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Abstract. In a graph G = (V, E), the eccentricity e(S) of a subset S _~ V is max  ~ v mint ~ s d(x, y); and 
e(x) stands for e({x}). The diameter of G is maxx~ v e(x), the radius r(G) of G is mine v e(x) and the 
clique radius cr(G) is mine(K) where K runs over all cliques. The center of G is the subgraph 
induced by C(G), the set of all vertices x with e(x) = r(G). A clique center is a clique K with 
e(K) = cr(G). In this paper, we study the problem of determining the centers of chordal graphs. It 
is shown that the center of a connected chordal graph is distance invariant, biconnected and of 
diameter no more than 5. We also prove that 2cr(G)<_ d(G)< 2cr(G)+ 1 for any connected 
chordal graph G. This result implies a characterization of a biconnected chordal graph of diameter 
2 and radius 1 to be the center of some chordal graph. 

1. Introduction 

In a g raph  G = (V, E), the distance d(x, y) from vertex x to vertex y is the min imum 
n u m b e r  of  edges in a pa th  from x to y. The  eccentricity e(x) of a vertex x is the 
m a x i m u m  dis tance f rom x to any vertex in G. The  diameter d(G) of G is the 
m a x i m u m  eccentr ici ty  of  a vertex in G and  radius r(G) the m i n i m u m  eccentricity.  
Deno te  by  C(G) the set of  all vertices whose eccentricit ies are  equal  to r(G). The 
center of G is the subgraph  ( C ( G ) )  induced by C(G). 

It  was shown in [7]  that  the center  of  a g raph  lies within a single block 
(b iconnected  component ) ,  but  need not  be a block.  As descr ibed in [ l ] ,  Hedetn iemi  
p roved  tha t  any  g raph  H is i somorph ic  to the center  of  some graph  G which is of 
d iamete r  4 and  radius  2. In fact, G can be ob ta ined  from H by add ing  four new 
vertices u, v, w, x such that  v and  w are  ad jacent  to all vertices of  H, u is ad jacent  
only  to v and  x only to w. However ,  the centers of  some special g raphs  are restricted. 
The oldest  result  is J o r d a n ' s  wel l -known theorem for trees [8]: the center  of a tree 
is ei ther  K I or  Kz.  As an easy genera l iza t ion  we can say that  the center  of a 
connec ted  b lock  graph,  i.e. a g raph  whose blocks are comple te  graphs,  is ei ther  a 
cut-ver tex or  a block.  P rosku rowsk i  [10] proved  that  the center  of a maximal  
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outplanar graph is one of seven special graphs. As a generalization, in [11] he found 
all possible centers of 2-trees, and showed that the center of a 2-tree is biconnected. 

A graph is chordal (triangulated or rigid circuit) if every cycle of length greater 
than three possesses a chord, i.e. an edge joining two nonconsecutive vertices of the 
cycle. Chordal graphs were first introduced by Hajnal and Sur~nyi [6] and then 
studied extensively by many people, see [5] for general results. The class of chordal 
graphs contains trees, block graphs, maximal outerplanar graphs and 2-trees. It 
was shown in [9] that the center of a chordal graph is connected. The main purpose 
of this paper is to study the centers of chordal graphs and to answer a part of the 
question given by Duchet [4]: determine the centers of chordal graphs. 

Section 2 introduces the idea of clique radius cr(G) of a graph G, and proves a 
main theorem: 2cr(G) < d(G) < 2cr(G) + 1 for any connected chordal graph G. 
This result is used in Section 3 as the key for a characterization of centers of some 
chordal graphs. 

Section 3 studies necessary and sufficient conditions for the centers of chordal 
graphs. In particular, we prove that the center of a chordal graph is distance 
invariant, biconnected and of diameter no more than 5. Finally, by using the main 
theorem in Section 2, we give a necessary and sufficient condition for a biconnected 
chordal graph of diameter 2 and radius 1 to be the center of some chordal graph. 

2. Clique Centers of Chordal Graphs 

A clique of a graph is a set of pairwise adjacent vertices. In a graph G = (1/, E), the 
distance d(x, S) from a vertex x to a set S _ F is miny~sd(x, y). The eccentricity e(S) 
of a set S of vertices is the maximum distance from any vertex to S. A clique center 
of G is a clique with minimum eccentricity which is called the clique radius of G and 
is denoted by cr(G). This idea is similar to bi-center which is an edge with minimum 
eccentricity; see Theorem 4.2 in [3]. 

