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ABSTRACT
Evaluating stock optien pricé with. trad itional predictive techniques

have proven to be difficult. GARCH option pricing model proposed by
Duan has been proven to be‘more suitable for the task. BS model have so
many assumptions that it cannot' be ‘suitable in some exotic option.
GARCH option pricing model solve the problem which may occur while
using the BS model.

This thesis focuses on the stock option price estimating based on
GARCH (1, 1) model, which have been surveyed by earlier researcher as
well as the comparison between each model is discussed. Derived from
the first GARCH option price model proposed by Duan (1995), the
Ritchken-Trevor Model offers more accurate pricing than CRR model
and traditional trinomial tree model. AMM proposed by S. Figlewski and
B. Gao adds the mesh point density partially to modify the inefficiency

and calculating error of the CRR and trinomial lattice model, which
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addresses the problems of distribution errors and non-linearity errors as
well as upgrade the efficiency of the pricing model. We apply the idea of
AMM in the date T (i.e. the day before the maturity day). Rather than the
fine mesh structure like AMM, we develop another fine mesh by the
same approach of RT model. We just increase the number of time step by
changing parameter m (Here m is the segmental level of the last trading
day; m=2, 3, 5 will be discussed) in the last date T. We call this justified
model “Modified RT Model (AMM-RT)” in this thesis. The same as AMM,
the AMM-RT model solve the nonlinearity error around the strike price
while evaluating exotic price like, barrier option. By this modified RT
model, we also solve the nonlinearity error as well as increase the
accuracy. In this thesis, we demonstrate a comparison of accuracy
between BS model (with different volatility), RT model and AMM-RT
model.

With their ability to diseover patterns in nonlinear and chaotic
financial systems, the GARCH option pricing model with AMM-RT
algorithm not only offer the ability to predict market directions more
accurately than current techniques bur also reduce the complexity of
computing of the original RT model. Numerical analysis via above
methods are discussed and compared with performance. Finally, future
directions for applying the AMM-RT model to the financial markets are

also disserted.
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CHAPTER 1

Introduction

1.1  Overview

The prevailing notion in society is that.wealth brings comfort and luxury,
SO it is not surprising that-there has been.so much work done on ways to
predict the markets. Various technical-fundamental, and statistical indicators
have been proposed and used.with.varying results. However, no one
technique or combination of techniques has been successful enough to
consistently "beat the market". With the development of GARCH option
pricing model, researchers and investors can wish that the market mysteries
can be unraveled. This thesis is an investigation of GARCH option pricing
model combining different lattice model with an emphasis on stock price
volatility prediction.

Because it is often important to obtain price fast, the efficient numerical
algorithms play a vital role in derivatives pricing when prices changes
quickly in stock market. In financial econometrics, General Autoregressive
Conditionally Heteroskedastic (GARCH) processes are wildly used to model

the returns at regular intervals on stocks, currency and other assets.
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Specifically, the GARCH process typically represents the increments,

InS,,, —InS,, of the logarithms of the asset price at date 1, 2, 3.... These

t+1

models capture many of so-called stylized features of such data, e.g. tail
heaviness, volatility clustering and dependence without correlation.

Many financial time series data suffer from the stochastic change in
volatility over time. For most financial commodities, return innovation will
influence future volatilities. This issue has become an important and
imperative empirical fact. Mandelbrot (1963) showed that large absolute
returns are more likely to follow the large absolute return innovation, which
is called volatility clustering. The volatility will be influenced by the
extrinsic environment changes. If the news is bad, the volatility will be larger.
Black (1976) called this phenomenon«‘‘leverage effect”. This implies that
there is a negative correlation between asset return innovation and volatility
innovation. (Bollerslev, Chou, and Kroner, 1992)

Using interaction effect between returns and volatility is very important
in the option price model. In 1973, Black and Scholes use the history
volatility to calculate the option value. On the assumption of setting the
volatility as constant, they ignore the issue about the volatility itself changes
with the time. Although BS Model is wildly used, many empirical analysis
showed that BS model will bring the issues of pricing error, for example:
underestimate the value of out-of-money-option and volatility smile. Duan
(1995) was the first to propose a GARCH option pricing model. He indicates
that option can be priced when the dynamics of the price of the underlying
asset comply with the GARCH process. Unfortunately, plenty of the path

dependence of the pricing models prefer to use Mnote Carlo simulation over



trees which would increase the calculating difficulty. Thus the analytical
solutions to prices of options are not generally available and hence numerical
approaches to prices have to be invoked. Ritchken and Trevor (1999)
propose trinomial lattice tree to address these problems. They provide an
efficient numerical procedure (a lattice approach) for pricing European and
American options under discrete-time GARCH processes. Furthermore, in
order to handling American option, Duan and Simonato (2000) proposed
another numerical algorithm “a Markov chain approach” almost at the same
time.

Because the Monte Carlo estimate is probabilistic and the American
options can be accurately priced only with simulation schemes that employ
advanced techniques, a numerical approach that processed the American
option more efficiently than' previous Monte Carlo simulation is the
binomial tree. Although the binomial-approach works well under constant
volatility, there will be a formidable challenge to apply this method in
stochastic volatility. Rithken and Trevor (1999) construct a tailored lattice
approximation algorithm for the GARCH model by restricting the storage of
conditional variance to the minimum and maximum values at each node of
the discretized underlying asset price under the forward building process.

S. Figlewski and B. Gao (1999) propose the Adaptive Mesh Model
(AMM) which adds the mesh point density partially to modify the
inefficiency and calculating error of the CRR and trinomial lattice model. In
this thesis, we apply the idea of AMM in the date T (i.e. the day before the
maturity day). Rather than the fine mesh structure like AMM, we develop
another fine mesh by the same approach of RT model. We just increase the

number of time step by changing parameter m in the last date T (Here, we
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call the segmental level of the last trading day m). We call this justified
model “Modified RT Model (AMM-RT)” in this thesis. The emphasis of this
thesis is to completely investigate the stock option price estimation under
Duan’s GARCH model in combination with different algorithms. BS model
with different volatility, RT model and AMM-RT model (modified RT model)
will be discussed. Moreover, using this modification of the later RT model
also makes it possible to apply Duan’s GARCH option pricing model to a
broader domain of exchange traded option contracts.

The thesis organized as follows. In section 2 we will review the basic
GARCH option pricing Model proposed by Duan (1995), the lattice
algorithm of Ritchken-Trevor (1999), and Adaptive Mesh Model. Section 3
describes the empirical procedure of our work using AMM-RT to evaluate the
target commodity price volatility. The crux of the work, in Section 4, details
the numerical illustrations of BS model;,RT model and our AMM-RT model
in concert with GARCH option-pricing model. This thesis also concludes

with comments on possible future work in the area and some conclusions.

1.2 Research Motivation

There are several motivations for trying to predict stock market prices.
The most basic of these is financial gain. Any system that can consistently
pick winners and losers in the dynamic market place would make the owner
of the system very wealthy. Thus, many individuals including researchers,
investment professionals, and average investors are continually looking for
this superior system which will yield them high returns. There is a second

motivation in the research and financial communities. It has been proposed



in the Efficient Market Hypothesis (EMH) that markets are efficient in that
opportunities for profit are discovered so quickly that they cease to be
opportunities. The EMH effectively states that no system can continually
beat the market because if this system becomes public, everyone will use it,
thus negating its potential gain.

Doing stock option price predictions have never been easy even for
professional investors. Stock market experts are continuously researching
and devising methods that could aid them and others in foreseeing an
accurate stock market outcome. Stock market commodities prediction is
continuously being attempted. But unfortunately until now, there isn't a
100% accurate technique created to do it yet.

