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評選多項計畫的組合之高效能方法 

 

學生：賴慶祥 指導教授：劉復華教授 

 

國立交通大學工業工程與管理學系博士班 

 

摘      要 

已知多個計畫的期望績效以多指標用來評量，從這些計畫之中選取若干項計畫

所成的每個子集均被視為一個計畫組合。若對於包含 24 個計畫評選的問題，利用傳統

的資料包絡分析法(DEA)對全部可能的計畫組合評量其相對效率，需要超過一天來求得

績效高的計畫組合；本研究發展出一個計算程序降低了計算時間，僅需要 37 秒。對於

包含 37 個計畫的 237
個計畫組合的超大型問題，若直接使用傳統的 DEA，目前任何的

數學規劃軟體均不能處理；以本研究之計算程序，能在一天內求解。本研究的第二個

目的是評量每一個績效高的計畫組合的穩定度，穩定度是指使該計畫組合仍維持高績

效時，其中各項計畫在各指標可容忍惡化的程度。 

 

關鍵詞：資料包絡法、多目標決策、計畫組合、績效評估、穩健性。 

 



 − ii −

An Efficient Method for Selecting the Portfolios 

of a Large Number of Projects 

Student: Ching-Hsiang Lai Advisor: Fuh-Hwa Franklin Liu, Ph.D. 

 

Department of Industrial Engineering & Management 

National Chiao Tung University 

 

Abstract 

We are selecting several projects out of a set of projects. Every subset of these 

projects is treated as a portfolio. Multiple indices are used to measure the expected 

performance of those projects. We employ Data Envelopment Analysis (DEA) to measure the 

relative efficiency of each portfolio against all the possible portfolios. Our research has two 

major objectives. The first objective is to develop an algorithm to reduce problem complexity 

and the required computation time. The conventional DEA needs to generate all the possible 

portfolios first and then measure each portfolio’s efficiency against all the portfolios. For the 

problem with 24 projects, it needs more than one day to obtain the efficient portfolios while 

our procedure needs only 37 seconds only. For our algorithm, a selection problem with 37 

projects could be solved within one day in a personal computer. It is impossible to solve the 

problem with more than 237 decision variables by any existing mathematical programming 

software if conventional DEA program is used. The second objective is to measure the 

stability of each identified efficient portfolio. The tolerance of its each individual index 

becomes worse could be measured for keeping its efficiency. 

Keywords: data envelopment analysis (DEA), multiple criteria decision-making (MCDM), 

portfolio, performance evaluation, stability. 
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Notations 

MCDM 

J : the number of objectives. 
fj(x) : the jth objective of MCDM,  j = 1, … , J. 
x : the feasible point of MCDM. 

S : the feasible set of MCDM. 

MOBILP 

K : the total number of projects. 

k : the index of projects, k = 1, … , K.  

s : the total number of output products. 

r : the index of outputs, r = 1, … , s. 

m : the total number of input resources. 

i : the index of inputs, i = 1, … , m. 
crk : the amounts of product r produced by project k, r = 1, … , s, and k = 1, … , K. 
aik : the amounts of resource i consumed by project k, i = 1, … , m, and k = 1, … , K. 

Ω : the set of all feasible portfolios. 

n : the total number of portfolios (DMUs), n=2K. 
P : the index of portfolios and DMUs, P∈Ω. 
wk : binary variables, wk =1 if project k is selected and wk =0 otherwise, k=1, … , K. 

DEA 

ΩD : the set of all DMUs corresponding to portfolios in Ω. 
DMUP : the DMUs in ΩD, P∈Ω. 
yrP : the values of output r for portfolio P (DMUP), r = 1, … , s, and P∈Ω. 
xiP : the values of input i for portfolio P (DMUP), i = 1, … , m, and P∈Ω. 

T : the portfolio currently under evaluation. 
DMUT : the DMU currently under evaluation. 
yrT : the values of output r for the evaluated portfolio T (DMUT), r = 1, … , s. 

xiT : the values of input i for the evaluated portfolio T (DMUT), i = 1, … , m. 

DEA models 

zT : the objective of additive model when evaluating DMUT.  

ηT : the objective of BCC model when evaluating DMUT. 
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ωT : the objective of BCC dual model when evaluating DMUT. 

ξT : the objective of BCC ratio model when evaluating DMUT. 

ε : the infinitesimal constant. 

θT : the proportional reduction applied to all inputs of DMUT to improve efficiency. 

λP : the variable for projecting DMUP, P∈Ω. 
+
rs  : the surplus in the amounts of output r, r = 1, … , s. 
−
is  : the slack in the amounts of input i, i = 1, … , m. 

μr : the dual variable associated with the rth output constraint, r = 1, … , s. 
vi : the dual variable associated with the ith input constraint, i = 1, … , m. 
u0 : the intercept variable that reflect the impact of scale size of a DMU. 

rμ~  : the weight assigned to output r, r = 1, … , s. 

iv~  : the weight assigned to input i, i = 1, … , m. 

0
~u  : the constant assigned to maximize the output-input ratio of DMUT. 

Stability analysis of DEA 

ΔT : the radius of stability of all inputs and outputs for DMUT. 
O
rΔ  : the radius of stability of output r, r = 1, … , s. 
I
iΔ  : the radius of stability of input i, i = 1, … , m. 

Π : the reference set to evaluate stability regions of DMUT. 

λP : the variable for projecting DMUP, P∈Π. 

rkĉ  : the rth output coefficient of project k after change, r = 1, … , s, and k = 1, … , K. 

ikâ  : the ith input coefficient of project k after change, i = 1, … , m, and k = 1, … , K. 

π : the increment in input of project k and portfolio T. 

δ : the decrement in output of project k and portfolio T. 

Γ : the value of increment in input and decrement in output simultaneously. 

Ψ1 : the set of changed portfolios when perturbed project k. 

Ψ0 : the set of unchanged portfolios when perturbed project k. 

rPŷ  : the rth output of portfolio P after change, r = 1, … , s, and P∈Ψ1. 

iPx̂  : the ith input of portfolio P after change, i = 1, … , m, and P∈Ψ1. 

Identification of efficient portfolios 

ck : the value of single output of project k, k = 1, … , K. 
ak : the value of single input of project k, k = 1, … , K. 
Rk : the ratio of single output to single input, Rk=ck /ak, for project k, k = 1, … , K. 

ri
kR  : the ratio of the rth output to ith input, ikrk

ri
k acR /= , for project k, k = 1, … , K. 
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h, p : the indices of projects currently used. 
ek : the unit row vector with 1 at the k

th
 component and 0 elsewhere. 

H, G : the indices of portfolios currently used. 
IP : the set consists of  index of project k with ck > 0 and ak > 0. 

IN : the set consists of  index of project k with ck < 0 and ak < 0. 

I0 : the set consists of  index of project k with ck > 0 and ak ≤ 0. 
I1 : the set consists of  index of project k with ck ≤ 0 and ak > 0. 
IC : the set consists of  index of project k with ck < 0 and ak = 0. 

IA : the set consists of  index of project k with ck = 0 and ak < 0. 

Ω0 : the subset of portfolios consists of P=(w1, … , wK) with wk=0 for k∈I0. 

Ω1 : the subset of portfolios consists of P=(w1, … , wK) with wk=1 for k∈I1. 

ΩA : the subset of portfolios consists of P=(w1, … , wK) with wk=0 for k∈IA. 

ΩC : the subset of portfolios consists of P=(w1, … , wK) with wk=1 for k∈IC. 

Ωhp : the subset of portfolios consists of P=(w1, … , wK) with wh=0 and wp=1. 

E : the set consists of efficient portfolios. 

N : the set consists of inefficient portfolios. 

| ⋅ | : the number of elements of set. 

Θ : the union of index sets IN, IC, and IA. 

kw  : the binary variable transformed from 1−wk for k∈Θ. 

kc  : the coefficient transformed from −ck for k∈Θ. 

ka  : the coefficient transformed from −ak for k∈Θ. 

PI  : the set consists of  index of project k with kc > 0 and ka > 0. 

0I  : the set consists of  index of project k with kc > 0 and ka ≤ 0. 

1I  : the set consists of  index of project k with kc ≤ 0 and ka > 0. 

NP : the number of elements in PI . 

N0 : the number of elements in 0I . 

N1 : the number of elements in 1I . 

Λ(k) : the reference set of project k by using additive model. 
nj  : the number of portfolio flows in Phase II of filtering algorithm, j = 1, … , 10. 
Tcurrent : the portfolio currently under evaluation in filtering algorithm. 
Tnext : the next portfolio will being evaluated in filtering algorithm. 

 



 − 1 −

1. Introduction 

1.1 Motivation and background 

Decision-making problems involve both quantitative and non-quantitative factors. The 

non-quantitative factors are not usually well defined or are subjectively determined by the 

decision-maker. Such factors cannot be included in the mathematical models while the 

quantitative factors are modeled as multiple objective linear programming (MOLP). The 

coefficients in MOLP may obtainable, well defined, or not sensitive to the final solution. An 

example of MOLP may be projects of government investment, in which the minimization 

objective functions (inputs) may be manpower, machines, construction costs, operation costs, 

other controllable costs and uncontrollable costs while the maximization objective functions 

(outputs) may be revenues, rate of population growth, growth of economic improvement. 

Project selection problems have received substantial attention in recent decades 

(Martino, 1995). This research concerns the problem of selection and evaluation of collective 

projects from a feasible set of projects. There are many difficulties associated with the 

evaluation problems of collective projects, such as multiple conflicting objectives, non-

quantitative objects, and the enormous number of possible combinations. In this paper, each 

subset of the projects is treated as a single portfolio, and evaluated against a relative 

production technology. Many researchers have proposed the evaluation and selection of 

projects in a portfolio (Oral et al., 1991; Cook & Green, 2000; Linton et al., 2002). It is 

desired to establish the portfolios of projects that can be justified as making the best use of 

available resources. It involves the evaluation, from a larger set of projects, of each portfolio 

to be undertaken. The problem discussed here falls firmly into the multiple criteria decision-

making (MCDM) arena. 

In MCDM, there are a number of alternatives among which a decision-maker must 

decide. Each alternative is described by its performance according to certain criteria, 

attributes, or objectives. Stewart (1996) defines a criterion as being a particular point of view 

according to which alternatives may be assessed and rank-ordered. An attribute is a particular 

feature of the alternative with which a numerical measure can be associated. An objective is a 

specific direction of preference defined in terms of an attribute. The aim of MCDM is to 

provide support to a decision-maker in making the best choice among alternatives, and to 

propose the ‘optimal’ solution under some form or preference ranking. 
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Data envelopment analysis (DEA) is a robust and valuable methodology for frontier 

estimation (Charnes et al., 1978). Based on mathematical programming techniques, it is 

particularly suited to estimating multiple input and output production correspondence. In the 

last two decades, DEA has become a popular method for analyzing the efficiency of various 

organization units (Norman & Stoker, 1991) which differ both in the quantities of inputs they 

consume and in the outputs they produce, and does not require any subjective or economic 

parameters (weights, prices, etc.). Many studies have been concerned with the efficiency of 

production. It is clear that DEA is now playing a wider role in management science. In 

particular, DEA approaches have assumed important status within the toolkits of investigators 

concerned with MCDM (Joro et al., 1998). 

It is worthwhile to identify the role of our problem in the related academic studies. 

DEA and MCDM are two related techniques that have received considerable attention in the 

OR/MS literature. Many papers have proposed to analyze the links between DEA and MCDM 

(Belton & Vickers, 1993; Stewart, 1996; Joro et al., 1998; Sarkis, 2000). The success of DEA 

in the area of performance evaluation, with formal analogies between DEA and MCDM, has 

led some authors to propose DEA as a tool for MCDM (Doyle & Green, 1993; Stewart, 1994; 

Bouyssou, 1999; Liu et al., 2000). There appears, nevertheless, to be little interaction between 

these two sub-fields, despite the fact that they address rather similar problems. In general, the 

aim of DEA is not to select one optimal decision-making unit (DMU), but rather to separate 

efficient DMUs from inefficient ones and to indicate the ‘efficient peers’ for each inefficient 

DMU. The MCDM and DEA formulations coincide (although their ultimate aims may still 

differ) if we view inputs and outputs as criteria or attributes for evaluating DEA, with 

minimized inputs and maximized outputs as associated objectives (Belton & Vickers, 1993). 

Many researchers have discussed the project selection problems in various forms. 

