REFERENCES

- 1. Babuška, R. (1998), *Fuzzy Modeling for Control*, Norwell, MA: Kluwer Academic.
- 2. Bárdossy, A. and Duckstein, L. (1995), *Fuzzy Rule-Based Modeling with Application to Geophysical, Biological and Engineering Systems*, Boca Raton, FL: CRC Press.
- Bauer, A., Bullnheimer, B., Hartl, R. F. and Strauss, C. (2000), "Minimizing total tardiness on a single machine using ant colony optimization," *Central European Journal for Operations Research and Economics*, Vol. 8, No. 2, pp. 125-141.
- 4. Bella, J. E. and McMullenb, P. R. (2004), "Ant colony optimization techniques for the vehicle routing problem," *Advanced Engineering Informatics*, Vol. 18, pp. 41-48.
- 5. Bishop, C. (1994), *Transit Priority Traffic Control Systems: European Experience*, Canadian Urban Transit Association STRP Report 9-1, Toronto, Canada.
- 6. Boje, B. F. and Nookala, M. (1996), "Signal priority for buses: an operational test at Louisiana Avenue, Minneapolis," *Compendium of Technical Papers for the 66th ITE Annual Meeting*, Washington DC, pp. 309-313.
- 7. Bonissone, P. P., Khedkar, P. S. and Chen, Y. (1996), "Genetic algorithms for automated tuning of fuzzy controllers: a transportation application," In *Proceedings of Fifth International Conference On Fuzzy Systems* (FUZZ-IEEE'96), pp. 674-680.
- 8. Bullnheimer, B., Hartl, R. F. and Strauss, C. (1999a), "Applying the ant system to the vehicle routing problem," In *Proceedings of Meta-Heuristics: Advances and Trends in Local Search Paradigms for Optimization*, pp. 285-296.
- 9. Bullnheimer, B., Hartl, R. F. and Strauss, C. (1999b), "An improved ant system algorithm for the vehicle routing problem," *Annals of Operation Research*, Vol. 89, pp. 319-328.
- 10. Bullnheimer, B., Hartl, R. F. and Strauss, C. (1999c), "A new rank-based version of the ant system: a computational study," *Central European Journal for Operations Research and Economics*, Vol. 7, No. 1, pp. 25-38.
- 11. Casillas, J., Cordón, O. and Herrera, F. (2000), "Learning fuzzy rules using ant colony optimization algorithms," In *Proceedings 2nd International Workshop on Ant Algorithms*, Brussels, Belgium, pp. 13-21.
- 12. Casillas, J., Cordón, O., Viana, I. F. and Herrera, F. (2005), "Learning cooperative linguistic fuzzy rules using the best-worst ant system

algorithm," International Journal of Intelligent Systems, Vol. 20, pp. 433-452.

- 13. Chang, G. L., Vasudevan, M. and Su, C. C. (1996), "Modeling and evaluation adaptive bus-preemption control with and without automatic vehicle location systems," *Transportation Research Part A*, Vol. 30, No. 4, pp. 251-268.
- 14. Chin, T. C. and Qi, X. M. (1998), "Genetic algorithms for learning the rule base of fuzzy logic controller," *Fuzzy Sets and Systems*, Vol. 97, pp. 1-7.
- 15. Chiou, Y. C. (2005), "Ant-based clustering algorithms," Invited Speaker at the *International Conference of International Federation of Operational Research Societies*, Hawaii, July 11-15.
- 16. Chiou, Y. C. and Lan, L. W. (2002), "Genetic fuzzy logic controllers," *The Fifth IEEE Conference on Intelligent Transportation Systems*, pp. 200~208.
- 17. Chiou, Y. C. and Lan, L. W. (2004), "Adaptive traffic signal control with iterative genetic fuzzy logic controller (GFLC)," *IEEE International Conference on Networking, Sensing and Control*, pp. 287-292.
- 18. Chiou, Y. C. and Lan, L. W. (2005), "Genetic fuzzy logic controller: an iterative evolution algorithm with new encoding method," *Fuzzy Sets and Systems*, Vol. 152, pp. 617-635.
- 19. Chiou, Y. C., Wang, M. T. and Lan, L. W. (2003), "Adaptive bus preemption signals with genetic fuzzy logic controller (GFLC)," *Journal of the Eastern Asia Society for Transportation Studies*, Vol. 5, pp. 1745-1759.
- 20. Chiou, Y. C., Wang, M. T. and Lan, L. W. (2005), "Coordinated transit preemption signal controllers along an arterial: iterative genetic fuzzy logic controller (GFLC) method," *Journal of the Eastern Asia Society for Transportation Studies*, Vol. 6, pp. 2321-2336.
- 21. Cisco, B. A. and Khasnabis, S. (1995), "Technique to assess delay and queue length consequence of bus preemption," *Transportation Research Record*, No. 1494, pp. 167-175.
- 22. Colorni, A., Dorigo, M. and Maniezzo, V. (1992), "Distributed optimization by any colonies," In *Proceedings of the First European Conference on Artificial Life*, Cambridge, MA, MIT Press, pp. 134-142.
- 23. Colorni, A., Dorigo, M., Maniezzo, V. and Trubian, M. (1994), "Ant system for job-shop scheduling," *JORBEL—Belgian Journal of Operations Research, Statistics and Computer Science*, Vol. 34, No 1, pp. 39-53.
- 24. Cordón, O., de Viana, I. F., Herrera, F. and Moreno, L. (2000), "A new ACO model integrating evolutionary computation concepts: the best-worst ant system," In *Abstract Proceedings of ANTS 2000–From Ant Colonies to Artificial Ants: Second International Workshop on Ant Algorithms*, pp. 22-29.
- 25. Cordón, O., Herrera, F. and Magdalena, L. (2001), Genetic Fuzzy Systems:

