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不對稱變幅條件相關係數模型之經濟價值分析 

研究生：陳致宏             指導教授：周雨田 博士 

 
 
 

國立交通大學經營管理研究所碩士班 

 
 
 

中文摘要 

本篇論文根據 Engle(2002) 提出的動態條件相關係數 (Dynamic Conditional 

Correlation, DCC)模型與 Cappiello et al.(2006)提出的不對稱動態條件相關係數

(Asymmetric Dynamic Conditional Correlation, ADCC)模型配合 GARCH、GJR-GARCH 與

CARR波動模型，利用標準普爾 500(S&P 500)指數期貨與美國十年期公債(10-year T-bond)

期貨來估計波動時變性的經濟價值。在本文的實證分析上，支持以變幅(range)為基礎的

估計模型得到較高的經濟價值，若從投資者的角度來看，投資者願意支付較高的轉換費

用使用 CARR 計量模型，以最適化資產配置。實證結果也支持以變幅當作較佳的波動代

理變數。 

 
 
 
 
 
 
關鍵詞：一般化自我迴歸條件異質變異數、條件變幅自我相關、動態條件相關係數、不

對稱性、經濟價值、波動時變性、變幅 
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ABSTACT 

This paper employs the return-based (GARCH and GJR-GARCH) and range-based 

(CARR) volatility models to go with the symmetric dynamic correlation (DCC) and 

asymmetric dynamic correlation (ADCC) model. We apply these models to measure the 

economic value of volatility in a mean-variance framework with three assets – stock, bond, 

and cash. Under consideration of asymmetric effect on conditional variance and correlation, 

we find that the CARR-DCC and CARR-ADCC models are superior in the different target 

returns and risk aversions. From the viewpoints of the investors, it is shown that the 

predictable ability captured by the dynamic volatility models is economically significant, and 

investors may choose the CARR model to allocate their assets and optimize their portfolio. 

The empirical results give robust inferences for supporting the range-based model in 

forecasting volatility. 

 

 

 

Keywords: GARCH, CARR, DCC, Asymmetry, Economic value, Volatility timing, 

Range 
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Ⅰ. Introduction 

Modern portfolio theory (MPT) proposes how rational investors use diversification to 

allocate their assets and optimize their portfolios. MPT models a portfolio as a weighted 

combination of assets so that the return of a portfolio can be expressed as a summation of 

the constituent asset’s returns. Additionally, the volatility of a portfolio ( 2
portfolioσ ) can be 

shown as the function of the variance of each asset ( 2
iσ ) and the correlation ( ijρ ) of the 

component assets. One of the most influential concepts of MPT is Markowitz diversification. 

Diversification in investment portfolio is a risk management technique that mixes a wide 

variety of assets within a portfolio. Because the fluctuations1 of a single asset have less 

impact on a diversified portfolio, diversification can eliminate the specific-risks or 

unsystematic-risks from any one investment portfolio. In order to reduce the specific-risks 

of a portfolio, one can invest multiple assets with varied risk levels, therefore, large losses 

in some assets are offset by others assets if their correlations are not equal to one (perfectly 

correlated). In other words, investors can reduce their exposure to individual asset risk by 

holding a diversified portfolio of assets. Although diversification minimizes the risk of a 

portfolio, it does not necessarily reduce the portfolio return. Consequently, well-diversified 

in assets is referred to as the free lunch in finance. 

In Markowitz portfolio selection model, we can generalize the portfolio construction 

problem to the case of many risky assets and a risk-free asset. The first step is to determine 

the return-risk trade-off to the investor. There are summarized by the minimum-variance 

frontier. This frontier is a graph of the lowest possible portfolio variance that is attainable 

for a given portfolio expected return. Afterward we can easily find the weights of global 

                                                 
1 More volatile of fluctuations, more risk of assets. We use the standard deviation of the portfolio’s return to 
proxy the portfolio risk in this study.  
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minimum variance portfolio with the function of each asset’s variance ( 2
iσ ) and the 

covariance ( ijσ ) between two constituent assets. The part of the frontier that lies above the 

global minimum-variance portfolio is called the efficient frontier of risky assets. The second 

part of the optimization includes the risk-free asset proxied by an investment in short-dated 

Government securities. The risk-free asset has zero variance in returns, and it is 

uncorrelated with any other asset. Accordingly, we search for the capital allocation line 

(CAL) with the highest reward-to-variability ratio (Sharpe ratio, pS ), and the CAL must be 

tangent to the efficient frontier. Sharpe ratio is a measure of the excess return (risk premium) 

per unit of risk. Therefore, the portfolio is the optimal risky portfolio with more than two 

risky assets and a risk-free asset. For the weights that result in risky portfolio with the 

highest Sharp ratio, the objective is to maximize the slope of the CAL for any possible 

portfolio. 

A number of useful improvements have appeared since the moment of the classic 

theory creation. In static portfolio strategy, we can employ the unconditional expected 

returns ( iu ), variances ( iσ ), and correlations ( ijρ ) for any target return ( targetu ) to acquire 

the optimal weights of risky and risk-free assets in our portfolio. The MPT uses the 

historical parameter “volatility” as a proxy for risk and assumes volatility never changes. 

The optimal weights of the portfolio are not dynamic because we don’t take the 

time-varying character into account.  

Recently, quantitative investment becomes popular in financial market. Investors and 

quantitative analysts begin using mathematical and statistical models to price stocks, bonds 

and derivatives. Dynamic investment strategies used in portfolio optimization would benefit 

investors because the financial markets are not entirely efficient and the phenomenon of 

volatility is changeable over time. In another word, dynamic investment strategies not only 
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reduce the risk but improve portfolio performance as well. 

In the financial market, the financial economists found that the autocorrelation plays an 

important role in estimating volatility than in estimating return. Therefore, we can forecast 

the second moment such as volatility and correlation easily than the first moment (return).  

Previous researchers had assumed constant volatility and used simple devices to 

approximate risk. Engle (1982) proposed the Autoregressive Conditional Heteroscedasticity 

(ARCH) model in which the variance at time t ( 2
,i tσ ) is modeled as a linear combination of 

the past q-period of squared errors ( 2
t qε − ). Afterward, Bollerslev (1986) added lag lengths p 

of variance ( 2
,i t pσ − ) to the model and advanced the GARCH (Generalized ARCH) model for 

measuring and forecasting financial market volatility. The GJR-GARCH model with 

asymmetry was introduced by Glosten, Jaganathan, and Runkle (1993) following the 

GARCH model. In the GJR-GARCH model, good news ( 0t qε − > ) and bad news ( 0t qε − < ) 

have different effects on the conditional variance, the model suggests that bad news 

increases volatility more than good news in general. 

The above-mentioned GARCH family models are based on the return data 

( ( )e 1log close close
t tp p − ). Recently, numerous studies have mentioned that the range data based 

on the logarithmic difference of high and low prices in a fixed interval ( ( )elog high low
t tp p ) 

make a superior estimation of volatility than the return data. Parkinson pioneered in 

estimating the variance of the rate of return (see Parkinson, 1980). The follow-up studies are 

Brandt and Jones (2006), Chou (2005, 2006) and Martens and Dijk (2007). Especially, 

Chou (2005) proposed a Conditional Autoregressive Range (CARR) model which provides 

sharper volatility estimates compared with the standard GARCH model. 

In asset allocation and portfolio optimization, we not only take the conditional variance 
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of individual asset into account, but the conditional covariance and correlation as well. 

Engle developed new econometric models of volatility that captured the tendency of more 

than two assets to move between high volatility and low volatility period. Engle (2002a) 

advanced the Dynamic Conditional Correlation (DCC) Model, which is derived from the 

GARCH family. 

In the recent, researchers have noted that volatilities and correlations for financial 

markets rise more after negative returns shocks than after positive shocks. Namely, the 

asymmetric phenomena of volatility and correlation show that there are higher market 

volatility and correlation levels in market downswings than in market upswings. Cappiello, 

Engle, and Sheppard (2006) proposed the ADCC (Asymmetric DCC) model to capture the 

asymmetry in estimating dynamic correlations. 

The existence of asymmetry has been widely studied and confirmed. It plays a vital 

role in risk management and asset allocation. From the viewpoints of investors, the main 

issue is whether asymmetric phenomenon can reduce the volatility, enhance risk-adjusted 

portfolio return and improve utility of investors. 

In the mean-variance framework, investors acquire the different portfolio weights over 

time using varied models. Therefore, we can easily obtain the return and risk of the optimal 

portfolio. In order to measure the economic value of timing under uncertainty, we consider 

an investor with different risk-averse levels uses conditional volatility and correlation to 

allocate portfolio among cash, stock, and bond. Fleming, Kirby and Ostdiek (2001) 

extended West, Edison, and Cho’s (1993) utility criterion to measure the economic value of 

timing with different risk tolerance levels. This study shows that the CARR model may 

bring out a better performance to investor, that is to say, the investor might pay more 

annually to switch from the static strategy to the dynamic strategy.  
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The article is structured as follows. In Section Ⅱ, we introduce literature related to 

GARCH family and CARR with DCC and ADCC model. In addition, the literature 

resources related to the economic value of timing are also included in Section Ⅱ. Section 

Ⅲ provides the methodology of asset allocation, the measurement of economic value over 

time, and the return-based (GARCH and GJR-GARCH) and range-based (CARR) models 

with DCC and ADCC. Section Ⅳ presents the data used in this paper, its summary 

statistics, and the details of the performance in the different strategies and risk aversion 

levels. Finally, Section Ⅴ is the conclusion to the paper. 
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Ⅱ. Literature Review 

2.1 The Mean-Variance Framework 

Prior to Markowitz's work, investors focused on assessing the risks and returns of individual 

securities in constructing their portfolios. Markowitz (1952) proposed that investor focus on 

selecting portfolio based on their overall risk-return characteristics. 

Tobin (1958) expanded on Markowitz’s framework by adding a risk-free asset to the 

portfolio. This made it possible to leverage or deleverage portfolio on the efficient frontier. 

Through leverage, portfolio on the capital allocation line that outperform portfolio on the 

efficient frontier is feasible. 

