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Abstract—It is well-known that the structure of the set of stable marriages of a stable marriage
instance can be represented as a finite distributive lattice and, conversely, every finite distributive
lattice is a set of stable marriages for some stable marriage instance. Recently, Irving [12] and Gusfield
[9] propose some representations of the set of all stable assignments for a given solvable instance of
the stable roommates problem. In this paper, we will give a unifying approach to the structures
of the stable marriage problem and the stable roommates problem. To achieve this purpose, we
first study the duality in the structure of a stable marriage instance, then transform every stable
roommates instance into a corresponding stable marriage instance and obtain the structure of the
stable roommates instance directly from that of the corresponding stable marriage instance. The main
results of this paper are: (1) There is a one-one correspondence between the set of stable marriages
for a stable marriage instance and the set of feasible words of some Faigle geometry; (2) There is a
one-one correspondence between the set of stable assignments for a stable roommates instance and
the set of basic words of some Faigle geometry.

1. INTRODUCTION

An instance of size n of the stable marriage problem consists of n men and n women, where each
of the n men and the n women ranks the members of the opposite sex in order of preference. A
complete matching of the men and women is called a marriege. A marriage M is unstable, if there
is a man and a woman who are not married to each other in M, but who both prefer each other to
their partners in M. A marriage that is not unstable is called stable. It is well-known that there
is a stable marriage for any instance of the stable marriage problem [1]. It is also well-known
that the structure of the set of stable marriages can be represented as'a finite distributive lattice.
Conversely, it is shown [2,3] that every finite distributive lattice is a set of stable marriages for
some instance of the stable marriage problem.

There is a closely related problem to the stable marriage problem, called the stable roommates
problem. An instance of size n of the stable roommates problem consists of a set of 2n people,
where each person in the set ranks the 2rn — 1 others in order of preference. A pairing of the 2n
people into n disjoint pairs is called an assignmeni. An assignment « is called unstable if there are
two persons who are not paired together in «, but they prefer each other to their respective mates
in a. A stable assignment is one which is not unstable. An instance of the stable roommates
problem is called solvable if there is at least one stable assignment. Contrary to the case of the
stable marriage problem, there are unsolvable instances of the stable roommates problem.

Recently, Irving [4] and Gusfield [5] give some “small,” “implicit” representations of the set
of all stable assignments for a given solvable instance of the stable roommates problem: the
poset II* on the set of “rotations,” the poset II and the undirected graph G on the set of
“nonsingleton rotations.” An interesting result (Theorem 5.3., Gusfield [9]) says that there is
a one-one correspondence between the maximal independent sets in G and the set of stable
assignments. Furthermore, every maximal independent set in G has the same cardinality (an

alternative version of Lemma 5.6. in [5]). If we let

M= (G,T)
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14 Y.-C. HsueH

be the system such that Z is the collection of all independent sets in G, including the empty
set, then the system M is indeed a “matroid” [6] like structure, referred to as “Faigle geometry”
[7,8], on the poset II. This observation motivates our study on the combinatorial structures of
the stable matching problems. In addition, we observe that the poset I is a member of the class
of “self-dual posets.”

The dual poset of a poset P = (S; <) is the poset P4 = (S;>). If P is order-isomorphic to P9,
i.e., if there is a bijective function 6 : z +— z® from S into itself such that for all elements z,y € S

(1) z <y, if and only if, y° < z°,

@) (°) ==,

then P is called a self-dual poset. Such a function § is called a dual assignment on P. Note that

there may be many non-isomorphic dual assignments on a given self-dual poset. For example,
consider the poset P whose diagram is given by

c d
a0 b
Let
ad=c V¥ =d ?=a, d =,
and

] 4 7] 1
e =d b =¢c, ¢ =b, d* =a.

Then it is easy to see that both & and é' are dual assignments on P. However, since a < a® and
a||a® (a is incomparable to a’'), we have that & and &' are non-isomorphic. This motivates the
following definition:

DEFINITION 1.1. A self-dualized poset P® = (S; <, 6) is a structure consisting of a set S, a partial
order < on S, and a dual assignment § on the poset (S; <). For each = € S, the element z° is
called the dual element of  in P?.

The purpose of this paper is to obtain a unifying combinatorial structure, called Faigle geometry
(we follow the terminology used in Korte and Lovasz [8]), for both the stable marriage and the
stable roommates problems. To achieve this purpose, we first study the duality in the structure of
the stable marriage problem, then transform every instance of the stable roommates problem into
a corresponding instance of the stable marriage problem. The structure of the stable roommates
problem can be obtained from that of the stable marriage problem directly by duality.

Given a stable roommates instance RI of size n. Let S be the set of the given 2n preference
lists. Then the instance RI can be transformed into an instance of size 2n of the stable marriage
problem by the following:

(1) Add person i to the end of the list of himself, i = 1,...,2n. Let S’ be the resulting set of
lists.

(2) Let MS and WS be two identical copies of S’.

(3) Let M be the instance of the stable marriage problem with MS and WS as the sets of
male and female preference lists, respectively.

DEFINITION 1.2. The instance M is called the instance of the stable marriage problem corre-
sponding to RI. The rotation poset of M1 is also called the rotation poset of RI.

It should be noted that Definition 1.2. is valid for both solvable and unsolvable instances of
the stable roommates problem, and the rotation poset of a stable roommates instance under this
definition is different from that given in Irving [4] or Gusfield [5].

In this paper, we will show that the rotation poset of a given instance of the stable roommates
problem, together with some dual assignment on it, is a self-dualized poset and, conversely, every
finite self-dualized poset is an instance of the stable roommates problem. Moreover, we will show



Structures of the stable matching problems 15

that there is a one-one correspondence between the stable marriages of an instance I of the stable
marriage problem and the feasible words of a Faigle geometry on the rotation poset of I, and
there is a one-one correspondence between the stable assignments of an instance RI of the stable
roommates problem and the basic words of a Faigle geometry on the rotation poset of RI.

