),center.getPreEd

ge(center.getCurrNode(this))); 

 

                        center.removeSubtree(lastRoamer,subtree); 

                        center.removeEdge(lastRoamer,center.getPreEdge(center.getCurrNode(this))); 

                        center.getPreEdge(center.getCurrNode(this)).setNeutralEdge(); 

 

                        //5. add myEdge and the subtree to current roamer's RouteSet 

                        center.setPreEdge(center.getCurrNode(this),center.getMyEdge(this)); 

                        center.setPreNode(center.getCurrNode(this),center.getMyNode(this)); 

                        center.addSubtree(this,subtree); 

                        center.addEdge(this,center.getMyEdge(this)); 

                        center.getMyEdge(this).setTestEdge(); 

 

                        //6. relocate last roamer's place to preNode to prevent missing, relocate current roamer 

using dijkstra 

                        center.setCurrNode(lastRoamer,center.getPreNode(center.getCurrNode(this))); 

 

                        //7. update the distance in the subtree 

                        Vector subtreeNodeSet=subtree.getNodeSet(); 

                        Node tempNode; 

                        double saving; 

                        for(int i=0;i<subtreeNodeSet.size();i++){ 

                            tempNode=(Node)subtreeNodeSet.elementAt(i); 

                            

saving=center.getDistance(center.getCurrNode(this))-(center.getDistance(center.getMyNode(this))+center.getMyEdg

e(this).getWeight()); 

                            center.setDistance(tempNode,center.getDistance(tempNode)-saving); 

                        } 

 

                        dijkstra(); 

                    }else{ 

                        //not closer, remove myEdge from routeEdgeSet, find new myEdge 

                        //update visitor sequence: downstream subree 
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                        updateVisitorSequence(1,this,center.getCurrNode(this)); 

                        center.removeEdge(this,center.getMyEdge(this)); 

 

                        dijkstra(); 

                    } 

                }else{ 

                    //I visited this node before 

                    dijkstra(); 

                } 

            } 

            center.putKey(this); 

 

            try{ 

                sleep(1); 

            }catch(InterruptedException ex){ 

                //roamer cannot sleep 

            } 

 

        } 

        //roamer finished his job! 

    } 

 

    void dijkstra(){ 

        //find out the best incident edge 

        //define new myEdge & currNode 

        Graph tempRouteSet=(Graph)center.getRouteSet(this); 

        Vector tempRouteNodeSet=(Vector)tempRouteSet.getNodeSet(); 

 

        Vector incidentEdgeSet=GraphAlgorithm.getIncidentEdgeSet(this,tempRouteNodeSet); 

        Vector exclusiveIncidentEdgeSet=new Vector(); 

        for(int i=0;i<incidentEdgeSet.size();i++){ 

            if(!center.getRouteEdgeSet(this).contains(incidentEdgeSet.elementAt(i))){ 

                exclusiveIncidentEdgeSet.addElement(incidentEdgeSet.elementAt(i)); 

            } 

        } 

 

        Edge tempEdge; 

        Node n1,n2; 

        if(exclusiveIncidentEdgeSet.size()>1){ 

            tempEdge=(Edge)exclusiveIncidentEdgeSet.elementAt(0); 

            center.setMyEdge(this,tempEdge); 

            n1=tempEdge.getN1(); 
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            n2=tempEdge.getN2(); 

            if(tempRouteNodeSet.contains(n1) && !tempRouteNodeSet.contains(n2)){ 

                center.setMyNode(this,n1); 

                center.setCurrNode(this,n2); 

            }else if(tempRouteNodeSet.contains(n2) && !tempRouteNodeSet.contains(n1)){ 

                center.setMyNode(this,n2); 

                center.setCurrNode(this,n1); 

            }else{ 

                //dijkstra error 1: not incident edge! check GraphAlgorithm.getIncidentEdgeSet() 

            } 

 

            double min=center.getDistance(center.getMyNode(this))+center.getMyEdge(this).getWeight(); 

            for(int i=1;i<exclusiveIncidentEdgeSet.size();i++){ 

                tempEdge=(Edge)exclusiveIncidentEdgeSet.elementAt(i); 

                n1=tempEdge.getN1(); 

                n2=tempEdge.getN2(); 

                if(tempRouteNodeSet.contains(n1) && !tempRouteNodeSet.contains(n2)){ 

                    if(center.getDistance(n1)+tempEdge.getWeight()<min){ 

                        min=center.getDistance(n1)+tempEdge.getWeight(); 

                        center.setMyEdge(this,tempEdge); 

                        center.setMyNode(this,n1); 

                        center.setCurrNode(this,n2); 

                    } 

                }else if(tempRouteNodeSet.contains(n2) && !tempRouteNodeSet.contains(n1)){ 

                    if(center.getDistance(n2)+tempEdge.getWeight()<min){ 

                        min=center.getDistance(n2)+tempEdge.getWeight(); 

                        center.setMyEdge(this,tempEdge); 

                        center.setMyNode(this,n2); 

                        center.setCurrNode(this,n1); 

                    } 

                }else{ 

                    //dijkstra error 2: incident edge error! 

                } 

            } 

        }else if(exclusiveIncidentEdgeSet.size()==1){ 

            tempEdge=(Edge)exclusiveIncidentEdgeSet.elementAt(0); 

            center.setMyEdge(this,tempEdge); 

            n1=tempEdge.getN1(); 

            n2=tempEdge.getN2(); 

            if(tempRouteNodeSet.contains(n1) && !tempRouteNodeSet.contains(n2)){ 

                center.setMyNode(this,n1); 

                center.setCurrNode(this,n2); 



 

202 

Roamer.java 

            }else if(tempRouteNodeSet.contains(n2) && !tempRouteNodeSet.contains(n1)){ 

                center.setMyNode(this,n2); 

                center.setCurrNode(this,n1); 

            }else{ 

                //dijkstra error 3: not incident edge! check GraphAlgorithm.getIncidentEdgeSet() 

            } 

        }else{ 

            roamerFinish=true; 

            //renders all nodes visited 

            Vector nodeSet=graph.getNodeSet(); 

            Node tempNode; 

            for(int i=0;i<nodeSet.size();i++){ 

                tempNode=(Node)nodeSet.elementAt(i); 

                center.addViditor(tempNode,this); 

            } 

        } 

    } 

 

    void updateVisitorSequence(int sort,Roamer roamer,Node currNode){ 

        //roamer to be updated.... 