Stock market is the term given to the act of trading company shares,
options, stocks, and other securities and its. derivatives. The stock option has
a number of players, which-could:be-range from an individual stockholder to
a very large corporate trader. These players can be anybody coming from any
part of the world. Trading in the stock option can be done privately with an
attorney or with a professional stock exchange dealer who have the power to
execute the order.

For the most part, stock option price is very volatile in nature so that the
price is very tough to predict. That's the reason why volatility is studied in
this thesis. In the past, people almost widely used the regression method,
time series methods, and the neural network methods to predict stock price.
Due to persistent studies, the changes in the stock market can now be
calculated in a relatively acceptable precision.

In this thesis, we use a different kind of approach to predict the option

price. The performance there are the various efforts carried out by stock
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market experts to predict the market's movements. | depict the empirical
procedure in Section 3.2 and the applicability of Modified RT (AMM-RT)

model is also discussed.



CHAPTER 2

Literatures Review

2.1  Stock Option Pricing

Traditionally, the approach of pricing the option divides three major
sections. Section One: Formula solution ' (Closed solution): Black and
Scholes option pricing model.. Section Two: Numerical Analysis solution:
Using numerical approach, like computer simulation, to calculate option
price. For example, tree algorithm, Monte-Carlo simulation and finite
differential approach. Section Three: Analytic approximate model: This
approach combines the above two methods. For example, Barone-Adesi and
Whaley (1987) deduce the analytic formula solution of American option.

Most researchers use risk free arbitrage to deduce closed form solution
and find a partial differential equation and its solution. However, the
derivation process is more complicated and difficult since we couldn’t find
its closed-solution in many situations, especially the path-dependency option.
Harrison and Kreps (1979) develop another kind of method to solve the

pricing issue of the derivative commodity which is so-called “martingale
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pricing method”. This method, comparing with solving the partial differential
equation, is easier to solve and involve with fewer mathematical techniques.
Thus, recently the martingale pricing method is used repetitiously.

Although closed form formula is simple and computing fast, not all the
pricing of options exist the closed form solution. Besides, it is usually
applicable to the pricing of European option but not to American option and
other exotic option. Moreover, we should adopt the numerical approach to
handle the option pricing under disconnected time. If we know the path of
our target asset price, we can use the Monte Carlo approach to simulate
target asset price’s possible path repeatedly. Thus, we can get the price of
plain vanilla type option. Yet, this approach would cost a lot of processed
time and suffer from poor computing efficiency.

Cox, Ross, and Rubinstein (1979) develop binominal tree model (CRR
model), which breakthrough the-original BS model’s assumptions and
applicative range. CRR model describe the target asset price’s behavior in
discrete time status. It also deduces the risk nature pricing model except the
arbitrage opportunity. It should be noted that CRR model assume target asset
return’s volatility is constant when it is built. Besides, the binominal tree
model can add the segmental time steps on tree diagram to increase pricing
accuracy, which also solve the issue of consuming a lot of time of Monte
Carlo method. Yet, when the path-dependency issue exists, the nodes of the
tree diagram will increase exponentially due to the increase of segmental
time steps. Thus we can conclude that the traditional binominal tree model
hardly to handle as soon as the option becomes more complicated. Boyle
(1986) extends the binominal tree to trinomial tree. Further, for binomial tree

and trinomial tree, Tian (1993) proposes different kind of estimation methods
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of parameter. Tian also verifies and compares the pricing efficiency of the
two models. Even though the trinomial tree’s diffusive ended nodes are more
than the binomial tree’s, the segmental time step will be smaller. Thus, the
trinomial tree model can capture more complete price probabilistic
distribution function. Base on this advantage, we can find relatively accurate
option price and we can also verdict that the pricing efficiency of the

trinomial tree model is better than which of the binomial tree model.

2.2 GARCH Option Pricing Model

Duan (1995) proposes the GARCH option model in 1995. He develops
the option pricing model when, stock option follows the discrete time
GARCH (p, q) process (proposedby:Bollerslev, 1986). Following, we will
describe the GARCH option pricing model using the standard discrete time
GARCH (1, 1) specification. Becausethe simple GARCH (1, 1) with normal
distribution assumption is the most.commonly used, we will use GARCH (1,
1) as our estimating model. Based on the LRNVR of Duan (1995), the
estimation of variance will not change with the Measure situation, thus, we

only need to apply simply GARCH (1, 1) to estimate the variance out of
sample. We let S, be the target asset price at data t, h, be the conditional
variance at interval[t,t +1] that is one day. The behavior of target asset price

can be expressed as below:

() =1, =2k =20 +a eld, = NE) @
Na=w+as!+ i @

The other corresponding definitions of symbol are illustrated as follows:
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S, : the target asset price at period (day) t

h, : the conditional variance of the target asset price at period t

¢ : the collection of all information before period t-1

¢, - the standard normal random variable at period t, that is, &|¢_, ~ N(0,h)

r, : risk free rate

A unit risk premium

The above GARCH (1,1) system follows the standard GARCH
parameter restriction. And this model follows the restriction as:
w>00< a, <1, (x+p)<l

Based on Duan’s model (1995), the asset price process under locally

risk-neutralized pricing measure Q can he.rewritten as:
N2 =1 -+ e, de NON) ®
:
h,=o+a(s—iJh) + A (4)
Among these equations, ¢, is the standard normal random variable in the
corresponding risk-neutralized pricing measure Q. Under this modified
model, the parameters waiting for estimating are o, «, 5, respectively.

Furthermore, the risk premium A amputates from the equation (3) under
measure Q. In other word, the equation (3) is independent of the parameter 4 .
This property indicates that ones can assume that the investors are
risk-neutral. In the risk-neutral world, the present value of any cash flow can
be obtained by discounting its expected value at risk-free rate as well as the

expected return of any stock commaodity is the risk-free interest rate.
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2.3 Ritchken and Trevor Tree

Ritchken and Trevor (1999) develop the trinomial tree algorithm based
on trinomial tree model to capture the path of price and volatility and
advanced to evaluate the European option and American option. Since the
stock option volatility is incompletely standard distribution, Ritchken and
Trevor assume that stock option volatility follows the GARCH model and
the stochastic process. They develop the tree lattice of the variances of stock
yield rate, probability, and stock price, etc.

A. Construct the tree lattice of the variance and probabilities:

The key to an efficient implementation is to design an algorithm that
avoids an exponentially exploding aumber of state, Toward this goal, we
begin by approximating the: sequenceof single period lognormal random

variables in equation (3) by a sequence of: discrete random variables. In

particular, we set In(S,)=7Y,. Based on.GARCH (1, 1) model under Q

measure, the model in equation (3) ~ (4) can be rewritten as :

a=YeH T, 5 e sl = NOR) ©
h.,=w+a(s-AJh }+ph 6)
Thus,

E(yt+1|¢t) =Yt _%ht
var(y,,|4)=h

The GARCH (1,1) process can be approximated by the following lattice

model, and the superscript of each parameter a denoting “approximation”:

You=VYe +iny,, 1=20,£1,+2,..,+n (7)
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W=+ B¢ +a(ef— A ) ®)

Symbol n determine the segmental number in each period (day). If n=2, then
we segment two subinterval in each period. The symbol n also decides the
branch of the tree diagram that takes on 2n+1 value. When n=2, we have five
state variables of each period (day) such that there are two values smaller the

current price, one value unchanged, and another two value larger than the

current price. The symbol 7 indicates the jump parameter which allows the

variance and mean of the next period’s logarithmic price to match the true

moments as well as ensuring that the (2n+1) probability values are valid in

the interval [0, 1]. By RT’s theorem, 7 is chosen such that
(n+1)< ﬂ <n 9)
v

The gap between two neighborulagarithmic prices is decided by the spacing

parameter y,. By RT’s theorem,; yis;a fixed constant which follows the

relationship:
/4
e~ (10)

It would be noted that the “path dependence” issue will occur when we
use GARCH model. In Figure 1, we should note that the number of variance
may not be 1. Observe that different states may pick different states #. Take
node (2,-1) for example, there will be three possible paths achieving node
(2,-1), which means there would be three possible variances on node (2,-1).
We only reserve the maximum and the minimum variance on each node.