2. DEFINITIONS AND ALGORITHMS FOR
THE STABLE MARRIAGE PROBLEM

Given an instance of size n of the stable marriage problem, there is a fundamental “proposal-
rejection” algorithm [1] which finds a stable marriage of the given instance, called the male optimal
marriage (or the female pessimal marriage). Recall that a marriage is a complete matching of
the n men and n women. Henceforth, we will denote a marriage by the notation

{man i/woman j;; i=1,2,...,n}.

DEFINITION 2.1. We say that woman j accepis the proposal from man i if she removes from her
list each man k ranked below man i on her list and, at the same time, is removed from man k's
list.

GALE-SHAPLEY ALGORITHM,
Input: A set of n male-preference lists and n female-preference lists.
Step 1. Every man proposes to the first woman in his current list.
Step 2. Every woman who receives proposals accepts the best proposal.
Step 3. If every woman has a proposal, then STOP; otherwise, GO TO Step 1.

The output of this algorithm is a set of 2n sublists of the original preference lists, and the male
optimal marriage is the set of the pairs

{man i/woman j;; i=1,...,n},

where woman j; is the first on man #'s list. The set of all lists of this output possesses several
interesting properties [9,10]:

(T1) Every list is nonempty.

(T2) Woman j is first on man i’s list, if and only if man ¢ is last on woman j’s list.

(T3) Man i is on woman j’s list, if and only if woman j prefers man ¢ to the last man on her list.
(T4) Woman j is on man #’s list, if and only if man i is on hers.

DEFINITION 2.2. Given an instance of size n of the stable marriage problem. A table is a set of
2n lists, each of which is a sublist of the original preference list, such that the above properties
(T1) ~ (T4) are satisfied.

Obviously, the output of the Gale-Shapley algorithm is a table. We will call this table the male
optimal table (or the female pessimal table).

LEMMA 2.3. For any table T of an instance of size n of the stable marriage problem, if we pair
each man with the first woman on his list in T, then the resulting matching is a stable marriage.

PROOF. Let woman j; be the first on man i’s list, i = 1,2,...,n. For any pair (man i, woman
J), where j # ji, let man i; be the last on woman j’s list. If woman j prefers man i to man ij,
then, by properties (T3) and (T4), man i is on woman j’s list and vice versa. However, since
woman J; is first on man #’s list, man ¢ does not prefer woman j to woman j;. This concludes
that the matching, by pairing each man ¢ with woman j;, is a stable marriage. [ |

DEFINITION 2.4. Given a table T. The stable marriage obtained as in Lemma 2.3 is called the
stable marriage corresponding to T.

LEMMA 2.5. Given a stable marriage M of an instance of size n of the stable marriage problem.
There exists a table T such that M is the stable marriage corresponding to T.

Proor. Let M = {man i/woman j;; i = 1,2,...,n} and let T be the set of lists obtained from
the original preference lists by letting woman j; accept the proposal from man i. We claim that
T is a table and, hence, is the desired table.

CAMMA 22:6-8
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" After woman j; accepts the proposal from man i, properties (T1), (T3), (T4) and the property
that man 7 is on the last of woman j;’s list follow directly from Definition 2.1. It remains for us
to show that woman j; is the first on man i’s list. Suppose woman j; is the first on man i’s list
and k # i. Again, by Definition 2.1, woman j; must prefer man i to man k. Since man i prefers
woman j; to woman j;, the given marriage M is unstable. This yields a contradiction. Hence, T
is a table. 1

DEFINITION 2.6. Given an instance of the stable marriage problem. A cyclic sequence R of
man/woman pairs
(man i /woman ji; k=0,1,...,r—1)

is called a rotation if there exists a table T such that woman jj. is the first and woman jr4+1 mod r
is the second on man 4 ’s list in T for k = 0,1,...,r. The rotaiion R is said to be ezposed in T'.

The notion of rotations for the stable marriage problem has been studied in detail in Irving and
Leather [10]. In Gusfield [9], a rotation-elimination algorithm is proposed to find all rotations of

a stable marriage instance of size n in O(n?) time. To help understand this algorithm, we need
the following definition and results.

DEFINITION 2.7. Let R = (man i/woman ji;k = 0,1,...,r — 1) be a rotation exposed in a
table T. If each woman ji accepts the proposal from man ix_1 mod r, where k =0,1,...,r—1,
then the rotation R is said to be eliminated from T'.

LEMMA 2.8. Let R be a rotation exposed in a table T. Let T' be the set of lists obtained by
eliminating R from T. Then, T" is a table.

PRrOOF. It is sufficient to show that 7/ possesses property (T'2). Observe that man i is removed
from a list in T, if and only if he is ranked below man ix_; mod r o0 woman ji’s list in T for
some k. Moreover, woman j is removed from a list in T if j = ji for some k. Let man i be such
that i # i for any k£ = 0,1,...,7 — 1, and let woman j be the first on man ¢’s list in T. Since
the matching, by pairing each man with the first woman on his list in T, is a stable marriage, we
have that j # ji for any k. Thus 7" inherits the property that man ¢ is the last on woman j’s

list and woman j is the first on man i’s list. As for man i,k =0,1,...,7— 1, by Definition 2.1.,
it is clear that woman jj is the first on the list of man ix—; mod » and he is the last on woman
Ji’s list in TV, | |

In notation, the table 7" will be denoted as T\ R. Observe that the proof of Lemma 2.8. also
implies the following result.