        //selection choice: 

        //case 0: currNode is never visited 

        //case 1: currNode is visited 

 

        Vector myVisitorSequence=center.getVisitorSequence(center.getMyNode(this)); 

        Graph routeSet,subtree; 

        Edge preEdge; 

        Vector subtreeNodeSet,tempSubtreeNodeVisitorSequence; 

        Node tempSubtreeNode,tempPreNode; 

        Roamer lastRoamer,tempRoamer; 

 

        switch(sort){ 

            case 0: 

                //case 0: currNode is never visited 

                center.addViditor(currNode,roamer); 

                break; 

 

            case 1: 

                //case 1: currNode is visited 

                //add visiotrs to downstream: subtree 

                //subtree of currNode 

                lastRoamer=center.lastVisitor(currNode); 
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                routeSet=center.getRouteSet(lastRoamer); 

                preEdge=center.getPreEdge(currNode); 

                tempPreNode=center.getPreNode(currNode); 

                subtree=GraphAlgorithm.getSubtreeWithCertainNode(routeSet,currNode,preEdge); 

                subtreeNodeSet=subtree.getNodeSet(); 

 

                for(int i=0;i<myVisitorSequence.size();i++){ 

                    tempRoamer=(Roamer)myVisitorSequence.elementAt(i); 

                    for(int j=0;j<subtreeNodeSet.size();j++){ 

                        tempSubtreeNode=(Node)subtreeNodeSet.elementAt(j); 

                        tempSubtreeNodeVisitorSequence=center.getVisitorSequence(tempSubtreeNode); 

                        if(!tempSubtreeNodeVisitorSequence.contains(tempRoamer)) 

                            center.addViditor(tempSubtreeNode,tempRoamer); 

                    } 

                } 

                break; 

        } 

        //update visitorSequence finish! 

    } 

} 
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package emnet.thread; 

 

import emnet.graph.Graph; 

import emnet.graph.Node; 

import emnet.graph.Edge; 

import java.util.Vector; 

 

public class Walker extends Thread{ 

    double territoryMergeCost; 

 

    Helper helper; 

    MAManager maMr; 

    Graph territory; 

    int demandNum; 

 

    boolean finish; 

 

    public Walker(Helper helper,Node start){ 

        territoryMergeCost=0.0; 

 

        this.helper=helper; 

        maMr=helper.getMAManger(); 

        territory=maMr.getTerritory(); 

        demandNum=territory.getDemandNodeNum(); 

 

        int edgeNum=maMr.getCenter().getGraph().getEdgeSet().size(); 

        Node dummyNode=maMr.getCenter().getDummyNode(); 

        dummyNode.setDummy(); 

        Edge dummyEdge=new Edge(edgeNum,start,dummyNode,0.0); 

        dummyEdge.setDummyEdge(); 

 

        maMr.getGraph().addNode(dummyNode); 

        maMr.getGraph().addEdge(dummyEdge); 

 

        //helper init, set to maMr 

        Vector routeNodeSet=new Vector(); 

        routeNodeSet.addElement(dummyNode); 

        Vector routeEdgeSet=new Vector(); 

        routeEdgeSet.addElement(dummyEdge); 

 

        helper.setRouteSet(routeNodeSet,routeEdgeSet); 
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        helper.setMyNode(dummyNode); 

        helper.setMyEdge(dummyEdge); 

        helper.setCurrNode(start); 

 

        helper.setCurrCost(helper.getMyNode(),0.0); 

 

        helper.setPreNode(start,dummyNode); 

        helper.setPreEdge(start,dummyEdge); 

 

        finish=false; 

    } 

 

    public double getTerritoryMergeCost(){ 

        return territoryMergeCost; 

    } 

 

    public void run(){ 

 

        walking: 

        while(!finish){ 

            if(helper.getCurrNode().isDemand()){ 

 

                updateFinish(); 

 

                helper.addNode(helper.getCurrNode()); 

                helper.addEdge(helper.getMyEdge()); 

 

                helper.setPreNode(helper.getCurrNode(),helper.getMyNode()); 

                helper.setPreEdge(helper.getCurrNode(),helper.getMyEdge()); 

 

                double currCost=helper.getCurrCost(helper.getMyNode())+helper.getMyEdge().getWeight(); 

                helper.setCurrCost(helper.getCurrNode(),currCost); 

 

                territoryMergeCost=territoryMergeCost+currCost; 

 

                if(!finish){ 

                    helper.setMyNode(helper.getCurrNode()); 

                    dijkstra(); 

                }else{ 

                    break walking; 

                } 

            }else{ 
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                helper.addNode(helper.getCurrNode()); 

                helper.addEdge(helper.getMyEdge()); 

 

                helper.setPreNode(helper.getCurrNode(),helper.getMyNode()); 

                helper.setPreEdge(helper.getCurrNode(),helper.getMyEdge()); 

 

                double currCost=helper.getCurrCost(helper.getMyNode())+helper.getMyEdge().getWeight(); 

                helper.setCurrCost(helper.getCurrNode(),currCost); 

 

                helper.setMyNode(helper.getCurrNode()); 

                dijkstra(); 

            } 

        } 

    } 

 

    void updateFinish(){ 

        demandNum--; 

 

        if(demandNum==0) 

            finish=true; 

    } 

 

    public boolean isFinish(){ 

        return finish; 

    } 

 

    void dijkstra(){ 

        Graph tempRouteSet=(Graph)helper.getRouteSet(); 

        Vector tempRouteNodeSet=(Vector)tempRouteSet.getNodeSet(); 

        Vector incidentEdgeSet=getIncidentEdgeSet(territory,tempRouteNodeSet); 

        Vector exclusiveIncidentEdgeSet=new Vector(); 

        for(int i=0;i<incidentEdgeSet.size();i++){ 

            if(!helper.getRouteSet().hasEdge((Edge)incidentEdgeSet.elementAt(i))){ 

                exclusiveIncidentEdgeSet.addElement(incidentEdgeSet.elementAt(i)); 

            } 

        } 

 

        Edge tempEdge; 

        Node n1,n2; 

        if(exclusiveIncidentEdgeSet.size()>1){ 

            tempEdge=(Edge)exclusiveIncidentEdgeSet.elementAt(0); 

            helper.setMyEdge(tempEdge); 
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            n1=tempEdge.getN1(); 

            n2=tempEdge.getN2(); 

            if(tempRouteNodeSet.contains(n1) && !tempRouteNodeSet.contains(n2)){ 

                helper.setMyNode(n1); 

                helper.setCurrNode(n2); 

            }else if(tempRouteNodeSet.contains(n2) && !tempRouteNodeSet.contains(n1)){ 

                helper.setMyNode(n2); 

                helper.setCurrNode(n1); 

            } 

            double min=helper.getCurrCost(helper.getMyNode())+helper.getMyEdge().getWeight(); 

            for(int i=1;i<exclusiveIncidentEdgeSet.size();i++){ 

                tempEdge=(Edge)exclusiveIncidentEdgeSet.elementAt(i); 

                n1=tempEdge.getN1(); 

                n2=tempEdge.getN2(); 

                if(tempRouteNodeSet.contains(n1) && !tempRouteNodeSet.contains(n2)){ 

                    if(helper.getCurrCost(n1)+tempEdge.getWeight()<min){ 

                        min=helper.getCurrCost(n1)+tempEdge.getWeight(); 