The main result of this section is the relation between clique radius and diame- 
ter of a connected chordal graph. It is the keystone for determining the necessary 
and sufficient conditions of a chordal graph of diameter 2 and radius 1 to be the 
center of some chordal graph. 

Theorem 2.1. 2cr(G) < d(G) <_ 2cr(G) + 1 for any connected chordal graph G = 
(r,F~). 

Before proving Theorem 2.1, we first list some definitions and results from [2] 
which are needed in this paper. Lemma 2.4 is from [9]. 

If d(x,y) = k is finite and 0 < m _< k, then Bet(x, m, y) denotes the set of all 
vertices z between x and y such that d(x, z) = m and d(z, y) = k - m. An n-sun is a 
chordal graph of 2n vertices with a Hamiltonian cycle (yl, zl, Y2, 2"2,..., Yn, Zn, Ya) 
and each Yi is of degree two. Equivalently, an n-sun is a chordal graph G = (V, E) 
whose vertex set V can be partitioned into Y = (Yl,-..,Y,} and Z = {z 1 . . . . .  z,} 
such that the following three conditions hold. 
(S1) Y is a stable set in G. 
(S2) (z 1 . . . . .  z , , z l )  is a cycle in G. 
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($3) (Yi, zi) e E if and only if i --- j or  i = j + 1 (mod n). 
In the above  definition, if Z is a clique, then we call the n-sun a complete n-sun. 

L e m m a  2.2. I f  C is a cycle in a chordal graph, then for every edge (u, v) of  C there is 
a vertex w of  C which is adjacent to both u and v. 

L e m m a  2.3. [2] I f  G is chordal and d(x, y) = k, then Bet(x, m, y) is a clique for any 
O < m < _ k .  

L e m m a  2.4. [9] In a chordal graph G, if K is a clique and x a vertex such that 
d(x, y) = k is a constant for all y e K, then Bet(z, 1, x) and Bet (w,  1, x) are comparable 
for any z, w E K (i.e. one is a subset of  the other); consequently, (']y~K Bet(y, 1,x) is 
not empty. 

Theorem 2.5. [2] 2r(G) - 2 < d(G) < 2r(G) for any connected chordal graph G. 
Moreover, if 2r(G) - 2 = d(G), then G has a 3-sun as an induced subgraph. 

We can also prove two slightly more  general results as follows. 

Theorem 2.6. I f  X and Y are two cliques in a chordal graph G such that d(x, y) = k 
is a constant for all x ~ X and y E Y, then Bet(X,  m, Y) =- U {Bet(x, m, y): x e X and 
y ~ Y} is a clique for any 0 < m < k. 

Proof. Consider  the graph G* obtained f rom G by adding two new vertices u and v 
which are adjacent  to all vertices in X and Y respectively. Then G* is a chordal  
g raph  and d(u, v) = k + 2. The theorem follows f rom L e m m a  2.3 and the fact that  
Bet(X,  m, Y) = Bet(u, m + 1, v). [] 

Theorem 2.7. In a chordal graph G, if K is a clique and x is a vertex such that 
d(x, y) = k is a constant for all y ~ K, then Bet(z, m, x) and Bet(w, m, x) are compara- 
ble for any 1 ~ m <_ k and z, w ~ K; consequently, (~y~KBet(y,m,x)  is not empty. 

Proof. The theorem is true for m = 1 by L e m m a  2.4. Suppose it is true for m - 1. 
Let Z = Bet(z ,m - 1,x) and W = B e t ( w , m -  1,x). Z ~_ W or W _  Z by the in- 
duct ion hypothesis.  Theorem 2.6 implies that  ZI3 W is a clique. By L e m m a  2.4, 
Bet(y, 1,x)'s are comparab le  for all y ~ Z U W. Bet(z ,m,x)  = Ur~z  Bet(y, 1,x) and 
Bet(w,m,x)  = Uy~wBet (y ,  1,x) then imply that  Bet(z ,m,x)  and Bet(w,m,x)  are 
comparable .  [ ]  

The graph  in Fig. 1 shows that  Bet(x 1, 1,yl)  and Bet(xz,  1,y2) are not  compa-  
rable, so we cannot  get a general izat ion of Theorem 2.7 or  L e m m a  2.4 by replacing 
vertex x by a cliue. 

N o w  we are ready to prove  the main  theorem of this section. 