Bunch et al. (1989) apply DEA additive model to solve the problems, Oral et al. (1991) depart 

from the DEA CCR model and propose a rather complex multi-stage collective evaluation 

and selection model, which is called the OKL point. Cook & Green (2000) follow the OKL 

point to solve the resource-constrained project selection problem by using mixed-integer 

programming. 
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1.2 Problem definition 

Suppose a set of K candidate project proposals numbered k = 1, … , K is somehow to 

be evaluated and selected. Project k consumes amounts of aik, i = 1, … , m resources to 

produce crk, r = 1, … , s products. A portfolio comprises a subset of the K feasible projects is 

denoted by P = (w1, … , wK), where wk = 1 if the kth project belongs to portfolio P and wk = 0 

otherwise. Let Ω denote the set of all feasible portfolios where: 

Ω = {P = (w1, … , wK) | wk = 0 or 1, k = 1, … , K.}. (1.1) 

Let n be the number of total possible portfolios in set Ω under evaluation, n =||Ω|| = 2K. 

It is assumed that the projects are neither synergistic nor interfering, and all portfolios are 

supportable since resource constraints are absent for a decision maker. If both projects were 

selected, the outputs produced would be the sum of their respective outputs, and so as the 

input resources used. The correspondence set of DMUs is: 

ΩD = {DMUP = (y1P, … , ysP, x1P, … , xmP) | P∈Ω}, (1.2) 

where yrP = cr1w1 + … + crKwK, r = 1, … , s, and xiP = ai1w1 + … + aiKwK, i = 1, … , m. Then, the 

collective evaluation problem is modeled as following multiple objective binary integer linear 

programming (MOBILP): 

Maximize yrP = cr1w1 + … + crKwK,   r = 1, … , s. (M1) 

Minimize xiP = ai1w1 + … + aiKwK,   i = 1, … , m. 

Subject to P∈Ω. 

For solving model (M1), some different methods are proposed in Keeney & Raiffa 

(1976) and Steuer (1986). Difficulties arise due to disagreement between various interested 

parties concerning its form and detail. Instead of considering optimization of the criteria, a 

DEA-based approach circumvents these difficulties by allowing each portfolio to evaluate 

itself relative to all portfolios under consideration. DEA is intended to identify efficient 

portfolios, to characterize inefficient portfolios, and to assess from where inefficiencies arise. 

However, DEA methodology is computationally intensive, requiring the solution of n 

mathematical programs when analyzing a data set that comprises n DMUs. As discussed in 

Ali (1990; 1992; 1994), identification of efficient and inefficient DMUs without solving a 

DEA program is very useful in streamlining the solution of DEA computations. In this study, 

we present mathematical properties to characterize the inherent relationships between 
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efficiency of portfolios and data of projects. By using the output-input ratio of individual 

project, efficient and inefficient portfolios are identified prior to the DEA program. The 

frontier of the pre-identified efficient portfolios is developed as a filter and is used to 

characterize inefficient portfolios from the class of candidate efficiencies. Inefficiency of 

portfolios is identified with portfolios that lie within the DEA frontier. The case-based 

computer systems use linear programming (LP) with a small problem size to rapidly identify a 

large number of inefficient portfolios. Then, the remaining portfolios are evaluated by using 

DEA programs to identify efficient units and measure the stability of each efficient unit to 

rank all efficient units for the decision aim. 

A large number of alternatives would be ruled out from final decision. There are many 

ways to use the solution of our method to obtain the final decision under the consideration of 

non-quantitative factors, such as follows: (i) Compare the super-efficiencies of all the 

efficient portfolios, (ii) Sensitivity analysis on the coefficients so that a specific extremely 

efficient portfolio becomes inefficient, and (iii) Sensitivity analysis on the coefficients so that 

a particular inefficient portfolio becomes efficient. Therefore, the effort for making the final 

decision is significant reduced. 

The literatures of sensitivity analysis of DEA deal with only change values of input 

and/or output of one particular efficient DMU while the other DMUs are hold fixed, or 

change data of all efficient DMUs simultaneously according some given rules. To investigate 

the stability of each efficient portfolio with respect to the coefficients of a specific project, the 

super-efficiency measure could not satisfy our requirements, since the portfolio consists of 

some projects. For a specific efficient portfolio, we are considering the stability of the 

portfolio while we are changing data of some portfolios through changing the coefficients in 

the inputs and outputs of a particular project. When all the stability measures are obtained, 

they are helpful to the final decision maker to possess the fine comparison of efficient 

portfolios. 

1.3 Objectives of the research 

Without predetermined the weights of the objectives, we use DEA to measure the 

efficiency and stability of each portfolio. The objective is to select and rank portfolios that are 

efficient in terms of the characteristic of DEA. The difficulty of the DEA analysis may spend 

more effort on computations while the number of portfolios (DMUs) tends to be large. In our 
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problem, the total number of alternatives is 2K, and it could be doubled when we added one 

more project to the MOBILP (M1). If use the conventional DEA model to assess each 

portfolio against the 2K portfolios, one needs to solve a linear programming models with 2K 

variables and (m+s) constraints. For instance, if K equals to 30, one needs a linear 

programming software package with the capacity to accommodate the 230 variables. It may 

reach the capacity of existing software and the personal computers. The problem with K value 

beyond 30 would not be solved. The computation time is the other issue has to be conquered. 

In our experiment, for the case K=24, we spent more than one day to have final solution. 

We develop an efficient method to identify the efficient portfolios for MOBILP with 

single minimization (input) and minimization (output) problem. One does not need to employ 

linear programming to obtain the solution. For the MOBILP with multiple minimization and 

maximization objective functions, an efficient and effective process for identifying inefficient 

portfolios is proposed to reduce the computation prior to the DEA programs, and identifying 

some efficient portfolios whose frontier is used to implement the filtering algorithm. 

Therefore, all of the efficient portfolios and their correspondence efficiency measures are 

obtained by using the proposed process. 

The inputs and outputs of each portfolio are respectively obtained from the sum of the 

input and output of the selected projects. Hence, the changes of any one coefficient in (M1) 

would change a half number of the total portfolios that contain the changed project. The 

efficiency measures of those portfolios may be changed while the coefficient is perturbed. For 

instance, if the coefficient, say aik, is changed, all the portfolios with wk=1 are changed 

respectively while the other half portfolios are remain unchanged. Our purpose concerns the 

perturbation of coefficients, aik and crk, of project k in an interested efficient portfolio to 

preserve its efficiency. We are considering the stability of an extremely efficient portfolio 

while we are changing the inputs and outputs of some portfolios through changing the 

coefficients of objective functions of a particular project (binary decision variable). The 

sensitivity analysis for the coefficients is modeled as a non-linear programming whose 

optimal values yield a stability region of an extremely efficient portfolio. Sufficient and 

necessary conditions are provided for upward variations of aik and downward variations of crk 

for a specific project such that an extremely efficient portfolio remains efficiency. A 

technique using linear programming to approximate the optimal solution to the non-linear 

programming also proposed. 
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1.4 Organization of the dissertation 

The second chapter reviews the related literature in MCDM, DEA and its sensitivity 

analysis. Chapter three introduces an efficient process for constructing efficient frontier. The 

output-input ratio analysis for quickly identify dominated portfolios are proposed. Then, a 

filtering algorithm is used to solve the MOBILP (M1). Chapter four proposes the sensitivity 

analysis for DEA models. Non-linear models are proposed for finding the stability regions of 

efficient portfolios with respect to the data changed in project. The method that uses linear 

programming model to approximate non-linear programming stability model is also provided. 

Conclusion and discussion are presented in chapter five. The structure of this study is 

illustrated in Figure 1. 

 

2. Literature Review

4. Sensitivity Analysis
4.1 Models for stabilities of coefficients

4.2 Properties for stabilities models
4.3 Solve stability models

3.1 Single input and output problem
Construct efficient frontier

by output-input ratios

5. Conclusion and Discussion

3.2 Multiple inputs and outputs problem
Develop some dominance properties
for saving computations of MOBILP

3.3 Filtering algorithm
Identify efficient frontier for MOBILP

 

 
Figure 1. Organization of dissertation. 
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2. Literature Review 

2.1 Multiple criteria decision making 

The single objective mathematical programming problems are studied extensively in 

the past 40 years. However, single objective decision making methods reflected an earlier and 

simpler era. The world become more complex as we enter the information age. We find that 

almost every important real-world problem involves more than one objective, and decision 

makers find it imperative to evaluate solution alternatives according to multiple criteria. We 

now need to extend the single criterion problems to the multiple criteria problems. A MCDM 

mathematical programming is expressed as the following: 

Maximize  {f1(x), f2(x), … , fJ(x)} (M2) 

Subject to x∈S. 

Where f1(x), f2(x), … , fJ(x) are the J objectives whether it be linear, integer, or 

nonlinear, and S is the set of feasible solutions. If these objectives are all linear, it is called 

MOLP problem. In single objective programming, we must settle on a single objective such 

as minimizing cost or maximizing profit. However, in the real-world applications, we will 

almost certainly be able to identify multiple conflicting criteria. For example, the investment 

planning problems use the following types of measure as criteria: maximize {return, 

dividends} and minimize {risk, derivations from diversification goals}. A point in S is 

optimal if it maximizes the decision-maker’s objectives. A point in S is ‘efficient’ if and only 

if its criterion vector is non-dominated. To be optimal, a point must be efficient. ‘Inefficient’ 

solutions are not candidates for optimality. 

The success of DEA in the area of performance evaluation together with the formal 

analogue existing between DEA and MCDM have led some authors to propose to use DEA as 

a tool for MCDM. The DEA methodology is briefly reviewed in the following. 

2.2 DEA models 

As first developed by Charnes et al. (1978), DEA is a methodology used for assessing 

the relative efficiency of DMUs. DEA is a set of methods and models based on mathematical 

programming and used for characterizing efficiencies and inefficiencies of DMUs with the 
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same multiple inputs and outputs. In this research, additive model and BCC model are used to 

identify the efficient portfolios. These models are briefly reviewed. 

2.2.1 Additive model 

The additive model, presents in Charnes et al. (1985a), is used to introduce the 

concepts of DEA. When portfolio T∈Ω is under evaluation, the model is set to evaluate its 

corresponding DMU, DMUT = (y1T, … , ysT, x1T, … , xmT), as the following: 
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 (M3) 

The additive model relates the efficiency results to the economic concept of Pareto 

optimality. The optimal value, *
Tz , yields an efficiency rating that measures the distance that 

the particular DMU being rated lies from the frontier. If the optimal value to model (M3) is 

equal to zero, then DMUT is located on the frontier. The thinking seems to be that the 

observed portfolio T is in a sense a sample from a larger population of potential portfolios, 

whose input-output combinations are assumed to belong to a convex production possibility 

set (Charnes et al., 1985a). If the optimal value to model (M3) is non-zero, then DMUT is not 

optimal for any linear aggregation of inputs and outputs, and is either dominated, or 

dominated by a convex combination of the inputs and outputs of two or more DMUs (i.e., 

convex-dominated). Thus, DMUT is efficient if and only if *
Tz =0. The DMUT is inefficient if it 

does not lie on the frontier. For example, if any component of the slack variables, *+
is  or *−

rs  

is not zero, the value of the nonzero component will identify the sources and amounts of 

inefficiency in the corresponding outputs and inputs. 

The property of translation invariance for additive model is presented in Ali & Seiford 

(1990). They indicate that the efficient DMUs are preserved efficiency by varying input 

and/or output in the same value to all DMUs. 
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2.2.2 BCC model 

The BCC model (Banker et al., 1984) separates the inefficiency into technical efficient 

and scale inefficiency. A new separate variable, u0, is introduced which makes it possible to 

determine whether operations are conducted in regions of increasing, constant, decreasing 

return to scale in multiple input and output situations. The particular point of selected 

projection is dependent on the employed DEA model and the orientation. For instance, in an 

input orientation BCC model, one focuses on maximal movement toward the frontier through 

proportional reduction of inputs, whereas in an output orientation, one focuses on maximal 

movement via proportional augmentation of outputs. When portfolio T∈Ω is under evaluation, 

the BCC models with an input orientation are presented as the followings: 
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Its dual form is as the following: 
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Several new constructions appear in this BCC model formulation. The variable θT 

appears in the primal problem and an infinitesimal constant, ε, appears both in the primal 

objective function and as a lower bound for the multipliers in the dual problem. The scalar 

variable θT is the proportional reduction applied to all inputs of DMUT to improve efficiency. 

This reduction is applied simultaneously to all inputs and results in a radial movement toward 

the envelopment surface. The infinitesimal constant, ε, in the primal objective function 
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effectively allows the minimization over θT to preempt the optimization involving the slacks. 

Evidently, the following two statements are equivalent: 

1. A DMU is efficient if and only if the following two conditions are satisfied: 

(a) the optimal *
Tθ =1, and 

(b) all slacks and surpluses are zero. 

2. A DMU is efficient if and only if *
Tω = *

Tη =1. 