Thus, the two variances on node (2,-1) will leads to two possible #. For the

12



smaller variance, we just need set #=1; however, we should set =2 to satisfy
equation (10). Consequently, if we don’t put a limitation to these variances,

we will have 5 paths deriving from node (2,-1).

Ins s
6.9601 ] 1348 - 1053.74
13.48
L R N NN SU— - 104276
6.0302 1229) 1171 - 1031.90
' 12.29 11.71
12.28 | i
6.9287 Py 1021.16
10.96 10.57 13.46
6.9182 - 10.96 10.53 1013 - 101052
10.96 10.60
. - 1000.00
6.9078 T D
11.70 i
J 989.59
6.8973 R
12.27 I
6.8868 10.51 :
13.44
6.8763 - Y - 969.08
I I [} 1
0 1 2 3 Dayt

Fig.1  The tree lattice of variance based on GARCH model (=3, n=1,).
We assume K=2, r;= 0, A=0, [,=6.575X 10°°, £1=0.9, £,=0.04, c=0,
S¢=1000, hy=0.0001096 (hyis the initial variance). The top (bottom)
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number is the maximum (minimum) variance (multiplied by 10°).

Due to the path dependence issue, the variance of next time will be
influenced by the variance of the previous time. With the time increase, the
number of variance of each node will not be only one. In order to overcome
this problem, we must let the number of variance of each node fixed as well
as express the all possible variance one node may possessed. We utilize
interpolation method to get the other K-2 variances using the maximum and
minimum variance, thus we can keep the number of variance of each node

fixed.

h™ and h™ represent the possible maximum and the minimum
conditional variance which..come sfrom. all.paths of the lattice. RT model
divide interval between h™ and h™ into K parts. Let h?(i, k) be the K™

conditional variance of node*('t, I ):

h?(i,k) =h™ + htmax(z__?mm (1) (k-1,k=12,..K (12)

Thus, we finish the frame of RT lattice model.
When we construct the variance of the RT lattice model, meanwhile, we

can obtain the following probabilities:

h®  (r, —h*/2)1/n
t + t

= (12)
2n*y: 217,

Pn=1-— (13)
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ht  (r,—h*/2)J1/n

- (14)
20y} 217,

Py

h?:the variance of target stock’s rate of return (unit: year)

77 jump parameter

7, - stock price step between before and after date, y, = % and y = \/E
n

r, : risk neutral interest rate

n: decide the segmental number of each period (1 day). If n=2, then we

segment n subintervals of one day.

B. Construct the tree latticeof stock price
After setting the variances and probabilities of the RT lattice model, we

next begin to construct the stock price.of the tree.

Let y,=InS, and vy, =Yy, +jny,;1=0,£1,+2,....£n.

Following we define the node (t, i) represents the t" date and the i"
price, thus, vy, (i)=y(0)+iy,i=—M,(t),..0,..M,(t),M,(t)and M,(t) stand
for the maximum and minimum units of price-ascending and

price-descending, respective. For example, y,@Q)=y0)+2-y or

Y. (@) =y(0)+3-y.

C. Pricing the stock option price

In order to establish the lattice model, in the above discussion, RT

model set the logarithmic price at date tis y; and the conditional variance is
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h?. In the Step C, after the underlying asset price and volatility lattice are
setting, stock option price (not variance) can be evaluated on the tree using
the backward induction. Let C7(i,k)is option price of node (t, i) related to
the k™ conditional variance. At this time, the corresponding stock price is
S,(i)=e"? and k=1, 2,..., K. Regardless of the corresponding variance,
when the option strikes, the return should be

C;(i,1) =C;(i,2) =...=C; (i,K) = Max{0,S, (i) — X} (15)
where X is the strike price and S.(i)is the stock price at date T. We will

show the corresponding relation between variance and stock price at maturity

day (t=T) in Figure 2.

C(.1)=S,(i)-X
CHi.2)=SH(i)-X

Cf(i,Kj;ST(i)-X

CAi1)=SHi)-X
CHi2)Y=SH(i)-X

CT(f,Kj;ST(f)-X

Fig. 2 The corresponding relation between variance and stock price at
maturity day (t=T).
If the K" conditional variance of node (t, i) is h(i,k), we can calculate

the “true” conditional variance of node (t+1, i+j#) at next period:
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(17, = (1, =5 W)
Jhei.k)

N (j) =+ ph +ah [ AT (16)
where j=0,+1+2,...,£n

However, at node (t+1, i+jy), we have stored options for only K

different variance level. When (2n+1) is larger than K, there may not be a
variance entry corresponding exactly to h™(j) . Following we use
“interpolated method” to decide the stock option price which corresponds to

h'(j). We assume h"(j)locates between the L™ conditional variance

and (L+1)" conditional varianceiof.node (t+L1i+ jn). (one node can

possess K variance) Thus, :the corresponding. stock option price of h™(j)

IS:

Cinterp(j) _ Q(J)Cil(l + j77: |_) +(1—q(j))Cﬁ1(i + j?], L+1) (17)
where,

() = D+ I L+D) ~ 0 ()) (18)

he (i+ jp,L+1) - h:—l(i +jn,L)

We show the relation of h™(j) in Figure 3. In this way, either node (t+1,

i+jn) contains a variance entry (or, option price) that matches h™(j), or the

relevant information is interpolated from the closet two entries, will have its

corresponding option price.
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he g Gitjn, 1)

h ( ) ht+1(i+j"=L)
next (. Ry yGon, L4 1)

e GErjn, K)

Fig. 3 The illustruction of the location of h"*'(j)

As a result, we can get the stock option price corresponding to k™ conditional

variance at node (t, i):

C(i,k)=e" Z P())IC™™(j), j=0,+1+2,...,+n 19)
j=-n

We can use equation (16) ~ (19) ‘with the backward recursion to get the

option price at day 0. We also Qesq’ }b ""equatlon (19) using following Figure

& e - _‘..~ (“.‘.-"
bl L Cinterz,, (1)

Cfi, k) Pm

e
ht(i, k) C‘lll t+](0)

D
Cinter, (-1)

Fig. 4 The illustration of evaluating stock option price C7(i,k)

The above mentioned probability distribution (12)-(14) can be expressed as

, n P o
p(i)= D, i Pl pirple, with j,, j.. Js =0and j, +j, +js =n
u Jm Jd

juvjm’jd
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The variance number at each node in this tree lattice is different; indeed,
one node maybe has more than one variance (i.e. K variances). The pricing
result shows that the convergence velocity will be influenced by the lattice
branches and the number of variance at each node. When the number of each
node is fixed as well as the multinomial tree’s branch extends, then, the
convergence velocity increases. On the other hand, when the multinomial
tree’s branch is fixed as well as the number of each node increases, then, the

price would converge closely to its true price.

