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摘 要 

 一般而言，用來評價選擇權的方式大部分為Black-Scholes Model

與數值分析方法，其中數值分析方法又分為多種不同的模型。例如: 

蒙地卡羅法、二項式法等等。雖然Black-Scholes Model在早期被各界

廣泛採用，但它的缺點是有太多的假設，隨著今日日新月異的多種選

擇權的發明，Black-Scholes Model在實證分析時出現了一些不合理的

問題；我們可以知道Black-Scholes Model面對這些新奇選擇權的評價

時並不適用。 

Duan (1995)發表了 GARCH 選擇權定價模型，論文中指出根本

資產之價格動態過程，在服從 GARCH模型的行程下，引入經濟學上

均衡概念的主張，經過適當的風險測度轉換之後，可以導出歐式選擇
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權的價格。但是在此條件狀態下的選擇權訂價理論，其數值分析方

法，仍不夠完備，以致於實務上未能完全地擷取而加以運用。其問題

的主要癥結在於 GARCH 模型，其本質上必然會產生路徑相依(path 

dependence)的問題，導致運算與處理上的困難程度增加。而所謂的路

徑相依，是指在選擇權存續期間，其價格會受到標的資產價格本身波

動性的影響。反之，路徑獨立(path independence)是指選擇權價格只受

到標的資產其到期日時之價格影響。GARCH 模型的路徑相依的性

質，會使得欲用樹狀圖來刻劃價格的波動過程中，各時點的可能狀態

個數會因時間的往前推移，而呈現指數的遞增情形，而使得樹狀圖陣

列非常的龐大，使得 GARCH選擇權定價模型在實務上的應用並不理

想。而 Ritchken 和 Trevor (1999)針對在非連續時間的 GARCH模型，

對歐式選擇權和美式選擇權的訂價，建構一個所謂的樹狀演算法。且

說明此一樹狀演算法可以進一步擴展到標的資產服從一般化GARCH

模型之下，建立出有效的運算方法，此一具體運算方法，不僅適用於

GARCH模型之下選擇權的訂價，而且，也可以用來處理很多雙變數

的擴散模型。RT 演算法的優點在於可以捕捉各個時點的條件變異

數，可以解決 GARCH模型路徑相依的問題，使得評價能更有效率。 

    於1999，S. Figlewski與B. Gao提出了適應性網狀模型(Adaptive 

Mesh Model, AMM), 同時解決了分配誤差(distribution errors)與非線
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性誤差(non-linearity errors)，並且提升了評價模型運算的效率。由於

AMM在評價上表現出不錯的彈性以及效率，後來，有不少研究將

AMM應用於權證的評價上。  

本篇論文將 AMM 中的概念應用在 RT 模型上, 我們稱之為

AMM-RT 模型。由於非線性誤差大部分出現在執行價格附近，因此

AMM執行價格增加網格節點的密度來提升估計的精確度和減少非線

性誤差。我們將這種想法應用於 RT 模型的到期日前一天，在到期日

的前一日與到期日之間，我們仍然使用 RT 模型的演算法，將這段期

間切割的較細。這樣的方式可以達到跟 AMM一樣的效用，同時也可

以如同之前的 RT 模型一樣具有捕捉條件變異數的能力。波動性

(volatility)對於任何一種金融商品而言，都有相當顯著的關係存在，

因此我們選擇 RT 模型搭配 GARCH模型來預測選擇權價格，然而，

我們又希望增加其精確度與減少其誤差，故到期日前一天增加切割期

數以期能達到我們想要的效果。本論文將嘗試分別以傳統的 BS 模型

(在不同的 volatility 下)與 RT模型以及 AMM-RT模型再搭配 GARCH 

(1,1)模型去模擬並比較股票選擇權價格。 
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ABSTRACT 

Evaluating stock option price with traditional predictive techniques 

have proven to be difficult. GARCH option pricing model proposed by 

Duan has been proven to be more suitable for the task. BS model have so 

many assumptions that it cannot be suitable in some exotic option. 

GARCH option pricing model solve the problem which may occur while 

using the BS model.   

This thesis focuses on the stock option price estimating based on 

GARCH (1, 1) model, which have been surveyed by earlier researcher as 

well as the comparison between each model is discussed.  Derived from 

the first GARCH option price model proposed by Duan (1995), the 

Ritchken-Trevor Model offers more accurate pricing than CRR model 

and traditional trinomial tree model. AMM proposed by S. Figlewski and 

B. Gao adds the mesh point density partially to modify the inefficiency 

and calculating error of the CRR and trinomial lattice model, which 
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addresses the problems of distribution errors and non-linearity errors as 

well as upgrade the efficiency of the pricing model. We apply the idea of 

AMM in the date T (i.e. the day before the maturity day). Rather than the 

fine mesh structure like AMM, we develop another fine mesh by the 

same approach of RT model. We just increase the number of time step by 

changing parameter m (Here m is the segmental level of the last trading 

day; m=2, 3, 5 will be discussed) in the last date T. We call this justified 

model “Modified RT Model (AMM-RT)” in this thesis. The same as AMM, 

the AMM-RT model solve the nonlinearity error around the strike price 

while evaluating exotic price like, barrier option. By this modified RT 

model, we also solve the nonlinearity error as well as increase the 

accuracy. In this thesis, we demonstrate a comparison of accuracy 

between BS model (with different volatility), RT model and AMM-RT 

model. 

With their ability to discover patterns in nonlinear and chaotic 

financial systems, the GARCH option pricing model with AMM-RT 

algorithm not only offer the ability to predict market directions more 

accurately than current techniques bur also reduce the complexity of 

computing of the original RT model. Numerical analysis via above 

methods are discussed and compared with performance. Finally, future 

directions for applying the AMM-RT model to the financial markets are 

also disserted. 
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CHAPTER 1 

 
 
 
 
 
 
 
 
 
 
 

Introduction 
 

 
 
 

 

1.1   Overview 

    The prevailing notion in society is that wealth brings comfort and luxury, 

so it is not surprising that there has been so much work done on ways to 

predict the markets. Various technical, fundamental, and statistical indicators 

have been proposed and used with varying results. However, no one 

technique or combination of techniques has been successful enough to 

consistently "beat the market". With the development of GARCH option 

pricing model, researchers and investors can wish that the market mysteries 

can be unraveled. This thesis is an investigation of GARCH option pricing 

model combining different lattice model with an emphasis on stock price 

volatility prediction. 

Because it is often important to obtain price fast, the efficient numerical 

algorithms play a vital role in derivatives pricing when prices changes 

quickly in stock market. In financial econometrics, General Autoregressive 

Conditionally Heteroskedastic (GARCH) processes are wildly used to model 

the returns at regular intervals on stocks, currency and other assets. 
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Specifically, the GARCH process typically represents the increments, 

1ln lnt tS S  , of the logarithms of the asset price at date 1, 2, 3…. These 

models capture many of so-called stylized features of such data, e.g. tail 

heaviness, volatility clustering and dependence without correlation. 

Many financial time series data suffer from the stochastic change in 

volatility over time. For most financial commodities, return innovation will 

influence future volatilities. This issue has become an important and 

imperative empirical fact. Mandelbrot (1963) showed that large absolute 

returns are more likely to follow the large absolute return innovation, which 

is called volatility clustering. The volatility will be influenced by the 

extrinsic environment changes. If the news is bad, the volatility will be larger. 

Black (1976) called this phenomenon ―leverage effect‖. This implies that 

there is a negative correlation between asset return innovation and volatility 

innovation. (Bollerslev, Chou, and Kroner, 1992) 

Using interaction effect between returns and volatility is very important 

in the option price model.  In 1973, Black and Scholes use the history 

volatility to calculate the option value. On the assumption of setting the 

volatility as constant, they ignore the issue about the volatility itself changes 

with the time. Although BS Model is wildly used, many empirical analysis 

showed that BS model will bring the issues of pricing error, for example: 

underestimate the value of out-of-money-option and volatility smile. Duan 

(1995) was the first to propose a GARCH option pricing model. He indicates 

that option can be priced when the dynamics of the price of the underlying 

asset comply with the GARCH process.  Unfortunately, plenty of the path 

dependence of the pricing models prefer to use Mnote Carlo simulation over 
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trees which would increase the calculating difficulty. Thus the analytical 

solutions to prices of options are not generally available and hence numerical 

approaches to prices have to be invoked. Ritchken and Trevor (1999) 

propose trinomial lattice tree to address these problems. They provide an 

efficient numerical procedure (a lattice approach) for pricing European and 

American options under discrete-time GARCH processes. Furthermore, in 

order to handling American option, Duan and Simonato (2000) proposed 

another numerical algorithm ―a Markov chain approach‖ almost at the same 

time. 

