Centers of Chordal Graphs*

Gerard J. Chang
Department of Applied Mathematics, National Chiao Tung University, Hsinchu 30050, Taiwan, Republic of China

Abstract

In a graph $G=(V, E)$, the eccentricity $e(S)$ of a subset $S \subseteq V$ is $\max _{x \in V} \min _{y \in S} d(x, y)$; and $e(x)$ stands for $e(\{x\})$. The diameter of G is $\max _{x \in V} e(x)$, the $\operatorname{radius} r(G)$ of G is $\min _{x \in V} e(x)$ and the clique radius $c r(G)$ is mine (K) where K runs over all cliques. The center of G is the subgraph induced by $C(G)$, the set of all vertices x with $e(x)=r(G)$. A clique center is a clique K with $e(K)=c r(G)$. In this paper, we study the problem of determining the centers of chordal graphs. It is shown that the center of a connected chordal graph is distance invariant, biconnected and of diameter no more than 5 . We also prove that $2 \operatorname{cr}(G) \leq d(G) \leq 2 c r(G)+1$ for any connected chordal graph G. This result implies a characterization of a biconnected chordal graph of diameter 2 and radius 1 to be the center of some chordal graph.

1. Introduction

In a graph $G=(V, E)$, the distance $d(x, y)$ from vertex x to vertex y is the minimum number of edges in a path from x to y. The eccentricity $e(x)$ of a vertex x is the maximum distance from x to any vertex in G. The diameter $d(G)$ of G is the maximum eccentricity of a vertex in G and radius $r(G)$ the minimum eccentricity. Denote by $C(G)$ the set of all vertices whose eccentricities are equal to $r(G)$. The center of G is the subgraph $\langle C(G)\rangle$ induced by $C(G)$.

It was shown in [7] that the center of a graph lies within a single block (biconnected component), but need not be a block. As described in [1], Hedetniemi proved that any graph H is isomorphic to the center of some graph G which is of diameter 4 and radius 2 . In fact, G can be obtained from H by adding four new vertices u, v, w, x such that v and w are adjacent to all vertices of H, u is adjacent only to v and x only to w. However, the centers of some special graphs are restricted. The oldest result is Jordan's well-known theorem for trees [8]: the center of a tree is either K_{1} or K_{2}. As an easy generalization we can say that the center of a connected block graph, i.e. a graph whose blocks are complete graphs, is either a cut-vertex or a block. Proskurowski [10] proved that the center of a maximal

[^0]outplanar graph is one of seven special graphs. As a generalization, in [11] he found all possible centers of 2-trees, and showed that the center of a 2-tree is biconnected.

A graph is chordal (triangulated or rigid circuit) if every cycle of length greater than three possesses a chord, i.e. an edge joining two nonconsecutive vertices of the cycle. Chordal graphs were first introduced by Hajnal and Surányi [6] and then studied extensively by many people, see [5] for general results. The class of chordal graphs contains trees, block graphs, maximal outerplanar graphs and 2-trees. It was shown in [9] that the center of a chordal graph is connected. The main purpose of this paper is to study the centers of chordal graphs and to answer a part of the question given by Duchet [4]: determine the centers of chordal graphs.

Section 2 introduces the idea of clique radius $c r(G)$ of a graph G, and proves a main theorem: $2 \operatorname{cr}(G) \leq d(G) \leq 2 c r(G)+1$ for any connected chordal graph G. This result is used in Section 3 as the key for a characterization of centers of some chordal graphs.

Section 3 studies necessary and sufficient conditions for the centers of chordal graphs. In particular, we prove that the center of a chordal graph is distance invariant, biconnected and of diameter no more than 5. Finally, by using the main theorem in Section 2, we give a necessary and sufficient condition for a biconnected chordal graph of diameter 2 and radius 1 to be the center of some chordal graph.

2. Clique Centers of Chordal Graphs

A clique of a graph is a set of pairwise adjacent vertices. In a graph $G=(V, E)$, the distance $d(x, S)$ from a vertex x to a set $S \subseteq V$ is $\min _{y \in S} d(x, y)$. The eccentricity e(S) of a set S of vertices is the maximum distance from any vertex to S. A clique center of G is a clique with minimum eccentricity which is called the clique radius of G and is denoted by $\operatorname{cr}(G)$. This idea is similar to bi-center which is an edge with minimum eccentricity; see Theorem 4.2 in [3].