Cakici and Topyan (2000) modify the RT model, which is so-called
RTCT model. In their point of view, RT’s model is not meaningful due to the
next date’s possible variance:produced by interpolation method. This step
could be reserved until the .option price.is- calculated in the “backward”
induction. In the “forward” step which-constructs the tree lattice, we only
need to reserve the maximum and minimum variances and calculate these
two factors’ influence on next period. Thus, Cakici and Topyan find that the
model’s volatility would be more close to true asset’s volatility when the
difference of the variance in each node is equal. Furthermore, when the
accuracy increases, the calculating time would decrease, convergence
velocity be better, and the price be more unbiased. Even the GARCH

model’s parameters change; the result will still be the same.

24  Adaptive Mesh Model

When we use the lattice model to price stock option, there are

essentially two kinds of approximation errors in any pricing techniques of
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lattice framework, which are distribution error and nonlinearity error,
respectively.
1. Distribution Error:

When we use lattice model to price stock option, we use a finite set of
nodes with probabilities (i.e. binominal or trinomial) to approximates the true
asset price distribution with continuous lognormal density. Although the
mean and variance of the discrete distribution of lattice model are matched
by the continuous distribution of lattice model, the discrepancy between
them still leads to distribution error in stock option value. If we increase the
time step number of the lattice model (i.e. increase n), the discrete
distribution of lattice model will approach to the continuous distribution of
lattice model. With the time:step number. of lattice model increasing, the
distribution error decreases:

2. Nonlinearity Error:

If the option payoff function.is_highly nonlinear, pricing this nonlinear
region with only one or several nodes (i.e. binominal or trinomial) would
give a poor approximation to the average value over the whole interval. For
example, when stock price pass through these regions: around the strike price,
the stock option price meets the crossroad, and barrier option approaches to
the barrier price, then the stock price’s bitty perturbation will lead to the
large change of the stock option price(i.e. jumps or meets the crossroad). The
above situations (the stock option price jumps or meets the crossroad) are
called nonlinearity error. The nonlinearity error can be reduced by increasing
the time step number of the lattice model. Even though the nonlinearity error
can be reduced, it also will occur while the time step number increases to

some threshold number. Thus, we apply Adaptive Mesh model in pricing
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stock option to minimized nonlinearity error with only slight computation
increase.

Originating from trinomial lattice model, S. Figlewski and B. Gao (1999)
propose the Adaptive Mesh Model (AMM) which adds the mesh point
density partially to modify the inefficiency and calculating error of the
trinomial lattice model. AMM is a kind of trinomial tree lattices that

applying higher resolution fine mesh to where nonlinearity error occurs.
AMM model use In(S) to substitute the original target asset price S as the

variable for calculating node’s price. This is also the major difference
between AMM and the original trinomial tree model proposed by Boyle
(1986). The AMM adopts the characteristic of numerical analysis method. It
can adjust its setting and limitation:of its. parameters based on different
warrant contract.

In the following section; we-discuss AMM applying in European option
and American option, respectively.
(I) European option:

AMM follows the serious assumption of BS model. In the risk neutral

pricing environment, the target asset S obeys the generalized Wiener process
and satisfies the logarithm normal distribution. The target asset in AMM can

be expressed as:

d?s - adt + odz (20)

We assume X =In(S), thendX =adt+odz. Among this equation,

2
o= r—q—%(a Is the expected rate of return; g is the instantaneously

dividend payment rate; ois the instantaneously volatility rate; dz expresses
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the Wiener process). Thus we can rewrite equation (9) as:
02
d In(S)—(r—q—7)dt:adz (22

The advantage of this transform is letting the all asset price to change
regularly at a fixed quantity dt and dz. Therefore, we can use the idea of the
finite difference to handle the price frontier. Thus, we go on to increase the
density of mesh point on the price frontier locally and ensure the price can
converge rapidly to increase the calculating accuracy.

Trinomial tree model assumes the target asset price will have three
kinds of changes until the next period comes: ascending, unchanging, and

descending. The AMM also retains this characteristic and hypothesize the

occurring probabilities are PP, and.. P, ', respectively. If the probability and

the range that price changes are symmetrical,-the range of price change h (h
is so-called price step) “should satisfies ocdz ~ N(0,c%dt) under the

Geometric Brownian Motion. For this reason, in the continuous diffusion
process, the hypothesis of model is composed of the summation of occurring
probabilities, first degree partial differential equation (1% PDE), second
degree partial differential equation (2" PDE), and forth degree partial

differential equation (4" PDE)to form the following simultaneous equation:

1=P,+P, +P, (22)
E[X(t+At)— X (t)]=0=P,xh+P, x0+P, x(~h) (23)
E[(X (t+At) — X (t))’]=o0°At =P, xh? + P x 0+ P, x (=h)? (24)
E[(X (t+At) — X (1))*]=3c"At* =P, xh* + P, x0+ P, x (-h)* (25)

With some algebraic efforts, we obtain the following equation:
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P =1/6,P,=2/3, P, =1/6, h=0c+/3At (26)
The above deduction is the trinomial process for appropriating the target

asset price distribution, in other words:

X

*

t+At

X =h, with P,=1/6
0, with P =2/3
—h, with P, =1/6

According to the above derivation, S. Figlewski and B. Gao (1999) use

AMM to find the single node’s price at time t without considering the fine

mesh structure. As the above-mentioned, in the logarithm normal distribution,
if the step between each node of the tree is constant (h and A t), we can

make use of the “explicit finite difference ” to develop the fine mesh structure.
Thus the approach would decrease thetlinearity error.

Because the contract of the European option is succinct, the model with
symmetry will increase the convergence speed while computing. Figlewski

and Gao (1999) suggest to replace the original logarithmic asset price X* by

the average mean-adjusted logarithmic asset price (X = X" (t) —at). In other

words, the mean of X~ will be zero at any time. This also implies the early

process for the original X is:

X, — X, =aAt+h, with P, =1/6
aAt, with P =2/3 (27)
aAt-h, with P, =1/6

Therefore, in the condition that the asset price x and maturity date T, the

general formula of stock option price can be written as:
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C(X,t) =e™(P,(h,At)-C(X +h,t + At) + P. (h, At)-C(X,,t + At)
+P,(h,At)-C(X —h,t +At))
C(X,T)=(e* - X)",¥X (28)

In the above equations, the boundary condition “ (-)" ” of the maturity

day means the value in the bracket is positive or zero, which is the same with
the situation of general lattice model. Note that Eq. (28) allows the
probabilities (i.e. P,, Py, Pg) would vary with h andAt, whereas they are
fixed in the current case of Eq. (27).

Following, we will describe the application of AMM to European
Option (i.e. Plain Vanilla Option). We use Figure 5 to illustrate the fine mesh
structure of one-level AMM around strike price at maturity day. We will
construct the one-level fine mesh between'date T and date T-4¢. In Figure 5,
the coarse lattice is the original trinomial tree-with price and time steps h and
At, 1s denoted by heavy lines. The-Hght, lines represent the fine mesh with
price step size h/4 and time step size 4#/4.  The fine mesh covers all the node

of the coarse mesh at time state T-4z. The starting nodes of the fine mesh

include Ay, As, A4, and As. In the fine mesh branching from node A,, X is

the highest out-of-the-money node while X is the lowest in-the-money

node. Since all branches starting from nodes below A; all end up
in-the-money and all branches starting from nodes above Ag are all expired
out-of-the-money. So there is no need to fine the mesh below node A; and
above node Ag.

When the lattice model used to evaluate stock option, the nonlinearity

error would occur in the date closing to the maturity day. Thus, in the Wiener

process, price step h is directly related to the variation duration ~/At (i.e.
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h=eAt). For that reason, while we apply the one-level fine mesh structure

for pricing our target asset, the price volatility h and duration length
Atwould convertto h/2and At/4, respectively. Besides, the one-level fine
mesh will construct between time T and time T-4¢. For two-level mesh, the
price volatility h and duration length Atwould convert to h/4and At/16,
respectively and it will be construct between time T and time T-A#4.