                        helper.setMyEdge(tempEdge); 

                        helper.setMyNode(n1); 

                        helper.setCurrNode(n2); 

                    } 

                }else if(tempRouteNodeSet.contains(n2) && !tempRouteNodeSet.contains(n1)){ 

                    if(helper.getCurrCost(n2)+tempEdge.getWeight()<min){ 

                        min=helper.getCurrCost(n2)+tempEdge.getWeight(); 

                        helper.setMyEdge(tempEdge); 

                        helper.setMyNode(n2); 

                        helper.setCurrNode(n1); 

                    } 

                } 

            } 

        }else if(exclusiveIncidentEdgeSet.size()==1){ 

            tempEdge=(Edge)exclusiveIncidentEdgeSet.elementAt(0); 

            helper.setMyEdge(tempEdge); 

            n1=tempEdge.getN1(); 

            n2=tempEdge.getN2(); 

            if(tempRouteNodeSet.contains(n1) && !tempRouteNodeSet.contains(n2)){ 

                helper.setMyNode(n1); 

                helper.setCurrNode(n2); 

            }else if(tempRouteNodeSet.contains(n2) && !tempRouteNodeSet.contains(n1)){ 

                helper.setMyNode(n2); 

                helper.setCurrNode(n1); 

            } 
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        }else{ 

            finish=true; 

            //renders all nodes visited 

        } 

    } 

 

    Vector getIncidentEdgeSet(Graph usableGraph,Vector routeNodeSet){ 

        Edge myEdge=helper.getMyEdge(); 

 

        Vector incidentEdges=new Vector(); 

        Edge tempEdge; 

        Node n1,n2; 

 

        for(int i=0;i<routeNodeSet.size();i++){ 

            Vector tempEdgeSet=usableGraph.incidentEdgeSet((Node)routeNodeSet.elementAt(i)); 

            for(int j=0;j<tempEdgeSet.size();j++){ 

                tempEdge=(Edge)tempEdgeSet.elementAt(j); 

                if(!incidentEdges.contains(tempEdge)) 

                    incidentEdges.addElement(tempEdge); 

 

                n1=tempEdge.getN1(); 

                n2=tempEdge.getN2(); 

                if(routeNodeSet.contains(n1) && routeNodeSet.contains(n2)) 

                    incidentEdges.removeElement(tempEdge); 

                if(n1==maMr.getCenter().getDummyNode() || n2==maMr.getCenter().getDummyNode()) 

                    incidentEdges.removeElement(tempEdge); 

            } 

        } 

        if(incidentEdges.contains(myEdge)) 

            incidentEdges.removeElement(myEdge); 

 

        return incidentEdges; 

    } 

} 
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App.java 

package emnet; 

 

import java.awt.Toolkit; 

import javax.swing.SwingUtilities; 

import javax.swing.UIManager; 

import java.awt.Dimension; 

 

public class App { 

  boolean packFrame = false; 

 

  /** 

   * Construct and show the application. 

   */ 

  public App() { 

    Frame frame = new Frame(); 

    // Validate frames that have preset sizes 

    // Pack frames that have useful preferred size info, e.g. from their layout 

    if (packFrame) { 

      frame.pack(); 

    } 

    else { 

      frame.validate(); 

    } 

 

    // Center the window 

    Dimension screenSize = Toolkit.getDefaultToolkit().getScreenSize(); 

    Dimension frameSize = frame.getSize(); 

    if (frameSize.height > screenSize.height) { 

      frameSize.height = screenSize.height; 

    } 

    if (frameSize.width > screenSize.width) { 

      frameSize.width = screenSize.width; 

    } 

    frame.setLocation( (screenSize.width - frameSize.width) / 2, 

                      (screenSize.height - frameSize.height) / 2); 

    frame.setVisible(true); 

  } 

 

  /** 

   * Application entry point. 

   * 
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   * @param args String[] 

   */ 

  public static void main(String[] args) { 

    SwingUtilities.invokeLater(new Runnable() { 

      public void run() { 

        try { 

          UIManager.setLookAndFeel(UIManager.getSystemLookAndFeelClassName()); 

        } 

        catch (Exception exception) { 

          exception.printStackTrace(); 

        } 

 

        //read in node & edge data 

        //add to table 

        //picture the map 

        //frame.add table & map 

        //set supply & demand nodes 

        //response in map 

        //after press "start" button, new ant & antCommunicationCenter 

        //show fast routes, detour routes, mutual assistant routes 

        //show evaluation indices 

        //input expert acceptable time 

        //illustrate radar digram and standardized evaluation value 

 

        new App(); 

      } 

    }); 

  } 

} 
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Frame_AboutBox.java 

package emnet; 

 

import java.awt.*; 

import java.awt.event.*; 

import javax.swing.*; 

 

public class Frame_AboutBox 

    extends JDialog implements ActionListener { 

  JPanel panel1 = new JPanel(); 

  JPanel panel2 = new JPanel(); 

  JPanel insetsPanel1 = new JPanel(); 

  JPanel insetsPanel2 = new JPanel(); 

  JPanel insetsPanel3 = new JPanel(); 

  JButton button1 = new JButton(); 

  JLabel imageLabel = new JLabel(); 

  JLabel label1 = new JLabel(); 

  JLabel label2 = new JLabel(); 

  JLabel label3 = new JLabel(); 

  JLabel label4 = new JLabel(); 

  ImageIcon image1 = new ImageIcon(); 

  BorderLayout borderLayout1 = new BorderLayout(); 

  BorderLayout borderLayout2 = new BorderLayout(); 

  FlowLayout flowLayout1 = new FlowLayout(); 

  GridLayout gridLayout1 = new GridLayout(); 

  String product = "Earthquake Mitigation Network Design"; 

  String version = "version 1.0, percy.itt.nctu.tw"; 

  String copyright = "Copyright (c) 2006"; 

  String comments = "Decision Making Tool for Network Design"; 

 

  public Frame_AboutBox(Frame parent) { 

    super(parent); 

    try { 

      setDefaultCloseOperation(DISPOSE_ON_CLOSE); 

      jbInit(); 

    } 

    catch (Exception exception) { 

      exception.printStackTrace(); 

    } 

  } 

 

  public Frame_AboutBox() { 
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    this(null); 

  } 

 

  /** 

   * Component initialization. 