2.2 The Value of Volatility Timing Measurement 

Many studies show that the forecast models only can explain little part of variations in 

time-varying volatilities. Some studies argue against the viewpoints and wonder whether 

volatility timing has economic value (Busse (1999), Fleming, Kirby, and Osdiek (2001, 

2003), Marquering and Verbeek (2004)). 

This article focuses on whether range-based models are superior to return-based 

models, and investors are willing to switch from a symmetric DCC to an asymmetric DCC 

model. The purpose of this paper is to examine its economic value of volatility timing by 

using conditional mean-variance framework developed by Fleming, Kirby and Ostdiek 

(2001). 

We construct three-asset, mean-variance portfolio made up of two market returns 

(stock and bond) and the risk-free asset (cash). Fleming, Kirby and Ostdiek (2001) extend 

West, Edison, and Cho’s (1993) utility criterion to test the economic value of volatility 
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timing for the short-horizon investors with different risk tolerance levels. In this paper, we 

examine the economic value for longer horizon forecast of selected models in our empirical 

study. 

2.3 The ARCH, GARCH and GJR-GARCH Model 

The Autoregressive Conditional Heteroskedasticity (ARCH) model has become the most 

famous model in processing the conditional volatility since Engle (1982) proposed it. The 

ARCH model adopts the effect of past residuals and helps explain the volatility clustering 

phenomenon. In traditional econometrics models, the one period forecast variance is assumed 

to be constant. The ARCH model differently assumes that variance of residuals to be time 

varying and conditional on past sample. Bollerslev (1986) proposed the Generalized ARCH 

(GARCH) model which brings the previous volatility term into the ARCH model. The 

GARCH model opens a new field in research of volatility and is widely applied in research of 

financial and economic time series.  

The GJR-GARCH model with asymmetry was introduced by Glosten, Jaganathan, and 

Runkle (1993) following the GARCH model. In the GJR-GARCH model, good news and bad 

news have different effects on the conditional variance, the model suggests that bad news 

increases volatility more than good news in general. 

2.4 The Conditional Autoregressive Range (CARR) Model 

Several studies show that the range data can offer a sharper estimate of volatility than the 

return data. A number of studies have investigated this issue started with Parkinson’s (1980) 

research, and more recently, Brandt and Jones (2006), Chou (2005, 2006), and Martens and 

Dijk (2007). Especially, Chou (2005) proposes a Conditional Autoregressive Range (CARR) 

model which can easily capture the dynamic volatility structure and has obtained some 
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insightful empirical evidences. 

2.5 The Dynamic Conditional Correlation (DCC) and Asymmetric Dynamic Conditional 

Correlation (ADCC) Model 

Bollerslev (1990) presents the Constant Conditional Correlation (CCC) model uses a strong 

assumption, the correlation of variables to be fixed, to simplify the estimation process. Kroner 

and Ng (1998) propose the General Dynamic Conditional Correlation model which 

incorporates several multivariate GARCH models to compose a more general model. Engle 

(2002a) looses the restriction of constant conditional correlation and proposes Dynamic 

Conditional Correlation (DCC) model. 

In the ADCC (Cappiello, Engle and Sheppard 2006) model, both conditional variance 

and correlation increase in response to negative news, allowing portfolio weights computed 

from ADCC. 
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Ⅲ. Model 

3.1 Mean-Variance Framework 

Mean-variance optimization (MVO) is a quantitative tool which allows investors to 

optimize their portfolios by considering the risk/return trade-off. In conventional single 

period MVO, investors make optimal portfolio decision for a single forthcoming period. 

The objective is to minimize portfolio risk (variance) subject to a selected level of target 

return. The single period MVO was developed by Markowitz. 

In the beginning, we consider a minimization problem for the portfolio variance 

( 2
portfolioσ ) which is a measure of portfolio risk subjected to a target return constraint ( targetμ ). 

Suppose 1 1, 1 , 1
T

t t k tR R R+ + +⎡ ⎤= ⎣ ⎦L  denotes the expected return for each risky asset2, and 

[ ]1 , 1
1

n

t i i t
i

E R w Rμ + +
=

= =∑  denotes the expected return for portfolio. In addition, its 

conditional covariance matrix tH  for each risky asset is defined as follows,  

( )( )

2 2
11, 1 1 , 1

1 1
2 2
1, 1 kk, 1

t k t
T

t t t t

k t t

H E R R
σ σ

μ μ
σ σ

+ +

+ +

+ +

⎡ ⎤
⎢ ⎥⎡ ⎤= − − = ⎢ ⎥⎣ ⎦
⎢ ⎥⎣ ⎦

L

M O M

L

                (1) 

The matrix given above is a square matrix3 where its elements on the main diagonal 

are the variances of each risky asset. The top-right and bottom-left off-diagonal elements 

are the covariances between any two risky assets. 

A single-horizon investor chooses the optimal weights of portfolio ( tw ) to minimize 

portfolio variance subject to a target return constraint ( targetμ ), the minimization problem 

                                                 
2 In linear algebra, matrix AT indicates the transpose of a matrix A. 

3 A square matrix is a matrix which has the same number of rows and columns. 
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means that the portfolio of risky assets has the lowest variance. It can be expressed as follows, 

min
tw

2 2
11, 1 1 , 1 1,

2
, 1, ,

2 2
1, 1 kk, 1 ,

t k t t
T

portfolio t t t t t k t

k t t k t

w
w H w w w

w

σ σ
σ

σ σ

+ +

+ +

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎡ ⎤= = ⎣ ⎦ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

L

L M O M M

L

 

( ) targetsubject to  1 1T T
t t fw w Rμ μ+ − =                  (2) 

where 1, ,
T

t t k tw w w⎡ ⎤= ⎣ ⎦L  is a 1×k  vector of portfolio weights on the risky assets at time t, 

fR  is the return on the risk-free asset, and targetμ  is the given target return. The solution to 

the vector of optimal portfolio weights is as follows, 

1
arg

1

( ) ( 1)
( 1) ( 1)

t et f t f
t T

f t f

R H R
w

R H R
μ μ
μ μ

−

−

− −
=

− −
                      (3) 

It is apparently to be expressed in a bivariate case (k=2): 4 

( )2
target 1 2, 2 12,

1, 2 2 2 2
1 2, 2 1, 1 2 12,2

t t
t

t t t

w
μ μ σ μ σ

μ σ μ σ μ μ σ

−
=

+ −
 , ( )2

target 2 1, 1 12,
2, 2 2 2 2

1 2, 2 1, 1 2 12,2
t t

t
t t t

w
μ μ σ μ σ

μ σ μ σ μ μ σ

−
=

+ −
        (4) 

where target target fRμ μ= − , 1 1 = fR Rμ − , and 2 2= fR Rμ −  are the excess target returns and 

the excess returns of risky asset A and risky asset B. 

3.2 Measuring the Value of Volatility Timing 

West, Edison, and Cho (1993) make use of the quadratic utility function in exchange rate 

volatility measurement. According to their study, the investor’s utility can be defined as 

follows, 

( )
2
t+1

t+1 t+1
WU W =W
2

α
－                            (5) 

                                                 
4 See Appendix A 



- 11 - 

where t+1W  is investor’s wealth at time t+1, α  is the Arrow-Pratt measure of absolute 

risk aversion (ARA) or coefficient of absolute risk aversion, the ARA is defined as follows, 

( ) ( )
( )

t+1
t+1

t+1 t+1

U W
ARA W

U W 1 W
α
α

′′
= − = −

′ −
                 (6) 

The higher the curvature of ( )t+1U W , the higher the risk aversion. In addition, the 

Arrow-Pratt measure of relative risk aversion (RRA) is defined as follows, 

( ) ( )
( )

t+1 t+1 t+1
t+1 1

t+1 t+1

W U W WRRA W
U W 1 Wt

αγ
α+

′′
= = − = −

′ −
           (7) 

Under the measure of RRA, even if investor’s risk aversion changes from risk-averse 

to risk-loving, the measure is still a valid estimation. In order to capture the trade-off 

between risk and return, Fleming, Kirby and Ostdiek (2001) use a generalization of West, 

Edison, and Cho’s (1993) criterion to construct the linkage between quadratic utility and 

mean-variance framework. According to their study, the investor’s realized utility function 

at period t + 1 can be written as, 

( )
2

2
t+1 t , 1 , 1

WU W =W
2

t
p t p tR Rα

+ +－                        (8) 

where tW  is the investor’s wealth at period t and the portfolio return ( , 1p tR +
) at period t+1 

is defined as follows, 

( )
1, 1

, 1 1 1 1, ,

, 1

1 1
t

T T T
p t t f t t f t t f t k t

k t

r
R w R w R R w r R w w

r

+

+ + +

+

⎡ ⎤
⎢ ⎥⎡ ⎤= − + = + = + ⎣ ⎦ ⎢ ⎥
⎢ ⎥⎣ ⎦

L M       (9) 
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1tr +
 is defined in terms of excess returns, it can be expressed as follows, 

1, 1 1, 1

1 1

, 1 , 1

1
t f t

t t f

k t f k t

R R r
r R R

R R r

+ +

+ +

+ +

⎡ ⎤ ⎡ ⎤−
⎢ ⎥ ⎢ ⎥= − = =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− ⎣ ⎦⎣ ⎦

M M                  (10) 

For comparison between the static and dynamic investment strategies, we assume that 

the investor has a constant relative risk aversion (CRRA), that is to say tγ  is equal to some 

fixed value γ . This implies tWα  is also a constant term. 

t

t

W W W=
1 W 1 W 1+t
α α γγ γ α
α α γ

= ⇒ = ⇒
− −

                (11) 

The equation (8) can be rewritten as 

( ) ( ) ( )
2 2t

t+1 t , 1 , 1 t , 1 , 1
WU W =W W

2 1 2 1p t p t p t p tR R R Rγ γ
γ γ+ + + +

⎛ ⎞
= ⎜ ⎟⎜ ⎟+ +⎝ ⎠

－ －      (12) 

Under the assumption of CRRA, we can make use of the average realized utility ( )U ⋅  

to estimate the expected utility by a given initial wealth 0W . 