Proof  of  Theorem 2.1. Choose  a clique center K such that  S(K) = {x e V: d(x, K) = 
cr(G)} has smallest n u m b e r  of vertices. Suppose  x, y e V are such that  d(x, y) = 
d(G). Choose  x*, y* e K with d(x, x*) = d(x, K) and d(y, y*) = d(y, K). Then 

d(G) = d(x,y)  <_ d(x, x*) + d(x*,y*) + d(y*,y) <_ 2cr(G) + 1. 
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zl ~ Yl 

x2 Y2 
Fig. 1. Bet(x 1, 1, Y a) and Bet(x2, 1, Y2) are not comparable 

Suppose that  d(G) < 2cr(G) - 1. Choose a fixed vertex w e S(K). Let K* = 
{w* e K: d(w,w*) = cr(G)}. Suppose K = K*, i.e. d(w,w*) = cr(G) for all w* e K. 
By Lemma 2.4, there is a vertex x e (~w.~KBet(w*, 1,w). Then K U x  is a clique 
center with S(K U x) c S(K) - w, a contradict ion to the minimality of IS(K)L. So K* 
is a proper  subset of K. 

Next, we consider the set T = {x e V: cr(G) - 1 < d(x, K) < d(x, K*)}. If T = 
2~, then K* is a clique center with S(K*) = S(K). The same arguments  in the second 
paragraph lead to a contradiction. So T ~ ~.  For  any x e T and w* e K*, choose 
x* ~ K - K* with d(x, x*) = d(x, K). By the definitions of K, K* and T, we have 

cr(G) - 1 < d(x,x*) = d(x,w*) - 1 (2.1) 

and 

cr(G) = d(w, w*) = d(w, x*) - 1. (2.2) 

Choose  shortest paths P(x,x*), P(w,w*), P(x,w) from x to x*, w to w*, and x to w 
respectively as in Fig. 2; where y (resp. z) is the vertex in P(x, x*)N P(x, w) (resp. 
P(w, w*) N P(x, w)) with largest distance from x (resp. w). 

X y 2~** Z W 

Fig. 2. 

Suppose y = x*, then d(G) >_ d(x, w) = d(x,x*) + d(x*, w) >_ 2cr(G) by (2.1) and 
(2.2), a contradiction. Hence y ~ x*. Similarly, z v ~ w*. In the cycle (y . . . . .  x*, 
w* . . . .  ,z  . . . . .  y), by Lemma 2.2, there is a vertex x** adjacent to both  x* and w*. 
Note  that  x** is not  between y and x* (similarly, not  between z and w*) otherwise 
d(x, w*) < d(x, x*), which contradicts (2.1). (2.1) also implies 

d(x, x**) > d(x, w*) - 1 >_>_ cr(G) - 1 (2.3) 
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and (2.2) implies 

d(w, x**) >_ d(w, x*) - 1 >_ cr(G). (2.4) 

(2.3) and (2.4) together with the assumption 2cr(G) - 1 >_ d(G) > d(x, w) imply that 
all inequalities in (2.3) and (2.4) are in fact equalities; and so x** e Bet(x*, 1, w). 

Now consider K** = K* U {x**: x e T}. It is easy to see that e(K**) <_ e(K). 
Since K** _~ Bet(K - K*, 1, w), by Theorem 2.6, K** is a clique. So K** is a clique 
center; in fact, is one with S(K**) ~ S(K) and d(w, w**) = cr(G) for all w** e K**. 
The same arguments as in the second paragraph lead to a contradiction. This shows 
that d(G) >_ 2cr(G) and completes the proof  of the theorem. [] 

As a consequence of Theorems 2.1 and 2.5, and the trivial inequalities cr(G) < 
r(G) < cr(G) + 1, for any connected chordal graph G exactly one of the follow- 
ing holds: 2r(G) = d(G) = 2cr(G), 2r(G) - 1 = d(G) = 2cr(G) + 1 and 2r(G) - 2 = 
d(G) = 2cr(G). For  the case of block graphs, the last case is impossible since a block 
graph contains no 3-sun. For a block graph G with d(G) = 2cr(G) (resp. d(G) = 
2cr(G) + 1), C(G) is a cut-vertex (resp. block); in any case C(G) is always a clique 
center. 

3. Graphs Which Are Centers of Chordal Graphs 

A chord of a path is an edge joining two nonconsecutive vertices of the path. 

Lemma 3.1. In a chordal graph G, all vertices of  a chordless path joining two vertices 
of  C(G) entirely belongs to C(G). 