   * 

   * @throws java.lang.Exception 

   */ 

  private void jbInit() throws Exception { 

    image1 = new ImageIcon(emnet.Frame.class.getResource("about.png")); 

    imageLabel.setIcon(image1); 

    setTitle("About"); 

    panel1.setLayout(borderLayout1); 

    panel2.setLayout(borderLayout2); 

    insetsPanel1.setLayout(flowLayout1); 

    insetsPanel2.setLayout(flowLayout1); 

    insetsPanel2.setBorder(BorderFactory.createEmptyBorder(10, 10, 10, 10)); 

    gridLayout1.setRows(4); 

    gridLayout1.setColumns(1); 

    label1.setText(product); 

    label2.setText(version); 

    label3.setText(copyright); 

    label4.setText(comments); 

    insetsPanel3.setLayout(gridLayout1); 

    insetsPanel3.setBorder(BorderFactory.createEmptyBorder(10, 60, 10, 10)); 

    button1.setText("OK"); 

    button1.addActionListener(this); 

    insetsPanel2.add(imageLabel, null); 

    panel2.add(insetsPanel2, BorderLayout.WEST); 

    getContentPane().add(panel1, null); 

    insetsPanel3.add(label1, null); 

    insetsPanel3.add(label2, null); 

    insetsPanel3.add(label3, null); 

    insetsPanel3.add(label4, null); 

    panel2.add(insetsPanel3, BorderLayout.CENTER); 

    insetsPanel1.add(button1, null); 

    panel1.add(insetsPanel1, BorderLayout.SOUTH); 

    panel1.add(panel2, BorderLayout.NORTH); 

    setResizable(true); 

  } 

 

  /** 
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   * Close the dialog on a button event. 

   * 

   * @param actionEvent ActionEvent 

   */ 

  public void actionPerformed(ActionEvent actionEvent) { 

    if (actionEvent.getSource() == button1) { 

      dispose(); 

    } 

  } 

} 
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package emnet; 

 

import javax.swing.JDialog; 

import java.awt.GridLayout; 

import javax.swing.JLabel; 

import java.awt.Dimension; 

 

public class Frame_TermBox extends JDialog{ 

 

    JLabel 

        label_eva=new JLabel("  E: Overall Evaluation"), 

        label_ld=new JLabel("  LD: Longest Detour Cost"), 

        label_amac=new JLabel("  AMAC: Average Mutal Assistance Cost"), 

        label_nc=new JLabel("  NC: Network Cost"), 

        label_atc=new JLabel("  ATC: Average Travel Cost"), 

        label_mtc=new JLabel("  MTC: Maximum Travel Cost"); 

 

    public Frame_TermBox(Frame parent){ 

        super(parent); 

        try { 

          setDefaultCloseOperation(DISPOSE_ON_CLOSE); 

          jbInit(); 

        } 

        catch (Exception exception) { 

          exception.printStackTrace(); 

        } 

    } 

 

    void jbInit(){ 

        Dimension d=new Dimension(250,25); 

        this.setTitle("Terminology"); 

        this.getContentPane().setLayout(new GridLayout(6,1,5,5)); 

        label_eva.setPreferredSize(d); 

        label_ld.setPreferredSize(d); 

        label_amac.setPreferredSize(d); 

        label_nc.setPreferredSize(d); 

        label_atc.setPreferredSize(d); 

        label_mtc.setPreferredSize(d); 

 

        this.getContentPane().add(label_atc); 

        this.getContentPane().add(label_mtc); 
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        this.getContentPane().add(label_ld); 

        this.getContentPane().add(label_amac); 

        this.getContentPane().add(label_nc); 

        this.getContentPane().add(label_eva); 

 

        this.setResizable(false); 

    } 

} 
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package emnet; 

 

import java.awt.*; 

import java.awt.event.*; 

import javax.swing.JFrame; 

import javax.swing.JPanel; 

import javax.swing.JMenuBar; 

import javax.swing.JMenu; 

import javax.swing.JMenuItem; 

import javax.swing.JLabel; 

 

import emnet.gui.Map; 

import emnet.graph.Graph; 

import java.util.Vector; 

import java.io.IOException; 

import emnet.io.IOGraph; 

import javax.swing.JTextField; 

import javax.swing.JButton; 

import javax.swing.SwingConstants; 

import javax.swing.JTabbedPane; 

import javax.swing.JRadioButton; 

import javax.swing.ButtonGroup; 

import javax.swing.JSplitPane; 

import javax.swing.table.DefaultTableModel; 

import javax.swing.JTable; 

import javax.swing.JScrollPane; 

import emnet.graph.Node; 

import emnet.graph.Edge; 

import emnet.thread.Center; 

import java.text.DecimalFormat; 

 

public class Frame 

    extends JFrame { 

  JPanel contentPane; 

  BorderLayout borderLayout1 = new BorderLayout(); 

  JMenuBar jMenuBar1 = new JMenuBar(); 

  JMenu jMenuFile = new JMenu(); 

  JMenuItem jMenuFileExit = new JMenuItem(); 

  JMenu jMenuHelp = new JMenu(); 

  JMenuItem jMenuHelpAbout = new JMenuItem(); 

  JMenuItem jMenuHelpTerm=new JMenuItem(); 
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  JPanel panel_gridbag=new JPanel(new GridLayout(4,1,2,2)); 

  JPanel panel_setting=new JPanel(new BorderLayout()); 

 

  JLabel label_dir=new JLabel("common dir: "); 

  JTextField txt_dir=new JTextField(); 

  JLabel label_node=new JLabel("node file: "); 

  JTextField txt_node=new JTextField(); 

  JLabel label_edge=new JLabel("edge file: "); 

  JTextField txt_edge=new JTextField(); 

  JLabel label_dataIn=new JLabel("2econ?"); 

 

  DefaultTableModel nodeTableModel,edgeTableModel; 

  JTable 

      nodeTable=new JTable(nodeTableModel), 

      edgeTable=new JTable(edgeTableModel); 

 

  JLabel seperator=new JLabel("[ no graph ]",SwingConstants.CENTER); 

 

  JRadioButton radio_supply=new JRadioButton("supply"); 

  JRadioButton radio_demand=new JRadioButton("demand"); 

  JRadioButton radio_neutral=new JRadioButton("neutral"); 

  ButtonGroup radioGroup=new ButtonGroup(); 

  JButton button_run=new JButton("run"); 

 

  JTextField 

      txt_atc_low=new JTextField(),txt_mtc_low=new JTextField(), 

      txt_ld_low=new JTextField(),txt_amac_low=new JTextField(), 

      txt_nc_low=new JTextField(), 

 

      txt_atc_up=new JTextField(),txt_mtc_up=new JTextField(), 

      txt_ld_up=new JTextField(),txt_amac_up=new JTextField(), 

      txt_nc_up=new JTextField(); 

 

  JLabel 

      atc_output=new JLabel("0.0     "),mtc_output=new JLabel("0.0     "), 

      ld_output=new JLabel("0.0     "),amac_output=new JLabel("0.0     "), 

      nc_output=new JLabel("0.0     "),e_output=new JLabel("[ pls fill \"expert\" tab ]  "); 

 

  JLabel save_dir=new JLabel(); 

 

  Map map=new Map(); 
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  Graph graph; 

  Center center; 

  DecimalFormat myFormatter=new DecimalFormat("###,###.##"); 

 

  public Frame() { 

    try { 

      setDefaultCloseOperation(EXIT_ON_CLOSE); 

      jbInit(); 