( ) ( )
2

0 , ,
1

W
2 1+

T

p t p t
t

U R Rγ
γ=

⎛ ⎞
⋅ = −⎜ ⎟⎜ ⎟

⎝ ⎠
∑                   (13) 

In order to estimate the value of volatility timing (Δ ), we equate the average utilities 

for any two alternative portfolios. The expression is as follows, 

( ) ( ) ( ) ( )22
, , , ,

1 12 1 2 1

T T

a t a t b t b t
t t

R R R Rγ γ
γ γ= =

⎡ ⎤ ⎡ ⎤
− = −Δ − −Δ⎢ ⎥ ⎢ ⎥+ +⎣ ⎦ ⎣ ⎦

∑ ∑        (14) 

where ,a tR  and ,b tR  signify the weekly returns for any two alternative investment 
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strategies, and Δ  is the weekly maximum performance fee that an investor would be 

willing to pay to switch from one strategy to another. 

In this paper, we use ordinary least square (OLS) model to represent the static 

investment strategy. On the contrary to the above-mentioned OLS strategy, we use three 

models, GARCH, GJR-GARCH and CARR model to measure the volatilities of individual 

assets. Additionally, in order to capture the time-varying relation among multiple assets, we 

employ the DCC and ADCC model to quantify their correlations and covariances. 

To measure the weekly switching fee ( weeklyΔ ), we find the value of switching fee that 

satisfies5 

( ) ( ) ( ) ( ) ( )

( )

2

2 2
, , , , , ,

1 1 1 1 1 1
2

1 1 1 2 1 2 1

1

T T T T T T

b t b t a t a t b t b t
t t t t t t

weekly

R T R T T R R R R

T

γ γ γ γ γ
γ γ γ γ γ

γ
γ

= = = = = =

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
− ± − − − − −⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ + + + +⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦Δ =

+

∑ ∑ ∑ ∑ ∑ ∑    (15) 

We report our estimates of switching fee annually ( annuallyΔ ) using three different 

values of relative risk aversion (RRA), that is 1γ = , 5γ =  and 10γ = . 

3.3 The ARCH, GARCH and GJR-GARCH Model 

In the Gauss–Markov theorem, it assumes that all error terms have the same variance 

( ( ) 2
iVar ε σ= ), that is homoscedasticity. But in the financial market, it is observed that the 

variance has the phenomenon of volatility clustering which was documented by Mandelbrot. 

Volatility clustering is a pervasive feature in many securities markets, observations of this 

type in financial time series are usually approached by ARCH-type models.  

                                                 
5 See Appendix B 
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Engle (1982) first proposes the Autoregressive Conditional Heteroskedasticity (ARCH) 

model. It the ARCH model, it allows the conditional variance ( th ) to vary over time as a 

function of past information ( 2
t iε − ). After that, Bollerslev (1986) advances the Generalized 

ARCH (GARCH) model based on the ARCH model. The GARCH (p, q) is defined as 

follows, 

( )1,  | ~ 0,t t t t tr N hμ ε ε −= + Ω                         (16) 

2

1 1

q p

t i t i i t j
i j

h hω α ε β− −
= =

= + +∑ ∑                        (17) 

where the equation (16) and (17) are the conditional mean equation and conditional 

variance equation, respectively. 1t−Ω  is the information set at time t-1, ( )0, tN h  shows 

the normal distribution with a mean of zero and a variance of th , ω  is a constant term, 

and 2
t iε −  (ARCH term) is the news about volatility from the lag lengths q period while 

t jh − (GARCH term) is the lag lengths p period’s forecast variance.   

GJR-GARCH was introduced by Glosten, Jaganathan, and Runkle (1993). The 

generalized specification for the conditional variance of GJR-GARCH (p, q, r) is given by,  

2 2

1 1 1

q p r

t i t i i t j k t k t k
i j k

h h Iω α ε β δ ε− − − −
= = =

= + + +∑ ∑ ∑                        

where 
1, 0
0, 0

t
t

t

I
ε
ε
<⎧

= ⎨ ≥⎩
                           (18) 

In the GJR-GARCH model, good news has an impact of iα  while bad news has a great 

effect of i k t kIα δ −+  on the conditional variance. In the GARCH equation, kδ  is restricted to 

zero, i.e. the GARCH model is the special case of the GJR-GARCH model. In the 

GJR-GARCH model, bad news will increase volatility and has asymmetric impact when 

0kδ ≠ . 
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3.4 The Conditional Autoregressive Range (CARR) Model 

Chou (2005) proposed the Conditional Autoregressive Range (CARR) model to estimate the 

volatility of financial assets. The range ( ,i tR ) is a better estimator of standard deviation ( tσ ) 

in statistics and is defined as ( ), , ,log high low
i t e t i t iR P p= . The CARR (p, q) for the range can be 

expressed as follows, 

1, | ~ exp(1, )t t t t tR λ ε ε −= Ω ⋅                             

,
1 1

q p

t i t i j j t j
i j

Rλ ω α β λ− −
= =

= + +∑ ∑                       (19) 

*/c
t t tz r λ= ，where *

t tadjλ λ= × ，
ˆ

adj σ

λ
=                    

where the range tR  is calculated by the difference between logarithm high and low prices 

during a fixed interval. tλ  and λ̂  are the conditional and unconditional mean of the range, 

respectively. tε  is the disturbance term, or the normalized range ( t t tRε λ= ), which is 

assumed to follow the exponential distribution. σ  is the unconditional standard deviation 

for the return series. The ratio of adj  is used to adjust the range ( tλ ) to produce the 

standardized residuals ( ( )/c
t t tz r adj λ= × ).  

3.5 The Dynamic Conditional Correlation (DCC) Model  

The Dynamic Conditional Correlation (DCC) model (Engle 2002a) can be viewed as an 

extension of the Bollerslev (1990) constant conditional correlation (CCC) model. In 

Bollerslev’s CCC model, the covariance matrix tH  for a vector of k asset returns can be 

written as follows, 
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2
11, 1 ,

2
1, ,

t k t

t t t

k t kk t

h h
H D RD

h h

⎡ ⎤
⎢ ⎥= = ⎢ ⎥
⎢ ⎥⎣ ⎦

L

M O M

L

                      (20) 

where R  is the sample correlation matrix and tD  is the k k×  diagonal matrix, a 

diagonal matrix is a square matrix where the entries outside the main diagonal are all zero. 

The diagonal matrix tD  can be defined as,  

{ }
11,

,

,

0

0

t

t ii t

kk t

h
D diag h

h

⎡ ⎤
⎢ ⎥= = ⎢ ⎥
⎢ ⎥⎣ ⎦

L

M O M

L

                     (21) 

,ii th  for the thi  return series on the thi  diagonal are time-varying standard deviations 

generated from univariate GARCH model. ,ii th  is the square root of the estimated 

variance. The following expressions report the covariance matrix tH  of CCC model in 

great detail. 

11, 11 1 11, 11, 1 11,

, 1 , , 1 ,

0 0 0 1 0

0 0 0 1 0

t k t t k t

t t t

kk t k kk kk t kk t k kk t

h h h h
H D RD

h h h h

ρ ρ ρ

ρ ρ ρ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

L L L L L L

M O M M O M M O M M O M M O M M O M

L L L L L L

 

    
2 2

11, 11, , 1 11, 1 ,

2 2
11, , 1 , 1 , ,

t t kk t k t k t

t t t

t kk t k kk t k t kk t

h h h h h
H D RD

h h h h h

ρ

ρ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

L L

M O M M O M

L L

              (22) 

The CCC model estimates the conditional covariance ( tH ) using the constant 

conditional correlation matrix ( R ) and the product of the two conditional standard 

deviations ( tD ). The drawback of the CCC model is that it’s assumption of constant 

conditional correlation is too restrictive and ignores the time-varying correlations. 

Engle (2002a) proposes the DCC model to estimate the covariance matrix of multiple 

asset returns. The main distinction between the DCC model and the CCC model is whether 

the conditional correlation matrix changes over time or not. The DCC model allows tR  to 

be time varying. 
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11, 11, 1 , 11, 11, 1 , 11,

, 1, , , , 1, ,

0 0 0 1 0

0 0 0 1 0

t t k t t t k t t

t t t t

kk t k t kk t kk t kk t k t kk t

h h h h
H D R D

h h h h

ρ ρ ρ

ρ ρ ρ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

L L L L L L

M O M M O M M O M M O M M O M M O M

L L L L L L

   

2 2
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          (23) 

{ } { } { }
11, 11,11, 1 ,1 1
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1, ,, ,
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t t t t
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q q q
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q q q

ρ
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The conditional standardized residual vector tZ  and the conditional standardized residual 

covariance matrix ,t ij tQ q⎡ ⎤= ⎣ ⎦  are expressed as follows, respectively, 

1, ,
T

t t k tZ z z⎡ ⎤= ⎣ ⎦L  

1, 1, 1,/t t tz r h=                              (25) 

where ,i tz  is a standardized residual that has mean zero and variance one for each asset 

return series. 

 ( ) ( )1 1 1+AT T
t t t tQ A B Q Z Z B Qιι − − −= − − +o o o                 (26) 

where ι  is a vector of ones and o  is the Hadamard product of two identically sized 

matrices, which is computed simply by element-by-element multiplication. To put it another 

way, the Hadamard product of two m n×  matrices A and B is an m n×  matrix given by 

( ) ij ijij
A B a b=o . In addition, ijQ q⎡ ⎤= ⎣ ⎦  means the unconditional covariance matrix of 

standardized residuals. 

Q , 1 1
T

t tZ Z− −  and 1tQ −  in equation (26) are all nonnegative despite their time-varying 

attributes. In linear algebra, a real symmetric n n×  matrix is said to be positive 

semi-definite (positive definite) if and only if all its eigenvalues are nonnegative (positive). 
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In our study, if T A Bιι − − , A  and B matrices are all positive semi-definite, then tQ  

will also be positive semi-definite. However, if any one of the matrices of T A Bιι − − , A  

and B  is positive definite, then tQ  will also be positive definite. 