Evolutionary Tuning and Learning of Fuzzy Knowledge Bases, Singapore: World Scientific.

- 26. Cottinet, M., De La Breteque, A. L., Henry, J. J. and Gabard, F. (1979), "Assessment by observation and by simulation studies of the interest of different methods of bus-preemption at traffic lights," *Proceeding International Symposium on Traffic Control Systems*, Berkeley, CA. pp. 95-105.
- 27. Dion, F., Rakha, H. and Zhang, Y. (2004), "Evaluation of potential transit signal priority benefits along a fixed-time signalized arterial," *Journal of Transportation Engineering*, Vol. 130, No. 3, 294-303.
- 28. Du, T. C. H. and Wolfe, P. M. (1995), "The amalgamation of neural networks and fuzzy logic systems-a survey," *Computers and Industrial Engineering*, Vol. 29, No. 1, pp. 193-197.
- 29. Duncan, W. and Mirabdal, J. (1996), "Transit preferential streets program in San Francisco," *Compendium of Technical Papers fir the 66th ITE Annual Meeting*, Washington DC, pp. 314-318.
- 30. Dorigo, M. (1992), *Optimization, Learning and Natural Algorithms*, PhD Thesis, Dipartimento di Elettronica, Politecnico di Milano, Milan.
- 31. Dorigo, M. and Gambardella, L. M. (1997a), "Ant colonies for the traveling salesman problem," *BioSystems*, Vol. 43, No. 2, pp.73-81.
- 32. Dorigo, M., and Gambardella, L. M. (1997b), "Ant colony system: a cooperative learning approach to the traveling salesman problem," *IEEE Transactions on Evolutionary Computation*, Vol. 1, pp.53-66.
- 33. Dorigo, M., Maniezzo, V. and Colorni, A. (1991), *Positive Feedback as a Search Strategy*, Technical report 91-016, Dipartimento di Elettronica, Politecnico di Milano, Milan.
- 34. Dorigo, M., Maniezzo, V. and Colorni, A. (1996), "The ant system: optimization by a colony of cooperating agents," *IEEE Transactions on Systems, Man, and Cybernetics Part B*, Vol. 26, No. 1, pp.1-13.
- 35. Dorigo, M. and Stützle, T. (2004), *Ant Colony Optimization*, Cambridge, MA, MIT Press.
- 36. Elias, W. J. (1976), *The Greenback Experiment-signal Preemption fir Express Bus: a Demonstration Project*, Prepared for the California Department of Transportation, Report No. DMT-014.
- 37. Esobgue, A. and Murrell, J. (1993), "A fuzzy adaptive controller using reinforcement learning neural networks," *IEEE International Conference on Fuzzy Systems*, pp. 178-183.
- 38. Favilla, J., Machion, A. and Gomide, F. (1993), "Fuzzy traffic control: adaptive strategies," *The Second IEEE International Conference on Fuzzy Systems*, Vol. 1, pp. 506-511.
- 39. Gambardella, L. M., Taillard, E. D. and Agazzi, G. (1999), "MACS-

VRPTW: a multiple ant colony system for vehicle routing problems with time windows," In *Proceedings of New Ideas in Optimization*, pp. 63-76.