COROLLARY 2.9. Let R and R’ be two distinct rotations exposed in a table T. Then R' is also
a rotation exposed in the table T\R.

It is shown (Lemma 4.6. in [10]) that each table can be obtained from the male optimal table
by a sequence of zero or more rotation eliminations. We are now in a position to describe the
rotation-elimination algorithm.

ROTATION-ELIMINATION ALGORITHM.
Input: The male optimal table.
Step 1. Let T be the current table.
Step 2. If there are no rotations exposed in T, then STOP; otherwise, GO TO next step.
Step 3. Find a rotation R exposed in T'.
Step 4. Eliminate R from T'; GO TO Step 1.

This algorithm outputs all rotations of a given stable marriage instance. Gusfield [9] also
uses this algorithm to find all stable pairs, which are the pairs appearing in at least one stable
marriage. An earlier version of this algorithm is proposed in McVitie and Wilson [11] and is used
to find all stable marriages.

3. THE LATTICE OF STABLE MARRIAGES AND THE ROTATION POSET

Let S be the set of stable marriages of a given stable marriage instance of size n. For any two
stable marriages

M, = {man i/woman j;; i=1,2,...,n}
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and
M, = {man i/woman j}; i=1,2,...,n},
let . - . .
b= { ji if man i prefers woman j; to woman j!
T 14 otherwise,
and

k= { Ji if ki =g,
ol i k=i
Then the two sets of man/woman pairs
Mj = {man i/woman k;; i=1,2,...,n}
and
M4 = {man i/woman k; i =1,2,...,n}
are stable marriages [15]. Define
MiAMs=Ms and M;VM,= M.
Then, the algebra
L=(SAV,0,1)

is a distributive lattice [15], where the least element O is the male optimal marriage and the
greatest element I is the female optimal marriage. Note that the female optimal marriage can

be obtained from the Gale-Shapley algorithm by reversing the roles of men and women. Dually,
if we define

M A My=Ms and M;V M;= Mj,

then we have the dual lattice
L= (S;N,V,0,I') = (S;V,A,1,0).
Let £ the set of all rotations of a given stable marriage instance. Let
R; = (man i;/woman jg; k=0,1,...,r—1)
and
Ry = (man i}, /woman j3; h=0,1,...,8 1)
be two distinct rotations in £.

DEFINITION 3.1. Rotation R, is said to explicitly precede Ry, if and only if there exist k and
h(0<k<r-1 1< h<s—1), such that woman jr41 mod r prefers man i to man i) and
man i, prefers woman ji4+1 mod r to Woman jj.

Now, define a binary relation “<” on £ as below:

R < R’ if and only if there are rotations Ry = R, R;,..., Ry = R
such that R;_, explicitly precedes R; for each i = 2,...,k.

It is easy to see that the binary relation < is a partial order on £ and the structure B = (£, <)
is a poset.

DEFINITION 3.2. The poset B = (€; <) is called the rotation poset of the given instance.

DEFINITION 3.3. Let P = (S;<) be a poset. A subset H of S is called hereditary if h € H and
z<himplyze€ H forallz € S.
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For any finite poset P = (S; <), let Hered(P) denote the set of all hereditary subsets of S. It
is a fundamental theorem in lattice theory [12-14] that the lattice

L(Hered(P)) = (Hered(P);N,U, ¢,5)

is a distributive lattice. Conversely, let 7 be the poset of all nontrivial join-irreducible elements
of a finite distributive lattice £ under the partial order from £, then

L = L(Hered(J)).

In other words, if £ is the distributive lattice of stable marriages and B is the rotation poset
of a given instance, then

L = L(Hered(B)).

The explicit meaning of this isomorphism {10] can be rephrased as:

If M is the corresponding stable marriage of the hereditary subset # of £,then M
is the stable marriage corresponding to the table obtained by eliminating all rotations in .

Given a rotation R in £, let %(R) denote the hereditary subset and H?(R) denote the dual
hereditary subset of £ generated by R. That is,

H(R)={Q€E: Q< R}

and
HY(R)={Q€E:R<Q}.

LEMMA 3.4. For any R € £, the difference subset £ — H%(R) is hereditary.

PROOF. Let Q € £ — H4(R) and Q' < Q. If @’ € H%(R), then R < @' < @, a contradiction.
Hence, Q' € £ — H4(R) and £ — H4(R) is hereditary. ]

DEFINITION 3.5. The hereditary subset £ — ‘H9 is called the dual-ezclusive hereditary subset of
£ generated by R and is denoted by H¢(R).

REMARK 3.6. Given a rotation R in £. Let T be the resulting table by eliminating all rotations
in H°(R) starting from the male optimal table. Since R < @ for any rotation Q not in H*(R),
we have that R is the only rotation exposed in T'.

LEMMA 3.7. For any R € &, the subset H(R) is join-irreducible in L(Hered(B)). Conversely, if
H is a nontrivial join-irreducible element in £(Hered(B)), then H = H(R) for some R € £.

PROOF. Let H; and Hs be two hereditary subsets of £, such that H; UH, = H(R). Then
R € Hyor R€ My If R €My, then Hy = H(R); if R € Ha, then Hy; = H(R). Hence, H(R) is
join-irreducible. Conversely, let H # ¢ be join-irreducible in £L(Hered(B)). We claim that A has
a greatest element R € £ and hence H = H(R).

