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CHAPTER 2 LITERATURE REVIEW 

This chapter firstly reviews the TPS fundamentals and related researches. The 
basic concepts of the methods, including FLC, GA, and ACO, adopted in this 
study are then briefly elaborated and reviewed. Finally, a short summary is 
followed. 

2.1 TPS Fundamental 

TPS is an operational strategy that facilitates the movement of in-service transit 
vehicles, such as trams or buses, through traffic-signal controlled intersections. 
Expected benefits of TPS include reduction of transit travel time, operating cost, 
and exhaust gas emissions and increase of transit schedule reliability and rider 
comfort. However, TPS can cause remarkable negative impacts on the traffic 
from competing approached. To properly design the TPS which can effectively 
curtail the transit delays with the minimal impact to the competing traffics, a 
variety of preemption signal strategies and two different approaches to provide 
priority to transit vehicles are discussed below. 

2.1.1 Priority strategy for TPS 

There are a variety of ways including passive priority, green extension, red 
truncation (early green), actuated transit phase, phase insertion, phase rotation, 
and adaptive/real-time control to provide priority strategies when designing a 
TPS system (ITS America, 2004). Excluding the passive priority, all other TPS 
strategies are active, where the real-time arrival information of transits and 
other traffics is required. Figure 2-1 indicates the various strategies of TPS and 
those strategies are detailed as follows. 

Passive priority operates continuously regardless of whether transit is present 
or not, and does not require a transit detection system. In general, when transit 
operations are predictable (e.g. consistent dwell times), transit frequencies are 
high, and traffic volumes are low, passive priority strategies can be an efficient 
approach for TPS. One such passive priority strategy is establishing signal 
progression for transit. The coordination plan would account for the average 
dwell time at transit stops. Since the signals are coordinated for the flow of 
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transit vehicles and not other traffic, other traffic may experience unnecessary 
delays, stops, and frustration (i.e. phone calls to the signal operators). Therefore, 
the volume of traffic parallel to the TPS movements should also be considered 
with a transit signal progression approach. It is important to note that other 
“passive” improvements may also be of benefit to transit. Operational 
improvements to signal timing plans, such as retiming or coordinating signals 
on a corridor, may improve traffic flow and reduce transit travel time as well. 

 

Figure 2-1 Various TPS strategies. 

 

A green extension strategy extends the green time for the TPS movement 
when a transit vehicle is approaching. This strategy only applies when the 
signal is green for the approaching transit vehicle. Green extension is one of the 
most effective forms of TPS since a green extension does not require additional 
clearance intervals, yet allows a transit vehicle to be served and significantly 
reduces the delay to that vehicle relative to wait for a red truncation or special 
transit phase. 

A red truncation strategy shortens the green time of preceding phases to 
expedite the return to green for the movement where a transit vehicle has been 
detected. This strategy only applies when the signal is red for the approaching 
transit vehicle. A red truncation and a green extension strategy may be applied 
together to maximize the time within the signal cycle in which transit would be 
eligible for priority. 
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Actuated transit phases are only displayed when a transit vehicle is detected 
at the intersection. An example would be an exclusive left turn lane for transit 
vehicles. The left turn phase is only displayed when a transit vehicle is detected 
in the lane. Another example would be the use of a queue jump phase that 
would allow a transit vehicle to enter the downstream link ahead of the normal 
traffic stream. 

When a special priority phase is inserted within the normal signal sequence, it 
is referred to as phase insertion. The phase can only be inserted when a transit 
vehicle is detected and requests priority for this phase. 

The order of signal phases can also be “rotated” (i.e. phase rotation) to 
provide TPS. For example, a northbound left turn phase could normally be a 
lagging phase, meaning it follows the opposing through signal phase. A 
northbound left turning bus-requesting priority that arrives before the start of 
the green phase for the through movement could request the left turn phase. 
With the phase rotation concept, the left turn phase could be served as a leading 
phase in order to expedite the passage of the transit vehicle. 

Adaptive/real-time TPS strategies provide priority while simultaneously 
trying to optimize given performance criteria. The criteria may include person 
delay, transit delay, vehicle delay, and/or a combination of these criteria. These 
strategies continuously optimize the effective timing plan based on real-time, 
observed data. They typically require early detection of a transit vehicle in 
order to provide more time to adjust the signals to provide priority while 
minimizing traffic impacts. Adaptive systems also often require the ability to 
update the transit vehicle’s arrival time, which can vary due to the number of 
stops and traffic conditions. The updated arrival time can then be fed back into 
the process of adjusting the signal timings. 

2.1.2 Unconditional and conditional TPS 

There are generally two different approaches to provide TPS. The first one, 
called unconditional TPS, is to provide priority to all transit vehicles sending a 
request signal without any premise. Most TPS applications currently utilize this 
simple approach due to its low cost advantage. After the priority request is 
transmitted to the traffic signal controller, in green extension or red truncation 
priority strategies, an extension of the green phase serving the transit vehicle is 
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extended up to a maximum limit or a truncation of the corresponding cross 
street red phase is truncated. Such truncation should respect to the minimum 
green time required for pedestrians to safely cross the street. 