The bivariate case for the time-varying covariance matrix and correlation matrix can be 

expressed as, 

( )11, 12, 1, 1 11, 1 12, 111 12
1, 1 2, 1

21, 22, 2, 1 21, 1 22, 121 22

1t t t t t
t t

t t t t t

q q z q qq q
a b a z z b

q q z q qq q
− − −

− −
− − −

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤
⎡ ⎤= − − + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦

⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 

( ) ( )
( ) ( )

2
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2
21, 22, 21 1, 1 2, 1 21, 1 22 2, 1 22, 1

1 1
1 1

t t t t t t t

t t t t t t t

q q a b q az bq a b q az z bq
q q a b q az z bq a b q az bq

− − − − −

− − − − −

⎡ ⎤− − + + − − + +⎡ ⎤
= ⎢ ⎥⎢ ⎥ − − + + − − + +⎣ ⎦ ⎣ ⎦
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( ) ( )
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12, 2 2
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  (28) 

where [ ] [ ]
( ) ( )

1 2
12 1 2 122 2

1 2

E z z
q E z z

E z E z
ρ= = =  

The DCC model was designed to estimate by two-stage Quasi-Maximum Likelihood 

Estimation (QMLE) to obtain consistent parameter estimates. The log-likelihood can be 

expressed as the sum of the volatility component and the correlation component. 

volatility correlationL L L= +                         (29) 

The log-likelihood function of this estimator can be described as,  

( )( )1

1

1 log 2 log
2

T
T

t t t t
t

L k H r H rπ −

=

= − + +∑  

( )( )1 1 1

1

1 log 2 log
2

T
T

t t t t t t t t
t

k D R D r D R D rπ − − −

=

= − + +∑  

( )( )1

1

1 log 2 2log log
2

T
T

t t t t t
t

k D R Z R Zπ −

=

= − + + +∑  since 1
t t tZ D r−=         (30) 

( )( )1 1 1 1 1

1

1 log 2 2log log
2

T
T T T

t t t t t t t t t t t t t
t

k D r D D r r D D r R Z R Zπ − − − − −

=

= − + + − + +∑  
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( )( )1 1 1

1

1 log 2 2log log
2

T
T T T

t t t t t t t t t t t
t

k D r D D r Z Z R Z R Zπ − − −

=

= − + + − + +∑  

Let the parameters in tD  be denoted θ  and the parameters in tR  be denoted φ . 

The log-likelihood function can be divided into two-stage estimation.  

( ) ( ) ( ), ,volatility correlationL L Lθ φ θ θ φ= +                (31) 

In the first stage, we estimate the volatility term which univariate GARCH models are 

estimated for each residual series. In the second stage, we use residuals which transformed 

by their standard deviation estimated during the first stage to estimate the parameters of the 

dynamic correlation. The former term in equation (31) denotes the volatility part, and the 

latter term is the correlation part. 

( ) ( )( )1 1

1

1 log 2 2log
2

T
T

volatility t t t t t
t

L k D r D D rθ π − −

=

= − + +∑          (32) 

  ( ) ( )1

1

1, log
2

T
T T

correlation t t t t t t
t

L R Z R Z Z Zθ φ −

=

= − + + −∑              (33) 

When the specific GARCH model is fitted, the volatility part of the likelihood function 

is apparently the sum of individual GARCH likelihood functions. It can be demonstrated as, 

( ) ( )
2
,

,
1 1 ,

1 log 2 log
2

T k
i t

volatility i t
t i i t

r
L h

h
π

= =

⎛ ⎞
= − + +⎜ ⎟⎜ ⎟

⎝ ⎠
∑∑              (34) 

To maximize the likelihood function in the first stage, we can find the optimal 

parameter of θ̂ . 

( ){ }ˆ arg  max volatilityLθ θ=                        (35) 

and then take this value of θ̂  as given in the second stage to estimate the maximum value 

of likelihood function and its optimal parameter φ . 

( ){ }ˆmax ,correlationL
φ

θ φ                      (36) 
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3.6 The Asymmetric Dynamic Conditional Correlation (ADCC) Model 

In this paper, we model the conditional correlation matrix tR  with asymmetry following 

Cappiello, Engle, and Sheppard (2006). By using the standardized residuals (
tz ), we are able 

to estimate asymmetric dynamic conditional correlation matrices of the form, 

{ } { } { }
1 1
2 2

t t t tR diag Q Q diag Q− −=                    (37) 

and the asymmetric term (ADCC) setup is,   

( ) ( ) ( )1 1 1 1 1 1+AT T T
t t t t t t tQ A B Q Z Z B Q C m m mιι − − − − − −= − − + + −o o o o        (38) 

where A, B, and C are scalar parameters. ,t ij tQ q⎡ ⎤= ⎣ ⎦  and ijQ q⎡ ⎤= ⎣ ⎦  are the conditional and 

unconditional covariance matrix of standard residual vector ( tZ ). The vector 

[ ]0t t tm Z Z= Ι < o  and 1 T
t tm T m m= ∑ . Hence, conditional correlation 12,tρ  can easily be 

solved immediately. In a bivariate case, the covariance matrix and correlation in the ADCC 

model can be expressed as follows,  
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Ⅳ. Results 

4.1 Data 

In this section, we examine U.S. stock and bond weekly returns and weekly ranges spanning 

the period from January 1, 1990 to April 25, 2008. The data employed for our empirical 

study consist of 956 weekly observations on the Standard & Poor’s 500 Composite Index 

Futures (henceforth S&P 500 futures), and 10-year U.S. Treasury bond Futures (henceforth 

10-year T-bond futures). S&P 500 futures contract was developed by Chicago Mercantile 

Exchange (CME), CME is a financial and commodity derivative exchange based in Chicago. 

The S&P 500 index is a stock market index comprising the 500 large-cap companies 

actively traded in the U.S. stock markets. It is the reason why we choose S&P 500 to 

represent the U.S. stock market. 10-year T-bond futures contract was introduced by Chicago 

Board of Trade (CBOT), T-bond futures contract meets our needs as we seek to manage the 

long-term risk. In this article, we employ futures prices data rather than spot prices data 

because of the short sale constraints of spot market. In order to borrow stock shares in spot 

market, the investors need to find a stock owner willing to lend them. What is more, once an 

investor has a short-sale position by borrowing stock, the recall risk would happen to him at 

any time. Consequently futures contract enables us to avoid short sale constraints.  

We retrieve the raw data of S&P 500 futures and 10-year T-bond futures for the entire 

period from Thomson Datastream financial statistical database. Thomson Datastream 

provides the futures prices on nearest contract and roll over to the second nearest contract 

when the nearest contract approaches maturity. The Treasury bill (henceforth T-bill) interest 

rates provided are supposed to be risk-free. Therefore we use the 3-month T-bill rate to 

substitute for the risk-free rate. The T-bill rate is available in the Federal Reserve Board. 
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In order to measure the economic value of volatility timing, we apply the futures data 

of S&P500 and 10-year T-bond futures as well as the risk-free rate data of T-bill to obtain 

the time-varying portfolio weights, returns and variances using different econometric 

models. 

4.2 Descriptive Statistics 

< Figure 1 is inserted about here > 

Figure 1 shows the graphs for close prices (Panel A), returns (Panel B) and ranges (Panel C) 

of S&P 500 futures and 10-year T-bond futures over the sample period from January 1, 

1990 to April 25, 2008. The data of weekly return on S&P500 futures and 10-year T-bond 

futures are computed by the difference of logarithm close prices on two continuous weeks, 

i.e. ( ), , , 1100 log close close
i t e i t i tr P P −= × . However, the data of weekly range on S&P 500 futures 

and 10-year T-bond futures are defined by the difference of the high and low prices in the 

same week, i.e., ( ), , ,100 log high low
i t e i t i tR P P= × . It is often reported as a percentage (%) by 

multiplying the above calculation by 100. In each panel of Figure 1, the vertical axis 

represents the weekly close price, weekly return and weekly range respectively, while the 

horizontal axis represents the sample period from 1990 to 2008. Panel B (weekly returns) 

and Panel C (weekly ranges) show the phenomenon of volatility clustering, that is to say, 

large changes of stock price tend to be followed by large changes, of either sign, and small 

changes of stock price tend to be followed by small changes. Panel D reports the weekly 

open interests and trading volumes of S&P 500 futures and 10-year T-bond futures. 

In the futures market, there is no assurance that a liquid market exists for offsetting a 

futures contract all the time. It is obvious that market liquidity exists in the futures market 

of S&P 500 and 10-year T-bond because trading volumes remain stable consistently and 
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open interests increase gradually from 1990 to 2008.  The descriptive statistics for the 

weekly return and range data of S&P 500 and T-bond are given in Table 1. 

< Table 1 is inserted about here >  

Table 1 shows the univariate statistics for the time series data over the sample period 

1990-2008. The annualized value of mean and standard deviation are computed by 

Mean 52×  and Std. Dev 52× , therefore, the annualized values of mean (μ ) and standard 

deviation (σ ) of S&P 500 futures (10-year T-bond futures) are 7.466% (1.414%) and 

15.350% (6.120%). It is indicated that the weekly return data of S&P 500 futures is more 

volatile than 10-year T-bond futures by the individual standard deviations. But if we take 

coefficient of variation (CV σ μ= ) into consideration, the CV of 10-year T-bond futures is 

4.328 ( 6.120% /1.414%Tbond Tbond TbondCV σ μ= = ) greater than the CV of S&P 500 futures 

( 500 500 500 15.350% / 7.466% 2.056SP SP SPCV σ μ= = = ). CV is a useful statistic for comparing 

the degree of variation among any time series data, even if the expected return are different 

from each other. Accordingly, the weekly return data of 10-year T-bond futures becomes 

more volatile if we take CV into account. That is to say, the lower ratio of standard 

deviation over expected return, the better our risk-return tradeoff. The expected weekly 

range (1.278%) of the 10-year T-bond futures prices is smaller than that (3.141%) of the 

S&P 500 futures prices. It is reasonable because the range is a proxy for measuring 

volatility. 

For higher moments of the return and range data, the weekly return data of S&P 500 

futures and 10-year T-bond futures are negative skewness ( 33 2
3 2 3 <0S κ κ μ σ= = ). In 

another word, the distribution of return is concentrated on the right of the figure and the left 

tail is longer. In addition, all the data of weekly return and range are positive excess kurtosis, 
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the excess kurtosis statistic is defined as 42
4 2 43 3K κ κ μ σ= − = − . The distribution of 

positive excess kurtosis has fatter tail characteristic with a higher probability of big positive 

and negative returns than the normal distribution. The Jarque-Bera (JB) statistic is used to 

test the null of whether the return and range data are normally distributed, based on the 

sample skewness and kurtosis. It is obvious that both data of weekly return and range reject 

the null hypothesis. In short, the sample moments for the return and range series of S&P 

500 futures and the 10-year T-bond futures indicate sample distribution with fat tail and 

sharp peaks at the center compared to the normal distribution. 