Suppose H does not have a greatest element. Let R), Ra,..., R; be all the maximal elements
of H. Let Hy = H(R;) and Ha = H(R2)U - - - UH(Ry). It is clear that H; UH2 = H. Since H
is join-irreducible, either H; = M or Hy = H. If H; = H, then R; < Rfor alli € {2,...,k}; if
Hz =M, then R < R; for some i € {2,...,k}. Either case will result in a contradiction. ]

Similarly, we have:

LeEmMA 3.8. For any R in £, the subset H°(R) is meet-irreducible in L(Hered(B)). Conversely,
if H is a nontrivial meet-irreducible element in L(Hered(B)), then H = H*(R) for some R in £.
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4. DUALITY IN THE STABLE MARRIAGE PROBLEM

Note that the previous definitions for tables and rotations in Section 2 are male oriented.
Henceforth, we will call them male-oriented tables and male-oriented rotations, respectively. If
we reverse the roles of men and women in those definitions, we have the definitions for female-
oriented tables and female-orienied rotations. Moreover, after this reversal, Gusfield’s algorithm
finds the set of all female-oriented rotations. As for stable marriages, there is no such distinction.
That is, the marriage {man i/woman j;; i = 1,...,n} is exactly the same as the marriage {woman
ji/mani;i=1,...,n}.

Let F be the set of female-oriented rotations. Applying the same reversal to the definition of the
partial order on £, we have a partial </ on F. We call the poset B' = (F; <') the female-oriented
rotation poset of the given instance. It is known [15] that £(Hered(B')) = £°.

LEMMA 4.1. Let B = (€; <) be the male-oriented rotation poset and B' = (F;<') the female-
oriented rotation poset of a given stable marriage instance. Then B’ = B%. In particular, there
is a one-one correspondence between male-oriented rotations in £ and female-oriented rotations
in .

PROOF. Let B¢ = (£;>) be the dual poset of the male-oriented rotation poset B = (£;<). Since
£4 = L(Hered(B?)) and a finite distributive lattice is uniquely characterized by the poset of its
nontrivial joint-irreducible elements up to isomorphism [14], we have

B' = (F,<)=B=(£,>). (]

Given any rotation @ (male- or female-oriented), let #(Q) be the hereditary subset and #°(Q)
the dual-exclusive hereditary subset generated by Q. Then, let M(Q) and M*(Q) be the respec-
tive stable marriages corresponding to H(Q) and H*(Q).

For any male-oriented rotation R in £, since M(R) is join-itreducible in £, M(R) is meet-
irreducible in £9. Hence, R corresponds to a female-oriented rotation R’ in F such that M(R) =
M¢(R'). The following lemma gives an explicit form of such correspondence.

LEMMA 4.2. Let R=(man i;/woman ji; k = 0,1,...,r — 1) be a male-oriented rotation in £. If
R' is a female-oriented rotation in F such that M(R) = M¢(R'), then

R' = (woman jp/man ix_1 mear; k=0,1,...,7=1).

PROOF. Let T” be the female-oriented table corresponding to M¢(R’). We claim that (woman
Jr/man ix_1 modr; £=0,1,...,r—1) is a rotation exposed in T".

First, since the marriage M(R) contains the pairs man ix_1 mod r/Woman ji, where k =
0,1,...,r — 1, we have that, in 7/, man ix—; mod r is the first on woman j;’s list and woman j;
is the last on man fx..; mod r’s list for each k. Next, since man i; prefers woman j; to woman
Jk+1 mod r, by properties (T3) and (T4), man i is on woman ji’s list and vice versa for each k.
If there is an k,0 < h < r — 1, such that man ¢ is not the second on woman jj’s list, let man i
be the second on woman j;’s list, then woman j, prefers man ¢ to man i,. Let woman j be the
partner of man ¢ in M°(R'). Since, in 7', woman j is the last on man i’s list and, by property
(T4), woman jj, is also on man i’s list, we must have that man ¢ prefers woman j; to woman j.
In summary, man i and woman jj are not married to each other in M°(R’) but they prefer each
other to their partners in M¢(R’'). That is, the marriage M¢(R') is unstable, a contradiction.
Thus, man i) is the second on woman ji’s list for each k and then (woman ji/man ix_1 mod r;
k=0,1,...,r— 1) is a rotation exposed in T”.

Since, by Remark 3.6., R' is the only rotation exposed in 7", we conclude that
R’ = (woman ji/man ix_1 modr; k=0,1,...,r—1). ]

Dually, we have:

LEMMA 4.3. Let R’ = (woman ji/man i;; k = 0,1,...,r — 1) be a female-oriented rotation in
F. If R is a male-oriented rotation in £ such that M(R') = M*(R), then

R = (man ix/woman ji_y moar; k=0,1,...,r—1).
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COROLLARY 4.4. For any R in £ and R' in F,

M(R) = M*(R') ifand onlyif M(R')= M°*(R).

PB‘QQF_ Agsume R = (man 1. /woman 4.: b =0 1 r— 1\ and M(RY\ — Me(R\ Rv Lamma
Assume R = (man i; /woman j;; £ =0,1,...,r— 1) and M(R) = M*(R'). By Lemma
4.2., we have
’ . .
R’ = (woman ji/man ix_1 modar;k=0,1,...,7=1).

If Q is a male-oriented rotation in £ such that M(R') = M*(Q), then, by Lemma 4.3.,

Q= (maﬂ k-1 mod r/Woman Jk-1 modr; k=0,1,...,7r— 1)
= (man iy /woman ji; k=0,1,...,r—1)
=R
Hence, M(R') = M*(R). The “if” part then follows by duality. |

DEFINITION 4.5. A pair (R, R') of male- and female-oriented rotations with M(R) = M¢(R') is
called a dual pair of rotations. In notation, we write

R=R and (R)* =R

For any rotation Q, the rotation Q9 is called the dual rotation of Q in opposite sex orientation.
REMARK 4.6. From Corollary 4.4., it follows that (Q4)¢ = Q for any rotation Q.