An alternative approach, called conditional TPS, uses more sophisticated 
systems to determine if the transit vehicle is behind schedule or meets other 
pre-defined conditions and then makes a control decision after an approaching 
transit vehicle disseminates a priority request. This approach has been made 
feasible by recent technological developments such as automatic vehicle 
location (AVL) system (Chang et al., 1996). Conditional TPS means that not 
all transit vehicles would be provided with priority treatment, depending upon 
the bus schedule, the traffic conditions of competing approaches, etc. 

2.2 TPS Related Research 

Over the past several decades, a variety of studies related to transit priority 
strategies have been conducted, through either experimental studies with before 
and after analysis (e.g. Elias, 1976; Cottinet et al., 1979; Bishop, 1994; 
Hunter-Zaworski et al., 1995; Lewis, 1996; Duncan and Mirabdal, 1996; Boje 
and Nookala, 1996; Vahidi, 2000; Toone, 2003; Skehan, 2003) or analytical 
model and simulation (e.g. Jacobson and Sheffi, 1981; Khasnabis et al., 1993; 
Sunkari et al., 1995; Cisco and Khasnabis, 1995; Chang et al., 1996; Wu and 
Hounsell, 1998; Su and Lee, 1999; Hsu et al., 2003; Dion et al., 2004). 

In the experimental studies, Elias (1976) conducted a bus preemption study in 
Sacramento, California, demonstrating benefits derived from preemption and 
showing that the added delays to automobiles were negligible with low bus 
frequency. Cottinet (1977) investigated and compared three preemption 
strategies in an experiment in Nice, France. The first strategy allowed an 
incoming bus to change the signal to green whenever it hit the detector. The 
second strategy shortened the red period only and the third allowed only for an 
extension of the green period. The result reported that the first strategy was 
superior to the last two strategies. 

Bishop (1994) implemented various TPS strategies for buses on five case study 
sites in Europe. The investigating results showed 6% ~ 42% reduction in transit 
travel time and 0.3% ~ 2.5% increase in auto travel times. Hunter-Zaworski et 
al. (1995) described the Powell Boulevard Pilot Project, conducted in Portland 
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metropolitan area, which tested the effectiveness of two techniques, including 
green extension for far-side stop locations and queue jump for near-side stop 
locations, for determining traffic signal priority for buses. The survey results in 
this study indicated that bus travel time for the experimental bus line was 
reduced slightly in the peak direction with bus signal priority. 

Lewis (1996) implemented green extension and red truncation strategies for 
buses in Tualatin Valley Highway, Portland, Oregon. The investigating results 
showed bus traveling time savings of 1.7% ~ 14.2% per trip. In term of the 
performance for all vehicles, there was 2 to 13 seconds reduction in per 
intersection delay and up to 3.4% reduction in travel time variability. Duncan 
and Mirabdal (1996) also implemented green extension and red truncation 
strategies. The TPS was equipped for the LRT and trolleys in San Francisco, 
California. The results showed 6% ~ 25% reduction in transit delay. 

Boje and Nookala (1996) carried out green extension, red truncation, and 
actuated transit phase TPS strategies for buses running on the Louisiana 
Avenue; Minneapolis, Minnesota. The results revealed 0% ~ 38% reduction in 
bus travel time depending on the TPS strategies. However, the implementation 
of TPS also caused 23% increase in total traffic delay and skipping signal phase 
would cause some driver frustration. Vahidi (2000) implemented green 
extension and red truncation strategies for streetcars and buses in Toronto, 
Ontario. The results showed up to 46% reduction in transit delay and 10 
streetcars and 4 buses removed from service due to the saving of traveling time. 
Moreover, the results also showed that the cross street traffic of TPS equipped 
intersection was not significantly affected. 

Toone (2003) conducted green extension and red truncation strategies for buses 
in Rainier Avenue, Seattle, Washington. The results indicated 24% average 
reduction in stops for buses and 25% ~ 34% reduction in bus delay. For all 
vehicles passing the intersection, it had 5% ~ 8% average reduction in travel 
time. Skehan (2003) carried out green extension, red truncation, and actuated 
transit phase TPS strategies for buses running on Wilshire and Ventura 
Boulevards, Los Angeles, California. The TPS was introduced as part of BRT 
system in this project. The results showed 8% reduction in average bus running 
time and 33% ~ 39% decrease in bus delay at the TPS intersection. The results 
also revealed that the implementation of TPS has insignificant impact to cross 
street traffic: average of 1 second per vehicle per cycle increase in delay and 
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did not change the traffic level of service. Those experimental studies 
mentioned above are summarized in Table 2.1. 

In the analytical model and simulation studies, Jacobson and Sheffi (1981) 
developed an analytical model of the delays to bus passengers and automobile 
occupants at a signalized intersection under bus preemption. The preemption 
strategy included an extension of the duration of the green and a shortening of 
the duration of the red. The approximate analytical approach in this paper 
enabled the analyst to investigate the effects of several design parameters on 
the total intersection delay. The result of the experiments showed that bus 
preemption reduced the total delay, expressed in person-seconds, when both 
bus occupancy and the flow of buses were high. Moreover, it was also shown 
that, contrary to common engineering experience, bus preemption is beneficial 
even when the cross traffic was high. 

