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CHAPTER 3 TPS CONTROL LOGIC AND PROPOSED 
MODELS 

This chapter first introduces the concept of the FLC-based conditional TPS 
model. Then the design of the FLC is presented. In the last two sections of this 
chapter, the models integrating GA and ACO into the FLC (named GFLC and 
AGFLC) are developed and elaborated in detail. 

3.1 TPS Control Logic 

This study employs green extension and red truncation as priority strategies for 
a transit vehicle. Green extension is activated only in the green phases to 
conclude an extension green time as a transit vehicle approaching the 
intersection, while red truncation is activated only in the red phases to shorten 
the present red time as a transit vehicle approaching the intersection. The 
control logic of implementing green extension and red truncation under 
unconditional and FLC-based conditional TPS is detailed as follows. 

3.1.1 Unconditional TPS 

If unconditional TPS model is employed, the control logic of green extension 
strategy and red truncation strategy is described by following two rules 
(depicted in Figure 3-1): 

Rule 1 (green extension strategy): In the green phase, IF GR < H, THEN 
implement green extension strategy and let Gext = H – GR, where GR 
represents the remaining green time at the moment when a transit 
vehicle actuates the detector. H represents the time needed for a transit 
vehicle traveling from the detector through the far-side stop line of the 
intersection. Gext represents the green extension time. 

Rule 2 (red truncation strategy): In the red phase, IF (RR + AR) > L, THEN 
implement red truncation strategy and let Rtru = RR + AR – L, where RR 
represents the remaining red time when a transit actuates the detector; 
and AR represents the all-red time. L represents the time needed for a 
transit vehicle traveling from the detector to the near-side stop line of 



 32

the intersection. Rtru represents the red truncation time. 
 

All
Red Red phase

H

Phase line

: Implement green extension strategy while transit actuates detector during this period.Notes:
: Implement red truncation strategy while transit actuates detector during this period.

: Do not implement any transit-preemption strategy while transit actuates detector during this period.

All
Red Green phaseGreen phase

L

Gmin

Decision line

 

Figure 3-1 Control logic of unconditional TPS model. 

The definitions of H and L are illustrated in Figure 3-2. The green time can be 
extended by the continuously arriving transit vehicles as long as the green time 
do not exceed the maximal green time. The red time is truncated after the 
minimal green time once the transit vehicle requests for the priority. Therefore, 
to avoid the serious distortion of original signal timing plans, these two 
strategies are implemented under the following conditions: (1) If the phase 
comes to a transition period, such as all-red, it will not activate any strategy. (2) 
The total green extension time should not exceed the maximal green time 
(Gmax). (3) The red time after truncation should not be less than the minimal 
green time (Gmin). (4) No compensation mechanism is provided. All parameters 
including H, L, AR, Gmax and Gmin, are given. 

T P S  co n tro l d ire c t io n :

T rav e l t im e  =  L

D e te c to r  fo r  b u s  a rr iv a l

S ig n a l  c o n tro l le r

                  T rav e l t im e  =  H

B u s

 

Figure 3-2 Illustrated definitions of H and L. 

3.1.2 Conditional TPS 
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If conditional TPS is implemented, giving of priority should be determined 
before communicating to the traffic signal controller. This study concludes a 
decision for providing priority to the approaching transit vehicles by the GFLC 
or AGFLC with considerations of traffic situations in all approaches so as to 
minimize the total person delay of the intersection. The control logic of green 
extension strategy and red truncation strategy is described as rules 3 and 4 
(depicted in Figure 3-3). 

Rule 3 (green extension strategy): In the green phase, IF GR < H AND NE ≥  
Nt, THEN implement the green extension strategy and let Gext = H – GR, 
where NE represents the degree of necessity to implement TPS, which 
is concluded by the AGFLC with a value ranging from 0 to 1. Nt 
represents the threshold value preset to determine whether the priority is 
provided or not. 

Rule 4 (red truncation strategy): In the red phase, IF (RR + AR) > L AND NE 
≥  Nt, THEN implement the red truncation strategy and let Rtru = RR + 
AR – L. 

