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An Efficient Method for Selecting the Portfolios
of a Large Number of Projects

Student: Ching-Hsiang Lai Advisor: Fuh-Hwa Franklin Liu, Ph.D.

Department of Industrial Engineering & Management

National Chiao Tung University

Abstract

We are selecting several projects out of a set of projects. Every subset of these
projects is treated as a portfolio. Multiple indices are used to measure the expected

performance of those projects. We employ Data Envelopment Analysis (DEA) to measure the

relative efficiency of each port ible portfolios. Our research has two
major objectives. The first obje orithm to reduce problem complexity
and the required computation t EA needs to generate all the possible
portfolios first and then measut ncy against all the portfolios. For the
problem with 24 projects, it ne ) obtain the efficient portfolios while

our procedure needs only 37 Scevius viny. 5 vs v wagorithm, a selection problem with 37
projects could be solved within one day in a personal computer. It is impossible to solve the
problem with more than 2°’ decision variables by any existing mathematical programming
software if conventional DEA program is used. The second objective is to measure the
stability of each identified efficient portfolio. The tolerance of its each individual index

becomes worse could be measured for keeping its efficiency.

Keywords: data envelopment analysis (DEA), multiple criteria decision-making (MCDM),

portfolio, performance evaluation, stability.
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Notations

MCDM

J : the number of objectives.

J(X) : thejth objective of MCDM, j=1, ... ,J.

X : the feasible point of MCDM.

S : the feasible set of MCDM.

MOBILP

K : the total number of projects.

k : the index of projects, k=1, ... , K.

s : the total number of output products.

r : the index of outputs, r =1, ..., s.

m : the total number of input resources.

i : the index of inputs, i

C : the amounts of produ or=1,...,s,andk=1, ...
a, : the amounts of resou k,i=1,...,mand k=1, ...
Q : the set of all feasible

n : the total number of p:

P : the index of portfolio

w, : binary variables, w, =1 if project £ is selected and w,=0 otherwise, i=1, ...
DEA

Q, : the set of all DMUs corresponding to portfolios in Q.

DMU, :the DMUs in Q,, PeQ.

Vop : the values of output r for portfolio P (DMU,),r=1, ..., s, and PeQ.

X;p : the values of input i for portfolio P (DMU,),i=1, ... ,m, and PeQ.

T : the portfolio currently under evaluation.

DMU, :the DMU currently under evaluation.

Vor : the values of output r for the evaluated portfolio 7 (DMU,), r=1, ..., s.
X : the values of input i for the evaluated portfolio 7 (DMU,),i=1, ..., m.
DEA models

z, : the objective of additive model when evaluating DMU..

n; : the objective of BCC model when evaluating DMU,.
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: the objective of BCC dual model when evaluating DMU,.
: the objective of BCC ratio model when evaluating DMU,.

: the infinitesimal constant.

: the proportional reduction applied to all inputs of DMU, to improve efficiency.

: the variable for projecting DMU,, PeQ.

: the surplus in the amounts of output r, r =1, ... , s.

: the slack in the amounts of input i, i =1, ... , m.

- the dual variable associated with the output constraint, ¥ =1, ..., s.
- the dual variable associated with the i input constraint, i =1, ... , m.
: the intercept variable that reflect the impact of scale size of a DMU.

: the weight assigned to output r, r =1, ..., s.

: the weight assigned to inputi,i=1, ..., m.

: the constant assigned to maximize the output-input ratio of DMU,.

Stability analysis of DEA

: the radius of stability for DMU,.
: the radius of stability
: the radius of stability

: the reference set to e f DMU,.

: the variable for proje

- the 0 output coeffici ge,r=1,...,s,and k=1, ...
- the i™ input coefficient of project k after change,i=1, ... ,m,and k=1, ...

: the increment in input of project k£ and portfolio 7.

: the decrement in output of project k and portfolio 7.

: the value of increment in input and decrement in output simultaneously.
: the set of changed portfolios when perturbed project k.

: the set of unchanged portfolios when perturbed project 4.

- the ™ output of portfolio P after change, =1, ... , s, and PeV,.

- the /™ input of portfolio P after change,i=1, ..., m, and Pe¥,.

Identification of efficient portfolios

: the value of single output of project k, k=1, ... , K.
: the value of single input of project k, k=1, ... , K.
: the ratio of single output to single input, R,=c, /a,, for project k, k=1, ...

: the ratio of the #" output to /" input, R} =c,, /a,, , for projectk, k=1, ...
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: the indices of projects currently used.

: the unit row vector with 1 at the kth component and 0 elsewhere.
: the indices of portfolios currently used.

: the set consists of index of project £ with ¢, > 0 and @, > 0.

: the set consists of index of project k£ with ¢, <0 and a, <O0.

: the set consists of index of project £ with ¢, > 0 and ¢, < 0.

: the set consists of index of project k£ with ¢, <0 and a, > 0.

: the set consists of index of project £ with ¢, <0 and @, = 0.

: the set consists of index of project k£ with ¢, =0 and a, <O0.

: the subset of portfolios consists of P=(w,, ... , wy) with w,=0 for kel,.
: the subset of portfolios consists of P=(w,, ... , w,) with w=1 for kel,.
: the subset of portfolios consists of P=(w,, ... , w,) with w,=0 for kel ,.
: the subset of portfolios consists of P=(w,, ... , w,) with w=1 for kel...
: the subset of portfolios consists of P=(w,, ... , w,) with w,=0 and w,=1.

: the set consists of effiniant nartfnline

: the set consists of ine

: the number of elemer

: the union of index set

: the binary variable tr: ke®.
: the coefficient transft

: the coefficient transft

n

: the set consists of index of project k£ with ¢,> 0 and a, > 0.
: the set consists of index of project k with ¢,> 0 and a, <0.
: the set consists of index of project k£ with ¢, <0 and a,> 0.

: the number of elements in 1 ,.

: the number of elements in |, .

: the number of elements in 1.

: the reference set of project £ by using additive model.

: the number of portfolio flows in Phase II of filtering algorithm, j =1, ..., 10.
: the portfolio currently under evaluation in filtering algorithm.

: the next portfolio will being evaluated in filtering algorithm.



1. Introduction

1.1 Motivation and background

Decision-making problems involve both quantitative and non-quantitative factors. The
non-quantitative factors are not usually well defined or are subjectively determined by the
decision-maker. Such factors cannot be included in the mathematical models while the
quantitative factors are modeled as multiple objective linear programming (MOLP). The
coefficients in MOLP may obtainable, well defined, or not sensitive to the final solution. An
example of MOLP may be projects of government investment, in which the minimization
objective functions (inputs) may be manpower, machines, construction costs, operation costs,
other controllable costs and uncontrollable costs while the maximization objective functions

(outputs) may be revenues, rate of population growth, growth of economic improvement.

Project selection probleme have received enhgtantial attention in recent decades

(Martino, 1995). This research selection and evaluation of collective
projects from a feasible set ¢ lany difficulties associated with the
evaluation problems of collec nultiple conflicting objectives, non-
quantitative objects, and the en ble combinations. In this paper, each
subset of the projects is trea o, and evaluated against a relative

production technology. Many researcners nave proposed the evaluation and selection of
projects in a portfolio (Oral et al., 1991; Cook & Green, 2000; Linton et al., 2002). It is
desired to establish the portfolios of projects that can be justified as making the best use of
available resources. It involves the evaluation, from a larger set of projects, of each portfolio
to be undertaken. The problem discussed here falls firmly into the multiple criteria decision-

making (MCDM) arena.

In MCDM, there are a number of alternatives among which a decision-maker must
decide. Each alternative is described by its performance according to certain criteria,
attributes, or objectives. Stewart (1996) defines a criterion as being a particular point of view
according to which alternatives may be assessed and rank-ordered. An attribute is a particular
feature of the alternative with which a numerical measure can be associated. An objective is a
specific direction of preference defined in terms of an attribute. The aim of MCDM is to
provide support to a decision-maker in making the best choice among alternatives, and to

propose the ‘optimal’ solution under some form or preference ranking.

—1-



Data envelopment analysis (DEA) is a robust and valuable methodology for frontier
estimation (Charnes et al., 1978). Based on mathematical programming techniques, it is
particularly suited to estimating multiple input and output production correspondence. In the
last two decades, DEA has become a popular method for analyzing the efficiency of various
organization units (Norman & Stoker, 1991) which differ both in the quantities of inputs they
consume and in the outputs they produce, and does not require any subjective or economic
parameters (weights, prices, etc.). Many studies have been concerned with the efficiency of
production. It is clear that DEA is now playing a wider role in management science. In
particular, DEA approaches have assumed important status within the toolkits of investigators

concerned with MCDM (Joro et al., 1998).

It 1s worthwhile to identify the role of our problem in the related academic studies.
DEA and MCDM are two related techniques that have received considerable attention in the
OR/MS literature. Many papers have proposed to analyze the links between DEA and MCDM
(Belton & Vickers, 1993; Stewart 1096- Taro et al  1998; Sarkis, 2000). The success of DEA

in the area of performance eval rgies between DEA and MCDM, has
led some authors to propose DE Doyle & Green, 1993; Stewart, 1994;
Bouyssou, 1999; Liu et al., 200 1eless, to be little interaction between
these two sub-fields, despite the ther similar problems. In general, the
aim of DEA is not to select on ig unit (DMU), but rather to separate

efficient DMUs from inefficient vues auu w waicawe we ‘efficient peers’ for each inefficient
DMU. The MCDM and DEA formulations coincide (although their ultimate aims may still
differ) if we view inputs and outputs as criteria or attributes for evaluating DEA, with

minimized inputs and maximized outputs as associated objectives (Belton & Vickers, 1993).

Many researchers have discussed the project selection problems in various forms.
Bunch et al. (1989) apply DEA additive model to solve the problems, Oral et al. (1991) depart
from the DEA CCR model and propose a rather complex multi-stage collective evaluation
and selection model, which is called the OKL point. Cook & Green (2000) follow the OKL
point to solve the resource-constrained project selection problem by using mixed-integer

programming.



1.2 Problem definition

Suppose a set of K candidate project proposals numbered £ =1, ... , K is somehow to
be evaluated and selected. Project & consumes amounts of a,, i = 1, ... , m resources to
produce ¢, =1, ..., s products. A portfolio comprises a subset of the K feasible projects is
denoted by P = (w,, ... , wy), where w,= 1 if the K" project belongs to portfolio P and w,= 0

otherwise. Let Q denote the set of all feasible portfolios where:

Q={P=(w, ...,w)|w=0o0r1,k=1,...,K.}. (1.1)

Let n be the number of total possible portfolios in set 2 under evaluation, n =||Q|| = 2k

It is assumed that the projects are neither synergistic nor interfering, and all portfolios are
supportable since resource constraints are absent for a decision maker. If both projects were
selected, the outputs produced would be the sum of their respective outputs, and so as the

input resources used. The correspondence set of DMU s is:

Q,={DMU,=y,p, --- , (1.2)
where y,=c.,w,+ ... + c, W, o tauw, i=1, ..., m. Then, the
collective evaluation problem i wltiple objective binary integer linear
programming (MOBILP):

Maximize y,,=c,w,+ . (M1)

Minimize x,=a,w,+ ... ta,w, i=1,...,m.

Subject to PeQ.

For solving model (M1), some different methods are proposed in Keeney & Raiffa
(1976) and Steuer (1986). Difficulties arise due to disagreement between various interested
parties concerning its form and detail. Instead of considering optimization of the criteria, a
DEA-based approach circumvents these difficulties by allowing each portfolio to evaluate
itself relative to all portfolios under consideration. DEA is intended to identify efficient

portfolios, to characterize inefficient portfolios, and to assess from where inefficiencies arise.

However, DEA methodology is computationally intensive, requiring the solution of n
mathematical programs when analyzing a data set that comprises » DMUs. As discussed in
Ali (1990; 1992; 1994), identification of efficient and inefficient DMUs without solving a
DEA program is very useful in streamlining the solution of DEA computations. In this study,

we present mathematical properties to characterize the inherent relationships between

—3_



efficiency of portfolios and data of projects. By using the output-input ratio of individual
project, efficient and inefficient portfolios are identified prior to the DEA program. The
frontier of the pre-identified efficient portfolios is developed as a filter and is used to
characterize inefficient portfolios from the class of candidate efficiencies. Inefficiency of
portfolios is identified with portfolios that lie within the DEA frontier. The case-based
computer systems use linear programming (LP) with a small problem size to rapidly identify a
large number of inefficient portfolios. Then, the remaining portfolios are evaluated by using
DEA programs to identify efficient units and measure the stability of each efficient unit to

rank all efficient units for the decision aim.