Because the Monte Carlo estimate is probabilistic and the American 

options can be accurately priced only with simulation schemes that employ 

advanced techniques, a numerical approach that processed the American 

option more efficiently than previous Monte Carlo simulation is the 

binomial� tree. Although the binomial approach works well under constant 

volatility, there will be a formidable challenge to apply this method in 

stochastic volatility. Rithken and Trevor (1999) construct a tailored lattice 

approximation algorithm for the GARCH model by restricting the storage of 

conditional variance to the minimum and maximum values at each node of 

the discretized underlying asset price under the forward building process.  

S. Figlewski and B. Gao (1999) propose the Adaptive Mesh Model 

(AMM) which adds the mesh point density partially to modify the 

inefficiency and calculating error of the CRR and trinomial lattice model. In 

this thesis, we apply the idea of AMM in the date T (i.e. the day before the 

maturity day). Rather than the fine mesh structure like AMM, we develop 

another fine mesh by the same approach of RT model. We just increase the 

number of time step by changing parameter m in the last date T (Here, we 
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call the segmental level of the last trading day m).  We call this justified 

model ―Modified RT Model (AMM-RT)‖ in this thesis. The emphasis of this 

thesis is to completely investigate the stock option price estimation under 

Duan’s GARCH model in combination with different algorithms. BS model 

with different volatility, RT model and AMM-RT model (modified RT model) 

will be discussed. Moreover, using this modification of the later RT model 

also makes it possible to apply Duan’s GARCH option pricing model to a 

broader domain of exchange traded option contracts. 

The thesis organized as follows. In section 2 we will review the basic 

GARCH option pricing Model proposed by Duan (1995), the lattice 

algorithm of Ritchken-Trevor (1999), and Adaptive Mesh Model. Section 3 

describes the empirical procedure of our work using AMM-RT to evaluate the 

target commodity price volatility. The crux of the work, in Section 4, details 

the numerical illustrations of BS model, RT model and our AMM-RT model 

in concert with GARCH option pricing model. This thesis also concludes 

with comments on possible future work in the area and some conclusions. 

 

1.2   Research Motivation 

There are several motivations for trying to predict stock market prices. 

The most basic of these is financial gain. Any system that can consistently 

pick winners and losers in the dynamic market place would make the owner 

of the system very wealthy. Thus, many individuals including researchers, 

investment professionals, and average investors are continually looking for 

this superior system which will yield them high returns. There is a second 

motivation in the research and financial communities. It has been proposed 
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in the Efficient Market Hypothesis (EMH) that markets are efficient in that 

opportunities for profit are discovered so quickly that they cease to be 

opportunities. The EMH effectively states that no system can continually 

beat the market because if this system becomes public, everyone will use it, 

thus negating its potential gain. 

Doing stock option price predictions have never been easy even for 

professional investors. Stock market experts are continuously researching 

and devising methods that could aid them and others in foreseeing an 

accurate stock market outcome. Stock market commodities prediction is 

continuously being attempted. But unfortunately until now, there isn't a 

100% accurate technique created to do it yet.  

Stock market is the term given to the act of trading company shares, 

options, stocks, and other securities and its derivatives. The stock option has 

a number of players, which could be range from an individual stockholder to 

a very large corporate trader. These players can be anybody coming from any 

part of the world. Trading in the stock option can be done privately with an 

attorney or with a professional stock exchange dealer who have the power to 

execute the order.  

For the most part, stock option price is very volatile in nature so that the 

price is very tough to predict. That's the reason why volatility is studied in 

this thesis. In the past, people almost widely used the regression method, 

time series methods, and the neural network methods to predict stock price. 

Due to persistent studies, the changes in the stock market can now be 

calculated in a relatively acceptable precision.  

In this thesis, we use a different kind of approach to predict the option 

price. The performance there are the various efforts carried out by stock 
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market experts to predict the market's movements. I depict the empirical 

procedure in Section 3.2 and the applicability of Modified RT (AMM-RT) 

model is also discussed. 
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CHAPTER 2 

 
 
 
 
 
 
 
 
 
 
 

Literatures Review  
 

 
 
 

 

2.1   Stock Option Pricing 

Traditionally, the approach of pricing the option divides three major 

sections. Section One: Formula solution (Closed solution): Black and 

Scholes option pricing model. Section Two: Numerical Analysis solution: 

Using numerical approach, like computer simulation, to calculate option 

price. For example, tree algorithm, Monte-Carlo simulation and finite 

differential approach. Section Three: Analytic approximate model: This 

approach combines the above two methods. For example, Barone-Adesi and 

Whaley (1987) deduce the analytic formula solution of American option. 

Most researchers use risk free arbitrage to deduce closed form solution 

and find a partial differential equation and its solution. However, the 

derivation process is more complicated and difficult since we couldn’t find 

its closed-solution in many situations, especially the path-dependency option. 

Harrison and Kreps (1979) develop another kind of method to solve the 

pricing issue of the derivative commodity which is so-called ―martingale 
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pricing method‖. This method, comparing with solving the partial differential 

equation, is easier to solve and involve with fewer mathematical techniques. 

Thus, recently the martingale pricing method is used repetitiously. 

Although closed form formula is simple and computing fast, not all the 

pricing of options exist the closed form solution. Besides, it is usually 

applicable to the pricing of European option but not to American option and 

other exotic option. Moreover, we should adopt the numerical approach to 

handle the option pricing under disconnected time. If we know the path of 

our target asset price, we can use the Monte Carlo approach to simulate 

target asset price’s possible path repeatedly. Thus, we can get the price of 

plain vanilla type option. Yet, this approach would cost a lot of processed 

time and suffer from poor computing efficiency. 

Cox, Ross, and Rubinstein (1979) develop binominal tree model (CRR 

model), which breakthrough the original BS model’s assumptions and 

applicative range. CRR model describe the target asset price’s behavior in 

discrete time status. It also deduces the risk nature pricing model except the 

arbitrage opportunity. It should be noted that CRR model assume target asset 

return’s volatility is constant when it is built. Besides, the binominal tree 

model can add the segmental time steps on tree diagram to increase pricing 

accuracy, which also solve the issue of consuming a lot of time of Monte 

Carlo method. Yet, when the path-dependency issue exists, the nodes of the 

tree diagram will increase exponentially due to the increase of segmental 

time steps. Thus we can conclude that the traditional binominal tree model 

hardly to handle as soon as the option becomes more complicated. Boyle 

(1986) extends the binominal tree to trinomial tree. Further, for binomial tree 

and trinomial tree, Tian (1993) proposes different kind of estimation methods 
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of parameter. Tian also verifies and compares the pricing efficiency of the 

two models. Even though the trinomial tree’s diffusive ended nodes are more 

than the binomial tree’s, the segmental time step will be smaller. Thus, the 

trinomial tree model can capture more complete price probabilistic 

distribution function. Base on this advantage, we can find relatively accurate 

option price and we can also verdict that the pricing efficiency of the 

trinomial tree model is better than which of the binomial tree model. 

 

2.2   GARCH Option Pricing Model 

Duan (1995) proposes the GARCH option model in 1995. He develops 

the option pricing model when stock option follows the discrete time 

GARCH (p, q) process (proposed by Bollerslev, 1986). Following, we will 

describe the GARCH option pricing model using the standard discrete time 

GARCH (1, 1) specification. Because the simple GARCH (1, 1) with normal 

distribution assumption is the most commonly used, we will use GARCH (1, 

1) as our estimating model. Based on the LRNVR of Duan (1995), the 

estimation of variance will not change with the Measure situation, thus, we 

only need to apply simply GARCH (1, 1) to estimate the variance out of 

sample. We let tS  be the target asset price at data t, th  be the conditional 

variance at interval , 1t t   that is one day. The behavior of target asset price 

can be expressed as below: 

1

1

2

1

1
ln( ) ,  | ~ (0, )                                           (1)

2

                                                                                       (2)

t

f t t t t t

t

t t t

S
r h h N h

S

h h

   

  







   

  

 

The other corresponding definitions of symbol are illustrated as follows:  
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tS : the target asset price at period (day) t 

th : the conditional variance of the target asset price at period t 

 : the collection of all information before period t-1 

t : the standard normal random variable at period t, that is, 
1

| ~ (0, ) 
t t

N h 


 

fr : risk free rate 

 : unit risk premium 

The above GARCH (1,1) system follows the standard GARCH 

parameter restriction. And this model follows the restriction as: 

0,  0   ,   < 1,  ( ) 1         

Based on Duan’s model (1995), the asset price process under locally 

risk-neutralized pricing measure Q can be rewritten as:    

1

1

2

1

1
ln( ) ,  | ~ (0, )                                                 (3)

2

( )                                                                  (4)

t

f t t t t t

t

t t t t

S
r h N h

S

h h h

  

    







  

   

    Among these equations, t is the standard normal random variable in the 

corresponding risk-neutralized pricing measure Q. Under this modified 

model, the parameters waiting for estimating are , ,   , respectively. 