Both Additive and BCC models are of the variables return to scale (VRS) DEA 

models (Charnes et al., 1994). Based on the DEA perspective, efficiency should be measured 

by the distance from the efficient frontier, as hinted by model (M3)–(M5). But, the usual DEA 

definition is based on the following BCC ratio form. When portfolio T∈Ω is under evaluation, 

the model is expressed as the following: 
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If the optimal value to model (M6) is equal to one, then DMUT is located on the VRS 

frontier. The ratio ξT is given by choosing the non-negative weights μr and νi to multiply to its 

outputs and inputs, respectively. Essentially, each DMUT is allowed to rate itself as highly as 

possible via ratio ξT and restrict no DMU to reach a rating greater than one under the given 

weights. 

2.2.3 Output-input ratio and frontier 

Chen & Ali (2002) use the output-input ratio to identify DEA frontier DMUs prior to 

the DEA calculation. They conclude that the output-input ratio with top-ranked performance 

is a DEA frontier DMU. 

Theorem 2.1 If there exist weight combinations of 0~ ≥iv , i = 1, … , m, 0~ ≥rμ , r = 1, … , s, 

and 0
~u , such that 
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or 

(ii) 
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Then, DMUT is located on the VRS frontier (Chen & Ali, 2002).  

The properties allow using output-input ratio to identify the efficient DMUs without 

solving DEA mathematical programming problems. To illustrate the property, we consider 

the data set consists of 6 DMUs, D1–D6, each consuming one input, x1, to produce two outputs, 

y1 and y2, as listed in Table 1. Columns 5-7 present the output-input ratios of y1/x1, y2/x1, and 

(y1+y2)/x1, respectively. The ratios are calculated along with Theorem 2.1 by setting 1
~v =1, 

1
~μ =1, and 2

~μ =1 to part (i). 

Table 1. Data set with 6 DMUs. 

 Outputs  Input    Efficient 
DMU y1 y2  x1 y1/x1 y2/x1 (y1+y2)/x1 classification

D1 1 4  1 1 4a 5 F 
D2 2 4  1 2 4a 6 E 
D3 3 3.5  1 3 3.5 6.5 E 
D4 4 3  1 4a 3 7b E 
D5 4 2  1 4a 2 6 F 
D6 3 3  1 3 3 6 N 

* E means efficient, F means inefficient on frontier, and N means inefficient inner frontier. 
a The maximum ratio indicates the DMU is located on the frontier. 
b The unique maximum ratio indicates the DMU is extremely efficient. 

The ratio of y1/x1 indicates that D4 and D5 are located on the frontier, ratio of y2/x1 

indicates that D1 and D2 are located on the frontier, and ratio of (y1+y2)/x1 indicates that D4 is 

located on the frontier. Hence, there are four DMUs, D1, D2, D4, and D5, locate on the efficient 

frontier. Unfortunately, the inefficient DMUs, D1 and D5, are also indicated. To avoid the 

misidentification of inefficient DMUs, Lai & Liu (2006) extend the property that allows using 

output-input ratio to identify the ‘extremely’ efficient DMUs without solving DEA programs. 

This following Corollary will indicate that the unique maximum value of ratio (y1+y2)/x1 

allows us to identify D4 is VRS extremely efficient. 

Corollary 2.1 If there exist weight combinations of 0~ ≥iv , i=1, … , m, 0~ ≥rμ , r=1, … , s, 

and 0u~  such that 
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Then, DMUT is VRS extremely efficient. 

Proof: We first prove the part (i). For the weights of 0~ ≥iv , i=1, … , m, 0~ ≥rμ , r=1, … , s, 

and 0u~ we denote 
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It shows that weight combinations of vi and μr takes the values to all constrains less than one, 

except the T th constrains, and it has optimal value to one. Therefore, following the results of 

Charnes et al. (1991), DMUT is VRS extremely efficient. The proof of part (ii) is analogous to 

part (i) and is omitted.  

We observe that: there are m*s possible pairs of input i and output r, i∈{1, … , m} and 

r∈{1, … , s}. If any one of the pairs satisfies the following Corollary, DMUT is VRS 

extremely efficient (Lai & Liu, 2006). 

Corollary 2.2 For any given pair of i’ and r’, i’∈{1, … , m} and r’∈{1, … , s}. If there exists 

a weight combinations of 0~
' ≥iv , 0~

' ≥rμ , and 0
~u , such that  
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+ μμ , for all P∈Ω and P≠T. (2.5) 

Then, DMUT is VRS extremely efficient. 
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Proof: By taking 0~ =iv , i=1, … , m, and i≠i’, 0~ =rμ , r=1, … , s, and r≠r’, we have: 
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Following the results of Corollary 2.1, DMUT is VRS extremely efficient.  

2.3 Sensitivity and stability analysis 

DEA is non-parametric because it requires no assumption on the weights of the 

production function. Sensitivity and stability of DMUs is an important issue in DEA. Charnes 

et al. (1985b) first investigate the sensitivity of single output variation on the CCR model by 

updating the inverse of the optimal basis matrix. Charnes & Neralic (1990) use the same 

technique to explore the sensitivity of the additive model for a simultaneous change in all 

inputs and/or all outputs of an efficient DMU. Andersen & Petersen (1993) propose the 

‘extended DEA measure’ (EDM) model for ranking the efficient units. The EDM model (is 

also called super-efficiency model) is widely applied in the DEA sensitivity analysis. It is 

based on modifying DEA models in which the test DMU is excluded from the reference set. 

For DMUT is under variation, Charnes et al. (1992; 1996) provide the following 

formulation to compute stability regions for efficiency classifications under the additive 

model: 
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The optimal value *
TΔ  is the radius of stability under the ∞-norm. The absolute 

increase of inputs and absolute decrease of outputs are considered only for DMUT. If we use 

different I
iΔ  and O

rΔ  and minimize ∑∑
==

Δ+Δ
s

r
r

m

i
i

11

OI , then the optimal solution provides the 

radius of stability under the 1-norm. The sign of the optimal value indicates the classification 

of the test DMUT (Charnes et al., 1992). In the event of set Π comprising the whole DMU 

being evaluated, negative identifies inefficient units while positive identifies efficient units. 
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In the event of set Π is a subset of Ω and DMUT excludes in Π is under evaluation, 

negative also identifies inefficient; however, positive indicates that DMUT is located above 

the frontier of Π, it means that DMUT has the possibility to perform better than Π, and it is 

classified as an efficient candidate. Based on the results, our study suitably selects a class of 

portfolios with higher performance relative to the others, which is called an ‘efficient 

candidate group’ (ECG) within our proposed algorithm which is called the ‘filtering 

algorithm’ in this paper. The main frame of our filtering algorithm is: 

(i) Using model (M7) to evaluate DMUT, where Π is substituted by set ECG. 

(ii) If *
TΔ <0, DMUT is identified as inefficient. 

     Otherwise, DMUT joins to ECG as a new membership. 

Zhu (1996) uses the super-efficiency model to determine necessary and sufficient 

conditions for preserving efficiency of the efficient DMUs under the CCR model when data 

of the test efficient DMU was changed, and Seiford & Zhu (1998a) generalize the method to 

yield the entire stability region of the test DMU. These literatures of sensitivity and stability 

analysis deal with the situation in which the data variations are only applied to the test DMU. 

However, possible data errors may occur in all DMU simultaneously or individually. 

Thompson et al. (1994) utilize the Strong Complementary Slackness Condition (SCSC) 

multipliers to analyze the stability of CCR efficiency when the data for all efficient DMUs 

were worsened and data for all inefficient DMUs were improved simultaneously. Seiford & 

Zhu (1998b) discuss the stability of efficient DMU based on a worst-case scenario in which 

the efficiency of the test DMU was deteriorating while the efficiency of all other DMUs were 

improving. They use super-efficiency models to find a range of stability for each efficient 

DMU to preserve efficiency when data variations occurred in all DMUs simultaneously. In 

the real-world problems, uncertain conditions could occur not only in single DMU or in all of 

DMUs but also in a particular local or regional subset of DMUs. It means that the possible 

data errors may occur in a subset due to the situations of local uncertainty. 

In this research, we are interested in the stability of a specific efficient DMUT while 

the data of a particular subset of DMUs, including DMUT, is deteriorated simultaneously in 

the same value. Since either an increase of any output or a decrease of any input cannot 

worsen an efficient DMU, we consider the data was changed by giving upward variations in 

inputs or giving downward variations in outputs in a subset of DMUs. 
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3. Identification of Efficient Portfolios 

The difficulty for using DEA to assess and select portfolios of collective projects is 

that there are 2K portfolios need to be evaluated. We must spend more effort on intensive 

DEA calculation. The papers Ali (1990; 1992; 1994) present some properties to allow 

identification of efficient and inefficient DMUs without solving a mathematical programming. 

To circumvent the time-consuming DEA computations, we also derive some properties to 

identify efficient and inefficient classes prior to the DEA calculation for streamlining the 

solution of DEA programs. 

3.1 Single input and output problems 

Now, let us first consider the special case that the projects have only one input and 

output. The two objectives BILP model is expressed as follows: 

Maximize y= c1w1+c2w2+ … +cKwK  (M8) 

Minimize x= a1w1+a2w2+ … +aKwK  

Subject to wk ∈{0, 1},  k=1, 2, … , K. 

3.1.1 relationship between ratio dominance and inefficiency 

Let Rk denote the ratio of the output to input for project k. That is, Rk=ck /ak. The 

relationship of dominance between two projects by the output-input ratios is defined as 

follows: 

Definition 3.1 Project h dominates project p, if Rh > Rp.  

We shall show that if project p is dominated by project h, and a portfolio includes the 

dominated project p but excludes project h, then the portfolio is inefficient.  

Lemma 3.1 If 
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This property shows that c1 /a1 ≥ (c1w1+c2w2+ … +cKwK)/(a1w1+a2w2+ … +aKwK), for all 

portfolio P=(w1, w2, … , wK) in Ω and P≠(0, 0, … , 0). That is, P=(1, 0, … , 0) possesses the 

maximum output-input ratio among the 2
K
 possible portfolios. Note that P=(0, 0, … , 0) and 

P=(1, 0, … , 0) are evidenced as CCR efficiency (Ali, 1994). The following Theorem will be 
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used to characterize inefficient portfolios. Let ek denote the unit row vector with 1 at the k
th

 

component and 0 elsewhere. 

Theorem 3.1 T=(w1, w2, … , wK) with wh=0 and wp=1, is inefficient if project h dominates 

project p. 

Proof: Let portfolios H=T−ep and G=T+eh. The DMUs corresponding to portfolios H, T, and 

G are expressed respectively as the followings: 

DMUH=(yH, xH), 

DMUT=(yT, xT)=(yH +cp, xH +ap), 

and 

DMUG=(yG, xG)=(yH +ch +cp, xH +ah +ap). 

Let us take constant t=ap /(ah+ap). It thus follows: 

(1−t) xH + t xG = (1−t) xH + t (xH +ah +ap) (3.1) 

      = xH + t (ah +ap) 

      = xH + ap 

      = xT , 

and 

(1−t) yH + t yG = (1−t) yH + t (yH +ch +cp) (3.2) 

      = yH + t (ch +cp) 

      = yH + ap (ch +cp)/(ah +ap) 

      > yH + ap (cp /ap)                          (By Lemma 3.1) 

      = yT . 

It shows that DMUT is convex-dominated by DMUH and DMUG. Therefore, DMUT is DEA 

inefficient and so does portfolio T.  

This Theorem enables us to identify efficient and inefficient portfolios prior to the 

DEA calculation by comparing the output-input ratios of pair of projects. 

3.1.2 Efficient portfolios 

Without loss of generality, it is assumed that the indices of projects are arranged 

according to the descendant order of their output-input ratios, i.e., R1 >R2 > L >RK, and the 
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strict inequality holds here. The following Corollary uses ratio analysis to characterize the 

dominated portfolios, and like their correspondent DMUs, they are inefficient. 

Corollary 3.1 Portfolio T=(w1, w2, … , wK) is inefficient if wk=0 and wk+1=1 for some k. 

Proof: Since Rk > Rk+1 implies that project k dominates project (k+1). Then, the result follows 

from Theorem 3.1.  

Corollary 3.1 indicates that a project with larger output-input ratio must be selected 

prior to the others. Based on the result, only the remaining (K+1) portfolios that have the 

possibility of VRS efficiency. They are listed in the followings: 

Table 2. The portfolio lists of candidate efficiency. 

Portfolio w1 w2 L wK−1 wK 
0 0 0 L 0 0 
1 1 0 L 0 0 
2 1 1 L 0 0 
M M M O M M 

K−1 1 1 L 1 0 
K 1 1 L 1 1 

The null portfolio (0, 0,…, 0) with minimum input value is clearly VRS efficient (Ali, 1994). 