A large number of alternatives would be ruled out from final decision. There are many
ways to use the solution of our method to obtain the final decision under the consideration of
non-quantitative factors, such as follows: (i) Compare the super-efficiencies of all the
efficient portfolios, (ii) Sensitivity analysis on the coefficients so that a specific extremely
efficient portfolio becomes inefficient and (iii) Senqitivity analysis on the coefficients so that
a particular inefficient portfolic efore, the effort for making the final

decision is significant reduced.

The literatures of sensit zal with only change values of input
and/or output of one particule the other DMUs are hold fixed, or
change data of all efficient DM ling some given rules. To investigate

the stability of each efficient portfolio with respect to the coefficients of a specific project, the
super-efficiency measure could not satisfy our requirements, since the portfolio consists of
some projects. For a specific efficient portfolio, we are considering the stability of the
portfolio while we are changing data of some portfolios through changing the coefficients in
the inputs and outputs of a particular project. When all the stability measures are obtained,
they are helpful to the final decision maker to possess the fine comparison of efficient

portfolios.
1.3 Objectives of the research

Without predetermined the weights of the objectives, we use DEA to measure the
efficiency and stability of each portfolio. The objective is to select and rank portfolios that are
efficient in terms of the characteristic of DEA. The difficulty of the DEA analysis may spend

more effort on computations while the number of portfolios (DMUSs) tends to be large. In our
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problem, the total number of alternatives is 2K, and it could be doubled when we added one
more project to the MOBILP (M1). If use the conventional DEA model to assess each
portfolio against the 2K portfolios, one needs to solve a linear programming models with X
variables and (m+s) constraints. For instance, if K equals to 30, one needs a linear
programming software package with the capacity to accommodate the 2% variables. It may
reach the capacity of existing software and the personal computers. The problem with K value
beyond 30 would not be solved. The computation time is the other issue has to be conquered.

In our experiment, for the case K=24, we spent more than one day to have final solution.

We develop an efficient method to identify the efficient portfolios for MOBILP with
single minimization (input) and minimization (output) problem. One does not need to employ
linear programming to obtain the solution. For the MOBILP with multiple minimization and
maximization objective functions, an efficient and effective process for identifying inefficient
portfolios is proposed to reduce the computation prior to the DEA programs, and identifying

~ P . 1

some efficient portfolios whc implement the filtering algorithm.
Therefore, all of the efficient -espondence efficiency measures are

obtained by using the proposed

The inputs and outputs « sctively obtained from the sum of the
input and output of the selectex anges of any one coefficient in (M1)
would change a half number . at contain the changed project. The

efficiency measures of those portfolios may be changed while the coefficient is perturbed. For

instance, if the coefficient, say a,, is changed, all the portfolios with w,=1 are changed

it
respectively while the other half portfolios are remain unchanged. Our purpose concerns the
perturbation of coefficients, @, and c,, of project k in an interested efficient portfolio to
preserve its efficiency. We are considering the stability of an extremely efficient portfolio
while we are changing the inputs and outputs of some portfolios through changing the
coefficients of objective functions of a particular project (binary decision variable). The
sensitivity analysis for the coefficients is modeled as a non-linear programming whose
optimal values yield a stability region of an extremely efficient portfolio. Sufficient and
necessary conditions are provided for upward variations of a, and downward variations of ¢,
for a specific project such that an extremely efficient portfolio remains efficiency. A

technique using linear programming to approximate the optimal solution to the non-linear

programming also proposed.



1.4 Organization of the dissertation

The second chapter reviews the related literature in MCDM, DEA and its sensitivity
analysis. Chapter three introduces an efficient process for constructing efficient frontier. The
output-input ratio analysis for quickly identify dominated portfolios are proposed. Then, a
filtering algorithm is used to solve the MOBILP (M1). Chapter four proposes the sensitivity
analysis for DEA models. Non-linear models are proposed for finding the stability regions of
efficient portfolios with respect to the data changed in project. The method that uses linear
programming model to approximate non-linear programming stability model is also provided.
Conclusion and discussion are presented in chapter five. The structure of this study is

illustrated in Figure 1.

2. Literature Review

P

3.1 Single input and output
Construct efficient fror
by output-input ratic

v

. 4. Sensitivity Analysis

3.2 Multiple inputs ar}d outpu.. prem 4.1 Models for stabilities of coefficients
Develqp some domlp ance properties 4.2 Properties for stabilities models
for saving computations of MOBILP 4.3 Solve stability models

v

3.3 Filtering algorithm
Identify efficient frontier for MOBILP

v v
v

5. Conclusion and Discussion

Figure 1. Organization of dissertation.



2. Literature Review

2.1 Multiple criteria decision making

The single objective mathematical programming problems are studied extensively in
the past 40 years. However, single objective decision making methods reflected an earlier and
simpler era. The world become more complex as we enter the information age. We find that
almost every important real-world problem involves more than one objective, and decision
makers find it imperative to evaluate solution alternatives according to multiple criteria. We
now need to extend the single criterion problems to the multiple criteria problems. A MCDM

mathematical programming is expressed as the following:

Maximize {f,(X), f,(X), ... , fAX)} (M2)

Subject to XeS.

Where f,(X), £,(X), ... . res whether it be linear, integer, or
nonlinear, and S is the set of f > objectives are all linear, it is called
MOLP problem. In single obje nust settle on a single objective such
as minimizing cost or maximi: the real-world applications, we will
almost certainly be able to ider criteria. For example, the investment
planning problems use the f sure as criteria: maximize {return,

dividends} and minimize {risk, derivations from diversification goals}. A point in S is
optimal if it maximizes the decision-maker’s objectives. A point in S is ‘efficient’ if and only
if its criterion vector is non-dominated. To be optimal, a point must be efficient. ‘Inefficient’

solutions are not candidates for optimality.

The success of DEA in the area of performance evaluation together with the formal
analogue existing between DEA and MCDM have led some authors to propose to use DEA as
a tool for MCDM. The DEA methodology is briefly reviewed in the following.

2.2 DEA models

As first developed by Charnes et al. (1978), DEA is a methodology used for assessing
the relative efficiency of DMUs. DEA is a set of methods and models based on mathematical

programming and used for characterizing efficiencies and inefficiencies of DMUs with the



same multiple inputs and outputs. In this research, additive model and BCC model are used to

identify the efficient portfolios. These models are briefly reviewed.
2.2.1 Additive model

The additive model, presents in Charnes et al. (1985a), is used to introduce the
concepts of DEA. When portfolio 7€Q is under evaluation, the model is set to evaluate its

corresponding DMU, DMU,= (V7 -+ s Vir» X115 -+ » X,,7), as the following:

N m
. N N
Min z, = Zsr Zsi
r=l1 i=1

s.t. Z/lpyrp—s::y,T, r=1...,s,
PeQ

—lexip—si_:—x”, i=1..,m, (M3)
PeQ
> =1,
PeQ
A, 20,PeQ) s: >0.r=1.....s >0 i=1,...,m.

The additive model rel: s to the economic concept of Pareto
optimality. The optimal value, -ating that measures the distance that
the particular DMU being ratec f the optimal value to model (M3) is
equal to zero, then DMU, is The thinking seems to be that the
observed portfolio 7 is in a se; er population of potential portfolios,

whose input-output combinations are assumed to belong to a convex production possibility
set (Charnes et al., 1985a). If the optimal value to model (M3) is non-zero, then DMU is not
optimal for any linear aggregation of inputs and outputs, and is either dominated, or

dominated by a convex combination of the inputs and outputs of two or more DMUs (i.e.,

convex-dominated). Thus, DMU, is efficient if and only if z, =0. The DMU, is inefficient if it

*

does not lie on the frontier. For example, if any component of the slack variables, s;” or s

i1s not zero, the value of the nonzero component will identify the sources and amounts of

inefficiency in the corresponding outputs and inputs.

The property of translation invariance for additive model is presented in Ali & Seiford
(1990). They indicate that the efficient DMUs are preserved efficiency by varying input

and/or output in the same value to all DMUs.



2.2.2 BCC model

The BCC model (Banker et al., 1984) separates the inefficiency into technical efficient
and scale inefficiency. A new separate variable, u,, is introduced which makes it possible to
determine whether operations are conducted in regions of increasing, constant, decreasing
return to scale in multiple input and output situations. The particular point of selected
projection is dependent on the employed DEA model and the orientation. For instance, in an
input orientation BCC model, one focuses on maximal movement toward the frontier through
proportional reduction of inputs, whereas in an output orientation, one focuses on maximal
movement via proportional augmentation of outputs. When portfolio 7€Q is under evaluation,

the BCC models with an input orientation are presented as the followings:

Min 7, =6, —EZS: —5Zsi‘
r=1 i=1
s.t. Z/Ipyrp—sjzy,T, r=1,...,s,
P
0, x,; — ZZPXI.P (M4)
PeQ

> A =1,
P

Ap20,PeQ s’ i=1...,m.
Its dual form is as the fo

Max o, = zr:l H.Y,p T U,
m
s.t. Zl_:l VX, =1,
s m
MY _ZH VX, +u, <0, Pel, (M5)
v, <-g, i=1,...,m,
-u <-g, r=1,...,s,

u, :freein sign.

Several new constructions appear in this BCC model formulation. The variable 6,
appears in the primal problem and an infinitesimal constant, &, appears both in the primal
objective function and as a lower bound for the multipliers in the dual problem. The scalar
variable 0, is the proportional reduction applied to all inputs of DMU, to improve efficiency.
This reduction is applied simultaneously to all inputs and results in a radial movement toward

the envelopment surface. The infinitesimal constant, & in the primal objective function



effectively allows the minimization over #, to preempt the optimization involving the slacks.

Evidently, the following two statements are equivalent:

1. A DMU is efficient if and only if the following two conditions are satisfied:
(a) the optimal &, =1, and
(b) all slacks and surpluses are zero.

2. ADMU is efficient if and only if @,=n,=1.

Both Additive and BCC models are of the variables return to scale (VRS) DEA
models (Charnes et al., 1994). Based on the DEA perspective, efficiency should be measured
by the distance from the efficient frontier, as hinted by model (M3)—(M5). But, the usual DEA
definition is based on the following BCC ratio form. When portfolio 7€Q is under evaluation,

the model is expressed as the following:

s . . + u
MaX §T — =1 ll':liy}T 0
i=1 VixiT
) +
ot L BV T (M6)
Zi:l ViXip
v, 20, i=1 s; and u, free.
If the optimal value to 1 1e, then DMU is located on the VRS
frontier. The ratio &, is given by ve weights # and v, to multiply to its

outputs and inputs, respectively. Essentially, each DMU, is allowed to rate itself as highly as
possible via ratio &, and restrict no DMU to reach a rating greater than one under the given

weights.
2.2.3 Output-input ratio and frontier

Chen & Ali (2002) use the output-input ratio to identify DEA frontier DMUSs prior to
the DEA calculation. They conclude that the output-input ratio with top-ranked performance

is a DEA frontier DMU.

Theorem 2.1 If there exist weight combinations of v, >20,i=1,...,m, g, 20,r=1, ...,s,
and u,, such that
D Y+ ALY,
(i) == L0 = max{ <2, — L (2.1)
i=1 VixiT P i=1 VixiP
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or

m ~o ~ m ~o ~
.. Z-_ ViXir —Ug . ViXip U
11 L:l’nax == . 2.2
(i) T 22)

r=1 /urer j:l ﬁrer
Then, DMU, is located on the VRS frontier (Chen & Ali, 2002). B

The properties allow using output-input ratio to identify the efficient DMUs without
solving DEA mathematical programming problems. To illustrate the property, we consider
the data set consists of 6 DMUs, D —D,, each consuming one input, x,, to produce two outputs,
v, and y,, as listed in Table 1. Columns 5-7 present the output-input ratios of y,/x,, y,/x,, and

(v, +»,)/x,, respectively. The ratios are calculated along with Theorem 2.1 by setting v, =1,

4,=1,and z,=1 to part (i).

Table 1. Data set with 6 DMU .

Outputs Input Efficient
DMU Y Yy VoI, (v, +y,)/x, classification
D, 1 4 4° 5 F
D, 2 4 4° 6 E
D, 3 3.5 3.5 6.5 E
D, 4 3 3 7’ E
D 4 2 2 6 F
D 3 3 3 6 N

6

E means efficient, F means inciucici v nouuer, anu N means inefficient inner frontier.
* The maximum ratio indicates the DMU is located on the frontier.

® The unique maximum ratio indicates the DMU is extremely efficient.