LEMMA 4.7. For any two rotations R, and Rs in &,
Ri<R, in B ifandonlyif R§<'R! in B

PrRoOF. If R, < Ry in B, then M(R;) < M(R;) in L. Since M(R;) = M*(R{) and M(R;) =
M*(R3), we have M*(R3) <' M*(R?) in £¢. Hence, RS <’ R? in B'. The proof of the “if” part
is similar. i

The duality in the stable marriage problem plays a central role in studying the structure of
the rotation poset of a stable roommates instance. This is the main subject of the next section.

5. ROTATION POSETS OF THE STABLE ROOMMATES PROBLEM

In Section 1, we transform a stable roommates problem instance RI into a stable marriage
problem instance M and call M the instance of the stable marriage problem corresponding to
RI. The rotation posets (male- and female-oriented) of M I are also called the rotation posets of
RI. To start exploiting the structure of these rotation posets, we make the following observation.
OBSERVATION 5.1. Let £ and F be the sets of male- and female-oriented rotations of RI, respec-
tively. Since the two sets MS and WS of preference lists are identical up to sex reversal, these
two sets £ and F are also identical in the following sense:

If R=(man i;/woman ji,k = 0,1,...,r — 1) is a male-oriented rotation in £, then
R'=(woman i/man ji, k= 0,1,...,r — 1) is a female-oriented rotation in ¥, and vice versa.
Such property will be called the equal right property of rotations.

Henceforth, for the sake of convenience, we will make use of the following notations and ter-
minology:

(1) A male-oriented rotation R = (man ix/woman ji, k=0,1,...,r— 1) in £ will be simply
written as
R = (ix/jr,k=0,1,...,7r=1).

(2) An assignment « of the instance RI is denoted as a permutation

1 2 2n
o= ‘e
Ji J2 Jon

such that (ij;) is a transposition in « for each i = 1,...,2n.
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2 2aLrT YO

(3) Let M be a stable marriage of the instance M. If M is of the form

M = {man i/woman j;; i=1,...,2n},
then the mapping oa: ¢ — j; is a permutation of {1,...,2n}, called the permutation
corresponding to M.

(4) A permutation o of {1,...,2n} is called a feasible permutation of the instance RI if o is the
permutation corresponding to a stable marriage of M I. If, in addition, o is an assignment

of RI, then it is called a feasible assignment.

Tonaaes K O An acatmmnmann
LifyVIVIA J. 4. 1311 “5‘51“]] 324

and only if it is feasible.

ProoF. It is trivial that « is feasible if it is stable. Conversely, assume o is feasible but is
not stable. Then there exist two persons, say person i and person j, such that person i prefers
person j to person «(i) and person j prefers person i to person a(j). Then, in the correspond-
ing stable marriage problem instance M, there exist man i and woman j such that man
prefers woman j to woman a(i) and woman j prefers man ¢ to man a(j). That is, the marriage
{man k/woman a(k); k = 1,...,2n} is unstable, a contradiction. Hence, « is stable if it is
feasible. |

Let R = (ix/jx; K =0,1,...,7—1) be arotation in £. Recall that the dual rotation R4 of Rin
the opposite sex orientation is a female-oriented rotation in F of the form
R? = (woman ji/man iy_1 moar; k = 0,1,...,r —1). By the equal right property, the male-
oriented rotation (j/ix—1 modr; £ = 0,1,...,7 — 1) is also in £&. Now, we reach a position to
establish the following theorem.

THEOREM 5.3. Given a stable roommates instance RI. Let § be the function from £ into itself
defined by: for any R = (ix/jx; k=0,1,...,7=1),

5(R) = (jk/ik_l mod r; k= 0,1, e, P - 1).

Then, the structure B® = (£;<,6) is a self-dualized poset.

PrOOF. From Remark 4.6., Lemma 4.7. and the equal right property, it is easy to see that the
function 6: R+ 8(R) is a dual assignment on (£; <). Hence, B® is self-dualized. [ ]

DEFINITION 5.4. For any rotation R in £, the rotation 6(R) given in Theorem 5.3. is called the
dual rotation of R in same sex orientation.

REMARK 5.5. If there is no danger of confusion, the rotation §( R) will be simply called the dual
rotation of R, and will be written as R®. Also, the male-oriented rotation poset B = (£; <) will
be simply called the rotation poset of a given stable roommates instance.

LEMMA 5.6. Let H be a hereditary subset of £ and M be the stable marriage corresponding to
M. If for some rotation R, both R and R® are in H, then the permutation o is not a feasible
assignment,

PROOF. Assume R = (ix/j¢, k =0,1,...,r—1) and R® be both in . Let T be the male-oriented
table corresponding to . If man ¢y /woman j is a pair in M, since R has been eliminated, woman
J is ranked below woman jp in man ig’s list. Similarly, since R® has been eliminated, woman i
cannot be paired with any man ranked below man j,. Thus, man j/woman iy is not in M. §i

Dually, we have:

LEMMA 5.7. Let H be a hereditary subset of £, and let M be its corresponding stable marriage.
For any rotation R in £, if H does not contain R and R®, then the permutation o is not a
feasible assignment.

We summarize the above results as in the next theorem.

THEOREM 5.8. Given an instance RI of the stable roommates problem. Let £ be the set of all
male-oriented rotations of RI. Let H be a hereditary subset of £ and M be the stable marriage
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corresponding to ‘H. Then the permutation or is a feasible assignment of RI if and only if for
each R in &, either R or R® is in H but not both.

DEFINITION 5.9. A rotation R in £ is called self-dual if R = R®.

COROLLARY 5.10. An instance of the stable roommates problem is unsolvable if and only if there
is a self-dual rotation.

LeMMA 5.11. Any self-dual rotation is of odd length.