All
Red Red phase

H

Phase line

: Implement GFLC/AGFLC inference while transit actuates detector during this period.Notes:
: Implement GFLC/AGFLC inference while transit actuates detector during this period.

: Do not implement any GFLC/AGFLC inference while transit actuates detector during this period.

All
Red Green phaseGreen phase

L

Gmin

Actuated line

Decision line

Control Interface GFLC/AGFLC
NE>=Nt

Implement TPS Implement TPS

NE>=Nt NE>=Nt

 

Figure 3-3 Control logic of conditional TPS model. 

Similarly, the abovementioned two rules are implemented under the same 
conditions of unconditional TPS model. 

3.2 Design of the FLC 

As abovementioned, an FLC is constituted by fuzzy logic rules that form a 
control mechanism to approximate expert perception and judgment under the 
given information. The rule base is composed of finite IF-THEN rules with 
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state and control variables. With the considerations of expert intuition and the 
convenience of traffic data acquirement, this study uses total traffic flows (TF) 
at all approaches in the green phase and total queue length (QL) at all 
approaches in the red phase as the state variables and the degree of necessity 
for implementing TPS (NE) as the control variable to form the proposed FLC. 
These variables are assumed with five linguistic degrees (NL: negative large, 
NS: negative small, ZE: zero, PS: positive small, PL: positive large) represented 
by triangular membership functions. This makes a total of 25 combinations in 
the antecedent part of the fuzzy rule base. Moreover, the fuzzy rules use AND 
as the connecting operators between the state variables. The rule base is 
illustrated in Figure 3-4 and the triangular membership functions are illustrated 
in Figure 3-5. 

Rule 1：IF TF = NL AND QL = NL THEN NE = B1 

Rule 2：IF TF = NL AND QL = NS THEN NE = B2 
Rule 3：IF TF = NL AND QL = ZE THEN NE = B3 
. 
. 
.  
Rule 25：IF TF = PL AND QL = PL THEN NE = B25 

Where, { }, , , , , 1 ~ 25iB NL NS ZE PS PL i∈ =  

Figure 3-4 Designed rule base of the FLC. 

The implementation of the proposed FLC requires some real-time traffic 
information: arrival of transit, traffic flow in the green-phase direction, and 
queue length in the red-phase direction. Thus, the transit vehicles should be 
equipped with such devices as global positioning system (GPS) to provide the 
information on arrival. On the other hand, in order to collect the information on 
traffic flow and queue length of other vehicles, two sets of detectors acting as 
check-in and check-out points are also required on all lanes in all approaches. 
The former detector set can be located near the stop line of the intersection to 
count the number of departing vehicles; the later detector set can be at a certain 
distant point from the stop line to count the number of arriving traffic. The 
queue length is thus determined by the difference between these two counting 
results. In practice, the distance between these two sets of detectors requires a 
proper design to accommodate the possible maximum queue length. Moreover, 
with the emerging detection and communication technologies, numerous 
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advanced detectors are introduced that would facilitate the implementation of 
more sophisticated TPS systems. 
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Figure 3-5 Designed membership functions of the FLC: (a) traffic flow (TF), (b) 
queue length (QL), (c) necessity for implementing TPS (NE). 
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3.3 Genetic Fuzzy Logic Controller (GFLC) 

The two models proposed by this study select fuzzy rules either by GA or ACO 
method and then tune membership functions by GA. They are named as GFLC 
and AGFLC, respectively. This section presents GFLC model first. The GFLC 
selects fuzzy rules and tunes membership functions by GA in sequence. The 
encoding methods for fuzzy rules and membership functions, genetic operators, 
and iterative GFLC evolution algorithm are described below. 