Furthermore, the risk premium   amputates from the equation (3) under 

measure Q. In other word, the equation (3) is independent of the parameter  . 

This property indicates that ones can assume that the investors are 

risk-neutral. In the risk-neutral world, the present value of any cash flow can 

be obtained by discounting its expected value at risk-free rate as well as the 

expected return of any stock commodity is the risk-free interest rate. 
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2.3   Ritchken and Trevor Tree 

Ritchken and Trevor (1999) develop the trinomial tree algorithm based 

on trinomial tree model to capture the path of price and volatility and 

advanced to evaluate the European option and American option. Since the 

stock option volatility is incompletely standard distribution, Ritchken and 

Trevor assume that stock option volatility follows the GARCH model and 

the stochastic process. They develop the tree lattice of the variances of stock 

yield rate, probability, and stock price, etc.  

A.  Construct the tree lattice of the variance and probabilities: 

The key to an efficient implementation is to design an algorithm that 

avoids an exponentially exploding number of state, Toward this goal, we 

begin by approximating the sequence of single period lognormal random 

variables in equation (3) by a sequence of discrete random variables. In 

particular, we set ln( )t tS y . Based on GARCH (1, 1) model under Q 

measure, the model in equation (3) ~ (4) can be rewritten as : 

1 1

1
  ,  | ~ (0, )                                           (5)

2
t t f t t t t ty y r h N h            

2

1
( )                                                                 (6)

t t t t
h h h    


     

Thus,  

1

1

1
( | )

2

( | )

t t t f t

t t t

E y y r h

Var y h









  



 

The GARCH (1,1) process can be approximated by the following lattice 

model, and the superscript of each parameter a denoting ―approximation‖: 

1 , 0, 1, 2,..., (7)a a

t t ny y j j n       
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2

1 ( )                 (8)a a a a

t t t th h h             

Symbol n determine the segmental number in each period (day). If n=2, then 

we segment two subinterval in each period. The symbol n also decides the 

branch of the tree diagram that takes on 2n+1 value. When n=2, we have five 

state variables of each period (day) such that there are two values smaller the 

current price, one value unchanged, and another two value larger than the 

current price. The symbol   indicates the jump parameter which allows the 

variance and mean of the next period’s logarithmic price to match the true 

moments as well as ensuring that the (2n+1) probability values are valid in 

the interval [0, 1]. By RT’s theorem,   is chosen such that  

( 1)   (9)

a

th
 


  

The gap between two neighbor logarithmic prices is decided by the spacing 

parameter n . By RT’s theorem,  is a fixed constant which follows the 

relationship: 

                                                                                                       (10)n
n


   

It would be noted that the ―path dependence‖ issue will occur when we 

use GARCH model. In Figure 1, we should note that the number of variance 

may not be 1. Observe that different states may pick different states η. Take 

node (2,-1) for example, there will be three possible paths achieving node 

(2,-1), which means there would be three possible variances on node (2,-1). 

We only reserve the maximum and the minimum variance on each node. 

Thus, the two variances on node (2,-1) will leads to two possible η. For the 
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smaller variance, we just need set η=1; however, we should set η=2 to satisfy 

equation (10). Consequently, if we don’t put a limitation to these variances, 

we will have 5 paths deriving from node (2,-1).  

 

Fig.1   The tree lattice of variance based on GARCH model (t=3, n=1,).  

We assume K=2, rf = 0, λ=0, β0=6.575×10
-6

, β1=0.9, β1=0.04, c=0, 

S0=1000, h0=0.0001096 (h0 is the initial variance). The top (bottom) 
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number is the maximum (minimum) variance (multiplied by 10
5
). 

 

Due to the path dependence issue, the variance of next time will be 

influenced by the variance of the previous time. With the time increase, the 

number of variance of each node will not be only one. In order to overcome 

this problem, we must let the number of variance of each node fixed as well 

as express the all possible variance one node may possessed. We utilize 

interpolation method to get the other K-2 variances using the maximum and 

minimum variance, thus we can keep the number of variance of each node 

fixed.  

max

th and min

th  represent the possible maximum and the minimum 

conditional variance which come from all paths of the lattice. RT model 

divide interval between max

th and min

th  into K parts.  Let ( , )
t

ah i k be the k
th
 

conditional variance of node ( t, i ): 

max min
min ( ) ( )

( , ) .( 1), 1,2,..., (11)
1t

a t t
t

h i h i
h i k h k k K

K


   


 

Thus, we finish the frame of RT lattice model. 

When we construct the variance of the RT lattice model, meanwhile, we 

can obtain the following probabilities: 

 

2 2

( / 2) 1/
(12)

2 2

t t

a a

f

u

n n

h r h n
p

  


 

2 2
1  (13)t

a

m

n

h
p

 
 
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2 2

( / 2) 1/
(14)

2 2

t t

a a

f

d

n n

h r h n
p

  


   

t

ah : the variance of target stock’s rate of return (unit: year) 

 : jump parameter 

n : stock price step between before and after date,  n
n


   and 0

ah   

fr : risk neutral interest rate 

n: decide the segmental number of each period (1 day). If n=2, then we 

segment n subintervals of one day. 

 

B.  Construct the tree lattice of stock price 

After setting the variances and probabilities of the RT lattice model, we 

next begin to construct the stock price of the tree.  

Let lnt ty S  and , 0, 1, 2,...,t t ny y j j n      .       

Following we define the node (t, i) represents the t
th
 date and the i

th
 

price, thus, ( ) (0) , ( ),...0,... ( )t d uy i y i i M t M t    , ( )dM t and ( )uM t stand 

for the maximum and minimum units of price-ascending and 

price-descending, respective. For example, (1) (0) 2ty y     or 

(1) (0) 3ty y    .  

 

C.  Pricing the stock option price 

In order to establish the lattice model, in the above discussion, RT 

model set the logarithmic price at date t is 
a

ty and the conditional variance is 
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a

th . In the Step C, after the underlying asset price and volatility lattice are 

setting, stock option price (not variance) can be evaluated on the tree using 

the backward induction.  Let ( , )a

tC i k is option price of node (t, i) related to 

the k
th
 conditional variance. At this time, the corresponding stock price is 

( )
( ) ty i

tS i e  and k=1, 2,…, K. Regardless of the corresponding variance, 

when the option strikes, the return should be  

 ( ,1) ( ,2) ... ( , ) 0, ( ) (15)T T T TC i C i C i K Max S i X    

where X is the strike price and ( )TS i is the stock price at date T. We will 

show the corresponding relation between variance and stock price at maturity 

day (t=T) in Figure 2. 

 

Fig. 2  The corresponding relation between variance and stock price at  

maturity day (t=T). 

If the k
th
 conditional variance of node (t, i) is ht (i,k), we can calculate 

the ―true” conditional variance of node (t+1, i+jη) at next period: 
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2

1
( ( ( , ))

2( )  [ ]                        (16)
( , )

a

n f t
next

t t t a

t

j r h i k
h j h h

h i k


   

 
   

where 0, 1, 2,...,j n     

However, at node (t+1, i+jη), we have stored options for only K 

different variance level. When (2n+1) is larger than K, there may not be a 

variance entry corresponding exactly to ( )next

th j . Following we use 

―interpolated method‖ to decide the stock option price which corresponds to 

( )next

th j . We assume ( )next

th j locates between the L
th
 conditional variance 

and (L+1)
th
 conditional variance of node ( 1, )t i j  . (one node can 

possess K variance) Thus, the corresponding stock option price of ( )next

th j  

is: 

1 1

int ( ) ( ) ( , ) (1 ( )) ( , 1)                 (17)t t

erp a aC j q j C i j L q j C i j L         

where,  

1

1 1

( , 1) ( )
( )                                         (18)

( , 1) ( , )

a next

t

a a

t t

h i j L h j
q j

h i j L h i j L



 


 

  


   
 

We show the relation of ( )next

th j  in Figure 3. In this way, either node (t+1, 

i+jη) contains a variance entry (or, option price) that matches ( )next

th j , or the 

relevant information is interpolated from the closet two entries, will have its 

corresponding option price. 
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Fig. 3 The illustruction of the location of ( )next

th j  

As a result, we can get the stock option price corresponding to k
th
 conditional 

variance at node (t, i): 

int( , ) ( ) ( ),   0, 1, 2,...,                        (19)f

n
ra erp

t

j n

C i k e P j C j j n




      

We can use equation (16) ~ (19) with the backward recursion to get the 

option price at day 0. We also describe equation (19) using following Figure 

4. 