Proof. Suppose x, y ~ C(G) and P(x, y) = (x = Vo, v l , . . . ,  v, = y) is a chordless x-y 
path. Let vi be the first vertex of P(x, y) which is not in C(G). Choose a vertex z such 
that d(vi, z) > r(G) and j > i as small as possible with d(vi, z) < r(G). Then d(Vk, z) > 
r(G) for i < k < j and d(vi_ 1, z) = d(vj, z) = r(G). Let w be the last common vertex 
on shortest paths P(z, vi_l ) and P(z, vj). Then C = P(w, vi_~ ) U P(vi-~ , vj) U P(v~, w) is 
a cycle. By Lemma 2.2, C has a vertex u adjacent to both vi-~ and v~. Since P(x, y) 
is chordless, u E P(w, vi-1) or u ~ P(vj, w). In the former case, d(z, vi) < d(z, u) + 1 = 
r(G) which is impossible. In the latter case, r(G) < d(z, vg) <_ d(z, u) + 1 < d(z, v~) - 
1 + 1 = r(G), a contradiction. So the lemma holds. [] 

Theorem 3.2. The center of a connected chordal graph G is a distance invariance 
induced subgraph of G. 

Proof. Since any shortest x-y path is chordless, the theorem follows from Lemma 
3.1. [] 

Theorem 3.3. The center of a connected chordal graph G is biconnected. 

Proof. Suppose z is a cut vertex of the center (C(G)) .  Let x and y be two vertices 
in different components of (C(G))  - z .  There are two disjoint x-y paths in G 
since C(G) lies in a biconnected component  of G as shown in [7]. Take chords, if 
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there is any, to shor ten  these two pa ths  until  two chordless  x-y paths  are found. 

By L e m m a  3.1, all vertices of these two pa ths  are in C(G). These two pa ths  then 
bo th  con ta in  the vertex z, a contradic t ion .  So the center  is biconnected.  [ ]  

No te  that  Theorem 3.3 was proved  for 2-trees in [11]. By Theorem 2.5, for any  
connected  chorda l  graph G, there are three cases: d(G) = 2r(G), d(G) = 2r(G) - 1, 
d(G) = 2 r ( G ) -  2. We  shall derive some restr ict ions on d iameters  and  radi i  of 
centers of chorda l  g raphs  according  to these cases. 

Theorem 3.4. C(G) is a clique for any connected chordal graph G with d(G) = 2r(G). 

Proof. Choose  two vertices x and  y such tha t  d(x, y) = d(G). F o r  any z ~ C(G), we 
have 

2r(G) = d(G) = d(x, y) < d(x, z) + d(z, y) < r(G) + r(G), 

which imply  that  d(x , z )= d(z ,y)= r(G) and so z ~ Bet(x,r(G),y). Thus C(G) 
Bet(x, r(G), y). The theorem then follows from L e m m a  2.3. [ ]  

In  general ,  C(G) is not  necessari ly a clique for the case of d(G) = 2r(G) - 1 or  

2r(G) - 2, see Fig. 3. 

k O 

(a) d(G) = 2r(G) - 1 = 5 and d(C(G)) = 3. 

(b) d(G) = 2r(G) - 2 = 2 and d(C(G)) = 2. 

Fig. 3. Black vertices form C(G) 
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Theorem 3.5. d(C(G)) < 3 for any connected chordal 9raph G with d(G) = 2r(G) - 1. 

Proof. Choose  x and  y such that  d(x, y) = d(G). F o r  any  z ~ C(G), we have 

2r(G) - 1 = d(G) = d(x, y) <_ d(x, z) + d(z, y) < 2r(G). 

Hence d(x, z) and  d(z, y) are ei ther  r(G) - 1 o r  r(G) but  not  bo th  r(G) - 1. We shall 
p rove  tha t  e i ther  z ~ Bet(x, r(G), y) or is ad jacent  to some vertex in Bet(x, r(G), y). 
Since Bet(x,r(G),y) is a cl ique by L e m m a  2.3, every two vertices of  C(G) are of 
d is tance  at  mos t  three in G and hence in C(G). 

F o r  the case of  d(x, z) = r(G) and  d(z, y) = r(G) - 1, z ~ Bet(x, r(G), y). F o r  the 
case o ld (x ,  z) = r(G) - 1 and  d(z, y) = r(G), z ~ Bet(x, r(G) - 1, y) and so is ad jacent  
to some vertex in Bet(x, r(G), y). 