The ratio of y,/x, indicates that D, and D, are located on the frontier, ratio of y,/x,
indicates that D, and D, are located on the frontier, and ratio of (y,+y,)/x, indicates that D, is
located on the frontier. Hence, there are four DMUs, D,, D,, D,, and D, locate on the efficient
frontier. Unfortunately, the inefficient DMUs, D, and D, are also indicated. To avoid the
misidentification of inefficient DMUs, Lai & Liu (2006) extend the property that allows using
output-input ratio to identify the ‘extremely’ efficient DMUs without solving DEA programs.
This following Corollary will indicate that the unique maximum value of ratio (y,+y,)/x,

allows us to identify D, is VRS extremely efficient.
Corollary 2.1 If there exist weight combinations of v, 20, i=1, ... , m, g, 20, r=1, ... , s,

and u, such that

—11 -



S~ ~
_1lLlrer +u0 ﬂrer

() =—; > — ® for all PeQ and P=T; (2.3)
= 1‘71‘xlT = lvl‘xlp
or
" VX, i " VX, —il
(ii) Z’ o e Z’_‘s 'NIP % for all PeQ and P=T. (2.4)
ILlrer r=1 lurer

Then, DMU, is VRS extremely efficient.
Proof: We first prove the part (i). For the weights of v, >0, =1, ... ,m, g, 20, r=1, ... , s,

and u, we denote

s ~ ~
MY T U

m o~

llvleT
Letv,=tv,,i=1,...,m, u, =, ,r=1,...,s,and u, =u, Then, we have
uy.ou, +u
r=1 rT 0 A T 0
‘fT = == , =1
211 ’ ’T [xiT
and
’ ll'ler+u0 2 P+Z70
£, = — £ <1, for all PeQ and P#T.

le 1 tP o B z’xiP

It shows that weight combinations of v, and z, takes the values to all constrains less than one,
except the T’ * constrains, and it has optimal value to one. Therefore, following the results of
Charnes et al. (1991), DMU, is VRS extremely efficient. The proof of part (ii) is analogous to

part (i) and is omitted. ®

We observe that: there are m *s possible pairs of input i and output r, ie {1, ... , m} and
re{l, ... , s}. If any one of the pairs satisfies the following Corollary, DMU, is VRS
extremely efficient (Lai & Liu, 2006).

Corollary 2.2 For any given pair of i’ and r’, i’e {1, ... ,m} and r’e€{l, ..., s}. If there exists

a weight combinations of v, >0, z,. >0, and ,, such that

HpYor +ilg ,u, Yrp T , for all PeQ and P=T. (2.5)

ViXpp ViXpp

Then, DMU, is VRS extremely efficient.
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Proof: By taking v, =0, =1, ... ,m, and i#i’, i, =0,r=1, ..., s, and r#r’, we have:

S Uy +i Tyt
e ¥or Tl Z":l'u’y’P © for all PeQ and P#T.

m ~~ m o~

i=1 vi xiT

i=1 VixiP
Following the results of Corollary 2.1, DMU, is VRS extremely efficient. B
2.3 Sensitivity and stability analysis

DEA is non-parametric because it requires no assumption on the weights of the
production function. Sensitivity and stability of DMUs is an important issue in DEA. Charnes
et al. (1985b) first investigate the sensitivity of single output variation on the CCR model by
updating the inverse of the optimal basis matrix. Charnes & Neralic (1990) use the same
technique to explore the sensitivity of the additive model for a simultaneous change in all
inputs and/or all outputs of an efficient DMU. Andersen & Petersen (1993) propose the
‘extended DEA measure’ (EDM) madel for rankino the efficient units. The EDM model (is

also called super-efficiency mq

based on modifying DEA mode

For DMU, is under ve

formulation to compute stabil

n the DEA sensitivity analysis. It is

is excluded from the reference set.

(1992; 1996) provide the following

y classifications under the additive

model:

A, =Min A,
s.t. z/lpyrp +A, 2y, r=12,...,s,

Pell,P#T

D Apxyp =Dy Sxp, i=12,..,m, (M?7)

Pell,P#T

D> A =1,

Pell,P#T
A, :free; 4,20, Pell, P#T.
The optimal value A’ is the radius of stability under the oo-norm. The absolute

increase of inputs and absolute decrease of outputs are considered only for DMU,. If we use

different A} and A? and minimize ) A+ ZA? , then the optimal solution provides the
i=1 r=l1
radius of stability under the 1-norm. The sign of the optimal value indicates the classification

of the test DMU, (Charnes et al., 1992). In the event of set I1 comprising the whole DMU

being evaluated, negative identifies inefficient units while positive identifies efficient units.
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In the event of set I1 is a subset of 2 and DMU, excludes in II is under evaluation,
negative also identifies inefficient; however, positive indicates that DMU, is located above
the frontier of II, it means that DMU, has the possibility to perform better than I1, and it is
classified as an efficient candidate. Based on the results, our study suitably selects a class of
portfolios with higher performance relative to the others, which is called an ‘efficient
candidate group’ (ECG) within our proposed algorithm which is called the ‘filtering

algorithm’ in this paper. The main frame of our filtering algorithm is:
(1) Using model (M7) to evaluate DMU,, where I1 is substituted by set ECG.
(ii) If A7 <0, DMU, is identified as inefficient.
Otherwise, DMU, joins to ECG as a new membership.
Zhu (1996) uses the super-efficiency model to determine necessary and sufficient

conditions for preserving efficiency of the efficient DMUs under the CCR model when data
of the test efficient DMU was changed, and Seiford & Zhu (1998a) generalize the method to

yield the entire stability region literatures of sensitivity and stability
analysis deal with the situation ns are only applied to the test DMU.
However, possible data DMU simultaneously or individually.
Thompson et al. (1994) utiliz entary Slackness Condition (SCSC)
multipliers to analyze the stabi vhen the data for all efficient DMUs

were worsened and data for all .uciivivie oo wae improved simultaneously. Seiford &
Zhu (1998b) discuss the stability of efficient DMU based on a worst-case scenario in which
the efficiency of the test DMU was deteriorating while the efficiency of all other DMUs were
improving. They use super-efficiency models to find a range of stability for each efficient
DMU to preserve efficiency when data variations occurred in all DMUs simultaneously. In
the real-world problems, uncertain conditions could occur not only in single DMU or in all of
DMUs but also in a particular local or regional subset of DMUs. It means that the possible

data errors may occur in a subset due to the situations of local uncertainty.

In this research, we are interested in the stability of a specific efficient DMU, while
the data of a particular subset of DMUs, including DMU,, is deteriorated simultaneously in
the same value. Since either an increase of any output or a decrease of any input cannot
worsen an efficient DMU, we consider the data was changed by giving upward variations in

inputs or giving downward variations in outputs in a subset of DMUs.
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3. Identification of Efficient Portfolios

The difficulty for using DEA to assess and select portfolios of collective projects is
that there are 2" portfolios need to be evaluated. We must spend more effort on intensive
DEA calculation. The papers Ali (1990; 1992; 1994) present some properties to allow
identification of efficient and inefficient DMUs without solving a mathematical programming.
To circumvent the time-consuming DEA computations, we also derive some properties to
identify efficient and inefficient classes prior to the DEA calculation for streamlining the

solution of DEA programs.
3.1 Single input and output problems

Now, let us first consider the special case that the projects have only one input and

output. The two objectives BILP model is expressed as follows:

Maximize y=c,w,+c,w (M8)
Minimize x=a,w,ta,w

Subjectto w, €{0, 1},
3.1.1 relationship between rati ency

Let R, denote the ratio ‘or project k. That is, R,=c, /a,. The

relationship of dominance between two projects by the output-input ratios is defined as

follows:
Definition 3.1 Project /# dominates project p, if R, > R,. B

We shall show that if project p is dominated by project /4, and a portfolio includes the

dominated project p but excludes project 4, then the portfolio is inefficient.

¢ _cC . ¢ _¢+e, _c
Lemma 3.1 If - > -2 where a,, a,, ¢,, and ¢, are all positive. Then, -+ > —1—2 > -2
a, a, a, a+a, a,

This property shows that ¢, /a, > (c,w,+c,w,* ... +c,wo)/(aw,+a,w,t ... +a,w,), for all
portfolio P=(w,, w,, ... , wy) in Q and P=(0, 0, ... , 0). That is, P=(1, O, ... , 0) possesses the

maximum output-input ratio among the 2K possible portfolios. Note that P=(0, O, ... , 0) and

P=(1,0, ..., 0) are evidenced as CCR efficiency (Ali, 1994). The following Theorem will be
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. . . . : th
used to characterize inefficient portfolios. Let e, denote the unit row vector with 1 at the &

component and 0 elsewhere.

Theorem 3.1 7=(w,, w,, ... , w,) with w,=0 and w,=1, is inefficient if project # dominates

project p.

Proof: Let portfolios H=T—e, and G=T+e,. The DMUs corresponding to portfolios /, 7, and

G are expressed respectively as the followings:

DMU,=(yy, xp),
DMU=(y,, x,)=(yy +c,, Xy +ap)a
and

DMUA(yq, x5)=(vy; t¢, +c,, x, ta, ta,).

Let us take constant /=a, /(a,+a,). It thus follows:
(1= x, +tx,=(1-0) x, + 1t (x, +a, ta,)
=x,t1(c
=xyta,
=X,
and
(- yyttys;=1-0)y,
=yptit(c
= yuta, (e, +¢)(a, +a,)
>yyta,l(c,la,)

=Vr-

3.1)

(3.2)

(By Lemma 3.1)

It shows that DMU, is convex-dominated by DMU,, and DMU,.. Therefore, DMU, is DEA

inefficient and so does portfolio 7. B

This Theorem enables us to identify efficient and inefficient portfolios prior to the

DEA calculation by comparing the output-input ratios of pair of projects.

3.1.2 Efficient portfolios

Without loss of generality, it is assumed that the indices of projects are arranged

according to the descendant order of their output-input ratios, i.e., R, >R, > --- >R,, and the

16—



strict inequality holds here. The following Corollary uses ratio analysis to characterize the

dominated portfolios, and like their correspondent DMUS, they are inefficient.
Corollary 3.1 Portfolio 7=(w,, w,, ... , w,) is inefficient if w,=0 and w,, =1 for some £.

Proof: Since R, > R,., implies that project £ dominates project (k+1). Then, the result follows

from Theorem 3.1. B

Corollary 3.1 indicates that a project with larger output-input ratio must be selected
prior to the others. Based on the result, only the remaining (K+1) portfolios that have the
possibility of VRS efficiency. They are listed in the followings:

Table 2. The portfolio lists of candidate efficiency.

Portfolio w, W, ‘e Wi, Wy
0 0
1 1 0
2 1
K-1 1 0
K 1
The null portfolio (0, 0,..., 0) v > is clearly VRS efficient (Ali, 1994).
The other K portfolios will be ¢ 'y employing model (M6) to evaluate
their corresponding DMUs. The 1s the followings:
DMU=(x,, y,)=(a, ta,+ ... ta, c, tc,+ ... t¢c,), I=1,2, ... , K. (3.3)

Theorem 3.2 DMU,, T=1, ... , K, are all VRS extremely efficient.

Proof: For each T, we have:
cra,>ayc, fk<T and c;a,<a,c, ifk>T. (3.4)
Let model (M6) be set to evaluate DMU, by taking y=a,, v=c,, and u,=c, x,— a, y,. It is shown

that 4, v, and u, is feasible to model (M6) and attach the objective 8,=1. For all k£ <T, we have:

MWty _ Ary +(Cr Xy —aryy)
VX, crx,

ap(c +...+c)rep(a +..tap)—ap (e +...+cp)
cr(a +...+a,) (3.5)
crla,, +...+a,)—a (¢, +...+¢;)
cr(a +...+a,)

=1+

<1.
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For all £ >T, we have:

MWty _ Ar)y +(CrXy —aryy)
VX, CoX,

ap(c +...+c ) e (a +.tap)—ap (e +...+cp)
e (a, +...+a,) (3.6)
a (¢ +...4c,)—cr(ap +...+a,)
cr(a, +...+a,)

=1+

<1.

The equality holds only for &=T. This indicates that the optimal value to (M6) is equal to one.
Therefore, DMU, is VRS extremely efficient for 7=1, ... , K. B

Hence, there are (K+1) VRS efficient portfolios obtained by using ratio techniques.
Ratio analysis is shown to be an effective method to identify the entire set of efficient
portfolios for the single input and output problems. To illustrate this, let us consider the

following example.

3.1.3 Example 1: single input ¢

Suppose there are five p , 5, 1n a decision set. Their input and
output are given in Table 3. W >ts have been arranged in descendent
order of output-input ratios. A nprise a subset of the 5 projects are

evaluated by the following uncc

Maximize y=6 w+4.0 wt+ 72w+ 8w+ 1 w; (M9)

Minimize x=4 w+ 2.8 w,+ 5.6 w,+ 9 w,+ 2 wy

Subjectto w, €{0, 1}, &=1,2,..., 5.

According to the results of Theorem 3.2, six portfolios, (0,0,0,0,0), (1,0,0,0,0),
(1,1,0,0,0), (1,1,1,0,0), (1,1,1,1,0), and (1,1,1,1,1) are identified as VRS efficient.