- 40. Goldberg, D. E. (1989), *Genetic Algorithms in Search, Optimization and Machine Learning*, Addison-Wesley, Reading, MA.
- 41. Gupta, M. M. and Gorsalcany, M. B. (1992), "Fuzzy neural-computational technique and its application to modeling and control," *IEEE International Conference on Fuzzy Systems*, pp. 1271-1274.
- 42. Herrera, F., Lozano, M and Verdegay, J. L. (1995), "Tuning fuzzy logic controllers by genetic algorithms," *International Journal of Approximate Reasoning*, Vol. 12, pp. 299-315.
- 43. Herrera, F., Lozano, M. and Verdegay, J. L. (1998), "A learning process for fuzzy control rules using genetic algorithms," *Fuzzy Sets and Systems*, Vol. 100, pp. 143-158.
- 44. Holland, J. H. (1975), *Adaptation in Nature and Artificial Systems*, University of Michigan press, Ann Arbor.
- 45. Hsu, T. P., Lu, C. T., Wu, Y. T. and Cheng, H. F. (2003), "A microscopic simulation system for bus preemption signal (MISSBUS)," *Journal of Transportation Planning*, Vol. 32, No. 4, pp. 745-776. (in Chinese)
- 46. Hunter-Zaworski, K. M., Kloos, W. C. and Danaher, A. R. (1995), "Bus priority at traffic signals in Portland: the Powell Boulevard Pilot Project," *Transportation Research Record*, No. 1503, pp. 29-33.
- 47. Hwang, H. S. (1998), "Control strategy for optimal compromise between trip time and energy consumption in a high-speed railway," *IEEE Transactions on Systems, Man and Cybernetics*, Vol. 28, No. 6, pp. 791-802.
- 48. ITS America (2004), *An Overview of Transit Signal Priority*, prepared by the Advanced Traffic Management Systems Committee and Advanced Public Transportation System Committee.
- 49. Jacobson, J. and Sheffi, Y. (1981), "Analytical model of traffic delays under bus signal preemption: theory and application," *Transportation Research Part B*, Vol. 15, No. 2, pp. 127-138.
- 50. Jayaraman, V. K., Kulkarni, B. D., Karale, S. and Shelokar, P. (2000), "Ant colony framework for optimal design and scheduling of batch plants," *Computers and Chemical Engineering*, Vol. 24, pp. 1901-1912.
- 51. Karr, C. L. (1991), "Design of an adaptive fuzzy logic controller using a genetic algorithm," *Proceedings of the Forth International Conference on Genetic Algorithms*, pp. 450-457.
- 52. Khasnabis, S., Reddy, G. V. and Chaudry B. B. (1993), "Signal preemption as a priority treatment tool for transit demand management," *Vehicle Navigation and Information System Conference Proceeding*, Paper No. 912865, Dearbirn, MI.