Proor. Let R = (¢x/jr; k = 0,1,...,7 — 1) be a self-dual rotation of length r. Since R is
self-dual, that is, (jr/ik-1 modr; & = 0,1,...,7 = 1) = (ix/dx; k = 0,1,...,7 — 1), we have
{ix; k=0,1,...,r =1} = {jx; k= 0,1,...,7 — 1}. Let jo = ip, for some m > 0. Then,
observe that j1 = ¢m41,...,Jr—m=1 = ir—1. On the other hand, since i /jm = jo/ir—1, We have
tp—1 = jm. Therefore, m=r—m—1and r =2m+ 1. [ ]

For the reason of completeness, we establish the converse of Theorem 5.3. at the end of this
section.

THEOREM 5.12. Let P° = (S;<, 6) be a finite self-dualized poset. Then the poset P = (S;<) is
the rotation poset of a stable roommates instance.

PROOF. See Appendix. [ |

6. COMBINATORIAL STRUCTURES OF THE STABLE MATCHING PROBLEMS

“Greedoids” are combinatorial structures introduced by Korte and Lovész [7,8] as a structural
framework for the greedy algorithm. These structures generalize the well-known combinatorial
structures “matroids” by extending the independence axioms of matroids from set systems to
languages. There are other combinatorial structures, called Faigle geometries, which extend the
concept of matroids on finite sets to posets [16,17]. We briefly introduce them in the following.

DEFINITION 6.1. Let S be a finite set. A word o on S is a finite sequence of elements of S, and
is shortly written as the form o = z1%2...z,, where z;’s are elements of S. The number r is
called the length of o and is usually denoted as |a|. The collection of all possible words on S is
denoted by S*.

DEFINITION 6.2. Let L be a subset of S*. The pair (S; L) is called a language on S.

DEFINITION 6.3. A word a is called simple if no element in a is repeated. A language (S; L) is
called simple if any word in L is simple.

DEFINITION 6.4. A language (S; L) is called hereditary if it satisfies:
(H1) ¢€L;
(H2) ifa € L and a = By then B € L.

DEFINITION 6.5. Let (S;L) be a simple hereditary language on S. Any word in L is called a
feasible word. Maximal feasible words are called basic words. An element z in S is called an
isthmus of L if it belongs to every basic word.

DEFINITION 6.6. A simple hereditary language G = (S; L) is called a greedoid, if in addition it
satisfies:
(G3) ifa,B €L and|a|>|Bl,

then there is an element ¢ € « such that Bz is in L.

Note that property (G3) means that every feasible word can be extended to a basic word and
every basic word is of the same length.
DEFINITION 6.7. The length of any basic word of a greedoid G is called the rank of G.

Let G = (S; L) be a greedoid. For any word a, let & denote the underlying set of elements in
o. Then define a binary relation = on L by:

a=pf ifandonlyif &=g.
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It is easy to see that = is an equivalence relation on L. Let L be the set of equivalence classes
induced by 2. Obviously, the structure G = (S; L) is a greedoid.

DEFINITION 6.8. The greedoid G = (S;L) is called the quotient greedoid of G relative to the
equivalence relation 2.

DEFINITION 6.9. Let P = (S;<) be a finite poset. For any subset A of S, a simple word
a = z1T2...2, Is called a linear extension of A if @ = A and z; < z; implies i < j for any
1<4,j<r

LEMMA 6.10. Let P = (S;<) be a finite poset and «, 8,4 be words on S such that o = Bv. If
a is a linear extension of &, then # is a linear extension of ,é If, in addition, & is a hereditary
subset of S, then so is 3.

PROOF. Let 8 = z123...2, and ¥ = 241 - - - Tr4s. If @ is a linear extension of &, then, in
particular, z; < z; implies i < j for 1 < 4,5 < r. Hence, f is a linear extension of B. Moreover,
if & is hereditary, then for any z; € B C éand y < zj, we have y € &. That is, y = z} for some
1 <k < r+s. Since « is a linear extension, y = z; < z; implies k < j. Hence, y € ﬁ and g is
hereditary. : [ |

DEFINITION 6.11. Let P = (S;<) be a finite poset and (S;L) be a greedoid on S. Then the

structure F = (S;<, L) is a faigle geometry if:

(F4) ifa € L, then « is a linear extension of &;

(F5) for all hereditary subsets H, and Ha with Hy C Ha, if z € H, is an isthmus of L N H}
then z is an isthmus of L N H}.

REMARK 6.12.. If F = (S; <, L) is a Faigle geometry and (; L) is the quotient greedoid of (S; L),

then it is easy to see that F = (S; <, L) is also a Faigle geometry on (S; <). This geometry F

will be called the guotient geometry of F.

EXAMPLE 6.13. Let (S; <) be a poset with the following diagram

3 X4

X1 0 X2

Let Ly = {¢,z2,z221}. Then (S;L,) is a greedoid. However, consider the hereditary subsets
H, = {1} and H; = {z1, 23}, since z; is an isthmus of L; N H} = L, but is not an isthmus of
Ly N HY = {4}, the structure (S; <, L;) is not a Faigle geometry.

If we let Ly = {¢,z1, 22,2122, 2221}, then it is easy to see that the structure (S;<,L;) is a
Faigle geometry.