 

Fig. 4 The illustration of evaluating stock option price ( , )a

tC i k  

The above mentioned probability distribution (12)-(14) can be expressed as  

, ,

( ) u m d

u m d

j j j

u m d

j j j u m d

n
p j p p p

j j j

 
  

 
 , with , , 0u m dj j j  and u m dj j j n   . 
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The variance number at each node in this tree lattice is different; indeed, 

one node maybe has more than one variance (i.e. K variances). The pricing 

result shows that the convergence velocity will be influenced by the lattice 

branches and the number of variance at each node. When the number of each 

node is fixed as well as the multinomial tree’s branch extends, then, the 

convergence velocity increases. On the other hand, when the multinomial 

tree’s branch is fixed as well as the number of each node increases, then, the 

price would converge closely to its true price.  

 

Cakici and Topyan (2000) modify the RT model, which is so-called 

RTCT model. In their point of view, RT’s model is not meaningful due to the 

next date’s possible variance produced by interpolation method. This step 

could be reserved until the option price is calculated in the ―backward‖ 

induction. In the ―forward‖ step which constructs the tree lattice, we only 

need to reserve the maximum and minimum variances and calculate these 

two factors’ influence on next period. Thus, Cakici and Topyan find that the 

model’s volatility would be more close to true asset’s volatility when the 

difference of the variance in each node is equal. Furthermore, when the 

accuracy increases, the calculating time would decrease, convergence 

velocity be better, and the price be more unbiased. Even the GARCH 

model’s parameters change; the result will still be the same. 

 

2.4   Adaptive Mesh Model  
When we use the lattice model to price stock option, there are 

essentially two kinds of approximation errors in any pricing techniques of 
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lattice framework, which are distribution error and nonlinearity error, 

respectively. 

1. Distribution Error: 

When we use lattice model to price stock option, we use a finite set of 

nodes with probabilities (i.e. binominal or trinomial) to approximates the true 

asset price distribution with continuous lognormal density. Although the 

mean and variance of the discrete distribution of lattice model are matched 

by the continuous distribution of lattice model, the discrepancy between 

them still leads to distribution error in stock option value. If we increase the 

time step number of the lattice model (i.e. increase n), the discrete 

distribution of lattice model will approach to the continuous distribution of 

lattice model. With the time step number of lattice model increasing, the 

distribution error decreases.  

2. Nonlinearity Error: 

If the option payoff function is highly nonlinear, pricing this nonlinear 

region with only one or several nodes (i.e. binominal or trinomial) would 

give a poor approximation to the average value over the whole interval. For 

example, when stock price pass through these regions: around the strike price, 

the stock option price meets the crossroad, and barrier option approaches to 

the barrier price, then the stock price’s bitty perturbation will lead to the 

large change of the stock option price(i.e. jumps or meets the crossroad). The 

above situations (the stock option price jumps or meets the crossroad) are 

called nonlinearity error. The nonlinearity error can be reduced by increasing 

the time step number of the lattice model. Even though the nonlinearity error 

can be reduced, it also will occur while the time step number increases to 

some threshold number. Thus, we apply Adaptive Mesh model in pricing 
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stock option to minimized nonlinearity error with only slight computation 

increase. 

Originating from trinomial lattice model, S. Figlewski and B. Gao (1999) 

propose the Adaptive Mesh Model (AMM) which adds the mesh point 

density partially to modify the inefficiency and calculating error of the 

trinomial lattice model. AMM is a kind of trinomial tree lattices that 

applying higher resolution fine mesh to where nonlinearity error occurs. 

AMM model use ln( )S  to substitute the original target asset price S  as the 

variable for calculating node’s price. This is also the major difference 

between AMM and the original trinomial tree model proposed by Boyle 

(1986). The AMM adopts the characteristic of numerical analysis method. It 

can adjust its setting and limitation of its parameters based on different 

warrant contract.  

In the following section, we discuss AMM applying in European option 

and American option, respectively. 

(I) European option: 

AMM follows the serious assumption of BS model. In the risk neutral 

pricing environment, the target asset S obeys the generalized Wiener process 

and satisfies the logarithm normal distribution. The target asset in AMM can 

be expressed as: 

(20)
dS

dt dz
S

  

    We assume
* ln( )X S , then *dX dt dz   . Among this equation, 

2

2
r q


    (  is the expected rate of return; q  is the instantaneously 

dividend payment rate;  is the instantaneously volatility rate; dz expresses 
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the Wiener process). Thus we can rewrite equation (9) as: 

2

ln( ) ( )      (21)
2

d S r q dt dz


     

The advantage of this transform is letting the all asset price to change 

regularly at a fixed quantity dt and dz. Therefore, we can use the idea of the 

finite difference to handle the price frontier. Thus, we go on to increase the 

density of mesh point on the price frontier locally and ensure the price can 

converge rapidly to increase the calculating accuracy.  

Trinomial tree model assumes the target asset price will have three 

kinds of changes until the next period comes: ascending, unchanging, and 

descending. The AMM also retains this characteristic and hypothesize the 

occurring probabilities are uP , mP  and dP , respectively. If the probability and 

the range that price changes are symmetrical, the range of price change h (h 

is so-called price step) should satisfies 2~ (0, )dz N dt   under the 

Geometric Brownian Motion. For this reason, in the continuous diffusion 

process, the hypothesis of model is composed of the summation of occurring 

probabilities, first degree partial differential equation (1
st
 PDE), second 

degree partial differential equation (2
nd

 PDE), and forth degree partial 

differential equation (4
th

 PDE)to form the following simultaneous equation: 

1 (22)u m dP P P    

[ ( ) ( )] 0 0 ( ) (23)u m dE X t t X t P h P P h            

2 2 2 2[( ( ) ( )) ] 0 ( ) (24)u m dE X t t X t t P h P P h             

4 4 2 4 4[( ( ) ( )) ] 3 0 ( ) (25)u m dE X t t X t t P h P P h             

With some algebraic efforts, we obtain the following equation: 
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1/6, 2/3, 1/6, 3   (26)u m dP P P h t      

The above deduction is the trinomial process for appropriating the target 

asset price distribution, in other words: 

* * ,   with P 1/ 6

                0,  with P 2 /3

              ,   with P 1/ 6

t t t u

m

d

X X h

h

   



 

 

According to the above derivation, S. Figlewski and B. Gao (1999) use 

AMM to find the single node’s price at time t without considering the fine 

mesh structure. As the above-mentioned, in the logarithm normal distribution, 

if the step between each node of the tree is constant (h and Δ t), we can 

make use of the ―explicit finite difference” to develop the fine mesh structure. 

Thus the approach would decrease the linearity error.  

Because the contract of the European option is succinct, the model with 

symmetry will increase the convergence speed while computing. Figlewski 

and Gao (1999) suggest to replace the original logarithmic asset price X* by 

the average mean-adjusted logarithmic asset price ( *( )X X t t  ). In other 

words, the mean of *X  will be zero at any time. This also implies the early 

process for the original X is: 

,   with P 1/ 6

                    ,   with P 2/3                             (27)

                ,   with P 1/ 6

t t t u

m

d

X X t h

t

t h







     

 

  

 Therefore, in the condition that the asset price x and maturity date T, the 

general formula of stock option price can be written as: 
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( , ) ( ( , ) ( , ) ( , ) ( , )

( , ) ( , ))

( , ) ( ) , (28)

r t

u m

d

X

C X t e P h t C X h t t P h t C X t t

P h t C X h t t

C X T e X X

 



          

     

  

    In the above equations, the boundary condition ― ( )  ‖ of the maturity 

day means the value in the bracket is positive or zero, which is the same with 

the situation of general lattice model. Note that Eq. (28) allows the 

probabilities (i.e. Pu, Pm, Pd) would vary with h and t , whereas they are 

fixed in the current case of Eq. (27). 