3.3.1 Encoding method for fuzzy rules 

The encoding method proposed by Thrift (1991) is adopted to effectively 
shorten the length of chromosome. Each antecedent in the rule base is 
represented by one gene and its linguistic degree of control variable is indicated 
by the value of the corresponding gene. Taking two state variables (x1, x2) and 
one control variable (y) as an example, if each variable has five linguistic 
degrees (NL: negative large, NS: negative small, ZE: zero, PS: positive small, 
PL: positive large), then the chromosome length is 25. Genes take the integers 
from 0 to 5, where 0 represents the exclusion of the rules; other numbers 
indicate the inclusion of the rules and the linguistic degrees of control variable. 
This encoding method is depicted in Figure 3-6. A chromosome with gene 
sequence of 0002040010000001000030000, for example, will represent the 
following five fuzzy rules being selected. 

Rule 1: IF x1 = NL AND x2 = PS THEN y = NS 

Rule 2: IF x1 = NS AND x2 = NL THEN y = PS 

Rule 3: IF x1 = NS AND x2 = PS THEN y = NL 

Rule 4: IF x1 = PS AND x2 = NL THEN y = NL 

Rule 5: IF x1 = PL AND x2 = NL THEN y = ZE 



 37

x 1

y N L N S Z E P S P L

N L

N S

Z E

P S

x 2

P L

g1 g13 g25g2 ••• •••

  0  → Not included
  1 → Y = NL
  2 → Y = NS
  3 → Y = ZE
  4 → Y = PS
  5 →  Y = PL  

Figure 3-6 Encoding method for fuzzy rules. 

3.3.2 Encoding method for membership function 

Consider a triangle fuzzy number and let parameters ck
r, ck

c and ck
l respectively 

represent the coordinates of right anchor, cortex and left anchor of kth linguistic 
degree. Then 15 parameters need to be calibrated for a variable with five 
linguistic degrees. Furthermore, it is assumed the first and last degrees of fuzzy 
numbers are left- and right-skewed triangles, respectively and that the others 
are isosceles triangles as shown in Figure 3-7. Therefore, a variable with five 
linguistic degrees has eight parameters to be calibrated and their orders are: 
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where cmax and cmin are the maximum and minimum values of the variable, 
respectively. The orders between 5

lc  and 3
rc , 4

lc  and 2
rc , 3

lc  and 1
rc  are 
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indeterminate. In order to tune these eight parameters, nine position variables r1 

~ r9 are designed as follows: 

2 min 1
lc c r ω= + ×                                                 (3.3) 

1 2 2
r lc c r ω= + ×                                                 (3.4) 

3 2 3
l lc c r ω= + ×                                                  (3.5) 

2 1 3 4max{ , }r r lc c c r ω= + ×                                           (3.6) 

4 1 3 5max{ , }l r lc c c r ω= + ×                                           (3.7) 

3 2 4 6max{ , }r r lc c c r ω= + ×                                           (3.8) 

5 2 4 7max{ , }l r lc c c r ω= + ×                                           (3.9) 

4 3 5 8max{ , }r r lc c c r ω= + ×                                          (3.10) 

where max min
9

1

( )

i
i

c c

r
ω

=

−
=

∑
. 

Each position variable is represented by four real-coding genes which are also 
depicted in Figure 3-7. The maximum value of the position variables is 99.99 
and the minimum value is 0. Thus, in the example of two state variables and 
one control variable (each with five linguistic degrees), the chromosome is 
composed of 108 genes. 

3.3.3 Genetic Operators 

For the crossover, the max-min-arithmetical crossover proposed by Herrera et 
al. (1995) is employed in this study. Let Gw

t ={ gw1
t ,…, gwk

t ,…, gwK
t } and Gv

t 
={ gv1

t ,…, gvk
t ,…, gvK

t } be two chromosomes selected for crossover, and the 
following four descendants will be generated: 

G1
t+1  = aGw

t + (1-a)Gv
t                                       (3.11) 

G2
t+1  = aGv

t + (1-a)Gw
t                                       (3.12) 

G3
t+1 with g3k

t+1=min{gwk
t, gvk

t}                                 (3.13) 
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G4
t+1 with g4k

t+1=max{gwk
t, gvk

t}                                 (3.14) 

where a is a parameter (0 < a < 1), and t is the number of generations. 
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Figure 3-7 Encoding method for membership functions. 