Consequently, if we take M-level fine mesh structure, the corresponding

parameters will change to h, =h/2" and At,, =At/4", respectively. And

. ) ) At )
it will be constructed between time T and time T ER If we increase one

level to the lattice, the number of node will increase 52. Even though the
CRR model and trinomial tree model could achieve to convergence by
increasing the segmental-number of period n comprehensively, these
approaches are not effective enough-lime- AMM.

For CRR model or trinomialitree. model, there are (N +1)*nodes of price
computation in total, where N is the number of price step. Therefore, while
cutting the price step in half to reduce the nonlinear error, it would lead N
become quadrupled (h is directly related to At) which implies 16 times
computation amount than before. On the other hand, we compare them with
AMM. For example, we see the 1-level AMM in Figure 5 and find that we
only need to add 40 nodes of price computation to the critical region. (The
total number of node of 1-level AMM: 52; The coarse mesh region of 1-level
AMM: 12; the fine mesh region of 1-level AMM including the overlap
region, then we only need to increase 52-12=40 nodes) On the other hand,
2-level AMM with only 25 time steps, which is much more accurate than a

standard trinomial tree with 250 time steps, and only a little less accurate
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than a 1000 time steps binomial tree which require 250 times greater
execution time. Although the binomial tree runs distinctly faster, it is only
about half as accurate as the standard trinomial tree and much less accurate
than the AMM. Furthermore, the 1-level AMM is about four times as
accurate as the standard trinomial tree. The 2-level AMM, with "finer mesh”,
Is even about four times as accurate as thel-level AMM. These descriptions
also indicate AMM can reduce the nonlinearity error without sacrificing its
efficiency. If we increase more level number M, we will obtain more
accuracy. When we increase one level to the lattice, the number of node will

only increase 52. It won’t add too much computing time to the whole model.
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Fig. 5 A one-level AMM for a put option of Plain Vanilla Option around
strike price at maturity day.

(1) American option:

For American option, the nonlinearity error is also largely accounted for
the error in the last time step. Besides, there is also an approximation error
with regard to where the early exercise occurs.

While we use AMM to evaluate American option, we should set up the
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fine mesh structure around the last several periods’ executing prices, using
the calculating method of the previous AMM for European option.
We use the AMM lattice in Figure 6 to illustrate. In the coarse mesh, we

set the strike price X as the “center point” and select the two neighbor asset
price. X (nodeA,) and X*(nodeA,) as the “critical region” of the fine

mesh structure. In order to achieve the accurate result, Figlewski and Gao
(1999) believe that the calculating path of the fine mesh structure should
covers the region of in-the-money and out-of-the-money. Hence the

calculating range of the coarse mesh node which connects the fine mesh

should extend from (X, X")to(X"—2h, X~ +2h). In other word, in the
maturity day, we extend the' original:critical region from (A, A,)to
(A, A;). For the date T-A ty:the nodes Ayand A, have the same asset price
with nodes A, and A,at maturity”date. From(A,, A.), we also spread their
calculating range to (X, —2h, X, +2h), that is, (A, A;). Thus, the whole
fine mesh structure is surrounded by the trapezoid composed of nodes A,,
A, A; and A,.

When we calculate the American option, we must handle the fine mesh

structure first. Its process is similar to the general lattice model. Take

subscription to warrant for example, the fine mesh node B, in Figure 6,

whose warrant price is formed by A, B,,and A;,:

f, =e™"*(R,(h/2,At/4)-C, +P,(h/2,At/4)-C, +P,(h/2,At/4)-C,
+P,(h/2,At/4)-C, ) (29)
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CHAPTER 3

Methodology

3.1 Empirical Procedure

In this section, we discuss,the’corresponding assumption, limitation and
the operation method of Modified RT model (AMM-RT). Originated form
Adaptive Mesh Model proposed-in-1999 by S. Figlewski and B. Gao., we
also apply fine mesh structure during‘the period of (T-1, T). T is the maturity
day here. In the RT model, the time step during (T-1, T) is 1, that is n=1. The
lattice structure of AMM-RT is not only based on RT model, but also with the
idea of AMM. We cut the period of (T-1, T) into m subinterval (we call the
segmental level of the last trading day m, i.e. we use m=2, 3, 5 in the thesis).
The approach in (T-1, T) possesses the essence of AMM. In the following
mentions, we introduce the empirical procedure of Modified RT model under

the stock option price prediction.

A. Using Original RT tree lattice before period T-1

In this section, we simplify GARCH (1, 1) model and do parameter
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estimation in the first. We use the assumption in RT model and K=3 (three
variance in each node). The risk free rate r; is 2.5%. We use the target stock’s

rate of return and GARCH model with out of sample estimation to estimate
the parameters of our estimating period o, a, B, A and the initial variance h,.
For each day of our evaluating period, each day will has itself GARCH
parameters (w, a, S, A, hg). Then, for each evaluating day, we set w, a, f and

the variance of rate of returns of asset hyas the beginning value to construct
RT model. The pricing empirical procedure before date T-A¢ is shown step by
step as follows:

Stepl: Let n=1 to construct the trinomial tree and j=1, 0, -1.

Step2: Calculate y = \/E and 7, = % .Since n=1, thusy =y, .
n

Jh

Step3: Using the inequality ~n =1 <==—=<n. 1o find the valuer.
Y

Step4: Substitute the variance h, (the initial value of h, is hyand hg is known)
of this period (day) into formula of h,, (the variance of the next

period under past t period variances have known)

h, =+ als — )"+ ph
to find the variance of next period (i.e. ).

Step5: Due to the path dependence issue, the variance of next day will be
influenced by the variance of the previous day. With the time increase,
the number of path arriving at each node will increase. Thus, the
number of variance of each node will increase too. Then, there will
be more than one variance in each node. Thus, when we proceed to

the next date, we should compare the value of variance of each node
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in the date. Next, we reserve the maximum and the minimum

variance to calculate the » of next date. (That is, we substitute h; into

n-1< ﬂ <n to calculate the # of next date).
v

We REPEAT Step4 to Step5 until day T-1.
Step6: After Step5, we already construct the tree lattice of variance before

date T-1. At the same time, we also construct the tree lattice of

probability .
(r. —h/2)
- h2t2 L h,
21n°y, 21y,
h
P =1~
"y,
ht (rf _htlz)
Py

i o,

B. Using AMM-RT Model in the last (T-1, T) period

After using the RT lattice structure before T-1 period (this is so-called
coarse mesh structure in our model), we will apply our modified method to
construct the fine mesh structure during last (T-1, T) period. In the original
RT model, n=1 is used during last (T-1, T) period. In the following mention,
we will use different value of m (m is the segmental level in the last trading
day) in the last period. The modified RT (AMM-RT) model with m=2, 3, 5
will be discussed and compared. For convenience to describe, we show

Figure 7 to explain the lattice in the last period. A day is cut into m = 3
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periods, and the jump size turnto n-y, =n % For one intermediate node

at day T-1, 2m + 1 states at day T follow each state at day T-1.