- 53. Kinzel, J., Klawonn, F. and Kruse, R. (1994), "Modifications of genetic algorithms for designing and optimizing fuzzy controllers," *Proceedings of First International Conference on Evolutionary Computation* (IEEE Piscataway, N.J.), pp. 28-33.
- 54. Lee, S., Jung, T. and Chung, T. (2001), "Improved ant agents system by the dynamic parameter decision," In *IEEE International Fuzzy Systems Conference*, pp. 666-669.
- 55. Lekova, A., Mikhailov, L., Boyadjiev, D. and Nabout, A. (1998), "Redundant fuzzy rules exclusion by genetic algorithms," *Fuzzy Sets and Systems*, Vol. 100, pp. 235-243.
- 56. Lewis, V. (1996), *Bus Priority Study: Tualan Valley Highway*, Tri-Met, Portland, Oregon.
- 57. Li, R. and Zhang, Y. (1996), "Fuzzy logic controller based on genetic algorithms," *Fuzzy Sets and Systems*, Vol. 83, pp. 1-10.
- 58. Linkens, D. A. and Nie, J. (1993), "Fuzzifier RBF network-based learning control: structure and self-construction," *IEEE International Conference on Neural Networks*, pp. 1016-1021.
- 59. Macvicar-Whelan, P. J. (1976), "Fuzzy sets for man-machine interaction," *International Journal of Man-Machine Studies*, Vol. 8, pp. 687-697.
- 60. Maniezzo, V. (1999), "Exact and approximate nondeterministic tree-search procedures for the quadratic assignment problem," *INFORMS Journal on Computing*, Vol. 11, No. 4, pp. 358-369.
- 61. Maniezzo, V. and Colorni, A. (1999), "The ant system applied to the quadratic assignment problem," *IEEE Transactions on Data and Knowledge Engineering*, Vol. 11, No. 5, pp. 769-778.
- 62. Michalewicz, Z. (1992), *Genetic Algorithms* + Data Structures = Evolution *Programs*, Springer, Berlin.
- 63. Mohamed, B. T., Mohamed, S. K. and Murali, A. (1999), "A two-stage fuzzy logic controller for traffic signals," *Transportation Research Part C*, Vol. 7, pp. 353-367.
- 64. Nauck, D., Klawonn, F. and Kruse, R. (1997), *Foundations of Neuro-Fuzzy Systems*, New York: Wiley.
- 65. Nauck, D. and Kruse, R. (1993), "A fuzzy neural network learning fuzzy control rules and membership functions by fuzzy error backpropagation," *IEEE International Conference on Neural Networks*, pp. 1022-1027.
- 66. Niittymäki, J. (2001), "Installation and experiences of field testing a fuzzy logic controller," *European Journal of Operational Research*, Vol. 131, pp. 273-281.
- 67. Pappis, C. P. and Mamdani, E. H. (1977), "A fuzzy logic controller for a traffic junction," *IEEE Transactions on Systems, Man and Cybernetics*, Vol. 7, No. 10, pp. 707-717.

- 68. Parpinelli, R. S., Lopes, H. S. and Freitas, A. A. (2002a), "An ant colony algorithm for classification rule discovery," *Data Mining: A Heuristic Approach*, Hershey, PA, Idea Group Publishing, pp. 191-208.
- 69. Passino, K. M. and Yurkovich, S. (1997), *Fuzzy Control*, Addison Wesley Publishing Company.
- 70. Parpinelli, R. S., Lopes, H. S. and Freitas, A. A. (2002b), "Data mining with ant colony optimization algorithm," *IEEE Transactions on Evolutionary Computation*, Vol. 6, No. 4, pp. 321-332.
- 71. Pfahringer, B. (1996), *Multi-Agent Search for Open Shop Scheduling: Adapting the Ant-Q Formalism*, Technical Report TR-96-09, Austrian Research Institute for Artificial Intelligence, Vienna.
- 72. Reimann, M., Stummer, M. and Doerner, K. (2002), "A savings based ant system for the vehicle routing problem," In *Proceedings of the Genetic and Evolutionary computation Conference* (GECCO-2002), pp. 1317-1325.
- 73. Skehan, S. (2003), "Transit signal priority for metro rapid bus in Los Angeles," presentation to *ITS America Transit Signal Priority Workshop*, Tucson, Arizona.
- 74. Stützle, T. (1997), *MAX-MIN Ant System for the Quadratic Assignment Problem*, Technical Report AIDA-97-4, FG Intellektik, FB Informatik, TU Darmstadt, Germany.
- 75. Stützle, T. (1998), "An ant approach to the flow shop problem," In *Proceedings of the Sixth European Congress on Intelligent Techniques and Soft Computing* (EUFIT'98), Vol. 3, pp. 1560-1564.
- 76. Stützle, T. and Hoos, H. H. (1997), "The MAX-MIN ant system and local search for the traveling salesman problem," In *Proceedings of the 1997 IEEE International Conference on Evolutionary Computation* (ICEC'97), pp. 309-314.
- 77. Stützle, T. and Hoos, H. H. (2000), "MAX-MIN ant system," *Future Generation Computer Systems*, Vol. 16, No. 8, pp. 889-914.
- 78. Su, C. C. and Lee, S. Y. (1999), "A fully-actuated signal model for bus preemption control," *Journal of Transportation Planning*, Vol. 28, No. 2, pp. 167-202. (in Chinese)
- 79. Sunkari, S. R., Beasley, P. S., Urbanik, J. T. and Fambro, D. B. (1995), "Model to evaluate the impacts of bus priority on signalized intersections," *Transportation Research Record*, No. 1494, pp. 117-123.
- 80. Tarng, Y. S., Yeh, Z. M. and Nian, C. Y. (1996), "Genetic synthesis of fuzzy logic controllers in turning," *Fuzzy Sets and Systems*, Vol. 83, pp. 301-310.
- 81. Teodorovic, D. (1999), "Fuzzy logic systems for transportation engineering: the state of the art," *Transportation Research Part A*, Vol. 33, pp. 337-364.
- 82. Thrift, P. (1991), "Fuzzy logic synthesis with genetic algorithms," *Proceedings of the Forth International Conference on Genetic Algorithms*,

pp. 509-513.