The other K portfolios will be shown as VRS efficient by employing model (M6) to evaluate 

their corresponding DMUs. These DMUs are expressed as the followings: 

DMUT=(xT, yT)=(a1 +a2 + … +aT, c1 +c2 + … +cT), T=1, 2, … , K. (3.3) 

Theorem 3.2 DMUT, T=1, … , K, are all VRS extremely efficient. 

Proof: For each T, we have: 

 cT ak > aT ck  if k <T  and  cT ak < aT ck  if k >T. (3.4) 

Let model (M6) be set to evaluate DMUT by taking μ=aT, v=cT, and u0=cT xT– aT yT. It is shown 

that μ, v, and u0 is feasible to model (M6) and attach the objective θT=1. For all k <T, we have: 
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For all k >T, we have: 
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The equality holds only for k=T. This indicates that the optimal value to (M6) is equal to one. 

Therefore, DMUT is VRS extremely efficient for T=1, … , K.  

Hence, there are (K+1) VRS efficient portfolios obtained by using ratio techniques. 

Ratio analysis is shown to be an effective method to identify the entire set of efficient 

portfolios for the single input and output problems. To illustrate this, let us consider the 

following example. 

3.1.3 Example 1: single input and output case 

Suppose there are five projects numbered k=1, … , 5, in a decision set. Their input and 

output are given in Table 3. Where the indices of projects have been arranged in descendent 

order of output-input ratios. All possible portfolios comprise a subset of the 5 projects are 

evaluated by the following unconstrained MOBILP. 

Maximize y= 6 w1+ 4.0 w2+ 7.2 w3+ 8 w4+ 1 w5  (M9) 

Minimize x= 4 w1+ 2.8 w2+ 5.6 w3+ 9 w4+ 2 w5 

Subject to wk ∈{0, 1},  k=1, 2,…, 5. 

According to the results of Theorem 3.2, six portfolios, (0,0,0,0,0), (1,0,0,0,0), 

(1,1,0,0,0), (1,1,1,0,0), (1,1,1,1,0), and (1,1,1,1,1) are identified as VRS efficient. 

Table 3. The data of 5 projects for Example 1. 

Project Output (ck) Input (ak) Ratio (Rk) 

1 6.0 4.0 1.500 
2 4.0 2.8 1.429 
3 7.2 5.6 1.286 
4 8.0 9.0 0.889 
5 1.0 2.0 0.500 
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3.1.4 Problems with non-positive coefficients 

The assumption that the positive coefficients ak >0 and ck >0 for all k=1, … , K, could 

be violated. Now, let us consider that the projects be partitioned based on the following six 

sets of indices: 

IP={ k | 1≤ k≤ K, ck > 0 and ak > 0}, (3.7) 

IN={ k | 1≤ k≤ K, ck < 0 and ak < 0}, (3.8) 

I0={ k | 1≤ k≤ K, ck > 0 and ak ≤ 0}, (3.9) 

I1={ k | 1≤ k≤ K, ck ≤ 0 and ak > 0}, (3.10) 

IC={ k | 1≤ k≤ K, ck < 0 and ak = 0}, (3.11) 

and 

IA={ k | 1≤ k≤ K, ck = 0 and ak < 0}. (3.12) 

The problem can be handled according to the following theorems. 

Theorem 3.3 Portfolio H=(w1, … , wk−1, 0, wk+1, … , wK) is DEA inefficient if k∈I0. 

Proof: Let T=(w1, … , wk−1, 1, wk+1, … , wK). It follows 

(–xT, yT) = (–xH –ak, yH +ck) > (–xH, yH). (3.13) 

This implies that portfolio H is DEA inefficient.  

Theorem 3.4 Portfolio H=(w1, … , wk−1, 1, wk+1, … , wK) is DEA inefficient if k∈I1. 

Proof: Let T=(w1, … , wk−1, 0, wk+1, … , wK). It follows 

(–xT, yT) = (–xH +ak, yH –ck) > (–xH, yH). (3.14) 

This implies that portfolio H is DEA inefficient.  

Theorem 3.3 and 3.4 indicate that a portfolio is inefficient if it excludes a project 

consuming non-positive input to produce positive output, or it includes a project consuming 

positive input to produce non-positive output. Therefore, we have the following subsets of 

portfolios are inefficient: 

Ω0={P=(w1, … , wK) | wk=0, for any k∈I0} (3.15) 

and 

Ω1={P=(w1, … , wK) | wk=1, for any k∈I1}. (3.16) 
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For the case that both aj and cj are non-positive occurs in model (M8). We redefine all 

binary variables and coefficients of objectives as the followings: 
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Then, model (M8) can be rewritten as follows: 
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The new MOBILP model (M10) has objectives with non-negative coefficients, either 

0≥kc  or 0≥ka , corresponding to all new variables kw . We can construct the new sets of 

indices 0I , 1I , and PI  corresponding to model (M10), and it follows that IC ⊆ 0I , IA ⊆ 1I , and 

IN ⊆ PI . Then, the following sets of inefficient portfolios are characterized by using Theorem 

3.3 and 3.4. 

ΩA={P=(w1, … , wK) | wk=0 if k∈IA} ⊆ {P= ),  ,( 1 Kww K | kw =1 if k∈ 1I }. (3.20) 

and 

ΩC={P=(w1, … , wK) | wk=1 if k∈IC} ⊆ {P= ),  ,( 1 Kww K | kw =0 if k∈ 0I } (3.21) 

However, the new model (M10) transforms the objectives to non-negative coefficients 

and all efficient portfolios can be determined by using Theorem 3.2–3.4. 

3.1.5 Algorithm for identification of efficient classification 

A complete algorithm for developing all efficient portfolios is presented as follows: 

Step 1. Identify sets of indices IP, IN, I0, I1, IC, and IA according to (3.7)–(3.12). 

Step 2. Reset original indices of projects in IN, IC, and IA according to equations (3.17)–(3.19). 
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Step 3. Identify sets of indices PI , 0I , and 1I , and let NP, N0, and N1 denote the number of 

elements in set PI , 0I , and 1I , respectively. 

Step 4. Re-index all projects and rewrite model: 

Step 4.1 Re-indexed project, kw , from 1 to Np for k∈ PI , from (NP+1) to (NP+N0) for 

k∈ 0I , and from (NP+N0+1) to (NP+N0+N1) for k∈ 1I . 

Step 4.2 Rearrange kw  according to 
pNRRR >>>   21 L for k∈ PI , where kkk acR /= . 

Step 4.3 Original problem (M8) is rewritten as (M10). 

Step 5. Identify the set consists of NP+1 efficient portfolios as follows: 

ΩE={P= ),  ,( 1 Kww K | kw ≥ 1+kw  if k<NP, kw =1 if k∈ 0I , and kw =0 if k∈ 1I }. (3.22) 

3.1.6 Example 2: general two objectives BILP 

Suppose there are 10 projects indexed by k=1, … , 10, in a decision set. The values of 

input and output are given in Table 4. The problem of portfolio evaluation in the set is 

modeled as (M8). The efficient portfolios can be obtained by according the following steps: 

Step1. Sets of indices based on (3.7)–(3.12) are identified as follows: 

IP={1, 4, 6}, IN={5, 9}, I0={8}, I1={2, 10}, IC={3}, and IA={7}. 

Step 2. Reset original data of projects 5, 9, 3, and 7 according to (3.17)–(3.19). 

Step 3. Identify sets of indices PI , 0I , and 1I , and number of elements in these sets are NP=5, 

N0=2, and N1=3, respectively. 

PI =IP∪IN={1, 4, 6, 5, 9}, 0I =I0∪IC={8, 3}, 1I =I1∪IA={2, 10, 7}. 

Step 4. Use Step 4.1 and 4.2 to re-index all projects as the followings: 

PI ={1, 2, 3, 4, 5}, 0I ={6, 7}, 1I ={8, 9, 10}. 

The relationship between origin and transformed index is listed in Table 4. Then, use 

Step 4.3 to rewrite the original problem as the followings: 

.     s.t.
1.105.225.1              4.2296.58.24Min  
8.9                3 2.36.1         82.70.46Max 

1098654321
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Table 4. The original and transformed data of 10 projects. 

Original data of projects Transformed data of projects 

Index 
(k of wk) 

Output 
(ck) 

Input 
(ak) 

Index 
(k of kw ) 

Output 
( kc ) 

Input 
( ka ) 

Ratio 
( kc / ka ) 

6 6.0 4.0 1 6.0 4.0 1.50 
4 4.0 2.8 2 4.0 2.8 1.43 
9 –7.2 –5.6 3 7.2 5.6 1.30 
1 8.0 9.0 4 8.0 9.0 0.89 
5 –1.0 –2.0 5 1.0 2.0 0.50 
8 1.0 –2.4 6 1.0 –2.4 –– 

3 –1.6 0 7 1.6 0 –– 

2 –3.2 1.5 8 –3.2 1.5 –– 

10 –3.0 2.0 9 –3.0 2.0 –– 

7 0 –2.5 10 0 2.5 –– 

Step 5. Using Theorem 3.2–3.4, we have 6 efficient portfolios which is listed as follows: 

),  ,( 101 ww K = (0,0,0,0,0,1,1,0,0,0) = (w1, … , w10) = (0,0,1,0,0,0,0,1,0,0), 

),  ,( 101 ww K = (1,0,0,0,0,1,1,0,0,0) = (w1, … , w10) = (0,0,1,0,0,1,0,1,0,0), 

),  ,( 101 ww K = (1,1,0,0,0,1,1,0,0,0) = (w1, … , w10) = (0,0,1,1,0,1,0,1,0,0), 

),  ,( 101 ww K = (1,1,1,0,0,1,1,0,0,0) = (w1, … , w10) = (0,0,1,1,0,1,0,1,1,0), 

),  ,( 101 ww K = (1,1,1,1,0,1,1,0,0,0) = (w1, … , w10) = (1,0,1,1,0,1,0,1,1,0), 

),  ,( 101 ww K = (1,1,1,1,1,1,1,0,0,0) = (w1, … , w10) = (1,0,1,1,1,1,0,1,1,0). 

3.2 Multiple inputs and outputs problems 

When there are m inputs and s outputs to MOBILP (M1). Since, ratio analysis is shown to be 

an efficient method to identify the entire set of efficient portfolios for the case of single input 

and output. Based on the results of Theorem 3.2 and Corollary 2.2, the ratio analysis is 

capable of identifying a subset of efficient portfolios for the cases of multiple inputs and 

outputs. The MOBILP can be decomposed to (s×m) sub-problems by the pairs of one output 

and one input. There are (K+1) efficient portfolios identified by each sub-problem. Corollary 

2.2 also indicates that those efficient portfolios are also efficient for the original model. 

By removing the duplications, the efficient portfolios identified by employing the 

(s×m) sub-problems are aggregated as a subset. The subset is called the ‘seed efficient class’ 
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(SEC). In our filtering algorithm, the frontier of ECG is the filter for the algorithm and ECG 

consists of those elements in SEC initially. 

3.2.1 Inefficiency with project dominance relationship (PDR) 

Let ri
kR  denote the ratio of the rth output value to ith input value of project k, where 

ikrk
ri
k acR /= . The dominance relationship between two projects by the output-input ratios is 

defined as follows: 

Definition 3.2 Project h dominates project p, if ri
p

ri
h RR ≥  for all pairs of r and i, i = 1, … , m, 

and r = 1, … , s, and strict inequality holds for at least one pair of indices.  

The relationship between output-input ratios of projects and the efficiency of portfolio 

to the multiple inputs and outputs problems is shown in Liu & Lai (2005a). 

Theorem 3.5 Portfolio T=(w1, … , wK) is inefficient if project h dominates project p and wh =0 

and wp =1. 

Proof: Let H =T−ep and G =T+eh. The DMUs corresponding to portfolios H, T, and G are 

expressed as follows: 

DMUH=(x1H, … , xmH, y1H, … , ysH), 

DMUT=(x1H+a1p, … , xmH+amp, y1H+c1p, … , ysH+csp), 

and 

DMUG=(x1H+a1h+a1p, … , xmH+amh+amp, y1H+c1h+c1p, … , ysH+csh+csp). 

Let us take constants β1 and β2 as follows: 

β1= max{crp/(crh +crp)| r=1, … , s.} 

and 

 β2= min{aip/(aih +aip)| i=1, … , m.}, 

where β1, β2∈(0,1). Then, there exist specific indices i and r such that 

β1 /β2 =(crp /(crh +crp)) / (aip /(aih +aip)) 

 =(crp / aip) / ((crh +crp) / (aih +aip)) 

 < 1.    (by Lemma 3.1) 

It indicates that β1<β2. Let β be a constant between β1 and β2. We shall show that DMUT is 

convex-dominated by DMUH and DMUG. Since, 
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(1−β) xiH +β xiG = xiH + β (aih +aip) 

        ≤ xiH + β1 (aih +aip) 

        ≤ xiH + aip 

         = xrT,          for all i = 1, 2, …, m, 

and 

(1−β) yrH +β yrG = yrH + β (crh + crp) 

        ≥ yrH + β2 (crh + crp) 

        ≥ yrH + crp 

        = yrT,           for all r = 1, 2, …, s, 

and at least one inequality holds. It shows that DMUT is dominated by (1−β)DMUH+βDMUG. 