Table 3. The data of 5 projects for Example 1.

Project Output (c,) Input (a,) Ratio (R))
1 6.0 4.0 1.500
2 4.0 2.8 1.429
3 7.2 5.6 1.286
4 8.0 9.0 0.889
5 1.0 2.0 0.500
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3.1.4 Problems with non-positive coefficients

The assumption that the positive coefficients a, >0 and ¢, >0 for all k=1, ... , K, could

be violated. Now, let us consider that the projects be partitioned based on the following six

sets of indices:

I={k|1<k<K, c,>0andaq,>0},

I,={k|1£kLK, ¢, <0andaqa, <0},

l={k|1<kLK,c,>0and q, <0},

| ={k|1LkLK, c,£0andaq,> 0},

|={k|1<kLK, ¢, <0andaqa, =0},
and

| ={k|1<k<K,c,=0anda,<O0}.

The problem can be handled according to the following theorems.

Theorem 3.3 Portfolio H=(w,, s DEA inefficient if kel,.

Proof: Let 7=(w,, ... ,w,,, 1, %

(—Xp ) = (X~ Yy T

This implies that portfolio H is

Theorem 3.4 Portfolio H=(w,, ..., w,_,, 1, wy.,, ... , wy 1S DEA inefficient if kel,.

Proof: Let 7=(w,, ... ,w,_, 0, W, ... , w,). It follows

(x5 Yp) = (=X Ta, yy—¢) > (x4, Vi)

This implies that portfolio H is DEA inefficient. B

(3.7)
(3.8)
(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

Theorem 3.3 and 3.4 indicate that a portfolio is inefficient if it excludes a project

consuming non-positive input to produce positive output, or it includes a project consuming

positive input to produce non-positive output. Therefore, we have the following subsets of

portfolios are inefficient:

Q={P=(w,, ..., wy) | w=0, for any kel }

and

Q={P=(w,, ... ,w) | w=1, for any kel }.

~19-—
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For the case that both @, and ¢; are non-positive occurs in model (M8). We redefine all

binary variables and coefficients of objectives as the followings:

l-w, ifke®=1,Ul, Ul
W, = * oo TeT (3.17)
Wy, Otherwise

_ |-c, ifke®

c, = . (3.18)

¢,, Otherwise

_ |-a, ifke®

a, = , (3.19)

a,, Otherwise
Then, model (M8) can be rewritten as follows:
Max y=cw +...+c,w,+ ) ¢,
ke®

Min x=aw, +...+a,w, + ) a, (M10)

ke®

st. w, e{0,1}, k=17 "

The new MOBILP mod with non-negative coefficients, either
¢, 20 or a, 20, correspondin . - We can construct the new sets of
indices I_0 , I_1 , and I_P correspc nd it follows that | . I_0 , 1, c I_1 ,and
I, < 1,. Then, the following se s are characterized by using Theorem
3.3 and 3.4.

Q={P=(w,, ..., w) | w=0ifkel,} c {P=(w,,....w,)| w,=1ifkel,}. (3.20)
and

Q={P=(w,, ... ,wy) | w=lif kel } c {P=(W,,...,w,)| w,=0ifke I, } (3.21)

However, the new model (M10) transforms the objectives to non-negative coefficients

and all efficient portfolios can be determined by using Theorem 3.2-3.4.
3.1.5 Algorithm for identification of efficient classification

A complete algorithm for developing all efficient portfolios is presented as follows:
Step 1. Identify sets of indices I,, I, I, I, I, and |, according to (3.7)—(3.12).

Step 2. Reset original indices of projects in I, I, and |, according to equations (3.17)—(3.19).
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Step 3. Identify sets of indices I_P, I_O , and I_l, and let N,, N,, and N, denote the number of

elementsinset I,, I, and I, respectively.

Step 4. Re-index all projects and rewrite model:
Step 4.1 Re-indexed project, w, , from 1 to N, for ke 1,, from (N,+1) to (N,+N,) for
ke 1,, and from (N,+N,+1) to (N,+N,+N,) for ke 1,.
Step 4.2 Rearrange w, accordingto R, >R, >---> EN,} for ke I ,, where R, =¢, /a, .
Step 4.3 Original problem (MS) is rewritten as (M10).

Step 5. Identify the set consists of N,+1 efficient portfolios as follows:

Q={P=(W,,...,w,) | w,2w,,, ifk<N,, w,=1 ifke I,,and w,=0ifke I,}.  (3.22)

3.1.6 Example 2: general two objectives BILP

Suppose there are 10 pr ., 10, in a decision set. The values of
input and output are given in of portfolio evaluation in the set is
modeled as (M8). The efficient d by according the following steps:
Step1. Sets of indices based on 1 as follows:

1.={1, 4, 6}, 1,={5, 9}, },and 1,={7}.

Step 2. Reset original data of projects 5, 9, 3, and 7 according to (3.17)—(3.19).

Step 3. Identify sets of indices I_P , I_O , and I_1 , and number of elements in these sets are N,=5,

N,=2, and N,=3, respectively.

1,=1,ul,={1,4,6,5 9}, I,=1,ul={8, 3}, 1,=1,Ul ={2, 10, 7}.
Step 4. Use Step 4.1 and 4.2 to re-index all projects as the followings:

1,={1,2,3,4,5}, 1,={6,7}, 1,={8,9, 10}.

The relationship between origin and transformed index is listed in Table 4. Then, use

Step 4.3 to rewrite the original problem as the followings:

Max y, =6w, +4.0w, +7.2w, +8w, + w,+ w, +1.6w, —3.2w, —3w, -9.8
Min x, =4w, +2.8w, +5.6w, +9w, + 2w, —2.4w, +1.5w, +2w, +2.5w,, —10.1 (M11)
st. PeQ.
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Table 4. The original and transformed data of 10 projects.

Original data of projects Transformed data of projects
Index Output Input Index Output Input Ratio
(k of w)) (c) (@) (k of ;) (¢) (a,) (¢;/ay)

6 6.0 4.0 1 6.0 4.0 1.50
4 4.0 2.8 2 4.0 2.8 1.43
9 7.2 5.6 3 7.2 5.6 1.30
1 8.0 9.0 4 8.0 9.0 0.89
5 -1.0 2.0 5 1.0 2.0 0.50
8 1.0 2.4 6 1.0 2.4 —
3 -1.6 0 7 1.6 0 —
2 -3.2 1.5 8 -3.2 1.5 —
10 -3.0 2.0 9 -3.0 2.0 —
7 0 -2.5 10 0 2.5 —

Step 5. Using Theorem 3.2-3.4, we have 6 efficient portfolios which is listed as follows:

Gw,...,W,) = (0,0,0,0,0 '=(0,0,1,0,0,0,0,1,0,0),
G, ..., w,)=(1,0,0,0,0 '=(0,0,1,0,0,1,0,1,0,0),
G,...,w,)=(1,1,0,0,0 =(0,0,1,1,0,1,0,1,0,0),
G,...,w,)=(1,1,1,0,0 =(0,0,1,1,0,1,0,1,1,0),
(e, = (LLLLO s svsvney gy eee s iy = (1,0,1,1,0,1,0,1,1,0),

w,...,w,)=(,1,1,1,1,1,1,0,0,0) = (w,, ... , w,) = (1,0,1,1,1,1,0,1,1,0).

3.2 Multiple inputs and outputs problems

When there are m inputs and s outputs to MOBILP (M1). Since, ratio analysis is shown to be
an efficient method to identify the entire set of efficient portfolios for the case of single input
and output. Based on the results of Theorem 3.2 and Corollary 2.2, the ratio analysis is
capable of identifying a subset of efficient portfolios for the cases of multiple inputs and
outputs. The MOBILP can be decomposed to (sxm) sub-problems by the pairs of one output
and one input. There are (K+1) efficient portfolios identified by each sub-problem. Corollary

2.2 also indicates that those efficient portfolios are also efficient for the original model.

By removing the duplications, the efficient portfolios identified by employing the

(sxm) sub-problems are aggregated as a subset. The subset is called the ‘seed efficient class’
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(SEC). In our filtering algorithm, the frontier of ECG is the filter for the algorithm and ECG

consists of those elements in SEC initially.

3.2.1 Inefficiency with project dominance relationship (PDR)

Let R denote the ratio of the ™ output value to i input value of project k, where
R =c,, /a, . The dominance relationship between two projects by the output-input ratios is
defined as follows:
Definition 3.2 Project 4 dominates project p, if R > R for all pairs of rand i, i =1, ..., m,
and =1, ..., s, and strict inequality holds for at least one pair of indices. B

The relationship between output-input ratios of projects and the efficiency of portfolio

to the multiple inputs and outputs problems is shown in Liu & Lai (2005a).

Theorem 3.5 Portfolio 7=(w,, ..., w,) is inefficient if project 2 dominates project p and w, =0

and w, =1.

Proof: Let H =T—e, and G =T nding to portfolios H, 7, and G are

expressed as follows:
DMUH:(XUD Tt me’ ylb
DMU=(x,,ta,, ... , X,y ,
and
DMUG:(x1H+a1h+a1p’ ] me+amh+amp’ y1H+Clh+clpﬁ ] ysH+c.vh+csp)'
Let us take constants f, and f, as follows:
B=max{c,/(c,tc,)| =1, ..., s.}
and
p=min{a, /(a, ta,)|i=1, ... ,m.},
where f,, f,€(0,1). Then, there exist specific indices i and » such that
ﬂl /ﬂZ :(crp /(crh +crp)) / (aip /(aih +aip))
:(crp / aip) / ((crh +crp) / (aih +aip))
<1. (by Lemma 3.1)

It indicates that £,<f,. Let f be a constant between £, and f£,. We shall show that DMU, is
convex-dominated by DMU,, and DMU... Since,
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(1P) xiy + xi6 = x5+ f (a,, Ta;,)
<xy+ B (a,+a,)
<xyta,
=X, foralli=1,2, ..., m,
and
(=B yutBYic =Y+ B (chtc,)
> 30+ s (et C,)
2V te,

:er’ forallrzl, 27"')S7

and at least one inequality holds. It shows that DMU, is dominated by (1-)DMU,+DMU.,.

Therefore, DMU, is inefficient and so does portfolio 7. B

It has shown that if project p is dominated by project # and a portfolio includes the
dominated project p but excludes oroiect 4. then the portfolio must be inefficient. This
enables us to identify efficient ¢ prior to the DEA calculation by using

the output-input ratio of an indi
3.2.2 Example 3: use ratio ana

A simulated data set c rojects in a high tech corporation is
listed in Table 5. These projects are proposed to promote the product quality for the company.
Each project consumes two inputs to produce two outputs. The outputs are percentages of
technical contributions to the products and direct economic contributions in product sales,
while the inputs are percentages of manpower usage and finance usage with respect to the
company. Suppose that the projects are neither synergistic nor interfering and the resources

are fully supported. The decision-maker wants to select a class of portfolios, from all of the
128 (=27) feasible portfolios, play the best practice with respect to the others.

By comparing the output-input ratios of projects, we have project 7 being dominated
by project 6. Following the results of Theorem 3.5, we conclude that a portfolio is identified

as inefficient if it contains project 7 but excludes project 6. That is, a portfolio is inefficient if

it is expressed as the following form.
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Table 5. Data set of 7 R&D projects for Example 3.

R&D Technical Product Manpower Resource

project contribution  sales usage usage

(k) (€1 (cx) (a,) (@) R, R R’ R

1 1.8 7.0 3.0 6.0 0.600 2333 0300 1.167

2 1.6 10.0 4.0 5.5 0400 2500 0291 1818

3 1.4 8.2 3.6 4.5 0389 2278 0311  1.822
4 1.9 13.0 5.0 7.0 0.380  2.600 0271  1.857

5 1.4 5.0 6.0 4.0 0.233  0.833 0350 1.250

6 1.8 12.0 8.0 3.0 0.225  1.500  0.600  4.000

7 1.7 6.0 9.3 4.0 0.183  0.645 0425 1.500

(W, Wy, wy, w,, ws, 0, 1) forw=0or 1, k=1, 2, 3, 4, 5. (3.23)

Hence, 32 portfolios are characterized as inefficient by using ratio analysis. Now, we turn to

identify efficient portfolios by using Theorem 3.2. The ratios of output 2 to input 1, say Rf',

of projects are ranked as follow

RI'>R'>R'>R'> (3.24)
It indicates that the 0,0), (0,0,0,1,0,0,0), (0,1,0,1,0,0,0),
(1,1,0,1,0,0,0), (1,1,1,1,0,0,0), ( 1,0), and (1,1,1,1,1,1,1), are efficient.
Similarly, we can rank the to identify efficient portfolios. By

removing the duplications, our ratio analysis identifies 23 efficient portfolios. These
techniques identify 23 efficient and 32 inefficient portfolios prior to the DEA programs. In

total, we save 55 computations for solving linear program effectively and efficiently.
3.2.3 Inefficiency with inferior project combination (IPC)

Apply additive model (M3) or (M7) to evaluate a particular project # with respect to
the original K projects. The reference set is defined as A(h)={ k| 4,>0, k=1, 2, ... , K}.
Then, a portfolio is identified to be inefficient if it composes project 2 and without any

element in set A(%). That is, the portfolio comprises only inferior projects. This portfolio is

called as an inferior project combination (IPC).
Theorem 3.6. Portfolio 7= (w,, w,, ... , w,) is inefficient if w,= 1 and Z

keA(h),k#h Wi = 0.