Following, we will describe the application of AMM to European 

Option (i.e. Plain Vanilla Option). We use Figure 5 to illustrate the fine mesh 

structure of one-level AMM around strike price at maturity day. We will 

construct the one-level fine mesh between date T and date T-Δt. In Figure 5, 

the coarse lattice is the original trinomial tree with price and time steps h and 

Δt, is denoted by heavy lines. The light lines represent the fine mesh with 

price step size h/4 and time step size Δt/4. The fine mesh covers all the node 

of the coarse mesh at time state T-Δt. The starting nodes of the fine mesh 

include A2, A3, A4, and A5. In the fine mesh branching from node A2, X   is 

the highest out-of-the-money node while X  is the lowest in-the-money 

node. Since all branches starting from nodes below A1 all end up 

in-the-money and all branches starting from nodes above A6 are all expired 

out-of-the-money. So there is no need to fine the mesh below node A1 and 

above node A6. 

When the lattice model used to evaluate stock option, the nonlinearity 

error would occur in the date closing to the maturity day. Thus, in the Wiener 

process, price step h is directly related to the variation duration t  (i.e. 
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h t  ). For that reason, while we apply the one-level fine mesh structure 

for pricing our target asset, the price volatility h and duration length 

t would convert to / 2h and / 4t , respectively. Besides, the one-level fine 

mesh will construct between time T and time T-Δt. For two-level mesh, the 

price volatility h and duration length t would convert to / 4h and /16t , 

respectively and it will be construct between time T and time T-Δt/4.  

Consequently, if we take M-level fine mesh structure, the corresponding 

parameters will change to / 2M

Mh h  and / 4M

Mt t   , respectively. And 

it will be constructed between time T and time 
( 1)4 M

t
T




 . If we increase one 

level to the lattice, the number of node will increase 52. Even though the 

CRR model and trinomial tree model could achieve to convergence by 

increasing the segmental number of period n comprehensively, these 

approaches are not effective enough lime AMM.  

For CRR model or trinomial tree model, there are (N +1)
2 
nodes of price 

computation in total, where N is the number of price step. Therefore, while 

cutting the price step in half to reduce the nonlinear error, it would lead N 

become quadrupled (h is directly related to t ) which implies 16 times 

computation amount than before. On the other hand, we compare them with 

AMM.  For example, we see the 1-level AMM in Figure 5 and find that we 

only need to add 40 nodes of price computation to the critical region. (The 

total number of node of 1-level AMM: 52; The coarse mesh region of 1-level 

AMM: 12; the fine mesh region of 1-level AMM including the overlap 

region, then we only need to increase 52-12=40 nodes) On the other hand, 

2-level AMM with only 25 time steps, which is much more accurate than a 

standard trinomial tree with 250 time steps, and only a little less accurate 
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than a 1000 time steps binomial tree which require 250 times greater 

execution time. Although the binomial tree runs distinctly faster, it is only 

about half as accurate as the standard trinomial tree and much less accurate 

than the AMM. Furthermore, the 1-level AMM is about four times as 

accurate as the standard trinomial tree. The 2-level AMM, with "finer mesh‖, 

is even about four times as accurate as the1-level AMM. These descriptions 

also indicate AMM can reduce the nonlinearity error without sacrificing its 

efficiency. If we increase more level number M, we will obtain more 

accuracy. When we increase one level to the lattice, the number of node will 

only increase 52. It won’t add too much computing time to the whole model.  
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h/2

 

 

Fig. 5  A one-level AMM for a put option of Plain Vanilla Option around 

strike price at maturity day. 

 

 

(II) American option: 

For American option, the nonlinearity error is also largely accounted for 

the error in the last time step. Besides, there is also an approximation error 

with regard to where the early exercise occurs. 

While we use AMM to evaluate American option, we should set up the 



 

 28 

fine mesh structure around the last several periods’ executing prices, using 

the calculating method of the previous AMM for European option.  

We use the AMM lattice in Figure 6 to illustrate. In the coarse mesh, we 

set the strike price X as the “center point” and select the two neighbor asset 

price X  (node
11A ) and X  (node

12A ) as the “critical region” of the fine 

mesh structure. In order to achieve the accurate result, Figlewski and Gao 

(1999) believe that the calculating path of the fine mesh structure should 

covers the region of in-the-money and out-of-the-money. Hence the 

calculating range of the coarse mesh node which connects the fine mesh 

should extend from ( , )X X  to( 2 , 2 )X h X h   . In other word, in the 

maturity day, we extend the original critical region from 11 12( , )A A to 

10 13( , )A A . For the date T-Δ t, the nodes 2A and 5A  have the same asset price 

with nodes 10A and 13A at maturity date. From 2 5( , )A A , we also spread their 

calculating range to ( 2 , 2 )i iX h X h  , that is, 8 15( , )A A . Thus, the whole 

fine mesh structure is surrounded by the trapezoid composed of nodes 2A , 

5A , 15A  and 8A . 

When we calculate the American option, we must handle the fine mesh 

structure first. Its process is similar to the general lattice model. Take 

subscription to warrant for example, the fine mesh node 2B  in Figure 6, 

whose warrant price is formed by 15A , 1B , and 14A : 

2 15 1 15

14

/ 4( ( / 2, / 4) ( / 2, / 4) ( / 2, / 4)

        ( / 2, / 4) )                                                                                        (29)

r t

B u A m B u A

d A

f e P h t C P h t C P h t C

P h t C

         

  
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Fig. 6  AMM mesh structure chart. 
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CHAPTER 3 
 
 
 
 
 
 
 
 
 
 

 

Methodology 
 

 
 
 

 

3.1   Empirical Procedure 

In this section, we discuss the corresponding assumption, limitation and 

the operation method of Modified RT model (AMM-RT). Originated form 

Adaptive Mesh Model proposed in 1999 by S. Figlewski and B. Gao., we 

also apply fine mesh structure during the period of (T-1, T). T is the maturity 

day here. In the RT model, the time step during (T-1, T) is 1, that is n=1. The 

lattice structure of AMM-RT is not only based on RT model, but also with the 

idea of AMM. We cut the period of (T-1, T) into m subinterval (we call the 

segmental level of the last trading day m, i.e. we use m=2, 3, 5 in the thesis). 

The approach in (T-1, T) possesses the essence of AMM. In the following 

mentions, we introduce the empirical procedure of Modified RT model under 

the stock option price prediction. 

 

A.  Using Original RT tree lattice before period T-1 

In this section, we simplify GARCH (1, 1) model and do parameter 



 

 31 

estimation in the first. We use the assumption in RT model and K=3 (three 

variance in each node). The risk free rate rf is 2.5%. We use the target stock’s 

rate of return and GARCH model with out of sample estimation to estimate 

the parameters of our estimating period ω, α, β, λ and the initial variance h0. 

For each day of our evaluating period, each day will has itself GARCH 

parameters (ω, α, β, λ, h0). Then, for each evaluating day, we set ω, α, β and 

the variance of rate of returns of asset h0 as the beginning value to construct 

RT model. The pricing empirical procedure before date T-Δt is shown step by 

step as follows: 

Step1: Let n=1 to construct the trinomial tree and j=1, 0, -1. 

Step2: Calculate 0h   and n
n


  . Since n=1, thus n  . 

Step3: Using the inequality 1 th
 


    to find the value . 

Step4: Substitute the variance ht (the initial value of ht is h0 and h0 is known) 

of this period (day) into formula of ht+1 (the variance of the next 

period under past t period variances have known)   

2

1 ( )t t t th h h          

        to find the variance of next period (i.e. ht+1).  

Step5: Due to the path dependence issue, the variance of next day will be 

influenced by the variance of the previous day. With the time increase, 

the number of path arriving at each node will increase. Thus, the 

number of variance of each node will increase too. Then, there will 

be more than one variance in each node. Thus, when we proceed to 

the next date, we should compare the value of variance of each node 
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in the date. Next, we reserve the maximum and the minimum 

variance to calculate the η of next date. (That is, we substitute ht into 

1 th
 


    to calculate the η of next date). 

       We REPEAT Step4 to Step5 until day T-1. 

Step6: After Step5, we already construct the tree lattice of variance before 

date T-1. At the same time, we also construct the tree lattice of 

probability . 

2 2

( / 2)

2 2

f tt
u

n n

r hh
p

  


   

2 2
1 t

m

n

h
p

 
   

2 2

( / 2)

2 2

f tt
d

n n

r hh
p

  


   

 

B. Using AMM-RT Model in the last (T-1, T) period 

After using the RT lattice structure before T-1 period (this is so-called 

coarse mesh structure in our model), we will apply our modified method to 

construct the fine mesh structure during last (T-1, T) period. In the original 

RT model, n=1 is used during last (T-1, T) period. In the following mention, 

we will use different value of m (m is the segmental level in the last trading 

day) in the last period. The modified RT (AMM-RT) model with m=2, 3, 5 

will be discussed and compared. For convenience to describe, we show 

Figure 7 to explain the lattice in the last period. A day is cut into m = 3 
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periods, and the jump size turn to 
3

m


     . For one intermediate node 

at day T-1, 2m + 1 states at day T follow each state at day T-1.  