For the mutation, the non-uniform mutation proposed by Michalewicz (1992) is 
employed in this study. Let Gt = { g1

t ,…, gk
t ,…, gK

t } be a chromosome and 
the gene gk

t be selected for mutation (the domain of gk
t is [gk

l, gk
u]), the value of 

gk
t+1 after mutation can be computed as follows: 
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where b randomly takes a binary value of 0 or 1. The function ),( zt∆  returns a 
value in the range of [0, z] such that the probability of ),( zt∆  approaches to 0 
as t increases: 

)1(),( )/1( hTtrzzt −−=∆                                           (3.16) 
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where r is a random number in the interval [0,1], T is the maximum number of 
generations, and h is a given constant. In Equation (3.15), the value returned by 

),( zt∆  will gradually decrease as the evolution progresses. 

3.3.4 Iterative GFLC evolution algorithm 

The iterative evolution algorithm for selecting the fuzzy rules and tuning the 
membership functions is a two-step evolution process. The first step is to solve 
the composition of fuzzy rules using the membership functions tuned by the 
second step. The second step is to determine the shape of membership 
functions using the fuzzy rules learned from the first step. Consider an FLC 
with N state variables x1, x2 ,…, xN and one control variable y, each with d1, 
d2,…, dN and dN+1 linguistic degrees. Assume that the membership functions of 
all linguistic degrees to be triangle-shaped. The iterative evolution algorithm is 
structured as follows: 
 

Step 0: Initialization. Let v=1 where v represents the number of evolution. 

Step 1: Selecting fuzzy rules by GA. 

Step 1-1: Encoding the fuzzy rules. 

Step 1-2: Generating initial population. Randomly generate an initial 
population with p chromosomes. Each chromosome would have 

1

N

i
i

d
=
∏  genes and each gene randomly takes one integer from the 

interval [0, dN+1]. 

Step 1-3: Calculating fitness values. The fitness value is set as the 
reciprocal of objective function of the problem to be minimized. 
For a rule learning problem with an input-output training dataset, 
the objective function could be to minimize the error between the 
observed output and the output concluded by the GFLC. For a 
rule learning problem without the training dataset, the objective 
function could be defined as the performance index of the control 
plant. The fitness value of each chromosome is calculated for the 
evaluation of the next step. 
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Step 1-4: Selection. Select the chromosomes for crossover and mutation by 
evaluating their fitness values with the Monte Carlo wheel 
method. 

Step 1-5: Crossover. 

Step 1-6: Mutation. 

Step 1-7: Testing the stop condition of Step 1. The stop condition is set 
based on whether the mature rate (the proportion of same 
chromosome in a population) has reached a given constant δ . If 
so, proceed to Step 2; otherwise, go back to Step 1-4. 

Step 2: Tuning membership functions by GA. 

Step 2-1: Encoding the membership functions. 

Step 2-2: Generating initial population. Randomly generate an initial 
population with p chromosomes. Each chromosome has 36(N+1) 
genes and each gene randomly takes one integer from 0, 1, 2, …, 
9. 

Step 2-3: Calculating fitness values. The fitness value is set as the 
reciprocal of objective function of the problem to be minimized. 
The fitness value of each chromosome is calculated for the 
evaluation of the next step. 

Step 2-4: Selection. Select the chromosomes for crossover and mutation by 
evaluating their fitness values with the Monte Carlo wheel 
method. 

Step 2-5: Crossover. 

Step 2-6: Mutation. 

Step 2-7: Testing the stop condition of Step 2. The stop condition is set 
based on whether the mature rate has reached a given constant δ . 
If so, proceed to Step 3; otherwise, go back to Step 2-4. 

Step 3: Testing of the stop condition. If 1( )v vf f −− ≤ ε , then stop, where fv and 
fv-1 are the best objective value for the vth and v-1th evolution epoch 
respectively and ε  is an arbitrary small number. The incumbent 
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fuzzy rules and membership functions are the optimal learning results. 
Otherwise, let v=v+1 and go to Step 1. 