The main result of this section is the relation between clique radius and diameter of a connected chordal graph. It is the keystone for determining the necessary and sufficient conditions of a chordal graph of diameter 2 and radius 1 to be the center of some chordal graph.

Theorem 2.1. $2 \operatorname{cr}(G) \leq d(G) \leq 2 \operatorname{cr}(G)+1$ for any connected chordal graph $G=$ (V, E).

Before proving Theorem 2.1, we first list some definitions and results from [2] which are needed in this paper. Lemma 2.4 is from [9].

If $d(x, y)=k$ is finite and $0 \leq m \leq k$, then $\operatorname{Bet}(x, m, y)$ denotes the set of all vertices z between x and y such that $d(x, z)=m$ and $d(z, y)=k-m$. An n-sun is a chordal graph of $2 n$ vertices with a Hamiltonian cycle ($y_{1}, z_{1}, y_{2}, z_{2}, \ldots, y_{n}, z_{n}, y_{1}$) and each y_{i} is of degree two. Equivalently, an n-sun is a chordal graph $G=(V, E)$ whose vertex set V can be partitioned into $Y=\left\{y_{1}, \ldots, y_{n}\right\}$ and $Z=\left\{z_{1}, \ldots, z_{n}\right\}$ such that the following three conditions hold.
(S1) Y is a stable set in G.
(S2) $\left(z_{1}, \ldots, z_{n}, z_{1}\right)$ is a cycle in G.
(S3) $\left(y_{i}, z_{j}\right) \in E$ if and only if $i=j$ or $i=j+1(\bmod n)$.
In the above definition, if Z is a clique, then we call the n-sun a complete n-sun.
Lemma 2.2. If C is a cycle in a chordal graph, then for every edge (u, v) of C there is a vertex w of C which is adjacent to both u and v.

Lemma 2.3. [2] If G is chordal and $d(x, y)=k$, then $\operatorname{Bet}(x, m, y)$ is a clique for any $0 \leq m \leq k$.

Lemma 2.4. [9] In a chordal graph G, if K is a clique and x a vertex such that $d(x, y)=k$ is a constant for all $y \in K$, then $\operatorname{Bet}(z, 1, x)$ and $\operatorname{Bet}(w, 1, x)$ are comparable for any $z, w \in K$ (i.e. one is a subset of the other); consequently, $\bigcap_{y \in K} B e t(y, 1, x)$ is not empty.

Theorem 2.5. [2] $2 r(G)-2 \leq d(G) \leq 2 r(G)$ for any connected chordal graph G. Moreover, if $2 r(G)-2=d(G)$, then G has a 3-sun as an induced subgraph.

We can also prove two slightly more general results as follows.
Theorem 2.6. If X and Y are two cliques in a chordal graph G such that $d(x, y)=k$ is a constant for all $x \in X$ and $y \in Y$, then $\operatorname{Bet}(X, m, Y) \equiv \bigcup\{\operatorname{Bet}(x, m, y): x \in X$ and $y \in Y\}$ is a clique for any $0 \leq m \leq k$.

Proof. Consider the graph G^{*} obtained from G by adding two new vertices u and v which are adjacent to all vertices in X and Y respectively. Then G^{*} is a chordal graph and $d(u, v)=k+2$. The theorem follows from Lemma 2.3 and the fact that $\operatorname{Bet}(X, m, Y)=\operatorname{Bet}(u, m+1, v)$.

Theorem 2.7. In a chordal graph G, if K is a clique and x is a vertex such that $d(x, y)=k$ is a constant for all $y \in K$, then $\operatorname{Bet}(z, m, x)$ and $\operatorname{Bet}(w, m, x)$ are comparable for any $1 \leq m \leq k$ and $z, w \in K$; consequently, $\bigcap_{y \in K} \operatorname{Bet}(y, m, x)$ is not empty.
Proof. The theorem is true for $m=1$ by Lemma 2.4. Suppose it is true for $m-1$. Let $Z=\operatorname{Bet}(z, m-1, x)$ and $W=\operatorname{Bet}(w, m-1, x)$. $Z \subseteq W$ or $W \subseteq Z$ by the induction hypothesis. Theorem 2.6 implies that $Z \cup W$ is a clique. By Lemma 2.4, $\operatorname{Bet}(y, 1, x)$'s are comparable for all $y \in Z \cup W$. $\operatorname{Bet}(z, m, x)=\bigcup_{y \in Z} \operatorname{Bet}(y, 1, x)$ and $\operatorname{Bet}(w, m, x)=\bigcup_{y \in W} \operatorname{Bet}(y, 1, x)$ then imply that $\operatorname{Bet}(z, m, x)$ and $\operatorname{Bet}(w, m, x)$ are comparable.