In the Panel B and Panel C of Table 1, it represents the unconditional covariance and 

correlation matrices between the time series date of S&P 500 futures and 10-year T-bond 

futures over the period from 1990 to 2008. The unconditional covariance matrices of return 

and range data are shown in Panel B. In the Panel C, it reports the unconditional correlation 

matrices between the S&P 500 futures and 10-year T-bond futures. The unconditional 

correlation coefficients of weekly return and range data between S&P 500 futures and 

10-year T-bond futures are 0.016 and 0.114, respectively. Although the unconditional 

correlations are small, it does not imply their relations are very week. In our latter analysis, 

we will show the dynamic relationship of S&P 500 futures and 10-year T-bond futures. 

4.3 Empirical Analysis 

In order to deriving the optimal portfolio of two risky and risk-free assets, we employ the 

time-varying volatility models to estimate the conditional covariance and correlation. A 

static model does not specify the volatility over time, while a dynamic model does. 

Dynamic models are typically represented with difference equations. In this paper, we use 

ordinary least square (OLS) model to stand for the static model, and the dynamic models are 

represented by GARCH-DCC, GJR-GARCH-DCC, CARR-DCC, GARCH-ADCC, 
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GJR-GARCH-ADCC, and CARR-ADCC. The performance of dynamic model in 

comparison with that of static model is the main purpose in our study. 

< Table 2 is inserted about here > 

In the Table 2, it is documented the empirical results of the estimation with the 

GARCH-DCC, CARR-DCC, GARCH-ADCC, and CARR-ADCC model over the sample 

period from 1990 to 2008. We divide the table into two parts corresponding to the two steps 

in the DCC and ADCC estimation. We use GARCH and CARR model in the first step so 

that we can obtain the parameters fitted for DCC and ADCC model. In the first stage of 

Table 1 (Panel A), we can utilize the GARCH and CARR model fitted by return and range 

data with individual assets for attaining standardized residuals. Then, these standardized 

residual series can be brought into the second stage for dynamic conditional correlation 

(DCC) and asymmetric dynamic conditional correlation (ADCC) estimation. Panel B of 

Table 2 shows the estimated parameters of DCC and ADCC under the quasi-maximum 

likelihood estimation (QMLE). 

< Table 3 is inserted about here >  

Table 3 reports the estimation results of GJR-GARCH-DCC and GJR-GARCH-ADCC 

model using the weekly data of S&P 500 futures and 10-year T-bond futures. The estimation 

of GJR-GARCH-DCC and GJR-GARCH-ADCC model is similar to GARCH-DCC and 

GARCH-ADCC. The difference between GJR-GARCH and GARCH model is the measure 

of variance equation. The GJR-GARCH model proposed by Glosten, Jagannathan and 

Runkle (1993) incorporates the asymmetric effect of good news and bad news in the 

GARCH process on duration. 



- 26 - 

< Figure 2 is inserted about here > 

Figure 2 provides the dynamic volatility of the S&P 500 futures and the 10-year 

T-bond futures based on the GARCH, GJR-GARCH and CARR model. Panel A (GARCH 

fitted), Panel B (GJR-CARCH fitted), and Panel C (CARR fitted) show the volatility 

estimates for the S&P 500 futures are abnormally high (solid line) in several periods. The 

East Asian Financial Crisis was beginning in 1997 followed by Russian financial crisis in 

1998. Although it initially happened in Asian, the impact of financial crisis also had put 

pressure on the S&P 500 futures market in the United States. Moreover, the Dot-Com 

Bubble Crisis (Internet Bubble Crisis) took place in 2000 which led to the collapse in the 

technology industry as well as the overall financial market. After the collapse of the 

Dot-Com Bubble, there are terrorist attacks in September 11, 2001. The attacks had a great 

impact on the economy of U.S. and financial markets, the major stock exchanges like New 

York Stock Exchange (NYSE), American Stock Exchange (AMEX), and NASDAQ did not 

open on September 11 and remained closed until September 17. Besides, the stock market 

downturn was the dramatic decline in stock prices during 2002. The downturn can be 

regarded as sharp correction in the stock price after a decade-long bull market. In the 

meantime, a wave of accounting scandals became known to the public in the U.S., including 

Enron, Arthur Andersen, and WorldCom. In the third quarter of 2007, the U.S. subprime 

mortgage financial crisis had a great amount of impact on financial market of U.S. as well 

as other countries. The influence of subprime crisis is still ongoing, it seems like investors 

in the stock market are unsure of where to go with the money. 

< Figure 3 is inserted about here >  

Figure 3 reports the correlation and covariance estimates between S&P 500 futures and 

10-year T-bond futures for the return-based (GARCH) and range-based (CARR) DCC and 
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ADCC model as well as the DCC and ADCC with GJR-GARCH model.  

In Panel A, it appears that the dynamic conditional correlations become negative 

( 12, 0tρ < ) at the end of 1997 no matter what the dynamic model we apply. In Panel B, the 

time-varying correlations characteristic of GARCH-ADCC and CARR-ADCC are similar to 

the above-mentioned case in Panel A. Correlation is expressed by numbers ranging from -1 

to +1. To eliminate diversifiable portfolio risk completely, we needs an intra-portfolio 

correlation approaches perfect inverse correlation ( 12, 1tρ = − ). Therefore, diversification 

minimizes the risk of our portfolio well because S&P 500 futures prices have very low 

dynamic correlations with 10-year T-bond futures prices after the end of 1997, but it does 

not necessarily lower our expected return of portfolio. 

Here we assume that investors use short-horizon mean-variance strategies to create 

portfolios from stock market (S&P 500 futures), bond market (10-year T-bond futures) and 

risk-free asset (T-bill rates). We construct the static portfolio (built by ordinary least square, 

OLS) using the unconditional mean ( iμ ), variance ( 2
iσ ) and covariance ( ijσ ). Under the 

minimum variance framework, the weights of the portfolio are computed by the given target 

return, expected return, and conditional covariance matrices estimated by the GARCH-DCC 

and GARCH-ADCC, the GJR-GARCH-DCC and GJR-GARCH-ADCC, and the 

CARR-DCC and CARR-ADCC. Consequently, we can compare the economic value of the 

volatility models on 12 different target annualized return (5%~16%, 1% in an interval). 

< Table 4 is inserted about here > 

Table 4 reports how the economic values vary with the different target returns and the 

different constant relative risk aversions (CRRA). Panel A shows the annualized expected 

returns (μ), volatilities (σ) and Sharpe ratios (Sp) of the portfolios estimated from the 
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OLS, GARCH-DCC, and CARR-DCC model. For a quick look, the annualized Sharpe 

ratio (reward-to-variability ratio) calculated from the CARR-DCC (0.640) and 

GARCH-DCC (0.588) are higher than the OLS model (0.498). The advantages of using 

dynamic conditional correlation model to construct the portfolio are their better 

performance and smaller risk. Panel B shows the average annualized performance fees (△r) 

among the three models that a risk-averse investor would be willing to pay to switch from 

the static to the dynamic forecasting models. The values of CRRA are set to 1, 5, and 10, 

respectively. Roughly speaking, the switching fees raise consistently with higher target 

returns and higher constant relative risk aversions. Besides, Panel B also reports the 

performance fees if an investor change from the GARCH-DCC to the CARR-DCC model. 

Positive values for all cases show that CARR-DCC model dominates the GARCH-DCC 

model in forecasting conditional variances and correlations. 

< Table 5 is inserted about here > 

< Table 6 is inserted about here > 

Table 5 gives a representation of the portfolio performance and switching fees that an 

investor would be willing to pay to switch from the symmetric GARCH-DCC and 

CARR-DCC to the asymmetric GARCH-DCC and CARR-DCC forecasting model. The 

results of GJR-GARCH-DCC and GJR-GARCH-ADCC model are displayed in Table 6. 

< Table 7 is inserted about here > 

Table 7 shows the incremental values of time-varying volatility among the OLS, 

GJR-GARCH-DCC, GJR-GARCH-ADCC, GARCH-DCC, CARR-DCC, GARCH-ADCC, 

and CARR-ADCC model using 5%, 10% and 16% target return respectively. In this paper, 



- 29 - 

we propose the asymmetric effect on the DCC model for the better performance. Panel A 

shows the volatility value with 5% target return. In the Panel A, the CARR-ADCC model 

has no superior as a dynamic forecasting model though there is no significant difference 

between CARR-DCC and CARR-ADCC model. Panel B and Panel C with the target return 

of 10% and 16% respectively show the opposite results of incremental value of volatility 

timing on model selection. In the Panel B as well as Panel C, the CARR-fitted models are 

better than the GARCH-fitted models, and the CARR-DCC is superior to the CARR-ADCC 

model. 

<Figure 4 is inserted about here> 

Figure 4 plots the weights of minimum volatility portfolio derived from static and 

dynamic models while setting the target return equal to 10%. The charts from Panel A to 

Panel F show the dynamic portfolio weights that minimize conditional volatility. In addition, 

Panel G has the constant portfolio weights for cash (-0.854), stock (1.360), and bond 

(0.494). 
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Ⅴ. Conclusion 

In this paper, we extend the DCC model of Engle (2002a) with news impact in the 

conditional volatility and asymmetries in the dynamic correlation. We use three volatility 

models, GARCH, GJR-GARCH, and CARR model to go with the dynamic correlation 

models, DCC (symmetry) and ADCC (asymmetry). Therefore, we apply S&P 500 futures 

and 10-year T-bond futures to investigate whether asymmetries exist in conditional 

variances and correlations in the stock market and bond market of the U.S. The conditional 

volatilities of equity returns exhibit the asymmetric effects in the GJR-GARCH model while 

the little is found for bond returns. The performance of GJR-GARCH model is just better 

than OLS model, worse than the other dynamic models. We refer unfavorable performance 

in the GJR-GARCH model to its asymmetric effect in the stock return. Because of bad news 

has a great effect on the conditional variance that will increase the portfolio weights of 

10-year T-bond. Furthermore, we examine the dynamic correlations of the S&P 500 futures 

and T-bond futures with DCC and ADCC model. Under consideration of asymmetric effect 

on conditional correlation, we find that the CARR-DCC and CARR-ADCC models are 

superior in the different target returns and risk aversions.  