Khasnabis et al. (1993) presented a computer simulation model (PREEMPT) to 
depict the operating cost and ridership consequence of signal preemption. This 
tool is for sketch planning purposes and is designed to provide the user with 
broad information on changes in fleet size, travel time, revenue, and operating 
cost as a consequence of changes in travel aped attributable to signal 
preemption. The output trends observed in three simulation cases presented 
appear reasonable, indicating that the PREEMPT model is applicable. However, 
no effort was made to validate the model through the actual deployment of the 
model. 

Sunkari et al. (1995) developed a model to evaluate the impacts of 
implementing a priority strategy at signalized intersections. Priority was 
provided by phase extension and early start of the priority phase at regular 
intervals. The model uses the delay equations for signalized intersections in the 
1985 Highway Capacity Manual. To compare the model delay and investigated 
delay, a priority strategy was developed and implement in the field and delay 
was measured. The comparison results indicated that the model seems to be 
predicting delay reasonably and accurately. In some phases, however, the 
model was overestimating delay. 
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Table 2.1 Summary of experimental TPS related studies 

Author (year) Location Transit 
type TPS strategy Benefit/Impact 

Elias (1976) Sacramento, 
California 

Bus Various z Added delays to automobiles were 
negligible with low bus frequency 

Cottinet et al. 
(1979) 

Nice, France Bus Green extension, 
red truncation, 
actuated transit 
phase 

z Performance of actuated transit phase 
was superior to the other two strategies

Bishop (1994) Europe Bus Various z 6% ~ 42% reduction in transit travel 
time 
z 0.3% ~ 2.5 increase in auto travel times

Hunter-Zaworski 
et al. (1995) 

Powell 
Boulevard, 
Portland, 
Oregon 

Bus Green extension, 
queue jump 

z Bus travel time for the experimental 
bus line was reduced slightly in the 
peak direction 

Lewis (1996) Tualatin 
Volley 
Highway, 
Portland, 
Oregon 

Bus Green extension, 
red truncation 

z Bus traveling time savings of 1.7% ~ 
14.2% per trip 
z 2 to 13 seconds reduction in vehicle 

delay per intersection 
z Up to 3.4% reduction in travel time 

variability 
Duncan and 
Mirabdal (1996) 

San 
Francisco, 
California 

LRT and 
Trolleys 

Green extension, 
red truncation 

z 6% ~ 25% reduction in transit delay 

Bojr and 
Nookala (1996) 

Louisiana 
Avenue, 
Minneapolis, 
Minnesota 

Bus Green extension, 
red truncation, 
actuated transit 
phase 

z 0% ~ 38% reduction in bus travel time 
depending on the TPS strategies 
z 23% increase in total traffic delay 
z Skipping signal phase caused some 

driver frustration 
Vahidi (2000) Toronto, 

Ontario 
Streetcar 
and bus 

Green extension, 
red truncation 

z Up to 46% reduction in transit delay 
z 10 streetcars and 4 buses removed from 

service 
z Cross street traffic was not significantly 

affected 
Toone (2003) Rainier 

Avenue, 
Seattle, 
Washington 

Bus Green extension, 
red truncation 

z 24% average reduction in stops for 
buses 
z 25% ~ 34% reduction in bus delay 
z 5% ~ 8% average reduction in travel 

time for all vehicles 
Skehan (2003) Wilshire and 

Ventura 
Boulevards, 
Los Angeles, 
California 

Bus Green extension, 
red truncation, 
actuated transit 
phase 

z Introduced as part of BRT system 
z 8% reduction in average bus running 

time 
z 33% ~ 39% decrease in bus delay 
z Average of 1 second per vehicle per 

cycle increase in delay of cross street 
traffic 
z Did not change the traffic level of 

service 
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Cisco and Khasnabis (1995) presented two deterministic methods for assessing 
delay and queue length consequences of bus preemption at signalized 
intersection. The procedures were adapted from queuing theory. Three types of 
preemption strategies including green extension, red truncation, and red 
interruption were tested. The two deterministic methods macroscopically 
simulated groups of vehicles and microscopically treated each individual 
vehicle at the intersection using regular signal timing and timing under 
preempted conditions. The case studies indicated some variation between three 
strategies tested, between the two methods used, and between the different 
traffic levels. Macroscopic method is preferred for higher traffic level while 
microscopic method should be used for lighter traffic level. 

Chang et al. (1996) presented two integrated models for adaptive bus 
preemption control in the absence and presence of Automatic Vehicle Location 
(AVL) systems. Instead of using prespecified strategies, such as phase 
extension and/or phase early start, the proposed models make a preemption 
decision based on a performance index which includes vehicle delay, bus 
schedule delay, and passenger delay. Real-time traffic variables from the output 
of TRAF-NETSIM were made use of to test the performance of the algorithms. 
The proposed models with a preemption function yielded favorable results, 
both in the absence and presence of AVL technology, over the strategies 
without preemption, for all traffic conditions. 