The graph in Fig. 1 shows that $\operatorname{Bet}\left(x_{1}, 1, y_{1}\right)$ and $\operatorname{Bet}\left(x_{2}, 1, y_{2}\right)$ are not comparable, so we cannot get a generalization of Theorem 2.7 or Lemma 2.4 by replacing vertex x by a cliue.

Now we are ready to prove the main theorem of this section.
Proof of Theorem 2.1. Choose a clique center K such that $S(K)=\{x \in V: d(x, K)=$ $\operatorname{cr}(G)\}$ has smallest number of vertices. Suppose $x, y \in V$ are such that $d(x, y)=$ $d(G)$. Choose $x^{*}, y^{*} \in K$ with $d\left(x, x^{*}\right)=d(x, K)$ and $d\left(y, y^{*}\right)=d(y, K)$. Then

$$
d(G)=d(x, y) \leq d\left(x, \mathrm{x}^{*}\right)+d\left(x^{*}, y^{*}\right)+d\left(y^{*}, y\right) \leq 2 \operatorname{cr}(G)+1 .
$$

Fig. 1. $\operatorname{Bet}\left(x_{1}, 1, y_{1}\right)$ and $\operatorname{Bet}\left(x_{2}, 1, y_{2}\right)$ are not comparable

Suppose that $d(G) \leq 2 c r(G)-1$. Choose a fixed vertex $w \in S(K)$. Let $K^{*}=$ $\left\{w^{*} \in K: d\left(w, w^{*}\right)=\operatorname{cr}(G)\right\}$. Suppose $K=K^{*}$, i.e. $d\left(w, w^{*}\right)=c r(G)$ for all $w^{*} \in K$. By Lemma 2.4, there is a vertex $x \in \bigcap_{w^{*} \in K} \operatorname{Bet}\left(w^{*}, 1, w\right)$. Then $K \cup x$ is a clique center with $S(K \cup x) \subseteq S(K)-w$, a contradiction to the minimality of $|S(K)|$. So K^{*} is a proper subset of K.

Next, we consider the set $T=\left\{x \in V: \operatorname{cr}(G)-1 \leq d(x, K)<d\left(x, K^{*}\right)\right\}$. If $T=$ \varnothing, then K^{*} is a clique center with $S\left(K^{*}\right)=S(K)$. The same arguments in the second paragraph lead to a contradiction. So $T \neq \varnothing$. For any $x \in T$ and $w^{*} \in K^{*}$, choose $x^{*} \in K-K^{*}$ with $d\left(x, x^{*}\right)=d(x, K)$. By the definitions of K, K^{*} and T, we have

$$
\begin{equation*}
\operatorname{cr}(G)-1 \leq d\left(x, x^{*}\right)=d\left(x, w^{*}\right)-1 \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{cr}(G)=d\left(w, w^{*}\right)=d\left(w, x^{*}\right)-1 \tag{2.2}
\end{equation*}
$$

Choose shortest paths $P\left(x, x^{*}\right), P\left(w, w^{*}\right), P(x, w)$ from x to x^{*}, w to w^{*}, and x to w respectively as in Fig. 2; where y (resp. z) is the vertex in $P\left(x, x^{*}\right) \cap P(x, w)$ (resp. $\left.P\left(w, w^{*}\right) \cap P(x, w)\right)$ with largest distance from x (resp. w).

Fig. 2.

Suppose $y=x^{*}$, then $d(G) \geq d(x, w)=d\left(x, x^{*}\right)+d\left(x^{*}, w\right) \geq 2 c r(G)$ by (2.1) and (2.2), a contradiction. Hence $y \neq x^{*}$. Similarly, $z \neq w^{*}$. In the cycle (y, \ldots, x^{*}, $w^{*}, \ldots, z, \ldots, y$), by Lemma 2.2, there is a vertex $x^{* *}$ adjacent to both x^{*} and w^{*}. Note that $x^{* *}$ is not between y and x^{*} (similarly, not between z and w^{*}) otherwise $d\left(x, w^{*}\right) \leq d\left(x, x^{*}\right)$, which contradicts (2.1). (2.1) also implies

$$
\begin{equation*}
d\left(x, x^{* *}\right) \geq d\left(x, w^{*}\right)-1 \geq c r(G)-1 \tag{2.3}
\end{equation*}
$$

and (2.2) implies

$$
\begin{equation*}
d\left(w, x^{* *}\right) \geq d\left(w, x^{*}\right)-1 \geq \operatorname{cr}(G) . \tag{2.4}
\end{equation*}
$$

(2.3) and (2.4) together with the assumption $2 c r(G)-1 \geq d(G) \geq d(x, w)$ imply that all inequalities in (2.3) and (2.4) are in fact equalities; and so $x^{* *} \in \operatorname{Bet}\left(x^{*}, 1, w\right)$.