    } 

    catch (Exception exception) { 

      exception.printStackTrace(); 

    } 

  } 

 

  //Component initialization 

  private void jbInit() throws Exception { 

    contentPane = (JPanel) getContentPane(); 

    contentPane.setLayout(borderLayout1); 

    setSize(new Dimension(600, 700)); 

    setTitle(":: EMNet 2006 :: "); 

    jMenuFile.setText("File"); 

    jMenuFileExit.setText("Exit"); 

    jMenuFileExit.addActionListener(new Frame_jMenuFileExit_ActionAdapter(this)); 

    jMenuHelp.setText("Help"); 

    jMenuHelpAbout.setText("About"); 

    jMenuHelpAbout.addActionListener(new Frame_jMenuHelpAbout_ActionAdapter(this)); 

    jMenuHelpTerm.setText("Term"); 

    jMenuHelpTerm.addActionListener(new Frame_jMenuHelpTerm_ActionAdapter(this)); 

    jMenuBar1.add(jMenuFile); 

    jMenuFile.add(jMenuFileExit); 

    jMenuBar1.add(jMenuHelp); 

    jMenuHelp.add(jMenuHelpAbout); 

    jMenuHelp.add(jMenuHelpTerm); 

    setJMenuBar(jMenuBar1); 

 

    Dimension big=new Dimension(146,20),big2=new Dimension(185,20),med=new 

Dimension(100,20),small=new Dimension(65,20),xs=new Dimension(30,20); 

 

    JPanel panel_bottom=new JPanel(new BorderLayout()); 

    JPanel panel_left=new JPanel(new BorderLayout()); 

 

    panel_gridbag.setPreferredSize(new Dimension(275,120)); 
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    label_dir.setHorizontalAlignment(SwingConstants.RIGHT); 

    label_dir.setPreferredSize(med); 

    txt_dir.setPreferredSize(big2); 

    txt_dir.setText("/Users/percyhou/Desktop/graphFiles"); 

    JPanel gridBag1=new JPanel(new GridBagLayout()); 

    gridBag1.add(label_dir); 

    gridBag1.add(txt_dir); 

 

    label_node.setHorizontalAlignment(SwingConstants.RIGHT); 

    label_node.setPreferredSize(med); 

    txt_node.setPreferredSize(big2); 

    txt_node.setText("node_grid.txt"); 

    JPanel gridBag2=new JPanel(new GridBagLayout()); 

    gridBag2.add(label_node); 

    gridBag2.add(txt_node); 

 

    label_edge.setHorizontalAlignment(SwingConstants.RIGHT); 

    label_edge.setPreferredSize(med); 

    txt_edge.setPreferredSize(big2); 

    txt_edge.setText("edge_grid.txt"); 

    JPanel gridBag3=new JPanel(new GridBagLayout()); 

    gridBag3.add(label_edge); 

    gridBag3.add(txt_edge); 

 

    label_dataIn.setHorizontalAlignment(SwingConstants.RIGHT); 

    label_dataIn.setPreferredSize(med); 

    JButton button_import=new JButton("import"); 

    button_import.addActionListener(new Frame_button_import_ActionAdapter(this)); 

 

    JPanel panel_import=new JPanel(new BorderLayout()); 

    panel_import.add(label_dataIn,BorderLayout.WEST); 

    panel_import.add(button_import,BorderLayout.EAST); 

 

    panel_gridbag.add(gridBag1); 

    panel_gridbag.add(gridBag2); 

    panel_gridbag.add(gridBag3); 

    panel_gridbag.add(panel_import); 

 

    panel_left.add(panel_gridbag,BorderLayout.NORTH); 

 

    JTabbedPane jtabbedPane=new JTabbedPane(); 
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    jtabbedPane.setPreferredSize(new Dimension(300,300)); 

    JScrollPane tab_node=new JScrollPane(nodeTable); 

    JScrollPane tab_edge=new JScrollPane(edgeTable); 

    jtabbedPane.add(tab_node,"node"); 

    jtabbedPane.add(tab_edge,"edge"); 

 

    panel_left.add(jtabbedPane,BorderLayout.CENTER); 

    panel_bottom.add(panel_left,BorderLayout.WEST); 

 

    JPanel panel_right=new JPanel(new BorderLayout()); 

 

    //radio buttons: supply, demand, neutral 

    panel_setting.setPreferredSize(new Dimension(300,120)); 

 

    radio_supply.addActionListener(new Frame_radio_ActionAdapter(this)); 

    radio_demand.addActionListener(new Frame_radio_ActionAdapter(this)); 

    radio_neutral.addActionListener(new Frame_radio_ActionAdapter(this)); 

    button_run.addActionListener(new Frame_button_run_ActionAdapter(this)); 

 

    JPanel panel_radio=new JPanel(new GridBagLayout()); 

    radioGroup.add(radio_supply); 

    radioGroup.add(radio_demand); 

    radioGroup.add(radio_neutral); 

    panel_radio.add(radio_supply); 

    panel_radio.add(radio_demand); 

    panel_radio.add(radio_neutral); 

    panel_radio.add(button_run); 

 

    panel_setting.add(panel_radio,BorderLayout.NORTH); 

 

    //expert bounds 

    JTabbedPane jtabbedPane_right=new JTabbedPane(); 

    jtabbedPane_right.setPreferredSize(new Dimension(300,200)); 

    JPanel tab_index=new JPanel(new BorderLayout()); 

    JPanel panel_index=new JPanel(new GridLayout(9,1,2,2)); 

    JPanel tab_result=new JPanel(new GridLayout(9,1,2,2)); 

    tab_index.add(panel_index,BorderLayout.NORTH); 

    jtabbedPane_right.add(tab_result,"result"); 

    jtabbedPane_right.add(tab_index,"expert"); 

 

    JPanel panel_expert0=new JPanel(new BorderLayout()); 

    JPanel panel_expert1=new JPanel(new GridBagLayout()); 
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    JPanel panel_expert2=new JPanel(new GridBagLayout()); 

    JPanel panel_expert3=new JPanel(new GridBagLayout()); 

    JPanel panel_expert4=new JPanel(new GridBagLayout()); 

    JPanel panel_expert5=new JPanel(new GridBagLayout()); 

    JPanel panel_expert6=new JPanel(new BorderLayout()); 

 

    JLabel 

        label_mtc=new JLabel(" MTC: ",SwingConstants.RIGHT), 

        label_atc=new JLabel(" ATC: ",SwingConstants.RIGHT), 

        label_ld=new JLabel(" LD: ",SwingConstants.RIGHT), 

        label_amac=new JLabel(" AMAC: ",SwingConstants.RIGHT), 

        label_nc=new JLabel(" NC: ",SwingConstants.RIGHT); 

 