The iterative GFLC evolution algorithm can be portrayed as Figure 3-8. 

Figure 3-8 Iterative evolution flow chart of GFLC. 

3.4 Ant-Genetic Based Fuzzy Logic Controller (AGFLC) 

The AGFLC selects fuzzy rules by ACO and then tunes membership functions 
by GA. The details of applying ACO to select fuzzy rules and iterative 
evolution AGFLC algorithm are elaborated as follows. The employment of 
applying GA to tune membership functions presented in the previous section 
would not be repeated here. 

3.4.1 Selecting fuzzy rules by ACO 

While ACO is applied to a specific problem, the following steps have to be 
performed (Casillas, et al., 2000): 
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z Obtain a problem representation as a graph or a similar structure easily 
covered by ants. 

z Define the way of assigning a heuristic preference to each choice that the ant 
has to take in each step to generate the solution. 

z Establish an appropriate way of initializing the pheromone. 

z Define the updating rules of pheromone. 

These steps are performed to apply to the rules selection problem and described 
as follows. 

(1) Problem description 

For the adaptability of ACO to rules selection problem, we reformulate the 
problem into a clustering problem which divides an antecedent of fuzzy rules 
into a corresponding consequent to form a complete fuzzy rule. The network 
formulation is similar to the one done in Casillas et al. (2005) but the heuristic 
information on the arcs is different. The steps for this reformulation are 
elaborated as follows: 

(a) Determine the clustering objects. The ith object to be clustered is 
defined as the ith antecedent of fuzzy rules, represented by ARi, i=1,…,M. 
M represents the total number of antecedents. Each antecedent can be 
composed of the conjunction of several state variables. With a RB has N 
state variables and M fuzzy rules, the antecedent part can be expressed 
by the following: 

AR1：IF x1 = A11 AND x2 = A12 AND … AND xN = A1N 

AR2：IF x1 = A21 AND x2 = A22 AND … AND xN = A2N 
. 
. 
. 
ARi：IF x1 = Ai1 AND x2 = Ai2 AND … AND xN = AiN 
. 
. 
. 
ARM：IF x1 = AM1 AND x2 = AM2 AND … AND xN = AMN 

Taking two state variables as an example, if each linguistic variable is 
assumed to be five linguistic degrees, there are 25 potential antecedents 
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in a total, as depicted in Table 3.1. 

Table 3.1 Antecedents of two state variables with five linguistic degrees 

x1 x2 NL NS ZE PS PL 
NL AR1 AR6 AR11 AR16 AR21 
NS AR2 AR7 AR12 AR17 AR22 
ZE AR3 AR8 AR13 AR18 AR23 
PS AR4 AR9 AR14 AR19 AR24 
PL AR5 AR10 AR15 AR20 AR25 

Note: NL represents negative large. NS represents negative small. ZE represents zero. 
PS represents positive small. PL represents positive large. 

(b) Link antecedents to consequents. The potential antecedent ARi will be 
linked to any one of the possible consequents, denoted Cj, j=1, 2,…, J. J 
is the number of linguistic degree of control variable. To exclude badly 
defined or conflicted rules, the antecedent ARi could be possibly 
assigned to a cluster set, called exclusion set (CJ+1). Taking two state 
variables and one control variable as an example, if each variable has 
five linguistic degrees, a total of 25 objects (potential antecedents) can 
be grouped into 6 clusters, where Cj, j=1, 2,…, 5, stand for the 
consequents of y=NL, y=NS, y=ZE, y=PS, y=PL, respectively, and C6 
represents the exclusion set. All objects are fully connected to these 6 
clusters as depicted in Figure 3-9. 

 

AR1 AR25AR3AR2

C1

. ...... .

C2 C3 C4 C5 C6

 

Figure 3-9 Clustering network of two state variables and one control variable 
(each with five linguistic degrees). 