®
._ ‘ I/; ¥V, =N"
(Vr_oo hzT—l) . o . i &®

@
e 1 day -

v
/

3

m=3

Fig. 7 For node at period T-2, when aperiod (day) is cut into m =3

periods, and the jump sizeis 7n-y, =7 %

In our AMM-RT model, we only need to add moderate node in the last
during last (T-1, T) period. This will not cost much computing amount as
well as increase pricing accuracy. Although AMM also increase its node in
the last time step (for 1-level AMM, we increase the mesh density in the last
(T-1, T) period), AMM can’t capture more complete price probabilistic
distribution function and the conditional variance. We have introduced AMM
algorithm in Chapter 2. The probability distribution of AMM tree lattice is
fixed and the price step and time step are also fixed too. Even though the fine

mesh in the last time step increase the accuracy of pricing, it seems not to be
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enough efficiently. For our AMM-RT model, the probabilistic functions are
not only non-fixed but also the variance of each time step update with time.
This will capture more information of target asset than AMM and achieve
more accuracy at the same time. The AMM-RT maodel cut the last period (day)
into m subintervals (i.e. increase m), and thus, the discrete distribution of
lattice model will more approach to the continuous distribution of lattice
model. With m increasing, the distribution error decreases. Besides, the
nonlinearity error will occur when RT model applying in some exotic option.
For example, when barrier option approaches to the barrier price, the
nonlinearity error occurs. | suggest our AMM-RT model with the same
essence as AMM will be able to price this type option.

The procedure in the (T-1; T) will be shown as following Step7~Step14.
We assume m=2, 3, 5 in the-(T-1, T).
Step7: In the Step 7, we increase.m-to-add the mesh density.

Let m=2, 3, 5, respectively to  construct the trinomial tree and

j=0, 1, +2,..., +m

Step8: Calculate yz\/E and ym:L. m=2, 3, 5.

Jm
St

Step9: Using the inequality 7-1<~——<n to find the value 7of last
v

period (day) T.

Step10: Substitute the variance hy into formula of hy4

h., =+ ale — )" +ph
to find the variance of next period (i.e. hy).

Stepll After Step 10, we already construct the variance tree lattice. At the
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same time, we also construct the tree lattice of probability of last

period (day).

h +(rf —h/2)\1m

p, =
20y} 217,
h
Py =1-
ny.
) h, (r, —h /2)yJ1/m
d

“uiE o,
Step12: We construct the tree lattice of stock price.
For period (0, T-1):
Yo=Y+ 7y, 1=0,£1,+2,...,£n
For period (T-1, T):
Vi =VYiq 0y, 1=0,£1L£2,...,4m

Step13: Calculate the stock option price; this price at every node should be

the same.
Cr™(i) =C™ (i) =Max{0, S, (i)-X}
Stepl4: After the Step13, we apply the backward recursion and discount, and

then we can get the stock option price at day t=0. Using the

equations recursively as follow:

(7, =6, =5 .4)
NSO

Cinterp(j) _ q(j)Cil(i + j771 |_) + (1— q(j))Cﬁl(i + j?], L +1)

h''(j) =+ ph +ah [ —AP ;j=0,£1+2,....,n (or m)

Ci(i,k)=e" > P(j)C™™(j), j=0,+1,%2,...,+n (or m)

j=n
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If we increase m, the distribution error will decrease. Furthermore, when
the lattice model used to evaluate stock option, the nonlinearity error would
occur in the date closing to the maturity day. Thus we only cut the time step
in the last period to track the asset price and reduce the nonlinearity. If the
segmental level m is larger in the period (T-1, T), we can obtain more
accuracy. Besides, it won’t add too much computing time to the whole

model.
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CHAPTER 4

Numerical lllustration

4.1 Data Analysis

To examine the empirical performance of the GARCH option pricing
model, we applied the model to daily«closing prices of the Taiwan Stock
Exchange Capitalization = Weighted - Stock Index (TAIEX) and its
corresponding TAIEX optians. For simplicity, we will just consider the call
options here. We use the index ‘and:its ‘corresponding options based on the
following consideration. The first reason is that the index and the option data
are freely available on the websites. Furthermore, the TAIEX index option is
the most actively traded European-style option in Taiwan. Thus, the TAIEX
option market is chosen to test the empirical performance of the
Black-Scholes model, RT model and AMM-RT model. In next section, we
will focus to estimate the call option price in September 2007 (2007/9/3~
2007/9/31, 18 trading days). We use the TAIEX index with the sample period
from September to December 2007 (past 5 years) to establish the GARCH

volatility dynamic. There are 1239 observations.
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4.2  Numerical Analysis

In this thesis, we will apply our AMM-RT trinomial lattice model to
price the stock option price. First, we should estimate the parameters of
GARCH model under P measure. We use TAIEX as our approximating
samples. Here, we choose TAIEX index with the sample period from
September 2, 2002 to August 31, 2007 as estimative period of GARCH
model. For example, the call option price of 2007/9/3 will be estimated under
the estimative period “5 years” prior to this day (i.e. 2002/9/2~2007/8/31).
Following, we use rolling sample method to estimate the subsequent
parameters of GARCH model. Fig. 8 shows the daily observations of TAIEX
during 2002/9/2 — 2007/12/31.

Based on Bakshi, Cao,:and Chen«(1997), Duan and Zhang (2001), we
define a call option is said-to be at-the-money if the moneyness is between
(1.00, 1.03), in-the-money: if- the'-moneyness is between (1.03, 1.06),
out-of-the-money if the moneyness'is between (0.94, 0.97) and deep
in-the-money if the moneyness is greater thanl.06 and deep
out-of-the-money if the moneyness is less than 0.94. We amputate the data
whose moneyness greater than 1.1 or smaller than 0.9, because the volume if
trade of them are small. Table 1 provides the average and standard deviation
of call option prices reported for each moneyness category, and also shows
the numbers of observations in these categories for the period from

September 1, 2007 to September 31, 2007 in Figure 8.
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Table 1 Summary Statistics for TAIEX Call Options (September)*

Moneyness (S/K)
DOTM OTM ATM1 ATM2 ™ DITM
<0.94 0.94-0.97 0.97-1 1-1.03 1.03-1.06 >1.06

Average 37.343 101.557  197.963  336.559  507.471  725.149
Std. Dev. 33.386 57.311 67.933 79.198 70.121 87.551
Number 96 61 54 59 51 67
Sum 388

*The summary statistics of TAIEX call option near closing prices are reported for each moneyness category.
Moneyness is defined as S/K, where S denotes the closing value of the TAIEX and K denotes the exercise
price of the option. The sample period is from September 1, 2007 to September 31, 2007 with a total of 559

call options.

For the selection of option data, we amputate the trading days which are
less than 7 days (since the volatility iis. large) and more than 40 days (since

the volume of trade is small)-away;from the estimated trading day.
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Figure 8. TAIEX during 2002/9/2-2007/12/31, 1321 daily observations.
From Figure 8, we find that the TAIEX trend appears buoyancy during

2002~2007. The index rises from 4644.58 (2002/9/2) to 8982.16 (2007/8/31)
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and subsequently has intense vibration. The index is 8506.28 at 2007/12/31.
We also show the rate of return (log return) of TAIEX during 2002/9/2 ~
2007/12/31 in Figure 9.
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Fig. 9 Rate ofreturn (log return) of TAHEX during2002/9/2—-2007/12/31 with 1320 daily
observations. It is noted that the observation will lessen 1 after selecting the log return.

Volatility clustering is also observed in the Figure 9, a large value tends
to follow by another large value. This is known as the conditional
heteroscedasticity. Thus this data is suitable to be analyzed by GARCH

option pricing model.
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We also show the relative statistics of TAIEX in Table 2.

Table 2 The elemental statistic of TAIEX during 2002/9/2-2007/12/31 with 1320

daily observations.