Wu and Hounsell (1998) developed analytical procedures which allow 
pre-implementation evaluation of specific categories of pre-signal. The 
pre-signal aimed to give buses priority access into a bus advance area of the 
main junction stop line so as to avoid the traffic queue and reduce bus delay at 
the signal controlled intersection. This paper analyzed two categories of 
pre-signal, which have different operating characteristics, different 
requirements for signaling and different impacts on capacity and delay. 
Equations were developed to enable delays to priority and non-priority traffic, 
with and without pre-signals, to be estimated. The example analyses had shown 
that category A pre-signal (where buses were unsignalized at the pre-signal) 
could save bus delays without significant disbenefit to non-priority traffic. 
Delay savings to bus were highest where there was a long red period at the 
non-priority traffic pre-signal, which was possible when the proportion of green 
time at the main signal was low. However, category B pre-signal (where buses 
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were signalized at the pre-signal) showed to generally cause disbenefit to buses 
unless bus detectors were installed to give signal priority to buses. 

Su and Lee (1999) proposed a fully activated bus preemption control model 
comprising the strategies of green extension, red truncation, and red 
interruption. To prevent the adversely control effects, a fuzzy model designed 
according to the used green duration was proposed to properly choose red 
truncation or red interruption strategies. This paper employed the microscopic 
simulation software named CORSIM to generate extensive traffic information 
for system control efficiency evaluation. The results showed that the proposed 
model could outperform the other models and effectively reduce the total 
passenger delay under various traffic conditions. 

Hsu et al. (2003) developed a simulation system named MISSBUS 
(Microscopic Simulation System for Bus Operation) with microscopic aspect 
for investigating the performance of bus preemption signal. This system could 
simulate the various bus preemption signal control logic (including green 
extension, red truncation, and red interruption) under different bus traffic 
volumes and different layouts of bus stops. The example simulation results 
indicated the proposed system might be a useful tool for investigating bus 
preemption signal design. 

Dion et al. (2004) evaluated the potential benefits of implementing TPS by the 
INTEGRATION microscopic traffic simulation software. The priority strategy 
provided in this paper was green extension and red truncation within a 
fixed-time traffic signal control environment. The simulation results indicated 
that the buses would typically benefit from transit priority, but that these 
benefits might be obtained at the expense of the overall traffic, particularly 
when traffic demand was high. However, it was also found that in periods of 
lesser traffic demand, the overall negative impacts could be negligible due to 
the availability of spare capacity at the signalized intersection. The TPS related 
analytical model and simulation studies are summarized in Table 2.2. 

Due to the simplicity of implementing green extension and red truncation 
strategies, most of the studies reviewed above conducted these two strategies 
and the effectiveness have been proven. Therefore, this study also adopts these 
two strategies to develop the novel TPS control mechanisms. 
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Table 2.2 Summary of analytical model and simulation studies 

Author (year) Model development TPS strategy Findings 

Jacobson and 
Sheffi (1981) 

Develop an analytical model of 
the delays to bus passengers 
and automobile occupants at a 
signalized intersection under 
bus preemption. 

Green 
extension, red 
truncation 

z Bus preemption reduced the total 
person delays when both bus 
occupancy and the flow of buses 
were high. 
z Bus preemption was beneficial 

even when the cross traffic was 
high. 

Khasnabis et al. 
(1993) 

Propose a computer simulation 
model to depict the operating 
cost and ridership consequence 
of signal preemption. 

Not mentioned z The reasonable output trends 
indicated that the PREEMPT 
model was functional. 

Sunkari et al. 
(1995) 

Develop a model to evaluate the 
impacts of implementing a 
priority strategy at signalized 
intersections. 

Green 
extension, red 
truncation 

z The model could predict delay 
reasonably and accurately. 
z The model overestimated delay in 

some phases. 
Cisco and 
Khasnabis 
(1995) 

Develop two deterministic 
methods for assessing delay and 
queue length consequences of 
bus preemption at signalized 
intersection.  

Green 
extension, red 
truncation, red 
interruption 

z Macroscopic method is preferred 
for higher traffic level while 
microscopic method should be 
used for lighter traffic level. 

Chang et al. 
(1996) 

Develop two integrated models 
for adaptive bus preemption 
control in the absence and 
presence of Automatic Vehicle 
Location (AVL) systems. 

Adaptive bus 
preemption 
control 

z The proposed models performed 
better than the strategies without 
preemption both in the absence 
and presence of AVL technology 
for all traffic conditions. 

Wu and 
Hounsell 
(1998) 

Develop analytical procedures 
which allow 
pre-implementation evaluation 
of specific categories of 
pre-signal. 

Pre-signal z Category A pre-signal could save 
bus delays without significant 
disbenefit to non-priority traffic. 
z Category B pre-signal showed to 

generally cause disbenefit to buses 
unless bus detectors were installed 
to give signal priority to buses. 

Su and Lee 
(1999) 

Propose a fully activated bus 
preemption control model. 

Green 
extension, red 
truncation, red 
interruption 

z The proposed model could 
outperform the other models and 
effectively reduce the total 
passenger delay under various 
traffic conditions. 

Hsu et al. 
(2003) 

Develop a simulation system 
named with microscopic aspect 
for investigating the 
performance of bus preemption 
signal. 

Green 
extension, red 
truncation, red 
interruption 

z The proposed system might be a 
useful tool for investigating bus 
preemption signal design. 

Dion et al. 
(2004) 

Evaluate the potential benefits 
of implementing TPS by a 
microscopic traffic simulation 
software. 