From the viewpoints of the investors, the above-mentioned models which mix rigorous 

mathematics and miraculous statistics are hard to understand for investors. The investors 

prefer the simplicity of investment strategy to the complexity of quantitative model. For that 

reason, the investors may choose the best quantitative model to allocate their assets and 

optimize their portfolio. In this paper, the investors may choose the CARR models as their 

quantitative methods in investment management since the CARR models lead to the better 

economic value of volatility. What is more, the economic value of volatility (switching fee) 

in this article is similar to “Two and Twenty” in hedge fund, this phrase indicates hedge 
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fund mangers charge a 2% of total asset value as a management fee, and an additional 20% 

of profits earned. 
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Appendix A: 
Proof of Optimal Portfolio Weights in a Minimum Variance Framework 
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Appendix B: 
Solution for Switching Fee 
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Table 1: Descriptive Statistics for Weekly Returns and Weekly Ranges Data of S&P 500 

Index Futures and T-bond Futures, 1990/01/01-2008/04/25 

The table reports the descriptive statistics for the data of weekly returns and ranges on S&P 
500 index futures and T-bond futures used in this article. There are 955 weekly sample 
observations ranging from January 5, 1990 to April 25, 2008. All futures data are extracted 
form Thomson Datastream. 

Panel A reports the sample moments of the data from 1990 to 2008. The data of weekly return 
on S&P 500 index futures and 10-year T-Bond futures are computed by 

( )1100 log close close
e t tP P−× . However, the  data of weekly range on S&P 500 index futures and 

10-Year T-bond futures are computed by ( )100 log high low
e t tP P× . The data below are in weekly 

percentage unit, i.e., %. 

The annualized value of mean and standard deviation are computed by Mean 52×  and 
Std. Dev 52× , therefore, the annualized values of mean and standard deviation of S&P 500 
index futures (10-Year T-bond futures) are 7.466% (1.414%) and 15.350% (6.120%).  

The weekly return data of S&P 500 futures and 10-year T-bond futures are negative skewness 
( 33 2

3 2 3 <0S κ κ μ σ= = ). In another word, the distribution of return is concentrated on the 
right of the figure and the left tail is longer. In addition, all the data of weekly return and range 
are positive excess kurtosis, the excess kurtosis statistic is defined as 

42
4 2 43 3K κ κ μ σ= − = − . 

The Jarque-Bera statistic is used to test the null of whether the return and range data are 
unconditional normally distributed, based on the sample skewness and kurtosis. The 
Jarque-Bera is defined as ( )2 2 26 1 4 ~ (2)Jarque Bera n S K χ− = × + × . 

Panel B and Panel C show the covariance and correlation matrices of S&P 500 futures and 
T-bond futures. 

 
Panel A：S&P 500 Index Futures and 10-Year T-Bond Futures Weekly Data 

 S&P 500 Index 10 Year Treasury Bond 
 Weekly Return (%)  Weekly Range (%) Weekly Return (%)  Weekly Range (%)

 Mean 0.144  3.141 0.027  1.278 

 Median 0.235  2.661 0.056  1.186 

 Maximum 8.124  13.556 2.462  4.552 

 Minimum -12.395  0.690 -4.050  0.301 

 Std. Dev. 2.129  1.730 0.849  0.537 

 Skewness -0.449  1.663 -0.456  1.275 

 Kurtosis 5.735  6.964 4.058  5.880 

 Jarque-Bera 329.822  1065.099 77.625  588.804 

 Probability (0.000)  (0.000) (0.000)  (0.000) 
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Panel B: Unconditional Covariance Matrices, 1990/01/01-2008/04/25 

 Weekly Return   Weekly Range 
 S&P 500 T-bond   S&P 500 T-bond 

S&P 500 4.526 0.029  S&P 500 2.990 0.106 
T-bond 0.029 0.720  T-bond 0.106 0.288 

       
Panel C: Unconditional Correlation Matrices, 1990/01/01-2008/04/25 
 Weekly Return   Weekly Range 
 S&P 500 T-bond   S&P 500 T-bond 

S&P 500 1 0.016  S&P 500 1 0.114 
T-bond 0.016 1  T-bond 0.114 1 
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Table 2: Estimation Results of Bivariate Return-based (GARCH) and Range-based 
(CARR) DCC and ADCC Model Using Weekly S&P 500 Index Futures and 10-Year 
T-bond Futures, 1990-2008. 

Step 1 of GARCH (1,1) and CARR (1,1) Estimation 

GARCH Model:    2
, , 1 , 1 , 1 ,, | ~ (0, )i t i i i t i i t i t t i th h N hω α ε β ε− − −= + + Ι  1,  2i =  

CARR Model:     , , 1 , 1 , 1, | ~ exp(1; )i t i i i t i i t i t tλ ω α β λ− − −= + ℜ + ℜ Ι ⋅  1,  2i =  
where ,i tε  and ,i tℜ  are the residual and range variable, respectively. 

Step 2 of DCC and ADCC Estimation: 
Dynamic Conditional Correlations:  

( ) ( )1 1 1+AT T
t t t tQ A B Q Z Z B Qιι − − −= − − +o o o  

2
11, 12, 11, 1 12, 112 1, 1 1, 1 2, 1

2
21, 22, 21, 1 22, 112 2, 1 1, 1 2, 1

1
(1 )

1
t t t tt t t

t t t tt t t

q q q qq z z z
a b a b

q q q qq z z z
− −− − −

− −− − −

⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤
= − − + +⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥

⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦
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( ) ( )

12, 12 1, 1 2, 1 12, 1
12, 2 2

11, 22, 11 1, 1 11, 1 22 2, 1 22, 1

1

1 1
t t t t

t
t t t t t t

q a b q a bq
q q a b q a bq a b q a bq

ε ε
ρ

ε ε
− − −

− − − −

− − + +
= =

⎡ ⎤ ⎡ ⎤− − + + − − + +⎣ ⎦ ⎣ ⎦

 

Asymmetric Dynamic Conditional Correlations: 
( ) ( ) ( )1 1 1 1 1 1+AT T T

t t t t t t tQ A B Q Z Z B Q C m m mιι − − − − − −= − − + + −o o o o  
2

11, 12, 11, 1 12, 112 1, 1 1, 1 2, 1
2
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where tZ  is the standard residual vector which is standardized by the volatility of 

GARCH and CARR model. ijQ q⎡ ⎤= ⎣ ⎦  and ,t ij tQ q⎡ ⎤= ⎣ ⎦  are the unconditional and 

conditional covariance matrix of tZ . The vector [ ]0t t tm Z Z= Ι < o  and 

1 T
t tm T m m= ∑ . Hence, conditional correlation 12,tρ  can easily be solved 

immediately. Panel A is the first-step estimation of the GARCH (1,1) and CARR 

(1,1) model. The results of estimation using GARCH and CARR models for S&P 

500 Index futures and 10-year T-bond futures are displayed below. ( )12Q  is the 

Ljung-Box Q statistic with 12 lags for the autocorrelation of time series data. Panel 

B is the second-step estimation of the DCC model. The values presented in 

parentheses are t-ratios for the coefficients and p-values for ( )12Q . 
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Panel A: Step 1 of DCC Estimation 
Volatilities Estimation of GARCH (Fitted by Return) and CARR (Fitted by Range)

 S&P 500 Index Futures 10 Year T-bond Futures 
 GARCH(1,1) CARR(1,1) GARCH(1,1) CARR(1,1) 

ω̂  0.028 
(1.395) 

0.119 
   (3.448) *** 

0.018 
(1.558) 

0.048 
   (2.727) *** 

α̂  0.058 
   (4.125)*** 

0.240 
   (9.578) *** 

0.048 
  (2.219) ** 

0.145 
   (6.051) *** 

β̂  
0.937 

   (68.053) *** 
0.722 

   (25.100) ***
0.928 

   (27.687) ***
0.818 

   (25.484) ***

( )12Q  27.373 
(0.007) 

9.1265 
(0.692) 

17.181 
(0.143) 

22.991 
(0.028) 

Panel B: Step 2 of DCC and ADCC Estimation 
Correlation Estimation of Return-based and Range-based DCC and ADCC Models 

 S&P500 Index Futures and 10 Year T-bond Futures 
 GARCH-DCC GARCH-ADCC CARR-DCC CARR-ADCC 
 

â  
0.050 

   (4.794) *** 
0.054 

   (4.670)***   
0.056 

   (5.146)*** 
0.056 

   (5.043)*** 

b̂  
0.938 

   (63.864) *** 
0.933 

   (57.751)*** 
0.938 

   (67.554)*** 
0.938 

   (65.538)***

ĉ   0.010 
(0.906)  -0.001 

(-0.070) 

Note: *** and ** represent significance at the 1% and 5% levels, respectively. 
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Table 3: Estimation Results of Bivariate Return-based DCC and ADCC Model with 
Asymmetry in Conditional Variance (GJR-GARCH) Using Weekly S&P 500 Index 
Futures and 10-Year T-bond Futures, 1990-2008 

Step 1 of GJR-GARCH (1,1,1) Estimation: 
GJR-GARCH Model:  

2 2
, , 1 , 1 1 , 1 , 1 ,, | ~ (0, )i t i i i t i i t t i t i t t i th h I N hω α ε β δ ε ε− − − − −= + + + Ι  1,  2i =  

where ,i tε  is the residual variable 

Step 2 of GJR-GARCH-DCC and GJR-GARCH-ADCC Estimation: 
GJR-GARCH-Dynamic Conditional Correlations: 

( ) ( )1 1 1+AT T
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GJR-GARCH-Asymmetric Dynamic Conditional Correlations: 
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where tZ  is the standard residual vector which is standardized by the volatility of 

GARCH model. ijQ q⎡ ⎤= ⎣ ⎦  and ,t ij tQ q⎡ ⎤= ⎣ ⎦  are the unconditional and conditional 

covariance matrix of tZ . The vector [ ]0t t tm Z Z= Ι < o  and 1 T
t tm T m m= ∑ . 