Suppose  d(x, z) = d(z, y) = r(G). Choose  shor tes t  pa ths  P(x, y), P(y, z), P(z, x) 
which pairwise  meet  at  x*, y*, z* as in Fig. 4. Since r(G) > d(x, t), r(G) >_ d(z, y) 
and  d(x,z*) + d(z*,y) > d(x,y) >_ 2r(G) - 1, we must  have z = z*. By L e m m a  2.2, 
there is a vertex w in the cycle C = (x*, . . .  ,u,z*,v . . . . .  y* . . . . .  x*) which is ad jacent  
to bo th  z* and  v. If  w = u, then d(x, u) = d(v,y) = r(G) - 1 and (u, v) ~ E imply 
v ~ Bet(x, r(G), y); and  so z is ad jacent  to vertex v in Bet(x, r(G), y). If w ~ u, then w 
is between x* and  y* as in Fig. 4. No te  that  r(G) = d(x,z*) < d(x,w) + 1, i.e. 
d(x, w) >_ r(G) - 1. S imi lar ly  d(w, y) >_ r(G) - 1. So d(x, w) = r(G) or r(G) - 1. In the 
former  case, z is ad jacent  to w E Bet(x, r(G), y). In the la t ter  case, z is ad jacent  to 
v ~ Bet(x, r(G), y). This comple tes  the p r o o f  of  the theorem.  [ ]  

Similar  a rguments  as in the p r o o f  of  Theorem 3.5 lead to the fol lowing result. 

z, ~ ~ z 

27 a ;  * 'tO y *  f f  

Fig. 4. 

Theorem 3.6. d(C(G)) < 5 for any connected chordal 9raph G with d(G) = 2r(G) - 2. 

By observ ing  m a n y  examples ,  we have the fol lowing conjecture.  

Conjecture: d(C(G)) < 2 for any  connec ted  chorda l  g raph  G with d(G) = 2r(G) - 2. 

Next  we s tudy sufficient condi t ions  for a b iconnec ted  chorda l  g raph  H to be the 
center  of  some chorda l  g raph  G. I fd (H)  = 1 or  d(H) = r(H) = 2, then H is the center  
of  itself. F o r  the case of d(H) = 2 and  r(H) = 1, we have the fol lowing result  by 
using the ma in  theorem of  Sect ion 2. 
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Theorem 3.7. Suppose H = (U ,F )  is a biconnected chordal 9raph with d ( H ) =  2, 
r(H) = 1 and x E C(H). H is the center of  some chordal 9raph G = (V, E) if and only 
i f  d (H  - x) <_ 3. 

Proof. ( ~ )  Suppose  H is the center  of G, i.e. U = C(G). Choose  w e V such that  
d(x, w) = r(G). F o r  any z e U - x, z is ad jacent  to x and  d(z, w) < r(G). Hence either 
d(z, w) -- r(G) - 1 and so z e Bet(x, 1, w), or  else d(z, w) = r(G). F o r  the la t ter  case, 
d(z, w) = d(x, w) = r(G) imply,  by L e m m a  2.4, tha t  Bet(z, 1, w) N Bet(x, 1, w) ~ ;0 
and so z is ad jacent  to some vertex in Bet(x, 1, w). This is true for all z e H. Since 
Bet(x, 1, w) is a cfique, d(H - x) < 3. 

( ~ )  Suppose  d(H - x) < 3. By Theorem 2.1, cr(H - x) = 1. Let  K be a clique 
center  of H - x. Then every vertex in U - x is ad jacent  to x, and  every vertex in 
U - K is ad jacent  to some vertex in K. Cons ider  the graph  G ob ta ined  from H by 
add ing  two new vertices u and v such tha t  u is ad jacent  to x and v is ad jacent  to all 
vertices of K. It  is s t ra igh t forward  to check that  G is a chorda l  g raph  and  H is the 
center  of G. [ ]  

We  close this paper  by the fol lowing summa ry  of results: a graph H is the center  
of some chorda l  g raph  if and  only if 
(1) H is chorda l  and  b iconnec ted  and 
(2) d(n)  = 1, or  

d(n)  = r(H) = 2, or  
d(H) = 2, r(H) = 1 and  d ( n  - x) < 3 for any x ~ C(H), or  
d(H) = 3, r(H) = 2 and  "some condi t ions  we still do not  know",  or  
d(H) = 4 or  5 (we conjecture  that  this case is impossible).  

Acknowledgement, The author wishes to express his gratitude to refree for many useful suggestions 
about the revision of the paper. 
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