    JLabel 

        label_atc_unit=new JLabel(" m",SwingConstants.LEFT), 

        label_mtc_unit=new JLabel(" m",SwingConstants.LEFT), 

        label_ld_unit=new JLabel(" m",SwingConstants.LEFT), 

        label_amac_unit=new JLabel(" m",SwingConstants.LEFT), 

        label_nc_unit=new JLabel(" m",SwingConstants.LEFT); 

 

    label_atc.setPreferredSize(small); 

    label_mtc.setPreferredSize(small); 

    label_ld.setPreferredSize(small); 

    label_amac.setPreferredSize(small); 

    label_nc.setPreferredSize(small); 

 

    txt_atc_low.setPreferredSize(small); 

    txt_mtc_low.setPreferredSize(small); 

    txt_ld_low.setPreferredSize(small); 

    txt_amac_low.setPreferredSize(small); 

    txt_nc_low.setPreferredSize(small); 

 

    txt_atc_up.setPreferredSize(small); 

    txt_mtc_up.setPreferredSize(small); 

    txt_ld_up.setPreferredSize(small); 

    txt_amac_up.setPreferredSize(small); 

    txt_nc_up.setPreferredSize(small); 

 

    label_atc_unit.setPreferredSize(xs); 

    label_mtc_unit.setPreferredSize(xs); 

    label_ld_unit.setPreferredSize(xs); 

    label_amac_unit.setPreferredSize(xs); 
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    label_nc_unit.setPreferredSize(xs); 

 

    JButton button_set=new JButton("set"); 

    button_set.addActionListener(new Frame_button_set_ActionAdapter(this)); 

 

    panel_expert0.add(new JLabel(" acceptable range:"),BorderLayout.WEST); 

 

    panel_expert1.add(label_atc); 

    panel_expert1.add(txt_atc_low); 

    panel_expert1.add(new JLabel(" ~ ")); 

    panel_expert1.add(txt_atc_up); 

 

    panel_expert2.add(label_mtc); 

    panel_expert2.add(txt_mtc_low); 

    panel_expert2.add(new JLabel(" ~ ")); 

    panel_expert2.add(txt_mtc_up); 

 

    panel_expert3.add(label_ld); 

    panel_expert3.add(txt_ld_low); 

    panel_expert3.add(new JLabel(" ~ ")); 

    panel_expert3.add(txt_ld_up); 

 

    panel_expert4.add(label_amac); 

    panel_expert4.add(txt_amac_low); 

    panel_expert4.add(new JLabel(" ~ ")); 

    panel_expert4.add(txt_amac_up); 

 

    panel_expert5.add(label_nc); 

    panel_expert5.add(txt_nc_low); 

    panel_expert5.add(new JLabel(" ~ ")); 

    panel_expert5.add(txt_nc_up); 

 

    panel_expert6.add(button_set,BorderLayout.EAST); 

 

    panel_index.add(panel_expert0); 

    panel_index.add(panel_expert1); 

    panel_index.add(panel_expert2); 

    panel_index.add(panel_expert3); 

    panel_index.add(panel_expert4); 

    panel_index.add(panel_expert5); 

    panel_index.add(panel_expert6); 

 



 

223 

Frame.java 

    JTextField txtField=new JTextField("[indices]",15); 

    txtField.setBackground(Color.WHITE); 

    txtField.setEditable(false); 

 

    JPanel panel_output0=new JPanel(new GridBagLayout()); 

    JPanel panel_output3=new JPanel(new GridBagLayout()); 

//    JPanel panel_output29=new JPanel(new GridBagLayout()); 

    JPanel panel_output4=new JPanel(new GridBagLayout()); 

//    JPanel panel_output49=new JPanel(new GridBagLayout()); 

    JPanel panel_output5=new JPanel(new GridBagLayout()); 

    JPanel panel_output1=new JPanel(new GridBagLayout()); 

    JPanel panel_output2=new JPanel(new GridBagLayout()); 

    JPanel panel_output6=new JPanel(new BorderLayout()); 

 

    JLabel 

        label_atc1=new JLabel(" ATC: ",SwingConstants.RIGHT), 

        label_mtc1=new JLabel(" MTC: ",SwingConstants.RIGHT), 

        label_ld1=new JLabel(" LD: ",SwingConstants.RIGHT), 

        label_amac1=new JLabel(" AMAC: ",SwingConstants.RIGHT), 

        label_nc1=new JLabel(" NC: ",SwingConstants.RIGHT), 

        label_e=new JLabel(" E: ",SwingConstants.RIGHT); 

 

    JLabel 

        label_atc_unit1=new JLabel(" ",SwingConstants.LEFT), 

        label_mtc_unit1=new JLabel(" ",SwingConstants.LEFT), 

        label_ld_unit1=new JLabel(" ",SwingConstants.LEFT), 

        label_amac_unit1=new JLabel(" ",SwingConstants.LEFT), 

        label_nc_unit1=new JLabel(" ",SwingConstants.LEFT), 

        label_e_unit1=new JLabel(); 

 

    label_atc1.setPreferredSize(small); 

    label_mtc1.setPreferredSize(small); 

    label_ld1.setPreferredSize(small); 

    label_amac1.setPreferredSize(small); 

    label_nc1.setPreferredSize(small); 

    label_e.setPreferredSize(small); 

 

    atc_output.setPreferredSize(big); 

    mtc_output.setPreferredSize(big); 

    ld_output.setPreferredSize(big); 

    amac_output.setPreferredSize(big); 

    nc_output.setPreferredSize(big); 
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    e_output.setPreferredSize(big); 

 

    atc_output.setHorizontalAlignment(SwingConstants.RIGHT); 

    mtc_output.setHorizontalAlignment(SwingConstants.RIGHT); 

    ld_output.setHorizontalAlignment(SwingConstants.RIGHT); 

    amac_output.setHorizontalAlignment(SwingConstants.RIGHT); 

    nc_output.setHorizontalAlignment(SwingConstants.RIGHT); 

    e_output.setHorizontalAlignment(SwingConstants.RIGHT); 

 

    label_atc_unit1.setPreferredSize(xs); 

    label_mtc_unit1.setPreferredSize(xs); 

    label_ld_unit1.setPreferredSize(xs); 

    label_amac_unit1.setPreferredSize(xs); 

    label_nc_unit1.setPreferredSize(xs); 

    label_e_unit1.setPreferredSize(xs); 

 

    panel_output0.add(label_e); 

    panel_output0.add(e_output); 

    panel_output0.add(label_e_unit1); 

 

    panel_output1.add(label_atc1); 

    panel_output1.add(atc_output); 

    panel_output1.add(label_atc_unit1); 

 

    panel_output2.add(label_mtc1); 

    panel_output2.add(mtc_output); 

    panel_output2.add(label_mtc_unit1); 

 

    panel_output3.add(label_ld1); 

    panel_output3.add(ld_output); 

    panel_output3.add(label_ld_unit1); 

 

    panel_output4.add(label_amac1); 

    panel_output4.add(amac_output); 

    panel_output4.add(label_amac_unit1); 