- 83. Toone, J. (2003), "Managing benefits and costs of transit signal priority," presentation to *ITS America Transit Signal Priority Workshop*, Hartford, Connecticut.
- 84. Vahidi, H. (2000), "Transit signal priority: a comparison of recent and future implementations," Presented at 70th Annual ITE Meeting in Nashville, Tennessee.
- 85. Wang, L. and Yen, J. (1999), "Extracting fuzzy rules for system modeling using a hybrid of genetic algorithms and Kalman filter," *Fuzzy Sets and Systems*, Vol. 101, pp. 353-362.
- 86. Wang, L.X. and Mendel, J. (1992), "Generating fuzzy rules by learning from examples," *IEEE Transactions on Systems, Man and Cybernetics*, Vol. 22, No. 6, pp. 1414-1427.
- 87. Wu, J. and Hounsell, N. (1998), "Bus priority using pre-signal," *Transportation Research Part A*, Vol. 32, No. 8, pp. 563-583.
- 88. Zadeh, L. (1973), "Outline of a new approach to the analysis of complex systems and decision processes," *IEEE Transactions on Systems, Man and Cybernetics*, Vol. 3, pp. 28-44.

APPENDIX A: LIST OF ABBREVIATIONS AND NOTATIONS

Abbreviations:

AGFLC: Ant-Genetic based Fuzzy Logic controller AS: Ant System AVL: Automatic Vehicle Location BRT: Bus Rapid Transit DB: Data Base FLC: Fuzzy Logic Controller FTA: Federal Transit Administration GFLC: Genetic Fuzzy Logic Controller GPS: Global Positioning System LRT: Light Rail Transit RB: Rule Base TPS: Transit Preemption Signal TSP: Traveling Salesman Problem

Notations:

- x_1, \ldots, x_N : state variables
- y: control variable

 A_{i1},\ldots,A_{iN} : linguistic variables for x_1,\ldots,x_N

 B_i : linguistic variable for y

 U_1, \ldots, U_N : universe of discourse of x_1, \ldots, x_N

- *V*: universe of discourse of *y*
- N: number of state variables

M: number of rules

i, *j*, *r*, *s*: city *i*, *j*, *r*, *s*

K: number of ants

S: city S, selected according to probability P_{rs}^k

 P_{rs}^{k} : the probability with which ant k choose to move from city r to city s

- q_0 : parameter of transition rule
- q: random number chosen randomly with uniform probability in [0,1]
- τ^0 : initial pheromone

- ξ : pheromone decay parameter for local update rule
- ρ : pheromone decay parameter for global update rule
- t_{max} : maximal iteration of ACO
- *k*: ant *k*
- η_{rj} : heuristic value on arc(r,j)
- τ_{rj} : amount of pheromone trail on arc(r,j)
- J_r^k : set of cities that remain to be visited by ant k positioned on city r
- α , β : parameters representing the relative importance of heuristic value and pheromone trail
- $L_k(t)$: length of tour constructed by ant k
- $L^{+}(t)$: the shortest path of iteration t
- $L^*(t)$: tour length of $T^*(t)$
- $T^*(t)$: best-so-far tour till the t^{th} iteration
- *t*: iteration *t*
- GR: remaining green time when a transit actuates the detector
- *H*: the time needed for a transit vehicle traveling from the detector through the far-side stop line of the intersection
- *L*: the time needed for a transit vehicle traveling from the detector to the near-side stop line of the intersection
- G_{ext} represents the green extension time
- RR: the remaining red time when a transit actuates the detector
- *AR*: the all-red time
- R_{tru} : the red truncation time
- NE: the degree of necessity to implement TPS
- N_t : the threshold value preset to determine whether the priority is provided or not
- TF: traffic flows at all approaches in the green phase
- QL: queue length at all approaches in the red phase
- *NL*: negative large
- NS: negative small
- ZE: zero
- *PS*: positive small
- *PL*: positive large
- c_k^r : the coordinate of right anchor of k^{th} linguistic degree