Proof: The result is trivial and is omitted. B
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One can use this Theorem to pre-identify some inefficient portfolios: just use model
(M3) or (M7) to evaluate the K projects. It is clear that the situation occurs only if project & is

inefficient with respect to the original K projects.
3.2.4 Inefficiency with total dominated relationship (TDR)

Ali (1994) defined a total dominated relationship (TDR) between DMUs. A portfolio
is totally dominated if its corresponding DMU is dominated by any other DMU in Q,,.

Definition 3.3 Portfolio 7 is totally dominated by portfolio H if DMU, is dominated by
DMU,, that is, x,; > x,,, foralli=1, ... ,m,y,. <y, forall =1, ... , s, and strict inequality

holds for at least one index. B

Theorem 3.7. If portfolio 7 is totally dominated by portfolio H for some H then portfolio 7 is

inefficient.

Proof: The proof is omitted. ®

3.3 Filtering algorithm

We propose a forward lgorithm to solve the unconstrained
MOBILP (M1). To reduce tt lel (M7) and to identify inefficient
portfolios effectively, we subsi by a group of portfolios ECG with

higher performance throughout the algorithm. ECG is updated dynamically by using forward

and backward filtering algorithms. An algorithm comprising three phases is presented below.
3.3.1 Phase I: initialization

Phase I contains three parts. First, we re-index these K projects according to their
stability measures obtained by model (M7). Next, we build some sub-filters to identify
inefficient portfolios based on Theorem 3.5 and 3.6. Third, ECG is initialized according to
Theorem 3.2.

Step 1.0. Read data of the K projects: ¢, ¥ =1, ... ,s,and a,, i =1, ... ,m; k=1, ... , K.

Step 1.1. Use model (M7) to evaluate the K projects. Reassign indices of projects according to

their stability measures, such that A} <A, <--- <A,
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Step 1.2. Use model (M7) to obtain A(k) for each project kK with A, <0, and generate IPC filter

based on the relationship between project k£ and A(k) (Theorem 3.6).

Step 1.3. According to Theorem 3.5, generate the PDR filter for any pair of projects 4 and p,

and identify whether the dominance relationship between 4 and p exists, 4, p=1, ... , K.

Step 1.4. According to Theorem 3.2, identify efficient portfolios based on ratio analysis. For a
pair of specific indices » and i, output-input ratios are arranged in descending order

R}, >Rl} >-->R(;,, where (k) is the index of project with k™ largest ratio. Repeat the

process mxs times to collect all the efficient portfolios in set SEC, for i=1, 2, ... , m

and =1, 2, ..., 5. Then, the initialized ECG is equal to SEC.
3.3.2 Phase Il: forward filtering

Phase II is a forward filtering algorithm, assessing possible portfolios one after the

other. When a current portfolin 7 ic nnder avalnatian the rules of identification are: (i)

skipped if the portfolio is alrea e sub-filters, PDR, IPC, and TDR, to
identify inefficiency, or (iii) te DMU, by setting the reference I1
equal to ECG. However, if the aluated to be efficient with respect to
ECQG, it indicates that the portf ‘being VRS efficient, and is added to
the ECG. Figure 1 depicts the 1 e notations n,, ..., n,, are the number

of portfolios that flow through the arcs, respectively.

Step 2.0. Start classification with the portfolio 7 that comprises all projects, 7= (1, 1, ... ,1).
Step 2.1. Use PDR to identify whether T is inefficient. If it is, then go to Step 2.5.

Step 2.2. Use IPC to identify whether 7 is inefficient. If it is, then go to Step 2.5.

Step 2.3. Use TDR to identify whether 7 is inefficient with respect to ECG. If it is, then go to
Step 2.5.

Step 2.4. Use model (M7) to identify whether T is inefficient with respect to ECG. If it is,
then go to Step 2.5. Otherwise, ECG is augmented by portfolio 7.

Step 2.5. Generate the next portfolio, 7., from Q by perform binary subtraction to current

extd

portfolio, T, 1.

current?

Thatis, T . =

next current

Step 2.6. As all 2% portfolios are all evaluated, then go to Phase III. Otherwise, go to Step 2.1.
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Figure 2. Flowchart of Phase II.

3.3.3 Phase I11: reverse filtering

In this phase, we employ model (M7) to identify the efficiency of each portfolio, 7, in

ECG. A negative stability (A} <0) indicates inefficient and T is erased from ECG, while a

positive stability (A} >0) indicates efficient and T remains in ECG. In case of A, =0, we

should perform the standard additive model (M3) to identify 7. Finally, rank remaining

portfolios in ECG according to their stability measures.

3.3.4 Design and computational issues

Phase I needs a little computation effort only. There are K(K—1)/2 pairs of projects to

be checked to generate the PDR filter in Step 1.3. Each pair of projects /# and p, needs mxs

—28—



comparisons of output-input ratios. If project # dominates project p, then one quarter of the 2K
portfolios with w, =0 and w,=1 should be inefficient. The sub-filter PDR eliminates a large
number of inefficient portfolios. Thus, a PDR filter is primarily used to reduce computation

time and is therefore performed prior to the IPC and TDR filters.

To illustrate the fact, we consider the giving pair of projects, say /# and p, and the

subset of portfolios Q:
Q,, ={P=(wy, ... ,wy) |w,=0and w, =1.} (3.25)

The number of elements in Q,, is a quarter of total element in Q. According to results
of Theorem 3.5, all portfolios in class €, are identified as inefficient if project 4 dominates
project p. Consequently, a quarter of the total portfolios could be saved from the computation
of DEA evaluations. There are so many outcomes of the dominance relationship between

projects. It is not worthwhile to list all of their savings in DEA computations.

Prior to the DEA calculation Stene 21 792 and 2.3 identified a large number of

inefficient DMUs and a consid 1t DMUs. The DEA computations in
Step 2.4 are effective and effici lecision variables is increased by one
as an efficient DMU is identifi {GC and computational effort for the

next evaluation to be increased

The other major comput rackward filtering algorithm Phase III.
In case of an inefficient portfolio is identified by the Step 3.2, it is deleted from ECG, the
number of decision variables of model (M7) for the next evaluation is decreased by 1, and so
the computational effort is reduced. The overall computational effort for the problem depends

upon the problem size in terms of the values of K, s and m.
3.3.5 Performance of program MOBILP+

Table 6 depicts the performance of the algorithm. The first simulated data set D10 is
the case of selecting the portfolios of projects K=10 with inputs, m=3, and outputs, s=2. The
data ¢, and a, were randomly generated within the interval [10, 100]. For the cases consist of
15, 20, ... , and 38 projects, the correspondence data sets are called D15, D20,..., and D38,
respectively. We constructed a computer program MOBILP+ coded in programming language
C++ to implement the algorithm and use the package, CPLEX (Ilog Inc., 2000), as linear

programming solver.
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Table 6. Number of portfolio flows and computing time of sample data sets.

Data PDR IPC SEC
set K n n, n, n, n, N n

D10 10 2% 769 255 7 248 47 201

D15 15 2P 30329 2439 101 2338 80 2258

D20 20 2% 994808 53768 2254 51514 108 51406

D22 22 2% 4135987 58317 6360 51957 116 51841

D24 24 2% 16705374 71842 14 71828 134 71694

D26 26 2% 66995233 113631 172 113459 147 113312
D28 28 2% 268018994 416462 25932 390530 160 390370
D30 30 23 1073456938 284886 41 284845 173 284672
D31 31 2°' 2146766030 717618 11887 705731 179 705552
D32 32 22 4294197549 769747 4049 765698 176 765522
D33 33 2°% 8588462091 1472501 35952 1436549 194 1436355
D34 34 2% 17174422826 5446358 156788 5289570 195 5289375
D35 35 2% 34357075944 2662424 6291 2656133 203 2655930
D36 36 2% 68712503399 6973337 206324 6767013 203 6766810
D37 37 27 1374389276 25837 206 25631

D38 38 2% 2748736475 4255382 221 4255161

Table 6. (continued)

Data TDR M Phase III Computing time "
Set n, Ng n |N| |E| 4 l

D10 17 184 11 5 116 <1 <1

D15 681 1577 1252 325 405 28 377 1 702
D20 31051 20355 18680 1675 1783 424 1359 20 17216
D22 26247 25594 23494 2100 2216 663 1553 30 62150
D24 43821 27873 25886 1987 2121 594 1527 37  >24hr
D26 47598 65714 61529 4185 4332 1785 2547 149 —
D28 227928 162442 156757 5685 5845 2503 3342 585 —
D30 184821 99851 95401 4450 4623 1690 2933 476 —
D31 503065 202487 194503 7984 8163 4180 3983 1487 —
D32 443881 321641 313035 8606 8782 3345 5437 2768 —
D33 972775 463580 451367 12213 12407 7310 5097 5140 —
D34 4752541 536834 521302 15532 15727 8664 7063 12267  —
D35 2037278 618652 606731 11921 12124 5776 6348 14801  —
D36 6005819 760991 742315 18676 18879 10563 8316 32833  —
D37 8314 17317 15761 1556 1762 717 1045 35788  —
D38 3332959 922202 904564 17638 17859 10603 7256 82891 « —

* ¢, and ¢, are the computing time by using MOBILP+ and using model (M7), respectively.
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The program was executed on a Pentium 1V-3.0 GHz desktop computer. The number
of testing portfolios and computation time for each step are shown in Table 6. Column 3
shows that the number of feasible portfolios exponentially increased as the number of projects
increased. The essential contribution of the four precedent filters could be observed from the
number n,, n,, and n, of inefficient portfolios identified. The n, showed the numbers of
inefficient portfolios identified by model (M7) in Step 2.4, and [N| and |E| are the numbers of
inefficient and efficient portfolios identified by Step 3.2, respectively.

Step 2.4 is replicated n, times, that is, the number of optimization of model (M7)
would be reduced to n¢ times, where (n—n,) indicates the savings of computation from the
three filters. More than 90% of portfolios are identified to be inefficient by the three filters
prior to solving the DEA program. The benefit of using MOBILP+ to streamline the
computation of MOBILP (M1) can be easily seen from the sample data. The problem size in
step 2.4 is also reduced significantly. The largest size of model (M7) in Step 2.4 is about n,,

which is less than 10% of port“-'-~ -~ ™=~ “~*~1 “=-~5 to optimize model (M7) is (nstn,),
which is also less than 10% procedure significantly reduces the
computation time, especially f and even less than 0.1% of time is
needed.

The last two columns omputing time required to execute
MOBILP+ and to solve mode (IE|/n) indicates that the number of

efficient portfolios to the total portfolios is very low. This allows the collective selection of
projects to be handled effectively. Unfortunately, the results of D28 and D30 reveal that the
computing time is data dependent, and D33, D34, D35 and D36 also indicate similar results.
We found that the computing time is more dependent upon the number of efficient portfolios,

|E|, but less dependent upon the number of projects, K.

The average and standard deviation of times to solve the 10 randomly generated data
sets, each set comprised 20 simulated projects are listed in the first row of Table 7. The other
16 random samples, each sample also consists of 10 data sets, each data set comprised 21,
22,..., 36 simulated project was also solved. We discontinued the testing when the average
time spend exceeds 24 hours. It seems that the expected computing times increase
exponentially as the number of project K is increased. The algorithm would provide the
solutions for selecting portfolios comprise 35 projects within one day. In our experiments, we

observed that the standard deviations are highly relative to the mean, almost equal to the
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average for most of the cases. It indicates that the randomly generated data ¢, and a; have

strongly affected the computation time.

Table 7. Average computational time of 10 random samples.