Now consider $K^{* *}=K^{*} \cup\left\{x^{* *}: x \in T\right\}$. It is easy to see that $e\left(K^{* *}\right) \leq e(K)$. Since $K^{* *} \subseteq \operatorname{Bet}\left(K-K^{*}, 1, w\right)$, by Theorem $2.6, K^{* *}$ is a clique. So $K^{* *}$ is a clique center; in fact, is one with $S\left(K^{* *}\right) \subseteq S(K)$ and $d\left(w, w^{* *}\right)=\operatorname{cr}(G)$ for all $w^{* *} \in K^{* *}$. The same arguments as in the second paragraph lead to a contradiction. This shows that $d(G) \geq 2 \operatorname{cr}(G)$ and completes the proof of the theorem.

As a consequence of Theorems 2.1 and 2.5 , and the trivial inequalities $\operatorname{cr}(G) \leq$ $r(G) \leq c r(G)+1$, for any connected chordal graph G exactly one of the following holds: $2 r(G)=d(G)=2 c r(G), 2 r(G)-1=d(G)=2 c r(G)+1$ and $2 r(G)-2=$ $d(G)=2 c r(G)$. For the case of block graphs, the last case is impossible since a block graph contains no 3-sun. For a block graph G with $d(G)=2 \operatorname{cr}(G)$ (resp. $d(G)=$ $2 c r(G)+1), C(G)$ is a cut-vertex (resp. block); in any case $C(G)$ is always a clique center.

3. Graphs Which Are Centers of Chordal Graphs

A chord of a path is an edge joining two nonconsecutive vertices of the path.
Lemma 3.1. In a chordal graph G, all vertices of a chordless path joining two vertices of $C(G)$ entirely belongs to $C(G)$.

Proof. Suppose $x, y \in C(G)$ and $P(x, y)=\left(x=v_{0}, v_{1}, \ldots, v_{n}=y\right)$ is a chordless $x-y$ path. Let v_{i} be the first vertex of $P(x, y)$ which is not in $C(G)$. Choose a vertex z such that $d\left(v_{i}, z\right)>r(G)$ and $j>i$ as small as possible with $d\left(v_{j}, z\right) \leq r(G)$. Then $d\left(v_{k}, z\right)>$ $r(G)$ for $i \leq k<j$ and $d\left(v_{i-1}, z\right)=d\left(v_{j}, z\right)=r(G)$. Let w be the last common vertex on shortest paths $P\left(z, v_{i-1}\right)$ and $P\left(z, v_{j}\right)$. Then $C=P\left(w, v_{i-1}\right) \cup P\left(v_{i-1}, v_{j}\right) \cup P\left(v_{j}, w\right)$ is a cycle. By Lemma 2.2, C has a vertex u adjacent to both v_{i-1} and v_{i}. Since $P(x, y)$ is chordless, $u \in P\left(w, v_{i-1}\right)$ or $u \in P\left(v_{j}, w\right)$. In the former case, $d\left(z, v_{i}\right) \leq d(z, u)+1=$ $r(G)$ which is impossible. In the latter case, $r(G)<d\left(z, v_{i}\right) \leq d(z, u)+1 \leq d\left(z, v_{j}\right)-$ $1+1=r(G)$, a contradiction. So the lemma holds.

Theorem 3.2. The center of a connected chordal graph G is a distance invariance induced subgraph of G.

Proof. Since any shortest $x-y$ path is chordless, the theorem follows from Lemma 3.1.

Theorem 3.3. The center of a connected chordal graph G is biconnected.
Proof. Suppose z is a cut vertex of the center $\langle C(G)\rangle$. Let x and y be two vertices in different components of $\langle C(G)\rangle-z$. There are two disjoint $x-y$ paths in G since $C(G)$ lies in a biconnected component of G as shown in [7]. Take chords, if
there is any, to shorten these two paths until two chordless $x-y$ paths are found. By Lemma 3.1, all vertices of these two paths are in $C(G)$. These two paths then both contain the vertex z, a contradiction. So the center is biconnected.