 c_k^{c} : the coordinate of cortex of k^{th} linguistic degree

 c_k^{l} : the coordinate of left anchor of k^{th} linguistic degree

 c_{\max} : the maximum value of the variable

 c_{\min} : the minimum values of the variable

r_i: position variable

a: parameter of crossover

- *h*: parameter of mutation
- *v*: number of evolution epoch

p: number of chromosome of a generation

 d_i : number of linguistic degree of x_i

 δ : mature rate of GA

 f_{v} : best objective value of the v^{th} evolution

 ε : arbitrary small number

 AR_i : the *i*th antecedent

 C_j : consequent $j, j=1 \sim J$

J: number of linguistic degree of the control variable

 C_{J+1} : the exclusion set

 θ_{ii} : the reasonability value on $\operatorname{arc}(i,j)$

E: objective function

- E_p : value of objective function simulated by a predetermined rule table with equally distributed membership function
- TPD: the total person delays

APPENDIX B: VITA

- 姓名:王銘德 (Ming-Te Wang)
- 性别:男
- 出生:民國 60 年 7 月 10 日
- 學歷:國立交通大學交通運輸研究所博士 (90.9~95.7)
 國立成功大學交通管理科學系碩士 (82.9~84.6)
 國立成功大學交通管理科學系學士 (78.9~82.6)
- 經歷:交通部運輸研究所研究員 (92.6~迄今)
 交通部運輸研究所副研究員 (90.8~92.5)
 交通部運輸研究所副工程司 (88.5~90.7)
 交通部運輸研究所助理研究員 (86.7~88.4)
- A. 與論文相關論文 (Refereed Papers)
- 1. Chiou, Yu-Chiun, Ming-Te Wang and Lawrence W. Lan (2005), "Coordinated Transit-preemption Signal Controllers along an Arterial: Iterative Genetic Fuzzy Logic Controller (GFLC) Method," *Journal of the Eastern Asia Society for Transportation Studies*, Vol. 6, pp. 2321-2336.
- 2. Chiou, Yu-Chiun, Ming-Te Wang and Lawrence W. Lan (2003), "Adaptive Bus-preemption Signals with Genetic Fuzzy Logic Controller (GFLC)," *Journal of the Eastern Asia Society for Transportation Studies*, Vol. 5, pp. 1745-1759.
- B. 其他投稿論文 (Other refereed papers)
- 1. Chiou, Yu-Chiun, Ming-Te Wang and Lawrence W. Lan (2006), "Ant-Genetic Based Fuzzy Logic Controller Algorithms," Manuscript submitted to *Fuzzy Sets and Systems*.
- 2. Lan, Lawrence W., Ming-Te Wang and April Y. Kuo (2006), "Development and Deployment of Public Transport Policy and Planning in Taiwan," *Transportation*, Vol. 33, No. 2. (SSCI)
- 3. 藍武王、王銘德 (2002),「臺灣公路客運現況及未來展望」, *工程*, 75 卷 2 期,頁 86~102。

- C. 研討會論文 (Conference Papers)
- 1. Chiou, Yu-Chiun, Ming-Te Wang and Lawrence W. Lan, "Adaptive Transit Preemption Signal Fuzzy Logic Controllers with Ant Colony Optimization and Genetic Algorithm," Manuscript prepared to submit to 17th International Symposium on Transportation and Traffic Theory (ISTTT) in London, 23-25 July, 2007. (Abstract accepted)
- 2. Chiou, Yu-Chiun, Ming-Te Wang and Lawrence W. Lan, "Adaptive Traffic Signal Control with Transit Preemption: Genetic Fuzzy Logic Controller Approach," Manuscript prepared to submit to the 11th International Conference Of Hong Kong Society For Transportation Studies (HKSTS) in Hong Kong, 9-11 December, 2006. (Abstract accepted)
- 3. Chiou, Yu-Chiun, Ming-Te Wang and Lawrence W. Lan (2006), "Genetic Fuzzy Logic Transit Preemption Signal Controller with Consideration of Loading Information," Presented in INFORMS International Conference, Hong Kong.
- D. 研究報告及其他 (Research Reports and Other Papers)
- 藍武王、王銘德、陳其華、郭怡雯(2003), 公路汽車客運業經營困境之因應 對策, 研究報告,臺灣省公共汽車客運商業同業公會聯合會委託研究。