No. of project Mean SD No. of project Mean SD

20 11 17 29 4939 9072
21 26 22 30 6068 7566
22 23 18 31 6251 5611
23 54 51 32 11191 9583
24 183 201 33 18198 18026
25 203 276 34 42648 62567
26 460 627 35 65311 61001
27 966 1211 36 >24 hr >24 hr
28 2235 2737

* Time unit: seconds.
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4. Stability Analysis

As shown in model (M1), the input and output values of a portfolio are determined by
summing the inputs and outputs of its performed projects, respectively. In this study, we focus
on the perturbation of a particular coefficient a, (or c,) associated with a specific efficient
portfolio with project & is performed (i.e. w,=1). This research is focused on the stability of an
efficient portfolio (DMU) by giving increase in an input, a,, or giving decrease in an output,

¢, of a particular project £, if the portfolio remains efficient after the perturbation.

Let | and O denote the sets of indices of changed inputs and changed outputs,
respectively. We consider the stability measures of coefficients a,’s and c¢,’s to preserve the
efficiency of an efficient portfolio 7, where project k is included in portfolio 7. The data of

project k is varied according to the following expressions:

a, =a, +n, 720, iel
n 4.1)
Qi = Qg
and
¢c,=c,—0, ¢, 20
{Ark rk rk (42)
crk = crk’
Hence, the varied input and out ncluding project & is expressed as:
Xp=x,+m, 7=0, iel
{AIP iP ' (4.3)
Xip = Xip> igl
and
Vo=V ,—0, ¢, 2020, reO
{)’\/VP y}P rk (44)
er = er’ ré O

The given type of data perturbation discussed in this paper is inconsistent with other
sensitivity analyses, that inputs and outputs of the remaining portfolios are unchanged. There
are a half of feasible portfolios will change their inputs and/or outputs, when we perturb a,’s
and/or ¢,’s associated with a particular project k. Let ¥, and ¥, be the sets of portfolios with
project k is not performed and performed, respectively. Where:

Y ={P=(w,, ... ,wp)eQ|w,=0} 4.5)
and

WY ={P=(w,, ... , w)EQ | W, =1} (4.6)
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The inputs and outputs of DMU,, Pe¥, is unchanged while the inputs and outputs of
DMU,, PeVY, is changed, if the inputs and/or outputs associated with the perturbed project k&

are changed.
4.1 Models for stability evaluation

According to Charnes et al. (1991), the set of all DMUs can be partitioned into four
classes, E, E’, F, and N. Where class N is located inner the frontier, class F is on the frontier
but is also inefficient, and the first two classes are efficient. Zhu & Shen (1995) show that
DMUs in class E’ can be expressed as the linear combinations of the DMUs in class E, and
each of them will become inefficient if any increase of input and/or any decrease of output
occurs. Thus, the literatures of DEA sensitivity analysis only focused on measuring stability

of extremely efficient DMUs.

4.1.1 Stabilities of input coefficients

Based on the given abs
DMUs in the additive model. A
(4.3). We first consider the foll
for perturbing the DMUs in ¥,

7 =Min 7z
s.t. Z/lpxip+ Z/lp(xip"'”)gxir"'”’

PeY, Pe¥,, P~T

Z’IPXIP < Xirs

PeQ, P£T

Z ApYp

PeQ, P=T

D A =1,

PQ, P£T

720; A,20, PeQandP=T.

investigated the stability of efficient
ient and data are changed in inputs as
model to study the stability of DMU,
dject k (Liu & Lai, 2005b).

(M12)

Suppose the model is feasible for a given efficient DMU,. This minimization is

completed for indices iel, and the optimal value is denoted by 7. The properties of inputs

stability region of DMU, are shown below:

Theorem 4.1 Given data varied in the inputs as (4.3), an efficient DMU, remains on the

efficient frontier if and only if 7 €[0, 72*], where 7 is the optimal value to model (M12).
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Proof: We first consider the following DEA model to evaluate DMU, with DMU, change
their inputs by the value x,.,,+7z* for all PeV,.

0" =Min 6

s.t. lepxiP+ Z/lp(xip+7z*)+/1T(xiT+7r*)S<9(xiT+7z*), iel,

Pe¥), Pe¥,, PT

Zipxip + X, <0x,,

igl,
PeQ, P«T

D ApY.p + 2y Y >y, r=1,2,...

PeQ, PT

D Ay + A =1,

PeQ, P#T

6,20, 1,20, PeQ.

Let the optimal solution to model (M13) be (4,, 4, ,9*). Assume DMU, is located

inner the frontier, we have 6<1 and 2. =0. By setting all variables with the optimal solution
to model (M13), the constraints of (M13) have the following results:
z Z;)xiP + 2/1; (x;p 4 1; (xp + 7[*)

PeY, P, P=T T

for iel
and

Z/I;xip <O'x, <x,,
PeQ, P£T
It means that (4, 7)=( 2,, 0 r) is a feasible solution to (M12). Hence, 8 7 > 7, i.e.,

0>1. It leads to a contradiction. So, DMU, remains on the efficient frontier if =7,

Conversely, we assume that DMU, remains on the efficient frontier if inputs are

increased as (4.3) with 7 units, and 7>7 . Model (M12) is rewritten as following:
p =Min p
st D ApXpt+ D Ap(xp+m+p)S(xp+7)+p, i€,

Pe¥, P, P£T

Z/Ipxip <X, igl,

PeQ, P£T

(M14)
D ApVur >y, r=12,...

PeQ, P£T

> A =1,

PeQ, P=T

p=20; 4,20, PeQandP#T.
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Since DMU, is located on the frontier, we must have p*z 0. It implies that ,0*+7Z' >z>7. But
according to model (M12), its optimal value must be . Hence, p*+7r=7z*. This also leads to a

contradiction. So, DMU, remains efficient only if 7 < 7.

This Theorem illustrates that the minimization of model (M12) provides the possible
maximum increment of inputs as (4.3) to all DMUs in ¥, for keeping DMU, remain on the

efficient frontier while the other inputs are held at constants.
4.1.2 Stabilities of output coefficients

Now, turning to consider the case of changing data in outputs. Assume that DMU, is
efficient and data are changed in the outputs as (4.4). We utilize the following DEA like
model in which the test DMUJ is not included in the reference set to find the stability regions

of outputs.

5 =Min &
st Y Lpyet DA D,

PeY¥, Pe¥, P«T

Z/lerP J,
PeQ, P=T (M15)
Z/Ipxip 2.0, m,

PQ, P+T

>,

PeQ, P£T

020; 1,20, PeQandP=#T.
We first show that the model is translation invariant.
Lemma 4.1 Model (M15) is translation invariant.

Proof: Since Z/IP =1,, the result follows.

PeQ, P=T

Suppose model (M15) is also feasible for an efficient DMU,. The sufficient and

necessary conditions for preserving DM U, remain on the frontier are shown as follows.

Theorem 4.2 Given data varied in the outputs as (4.4), the efficient DMU, remains on the

efficient frontier if and only if o €[0, 5*], where & is the optimal value to model (M15).

Proof: We first show that DMU, remains on the frontier if o =5 By Lemma 4.1, we may

adjust data of outputs so that y,,>25* and it follows that 5*/(ykf—5*)<1 for all »€O. Then, we
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consider the following DEA model when DMU, is under evaluation and DMU, change their

outputs by the value y,P—ﬁ* for all Pe'Y,.

¢ =Max ¢
s.t. Z’lper"' Z/IP(er_é‘*)-i_/lT(er_5*)2¢(er_5*)9 re0,

Pe¥), Pe¥,, PT

ZiPer +ArY,r 2 V.rs re0,

PeQ, P2T

Zﬂpxﬂ, + A X, <X, i=L2,...,m,
PeQ, P£T

> A + A, =1,

PeQ, P£T

$20; 4,20, PeQ.

Let the optimal solution to model (M16) be (1,, 4, ,¢*). Assume DMU, is located inside the
frontier, that is ¢*>1 and 2, =0. It follows that:
b >1>5/(y,-5) = ¢v.,-5¢-5 >0 forall reO.

By setting all variables with th lel (M16), constraints of (M16) yield

the following results:

Z/f};yrpﬁ' Zﬂ’;(er zﬂ;(er_é‘*)
PeY, Pe¥,, P~T t P£T
—vi v iy (@Y= P =)1-1/¢)
>y, . —5 /¢, forallr €O
and
Doy 2 vy 2, forallr ¢ O.
PQ, P£T

It means that (4,, O)=(A,, S5 ¢*) is a feasible solution to model (M15). Hence S5 ¢* > 5*, ie.,

¢*Sl. It leads to a contradiction. So, DMU, remains on the efficient frontier if & =5.

Conversely, we assume that DMU, remains on the efficient frontier if outputs are

decreased as (4.4) with S units, and & >5'. Model (M15) is rewritten as following:
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" =Min 7
s.t. zj’Per-i_ zlp(er_é‘_T)Z(er_é‘)_Ta reQ,

Pe¥, Pe¥,, P£T

ziPer Zerﬁ Vﬁo,
PeQ, P=T (M17)
z/lpxip <X, i=12,...,m,

PeQ, P=T

> A =1,

PeQ, P#T

A, 20, PeQandP=T; rt:free.

Since DMU, is located on the frontier, we must have 7>0. 1t implies that r+5>5>5. But
according to model (M15), it must be 7 +8=5. This also leads to a contradiction. So, DMU,

remains efficient only if p Sp*. |

This Theorem illustrates that the minimization of model (M15) provides the possible

maximum decrement for each output to keep DMU, to remain on the efficient frontier when

the other outputs are held at cor
4.1.3 Stability for change input usly

Moreover, if we change _the same time, the stability region is

obtained by solving the followi

I"=Min T
st D Apxp+ D Ap(xp+D) <x,+@, iel,
Pe¥, PeV¥,, P=T
Z/Ipxip <X, igl,
PeQ, PT
2 Vet DAy, -D)2y, -T, re0, (M18)
Pe¥, PeV¥,, P=T
z/’i’Per Zerﬂ V%O,
PeQ, P=T
> A =1,
PeQ, P£T

>0, 1,20, PeQ.
If we assume the problem is also feasible, the following result is derived.

Theorem 4.3 The efficient DMU, remains on the frontier after the data change as (4.3) and
(4.4) with 7=5=T, if and only if Te[0, " ], where I"_is the optimal value to model (M18).

Proof: The proof is analogous to the proof of Theorem 4.1 and 4.2 and is omitted. ®
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We have derived the sufficient and necessary conditions for the models to preserve the
efficiency of an efficient DMU under the given data change type. The following section

presents an example to illustrate this proposed analysis.
4.1.4 Examples 4: stability analysis

The simulated data set consists of 8 portfolios, P1~P8, with two inputs (x, and x,) and
one output () is listed in Table 8. Portfolios of P1~P4 are VRS efficient while portfolios of
P5~P8 are inefficient. We consider the case of increasing inputs of P2, P3, and P6
simultaneously while the other portfolios are held fixed. By solving model (M12), the
maximum increment of input x, in P2, P3, and P6 to keep P2 remains on the frontier is 4/3.
Figure 3 presents the stability of P2 and the frontiers before and after the change in input x,.
Under the maximum increment, P2 locates in E’ and can be expressed as the linear

combination of P3 and P5.

The last column of Tabl ~ * C ot 7 Ty regions of P2 for changing input x;,
and x,, and simultaneously c ie same value are 4/3, 2, and 0.8,
respectively. Similarly, the stat 3, and 1. It reveals that P3 has larger
stability regions than P2 under ype. It implies that P3 is more stable
than P2 while data uncertainty ¢ 5 simultaneously.
Table 8. for Example 4.
Portfolio W X, x, Efficiency’ ‘P, or ‘Plb Stability regions’

P1 1 12 E Y,

P2 1 6 E Y, n=4/3, 1,=2.0, = 0.8

P3 1 3 E Y, 7=10/3, ="7/3, = 1.0

P4 1 12 1 E Y,

P5 1 2 8 N Y,

P6 1 7 4 N Y,

P7 1 6 7 N Y,

P8 1 5 4 N Y

=]

a: E means VRS efficient while N means inefficient.
b: ¥, indicates the perturbed set of portfolios while ¥ is the unperturbed set of portfolios.
c: 7, 7, and r are the stability regions corresponding to change value in input x,, x,, and all

inputs simultaneously, respectively.
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Xy

1 —®——  Frontier before changed

\\ — —@- —  Frontier after changed
10
\\ [ | DMU after changed
5 | —
|
0 10 X

Figure 3. Stability ising x, in P2, P3 and P6.