Note that Theorem 3.3 was proved for 2 -trees in [11]. By Theorem 2.5, for any connected chordal graph G, there are three cases: $d(G)=2 r(G), d(G)=2 r(G)-1$, $d(G)=2 r(G)-2$. We shall derive some restrictions on diameters and radii of centers of chordal graphs according to these cases.

Theorem 3.4. $C(G)$ is a clique for any connected chordal graph G with $d(G)=2 r(G)$.
Proof. Choose two vertices x and y such that $d(x, y)=d(G)$. For any $z \in C(G)$, we have

$$
2 r(G)=d(G)=d(x, y) \leq d(x, z)+d(z, y) \leq r(G)+r(G)
$$

which imply that $d(x, z)=d(z, y)=r(G)$ and so $z \in \operatorname{Bet}(x, r(G), y)$. Thus $C(G) \subseteq$ $\operatorname{Bet}(x, r(G), y)$. The theorem then follows from Lemma 2.3.

In general, $C(G)$ is not necessarily a clique for the case of $d(G)=2 r(G)-1$ or $2 r(G)-2$, see Fig. 3.

(a) $d(G)=2 r(G)-1=5$ and $d(C(G))=3$.

(b) $d(G)=2 r(G)-2=2$ and $d(C(G))=2$.

Fig. 3. Black vertices form $C(G)$

Theorem 3.5. $d(C(G)) \leq 3$ for any connected chordal graph G with $d(G)=2 r(G)-1$.
Proof. Choose x and y such that $d(x, y)=d(G)$. For any $z \in C(G)$, we have

$$
2 r(G)-1=d(G)=d(x, y) \leq d(x, z)+d(z, y) \leq 2 r(G)
$$

Hence $d(x, z)$ and $d(z, y)$ are either $r(G)-1$ or $r(G)$ but not both $r(G)-1$. We shall prove that either $z \in \operatorname{Bet}(x, r(G), y)$ or is adjacent to some vertex in $\operatorname{Bet}(x, r(G), y)$. Since $\operatorname{Bet}(x, r(G), y)$ is a clique by Lemma 2.3, every two vertices of $C(G)$ are of distance at most three in G and hence in $C(G)$.

For the case of $d(x, z)=r(G)$ and $d(z, y)=r(G)-1, z \in \operatorname{Bet}(x, r(G), y)$. For the case of $d(x, z)=r(G)-1$ and $d(z, y)=r(G), z \in \operatorname{Bet}(x, r(G)-1, y)$ and so is adjacent to some vertex in $\operatorname{Bet}(x, r(G), y)$.

Suppose $d(x, z)=d(z, y)=r(G)$. Choose shortest paths $P(x, y), P(y, z), P(z, x)$ which pairwise meet at x^{*}, y^{*}, z^{*} as in Fig. 4. Since $r(G) \geq d(x, t), r(G) \geq d(z, y)$ and $d\left(x, z^{*}\right)+d\left(z^{*}, y\right) \geq d(x, y) \geq 2 r(G)-1$, we must have $z=z^{*}$. By Lemma 2.2, there is a vertex w in the cycle $C=\left(x^{*}, \ldots, u, z^{*}, v, \ldots, y^{*}, \ldots, x^{*}\right)$ which is adjacent to both z^{*} and v. If $w=u$, then $d(x, u)=d(v, y)=r(G)-1$ and $(u, v) \in E$ imply $v \in \operatorname{Bet}(x, r(G), y)$; and so z is adjacent to vertex v in $\operatorname{Bet}(x, r(G), y)$. If $w \neq u$, then w is between x^{*} and y^{*} as in Fig. 4. Note that $r(G)=d\left(x, z^{*}\right) \leq d(x, w)+1$, i.e. $d(x, w) \geq r(G)-1$. Similarly $d(w, y) \geq r(G)-1$. So $d(x, w)=r(G)$ or $r(G)-1$. In the former case, z is adjacent to $w \in \operatorname{Bet}(x, r(G), y)$. In the latter case, z is adjacent to $v \in \operatorname{Bet}(x, r(G), y)$. This completes the proof of the theorem.

Similar arguments as in the proof of Theorem 3.5 lead to the following result.

Fig. 4.