Green 
extension, red 
truncation 

z Buses would typically benefit from 
transit priority. 
z The benefits were at the expense of 

the overall traffic, particularly 
when traffic demand was high. 
z The overall negative impacts could 

be negligible in lesser traffic 
demand. 
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2.3 Methods 

The proposed GFLC and AGFLC comprise three methods: Fuzzy Logic 
Controller (FLC), Genetic Algorithm (GA), and Ant Colony Optimization 
(ACO). Brief introductions of these methods are given below. 

2.3.1 Fuzzy Logic Controller 

The underline theory for the FLC system, first proposed by Zadeh (1973), is to 
use fuzzy logic rules to form a control mechanism to approximate expert 
perception or judgment under given conditions. This system is also termed as 
fuzzy control system, or fuzzy inference system, or approximate reasoning, or 
expert system. The FLC is a rule-based system that uses fuzzy linguistic 
variables to model human rule-of-thumb approaches for problem solving, and 
thus overcome the limitation that classical expert systems may meet because of 
their inflexible representation of human decision making. The major strength of 
a FLC also lies in the way a non-linear output mapping of a number of inputs 
can be specified easily using fuzzy linguistic variables and fuzzy rules (Chin 
and Qi, 1998). The framework of FLC is depicted in Figure 2-2. A typical FLC 
system composes of four major components including rule base, data base, 
inference engine, and defuzzification. They are briefly explained in the 
following. 

 

Knowledge Base(KB)

Fuzzification
InterfaceInput Defuzzification

Interface
Inference
Engine Output

Rule Base(RB)Data Base(DB)

 

Figure 2-2 Framework of the FLC. 
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(1) Rule base (RB). The RB is composed of finite IF-THEN rules, from which 
an inference mechanism is formed. A standard form of RB with M fuzzy rules 
is represented as: 

Rule 1：IF x1 = A11 AND x2 = A12 AND … AND xN = A1N THEN y = B1  

Rule 2：IF x1 = A21 AND x2 = A22 AND … AND xN = A2N THEN y = B2 

. 

. 

. 

Rule M：IF x1 = AM1 AND x2 = AM2 AND … AND xN = AMN THEN y = BM 

where x1,…, xN are N state variables and y is a control variable. Ai1 ,…, AiN and 
Bi (i=1,…,M) are respectively the linguistic variables for x1,…, xN  and y in the 
universe of discourse of U1,…,Un and V. Taking the driving speed as an 
example, the linguistic degrees can be very fast, fast, normal, slow and very 
slow. The more general form of the fuzzy rules listed above is: IF premise 
THEN consequent. The left-hand-side of the rules, the premise or so-called the 
antecedent, is associated with the fuzzy controller inputs (or called state 
variables). The right-hand-side of the rules, the consequent, is associated with 
the fuzzy controller outputs (or called control variables). Each antecedent can 
be composed of the conjunction of several state variables; however, each 
consequent is usually formed by one control variable. 

(2) Data base (DB). The DB is formed by the specific membership functions 
of linguistic variables Ai1 ,…, AiN and Bi that transform crisp inputs into fuzzy 
ones. Triangle, trapezoid and bell-shaped membership functions are commonly 
used. 

(3) Inference engine. The operators within the fuzzy rules form the inference 
engine. Generally, fuzzy rules use AND (taking minimum value) or OR (taking 
maximum value) as connecting operators between state variables. 

(4) Defuzzification. For making a decision, defuzzification is the synthesis of 
inference results of all activated fuzzy rules into crisp outputs. Mean of 
maximum method, center of gravity method, Tsukamoto’s method, and 
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weighted average method are commonly used. The diagrammatic 
representations of these defuzzification methods are illustrated in Figure 2-3. 

 

Figure 2-3 Diagrammatic representations of defuzzification methods (Passino 
and Yurkovich, 1997). 

Conventional control theory is well suited for applications where the process 
can be reasonably well characterized in advance and where the number of 
parameters that must be considered is small. However, there are many 
processes that are not well characterized or are subjected to a large number of 
uncontrolled, changeable or immeasurable parameters. The FLC appears to 
offer a new method to produce high-performance control rules for those control 
processes without having good models of the processes being controlled (Li 
and Zhang, 1996). For example, the conventional adaptive signal controllers, 
such as SCOOT, SCATS, and OPAC, employ mathematical equations or 
models to determine crisp threshold values as the cores of control mechanism. 
Its control performance might be negatively influenced by the uncertainty of 
traffic conditions. Since a fuzzy control system has excellent performance in 
data mapping as well as in treating ambiguous and vague aspects of human 
perception or judgment, many recent researches have applied FLC to traffic 
signal control. 
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The applications of FLC to signal control are to determine the signal phasing 
and timing plans, including priority of phases, cycle length and split, by 
utilizing the real-time traffic data, such as vehicle arrival or arrival rate, 
occupancy, queue length, and speed, collected by detectors. Pappis and 
Mamdani (1977) first apply FLC to signal control by using 25 fuzzy rules with 
three states variables: elapsed time, vehicle arrivals, and queue length to 
determine the extension of green time. Their simulation results show that the 
FLC signal control has total vehicle delays 10 to 21% less than an actuated 
signal control. Favilla et al. (1993) employ 11 fuzzy rules with two state 
variables, vehicle arrivals in the green phase and queue length in the red phase, 
to control the extension of green time. Mohamed et al. (1999) establish a 
two-stage FLC model. The first stage is to evaluate the traffic intensity in the 
competing directions by 16 fuzzy rules with traffic flows or queue lengths as 
state variables. The second stage is to decide the extension or termination of 
current phase by 16 fuzzy rules with traffic intensities in green and red phases 
as state variables. Niittymäki (2001) also develops a two-stage FLC model. The 
first stage is to evaluate the traffic conditions by three fuzzy rules with traffic 
flow and occupancy as state variables. The second stage is to determine the 
green time extension by 20 fuzzy rules with vehicle arrival in green phase and 
queue length in red as state variables. The results from both simulation and 
field test reveal that the FLC model has outperformed over the actuated signal 
control. Except the application to traffic signal control, in transportation related 
researches, FLC has also been applied to transportation planning (including trip 
generation, trip distribution, modal spilt, and route choice), selection of 
transportation investment projects, accident analysis and prevention, level of 
service evaluation, aircraft control, and ship loading/unloading control 
(Teodorovic, 1999). 