 

    panel_output5.add(label_nc1); 

    panel_output5.add(nc_output); 

    panel_output5.add(label_nc_unit1); 

 

    save_dir.setPreferredSize(new Dimension(200,20)); 

    JButton button_save=new JButton("save"); 
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//    button_save.addActionListener(this); 

 

    panel_output6.add(save_dir,BorderLayout.WEST); 

    panel_output6.add(button_save,BorderLayout.EAST); 

 

    tab_result.add(panel_output1); 

    tab_result.add(panel_output2); 

    tab_result.add(panel_output3); 

    tab_result.add(panel_output4); 

    tab_result.add(panel_output5); 

    tab_result.add(panel_output0); 

    tab_result.add(panel_output6); 

 

    panel_setting.add(jtabbedPane_right,BorderLayout.CENTER); 

    panel_right.add(panel_setting,BorderLayout.EAST); 

    panel_bottom.add(panel_right,BorderLayout.CENTER); 

    panel_bottom.add(seperator,BorderLayout.NORTH); 

 

    map.sentFrame(this); 

 

    JSplitPane sp=new JSplitPane(JSplitPane.VERTICAL_SPLIT,map,panel_bottom); 

    sp.setDividerSize(8); 

    sp.setDividerLocation(270); 

    sp.setResizeWeight(0.5); 

    sp.setContinuousLayout(true); 

    sp.setOneTouchExpandable(true); 

    contentPane.add(sp,BorderLayout.CENTER); 

  } 

 

  public void setATC(double atc){ 

      atc_output.setText(myFormatter.format(atc)+"     "); 

      txt_atc_low.setText(myFormatter.format(atc*0.8)); 

      txt_atc_up.setText(myFormatter.format(atc*1.2)); 

  } 

 

  public void setMTC(double mtc){ 

      mtc_output.setText(myFormatter.format(mtc)+"     "); 

      txt_mtc_low.setText(myFormatter.format(mtc*0.8)); 

      txt_mtc_up.setText(myFormatter.format(mtc*1.2)); 

  } 

 

  public void setLD(double ld){ 
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      ld_output.setText(myFormatter.format(ld)+"     "); 

      txt_ld_low.setText(myFormatter.format(ld*0.8)); 

      txt_ld_up.setText(myFormatter.format(ld*1.2)); 

  } 

 

  public void setAMAC(double amac){ 

      amac_output.setText(myFormatter.format(amac)+"     "); 

      txt_amac_low.setText(myFormatter.format(amac*0.8)); 

      txt_amac_up.setText(myFormatter.format(amac*1.2)); 

  } 

 

  public void setNC(double nc){ 

      nc_output.setText(myFormatter.format(nc)+"     "); 

      txt_nc_low.setText(myFormatter.format(nc*0.8)); 

      txt_nc_up.setText(myFormatter.format(nc*1.2)); 

  } 

 

  public void setE(double e){ 

      e_output.setText(myFormatter.format(e)+"     "); 

  } 

 

  void jMenuFileExit_actionPerformed(ActionEvent actionEvent) { 

    System.exit(0); 

  } 

 

  void jMenuHelpAbout_actionPerformed(ActionEvent actionEvent) { 

    Frame_AboutBox dlg = new Frame_AboutBox(this); 

    Dimension dlgSize = dlg.getPreferredSize(); 

    Dimension frmSize = getSize(); 

    Point loc = getLocation(); 

    dlg.setLocation( (frmSize.width - dlgSize.width) / 2 + loc.x, 

                    (frmSize.height - dlgSize.height) / 2 + loc.y); 

    dlg.setModal(true); 

    dlg.pack(); 

    dlg.show(); 

  } 

 

  void jMenuHelpTerm_actionPerformed(ActionEvent actionEvent) { 

    Frame_TermBox dlg = new Frame_TermBox(this); 

    Dimension dlgSize = dlg.getPreferredSize(); 

    Dimension frmSize = getSize(); 

    Point loc = getLocation(); 
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    dlg.setLocation( (frmSize.width - dlgSize.width) / 2 + loc.x, 

                    (frmSize.height - dlgSize.height) / 2 + loc.y); 

    dlg.setModal(true); 

    dlg.pack(); 

    dlg.show(); 

  } 

 

  void button_import_actionPerformed(ActionEvent actionEvent){ 

 

      setATC(0.0); 

      setMTC(0.0); 

      setLD(0.0); 

      setAMAC(0.0); 

      setNC(0.0); 

      setE(0.0); 

 

      //read in files: node.txt & edge.txt, assign to field argument 

      try { 

          IOGraph ioGraph=new IOGraph(txt_dir.getText(),txt_node.getText(),txt_edge.getText()); 

          this.graph=ioGraph.getGraph(); 

          Vector nodeSet=graph.getNodeSet(); 

          Vector edgeSet=graph.getEdgeSet(); 

 

          Node tempNode; 

          boolean econ=true; 

          for(int i=0;i<nodeSet.size();i++){ 

              tempNode=(Node)nodeSet.elementAt(i); 

              if(graph.incidentEdgeSet(tempNode).size()<2){ 

                  econ=false; 

              } 

          } 

 

          if(econ){ 

              label_dataIn.setText("2econ!"); 

          }else{ 

              label_dataIn.setText("not 2econ!"); 

          } 

      } 

      catch (IOException ex) { 

          System.out.println("Data Read-In Problem!"); 

          ex.printStackTrace(); 

      } 
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      save_dir.setText("dir: "+txt_dir.getText()); 

 

      map.setGraph(graph); 

      this.seperator.setText("[ graph components: "+graph.getNodeSet().size()+" nodes, 

"+graph.getEdgeSet().size()+" edges ]"); 

 

      this.fleshTable(graph); 

      this.repaint(); 

  } 

 

  void radio_actionPerformed(ActionEvent actionEvent){ 

      map.nodeSetting(radio_supply.isSelected(),radio_demand.isSelected(),radio_neutral.isSelected()); 

      this.repaint(); 

  } 

 

  void button_run_actionPerformed(ActionEvent actionEvent){ 

      center=new Center(graph,this); 

      center.start(); 

 

      this.repaint(); 

  } 

 

  void button_set_actionPerformed(ActionEvent actionEvent){ 

      double e=1.0; 

 

      double atc=new Double(atc_output.getText()).doubleValue(); 

      double low_atc=new Double(txt_atc_low.getText()).doubleValue(); 

      double up_atc=new Double(txt_atc_up.getText()).doubleValue(); 

      double std_atc=standardN(atc,low_atc,up_atc); 

 

      double mtc=new Double(mtc_output.getText()).doubleValue(); 

      double low_mtc=new Double(txt_mtc_low.getText()).doubleValue(); 

      double up_mtc=new Double(txt_mtc_up.getText()).doubleValue(); 

      double std_mtc=standardN(mtc,low_mtc,up_mtc); 