Theorem 3.6. $d(C(G)) \leq 5$ for any connected chordal graph G with $d(G)=2 r(G)-2$.
By observing many examples, we have the following conjecture.
Conjecture: $d(C(G)) \leq 2$ for any connected chordal graph G with $d(G)=2 r(G)-2$.
Next we study sufficient conditions for a biconnected chordal graph H to be the center of some chordal graph G. If $d(H)=1$ or $d(H)=r(H)=2$, then H is the center of itself. For the case of $d(H)=2$ and $r(H)=1$, we have the following result by using the main theorem of Section 2.

Theorem 3.7. Suppose $H=(U, F)$ is a biconnected chordal graph with $d(H)=2$, $r(H)=1$ and $x \in C(H) . H$ is the center of some chordal graph $G=(V, E)$ if and only if $d(H-x) \leq 3$.

Proof. (\Rightarrow) Suppose H is the center of G, i.e. $U=C(G)$. Choose $w \in V$ such that $d(x, w)=r(G)$. For any $z \in U-x, z$ is adjacent to x and $d(z, w) \leq r(G)$. Hence either $d(z, w)=r(G)-1$ and so $z \in \operatorname{Bet}(x, 1, w)$, or else $d(z, w)=r(G)$. For the latter case, $d(z, w)=d(x, w)=r(G)$ imply, by Lemma 2.4 , that $\operatorname{Bet}(z, 1, w) \cap \operatorname{Bet}(x, 1, w) \neq \varnothing$ and so z is adjacent to some vertex in $\operatorname{Bet}(x, 1, w)$. This is true for all $z \in H$. Since $\operatorname{Bet}(x, 1, w)$ is a clique, $d(H-x) \leq 3$.
(\Leftrightarrow) Suppose $d(H-x) \leq 3$. By Theorem 2.1, $\operatorname{cr}(H-x)=1$. Let K be a clique center of $H-x$. Then every vertex in $U-x$ is adjacent to x; and every vertex in $U-K$ is adjacent to some vertex in K. Consider the graph G obtained from H by adding two new vertices u and v such that u is adjacent to x and v is adjacent to all vertices of K. It is straightforward to check that G is a chordal graph and H is the center of G.

We close this paper by the following summary of results: a graph H is the center of some chordal graph if and only if
(1) H is chordal and biconnected and
(2) $d(H)=1$, or
$d(H)=r(H)=2$, or
$d(H)=2, r(H)=1$ and $d(H-x) \leq 3$ for any $x \in C(H)$, or
$d(H)=3, r(H)=2$ and "some conditions we still do not know", or
$d(H)=4$ or 5 (we conjecture that this case is impossible).

Acknowledgement. The author wishes to express his gratitude to refree for many useful suggestions about the revision of the paper.

References

1. Buckley, F., Miller, Z. and Slater, P.J.: On graphs containing a given graph as center, J. Graph Theory 5, 427-434 (1981)
2. Chang, G.J. and Nemhauser, G.L.: The k-domination and k-stability problems on graphs, SIAM J. Algebraic Discrete Meth. 5, 332-345 (1984)
3. Chang, G.J. and Nemhauser, G.L.: Covering, packing and generalized perfection, SIAM J. Algebraic Discrete Meth. 6, 109-132 (1985)
4. Duchet, P.: Discussion section for chordal graphs, Sino-Franco Conference on Combinatorics, Algorithm and Coding Theory, Taipei, November 1-6, 1987
5. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York (1980)
6. Hajnal, A. and Surányi, J.: Über die auflösung von graphen in vollständige teilgraphen, Ann. Univ. Sci. Budapest Eötvös Sect. Math. 1, 113-121 (1958)
7. Harray, F. and Norman, R.Z.: The dissimilarity characteristic of Husimi trees, Ann. Math. 58 (1), 134-141 (1985)
8. Jordan, C.: Sur les assemblages des lignes, Journal für die Reine und Angewandte Mathematik 70 S, 185-190 (1869)
9. Laskar, R. and Shier, D.: Construction of (r, d)-invariant chordal graphs, Congressus Numerantium 33, 155-165 (1981)
10. Proskurowski, A.: Centers of maximal outerplanar graphs, J. Graph Theory 4 (2), 75-79 (1980)
11. Proskurowski, A.: Centers of 2-trees, Annals Disc. Math. 9, 1-5 (1980)

Received: March 30, 1989
Revised: November 22, 1990

[^0]: * Supported by the National Science Council of the Republic of China under grant NSC77-0208-M008-05