Therefore, DMUT is inefficient and so does portfolio T.  

It has shown that if project p is dominated by project h and a portfolio includes the 

dominated project p but excludes project h, then the portfolio must be inefficient. This 

enables us to identify efficient and inefficient portfolios prior to the DEA calculation by using 

the output-input ratio of an individual project. 

3.2.2 Example 3: use ratio analysis to identify SEC 

A simulated data set comprising seven R&D projects in a high tech corporation is 

listed in Table 5. These projects are proposed to promote the product quality for the company. 

Each project consumes two inputs to produce two outputs. The outputs are percentages of 

technical contributions to the products and direct economic contributions in product sales, 

while the inputs are percentages of manpower usage and finance usage with respect to the 

company. Suppose that the projects are neither synergistic nor interfering and the resources 

are fully supported. The decision-maker wants to select a class of portfolios, from all of the 

128 (=27) feasible portfolios, play the best practice with respect to the others. 

By comparing the output-input ratios of projects, we have project 7 being dominated 

by project 6. Following the results of Theorem 3.5, we conclude that a portfolio is identified 

as inefficient if it contains project 7 but excludes project 6. That is, a portfolio is inefficient if 

it is expressed as the following form. 
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Table 5. Data set of 7 R&D projects for Example 3. 

R&D 
project 

Technical 
contribution

Product 
sales 

Manpower 
usage 

Resource
usage     

(k) (c1k) (c2k) (a1k) (a2k) 11
kR  21

kR  12
kR  22

kR  
1 1.8 7.0 3.0 6.0 0.600 2.333 0.300 1.167 
2 1.6 10.0 4.0 5.5 0.400 2.500 0.291 1.818 

3 1.4 8.2 3.6 4.5 0.389 2.278 0.311 1.822 

4 1.9 13.0 5.0 7.0 0.380 2.600 0.271 1.857 

5 1.4 5.0 6.0 4.0 0.233 0.833 0.350 1.250 

6 1.8 12.0 8.0 3.0 0.225 1.500 0.600 4.000 

7 1.7 6.0 9.3 4.0 0.183 0.645 0.425 1.500 

 (w1, w2, w3, w4, w5, 0, 1) for wk=0 or 1, k=1, 2, 3, 4, 5. (3.23) 

Hence, 32 portfolios are characterized as inefficient by using ratio analysis. Now, we turn to 

identify efficient portfolios by using Theorem 3.2. The ratios of output 2 to input 1, say 21
jR , 

of projects are ranked as following. 

21
7

21
5

21
6

21
3

21
1

21
2

21
4 RRRRRRR >>>>>>   (3.24) 

It indicates that the 8 portfolios, (0,0,0,0,0,0,0), (0,0,0,1,0,0,0), (0,1,0,1,0,0,0), 

(1,1,0,1,0,0,0), (1,1,1,1,0,0,0), (1,1,1,1,0,1,0), (1,1,1,1,1,1,0), and (1,1,1,1,1,1,1), are efficient. 

Similarly, we can rank the ratios 11
kR , 12

kR , and 22
kR  to identify efficient portfolios. By 

removing the duplications, our ratio analysis identifies 23 efficient portfolios. These 

techniques identify 23 efficient and 32 inefficient portfolios prior to the DEA programs. In 

total, we save 55 computations for solving linear program effectively and efficiently. 

3.2.3 Inefficiency with inferior project combination (IPC) 

Apply additive model (M3) or (M7) to evaluate a particular project h with respect to 

the original K projects. The reference set is defined as Λ(h)={ k | *
kλ >0, k = 1, 2, … , K}. 

Then, a portfolio is identified to be inefficient if it composes project h and without any 

element in set Λ(h). That is, the portfolio comprises only inferior projects. This portfolio is 

called as an inferior project combination (IPC). 

Theorem 3.6. Portfolio T = (w1, w2, … , wK) is inefficient if wh = 1 and 0
),(Λ

=∑ ≠∈ hkhk kw . 

Proof: The result is trivial and is omitted.  
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One can use this Theorem to pre-identify some inefficient portfolios: just use model 

(M3) or (M7) to evaluate the K projects. It is clear that the situation occurs only if project k is 

inefficient with respect to the original K projects. 

3.2.4 Inefficiency with total dominated relationship (TDR) 

Ali (1994) defined a total dominated relationship (TDR) between DMUs. A portfolio 

is totally dominated if its corresponding DMU is dominated by any other DMU in ΩD. 

Definition 3.3 Portfolio T is totally dominated by portfolio H if DMUT is dominated by 

DMUH, that is, xiT ≥ xiH, for all i = 1, … , m, yrT ≤ yrH, for all r = 1, … , s, and strict inequality 

holds for at least one index.  

Theorem 3.7. If portfolio T is totally dominated by portfolio H for some H then portfolio T is 

inefficient. 

Proof: The proof is omitted.  

3.3 Filtering algorithm 

We propose a forward and reverse filtering algorithm to solve the unconstrained 

MOBILP (M1). To reduce the problem size of model (M7) and to identify inefficient 

portfolios effectively, we substitute the reference set Π by a group of portfolios ECG with 

higher performance throughout the algorithm. ECG is updated dynamically by using forward 

and backward filtering algorithms. An algorithm comprising three phases is presented below.  

3.3.1 Phase I: initialization 

Phase I contains three parts. First, we re-index these K projects according to their 

stability measures obtained by model (M7). Next, we build some sub-filters to identify 

inefficient portfolios based on Theorem 3.5 and 3.6. Third, ECG is initialized according to 

Theorem 3.2. 

Step 1.0. Read data of the K projects: crk, r =1, … , s, and aik, i =1, … , m; k =1, … , K. 

Step 1.1. Use model (M7) to evaluate the K projects. Reassign indices of projects according to 

their stability measures, such that **
2

*
1 KΔ≤≤Δ≤Δ L . 
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Step 1.2. Use model (M7) to obtain Λ(k) for each project k with *
kΔ <0, and generate IPC filter 

based on the relationship between project k and Λ(k) (Theorem 3.6). 

Step 1.3. According to Theorem 3.5, generate the PDR filter for any pair of projects h and p, 

and identify whether the dominance relationship between h and p exists, h, p=1, … , K. 

Step 1.4. According to Theorem 3.2, identify efficient portfolios based on ratio analysis. For a 

pair of specific indices r and i, output-input ratios are arranged in descending order 
ri
K

riri RRR )()2()1( >>> L , where (k) is the index of project with kth largest ratio. Repeat the 

process m×s times to collect all the efficient portfolios in set SEC, for i=1, 2, … , m 

and r =1, 2, … , s. Then, the initialized ECG is equal to SEC. 

3.3.2 Phase II: forward filtering 

Phase II is a forward filtering algorithm, assessing possible portfolios one after the 

other. When a current portfolio T is under evaluation, the rules of identification are: (i) 

skipped if the portfolio is already in the SEC, (ii) use the sub-filters, PDR, IPC, and TDR, to 

identify inefficiency, or (iii) use model (M7) to evaluate DMUT by setting the reference Π 

equal to ECG. However, if the successful portfolio is evaluated to be efficient with respect to 

ECG, it indicates that the portfolio has the possibility of being VRS efficient, and is added to 

the ECG. Figure 1 depicts the flowchart of Phase II. The notations n1, …, n10 are the number 

of portfolios that flow through the arcs, respectively. 

Step 2.0. Start classification with the portfolio T that comprises all projects, T = (1, 1, … ,1). 

Step 2.1. Use PDR to identify whether T is inefficient. If it is, then go to Step 2.5. 

Step 2.2. Use IPC to identify whether T is inefficient. If it is, then go to Step 2.5. 

Step 2.3. Use TDR to identify whether T is inefficient with respect to ECG. If it is, then go to 

Step 2.5. 

Step 2.4. Use model (M7) to identify whether T is inefficient with respect to ECG. If it is, 

then go to Step 2.5. Otherwise, ECG is augmented by portfolio T. 

Step 2.5. Generate the next portfolio, Tnext, from Ω by perform binary subtraction to current 

portfolio, Tcurrent, That is, Tnext = Tcurrent−1. 

Step 2.6. As all 2K portfolios are all evaluated, then go to Phase III. Otherwise, go to Step 2.1. 
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T

 

Figure 2. Flowchart of Phase II. 

3.3.3 Phase III: reverse filtering 

In this phase, we employ model (M7) to identify the efficiency of each portfolio, T, in 

ECG. A negative stability ( *
TΔ <0) indicates inefficient and T is erased from ECG, while a 

positive stability ( *
TΔ >0) indicates efficient and T remains in ECG. In case of *

TΔ =0, we 

should perform the standard additive model (M3) to identify T. Finally, rank remaining 

portfolios in ECG according to their stability measures. 

3.3.4 Design and computational issues 

Phase I needs a little computation effort only. There are K(K−1)/2 pairs of projects to 

be checked to generate the PDR filter in Step 1.3. Each pair of projects h and p, needs m×s 
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comparisons of output-input ratios. If project h dominates project p, then one quarter of the 2K 

portfolios with wh =0 and wp =1 should be inefficient. The sub-filter PDR eliminates a large 

number of inefficient portfolios. Thus, a PDR filter is primarily used to reduce computation 

time and is therefore performed prior to the IPC and TDR filters. 

To illustrate the fact, we consider the giving pair of projects, say h and p, and the 

subset of portfolios Ω: 

Ωhp ={P=(w1, … , wK) | wh =0 and wp =1.} (3.25) 

The number of elements in Ωhp is a quarter of total element in Ω. According to results 

of Theorem 3.5, all portfolios in class Ωhp are identified as inefficient if project h dominates 

project p. Consequently, a quarter of the total portfolios could be saved from the computation 

of DEA evaluations. There are so many outcomes of the dominance relationship between 

projects. It is not worthwhile to list all of their savings in DEA computations. 

Prior to the DEA calculation, Steps 2.1, 2.2 and 2.3 identified a large number of 

inefficient DMUs and a considerable number of efficient DMUs. The DEA computations in 

Step 2.4 are effective and efficient since the number of decision variables is increased by one 

as an efficient DMU is identified, and be merged into EGC and computational effort for the 

next evaluation to be increased as the step continues. 

The other major computation effort comes from backward filtering algorithm Phase III. 

In case of an inefficient portfolio is identified by the Step 3.2, it is deleted from ECG, the 

number of decision variables of model (M7) for the next evaluation is decreased by 1, and so 

the computational effort is reduced. The overall computational effort for the problem depends 

upon the problem size in terms of the values of K, s and m.  

3.3.5 Performance of program MOBILP+ 

Table 6 depicts the performance of the algorithm. The first simulated data set D10 is 

the case of selecting the portfolios of projects K=10 with inputs, m=3, and outputs, s=2. The 

data crk and aik were randomly generated within the interval [10, 100]. For the cases consist of 

15, 20, … , and 38 projects, the correspondence data sets are called D15, D20,…, and D38, 

respectively. We constructed a computer program MOBILP+ coded in programming language 

C++ to implement the algorithm and use the package, CPLEX (Ilog Inc., 2000), as linear 

programming solver. 
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Table 6. Number of portfolio flows and computing time of sample data sets. 