To construct a complete solution, each ant successively visits each 
potential antecedent and chooses a consequent with transition probability 
depending on the heuristic information and pheromone level. Initially, 
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each ant is put on one antecedent. That is, the number of ants is equal to 
the number of antecedents. After assigning an antecedent to a consequent 
for each ant, the ants move to the next antecedent in parallel. Thus, the 
choice of each ant would be affected by the previous tour construction 
step because of the local pheromone update rule. 

(2) Heuristic information 

The heuristic information on the arc connecting the potential antecedent to 
consequent represents the preference of selecting a complete fuzzy rule. In this 
study, the reasonability of linking one antecedent to a consequent is taken as 
the heuristic information for tour construction. The reasonability information 
( ijθ ) is defined as the degree of similarity between the assigning result of a 

specific antecedent to a consequent and a predetermined assigning result. Thus, 
to obtain the reasonability information, a predetermined rule table must be 
established in advance. A higher information value shows that the selection 
result is more similar to the predetermined rules. For instance, assuming that 
AR21 (i.e. IF x1=PL and x2=NL) is connected to cluster C5 (y=PL) in the 
predetermined rule table, the reasonability information on this arc would have 
the highest value, followed by the arc connecting to C4 (y=PS), C3 (y=ZE), C2 
(y=NS), while the arc connecting to cluster C1 (y=NL) would have the least 
value. In this study, the value of reasonability information on the arc 
connecting to cluster C6 is preset, and this value will serve as the threshold to 
exclude the rules. Without loss of generality, we assume that the maximum 
value of reasonability information equals to 1 and that the value is decreased by 
1/J (J stands for the number of linguistic degrees of control variable) for each 
additional linguistic degree gap. If an antecedent ARi is assigned to consequent 
Cj, but ARi is connected to consequent Cp in a predetermined rule table, then the 
reasonability information can be expressed as: 

1ij

j p
θ

J
−

= −                                                 (3.17) 

where ijθ  represents reasonability information value on the arc connecting ARi 

and Cj. Take J=5, Cj= C2 (y=NS) and Cp= C4 (y=PS) for instance, 
2 4

1 0.6
5ijθ
−

= − = . 
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After defining the reasonability information, ant k in antecedent r choosing 
consequent s can be determined by the following equations: 

1

1
arg max{[ ] [ ] }

J

rj rjj
s

+

=
= α βθ τ , if 0qq ≤  (exploitation),                   (3.18) 

or visit s with k
rsP , if 0qq >  (exploration), where 

1

1

[ ] [ ]

[ ] [ ]

α β
k rs rs

rs J
α β

rj rj
j

θ τP
θ τ

+

=

=

∑
.                                            (3.19) 

rjτ  is the amount of pheromone on the arc connecting ARr and Cj. The symbols 
α  and β  are parameters that determine the relative importance of 
reasonability and pheromone. q is a random number chosen randomly with 
uniform probability in [0,1] and 0 0(0 1)q q≤ ≤  is a parameter representing the 
threshold to implement exploitation or exploration. k

rsP  is the probability of 
ant k assigning the antecedent r to consequent s when implementing 
exploration. 

(3) Pheromone initialization 

For a minimization problem, the initial pheromone value ( 0τ ) can be set as the 
reciprocal of an objective function (E) of any initial solution (namely the 
predetermined rule base). For a rule learning problem with an input-output 
training dataset, the objective function could be to minimize the error between 
the observed output and the output concluded by the AGFLC. For a rule 
learning problem without the training dataset, the objective function could be 
defined as the performance index of the control system. 

(4) Pheromone updates 

In this proposed AGFLC model, the pheromone levels on arcs are updated both 
locally and globally. The local pheromone update rule is applied immediately 
after one ant has crossed an arc (i, j) during the tour construction. It can be 
represented by:  

0(1 )ij ijτ ξ τ ξτ← − +                                             (3.20) 
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where 0τ  is the value of initial pheromone. (0,1)ξ∈  is a pheromone decay 
parameter of local update rule making the pheromone not going too far beyond 

0τ . 