 

      double amac=new Double(amac_output.getText()).doubleValue(); 

      double low_amac=new Double(txt_amac_low.getText()).doubleValue(); 

      double up_amac=new Double(txt_amac_up.getText()).doubleValue(); 

      double std_amac=standardN(amac,low_amac,up_amac); 

 

      double ld=new Double(ld_output.getText()).doubleValue(); 
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      double low_ld=new Double(txt_ld_low.getText()).doubleValue(); 

      double up_ld=new Double(txt_ld_up.getText()).doubleValue(); 

      double std_ld=standardN(ld,low_ld,up_ld); 

 

      double nc=new Double(nc_output.getText()).doubleValue(); 

      double low_nc=new Double(txt_nc_low.getText()).doubleValue(); 

      double up_nc=new Double(txt_nc_up.getText()).doubleValue(); 

      double std_nc=standardP(nc,low_nc,up_nc); 

 

      e=(1.0/3.0)*((std_atc + std_mtc)/2.0 + (std_ld + std_amac)/2.0 + std_nc); 

 

      this.setE(e); 

  } 

 

  //positive 

  double standardP(double x,double low,double up){ 

      if(up<=x){ 

          return 1.0; 

      }else if(low<=x && x<up){ 

          return (x-low)/(up-low); 

      }else{ 

          return 0.0; 

      } 

  } 

 

  //negative 

  double standardN(double x,double low,double up){ 

      if(x<low){ 

          return 1.0; 

      }else if(low<=x && x<up){ 

          return (low-x)/(low-up); 

      }else{ 

          return 0.0; 

      } 

  } 

 

 

  public void setSeperator(Graph graph){ 

 

      int nodeNum=0,edgeNum=0; 

      Vector nodeSet=graph.getNodeSet(); 

      Vector edgeSet=graph.getEdgeSet(); 
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      Node tempNode; 

      for(int i=0;i<nodeSet.size();i++){ 

          tempNode=(Node)nodeSet.elementAt(i); 

          if(!tempNode.isDummy()) 

              nodeNum++; 

      } 

 

      Edge tempEdge; 

      for(int i=0;i<edgeSet.size();i++){ 

          tempEdge=(Edge)edgeSet.elementAt(i); 

          if(!tempEdge.isDummyEdge()) 

              edgeNum++; 

      } 

 

      seperator.setText("[ graph components: "+nodeNum+" nodes, "+edgeNum+" edges  |  supply 

"+graph.getSupplyNodeNum()+" , demand "+graph.getDemandNodeNum()+" ]"); 

      this.repaint(); 

  } 

 

  public Map getMap(){ 

      return this.map; 

  } 

 

  void fleshTable(Graph graph){ 

      Vector nodeSet=graph.getNodeSet(),edgeSet=graph.getEdgeSet(); 

      Object nodeData[]=new Object[3]; 

      DefaultTableModel nodeTableModel=new DefaultTableModel(); 

      nodeTableModel.addColumn("label"); 

      nodeTableModel.addColumn("x"); 

      nodeTableModel.addColumn("y"); 

      for(int i=0;i<nodeSet.size();i++){ 

          Node node=(Node)nodeSet.elementAt(i); 

          nodeData[0]=""+node.getLabel(); 

          nodeData[1]=""+node.getX(); 

          nodeData[2]=""+node.getY(); 

          nodeTableModel.addRow(nodeData); 

      } 

      this.nodeTable.setModel(nodeTableModel); 

 

      Object edgeData[]=new Object[3]; 

      DefaultTableModel edgeTableModel=new DefaultTableModel(); 

      edgeTableModel.addColumn("label"); 
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      edgeTableModel.addColumn("n1"); 

      edgeTableModel.addColumn("n2"); 

      for(int i=0;i<edgeSet.size();i++){ 

          Edge edge=(Edge)edgeSet.elementAt(i); 

          edgeData[0]=""+edge.getLabel(); 

          edgeData[1]=""+edge.getN1().getLabel(); 

          edgeData[2]=""+edge.getN2().getLabel(); 

          edgeTableModel.addRow(edgeData); 

      } 

      this.edgeTable.setModel(edgeTableModel); 

  } 

 

} 

 

class Frame_jMenuFileExit_ActionAdapter 

    implements ActionListener { 

  Frame adaptee; 

 

  Frame_jMenuFileExit_ActionAdapter(Frame adaptee) { 

    this.adaptee = adaptee; 

  } 

 

  public void actionPerformed(ActionEvent actionEvent) { 

    adaptee.jMenuFileExit_actionPerformed(actionEvent); 

  } 

} 

 

class Frame_jMenuHelpAbout_ActionAdapter 

    implements ActionListener { 

  Frame adaptee; 

 

  Frame_jMenuHelpAbout_ActionAdapter(Frame adaptee) { 

    this.adaptee = adaptee; 

  } 

 

  public void actionPerformed(ActionEvent actionEvent) { 

    adaptee.jMenuHelpAbout_actionPerformed(actionEvent); 

  } 

 

} 

 

class Frame_jMenuHelpTerm_ActionAdapter 
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    implements ActionListener { 

  Frame adaptee; 

 

  Frame_jMenuHelpTerm_ActionAdapter(Frame adaptee) { 

    this.adaptee = adaptee; 

  } 

 

  public void actionPerformed(ActionEvent actionEvent) { 

    adaptee.jMenuHelpTerm_actionPerformed(actionEvent); 

  } 

 

} 

 

 

class Frame_button_import_ActionAdapter implements ActionListener{ 

    Frame adaptee; 

    Frame_button_import_ActionAdapter(Frame adaptee){ 

        this.adaptee=adaptee; 

    } 

 

    public void actionPerformed(ActionEvent actionEvent){ 

        adaptee.button_import_actionPerformed(actionEvent); 

    } 

} 

 

class Frame_radio_ActionAdapter implements ActionListener{ 

    Frame adaptee; 

    Frame_radio_ActionAdapter(Frame adaptee){ 

        this.adaptee=adaptee; 

    } 

 

    public void actionPerformed(ActionEvent actionEvent){ 

        adaptee.radio_actionPerformed(actionEvent); 

    } 

} 

 

class Frame_button_run_ActionAdapter implements ActionListener{ 

    Frame adaptee; 

    Frame_button_run_ActionAdapter(Frame adaptee){ 

        this.adaptee=adaptee; 

    } 
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    public void actionPerformed(ActionEvent actionEvent){ 

        adaptee.button_run_actionPerformed(actionEvent); 

    } 

} 

 

class Frame_button_set_ActionAdapter implements ActionListener{ 

    Frame adaptee; 

    Frame_button_set_ActionAdapter(Frame adaptee){ 

        this.adaptee=adaptee; 

    } 

 

    public void actionPerformed(ActionEvent actionEvent){ 

        adaptee.button_set_actionPerformed(actionEvent); 

    } 

} 
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