Data 
set 

 
K 

 
n 

PDR 
n1 

 
n2 

IPC 
n3 

 
n4 

SEC 
n5 

 
n6 

D10 10 210 769 255 7 248 47 201 
D15 15 215 30329 2439 101 2338 80 2258 
D20 20 220 994808 53768 2254 51514 108 51406 
D22 22 222 4135987 58317 6360 51957 116 51841 
D24 24 224 16705374 71842 14 71828 134 71694 
D26 26 226 66995233 113631 172 113459 147 113312 
D28 28 228 268018994 416462 25932 390530 160 390370 
D30 30 230 1073456938 284886 41 284845 173 284672 
D31 31 231 2146766030 717618 11887 705731 179 705552 
D32 32 232 4294197549 769747 4049 765698 176 765522 
D33 33 233 8588462091 1472501 35952 1436549 194 1436355
D34 34 234 17174422826 5446358 156788 5289570 195 5289375
D35 35 235 34357075944 2662424 6291 2656133 203 2655930
D36 36 236 68712503399 6973337 206324 6767013 203 6766810
D37 37 237 137438927605 25867 30 25837 206 25631 
D38 38 238 274873647590 4259354 3972 4255382 221 4255161

Table 6. (continued) 

Computing time *Data 
Set 

TDR 
n7 

 
n8 

(M7) 
n9 

 
n10 

|ECG| 
(n10+n5)

Phase III
|N| 

 
|E| t1 t2 

D10 17 184 110 74 121 5 116 <1 <1 
D15 681 1577 1252 325 405 28 377 1 702 
D20 31051 20355 18680 1675 1783 424 1359 20 17216
D22 26247 25594 23494 2100 2216 663 1553 30 62150
D24 43821 27873 25886 1987 2121 594 1527 37 >24 hr
D26 47598 65714 61529 4185 4332 1785 2547 149 –– 

D28 227928 162442 156757 5685 5845 2503 3342 585 –– 

D30 184821 99851 95401 4450 4623 1690 2933 476 –– 

D31 503065 202487 194503 7984 8163 4180 3983 1487 –– 

D32 443881 321641 313035 8606 8782 3345 5437 2768 –– 

D33 972775 463580 451367 12213 12407 7310 5097 5140 –– 

D34 4752541 536834 521302 15532 15727 8664 7063 12267 –– 

D35 2037278 618652 606731 11921 12124 5776 6348 14801 –– 

D36 6005819 760991 742315 18676 18879 10563 8316 32833 –– 

D37 8314 17317 15761 1556 1762 717 1045 35788 –– 

D38 3332959 922202 904564 17638 17859 10603 7256 82891 –– 

* t1 and t2 are the computing time by using MOBILP+ and using model (M7), respectively. 
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The program was executed on a Pentium IV-3.0 GHz desktop computer. The number 

of testing portfolios and computation time for each step are shown in Table 6. Column 3 

shows that the number of feasible portfolios exponentially increased as the number of projects 

increased. The essential contribution of the four precedent filters could be observed from the 

number n1, n3, and n7 of inefficient portfolios identified. The n9 showed the numbers of 

inefficient portfolios identified by model (M7) in Step 2.4, and |N| and |E| are the numbers of 

inefficient and efficient portfolios identified by Step 3.2, respectively. 

Step 2.4 is replicated n6 times, that is, the number of optimization of model (M7) 

would be reduced to n6 times, where (n−n6) indicates the savings of computation from the 

three filters. More than 90% of portfolios are identified to be inefficient by the three filters 

prior to solving the DEA program. The benefit of using MOBILP+ to streamline the 

computation of MOBILP (M1) can be easily seen from the sample data. The problem size in 

step 2.4 is also reduced significantly. The largest size of model (M7) in Step 2.4 is about n9, 

which is less than 10% of portfolios, n. The total times to optimize model (M7) is (n6+n9), 

which is also less than 10% of n. The proposed procedure significantly reduces the 

computation time, especially for large-scale problems, and even less than 0.1% of time is 

needed. 

The last two columns in Table 6 show the computing time required to execute 

MOBILP+ and to solve model (M7) only. The ratio (|E|/n) indicates that the number of 

efficient portfolios to the total portfolios is very low. This allows the collective selection of 

projects to be handled effectively. Unfortunately, the results of D28 and D30 reveal that the 

computing time is data dependent, and D33, D34, D35 and D36 also indicate similar results. 

We found that the computing time is more dependent upon the number of efficient portfolios, 

|E|, but less dependent upon the number of projects, K. 

The average and standard deviation of times to solve the 10 randomly generated data 

sets, each set comprised 20 simulated projects are listed in the first row of Table 7. The other 

16 random samples, each sample also consists of 10 data sets, each data set comprised 21, 

22,…, 36 simulated project was also solved. We discontinued the testing when the average 

time spend exceeds 24 hours. It seems that the expected computing times increase 

exponentially as the number of project K is increased. The algorithm would provide the 

solutions for selecting portfolios comprise 35 projects within one day. In our experiments, we 

observed that the standard deviations are highly relative to the mean, almost equal to the 
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average for most of the cases. It indicates that the randomly generated data crk and aik have 

strongly affected the computation time. 

Table 7.  Average computational time of 10 random samples. 

No. of project Mean SD No. of project Mean SD 
20 11 17 29 4939 9072 
21 26 22 30 6068 7566 
22 23 18 31 6251 5611 
23 54 51 32 11191 9583 
24 183 201 33 18198 18026 
25 203 276 34 42648 62567 
26 460 627 35 65311 61001 
27 966 1211 36 >24 hr >24 hr 
28 2235 2737    

* Time unit: seconds. 
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4. Stability Analysis 

As shown in model (M1), the input and output values of a portfolio are determined by 

summing the inputs and outputs of its performed projects, respectively. In this study, we focus 

on the perturbation of a particular coefficient aik (or crk) associated with a specific efficient 

portfolio with project k is performed (i.e. wk=1). This research is focused on the stability of an 

efficient portfolio (DMU) by giving increase in an input, aik, or giving decrease in an output, 

crk, of a particular project k, if the portfolio remains efficient after the perturbation. 

Let I and O denote the sets of indices of changed inputs and changed outputs, 

respectively. We consider the stability measures of coefficients aik’s and crk’s to preserve the 

efficiency of an efficient portfolio T, where project k is included in portfolio T. The data of 

project k is varied according to the following expressions: 
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Hence, the varied input and output values for all DMUP including project k is expressed as: 
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The given type of data perturbation discussed in this paper is inconsistent with other 

sensitivity analyses, that inputs and outputs of the remaining portfolios are unchanged. There 

are a half of feasible portfolios will change their inputs and/or outputs, when we perturb aik’s 

and/or crk’s associated with a particular project k. Let Ψ0 and Ψ1 be the sets of portfolios with 

project k is not performed and performed, respectively. Where: 

Ψ0={P=(w1, … , wK)∈Ω | wk = 0} (4.5) 

and 

Ψ1={P=(w1, … , wK)∈Ω | wk = 1} (4.6) 



 − 34 −

The inputs and outputs of DMUP, P∈Ψ0 is unchanged while the inputs and outputs of 

DMUP, P∈Ψ1 is changed, if the inputs and/or outputs associated with the perturbed project k 

are changed.  

4.1 Models for stability evaluation 

According to Charnes et al. (1991), the set of all DMUs can be partitioned into four 

classes, E, E’, F, and N. Where class N is located inner the frontier, class F is on the frontier 

but is also inefficient, and the first two classes are efficient. Zhu & Shen (1995) show that 

DMUs in class E’ can be expressed as the linear combinations of the DMUs in class E, and 

each of them will become inefficient if any increase of input and/or any decrease of output 

occurs. Thus, the literatures of DEA sensitivity analysis only focused on measuring stability 

of extremely efficient DMUs. 

4.1.1 Stabilities of input coefficients 

Based on the given absolute change of data, we investigated the stability of efficient 

DMUs in the additive model. Assume that DMUT is efficient and data are changed in inputs as 

(4.3). We first consider the following modified additive model to study the stability of DMUT 

for perturbing the DMUs in Ψ1 via changing inputs of project k (Liu & Lai, 2005b). 
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Suppose the model is feasible for a given efficient DMUT. This minimization is 

completed for indices i∈I, and the optimal value is denoted by π*. The properties of inputs 

stability region of DMUT are shown below: 

Theorem 4.1 Given data varied in the inputs as (4.3), an efficient DMUT remains on the 

efficient frontier if and only if π ∈[0, π*], where π* is the optimal value to model (M12). 
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Proof: We first consider the following DEA model to evaluate DMUT with DMUP change 

their inputs by the value xiP+π* for all P∈Ψ1. 
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Let the optimal solution to model (M13) be ( *
Pλ , *

Tλ ,θ*). Assume DMUT is located 

inner the frontier, we have θ*<1 and *
Tλ =0. By setting all variables with the optimal solution 

to model (M13), the constraints of (M13) have the following results: 

I∈+≤

+≤

++≤++ ∑∑∑∑
≠∈∈≠∈∈

ix

x

xxxx

iT

iT

TPP
iPP

P
iPP

TPP
iPP

P
iPP

for                ,                                                  

)(                                                  

)()(

**

**

 ,Ψ

**

Ψ

*

 ,Ψ

***

Ψ

*

1010

πθ

πθ

πλλπθλλ

 

and 

.for            ,*

 ,

*
p I∉≤≤∑

≠Ω∈

ixxx iTiT
TPP

iP θλ  

It means that (λj, π)=( *
Pλ , θ*π*) is a feasible solution to (M12). Hence, θ*π* ≥ π*, i.e., 

θ*≥1. It leads to a contradiction. So, DMUT remains on the efficient frontier if π =π*. 

Conversely, we assume that DMUT remains on the efficient frontier if inputs are 

increased as (4.3) with π units, and π >π*. Model (M12) is rewritten as following: 
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Since DMUT is located on the frontier, we must have ρ*≥ 0. It implies that ρ*+π ≥π >π*. But 

according to model (M12), its optimal value must be π*. Hence, ρ*+π =π*. This also leads to a 

contradiction. So, DMUT remains efficient only if π ≤ π*.  

This Theorem illustrates that the minimization of model (M12) provides the possible 

maximum increment of inputs as (4.3) to all DMUs in Ψ1 for keeping DMUT remain on the 

efficient frontier while the other inputs are held at constants. 

4.1.2 Stabilities of output coefficients 

Now, turning to consider the case of changing data in outputs. Assume that DMUT is 

efficient and data are changed in the outputs as (4.4). We utilize the following DEA like 

model in which the test DMUT is not included in the reference set to find the stability regions 

of outputs. 
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We first show that the model is translation invariant. 

Lemma 4.1 Model (M15) is translation invariant. 

Proof: Since ,
TPP

P 1
 ,

=∑
≠Ω∈

λ , the result follows.  

Suppose model (M15) is also feasible for an efficient DMUT. The sufficient and 

necessary conditions for preserving DMUT remain on the frontier are shown as follows. 

Theorem 4.2 Given data varied in the outputs as (4.4), the efficient DMUT remains on the 

efficient frontier if and only if δ ∈[0, δ*], where δ* is the optimal value to model (M15). 

Proof: We first show that DMUT remains on the frontier if δ =δ*. By Lemma 4.1, we may 

adjust data of outputs so that yrT>2δ* and it follows that δ*/(ykT−δ*)<1 for all r∈O. Then, we 



 − 37 −

consider the following DEA model when DMUT is under evaluation and DMUP change their 

outputs by the value yrP−δ* for all P∈Ψ1. 
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Let the optimal solution to model (M16) be ( *
Pλ , *

Tλ ,φ*). Assume DMUT is located inside the 

frontier, that is φ*>1 and *
Tλ =0. It follows that: 

φ* > 1 >δ*/(yrT −δ*)   ⇒   φ*yrT −δ*φ*−δ* >0  for all r∈O. 

By setting all variables with the optimal solution to model (M16), constraints of (M16) yield 

the following results: 
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It means that (λP, δ)=( *
Pλ , δ*/φ*) is a feasible solution to model (M15). Hence δ*/φ* ≥ δ*, i.e., 

φ*≤1. It leads to a contradiction. So, DMUT remains on the efficient frontier if δ =δ*. 

Conversely, we assume that DMUT remains on the efficient frontier if outputs are 

decreased as (4.4) with δ units, and δ >δ*. Model (M15) is rewritten as following: 
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Since DMUT is located on the frontier, we must have τ*≥ 0. It implies that τ*+δ ≥δ >δ*. But 

according to model (M15), it must be τ*+δ =δ*. This also leads to a contradiction. So, DMUT 

remains efficient only if ρ ≤ρ*.  

This Theorem illustrates that the minimization of model (M15) provides the possible 

maximum decrement for each output to keep DMUT to remain on the efficient frontier when 

the other outputs are held at constants. 

4.1.3 Stability for change inputs and outputs simultaneously 

Moreover, if we change the inputs and outputs in the same time, the stability region is 

obtained by solving the following model. 
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If we assume the problem is also feasible, the following result is derived. 

Theorem 4.3 The efficient DMUT remains on the frontier after the data change as (4.3) and 

(4.4) with π =δ =Γ, if and only if Γ∈[0, Γ*], where Γ* is the optimal value to model (M18). 

Proof: The proof is analogous to the proof of Theorem 4.1 and 4.2 and is omitted.  



 − 39 −

We have derived the sufficient and necessary conditions for the models to preserve the 

efficiency of an efficient DMU under the given data change type. The following section 

presents an example to illustrate this proposed analysis. 