2.3.2 Genetic Algorithm 

The GA, first proposed by Holland (1975), is a searching process based on the 
mechanics of natural selections and natural genetics. GA is a global 
optimization technique that avoids many shortcomings exhibited in 
conventional search techniques on a large and complicated search space. 
Generally, a simple GA contains three basic operators: selection, crossover, and 
mutation. GA starts with a population of randomly generated solutions (also 
called chromosomes) determined by genes that are in code term, and advance 
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toward better solutions by applying genetic operators, modeled on the genetic 
processes occurring in nature. During the iterative procedures, a constant size 
of population of candidate solution is maintained, and this population 
undergoes evolution in a form of natural selection (Herrera et al., 1998). 

In each generation, the selection is a process by which the chromosomes, coded 
strings, with larger fitness values can produce accordingly with higher 
probabilities large number of their copies in the new generation. The crossover 
is a process by which the systematic information exchange between two coded 
strings is implemented using probabilistic decisions. In a crossover process, 
two coded strings are chosen from the matching pool and arranged to exchange 
their corresponding positions of binary strings at a randomly selected 
partitioning position along them. This process can combine better qualities 
among the preferred good strings. And then the mutation is a process by which 
the chance for the GA to reach the optimal point is reinforced through just an 
occasional alteration of a value at a randomly selected bit position. The 
mutation process may quickly generate those strings which might not be 
conveniently produced by the previous selection and crossover process to avoid 
the trap of local solutions. The GA runs iteratively repeating the above process 
until it arrives at a predetermined ending condition. The process of going from 
the current population to the next population constitutes one generation in the 
execution of a GA. A typical GA cycle is depicted as Figure 2-4. 

GA is theoretically and empirically proven to provide robust search in complex 
spaces, giving a valid approach to problems requiring efficient and effective 
searching. GA methods have been applied to many different problems like 
function optimization, routing problem, scheduling, design of neural networks, 
system identification, digital signal processing, computer vision, control and 
machine learning (Goldberg, 1989). 



 24

 

Figure 2-4 Typical operation of a GA. 
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2.3.3 Ant Colony Optimization 

Ant algorithm draws inspiration from the social behavior of ants to provide 
food to the colony. In the food search process including the food finding and 
the return to the nest, ants deposit a substance called a pheromone. Ants have 
the ability to smell the pheromone and pheromone trails guide the ants during 
the search. When an ant reaches a branch, it decides to take the path according 
to a probability defined by the amount of pheromone existing in the links. In 
this way, the depositions of the pheromone dominate the construction of a path 
between the nest and the food that can be followed by new ants. The 
progressive action of the ants makes the length of the path reduced step by step. 
The shortest path is finally the more frequently visited one and has the highest 
pheromone on it. Conversely, the longer paths are less visited and the 
pheromone on them is evaporated with time passing. 

There are many different heuristics named based on the general ant algorithms 
structure. The first class of ant algorithms called the Ant System (AS) was 
proposed in 1991 and then three types of ant algorithms called ant-density, 
ant-quantity, and ant-cycle are introduced (Dorigo et al., 1991; Colorni et al., 
1992; Dorigo, 1992). The typical problem, which was researched, was the 
well-known Traveling Salesman Problem (TSP). In the ant-density and 
ant-quantity algorithms, the ants update the pheromone directly after a move 
from one city to an adjacent city. In the ant-cycle algorithm, the pheromone 
update is only done after all the ants have constructed the tours and the amount 
of pheromone deposited by each ant is set to be a function of the tour quality. 
Although AS is useful for discovering good or optimal solutions for small TSP, 
the time required is unbearable for large size TSP problems. Therefore, a 
substantial amount of research on ACO has focused on how to improve the AS 
(Lee et al., 2001). 

ACO was first proposed by Dorigo et al. (1996) and differs from AS in three 
main points (Dorigo and Gambardella, 1997a,b). First, it exploits the search 
experience accumulated by the ants more strongly than AS does through the 
use of a more aggressive action choice rule. Second, pheromone evaporation 
and pheromone deposit take place only on the arcs belonging to the best-so-far 
tour. Third, each time an ant use an arc (i, j) to move from city i to city j, it 
removes some pheromone from the arc to increase the exploration of 
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alternative paths. The typical operation of ACO for TSP is briefly narrated as 
follows (Dorigo and Stützle, 2004): 

Step 0: Initialization. K ants are placed on randomly chosen cities. The initial 
pheromone trail ( 0τ ) between any two cities is set to be a small positive 
constant. Set the values of all parameters including the parameter of transition 
rule (q0), pheromone decay parameter for local update rule ( ξ ), pheromone 
decay parameter for global update rule ( ρ ), number of ants (K), and maximal 
iteration (tmax). 