Hence, conditional correlation 12,tρ  can easily be solved immediately. Panel A is 

the first-step estimation of the GJR-GARCH-DCC and GJR-GARCH-ADCC 

model. The results of estimation using GJR-GARCH model for S&P 500 Index 

futures and 10 year T-bond futures are displayed below. ( )12Q  is the Ljung-Box Q 

statistic with 12 lags for the autocorrelation of time series data. Panel B is the 

second-step estimation of the GJR-GARCH-DCC and GJR-GARCH-ADCC model. 

The values presented in parentheses are t-ratios for the coefficients and p-values for 

( )12Q . 



- 42 - 

Panel A: Step 1 of GJR-GARCH Estimation 
Volatilities Estimation of GJR-GARCH(1,1,1) 

 S&P 500 Index Futures 10 Year T-bond Futures 
 GJR-GARCH(1,1,1) GJR-GARCH(1,1,1) 

ω̂  0.086 
   (2.889)*** 

0.012 
(1.453) 

α̂  0.026 
(1.237) 

0.060 
(1.826) 

δ̂  
0.121 

   (3.287)*** 
-0.026 

(-0.779) 

β̂  0.900 
   (48.046)*** 

0.938 
   (33.530)*** 

( )12Q  27.634 
(0.006) 

16.910 
(0.153) 

Panel B: Step 2 of GJR-DCC and GJR-ADCC Estimation 
Correlation Estimation of GJR-DCC and GJR-ADCC Models 

 S&P500 Index Futures and 10 Year T-bond Futures 
 GJR-DCC GJR-ADCC 

â  0.053 
   (4.727)*** 

0.053 
   (4.636)*** 

b̂  
0.933 

   (58.989)*** 
0.933 

   (57.780)*** 

ĉ  0.001 
(0.132) 

Note: *** and ** represent significance at the 1% and 5% levels, respectively. 
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Table 4: Comparison of the Volatility Values of Timing in the Minimum Variance 
Strategy Using Different Target Return in Symmetric Models, 1990-2008 

This table reports the annualized expected returns (μ), volatility (σ), Sharpe rations (Sp), and 
switching fees ( rΔ ) of OLS, GARCH-DCC, and CARR-DCC model with different target 
returns. The target returns are from 5 percent to 16 percent annually.  Panel A shows the 
annualized means (μ), and volatility (σ) for each investment strategy. The estimated Sharpe 
ratios (Sp) of the OLS, GARCH-DCC, and CARR-DCC model are 0.498, 0.588, and 0.640, 
respectively. Panel B shows the average annualized switching fees (Δγ) with the varied 
constant relative risk aversion γ. 

 Panel A: Means, Volatilities and Sharpe Ratios of Optimal Portfolio 
 OLS GARCH-DCC CARR-DCC 

Target Return (%) μ σ Sp μ σ Sp μ σ Sp 
5 5.000 1.740 0.498 5.102 1.647 0.588 5.190 1.652 0.640
6 6.000 3.749 0.498 6.220 3.550 0.588 6.410 3.559 0.640
7 7.000 5.759 0.498 7.338 5.452 0.588 7.630 5.466 0.640
8 8.000 7.768 0.498 8.456 7.354 0.588 8.850 7.373 0.640
9 9.000 9.778 0.498 9.574 9.257 0.588 10.070 9.280 0.640
10 10.000 11.787 0.498 10.692 11.159 0.588 11.290 11.187 0.640
11 11.000 13.796 0.498 11.810 13.061 0.588 12.510 13.094 0.640
12 12.000 15.806 0.498 12.928 14.964 0.588 13.730 15.002 0.640
13 13.000 17.815 0.498 14.045 16.866 0.588 14.950 16.909 0.640
14 14.000 19.824 0.498 15.163 18.768 0.588 16.170 18.816 0.640
15 15.000 21.834 0.498 16.281 20.671 0.588 17.390 20.723 0.640
16 16.000 23.843 0.498 17.399 22.573 0.588 18.610 22.630 0.640
 Panel B: Switching Fees with Different Relative Risk Aversions 
 OLS to GARCH-DCC OLS to CARR-DCC GARCH to CARR-DCC

Target Return (%) 1Δ  5Δ  10Δ  1Δ  5Δ  10Δ  1Δ  5Δ  10Δ
5 0.175 0.227 0.240 0.292 0.365 0.383 0.117 0.138 0.143
6 0.561 0.810 0.869 0.886 1.232 1.314 0.325 0.422 0.445
7 1.148 1.744 1.885 1.759 2.583 2.777 0.611 0.839 0.892
8 1.939 3.033 3.291 2.915 4.416 4.766 0.976 1.383 1.475
9 2.938 4.674 5.080 4.354 6.715 7.257 1.416 2.041 2.177

10 4.143 6.658 7.238 6.075 9.455 10.217 1.932 2.797 2.979
11 5.556 8.969 9.744 8.073 12.605 13.603 2.517 3.636 3.859
12 7.174 11.588 12.572 10.341 16.128 17.371 3.167 4.54 4.799
13 8.993 14.494 15.695 12.872 19.985 21.474 3.879 5.491 5.779
14 11.010 17.663 19.083 15.655 24.139 25.868 4.645 6.476 6.785
15 13.219 21.070 22.708 18.680 28.554 30.516 5.461 7.484 7.808
16 15.615 24.692 26.543 21.933 33.198 35.381 6.318 8.506 8.838
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Table 5: Comparison of the Volatility Values of Timing in the Minimum Variance 
Strategy Using Different Target Return in Asymmetric Models, 1990-2008 

This table reports the annualized expected returns (μ), volatility (σ), Sharpe rations (Sp), 
and switching fees ( rΔ ) of OLS, GARCH-ADCC, and CARR-ADCC model with different 
target returns. The target returns are from 5 percent to 16 percent annually.  Panel A shows 
the annualized means (μ) and volatility (σ) for each investment strategy. The estimated 
Sharpe ratios (Sp) of the OLS, GARCH-ADCC, and CARR-ADCC model are 0.498, 0.590, 
and 0.640, respectively. Panel B shows the average annualized switching fees (Δγ) with the 
varied constant relative risk aversion γ. 

 Panel A: Means, Volatilities and Sharpe Ratios of Optimal Portfolio 
 OLS GARCH-ADCC CARR-ADCC 

Target Return (%) μ σ Sp μ σ Sp μ σ Sp 
5 5.000 1.740 0.498 5.099 1.634 0.590 5.191 1.652 0.640
6 6.000 3.749 0.498 6.213 3.521 0.590 6.412 3.560 0.640
7 7.000 5.759 0.498 7.327 5.408 0.590 7.633 5.469 0.640
8 8.000 7.768 0.498 8.441 7.294 0.590 8.853 7.377 0.640
9 9.000 9.778 0.498 9.555 9.181 0.590 10.074 9.285 0.640
10 10.000 11.787 0.498 10.669 11.068 0.590 11.295 11.193 0.640
11 11.000 13.796 0.498 11.783 12.955 0.590 12.516 13.101 0.640
12 12.000 15.806 0.498 12.897 14.842 0.590 13.736 15.009 0.640
13 13.000 17.815 0.498 14.011 16.728 0.590 14.957 16.917 0.640
14 14.000 19.824 0.498 15.125 18.615 0.590 16.178 18.825 0.640
15 15.000 21.834 0.498 16.239 20.502 0.590 17.399 20.733 0.640
16 16.000 23.843 0.498 17.353 22.389 0.590 18.620 22.641 0.640
 Panel B: Switching Fees with Different Relative Risk Aversions 
 OLS to Return ADCC OLS to GARCH-ADCC GARCH to CARR-ADCC

Target Return (%) 1Δ  5Δ  10Δ  1Δ  5Δ  10Δ  1Δ  5Δ  10Δ  
5 0.172 0.225 0.238 0.293 0.366 0.383 0.121 0.141 0.145
6 0.557 0.808 0.868 0.886 1.232 1.314 0.329 0.424 0.446
7 1.144 1.746 1.889 1.760 2.583 2.777 0.616 0.837 0.888
8 1.939 3.042 3.303 2.915 4.415 4.764 0.976 1.373 1.461
9 2.941 4.694 5.103 4.354 6.712 7.254 1.413 2.018 2.151

10 4.153 6.690 7.275 6.074 9.451 10.211 1.921 2.761 2.936
11 5.574 9.016 9.797 8.070 12.598 13.595 2.496 3.582 3.798
12 7.202 11.652 12.643 10.337 16.118 17.360 3.135 4.466 4.717
13 9.032 14.576 15.784 12.866 19.972 21.460 3.834 5.396 5.676
14 11.062 17.764 19.192 15.647 24.123 25.852 4.585 6.359 6.660
15 13.286 21.191 22.838 18.670 28.536 30.497 5.384 7.345 7.659
16 15.697 24.833 26.694 21.921 33.177 35.358 6.224 8.344 8.664
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Table 6: Comparison of the Volatility Values of Timing in the Minimum Variance 
Strategy Using Different Target Return in Asymmetric Models, 1990-2008 

This table reports the annualized expected returns (μ), volatility (σ), Sharpe rations (Sp), 
and switching fees ( rΔ ) of OLS, GJR-GARCH-DCC, and GJR-GARCH-ADCC model with 
different target returns. The target returns are from 5 percent to 16 percent annually.  Panel A 
shows the annualized means (μ) and volatility (σ) for each investment strategy. The 
estimated Sharpe ratios (Sp) of the OLS, GJR-GARCH-DCC, and GJR-GARCH-DCC model 
are 0.498, 0.556, and 0.556, respectively. Panel B shows the average annualized switching 
fees (Δγ) with the varied constant relative risk aversion γ. 