4.1.4 Examples 4: stability analysis 

The simulated data set consists of 8 portfolios, P1~P8, with two inputs (x1 and x2) and 

one output (y) is listed in Table 8. Portfolios of P1~P4 are VRS efficient while portfolios of 

P5~P8 are inefficient. We consider the case of increasing inputs of P2, P3, and P6 

simultaneously while the other portfolios are held fixed. By solving model (M12), the 

maximum increment of input x1 in P2, P3, and P6 to keep P2 remains on the frontier is 4/3. 

Figure 3 presents the stability of P2 and the frontiers before and after the change in input x1. 

Under the maximum increment, P2 locates in E’ and can be expressed as the linear 

combination of P3 and P5. 

The last column of Table 8 shows that the stability regions of P2 for changing input x1 

and x2, and simultaneously changing all inputs in the same value are 4/3, 2, and 0.8, 

respectively. Similarly, the stabilities of P3 are 10/3, 7/3, and 1. It reveals that P3 has larger 

stability regions than P2 under the given data changed type. It implies that P3 is more stable 

than P2 while data uncertainty occurred in P2, P3, and P6 simultaneously. 

Table 8.  The stabilities of inputs for Example 4. 

Portfolio  y1 x1 x2 Efficiencya Ψ0 or Ψ1
b Stability regionsc 

P1  1 1 12 E Ψ0   

P2  1 2 6 E Ψ1 π1= 4/3, π2= 2.0, π= 0.8 

P3  1 4 3 E Ψ1 π1= 10/3, π2= 7/3, π= 1.0 

P4  1 12 1 E Ψ0   

P5  1 2 8 N Ψ0   

P6  1 7 4 N Ψ1   

P7  1 6 7 N Ψ0   

P8  1 5 4 N Ψ0   

a: E means VRS efficient while N means inefficient. 

b: Ψ1 indicates the perturbed set of portfolios while Ψ0 is the unperturbed set of portfolios. 

c: π1, π2, and π are the stability regions corresponding to change value in input x1, x2, and all 

inputs simultaneously, respectively. 
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Figure 3.  Stability of portfolio P2 by increasing x1 in P2, P3 and P6. 

4.2 Properties for stability models 

The proposed stability models are non-linear. Some properties related to the non-

linear models are investigated in this section. Without a loss of generality, we use model 

(M12) to illustrate the infeasibility for all proposed stability models. 

4.2.1 Infeasible and unbounded properties 

When portfolio T is under evaluation, Let us employ the following super-efficiency 

model to assess DMUT based on the subsets of performance indices, i∉I and r=1, 2, … , s. 
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In the case of θ *>1, it provides that DMUT is also extremely efficient as the 

performance indices are augmented by set I (Chen & Ali, 2002). Now, if θ  is substituted by 1 

to model (M19). We have:  
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It follows that data of DMUT are ‘infeasible’ to the above constraints. One may 

observe that (4.7) and (4.8) are identical to the second and third constraints of model (M12). 

It means that DMUT would result in an infeasible solution to model (M12) by the structure of 

constraints, if it remains efficient by deleting the performance indices of i∈I. The infeasibility 

indicates DMUT is not impacted by the data changes in indices of i∈I, and states that it would 

always be stable under the perturbations. 

In the event of θ *≤1, DMUT is inefficient based on the indices of i∉I and r=1, 2, … , s, 

and is a convex combination of the other DMUs. Then, a feasible solution should be obtained 

by model (M12). It indicates that DMUT could be impacted by changing data of input i∈I. 

Hence, we can use (M19) to determine whether a test DMU is impacted by the variation or 

not. If the impact is confirmed, proceed to measure the stability by using model (M12). 

Otherwise, this DMU is always stable. 

The BCC super-efficiency model may also result in an unbounded solution when 

DMUT has the maximum value on any output since the existing constraint summed all λP’s to 

one. The models proposed in this research may also have an unbounded solution. For instance, 

in model (M12), it first constraint can be rewritten as: 
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The optimal of π would be unbounded if 0
 ,Ω

>−∑
≠∈

iT
TPP

iPP xxλ  and ∑
≠∈ TPP

P
 ,Ψ0

λ =0 for any 

input i∈I. That is, DMUT is super-efficiency with respect to the indices I, and there is no 

DMU in Ψ0 with input less than DMUT. In this situation, as the performance worsens through 

increasing data of indices in I, all DMUs in Ψ1 are moved toward the interior of the frontier 

simultaneously. At the same time, the new frontier constructed by excluding test DMUT is 
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also moved in the same direction. If the above two conditions hold, DMUT would not stop 

movement as the part of the frontier is simultaneously moved at the same distance. The 

occurrence of an unbounded solution indicates that the DMUT possesses a vast stability on the 

altered indices. Note, in the case that set Ψ1 only has element DMUT, as discussed in Zhu 

(1996), an unbounded solution also exist. 

4.2.2 Global optimal solution 

The optimal solution of the non-linear model (M12) is a global optimal solution and 

can be shown here. Let us consider the case that if the data are altered as (4.3), the non-linear 

constraint of model (M12) is written as follows: 
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 ,ΨΨ 10
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ππλλλλπ iT
THH

iHH
P

iPPHPi xxxg  for all i∈I. (4.10) 

For any point z = ),,( HP λλπ on the null space of ),,( HPig λλπ  we have a positive semi-

definite Hessian matrix. 

,02)],,([
 ,Ψ

2

1

≥=∇ ∑
≠∈ THH

H
T

HPig λπλλπ zz  for all i∈I. (4.11) 

It indicates that ),,( HPig λλπ  is a convex function. Then, the following set: 

{ }I∈≤ ig HPiHP   ,0),,(|),,( λλπλλπ  (4.12) 

is convex. Together with the other linear constraints, the feasible region of model (M12) is 

also convex. The same conclusion could be derived for model (M15) that changes data as 

(4.4), and for model (M18) that changes data as (4.3) and (4.4) simultaneously. Each model 

has a linear objective function subject to the convex feasible region. It implies that there is at 

most one local optimum. Hence, the local optimum must also be a global optimum. So, the 

global optimum is obtainable for all stability models proposed in this study. 

4.2.3 Model extensions 

Now we consider other modified DEA models by removing the constraint on the sum 

of the λP’s variables in models (M12), (M15), and (M18). For instance, model (M12) can be 

modified by removing the following constraint: 

.1
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≠∈ TPP

Pλ     (4.13) 
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This can be regarded as modified constants returns to scale (CRS) model (Banker et al. 1984) 

for finding the stability region of efficient DMUT through changing inputs as (4.3). 
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Now, let us consider the following model: 
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The minimization of (M21) provides the possible maximum increments for inputs of DMUs 

in Ψ1, and the maximum decrements for inputs of DMUs in Ψ0, to allow an efficient DMUT 

remaining on the frontier when the outputs and other inputs are held constant. 

4.3 Method for Solving stability models 

The stability models (M12), (M15), and (M18) proposed in the current paper are not 

linear programming. However, the non-linear programming model is more difficult to solve 

than the linear model. For simplicity, we investigate the method for solving the input-based 

stability model (M12). We will derive some properties that enable us to use the linear 

programming technique to approximate the optimal value π* of model (M12). First, we 

consider the LP model given as below. 
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Given positive constant t, the optimal solution to (M22) is denoted by (λP(t), π(t)). 

Obviously, we have π (t) =π* if t =π*. Some properties will be derived in the following. 

4.3.1 Properties for stability of inputs 

We will show that π (t) is a non-decreasing function for t ≥ 0. 

Theorem 4.4 Let π (t) be the optimal value to (M22). Then, π (t) is non-decreasing in t. 

Proof: We will show that π (t1) ≥ π (t2) if given any two positive constants t1 and t2 with t1 > t2. 

Suppose the optimal solutions to model (M22) by giving t = t1 and t = t2 are (λP(t1), π (t1)) and 

(λP(t2), π (t2)). It follows: 
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It implies (λP(t1), π (t1)) is feasible to (M22) for t = t2. Therefore, we have π (t1) ≥ π (t2).  

Since π (π*)= π*, it is easy to show that π (t)≤ π* for all t <π*, and π (t)≥ π* for all t >π* 

by following the results of Theorem 4.4. Further, the following theorems will help us to 

approximate the optimal value to (M12). 

Theorem 4.5. If t < π*. Then t < π (t) ≤ π*. 
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Proof: Since t < π*, we have π (t) ≤ π (π*)= π*. Now, let us suppose t ≥ π (t). Since, π (t) is 

optimal to (M22), we have 
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It implies that (λP(t), t) is feasible to model (M12), i.e., t ≥ π*. This leads to a contradiction. 

So, we have t < π (t) ≤ π*.  

Theorem 4.6. If t > π*. Then, t≥ π (t). 

Proof: Let ( *
Pλ , π*) be the optimal solution to (M12). We have 
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It implies that ( *
Pλ , t) is feasible to (M22). Thus, we have t ≥π (t).  

Suppose model (M12) is feasible, Theorem 4.5 and 4.6 show that if t1 and t2 are the 

lower and upper bounds of π* respectively. One can obtain π (t1) and π (t2) from solving (M22) 

by setting t = t1 and t = t2, and identify that t1 <π (t1)≤ π* ≤ π (t2)≤ t2. That is, the lower bound 

is moved upward from t1 to π (t1) and the upper bound is moved downward from t2 to π (t2). 

Conversely, if one obtains π (t) by solving (M22) for any t, then, we have π (t)≤ π* for t < π (t) 

and π (t)≥ π* for t ≥ π (t). The graph of π (t) is shown in Figure 4. 
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Figure 4. The graph of optimal value π (t) to model (M22). 

But model (M12) could be infeasible or unbounded. We will state a rule to prevent the 

unbounded situations from solving (M12). We consider the following linear programming 

model modified from (M22) by excluding all DMUP, P∈Ψ1 from the reference set. 
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 (M23) 

Suppose (M23) is feasible. We have π# is an upper bound of π*. 

Theorem 4.7. π# ≥ π*. 

Proof: Suppose the optimal solutions to (M23) is ( #
Pλ , π#), where π# is finite. It follows: 
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It implies ( #
Pλ , 0, π#) is a feasible solution to (M12). Therefore, π*≤ π#< ∞.  

The result of Theorem 4.7 indicates that π* is finite if π# is finite. Morevver, the 

following theorem will help us to determine whether the exact value of π* is obtained or not. 

Theorem 4.8. If λP(0) = 0 for all P∈Ψ1. Then, π (0) = π*. 

Proof: If λP(0)=0 for all P∈Ψ1, we have (λP(0), π (0)) is also feasible to (M23). Following the 

results of Theorem 4.4–4.7, we have π (0) ≥ π# ≥ π*. Conversely, π (t) is non-decreasing in t, 

and π*> 0. It follows π* = π (π*) ≥ π (0). Therefore, π (0) = π*.  

However, Theorem 4.8 can be extended as: if given any t∈[0, π*] with λP(t)=0 for all 

P∈Ψ1. Then, we have π (t) =π*. 

4.3.2 Approximating stability regions 

Following the results of Theorem 4.4−4.8, π* can be obtained or approximated by 

solving linear programming models (M22) and (M23) only, but it does not need to employ the 

non-linear programming model (M12) directly. An algorithm used to approximate π* is 

developed as the following: 

Step 0. (Initialized) Solve (M23) to obtain π# 
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Step 0.1. If π# is bounded, set upper bound U=π#. 

Otherwise, let U=M, where M is a given sufficient large number. 

Step 0.2. Let lower bound L=0 and ε be the error tolerance for estimating π*. 

Step 1. Solve (M22) with t=(U+L)/2 to obtain (λP(t), π (t)). 

Step 1.1. If λP(t)=0 for all P∈Ψ1 then set π*=π (t) and stop. 

Step 1.2. If t<π (t) then set L=π (t). Otherwise, set U=π (t). 

Step 2. If  |U−L| < 2ε then set π*= (U+L)/2 and stop. Otherwise, go to Step 1. 

A bisection procedure is applied in the algorithm for convergence. If π# is feasible in 

Step 0, π* must be feasible and its approximation could be obtained. However, π* may occur 

infeasible or its value exceeds a large number such that the test portfolio tends to be stable 

while data is changed in a sufficient large scale. So, the upper bound U is set sufficient large 

value if π# is infeasible in Step 0. In the real-world applications, one may identity that a test 

portfolio is always stable if the stability of inputs is infeasible or large enough relatively to the 

data range of the perturbed project. 

4.3.3 Method for solving other stability models 

For the case of changing data of outputs as (4.4), the optimal solution, δ*, to the non-

linear model (M15) could be approximated by considering the following LP model. 
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For arbitrary positive constant t, we have δ (t) = δ* if we take t = δ*. However, if we 

use model (M15) to consider the data changed as (4.3) and (4.4), the stability is approximated 

by considering the following LP model. 
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Some properties related to δ* and Γ* are analogous to the properties of π*, which 

enable us to approximate the exact values of δ* and Γ*. 