Step 1: Tour construction. To construct a complete solution, an ant 
successively goes over each city it has not visited yet with a probability that 
depends on the heuristic information and pheromone trail. The probability of 
the kth ant moves from city r to city s can be computed as follows: 
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where rjη  is a heuristic value representing for the clossness, which are the 
inverse of distance between city r and city j. rjτ  represents the amount of 
pheromone trail on edge linking city r to city j. k

rJ  represents the set of cities 
that remain to be visited by the ant k positioned on city r. The symbols α  and 
β  are two parameters which determine the relative importance of closeness 
and pheromone trail between two cities. The q is a random number chosen 
randomly with uniform probability in [0,1] and 0 0(0 1)q q≤ ≤  is a parameter 
representing the threshold to implement exploitation or exploration. k

rsP  

represents the probability with which ant k chooses to move from city r to city s 
when implementing exploration. 

Step 2: Local updating. The local pheromone update rule is applied 
immediately after one ant has crossed an arc (i, j) during the tour construction. 
It can be represented by:  

0(1 )ij ijτ ξ τ ξτ← − +                                              (2.3) 
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where (0,1)ξ∈  is a pheromone decay parameter of local update rule making 
the pheromone not going too far beyond 0τ . Experimentally, a good value for 

0τ  is found to be 0 1( )nnNL −=τ . N is the number of cities in the TPS instance 

and Lnn is the total distance solved by greedy heuristic. The effect of the local 
updating rule is that each time an ant uses an arc (i, j) its pheromone trail ijτ  is 

reduced, so that the arc becomes less desirable for the following ants. In other 
word, this allows an increase in the exploration of arcs that have not been 
visited yet and, in practice, has the effect that the algorithm does not show a 
stagnation behavior. 

Step 3: Global updating. After all ants have completed their tours, the global 
updating rule is to deposit a certain amount of pheromone ( ijτ∆ ) on the arcs 

belonging to the best-so-far tour (T*(t)) constructed by the best-so-far 
performed ant. The pheromones on the other links remain unchanged. The 
amount of pheromone ijτ∆  deposited is inversely proportional to the length of 

the tour. That is, the shorter the best-so-far tour, the greater the amount of 
pheromone deposited on links. The pheromone updates for the tth iteration are 
as follow: 

( )( 1) 1 ( ) ( ) ( , ) *( )ij ij ijt t t if arc i j T t+ ← − + ∆ ∈τ ρ τ τ                     (2.4) 

where ( )ijτ t  and ( 1)ijτ t +  are the pheromone level of the incumbent iteration 
and next iteration on arc (i, j), respectively. ]1,0(∈ρ  is a pheromone decay 
parameter of global update rule governing the evaporation of pheromone trail. 
T*(t) is the best-so-far tour constructed by the best-so-far ant till the tth iteration 
and ( ) 1/ *( )ij t L t∆ =τ , L*(t) is the tour length of T*(t). 

It is important to note that the global pheromone update only applied to the arcs 
of best-so-far tour, not to all the arcs as in AS. In this way the computational 
complexity of ACO is reduced at each iteration. Besides, the pheromone is 
discounted by the evaporation factor ρ , this results in the new pheromone 
being a weighted average between the old pheromone value and the amount of 
pheromone deposited. 

Step4: Incumbent tour updating. After an iteration (global updating) has 
been completed, the incumbent solution is tested and updated as: If 
min{ ( )} ( ) *( )kk

L t L t L t+= < , then let L*(t)=L+(t) and T*(t)=T+(t); otherwise L*(t) 
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and T*(t) remain unchanged, where Lk(t) is the constructed tour length of ant k, 
L+(t) is the shortest path of iteration t. 

Step5: Testing of stop condition. If the maximal iterations tmax has been 
reached, then terminate. T*(tmax) is the best tour and L*(tmax) is its tour length. 
Otherwise, go back to Step 1. 

Since the first application to the TSP, a lot of research has tried to apply ACO 
to TSP more efficiently (Stützle and Hoos, 1997, 2000; Bullnheimer et al., 
1999c; Cordón et al., 2000). Except TSP, ACO has also been proven to be 
more efficient and effective in solving many problems, such as vehicle routing 
problem (Bullnheimer et al., 1999a, b; Gambardella et al., 1999; Reimann et al., 
2002; Bella and McMullenb, 2004), quadratic assignment problem (Stützle, 
1997; Maniezzo and Colorni, 1999; Maniezzo, 1999; Stützle and Hoos, 2000), 
scheduling problem (Colorni et al. 1994; Pfahringer, 1996; Stützle, 1998; 
Bauer et al., 2000; Jayaraman et al. 2000), and clustering problem (Parpinelli et 
al., 2002a; Chiou, 2005). 