2

1  1( , )T Ty h 

1 day

m=3

 

Fig. 7 For node at period T-1, when a period (day) is cut into m = 3 

periods, and the jump size is 
3

m


      

In our AMM-RT model, we only need to add moderate node in the last 

during last (T-1, T) period. This will not cost much computing amount as 

well as increase pricing accuracy. Although AMM also increase its node in 

the last time step (for 1-level AMM, we increase the mesh density in the last 

(T-1, T) period), AMM can’t capture more complete price probabilistic 

distribution function and the conditional variance. We have introduced AMM 

algorithm in Chapter 2. The probability distribution of AMM tree lattice is 

fixed and the price step and time step are also fixed too. Even though the fine 

mesh in the last time step increase the accuracy of pricing, it seems not to be 
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enough efficiently. For our AMM-RT model, the probabilistic functions are 

not only non-fixed but also the variance of each time step update with time. 

This will capture more information of target asset than AMM and achieve 

more accuracy at the same time. The AMM-RT model cut the last period (day) 

into m subintervals (i.e. increase m), and thus, the discrete distribution of 

lattice model will more approach to the continuous distribution of lattice 

model. With m increasing, the distribution error decreases. Besides, the 

nonlinearity error will occur when RT model applying in some exotic option. 

For example, when barrier option approaches to the barrier price, the 

nonlinearity error occurs. I suggest our AMM-RT model with the same 

essence as AMM will be able to price this type option.  

 The procedure in the (T-1, T) will be shown as following Step7~Step14.  

We assume m=2, 3, 5 in the (T-1, T). 

Step7: In the Step 7, we increase m to add the mesh density. 

Let m=2, 3, 5, respectively to construct the trinomial tree and 

0, 1,  2,...,  j m     

Step8: Calculate 0h   and m
m


  .  m=2, 3, 5. 

Step9: Using the inequality 
11 Th

 


    to find the value  of last 

period (day) T. 

Step10: Substitute the variance hT-1 into formula of ht+1  

2

1 ( )t t t th h h            

        to find the variance of next period (i.e. hT).  

Step11 After Step 10, we already construct the variance tree lattice. At the 
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same time, we also construct the tree lattice of probability of last 

period (day). 

2 2

( / 2) 1/

2 2

f tt
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   
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 
   

2 2

( / 2) 1/

2 2

f tt
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r h mh
p

  


   

Step12: We construct the tree lattice of stock price. 

       For period (0, T-1):  

             
1 ,   0, 1, 2,...,

       

t ty y j j n         

    For period (T-1, T): 

             
1 ,   0, 1, 2,...,

       

T T my y j j m       

Step13: Calculate the stock option price; this price at every node should be 

the same. 

               max min( ) ( ) 0,  ( )-T T TC i C i Max S i X   

Step14: After the Step13, we apply the backward recursion and discount, and 

then we can get the stock option price at day t=0. Using the 

equations recursively as follow: 

2

1
( ( ( , ))

2( )  [ ]   ; 0, 1, 2,.. . ,  (or )
( , )

a

n f t
next

t t t
a

t

j r h i k
h j h h j n m

h i k


   

 
       

 

1 1

int ( ) ( ) ( , ) (1 ( )) ( , 1)t t

erp a aC j q j C i j L q j C i j L         

int( , ) ( ) ( ),   0, 1, 2,...,  (or )f

n
ra erp

t

j n

C i k e P j C j j n m




      
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If we increase m, the distribution error will decrease. Furthermore, when 

the lattice model used to evaluate stock option, the nonlinearity error would 

occur in the date closing to the maturity day. Thus we only cut the time step 

in the last period to track the asset price and reduce the nonlinearity. If the 

segmental level m is larger in the period (T-1, T), we can obtain more 

accuracy. Besides, it won’t add too much computing time to the whole 

model.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 37 

 
CHAPTER 4 

 
 
 
 
 
 
 
 
 
 
 

Numerical Illustration 
 

 

 

4.1   Data Analysis 

To examine the empirical performance of the GARCH option pricing 

model, we applied the model to daily closing prices of the Taiwan Stock 

Exchange Capitalization Weighted Stock Index (TAIEX) and its 

corresponding TAIEX options. For simplicity, we will just consider the call 

options here. We use the index and its corresponding options based on the 

following consideration. The first reason is that the index and the option data 

are freely available on the websites. Furthermore, the TAIEX index option is 

the most actively traded European-style option in Taiwan. Thus, the TAIEX 

option market is chosen to test the empirical performance of the 

Black-Scholes model, RT model and AMM-RT model. In next section, we 

will focus to estimate the call option price in September 2007 (2007/9/3~ 

2007/9/31, 18 trading days). We use the TAIEX index with the sample period 

from September to December 2007 (past 5 years) to establish the GARCH 

volatility dynamic. There are 1239 observations.  
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4.2   Numerical Analysis 

In this thesis, we will apply our AMM-RT trinomial lattice model to 

price the stock option price. First, we should estimate the parameters of 

GARCH model under P measure. We use TAIEX as our approximating 

samples. Here, we choose TAIEX index with the sample period from 

September 2, 2002 to August 31, 2007 as estimative period of GARCH 

model. For example, the call option price of 2007/9/3 will be estimated under 

the estimative period ―5 years‖ prior to this day (i.e. 2002/9/2~2007/8/31). 

Following, we use rolling sample method to estimate the subsequent 

parameters of GARCH model. Fig. 8 shows the daily observations of TAIEX 

during 2002/9/2 – 2007/12/31.  

Based on Bakshi, Cao, and Chen (1997), Duan and Zhang (2001), we 

define a call option is said to be at-the-money if the moneyness is between 

(1.00, 1.03), in-the-money if the moneyness is between (1.03, 1.06), 

out-of-the-money if the moneyness is between (0.94, 0.97) and deep 

in-the-money if the moneyness is greater than1.06 and deep 

out-of-the-money if the moneyness is less than 0.94. We amputate the data 

whose moneyness greater than 1.1 or smaller than 0.9, because the volume if 

trade of them are small. Table 1 provides the average and standard deviation 

of call option prices reported for each moneyness category, and also shows 

the numbers of observations in these categories for the period from 

September 1, 2007 to September 31, 2007 in Figure 8. 
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Table 1 Summary Statistics for TAIEX Call Options (September)* 

 

 Moneyness (S/K) 

 
DOTM 

<0.94 

OTM 

0.94–0.97 

ATM1 

0.97-1 

ATM2 

1-1.03 

ITM 

1.03-1.06 

DITM 

>1.06 

Average 37.343 101.557 197.963 336.559 507.471 725.149 

Std. Dev. 33.386 57.311 67.933 79.198 70.121 87.551 

Number 96 61 54 59 51 67 

Sum   388    

 

*The summary statistics of TAIEX call option near closing prices are reported for each moneyness category. 

Moneyness is defined as S/K, where S denotes the closing value of the TAIEX and K denotes the exercise 

price of the option. The sample period is from September 1, 2007 to September 31, 2007 with a total of 559 

call options.  

For the selection of option data, we amputate the trading days which are 

less than 7 days (since the volatility is large) and more than 40 days (since 

the volume of trade is small) away from the estimated trading day. 
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Figure 8.  TAIEX during 2002/9/2–2007/12/31, 1321 daily observations. 

From Figure 8, we find that the TAIEX trend appears buoyancy during 

2002~2007. The index rises from 4644.58 (2002/9/2) to 8982.16 (2007/8/31) 
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and subsequently has intense vibration. The index is 8506.28 at 2007/12/31. 

We also show the rate of return (log return) of TAIEX during 2002/9/2 ~ 

2007/12/31 in Figure 9. 
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Fig. 9  Rate of return (log return) of TAIEX during 2002/9/2–2007/12/31 with 1320 daily 

observations. It is noted that the observation will lessen 1 after selecting the log return.  

 

Volatility clustering is also observed in the Figure 9, a large value tends 

to follow by another large value. This is known as the conditional 

heteroscedasticity. Thus this data is suitable to be analyzed by GARCH 

option pricing model.  
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We also show the relative statistics of TAIEX in Table 2.  

 

Table 2 The elemental statistic of TAIEX during 2002/9/2–2007/12/31 with 1320 

daily observations. 

  

 

 

 

 

 

From Table 2, the average rate of return is positive, which also indicates 

the trend between 2002/9/2–2007/12/31 appears buoyancy.  The rate of 

return appears to shift to left (the skewness is negative) and possesses ―fat 

tail‖, which also accords with the characteristic of the rate of return of Index. 