Statistics
Mean 0.000458
Median 0.000467
Maximum 0.054845
Minimum -0.06912
Std. Dev. 0.012714
Skewness -0.29432
Kurtosis 5.91097

From Table 2, the average rate of return is positive, which also indicates
the trend between 2002/9/2—2007/12/31, appears buoyancy. The rate of
return appears to shift to left (the skewness:is negative) and possesses “fat

tail”, which also accords with the characteristic of the rate of return of Index.
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We also show the estimated parameters of the GARCH model under P
measure in Table 3.
Table 3 the estimation of the GARCH model under P Measure (2002/9/2 — 2007/8/31,

1239 observations)

Nt =1, - 2y -+ 2. 214, ~N©.h)

hI+1:a)+agt2+ﬂh[

Estimated parameter

-0.076
y)
(-2.724)
2.53x10°
w
(3.166)
0.071
a
(8.293)
0.914
B
(80.194)

*The value in the bracket is the “t* value, which used to evaluate the option price of
2007/9/3. We still need to estimate the parameters of the GARCH model again using
rolling sample method when “we. evaluate -the forthcoming days’ option price
(2007/9/4~2007/9/31).
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Figure 10 shows the implied volatility of fitted GARCH model (not
implied volatility for option). By comparing Figure 10 (the estimating data
by GARCH model) with Figure 9 (the true data), the result indicates

GARCH model can capture the characteristic of time-varying of volatility.
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Fig. 10 The implied volatility of fitted GARCH model (2002/9/2 — 2007/8/31, 1239
observations).

Even though Figure 10 shows the implied volatility of fitted GARCH
model, the situation of volatility is in the sample. However, this thesis
focuses on the viewpoint of out of sample. We are interested in the implied
volatility of the fitted GARCH model out of sample. In other words, we
stand on the viewpoint of future estimating to check the applicability of
GARCH model.

It is noted that the when we estimate the variance of rate of return out
of sample, we should estimate the volatility of each trading day (we want to
estimate) until maturity day. Based on the LRNVR of Duan (1995), the

estimation of variance won’t change with the measure situation, thus, we
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only need to apply simply GARCH (1, 1) to estimate the variance out of
sample. About our out of sample estimation, we use the estimated data from
2002/9/2 to  2007/8/31 to appraise the parameters  during
2007/9/3~2007/9/31.

We discuss out of sample estimation as follows. The 1% period out of
sample estimation for the variance of GARCH (1, 1) is:
h(TtJrl = E(hHl | ¢t) = é)+ aAgtz +lBh[

The 2™ period out of sample estimation is:

htTt+2 E(ht+2|¢t):a’\)+dE(€t2+l|¢t)+ﬂAE(ht+l|¢t)
= &)+&E(ht+l | ¢t) +£E(h[+1 | ¢t)

=o+(@+p)o+ @+ p)h
The general formula of k™ ‘period out of sample estimation can be rewritten

as.

. O (@ P il
N =Elh )= 2= S @ '

, where h',., denotes estimation of the t+k period conditional variance when

we have known the preceding t periods’ information.



Base on the approximated GARCH model of Table 3, the volatility
route out of sample is shown in Figure 11. Because we only discuss the
option which is at most 40 days away from its maturity day (according to the

trading day), we only show 40-period volatilities in the Figure 11.
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Fig. 11 Out of sample GARCH. volatility(2007/9/3 — 2007/11/1, 40 observations)

And then, we use” rolling sample” method to estimate the parameters of
the GARCH model. In other words, we can use TAIEX index with the
sample during 2002/9/3~ 2007/9/3 (past 5 years) to estimate the option price
of 2007/9/4. The number of “rolling sample” during the estimative period
(2007/9/3 ~ 2007/9/31) will be fixed under this frame. For our case, we will
estimate until September 31, 2007.

Finally, we can rewrite the above mentioned model under Q Measure as
S 1
|M§9=ﬁ—§h+%aﬂﬁ4~Nmﬂ)

h.,=o+a(e—Ah)" +ph
Then we estimate option price during 2007/9/3~2007/9/31 under Q Measure.
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In this thesis, BS model is one of the chosen models comparing with our
AMM-RT model. We use the historical vo latility as BS model’s volatility. We
allow different volatilities for different lengths of time to maturity: past one
month (22 days), past half year (122 days) and past one year (243 days) data
to calculate BS model’s historical volatility (Using rolling sample method).
We plot the historical volatility in Figure 12. It is noted that, the volatility in

Figure 12 ignores the fact that volatility will change with time.
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Fig. 12 Historical volatility (2007/9/3 — 2007/12/31, 81 observations). Because we only
evaluate option price at September 2007, this plot needs to be modified. (We only

choose first 18 days in the plot)
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In order to further examine AMM-RT model’s performance, we conduct a
numerical simulation and then empirically examine its performance on the
pricing of the call warrants in Taiwan Stock Exchange. To affirm our
AMM-RT model’s performance and practicability, we also compare our

model with the well-behaved TBS model (Trinomial Black-Scholes model).
Chou and Wang proposes the Trinomial Black-Scholes (TBS) GARCH

option pricing algorithm in 2007, which graft Black and Scholes model on
RT trinomial lattice algorithm. TBS model use Ritchken and Trevor’s

algorithm in the n-1 periods whiling utilizing the BS model in the last period.
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Table 4 The TXO estimative performance comparisons between Ritchken-Trevor
GARCH option model (RT), Modified Ritchken-Trevor GARCH option mode
(AMM-RT), different type Black-Scholes option model (BS) and well-behaved

Trinomial Black-Schole model (TBS).

1& C-C
RMSE = [— 3 (Zi_>iy?
\/N%‘,( c )

Moneyness (S/K)
DOTM OTM ATM1 ATM2 1™ DITM
<0.94 0.94-0.97  0.97-1 1-1.03  1.03-1.06 >1.06

Overall

BS( o) 0.528 0.457 0.895 2153  3.954 6.203 3.131
BS(o,) 0.624 0.509 1309 2.642 4417 6.754 3.446
BS(o,) 0.742 0.565 1434 2793 4581 6.930 3.555
RT(n=1) 0.447 0.459 0.564 0.779  1.556 1.856 1.167
RT(n=2) 0.421 0.432 0:509°72.0.722  1.333 1.622 1.089
AMM-RT
(n=1, m=2)
AMM-RT
(=1, m=3)
AMM-RT
(n=1, m=5)
TBS
(n=1)

0.427 0.446 0.528 - © 0.744 1.389 1.711 1.153

0.417 0.431 0.514 _0.720 1.344 1.631 1.108

0.408 0.423 0485 1 0.711 1.287 1.492 1.033

0.406 0.422 0.485 0.710 1.252 1.335 1.022

In Table 4, we demonstrate the Modified RT model (AMM-RT) applying
for the prediction of TXO and make a completed comparison of AMM-RT
model with original RT model and BS model with different o both in
efficiency and accuracy. The numerical evaluating results indicate the
AMM-RT model is generally suitable to price other exotic options.