THEOREM 6.14. Let P = (S;<) be a finite poset and let (S; L) be a simple hereditary language
on S such that the basic words are the linear extensions of S. Then (S; <, L) is a Faigle geometry
on P.
ProOF. From Lemma 6.11., it is easy to verify that properties (H1), (H2) and (F4) hold. Observe
that any element in a hereditary subset H is in all linear extensions of H. That is, every element
in H is an isthmus of L N H*. Particularly, property (F5) also holds. It remains for us to show
property (G3) is satisfied. Let a, 3 € L with |a| > |8]. Let = be a minimal element of & — 3. We
claim that 8z is in L. First, since 8 is hereditary and z is not in 3, we have that z is not <y
for any y in 3. Hence, Bz is a linear extension of 3U Z. Next,let z € (BU%) and y < 2.
Case 1. z € 4.
Since 3 is hereditary, we have y € g c (ﬁ U &).
Case 2. z = .
Since & is hereditagy, yea lfy¢ B, since z is minimal in & — B, we have y = z.
Hence, either y€ B or y = .

Combining Case 1 and Case 2, we have that § U 7 is hereditary and, hence, is in L. 1
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DEFINITION 6.15. Let P = (S; <) be a finite poset. The Faigle geometry (S; <, L) on P obtained
as in Theorem 6.14. is called the compleie Faigle geomeiry on P (is called the poset greedoid on
S in [7,8]).

COROLLARY 6.16. Let (S;<, L) be the complete Faigle geometry on the finite poset P = (S; <).
Then there is one-one correspondence between the feasible words of L and the hereditary subsets
of S.

PrOOF. The mapping by sending & to & is one to one from L onto Hered(P). ]

Therefore, the quotient geometry (S; <, L) is a combinatorial aspect of the distributive lattice

L = (Hered(P);N,U, 6, 9).

ffffff

Corresponding to the stable marriage problem, we have the following theorem.

THEOREM 6.17. Given an instance I of the stable marriage problem. Let B = (&;<) be the
rotation poset of I, and let F = (£;<,L) be the complete Faigle geometry on B. Then there
is a one-to-one correspondence between the stable marriages of I and the feasible words of the
quotient geometry F = (£;<,L) on B.

DEFINITION 6.18. Given a self-dualized poset Pé = (3;<,6). Let F = (S; <, L) be the complete
Faigle geometry on (S;<). A word a in L is called dual—ezcluswe if for any z in S, = and z°
cannot appear in o at the same time.

It should be clear that a dual-exclusive word does not contain any self-dual element. Let
Lt = {a € L : a is dual-exclusive}.

LEMMA 6.19. The structure F¢ = (S;<,L®) is a Faigle geometry.

PROOF. It is enough for us to verify that property (G3) holds. Let a, 3 be in L* with |a| > [B].
Let 3% = {z%: z € B} and assume & C (B U B°). Since a is dual-exclusive,

lal < (181 +18°1)/2 = 18I,

we have a contradiction. Hence, the set A = &—(3UB%) is nonempty. Choose a minimal element
z in A. Obviously, Sz is dual-exclusive and is a linear extension of U Z. To complete the proof,
we have to show that U Z is hereditary. Let z € (BUZ) and y < 2.

Casel. z2€4.
Since 3 is hereditary, z € 8 implies y € 5
Case 2. z=u=z.
Since @& is hereditary, we have y € &. If y & (8 U 8°), then the xmmmahty of z
implies y=z.If y € (BU %), then we must have y € B; otherwise, y° € B and
2% <y’ imply 2’ € # and z € .

Therefore, the set AU  is hereditary. |

REMARK 6.20. The rank of F* is less than or equal to |S|/2. If the rank of F* is less than |5|/2,

then there must be an element = € S with z = 2%, i.e., z is a self-dual element.

DEFINITION 6.21. The Faigle geometry F¢ is called the dual-ezclusive geomeiry on (S; <).
Corresponding to the stable roommates problem, we have:

THEOREM 6.22. Given an instance RI of the stable roommates problem. Let B = (£;<) be the

rotation poset of RI and F* = (£; <, L®) be the dual-exclusive geometry on B. Then:

(1) The instance RI is solvable if and only the rank of F¢ is equal to |£|/2.
(2) If RI is solvable, then there is a one-to-one correspondence between the stable assignments
of RI and the basic words of the quotient geometry ¢ = (£; <, L¢) of F¢.
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7. CONCLUSION

Given a stable marriage instance of size n. Its rotation poset can be constructed [9] in O(n2)
time. Hence, the rotation poset of a stable roommates instance of size n can be constructed in
O(n?) time as well. It should be noted that the “singleton rotations” mentioned in Irving [4,18]
are the rotations R with R < R’, and the “nonsingleton rotations” are the rotations R with R||R?.
Moreover, a path from the root to a leaf in the execution tree D defined in [5] is a basic word in
the Faigle geometry F* and a path set is a basic word in the quotient geometry F¢. Therefore, the
Faigle geometry F*¢ can be served as the universal structure on the rotation-elimination algorithm
of the stable roommates problem.

Finally, since the greedy algorithm for some structure on finite poset works if and only if
this structure is a Faigle geometry [16], the greedy algorithm might work for some optimization
problems of the stable matching problems.

N =

10.

11.
12.
13.
14.
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16.
17.
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APPENDIX
EVERY FINITE SELF-DUALIZED POSET IS THE
ROTATION POSET OF AN INSTANCE OF THE STABLE ROOMMATES PROBLEM

Let P4 = (S;<, 6) be a finite self-dualized poset. Label the elements of S so that

S = {zl,a:f,a:z,zg, .. .,a:k,a:i,:ck.,.l:zg_,_l,. .. ,z‘k+,=zz+,}
and
either z; < z? or x;lle in P, foreach i=1,...,k.
For each i = 1,..., k, we associate it with four persons, person 4(i—1)+j, j=1,2,3,4, and construct a portion

of the preference lists as follows:

first current-last
position position
person  4(i-1)+1 | 4(i-1)+3 ... 4(i-1)+4
4(-1)42 | 4(G-1)4+4 ... 4(i-1)43
4(-1)43 | 4(i-1)+2 ... 4(i-1)+1
4(-1)+4 | 4G-1)+1 ... 4(i-1)+2
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For each t = 1,...,s, we associate it with three persons, person 3(t — 1) + 4k + j, j = 1,2,3 and construct a
portion of the preference lists as follows:

| first current-last

I position position
person  3(t-1)+4k+1 | 3(t-1)+4k+2 ...  3(t-1)+4k+3
3(t-1)44k+2 | 3(t-1)+4k+3 ...  3(t-1)+4k+1
3(t-1)+4k+3 | 3(t-1)+4k+1 ...  3(t-1)+4k+2

Then consider the following cases:

Case 1.