 

 

 

 

 

 

 

 

 

 

 

 

Statistics  

Mean 0.000458 

Median 0.000467 

Maximum 0.054845 

Minimum -0.06912 

Std. Dev. 0.012714 

Skewness -0.29432 

Kurtosis 5.91097 
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We also show the estimated parameters of the GARCH model under P 

measure in Table 3. 

Table 3 the estimation of the GARCH model under P Measure (2002/9/2 – 2007/8/31, 

1239 observations) 

1

1

2

1

1
ln( ) ,  | ~ (0, )

2

  

t

f t t t t t t

t

t t t

S
r h h N h

S

h h

   

  







   

  

 

Estimated parameter  

  
-0.076 

(-2.724) 

  
2.53× 610  

(3.166) 

  
0.071 

(8.293) 

  
0.914 

(80.194) 

*The value in the bracket is the ―t‖ value, which used to evaluate the option price of 

2007/9/3. We still need to estimate the parameters of the GARCH model again using 

rolling sample method when we evaluate the forthcoming days’ option price 

(2007/9/4~2007/9/31). 
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Figure 10 shows the implied volatility of fitted GARCH model (not 

implied volatility for option). By comparing Figure 10 (the estimating data 

by GARCH model) with Figure 9 (the true data), the result indicates 

GARCH model can capture the characteristic of time-varying of volatility. 
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Fig. 10  The implied volatility of fitted GARCH model (2002/9/2 – 2007/8/31, 1239 

observations). 

 

Even though Figure 10 shows the implied volatility of fitted GARCH 

model, the situation of volatility is in the sample. However, this thesis 

focuses on the viewpoint of out of sample. We are interested in the implied 

volatility of the fitted GARCH model out of sample. In other words, we 

stand on the viewpoint of future estimating to check the applicability of 

GARCH model. 

     It is noted that the when we estimate the variance of rate of return out 

of sample, we should estimate the volatility of each trading day (we want to 

estimate) until maturity day. Based on the LRNVR of Duan (1995), the 

estimation of variance won’t change with the measure situation, thus, we 
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only need to apply simply GARCH (1, 1) to estimate the variance out of 

sample. About our out of sample estimation, we use the estimated data from 

2002/9/2 to 2007/8/31 to appraise the parameters during 

2007/9/3~2007/9/31.    

We discuss out of sample estimation as follows. The 1
st
 period out of 

sample estimation for the variance of GARCH (1, 1) is: 

2

, 1 1
ˆˆ ˆ( | )f

t t t t t t
h E h h   

 
     

The 2
nd

 period out of sample estimation is: 

2

, 2 2 1 1
ˆˆ ˆ( | ) ( | ) ( | )f

t t t t t t t t
h E h E E h      

   
     

1 1
ˆˆ ˆ ( | ) ( | )

t t t t
E h E h    

 
    

2ˆ ˆˆ ˆ ˆ ˆ( ) ( )
t

h           

The general formula of k
th
 period out of sample estimation can be rewritten 

as: 

,

ˆˆ ˆ(1 ( ) ) ˆˆ( | ) ( )
ˆˆ1 ( )

k

f k

t t k t k t t
h E h h

  
  

 
 

 
   

 
 

, where ,

f

t t k
h

  denotes estimation of the t+k period conditional variance when 

we have known the preceding t periods’ information. 
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Base on the approximated GARCH model of Table 3, the volatility 

route out of sample is shown in Figure 11. Because we only discuss the 

option which is at most 40 days away from its maturity day (according to the 

trading day), we only show 40-period volatilities in the Figure 11. 
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Fig. 11 Out of sample GARCH volatility (2007/9/3 – 2007/11/1, 40 observations) 

And then, we use‖ rolling sample‖ method to estimate the parameters of 

the GARCH model. In other words, we can use TAIEX index with the 

sample during 2002/9/3~ 2007/9/3 (past 5 years) to estimate the option price 

of 2007/9/4. The number of ―rolling sample‖ during the estimative period 

(2007/9/3 ~ 2007/9/31) will be fixed under this frame. For our case, we will 

estimate until September 31, 2007. 

 

Finally, we can rewrite the above mentioned model under Q Measure as 

1

1

2

1

1
ln( ) ,  | ~ (0, )
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Then we estimate option price during 2007/9/3~2007/9/31 under Q Measure. 
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  In this thesis, BS model is one of the chosen models comparing with our 

AMM-RT model. We use the historical volatility as BS model’s volatility. We 

allow different volatilities for different lengths of time to maturity: past one 

month (22 days), past half year (122 days) and past one year (243 days) data 

to calculate BS model’s historical volatility (Using rolling sample method). 

We plot the historical volatility in Figure 12. It is noted that, the volatility in 

Figure 12 ignores the fact that volatility will change with time. 
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Fig. 12  Historical volatility (2007/9/3 – 2007/12/31, 81 observations). Because we only 

evaluate option price at September 2007, this plot needs to be modified. (We only 

choose first 18 days in the plot) 
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In order to further examine AMM-RT model’s performance, we conduct a 

numerical simulation and then empirically examine its performance on the 

pricing of the call warrants in Taiwan Stock Exchange. To affirm our 

AMM-RT model’s performance and practicability, we also compare our 

model with the well-behaved TBS model (Trinomial Black-Scholes model). 

Chou and Wang proposes the Trinomial Black-Scholes （TBS）GARCH 

option pricing algorithm in 2007, which graft Black and Scholes model on 

RT trinomial lattice algorithm. TBS model use Ritchken and Trevor’s 

algorithm in the n-1 periods whiling utilizing the BS model in the last period.  
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Table 4 The TXO estimative performance comparisons between Ritchken-Trevor 

GARCH option model (RT), Modified Ritchken-Trevor GARCH option mode 

(AMM-RT), different type Black-Scholes option model (BS) and well-behaved 

Trinomial Black-Schole model (TBS). 

2

1

ˆ1
( )

N
i i

i i

C C
RMSE

N C


   

 Moneyness (S/K) 

 
DOTM 

<0.94 

OTM 

0.94–0.97 

ATM1 

0.97-1 

ATM2 

1-1.03 

ITM 

1.03-1.06 

DITM 

>1.06 
Overall 

BS(
1 ) 0.528 0.457 0.895 2.153 3.954 6.203 3.131 

BS(
2 ) 0.624 0.509 1.309 2.642 4.417 6.754 3.446 

BS(
3 ) 0.742 0.565 1.434 2.793 4.581 6.930 3.555 

RT(n=1) 0.447 0.459 0.564 0.779 1.556 1.856 1.167 

RT(n=2) 0.421 0.432 0.509 0.722 1.333 1.622 1.089 

AMM-RT 

(n=1, m=2) 
0.427 0.446 0.528 0.744 1.389 1.711 1.153 

AMM-RT 

(n=1, m=3) 
0.417 0.431 0.514 0.720 1.344 1.631 1.108 

AMM-RT 

(n=1, m=5) 
0.408 0.423 0.485 0.711 1.287 1.492 1.033 

TBS 

(n=1) 
0.406 0.422 0.485 0.710 1.252 1.335 1.022 

 

In Table 4, we demonstrate the Modified RT model (AMM-RT) applying 

for the prediction of TXO and make a completed comparison of AMM-RT 

model with original RT model and BS model with different σ both in 

efficiency and accuracy. The numerical evaluating results indicate the 

AMM-RT model is generally suitable to price other exotic options.  

In the following, we use root-mean-square relative error (RMSE) to 

measure the accuracy.  The RMSE error is defined as 
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2

1

ˆ1
( )    (30)

N
i i

i i

C C
RMSE

N C


 

where 
iC  is the mean of true option price used as our benchmark , 

^

iC  is 

the evaluating price applying the different models and N is the option number 

of similar contracts except for the parameters or variable are changed.  First, 

we use traditional BS model with different volatility to evaluate option price. 