After all ants have completed their tours, the global updating rule is to deposit a 
certain amount of pheromone ( ijτ∆ ) on the arcs belonging to the best-so-far 

tour (T*(t)) constructed by the best-so-far performed ant. The pheromone level 
of the tth iteration is updated by: 

( )( 1) 1 ( ) ( ) ( , ) *( )ij ij ijt t t if arc i j T t+ ← − + ∆ ∈τ ρ τ τ                    (3.21) 

where ( )ijτ t  and ( 1)ijτ t +  are the pheromone levels of the incumbent iteration 

and next iteration on arc (i, j) respectively. T*(t) is the best-so-far tour 
constructed by the best-so-far ant till the tth iteration. ( ) 1/ *( )ij t E t∆ =τ  where 
E*(t) is the objective function of T*(t). Finally, ]1,0(∈ρ  is a pheromone decay 
parameter of global update rule governing the evaporation of the pheromone 
trail. 

3.4.2 Iterative AGFLC evolution algorithm 

Consider an FLC with N state variables x1, x2 ,…, xN and one control variable y, 
each with d1, d2,…, dN and dN+1 linguistic degrees. Assume that the membership 
functions of all linguistic degrees to be triangle-shaped. The iterative AGFLC 
evolution algorithm is structured as follows: 

Step 0: Initialization. Let v=1 where v represents the number of evolution. 

Step 1: Selecting fuzzy rules by ACO. 

Step 1-1: Network formulation. There are 
1

N

i
i

d
=
∏  potential antecedents to 

be divided into dN+1 clusters. 

Step 1-2: Pheromone initialization. 

Step 1-3: Tour construction. There are a total of 
1

N

i
i

d
=
∏  ants and each ant is 

put on one antecedent. Each ant chooses a consequent with 
transition probability depending on the heuristic information and 
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pheromone level. After assigning an antecedent to a consequent 
for each ant, the ants move to the next antecedent in parallel. 

Step 1-4: Pheromone updates. 

Step 1-5: Incumbent tour updating. After an iteration (global updating) has 
been completed, the incumbent solution is tested and updated as 
follows: If min{ ( )} ( ) *( )kk

E t E t E t+= < , then let E*(t)=E+(t) and 

T*(t)=T+(t); otherwise E*(t) and T*(t) remain unchanged, where 
Ek(t) is the value of the objective function of ant k of iteration t; 
E+(t) is the value of objective function of the best tour T+(t) of 
iteration t. 

Step 1-6: Testing the stop condition of Step 1. If the maximal iterations 
tmax has been reached, then proceed to Step 2. Otherwise, go back 
to Step 1-3. 

Step 2: Tuning membership functions by GA. 

Step 2-1: Encoding the membership functions. 

Step 2-2: Generating initial population. Randomly generate an initial 
population with p chromosomes. Each chromosome has 36(N+1) 
genes and each gene randomly takes one integer from the interval 
[0, 9]. 

Step 2-3: Calculating fitness values. The fitness value is set as the 
reciprocal of objective function of the problem to be minimized. 
The fitness value of each chromosome is calculated for the 
evaluation of the next step. 

Step 2-4: Selection. Select the chromosomes for crossover and mutation by 
evaluating their fitness values with the Monte Carlo wheel 
method. 

Step 2-5: Crossover. 

Step 2-6: Mutation. 
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Step 2-7: Testing the stop condition of Step 2. The stop condition is set 
based on whether the mature rate has reached a given constant δ . 
If so, proceed to Step 3; otherwise, go back to Step 2-4. 

Step 3: Testing of the stop condition. If 1( )v vf f −− ≤ ε , then stop, where fv and 
fv-1 are the best objective value for the vth and v-1th evolution epoch 
respectively and ε  is an arbitrary small number. The incumbent 
fuzzy rules and membership functions are the compromising learning 
results. Otherwise, let v=v+1 and go to Step 1. 

The iterative AGFLC evolution algorithm is portrayed as Figure 3-10. 

 

Figure 3-10 Iterative evolution flow chart of AGFLC. 
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