4.3.4 Example 1 (continued) 

Let’s use Example 1 as an interpretation of sensitivity analysis. In case of the input 

coefficient, a3, of project 3 is given upward variations. In Table 9, portfolios with w3=1 and 

w3=0 are listed in the upper and lower parts in increasing order of input values. We want to 

investigate the stability of efficient portfolio 7 with respect to the data variation. One is to 

find the maximum value of π so that the extremely efficient portfolio 7 is remains efficient. 

That is, portfolio 7 remains efficient while the input value of project 3 is changed from a3 to 

a3+π. Model (M9) is rewritten as follows after changed. 

Maximize y= 6 w1+ 4.0 w2+         7.2 w3+ 8 w4+    w5  (M26) 

Minimize x= 4 w1+ 2.8 w2+ (5.6+π ) w3+ 9 w4+ 2 w5 

Subject to wk ∈{0,1},  k=1, 2,…, 5. 

Sets of index for classifying changed and unchanged portfolios is as follows. 

Ψ0={0, 1,  2,  3, 8,  9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27}, 

and  

Ψ1={4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31}. 

Portfolio P are shifted right if P∈Ψ1 and unchanged if P∈Ψ0. Changed and unchanged 

portfolios and their corresponding DMUs are listed in Table 9. Figure 5 presents all DMUs 

while they are before change. Figure 6 presents all DMUs while they are after change. The 

stability measure, π*, is solved by the above algorithm and as follows: 
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Table 9. Changed and unchanged portfolios by perturbing project 3. 

Portfolio DMUP 

P w1 w2 w3 w4 w5 xP yP 

4 0 0 1 0 0 5.6+π 7.2 
20 0 0 1 0 1 7.6+π 8.2 
6 0 1 1 0 0 8.4+π 11.2 
5 1 0 1 0 0 9.6+π 13.2 
22 0 1 1 0 1 10.4+π 12.2 
21 1 0 1 0 1 11.6+π 14.2 

7 E 1 1 1 0 0 12.4+π 17.2 
23 1 1 1 0 1 14.4+π 18.2 
12 0 0 1 1 0 14.6+π 15.2 
28 0 0 1 1 1 16.6+π 16.2 
14 0 1 1 1 0 17.4+π 19.2 
13 1 0 1 1 0 18.6+π 21.2 
30 0 1 1 1 1 19.4+π 20.2 
29 1 0 1 1 1 20.6+π 22.2 

15 E 1 1 1 1 0 21.4+π 25.2 

31 E 1 1 1 1 1 23.4+π 26.2 

0 E 0 0 0 0 0 0.0 0.0 
16 0 0 0 0 1 2.0 1.0 
2 0 1 0 0 0 2.8 4.0 

1 E 1 0 0 0 0 4.0 6.0 
18 0 1 0 0 1 4.8 5.0 
17 1 0 0 0 1 6.0 7.0 

3 E 1 1 0 0 0 6.8 10.0 
19 1 1 0 0 1 8.8 11.0 
8 0 0 0 1 0 9.0 8.0 
24 0 0 0 1 1 11.0 9.0 
10 0 1 0 1 0 11.8 12.0 
9 1 0 0 1 0 13.0 14.0 
26 0 1 0 1 1 13.8 13.0 
25 1 0 0 1 1 15.0 15.0 
11 1 1 0 1 0 15.8 18.0 
27 1 1 0 1 1 17.8 19.0 

E: indicates the efficient portfolio. 



 − 51 −

15

7 11

3

Input

O
ut

pu
t

Efficient frontier

Changed portfolios

Unchanged portfolios

 
Figure 5. All portfolios and efficient frontier before change. 
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Figure 6. All portfolios and efficient frontier after change. 
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Step 0. Solve (M23) to obtain π#=2.5. 

Step 0.1. π#=2.5 is bounded, set upper bound U=π#=2.5. 

Step 0.2. Set lower bound L=0 and error tolerance for estimating π* be ε=0.001. 

Step 1. Solve (M22) by setting t=(U+L)/2=1.25. 

We obtain λ3(t)= 0.5263, λ15(t)= 0.4737, and π(t)=1.9079. 

Step 1.1 Since λ15(t)>0 and 15∈Ψ1, go to step 1.2. 

Step 1.2 Since t <π(t), we set L=π (t)=1.9079. 

Step 2. Since |U−L| > 2ε, go to Step 1. 

Iteration 2: t=(U+L)/2=2.2040, λ3(t)=0.5263, λ15(t)=0.4737, and π (t)=2.3597. 

Set L= π (t)=2.3597 and remain U= 2.5. 

Iteration 3: t=(U+L)/2=2.4299, λ3(t)=0.5263, λ15(t)=0.4737, and π (t)=2.4668. 

Set L= π (t)=2.4668 and remain U= 2.5. 

Iteration 4: t=(U+L)/2=2.4834, λ3(t)=0.5263, λ15(t)=0.4737, and π (t)=2.4921. 

Set L= π (t)=2.4921 and remain U= 2.5. 

Iteration 5: t=(U+L)/2=2.4961, λ3(t)=0.5263, λ15(t)=0.4737, and π (t)=2.4982. 

Set L= π (t)=2.4982 and remain U= 2.5. 

Now, |U−L|=0.0018 < 2ε, we set π*= (U+L)/2=2.4991 and stop the process. 

The exact solution to (M12) is π*=2.5. The value may not attachable if λP(t)≠0 for all P∈Ψ1 

occurs in Step 1. However, π* could be approximated by the proposed algorithm. 
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5. Conclusion and Discussion 

The problem of evaluation and selection of collective projects is modeled as a 

MOBILP. Instead of evaluating projects individually, it enables the evaluation of projects in 

their combination forms. In the public sector and government project selection problems, 

many environmental factors may be included as the objective of resources. We focused on the 

best use of relative resources, but not the best use of available resources. In this paper, we 

developed the filtering algorithm to circumvent the computational difficulties of DEA 

programs, to identify all efficient portfolios, and to rank them according to the stability 

measures of model (M7). 

The simulated results show that a major portion of the inefficient portfolios and some 

efficient portfolios (SEC) are identified prior to the calculation of the DEA programs. The 

remaining portfolios are then evaluated with respect to the ECG by using DEA case-based 

classification model (M7). The problem size of each LP and the number of solving LP are 

reduced significantly. The simulated results indicated the following: 

1. The PDR filter is the most powerful of all the proposed filters. It identifies about 80% to 

90% of portfolios in our sample data sets. 

2. Phase II of filtering algorithm identifies about 99% of inefficient portfolios. It shows that 

the DEA programs just need to employ to the remaining 1% of candidate portfolios. 

3. The computing time is data dependent and its expected computing time is exponentially 

increased as the number of projects is increased. 

DEA methodology is computationally intensive when required to solve a large number 

of LP. This problem has 2K portfolios, and the number is doubled as one more project is 

added for evaluation. The program MOBILP+ seems efficient for solving the problem at this 

moment in time. One may potentially discover new methods of determining inefficient 

portfolios prior to the solution of the DEA programs, further reducing the number in solving 

LP. However, in the real-world applications, some projects could be eliminated prior to the 

collective selections if their stability measures were less than a threshold value. Then, the 

number of projects could be reduced and also dos reduce the computational effort for solving 

the problem. 
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Table 10. Data set consists of 37 R&D projects (Oral et al., 1991). 

R&D Indirect Direct Technical Social Scientific Resource
Project Economic Economic Contribution Contribution Contribution Usage 

1 67.53 70.82 62.64 44.91 46.28 84.20
2 58.94 62.86 57.47 42.84 45.64 90.00 
3 22.27 19.68 6.73 10.99 5.92 50.20 
4 47.32 47.05 21.75 20.82 19.64 67.50 
5 48.96 48.48 34.90 32.73 26.21 75.40 
6 58.88 77.16 35.42 29.11 26.08 90.00 
7 50.10 58.20 36.12 32.46 18.90 87.40 
8 47.46 49.54 46.89 24.54 36.35 88.80 
9 55.26 61.09 38.93 47.71 29.47 95.90 

10 52.40 55.09 53.45 19.52 46.57 77.50 
11 55.13 55.54 55.13 23.36 46.31 76.50 
12 32.09 34.04 33.57 10.60 29.36 47.50 
13 27.49 39.00 34.51 21.25 25.74 58.50 
14 77.17 83.35 60.01 41.37 51.91 95.00 
15 72.00 68.32 25.84 36.64 25.84 83.80 
16 39.74 34.54 38.01 15.79 33.06 35.40 
17 38.50 28.65 51.18 59.59 48.82 32.10 
18 41.23 47.18 40.01 10.18 38.86 46.70 
19 53.02 51.34 42.48 17.42 46.30 78.60 
20 19.91 18.98 25.49 8.66 27.04 54.10 
21 50.96 53.56 55.47 30.23 54.72 74.40 
22 53.36 46.47 49.72 36.53 50.44 82.10 
23 61.60 66.59 64.54 39.10 51.12 75.60 
24 52.56 55.11 57.58 39.69 56.49 92.30 
25 31.22 29.84 33.08 13.27 36.75 68.50 
26 54.64 58.05 60.03 31.16 46.71 69.30 
27 50.40 53.58 53.06 26.68 48.85 57.10 
28 30.76 32.45 36.63 25.45 34.79 80.00 
29 48.97 54.97 51.52 23.02 45.75 72.00 
30 59.68 63.78 54.80 15.94 44.04 82.90 
31 48.28 55.58 53.30 7.61 36.74 44.60 
32 39.78 51.69 35.10 5.30 29.57 54.50 
33 24.93 29.72 28.72 8.38 23.45 52.70 
34 22.32 33.12 18.94 4.03 9.58 28.00 
35 48.83 53.41 40.82 10.45 33.72 36.00 
36 61.45 70.22 58.26 19.53 49.33 64.10 
37 57.78 72.10 43.83 16.14 31.32 66.40 
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It is interesting that in using output-input ratios (Theorem 3.2), the identified efficient 

portfolios, SEC, have higher stability measures with respect to the whole set of efficient 

portfolios. To illustrate the fact, we consider the data set of 37 R&D projects as listed in 

Table 11 (Oral et al., 1991), and evaluate all possible collectives of these projects. There are 

exactly 3298 VRS efficient portfolios, and 167 of them belonged to SEC. We observe that the 

order ranks, based on stability measures, of the memberships in SEC are significantly higher 

than the others. The distribution of the order ranks of portfolios in SEC is listed in Table 11. 

The second row of Table 11 shows there are 9 SEC portfolios in the top 10. It indicates that 

SEC contained superior portfolios. Therefore, one may not need to solve the collective 

evaluation problems by using DEA models or our proposed filtering algorithm, since SEC 

provides many quality portfolios for selection. Output-input ratios could be very easily 

obtained, even by hand calculation. 

Table 11. The distribution of the order ranks of the 167 SECs. 

Order ranks Number Percent 
(%) 

Cumulative 
number  

Cumulative 
percent (%) 

1-10 9 5.4% 9 5.4% 
11-20 6 3.6% 15 9.0% 

21-100 21 12.6% 36 21.6% 
101-500 56 33.5% 92 55.1% 

501-1000 30 18.0% 122 73.1% 
1001-2000 33 19.8% 155 92.8% 

>2000 12 7.2% 167 100.0% 

 

The paper presented a new DEA sensitivity approach referring to the non-linear 

models that may be considered as the extension of super-efficiency models (Seiford & Zhu, 

1998b; 1999). The new sensitivity technique provides the stability of efficient portfolios by 

giving the data variations on a specific project. It cause that a subset of portfolios are 

perturbed in the same value simultaneously. Fortunately, our proposed stability models can be 

applied to the case of measuring the stability of efficient DMUs by giving the data variations 

on a subset of perturbing DMUs simultaneously. 

In contrast to the usual DEA sensitivity approaches whose data variations are 

considered either on the test DMU or on the allover DMUs, this approach proposed the 

generalized consideration that the uncertainty only affects a subset of DMUs. Sufficient and 

necessary conditions of stability measures are provided for upward variations of inputs and/or 
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downward variations of outputs on a subset of DMUs simultaneously so that a test efficient 

DMU remains on the efficient frontier. Sensitivity analysis enhances the fine quality of the 

final decision. Also, one can have the insight for the comparison between DMUs. Thus, the 

type of data variation in our analysis is more flexible than the usual approaches. 

Although the stability regions of a test efficient DMU for absolute changes in the data 

is identified, the data change with the same distances are not necessarily true for the real-

world applications. However, rescaling all inputs and outputs suitably could be used to 

prevent this shortcoming. The possible future extensions of our research include: a 

determination of the whole stability region of a test DMU, change of different scales in 

different input/output, the stability of efficiency in other DEA models, and proportional data 

variations. 
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