In the following, we use root-mean-square relative error (RMSE) to

measure the accuracy. The RMSE error is defined as
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N

1 C-Ciy
RMSE = \/W;(T) (30)

where C. is the mean of true option price used as our benchmark , C; is

the evaluating price applying the different models and N is the option number
of similar contracts except for the parameters or variable are changed. First,
we use traditional BS model with different volatility to evaluate option price.
We choose three different kind of volatilities (one month, half year and one
year prior to maturity day) and substitute to BS model. It is because volatility
can be observed directly, thus, we should choose some substitutive amount to
express the volatility of one period. For the RT model, we choose different
segmental level (i.e. n=1 and n=2).in one trading day. In the AMM-RT model,
except for the last day, the segmental:period.of other trading day is 1 and the
segmental periods of the last'trading day are=2, 3, 5, respectively (i.e. m=2,
m=3, m=5). From Table 4, we-know-the. AMM-RT and RT model are both
better than BS model. Although*RT model with n=2 is bitty better than
AMM-RT model with m=2, the complexity of computing for AMM-RT model
(m=2) is effectively reduced. AMM-RT model with m=5 is significantly
better than RT model with n=2, while use less amount of computation. These
results suggest AMM-RT with m=5 behave best accuracy as well as efficiency,
compared with traditional RT model. For further investigation, we compare
AMM-RT model with the TBS model. Our AMM-RT model with m=5 can
achieve comparable accuracy, comparing with well-behaved TBS model
without scarifying much efficiency. These discussions will be shown in the

following.
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To furthermore investigate the performance for literature models, we

use | MSEnesy 1O express the relative accuracy between two different
MSE

model-A

models. We show the comparing results in Table 5~Table 12. If the value of

In(MSEomes IS negative, then this result indicates model A shows better
MSE

model-A

accuracy than model B. Besides, its absolute value of this negative value is
larger, model A have better accuracy than model B. From the point of view,
we can easily see the superiority of model A, which we intend to

demonstrate.

Table5 AMM-RT (m=2) and BS model (with 61, 6,, 63)

Moneyness (S/K)

DOTM OTM ATM1 ATM?2 IT™M DITM

<0.94 0.94-0.97 0.97-1 1-1.03 1.03-1.06 >1.06

in(MSE i arz -0.212 -0.024 -0.561 -1.063 -1.046 -1.288
MSEBS—l

(M ar s -0.379 -0.132 -0.908 -1.267 -1.569 -1.373
MSE,;_,

in(MSEums 2 -0.553 -0.237 -0.999 -1.323 -1.193 -1.399
MSEB&3

Table 6 AMM-RT (m=3) and BS model (with 61, 6,, 63)

Moneyness (S/K)

DOTM OTM ATM1 ATM2 IT™ DITM

<0.94 0.94-0.97 0.97-1 1-1.03 1.03-1.06 >1.06

In(MSEAMM,RT,g) -0.236 -0.056 -0.554 -1.095 -1.079 -1.517
MSE;_,

In(MSEAMM,RT,S) -0.403 -0.164 -0.935 -1.312 -1.191 -1.421
MSEBsfz

in(MSEsumars -0.577 -0.268 -1.026 -1.356 -1.226 -1.447
MSEBH
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Table 7 AMM-RT (m=5) and BS model (with 64, 6,, 63)

Moneyness (S/K)

DOTM OTM ATM1 ATM2 IT™ DITM
<0.94 0.94-0.97 0.97-1 1-1.03 1.03-1.06 >1.06
7 MSE e s -0.258 -0.077 -0.613 -1.108 1123 -1.425
n( MSE )
i MSE s, -0.425 -0.185 -0.993 -1.313 -1.233 -1.511
n( MSE )
in(MSE a5 -0.598 -0.289 -1.084 -1.368 -1.271 -1.536
MSEBsfs
Table 8 AMM-RT (m=2) and RT (n=1 and n=2)
Moneyness (S/K)
DOTM OTM ATM1 ATM2 IT™ DITM
<0.94 0.94-0.97 0.97-1 1-1.03 1.03-1.06 >1.06
| MSE w72 -0.046 -0.029 -0.066 -0.046 -0.114 -0.082
n( MSE )
i MSE s ey 2 0.014 0.031 0.036 0.030 0.041 0.053
n(—— Au-RI2)
MSERT—Z
Table 9 AMM-RT (m=3) and RT (n=1 and.:n=2)
Moneyness (S/K)
DOTM OTM ATM1 ATM2 IT™ DITM
<0.94 0.94-0.97 0.97-1 1-1.03 1.03-1.06 >1.06
In(MSEAMM-RT-Z) -0.069 -0.061 -0.093 -0.079 -0.146 -0.129
MSERT—l
| MSE g7 2 -0.0096 -0.0023 0.0097 -0.0027 0.0082 0.0053
(== Au-RIz)
MSERT—Z
Table 10 AMM-RT (m=5) and RT (n=1 and n=2)
Moneyness (S/K)
DOTM OTM ATM1 ATM2 IT™ DITM
<0.94 0.94-0.97 0.97-1 1-1.03 1.03-1.06 >1.06
In(MSEAMM*R”) -0.092 -0.083 -0.151 -0.092 -0.190 -0.218
MSERT—l
In(MSEAMM*R”) -0.032 -0.021 -0.048 -0.0154 -0.035 -0.084
MSERT—Z
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Table 11 AMM-RT (m=2, 3, 5) and TBS

Moneyness (S/K)

DOTM OTM ATM1 ATM2 IT™M DITM

<0.94 0.94-0.97 0.97-1 1-1.03 1.03-1.06 >1.06

in(MSE s 2 0.05 0.054 0.084 0.046 0.103 0.248
TBS

in(MSE -2 0.026 0.021 0.058 0.013 0.071 0.185
TBS

in(MSE s 0.0049 0.0023 0 0.0014 0.027 -0.11

TBS

From Table 5~Table 7, we can find our AMM-RT model behave
markedly accuracy than BS model, whose variances are obtained by “out of
sample estimation”. It is very important to note that BS model can behave
best accuracy while its variances are determined; however, in this thesis, the
variances using in BS model  areestimated. Thus, the non-determined
variances would lead to very pooraccuracy, while they are used in BS model.

From Table 8~Table 10, we also can see: AMM-RT model could achieve
better accuracy and efficiency ‘than“traditional RT model, which attest the
theory and facts discussed in the former part.

Finally, in Table 11, although our AMM-RT model cannot achieve better
accuracy than the well-behaved TBS model, the AMM-RT model also
behaves the very close accuracy in comparison with TBS model. It indicates
AMM-RT model is also an attracting and promising candidate for GARCH

option pricing.
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CHAPTER 5

Conclusion

Rithcken and Trevor (1999) develop the RT trinomial tree that
demonstrates the stock option*price can be computed when the underlying
stock price is driven using GARCH process.

The stock markets provide a framewaork for investors to allocate their
funds into stocks, and try to'make profits by buying "under valued" stocks
and selling "over valued" stocks. Stock markets are one of the most complex
and rewarding systems to economics model accurately. Since their
incorporation into the latter part of the 20" century, there have been a vast
number of different techniques to predict their future behavior.

This thesis extend RT model and modify its last time step to obtain
higher accuracy and efficiency. It is noted that many exotic option will
confront nonlinear error around the maturity day, close to the barrier price,
ect. We well know the AMM approach can solve this problem by applying
higher resolution fine mesh to where nonlinearity error occurs. We utilize
this idea of AMM in concert with the lattice algorithm of RT model. We
apply fine mesh structure during the period of (T-1, T) in the original RT
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model. T is the maturity day here. In the RT model, the time step during (T-1,
T) is 1, that is m=1. In this thesis, we divide the period of (T-1, T) into more
time step (we call the segmental level of the last trading day m, i.e. m=2, 3,
5). On other hand, if we increase the segmental number of the last period
(day) of the lattice model (i.e. increase m), the discrete distribution of lattice
model will approach to the continuous distribution of lattice model. With m
increasing, the distribution error decreases. By this modified RT model or
AMM-RT model, the complexity of computing will be obviously reduced and
we also decrease the distribution error and nonlinearity error as well as
increase the accuracy. However, | only apply the AMM-RT model in
European option to test its feasibility. For the future direction, | suggest
AMM-RT model can be applied in American option, barrier option and other
exotic options. | think this -model will also.work well in the upcoming novel
financial commodities. Furthermore;-we, also can compare this model with

M-level AMM for the future work.
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