We choose three different kind of volatilities (one month, half year and one 

year prior to maturity day) and substitute to BS model. It is because volatility 

can be observed directly, thus, we should choose some substitutive amount to 

express the volatility of one period. For the RT model, we choose different 

segmental level (i.e. n=1 and n=2) in one trading day. In the AMM-RT model, 

except for the last day, the segmental period of other trading day is 1 and the 

segmental periods of the last trading day are 2, 3, 5, respectively (i.e. m=2, 

m=3, m=5). From Table 4, we know the AMM-RT and RT model are both 

better than BS model. Although RT model with n=2 is bitty better than 

AMM-RT model with m=2, the complexity of computing for AMM-RT model 

(m=2) is effectively reduced. AMM-RT model with m=5 is significantly 

better than RT model with n=2, while use less amount of computation. These 

results suggest AMM-RT with m=5 behave best accuracy as well as efficiency, 

compared with traditional RT model. For further investigation, we compare 

AMM-RT model with the TBS model. Our AMM-RT model with m=5 can 

achieve comparable accuracy, comparing with well-behaved TBS model 

without scarifying much efficiency. These discussions will be shown in the 

following. 
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To furthermore investigate the performance for literature models, we 

use model-B

model-A

ln( )
MSE

MSE

 to express the relative accuracy between two different 

models. We show the comparing results in Table 5~Table 12. If the value of 

model-B

model-A

ln( )
MSE

MSE  

is negative, then this result indicates model A shows better 

accuracy than model B. Besides, its absolute value of this negative value is 

larger, model A have better accuracy than model B. From the point of view, 

we can easily see the superiority of model A, which we intend to 

demonstrate.  

 

Table 5  AMM-RT (m=2) and BS model (with σ1, σ2, σ3) 

     Moneyness (S/K) 

                             
 

 

DOTM 

<0.94 

OTM 

0.94–0.97 

ATM1 

0.97-1 

ATM2 

1-1.03 

ITM 

1.03-1.06 

DITM 

>1.06 

2

1

ln( )AMM RT

BS

MSE

MSE

 



 -0.212 -0.024 -0.561 -1.063 -1.046 -1.288 

2

2

ln( )AMM RT

BS

MSE

MSE

 



 -0.379 -0.132 -0.908 -1.267 -1.569 -1.373 

2

3

ln( )AMM RT

BS

MSE

MSE

 



 -0.553 -0.237 -0.999 -1.323 -1.193 -1.399 

 

 

Table 6  AMM-RT (m=3) and BS model (with σ1, σ2, σ3) 
     Moneyness (S/K) 

                             

 
 

DOTM 

<0.94 

OTM 

0.94–0.97 

ATM1 

0.97-1 

ATM2 

1-1.03 

ITM 

1.03-1.06 

DITM 

>1.06 

3

1

ln( )AMM RT

BS

MSE

MSE

 



 -0.236 -0.056 -0.554 -1.095 -1.079 -1.517 

3

2

ln( )AMM RT

BS

MSE

MSE

 



 -0.403 -0.164 -0.935 -1.312 -1.191 -1.421 

3

3

ln( )AMM RT

BS

MSE

MSE

 



 -0.577 -0.268 -1.026 -1.356 -1.226 -1.447 

 

 

 

 



 

 51 

Table 7  AMM-RT (m=5) and BS model (with σ1, σ2, σ3) 

     Moneyness (S/K) 

                             
 

 

DOTM 

<0.94 

OTM 

0.94–0.97 

ATM1 

0.97-1 

ATM2 

1-1.03 

ITM 

1.03-1.06 

DITM 

>1.06 

5

1

ln( )AMM RT

BS

MSE

MSE

 



 -0.258 -0.077 -0.613 -1.108 -1.123 -1.425 

5

2

ln( )AMM RT

BS

MSE

MSE





 -0.425 -0.185 -0.993 -1.313 -1.233 -1.511 

5

3

ln( )AMM RT

BS

MSE

MSE

 



 -0.598 -0.289 -1.084 -1.368 -1.271 -1.536 

 

 

Table 8  AMM-RT (m=2) and RT (n=1 and n=2) 
     Moneyness (S/K) 

                             

 
 

DOTM 

<0.94 

OTM 

0.94–0.97 

ATM1 

0.97-1 

ATM2 

1-1.03 

ITM 

1.03-1.06 

DITM 

>1.06 

2

1

ln( )AMM RT

RT

MSE

MSE

 



 -0.046 -0.029 -0.066 -0.046 -0.114 -0.082 

2

2

ln( )AMM RT

RT

MSE

MSE

 



 0.014 0.031 0.036 0.030 0.041 0.053 

 

 

Table 9  AMM-RT (m=3) and RT (n=1 and n=2) 

     Moneyness (S/K) 

                             
 

 

DOTM 

<0.94 

OTM 

0.94–0.97 

ATM1 

0.97-1 

ATM2 

1-1.03 

ITM 

1.03-1.06 

DITM 

>1.06 

2

1

ln( )AMM RT

RT

MSE

MSE

 



 -0.069 -0.061 -0.093 -0.079 -0.146 -0.129 

2

2

ln( )AMM RT

RT

MSE

MSE

 



 -0.0096 -0.0023 0.0097 -0.0027 0.0082 0.0053 

 

 

Table 10  AMM-RT (m=5) and RT (n=1 and n=2) 

     Moneyness (S/K) 

                             
 

 

DOTM 

<0.94 

OTM 

0.94–0.97 

ATM1 

0.97-1 

ATM2 

1-1.03 

ITM 

1.03-1.06 

DITM 

>1.06 

2

1

ln( )AMM RT

RT

MSE

MSE

 



 -0.092 -0.083 -0.151 -0.092 -0.190 -0.218 

2

2

ln( )AMM RT

RT

MSE

MSE

 



 -0.032 -0.021 -0.048 -0.0154 -0.035 -0.084 
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Table 11  AMM-RT (m=2, 3, 5) and TBS  

     Moneyness (S/K) 

                             
 

 

DOTM 

<0.94 

OTM 

0.94–0.97 

ATM1 

0.97-1 

ATM2 

1-1.03 

ITM 

1.03-1.06 

DITM 

>1.06 

2ln( )AMM RTMSE

TBS

   0.05 0.054 0.084 0.046 0.103 0.248 

3ln( )AMM RTMSE

TBS

   0.026 0.021 0.058 0.013 0.071 0.185 

5ln( )AMM RTMSE

TBS

   0.0049 0.0023 0 0.0014 0.027 -0.11 

 

From Table 5~Table 7, we can find our AMM-RT model behave 

markedly accuracy than BS model, whose variances are obtained by ―out of 

sample estimation‖. It is very important to note that BS model can behave 

best accuracy while its variances are determined; however, in this thesis, the 

variances using in BS model are estimated. Thus, the non-determined 

variances would lead to very poor accuracy, while they are used in BS model. 

    From Table 8~Table 10, we also can see AMM-RT model could achieve 

better accuracy and efficiency than traditional RT model, which attest the 

theory and facts discussed in the former part.  

    Finally, in Table 11, although our AMM-RT model cannot achieve better 

accuracy than the well-behaved TBS model, the AMM-RT model also 

behaves the very close accuracy in comparison with TBS model. It indicates 

AMM-RT model is also an attracting and promising candidate for GARCH 

option pricing. 
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CHAPTER 5 

 
 
 
 
 
 
 
 
 
 
 

Conclusion 
 

 

 

 

Rithcken and Trevor (1999) develop the RT trinomial tree that 

demonstrates the stock option price can be computed when the underlying 

stock price is driven using GARCH process.  

The stock markets provide a framework for investors to allocate their 

funds into stocks, and  try to make profits by buying "under valued" stocks 

and selling "over valued" stocks. Stock markets are one of the most complex 

and rewarding systems to economics model accurately. Since their 

incorporation into the latter part of the 20
th

 century, there have been a vast 

number of different techniques to predict their future behavior. 

This thesis extend RT model and modify its last time step to obtain 

higher accuracy and efficiency. It is noted that many exotic option will 

confront nonlinear error around the maturity day, close to the barrier price, 

ect. We well know the AMM approach can solve this problem by applying 

higher resolution fine mesh to where nonlinearity error occurs. We utilize 

this idea of AMM in concert with the lattice algorithm of RT model. We 

apply fine mesh structure during the period of (T-1, T) in the original RT 
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model. T is the maturity day here. In the RT model, the time step during (T-1, 

T) is 1, that is m=1. In this thesis, we divide the period of (T-1, T) into more 

time step (we call the segmental level of the last trading day m, i.e. m=2, 3, 

5). On other hand, if we increase the segmental number of the last period 

(day) of the lattice model (i.e. increase m), the discrete distribution of lattice 

model will approach to the continuous distribution of lattice model. With m 

increasing, the distribution error decreases. By this modified RT model or 

AMM-RT model, the complexity of computing will be obviously reduced and 

we also decrease the distribution error and nonlinearity error as well as 

increase the accuracy. However, I only apply the AMM-RT model in 

European option to test its feasibility. For the future direction, I suggest 

AMM-RT model can be applied in American option, barrier option and other 

exotic options. I think this model will also work well in the upcoming novel 

financial commodities. Furthermore, we also can compare this model with 

M-level AMM for the future work.  
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