Case 2.

Case 3.

Case 4.

Case 5.

z.'s:cfforsomei, 1<t<k.

Place 4(i ~1) +4 in any position between the first and current-last positions on the list of person 4(i—1)+3
and place 4(i — 1) + 3 in any position between the first and current-last positions on the list of persan
4(Gi—1) +4.

z; <zjforsomei#j, 1<4,5<k

Place 4(i—1)+3 in any position between the first and current-last positions on the list of person 4(j—1)+1
and place 4(j — 1) + 1 in any position between the first and current-last positions on the list of person
4(i-1) +3.

T; s:x:g forsomei# 3 1<i,j<k.

Place 4(i —1)+3 in any position between the first and current-last positions on the list of person 4(;-1)+3
and place 4(7 — 1) + 3 in any position between the first and current-last positions on the list of person
4(i - 1) +3.

Ty S Tpy¢ forsomeiandt, 1<i<kand1<t<s.

Place 4(i—1)+3 in any place between the first and current-last positions on the list of person 3(t—1)+4k+1
and place 3(t — 1) + 4k + 1 in any position between the first and current-last positions on the list of person
4(i - 1) +3.

Tr4t <o forsomeiandt, 1<i<kand1<t<s.

Place 3(t — 1) + 4k + 1 in any position between the first and current-last positions on the list of person
4(: — 1) + 1 and place 4(i — 1) + 1 in any position between the first and current-last positions on the list
of person 3(t — 1) + 4k + 1.

To complete the preference lists, place any missing entries after the current-last position on each list in any
order. If s is odd, then we join person 3s 4+ 4k + 1 to the group, place 3s + 4k 4+ 1 in the last position on the list
of person j for each 7 = 1,...,3s + 4k, and fill up the list of person 3s 4 4k + 1 arbitrarily.

Let RI denote the constructed instance of the roommates problem. We claim that the rotation poset of RI is
isomorphic to the self-dualized poset P?.

Applying the Gale-Shapley algorithm to the corresponding stable marriage instance M I, we obtain the following

male-optimal table:
first current-last
position position
male lists: man 1 h ven 15
3s 4+ 4k Saapan ‘e 3444k
3s+4k+1 | 3s+4k+1 (if s is odd)
first current-last
position position
female lists: woman 1 h cee I
3s + 4k Sasqak oo I3o4ak
3s+4k+1 | 3s+4k+1 (if s is odd)
where

(1)ifj=4(—-1)+1, 1<i<kthen f=4((—-1)+3andl;j =4(i-1)+4
(2)if j=4(i—1)+2, 1<i<kthenfj=4(i-1)+4andl; =4(i—-1)+3;
(3)if j=4(i—1)+3, 1<i<k,thenfj=4(i-1)+2andl; =4(i-1)+1;
(4)if j=4(-1)+4, 1<i<k then f;=4(i—1)+1landlj=4(i—-1)+2;
(B)ifj=3(t-1)+4k+1, 1<t<s then f;=3(t—1)+4k+2andl; =3(t-1)+4k+3;
(8)ifj=3(t—1)+4k+2, 1<t<s then f;=3(t—1)+4k+3andlj=3(t-1)+4k+1;
(Mifj=3(t~1)+4k+3, 1<t<s then fj=3(t—1)+4k+1andl;=3(t—1)+4k+2.
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Observe that the rotations of the instance M1 are:

Ri=(4(i—-1)4+1/4(i — 1) +3,4( - 1)+ 2/4(s - 1) + 4)
RS =(4(i = 1)+ 3/4(i = 1) + 2,4(i = 1) + 4/4(i = 1) + 1), i=1,...,k

and

Ry =(3(t-1)+4k+1/3(t - 1)+ 4k + 2, 3(t — 1)+ 4k + 2/3(t ~ 1)
+4k+3,3(t—1)+4k+3/3(t - 1)+ 4k +1,
=R} t=1,...,s

Furthermore, observe that the mapping r; = R; is an isomorphism from the poset P = (S; <, §) into the rotation
poset B® = (£;<,6) of MI. For instance, if z; < zj, 1 <i# j < k, then on the list of person 4(j — 1) + 1 before
the elimination of R;, 4(i — 1) + 3 is sitting between 4(j — 1) + 3 and 4(j ~ 1) + 4. Thus, R; < R;. The other cases
are similar. We summarize the above result as the following theorem.

THEOREM. Let P¢ be a self-dualized poset with 2k non-self-dual elements and s self-dual elements. Then there is
an instance RI of size 4k + 3s if s is even and 4k + 3s + 1 if s is odd of the stable roommates problem such that
P? is order-isomorphic to the rotation poset of RI.

EXAMPLE.
Let
§ 6
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3
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Then a corresponding instance of the stable roommates problem is one with the following preference lists.
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The rotations of the above instance are:
Ry =(1/3,2/4), R!=(3/2,4/1),

Rp =(5/7,6/8), Rj=(7/6,8/5),
and
Rs = R} = (9/10,10/11,11/9).