 Panel A: Means, Volatilities and Sharpe Ratios of Optimal Portfolio
 OLS GJR-DCC GJR-ADCC 

Target Return (%) μ σ Sp μ σ Sp μ σ Sp 
5 5.000 1.740 0.498 5.045 1.640 0.556 5.045 1.639 0.556
6 6.000 3.749 0.498 6.098 3.534 0.556 6.097 3.531 0.556
7 7.000 5.759 0.498 7.150 5.428 0.556 7.149 5.423 0.556
8 8.000 7.768 0.498 8.203 7.322 0.556 8.200 7.315 0.556
9 9.000 9.778 0.498 9.255 9.216 0.556 9.252 9.207 0.556
10 10.000 11.787 0.498 10.308 11.110 0.556 10.304 11.099 0.556
11 11.000 13.796 0.498 11.360 13.004 0.556 11.356 12.991 0.556
12 12.000 15.806 0.498 12.412 14.898 0.556 12.408 14.883 0.556
13 13.000 17.815 0.498 13.465 16.792 0.556 13.460 16.775 0.556
14 14.000 19.824 0.498 14.517 18.687 0.556 14.512 18.667 0.556
15 15.000 21.834 0.498 15.570 20.581 0.556 15.563 20.559 0.556
16 16.000 23.843 0.498 16.622 22.475 0.556 16.615 22.451 0.556
 Panel B: Switching Fees with Different Relative Risk Aversions 
 OLS to GJR DCC OLS to GJR ADCC GJR DCC to ADCC

Target Return (%) 1Δ  5Δ  10Δ  1Δ  5Δ  10Δ  1Δ  5Δ  10Δ
5 0.116 0.167 0.179 0.116 0.167 0.179 0.000 0.000 0.000
6 0.428 0.670 0.728 0.428 0.670 0.728 0.000 0.000 0.000
7 0.936 1.515 1.653 0.936 1.516 1.653 0.000 0.001 0.000
8 1.643 2.706 2.957 1.643 2.707 2.959 0.000 0.001 0.002
9 2.551 4.240 4.635 2.551 4.242 4.638 0.000 0.002 0.003

10 3.660 6.108 6.674 3.661 6.112 6.679 0.001 0.004 0.005
11 4.971 8.296 9.053 4.973 8.303 9.061 0.002 0.007 0.008
12 6.481 10.788 11.750 6.485 10.797 11.760 0.004 0.009 0.010
13 8.189 13.561 14.737 8.194 13.572 14.750 0.005 0.011 0.013
14 10.089 16.593 17.987 10.097 16.607 18.003 0.008 0.014 0.016
15 12.178 19.862 21.472 12.187 19.879 21.491 0.009 0.017 0.019
16 14.450 23.344 25.167 14.461 23.364 25.188 0.011 0.020 0.021
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Table 7: Comparison of the Incremental Volatility Values of Timing in the Minimum Variance Strategy among the OLS, GJR-DCC, 
GJR-ADCC, Return-based DCC, Range-based DCC, Return-based ADCC, and Range-based ADCC model using 5%, 10% and 16% Target 
Return respectively, 1990-2008.  
This table reports the incremental time-varying values of volatility. In this paper, we propose the asymmetric effect on the DCC model for better 
performance. Panel A shows the volatility value with 5% target return. In Panel A, the range ADCC model has no superior as a dynamic forecasting 
model though there is no significant difference between range DCC and range ADCC model. Panel B and Panel C with target return of 10% and 
15% respectively show the opposite results of incremental value of volatility on model selection. In Panel B as well as in Panel C, the return-based 
ADCC is better than the return-based DCC model, and the range-based DCC is superior to the range ADCC model. 

Panel A: Incremental Switching Fees with Target Return 5% 

 OLS GJR-DCC GJR-ADCC GARCH-ADCC GARCH-DCC CARR-DCC CARR-ADCC 
CRRA 1Δ 5Δ  10Δ  1Δ 5Δ 10Δ 1Δ 5Δ 10Δ 1Δ 5Δ  10Δ 1Δ 5Δ 10Δ 1Δ 5Δ 10Δ 1Δ 5Δ  10Δ  

OLS 0.000 0.000 0.000 0.116 0.167 0.179 0.116 0.167 0.179 0.172 0.225 0.238 0.175 0.227 0.240 0.292 0.365 0.383 0.293 0.366 0.383 

GJR-DCC    0.000 0.000 0.000 0.000 0.000 0.000 0.056 0.058 0.059 0.059 0.060 0.061 0.116 0.167 0.179 0.177 0.199 0.204 

GJR-ADCC       0.000 0.000 0.000 0.056 0.058 0.059 0.059 0.060 0.061 0.176 0.198 0.204 0.177 0.199 0.204 

GARCH-ADCC          0.000 0.000 0.000 0.003 0.002 0.002 0.120 0.140 0.145 0.121 0.141 0.145 

GARCH-DCC             0.000 0.000 0.000 0.117 0.138 0.143 0.118 0.139 0.143 

CARR-DCC                0.000 0.000 0.000 0.001 0.001 0.000 

CARR-ADCC                   0.000 0.000 0.000 
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Panel B: Incremental Switching Fees with Target Return 10% 

 OLS GJR-DCC GJR-ADCC GARCH-DCC GARCH-ADCC CARR-ADCC CARR-DCC 
CRRA 1Δ  5Δ  10Δ  1Δ 5Δ 10Δ 1Δ 5Δ 10Δ 1Δ 5Δ  10Δ 1Δ 5Δ 10Δ 1Δ 5Δ 10Δ 1Δ 5Δ  10Δ  

OLS 0.000 0.000 0.000 3.660 6.108 6.674 3.661 6.112 6.679 4.143 6.658 7.238 4.153 6.690 7.275 6.074 9.451 10.211 6.075 9.455 10.217 

GJR-DCC    0.000 0.000 0.000 0.001 0.004 0.005 0.483 0.550 0.564 0.493 0.582 0.601 3.660 6.108 6.674 2.415 3.347 3.543 

GJR-ADCC       0.000 0.000 0.000 0.482 0.546 0.559 0.492 0.578 0.596 2.413 3.339 3.532 2.414 3.343 3.538 

GARCH-ADCC          0.000 0.000 0.000 0.010 0.032 0.037 1.931 2.793 2.973 1.932 2.797 2.979 

GARCH-DCC             0.000 0.000 0.000 1.921 2.761 2.936 1.922 2.765 2.942 

CARR-DCC                0.000 0.000 0.000 0.001 0.004 0.006 

CARR-ADCC                   0.000 0.000 0.000 

Panel C: Incremental Switching Fees with Target Return 16% 

 OLS GJR-DCC GJR-ADCC GARCH-DCC GARCH-ADCC CARR-ADCC CARR-DCC 
CRRA 1Δ 5Δ  10Δ  1Δ 5Δ 10Δ 1Δ 5Δ 10Δ 1Δ 5Δ  10Δ 1Δ 5Δ 10Δ 1Δ 5Δ 10Δ 1Δ 5Δ  10Δ  

OLS 0.000 0.000 0.000 14.450 23.344 25.167 14.461 23.364 25.188 15.615 24.692 26.543 15.697 24.833 26.694 21.921 33.177 35.358 21.933 33.198 35.381 

GJR-DCC    0.000 0.000 0.000 0.011 0.020 0.021 1.165 1.348 1.376 1.247 1.489 1.527 14.450 23.344 25.167 7.483 9.854 10.214 

GJR-ADCC       0.000 0.000 0.000 1.154 1.328 1.355 1.236 1.469 1.506 7.460 9.813 10.170 7.472 9.834 10.193 

GARCH-ADCC          0.000 0.000 0.000 0.082 0.141 0.151 6.306 8.485 8.815 6.318 8.506 8.838 

GARCH-DCC             0.000 0.000 0.000 6.224 8.344 8.664 6.236 8.365 8.687 

CARR-DCC                0.000 0.000 0.000 0.012 0.021 0.023 

CARR-ADCC                   0.000 0.000 0.000 
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Panel A: Close Price 

S&P 500 Index Futures 10 Year Treasury Bond Futures 
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Panel B: Returns 

S&P500 Index Futures (%) 10 Year Treasury Bond Futures (%) 
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Panel C: Ranges 

S&P500 Index Futures (%) 10 Year Treasury Bond Futures (%) 
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Panel D: Open Interests and Trading Volumes (Futures Contract) 

S&P500 Index Futures 10 Year Treasury Bond Futures 
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Figure 1: S&P 500 Index and 10 Year Treasury Bond Weekly Closing Prices, Returns, 
Ranges, Open Interests and Trading Volumes, 1990/01/05-2008/04/25. This figure shows 
the weekly close prices, returns, ranges, open interests and trading volumes of S&P 500 index 
futures and 10 year Treasury bond futures over the sample period. 
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Panel A: Volatility Estimates for the GARCH Model 
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Panel B: Volatility Estimates for the GJR-GARCH Model 
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Panel C: Volatility Estimates for the CARR Model 
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Figure 2: Volatility Estimates for the GARCH, GJR-GARCH and CARR Model 
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Panel A: Correlation and Covariance Estimates of Return-based DCC  
(GARCH-DCC) and Range-based DCC (CARR-DCC) Model 

Correlation Estimates of DCC Model 
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Covariance Estimates of DCC Model 
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Panel B: Correlation and Covariance Estimates of Return-based ADCC 
(GARCH-ADCC) and Range-based ADCC (CARR-ADCC) Model 

Correlation Estimates of ADCC Model 
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Covariance Estimates of ADCC Model 
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Panel C: Correlation and Covariance Estimates of 
GJR-GARCH-DCC and GJR-GARCH-ADCC Model 

Correlation Estimates of GJR-GARCH-DCC and ADCC Model 
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Covariance Estimates of GJR-GARCH-DCC and ADCC Model 
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Figure 3: Correlation and Covariance Estimates for the DCC and ADCC Fitted by 
GARCH, CARR and GJR-GARCH, respectively. 
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Panel A: Portfolio Weights Derived by the GARCH-DCC Model 
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Panel B: Portfolio Weight Derived by the CARR-DCC Model 
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Panel C: Portfolio Weight Derived by the GJR-GARCH-DCC Model 
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Panel D: Portfolio Weight Derived by the GJR-GARCH-ADCC Model 
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Panel E: Portfolio Weight Derived by the GARCH-ADCC Model 
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Panel F: Portfolio Weight Derived by the CARR-ADCC Model 
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Panel G：Weights Derived by the Ordinary Least Square 
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Figure 4: The Weights of Minimum Volatility Portfolio Derived by the Static (OLS) and 
Dynamic Volatility Models. These figures from Panel A to Panel F show the dynamic 
portfolio weights that minimize conditional volatility while setting the target return equal to 
10%. Panel G has the constant portfolio weights for cash (-0.854), stock (1.360), and bond 
(0.494).


	lgo 封面
	lgo