2.3.4 FLC with GA and ACO 

Since FLCs are highly non-linear systems which have high-dimensional, 
multi-model, and discontinuous response surface, the choice of optimization 
technique may not be obvious and easy (Li and Zhang, 1996). When designing 
a fuzzy logic controller, design parameters such as structure of fuzzy rules, 
choice of membership functions, etc. need to be determined. Traditionally, the 
establishment of fuzzy rules and membership functions has been mainly based 
on the experts’ control experience and actions. However, converting experts’ 
knowledge into IF-THEN rules or fuzzy sets is difficult because the 
investigation result is often incomplete and conflicting. Therefore, the task of 
automatically defining the fuzzy rules and membership functions for a concrete 
application is considered as a hard problem and a large number of methods 
have been proposed to generate the involved algorithms from numerical data, 
making use of different techniques such as ad hoc data-driven methods 
(Bárdossy and Duckstein, 1995), neural networks (Gupta and Gorsalcany, 1992; 
Esobgue and Murrell, 1993; Nauck and Kruse, 1993; Du and Wolfe, 1995; 
Nauck et al., 1997), fuzzy clustering (Babuška, 1998), GA (Wang and Mendel, 
1992; Linkens and Nie, 1993; Bonissone et al., 1996; Hwang, 1998; Cordón et 
al., 2001), and ACO (Casillas et al., 2000, 2005; Parpinelli et al. 2002b). Due to 
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the powerful ability of GA and ACO for solving hard combinational 
optimization problems, this study is interested in these two bio-inspired 
algorithms. 

GA was first applied to the FLC by Karr (1991) to learn the fuzzy rules and 
determine the membership functions. In general, the integration of GA and 
FLC, called as GFLC, can be divided into four categories. (1) use of GAs to 
tune membership functions under a given set of fuzzy rules (e.g. Herrera, et al., 
1995, 1998; Karr, 1991), (2) use of GAs to select fuzzy rules with known 
membership functions (e.g. Lekova, et al., 1998; Chin and Qi, 1998; Thrift, 
1991), (3) use of GAs to learn both fuzzy rules and membership functions 
simultaneously (e.g. Tarng, et al., 1996; Herrera, et al., 1998; Wang and Yen, 
1999), (4) use of GAs to learn both fuzzy rules and membership functions in 
sequence (e.g. Karr, 1991; Kinzel, et al., 1994; Chiou and Lan, 2002, 2004, 
2005; Chiou et al. 2003, 2005). In the first two categories, only one of the fuzzy 
rule and membership function components is learned and the other component 
is set subjectively; thus, the applicability of that GFLC is very likely reduced. 
In the third category, both components are learned simultaneously, thus the 
efficiency and effectiveness of that GFLC could be declined due to a very long 
chromosome needed. Therefore, this study attempts to employ the fourth 
category of GFLC with iterative evolutions to develop the FLC for transit 
preemption. 

Integrating ACO into the FLC is still a novel thinking so far. Casillas et al. 
(2000) made a first attempt and Casillas et al. (2005) extends the original works 
done in 2000. In their papers, the rules selection problem is formulated into a 
combinational optimization problem with the capability of being represented on 
a graph. In this way, the problem is graphed as an assignment problem where a 
fixed number of rules are assigned one of the consequents with a probability 
that depends on the pheromone trail and the heuristic information of the ACO 
algorithm. Unlike the previous paper just assigning rule consequents, Parpinelli 
et al. (2002b) used ACO to generating crisp IF-THEN rule antecedent. In the 
graph of this problem, each node represents a condition that may be selected as 
part of the crisp rule antecedent being built by an ant. An ant goes round the 
graph selecting nodes according to a constraint satisfaction method to build its 
rule antecedent. The rule consequent is assigned afterwards by a deterministic 
method. Although the research mentioned above applied ACO to select the 
fuzzy rules of a FLC, the membership functions were still preset subjectively. 
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Based on this, this study aims to propose an Ant-Genetic based Fuzzy Logic 
Controller (AGFLC) which selects the fuzzy rules by ACO and tunes the 
membership functions by GA sequentially and iteratively. 

2.4 Summary 

No matter the results of experimental studies or analytical model and 
simulation studies, the TPS has been proven to be beneficial to the transit 
vehicles and passengers onboard. However, there are still few evidences that 
the implementation of transit priority strategies has little or no impact on the 
travel delays of other motorists on the competing approaches. The lack of 
explicit awareness of the cost-benefit has obstructed the widespread installation 
of TPS. Therefore, it is essential to well define the impacts of the implementing 
of priority strategies and develop a compromising control logic considering 
both the benefits and impacts to all vehicles involved. Since a fuzzy control 
system has excellent performance in dealing with the non-linear and 
complicated systems, it would be suitable to apply the FLC to establish a TPS 
control model. Furthermore, to equip the FLC an automatic learning 
mechanism for fuzzy rule selection and membership function tuning, this study 
integrates GA and ACO methods to develop the GFLC and AGFLC models. 
However, if only rule selection or membership function tuning is learned in 
constructing a FLC, the other one must be set subjectively and the generality of 
the FLC would be greatly declined. Therefore, this study develops an iterative 
evolution algorithm that could iteratively learn the rule selection and 
membership function tuning in sequence. The details of these two proposed 
models are described in the following chapter. 