4.2 Properties for stability

The proposed stability Some properties related to the non-
linear models are investigated in this section. Without a loss of generality, we use model

(M12) to illustrate the infeasibility for all proposed stability models.
4.2.1 Infeasible and unbounded properties

When portfolio 7' is under evaluation, Let us employ the following super-efficiency

model to assess DMU, based on the subsets of performance indices, i¢l and =1, 2, ..., s.
6" =Min 6
st Y Apxp<Ox,;, igl,
PeQ, P«T
ZﬂPerZyVT, r=12,...,s, (M19)
PeQ, P£T
DA =1,
PeQ, P~T

620, 1,20, PeQand P=T.
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In the case of (9*>1, it provides that DMU, is also extremely efficient as the

performance indices are augmented by set | (Chen & Ali, 2002). Now, if @ is substituted by 1
to model (M19). We have:

z/lpxip <xgp, igl, (4.7)
PeQ, P£T

D AoV 2V, r=12,..,s. (4.8)
PQ, P£T

It follows that data of DMU, are ‘infeasible’ to the above constraints. One may
observe that (4.7) and (4.8) are identical to the second and third constraints of model (M12).
It means that DM U, would result in an infeasible solution to model (M12) by the structure of
constraints, if it remains efficient by deleting the performance indices of iel. The infeasibility
indicates DMU, is not impacted by the data changes in indices of i€, and states that it would

always be stable under the perturbations.

In the event of Q*Sl, Di n the indices of i¢l and =1, 2, ..., s,
and is a convex combination of 1 feasible solution should be obtained
by model (M12). It indicates t icted by changing data of input iel.
Hence, we can use (M19) to d: DMU is impacted by the variation or
not. If the impact is confirme he stability by using model (M12).

Otherwise, this DMU is always

The BCC super-efficiency model may also result in an unbounded solution when
DMU, has the maximum value on any output since the existing constraint summed all 4,’s to
one. The models proposed in this research may also have an unbounded solution. For instance,

in model (M12), it first constraint can be rewritten as:

D Apxp =Xy < D Ap, Q€ (4.9)

PeQ, P#T PV, P£T

The optimal of 7 would be unbounded if Z/lpxip -x,; >0 and Zﬂp =0 for any

PO, P£T PeYy, P#T
input iel. That is, DMU, is super-efficiency with respect to the indices I, and there is no
DMU in ¥, with input less than DMU,. In this situation, as the performance worsens through

increasing data of indices in I, all DMUs in ¥, are moved toward the interior of the frontier

simultaneously. At the same time, the new frontier constructed by excluding test DMU, is
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also moved in the same direction. If the above two conditions hold, DMU, would not stop
movement as the part of the frontier is simultaneously moved at the same distance. The

occurrence of an unbounded solution indicates that the DMU, possesses a vast stability on the
altered indices. Note, in the case that set W, only has element DMU,, as discussed in Zhu

(1996), an unbounded solution also exist.
4.2.2 Global optimal solution

The optimal solution of the non-linear model (M12) is a global optimal solution and
can be shown here. Let us consider the case that if the data are altered as (4.3), the non-linear

constraint of model (M12) is written as follows:

& (T Ap, 2y)= D ApXip + DAy (xy +7)—x,, — <0, forall iel. (4.10)

Pe¥, He¥,, H=T

For any point z =(x,A,,4,)on the null space of g,(7,4,,4,,) we have a positive semi-

definite Hessian matrix.

2[V2g, (. Ap, 2 2" = . 4.11)
It indicates that g,(7,4,,4,) 1 , the following set:
(202 | 8,722 (4.12)

is convex. Together with the other linear constraints, the feasible region of model (M12) is
also convex. The same conclusion could be derived for model (M15) that changes data as
(4.4), and for model (M18) that changes data as (4.3) and (4.4) simultaneously. Each model
has a linear objective function subject to the convex feasible region. It implies that there is at
most one local optimum. Hence, the local optimum must also be a global optimum. So, the

global optimum is obtainable for all stability models proposed in this study.
4.2.3 Model extensions

Now we consider other modified DEA models by removing the constraint on the sum
of the A,’s variables in models (M12), (M15), and (M18). For instance, model (M12) can be

modified by removing the following constraint:

> A, =1. (4.13)

PeQ, P£T
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This can be regarded as modified constants returns to scale (CRS) model (Banker et al. 1984)
for finding the stability region of efficient DMU, through changing inputs as (4.3).

7" =Min 7
s.t. lepxlp+ ZZP(xiP+7z)£xiT+7r, iel,

PeY¥, Pe¥,, P«T

> Apxp <x,, igl, (M20)

PQ, P+T

Z//i’Per Zer’ 7':1,2,...,5,

PeQ, P£T

720; A,20, PeQandP=T.
Now, let us consider the following model:

*® .
7 =Min «

s.t. Z/”LP(xiP—ﬂ)+ Zﬂp(xip+7r)£xﬁ+7r, iel,

PeY, Pe¥,, P=T
z/ipxip <X, igl,
PeQ, P£T (le)
Z/'prrp r=12,...,s,
P, P£T
>4,
PQ, P£T
720; 4,20, Pe
The minimization of (M21) prc num increments for inputs of DMUs
in ¥,, and the maximum decre........ ... ....... .. _...Js in ¥, to allow an efficient DMU,

remaining on the frontier when the outputs and other inputs are held constant.
4.3 Method for Solving stability models

The stability models (M12), (M15), and (M18) proposed in the current paper are not
linear programming. However, the non-linear programming model is more difficult to solve
than the linear model. For simplicity, we investigate the method for solving the input-based
stability model (M12). We will derive some properties that enable us to use the linear
programming technique to approximate the optimal value 7 of model (M12). First, we

consider the LP model given as below.
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7(t)=Min 7«
s.t. Zﬂpxip+ z/ip(xip+t)£x[r+7z, iel,

PeY¥, P¥,, P+T

ZlPxiP <X, iel,

PeQ, P£T

Zﬂpyrp 2 Y., r=12,...,s,

PeQ, P#T

D A =1,

PeQ, P£T

720; 4,20, PeQandP=T.

(M22)

Given positive constant ¢, the optimal solution to (M22) is denoted by (A.(¢), n(t)).

Obviously, we have 7 (¢) =7 ift=r . Some properties will be derived in the following.
4.3.1 Properties for stability of inputs

We will show that 7 (¢) is a non-decreasing function for z > 0.

Theorem 4.4 Let z(f)betheoy =~ ° "7 T en, 7 (t) is non-decreasing in .
Proof: We will show that 7 (¢,) oositive constants ¢, and ¢, with ¢, > t,.
Suppose the optimal solutions t t=t and t =t, are (4,(¢)), 7 (t,)) and

(A(8,), 7 (1,)). It follows:

D A)x,+ DA + D A (xp +1)

PeY, Pe¥,, P2T Pe¥,, P2T

<x; +7(t), iel,

D Ap(t)xp < X, igl,

PeQ, P#T
Z//Lf’(tl)erZera rzl,Z,...,S,
PeQ, P£T
and
Z/ip(ﬁ) =1.
PeQ, P£T

It implies (A,(¢)), 7 (¢,)) is feasible to (M22) for ¢ = t,. Therefore, we have 7 (¢,) > 7 (¢,). B

Since 72(7;): 72*, it is easy to show that 7 (#)< 7 for all t<7r*, and 7 (1)> 7 forallt>7
by following the results of Theorem 4.4. Further, the following theorems will help us to
approximate the optimal value to (M12).

Theorem 4.5. Ift< 7. Then t< z({) < 7 .
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Proof: Since ¢ < 72*, we have 7 (¢) < 72'(72'*): . Now, let us suppose ¢ > 7 (¢). Since, 7 () is

optimal to (M22), we have

D AOxp+ D Ap(Dxp +D)<xy +7() <Xy +1, P,

PeY, Pe¥, P£T

Z}“P(t)xip S Xirs igl,

PeQ, P=T

Z/lp(t)y,PZy,T, r=12,...,s,

PeQ, P~T

and

D A =1.

PeQ, P£T

It implies that (1,(¢), ?) is feasible to model (M12), i.e., t > 7 . This leads to a contradiction.

So,wehavet<z(f)< .M

Theorem 4.6. If ¢ > 7z . Then, £= 7 (¢).

* * .
Proof: Let (4,, 7 ) be the optir > have
D Xpxp D Ap(xp - iel,
Pe¥, Pe¥,, P£T
It follows:
z/’i’PxiP—‘r ZJ“P(‘)CI'P—+ ’ Led ©r ya) r\:iP+7z- )+ Z/IP(ZL_” )
PeY, Pe¥,, P=T PeY, Pe¥,, P£T Pe¥,, P=T
<Xp+7m o+ z/lp(t—ﬂ )
Pe¥,, P£T

<x,+7 +(t—-n")

<X, +t, foralliel,
It implies that (4, ) is feasible to (M22). Thus, we have ¢ >z (f). B

Suppose model (M12) is feasible, Theorem 4.5 and 4.6 show that if 7, and ¢, are the
lower and upper bounds of 7 respectively. One can obtain 7 (¢)) and 7 (z,) from solving (M22)
by setting ¢t = ¢, and ¢ = t,, and identify that ¢, <z (¢,))< T<rx (t,)< t,. That is, the lower bound
is moved upward from ¢, to 7 (¢,) and the upper bound is moved downward from ¢, to 7 (z,).
Conversely, if one obtains 7 () by solving (M22) for any ¢, then, we have 7 (1)< 7 fort<nz (¥

and 7 (1) 7 fort> 7 (¢). The graph of 7 (¢) is shown in Figure 4.
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A
(1)

T
[ »
Figure 4. The “(f) to model (M22).
But model (M12) could ed. We will state a rule to prevent the
unbounded situations from sol ;r the following linear programming

model modified from (M22) by excluding all DMU,, Pe¥, from the reference set.

7" =Min «

s.1. Z/ipxip <x,+nm, iel,
PeY,

z/lpxip <X, iel,
reh (M23)

z;{'PerZer’ r:1,25"'5S5

PeY,

DA =1,

PeY,

720; 4,20, PeY¥,.
Suppose (M23) is feasible. We have 7 isan upper bound of .

Theorem 4.7. 7' > 7.

Proof: Suppose the optimal solutions to (M23) is (A}, 77#), where 7 is finite. It follows:
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# # .
Zﬂpxip <x,+7x", iel,

PeY¥,
# .
Z/’i’PxiPSxiTa igl,
PeY¥,
and
#
Z/leFPZerﬂ V=1,2,...,S.
PeY¥,

Take A},=0 for all Pe'V,. We obtain

z/ljixip+ z/ii(xip+7z#)éxﬂ+7z#, iel,

Pe¥, Pe¥,, P=T
ZZ}#,xiPSxiT, igl,
PeQ, P£T
and
#
DIV ISFES r=1,2,...,s
PeQ, P£T
. . # # - . * #
It implies (A,, 0, 7)) is a feasib refore, 7 < 7 <oco. B
o e .
The result of Theorem finite if 7 is finite. Morevver, the
following theorem will help us exact value of 7 is obtained or not.

Theorem 4.8. If 1,(0) =0 for a

Proof: If 1,(0)=0 for all PeV¥,, we have (4,(0), 7 (0)) is also feasible to (M23). Following the
results of Theorem 4.4-4.7, we have 7 (0) > > Conversely, 7 () is non-decreasing in ¢,

and 7> 0. It follows 7 = 7 (7 ) > 7 (0). Therefore, 7(0)= 7. W

However, Theorem 4.8 can be extended as: if given any 7€[0, ﬁ*] with A,(#)=0 for all

PeY,. Then, we have 7 () -7,
4.3.2 Approximating stability regions

Following the results of Theorem 4.4—4.8, 7 can be obtained or approximated by
solving linear programming models (M22) and (M23) only, but it does not need to employ the
non-linear programming model (M12) directly. An algorithm used to approximate 7 s

developed as the following:

Step 0. (Initialized) Solve (M23) to obtain 7
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Step 0.1. If 7 is bounded, set upper bound U=r.
Otherwise, let U=M, where M is a given sufficient large number.

Step 0.2. Let lower bound L=0 and ¢ be the error tolerance for estimating .

Step 1. Solve (M22) with =(U+L)/2 to obtain (A,(¢), 7 (¢)).
Step 1.1. If A,(#)=0 for all Pe'¥, then set zr*=7z(t) and stop.
Step 1.2. If <7z (¢) then set L=7 (¢). Otherwise, set U= (¢).

Step 2. If |U—-L| < 2¢ then set 7= (U+L)/2 and stop. Otherwise, go to Step 1.

A bisection procedure is applied in the algorithm for convergence. If 7 is feasible in
Step 0, 7 must be feasible and its approximation could be obtained. However, T may occur
infeasible or its value exceeds a large number such that the test portfolio tends to be stable
while data is changed in a sufficient large scale. So, the upper bound U is set sufficient large
value if 7 is infeasible in Step 0. In the real-world applications, one may identity that a test
portfolio is always stable if the sible or large enough relatively to the

data range of the perturbed proj
4.3.3 Method for solving other

For the case of changin; , the optimal solution, ¢, to the non-

linear model (M15) could be ap \g the following LP model.

o(t)=Min o
s.t. leyrp*' z/lP(er_t)Zer_é" reo,

Pe¥, Pe¥,, P~T

zlerP Zer’ I’GEO,

PeQ, P=T

Z/Ile.P <X, i=12,...,m,

PeQ, P=T

> A =1,

PeQ, P£T

020, 4,20, PeQandP=T.

(M24)

For arbitrary positive constant 7, we have o (¢) = S if we take 1= 5. However, if we
use model (M15) to consider the data changed as (4.3) and (4.4), the stability is approximated
by considering the following LP model.
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I'(/)=Min T
st Y ApXp+ D Ap(xp+0)<x,+T, iel,

Pe¥, Pe¥,, P=T

Zﬂpxip <X, iel,

PeQ, P£T

Z’lper"' z/lp(er_t)Zer -T', r€QO, (M25)

Pe¥, Pe¥, P£T

Zﬁ’Per 2 Vs reQ,

PeQ, P#T

> A =1,

PeQ, P£T

>0, 4,20, PeQ.

Some properties related to S and T are analogous to the properties of 7z*, which

enable us to approximate the exact values of S andT .
4.3.4 Example 1 (continued)

Let’s use Example 1 as sitivity analysis. In case of the input

coefficient, a,, of project 3 is ¢ In Table 9, portfolios with w,=1 and
w,=0 are listed in the upper an 1g order of input values. We want to
investigate the stability of effi jpect to the data variation. One is to
find the maximum value of 7 ¢ cient portfolio 7 is remains efficient.
That is, portfolio 7 remains eff ue of project 3 is changed from a, to

a,+r. Model (M9) is rewritten as follows after changed.

Maximize y=6 w,+4.0 w,+ 72w+ 8wt w (M26)
Minimize x=4 w,+2.8 wt (5.6+7) w,+ 9 w,+ 2 w;,

Subjectto w, €{0,1}, k=1, 2,..., 5.
Sets of index for classifying changed and unchanged portfolios is as follows.

Y={0,1, 2, 3,8, 9,10, 11, 16, 17, 18, 19, 24, 25, 26, 27},
and

Y ={4,5,6,7,12,13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31}.

Portfolio P are shifted right if Pe¥, and unchanged if Pe¥,. Changed and unchanged
portfolios and their corresponding DMUs are listed in Table 9. Figure 5 presents all DMUs
while they are before change. Figure 6 presents all DMUs while they are after change. The

stability measure, 72*, is solved by the above algorithm and as follows:
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Table 9. Changed and unchanged portfolios by perturbing project 3.

Portfolio DMU,

P w, w, W, W, Wy Xp Vp
4 0 0 1 0 0 5.6+7 7.2
20 0 0 1 0 1 7.6+7 8.2
6 0 1 1 0 0 8.4+ 11.2
1 0 1 0 0 9.6+7 13.2
22 0 1 1 0 1 10.4+7 12.2
21 1 0 1 0 1 11.6+7 14.2
7% 1 1 1 0 0 12447 17.2
23 1 1 1 0 1 14.4+7 18.2
12 0 0 1 1 0 14.6+7 15.2
28 0 0 1 1 1 16.6+7 16.2
14 0 1 1 1 0 17.4+7 19.2
13 1 0 1 1 0 18.6+7 212
30 0 1 19.4+7 20.2
29 1 0 20.6+7 222
15° 1 1 21.4+7 25.2
31" 1 1 23447 26.2
0" 0 0 0.0 0.0
16 0 0 2.0 1.0
2 0 1 v v v 2.8 4.0
17 1 0 0 0 0 4.0 6.0
18 0 1 0 0 1 4.8 5.0
17 1 0 0 0 1 6.0 7.0
3° 1 1 0 0 0 6.8 10.0
19 1 1 0 0 1 8.8 11.0
8 0 0 0 1 0 9.0 8.0
24 0 0 0 1 1 11.0 9.0
10 0 1 0 1 0 11.8 12.0
9 1 0 0 1 0 13.0 14.0
26 0 1 0 1 1 13.8 13.0
25 1 0 0 1 1 15.0 15.0
11 1 1 0 1 0 15.8 18.0
27 1 1 0 1 1 17.8 19.0

E: indicates the efficient portfolio.
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15;
[ ]
[ ]
[ ]
11 o °
[ ]
7'
[ ]
o [ ]
o ©
L4 u]
o ©
3 o ¢ — Efficient frontier
[m}
o ° ® Changed portfolios
o
o o Unchanged portfolios
o
Input

Figure 6. All portfolios and efficient frontier after change.

—51 -



Step 0. Solve (M23) to obtain 7=2.5.
Step 0.1. 7=2.51is bounded, set upper bound U=r=2.5.

Step 0.2. Set lower bound L=0 and error tolerance for estimating 7 be £=0.001.

Step 1. Solve (M22) by setting =(U+L)/2=1.25.
We obtain A,(f)= 0.5263, A,5(t)= 0.4737, and n(1)=1.9079.
Step 1.1 Since 4,4(#)>0 and 15€¥,, go to step 1.2.
Step 1.2 Since ¢ <n(t), we set L=x (£)=1.9079.

Step 2. Since |U-L| > 2¢, go to Step 1.
Iteration 2: t=(U+L)/2=2.2040, 1,()=0.5263, 4,4(#)=0.4737, and 7 (£)=2.3597.
Set L= 7 (1)=2.3597 and remain U= 2.5.
Iteration 3: t=(U+L)/2=2.4299, 1,()=0.5263, 4,4(#)=0.4737, and 7 ()=2.4668.
Set L= 7 (1)=2.4668 and remain U= 2.5.
Iteration 4: t=(U+L)/2=2 1°21 1 (a—0£062 1 10=() 4737 and 7 (£)=2.4921.

Set L= 7 (f)= 5.
Iteration 5: =(U+L)/2=: N=0.4737, and 7 (£)=2.4982.
Set L= 7z (f)= 5.
Now, |U-L|=0.0018 <2 1991 and stop the process.
The exact solution to (M12)is = .~ ot attachable if 1,(¢)#0 for all Pe¥,

occurs in Step 1. However, 7 could be approximated by the proposed algorithm.

—52—



5. Conclusion and Discussion

The problem of evaluation and selection of collective projects is modeled as a
MOBILP. Instead of evaluating projects individually, it enables the evaluation of projects in
their combination forms. In the public sector and government project selection problems,
many environmental factors may be included as the objective of resources. We focused on the
best use of relative resources, but not the best use of available resources. In this paper, we
developed the filtering algorithm to circumvent the computational difficulties of DEA
programs, to identify all efficient portfolios, and to rank them according to the stability

measures of model (M7).

The simulated results show that a major portion of the inefficient portfolios and some
efficient portfolios (SEC) are identified prior to the calculation of the DEA programs. The
remaining portfolios are then evaluated with respect to the ECG by using DEA case-based
classification model (M7). The nrohlem <ize of each TP and the number of solving LP are

reduced significantly. The simu : following:

1. The PDR filter is the most sed filters. It identifies about 80% to

90% of portfolios in our sam

2. Phase II of filtering algorith f inefficient portfolios. It shows that
the DEA programs just need ng 1% of candidate portfolios.

3. The computing time is data dependent and its expected computing time is exponentially

increased as the number of projects is increased.

DEA methodology is computationally intensive when required to solve a large number
of LP. This problem has 2K portfolios, and the number is doubled as one more project is
added for evaluation. The program MOBILP+ seems efficient for solving the problem at this
moment in time. One may potentially discover new methods of determining inefficient
portfolios prior to the solution of the DEA programs, further reducing the number in solving
LP. However, in the real-world applications, some projects could be eliminated prior to the
collective selections if their stability measures were less than a threshold value. Then, the
number of projects could be reduced and also dos reduce the computational effort for solving

the problem.
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Table 10. Data set consists of 37 R&D projects (Oral et al., 1991).

R&D Indirect Direct Technical Social Scientific ~ Resource
Project  Economic = Economic Contribution Contribution Contribution  Usage

1 67.53 70.82 62.64 4491 46.28 84.20
2 58.94 62.86 57.47 42.84 45.64 90.00
3 22.27 19.68 6.73 10.99 5.92 50.20
4 47.32 47.05 21.75 20.82 19.64 67.50
5 48.96 48.48 34.90 32.73 26.21 75.40
6 58.88 77.16 35.42 29.11 26.08 90.00
7 50.10 58.20 36.12 32.46 18.90 87.40
8 47.46 49.54 46.89 24.54 36.35 88.80
9 55.26 61.09 38.93 47.71 29.47 95.90
10 52.40 55.09 53.45 19.52 46.57 77.50
11 55.13 55.54 55.13 23.36 46.31 76.50
12 32.09 34.04 33.57 10.60 29.36 47.50
13 27.49 39.00 34.51 21.25 25.74 58.50
14 77.17 X . 41.37 5191 95.00
15 72.00 6¢ 36.64 25.84 83.80
16 39.74 34 15.79 33.06 35.40
17 38.50 2¢ 59.59 48.82 32.10
18 41.23 47 10.18 38.86 46.70
19 53.02 51 17.42 46.30 78.60
20 19.91 1¢ 8.66 27.04 54.10
21 50.96 53,00 o 30.23 54.72 74.40
22 53.36 46.47 49.72 36.53 50.44 82.10
23 61.60 66.59 64.54 39.10 51.12 75.60
24 52.56 55.11 57.58 39.69 56.49 92.30
25 31.22 29.84 33.08 13.27 36.75 68.50
26 54.64 58.05 60.03 31.16 46.71 69.30
27 50.40 53.58 53.06 26.68 48.85 57.10
28 30.76 32.45 36.63 25.45 34.79 80.00
29 48.97 54.97 51.52 23.02 45.75 72.00
30 59.68 63.78 54.80 15.94 44.04 82.90
31 48.28 55.58 53.30 7.61 36.74 44.60
32 39.78 51.69 35.10 5.30 29.57 54.50
33 24.93 29.72 28.72 8.38 23.45 52.70
34 22.32 33.12 18.94 4.03 9.58 28.00
35 48.83 5341 40.82 10.45 33.72 36.00
36 61.45 70.22 58.26 19.53 49.33 64.10
37 57.78 72.10 43.83 16.14 31.32 66.40
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It is interesting that in using output-input ratios (Theorem 3.2), the identified efficient
portfolios, SEC, have higher stability measures with respect to the whole set of efficient
portfolios. To illustrate the fact, we consider the data set of 37 R&D projects as listed in
Table 11 (Oral et al., 1991), and evaluate all possible collectives of these projects. There are
exactly 3298 VRS efficient portfolios, and 167 of them belonged to SEC. We observe that the
order ranks, based on stability measures, of the memberships in SEC are significantly higher
than the others. The distribution of the order ranks of portfolios in SEC is listed in Table 11.
The second row of Table 11 shows there are 9 SEC portfolios in the top 10. It indicates that
SEC contained superior portfolios. Therefore, one may not need to solve the collective
evaluation problems by using DEA models or our proposed filtering algorithm, since SEC
provides many quality portfolios for selection. Output-input ratios could be very easily

obtained, even by hand calculation.

Table 11. The distribution of the order ranks of the 167 SECs.

Order ranks Nun o ' Cl:lrlrllrlllqls;ve g;ggﬂ?tt};ﬁ;
1-10 ¢ 9 5.4%
11-20 ¢ 15 9.0%
21-100 2 36 21.6%
101-500 5 92 55.1%
501-1000 3 122 73.1%
1001-2000 3 155 92.8%
>2000 12 7.2% 167 100.0%

The paper presented a new DEA sensitivity approach referring to the non-linear
models that may be considered as the extension of super-efficiency models (Seiford & Zhu,
1998b; 1999). The new sensitivity technique provides the stability of efficient portfolios by
giving the data variations on a specific project. It cause that a subset of portfolios are
perturbed in the same value simultaneously. Fortunately, our proposed stability models can be
applied to the case of measuring the stability of efficient DMUs by giving the data variations

on a subset of perturbing DMUs simultaneously.

In contrast to the usual DEA sensitivity approaches whose data variations are
considered either on the test DMU or on the allover DMUs, this approach proposed the
generalized consideration that the uncertainty only affects a subset of DMUs. Sufficient and

necessary conditions of stability measures are provided for upward variations of inputs and/or
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downward variations of outputs on a subset of DMUs simultaneously so that a test efficient
DMU remains on the efficient frontier. Sensitivity analysis enhances the fine quality of the
final decision. Also, one can have the insight for the comparison between DMUs. Thus, the

type of data variation in our analysis is more flexible than the usual approaches.

Although the stability regions of a test efficient DMU for absolute changes in the data
is identified, the data change with the same distances are not necessarily true for the real-
world applications. However, rescaling all inputs and outputs suitably could be used to
prevent this shortcoming. The possible future extensions of our research include: a
determination of the whole stability region of a test DMU, change of different scales in
different input/output, the stability of efficiency in other DEA models, and proportional data

variations.
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