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An Empirical Investigation of Option Pricing Models with Realized Volatility

Student : Wan-Chien Chiu Advisor : Dr. Yow-Jen Jou
Institute of Finance

National Chiao Tung University

ABSTRACT

Previous studies have documented that, with use of high frequency data, Heterogeneous
Autoregressive of the Realized Volatility (HAR-RV) model performs better than other volatility
models in fitting financial return volatility measurement and has a more accurate forecasting ability.
However, to our knowledge, no previous studies have investigated whether the HAR-RV model can
improve option pricing and delta dynamic hedging performance in financial markets. Additionally,
previous empirical analysis ‘of option pricing models-with the framework of EGARCH have
presented superior to other volatility models. Using S&P 500 index options data, this study
compares the HAR-RV and the EGARCH option pricing model in terms of option pricing and
dynamic hedging performance. As expected, the results of this study demonstrate that the HAR-RV
option pricing model is superior in terms of out-of-sample call and out-of-sample put option pricing
performance for all moneyness except for out-of-the-money options. In out-of-sample hedging
performance, the HAR-RV model still performs better than the EGARCH model, except in the case
of put options. However, the EGARCH option pricing model does not show significant superiority

in hedging performance of put options.

Keywords: High frequency data; HAR-RV option pricing model; EGARCH option pricing model;

option pricing performance; dynamic hedging performance; moneyness
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1. Introduction

Since Black and Scholes (1973) introduced their renowned framework for option pricing,
numerous theoretical and empirical studies have investigated option pricing. Many empirical studies
found that the Black-Scholes model (henceforth BS) includes pricing errors across different
situations of moneyness and maturity. In relation to identifying problems on the BS model, people
have widely criticized the underlying assumptions of the model. An essential assumption of the BS
model is that the underlying asset process follows the log normality distribution with constant
volatility. However, the log normality cannot explain various empirical discoveries involving asset
return series, most notably the characteristics of fat-tail and volatility clustering. Therefore, various
attempts have been made to relax the assumptions of “constant volatility” in BS model.

In the framework of generalized autoregressive conditional heteroskedasticity (GARCH)
model introduced by Bollerslev (1986), volatility is allowed to depend on past innovations and
volatilities, and thus the model can, in principle, interpret both excess kurtosis and volatility
clustering. The model has been successfully applied to financial data such as stock return data, as
demonstrated in the survey of Bollerslev et al. Various extended studies have adjusted original
GARCH models to better fit real stock returns. In particular, Nelson (1991) identified the
phenomenon of asymmetric volatility responses to negative and positive changes in returns, called
exponential GARCH (EGARCH) model. 1t can explain the phenomenon known as the leverage
effect, which refers to the tendency for changes in stock price to be negatively correlated with
volatility. To date, numerous studies have demonstrated that EGARCH outperforms GARCH in
volatility forecasting.

Recently, researchers have found it more effective to use high frequency data for analysis.
Anderson, Bollerslev, Diebold and Labys (2001) (henceforth ABDL) proposed a non-parametric
method of volatility measurement that used intraday asset return data. The volatility model
introduced by ABDL is termed “realized volatility”, and involves the summation of square intraday
asset return. ABD and other authors further established the applicability of modeling and forecasting
RV in a series of papers (ABDL (2003) and ABD (2005)).

The Heteroskedasticity AR (HAR) model proposed by Corsi (2003) is called HAR-RV model,
and is based on the concept that realized volatility is parameterized as a linear function of the lagged

realized volatilities over different horizons. Although the HAR-RV model does not formally possess



long-memory, the mixture of relatively few volatility components makes it capable of reproducing
remarkable slow volatility autocorrelation decay. The simulation results in Corsi (2003) seem to
confirm that the HAR-RV model successfully fits the main empirical features of financial data (long
memory and fat tail) in a simple and parsimonious way. Furthermore, the author found that the
HAR-RV model outperforms ARFIMA in terms of volatility forecasting ability. Extension of the
HAR-RV model to the HAR-RV-CJ model by ABDL (2007) is based on the mathematical results
proposed by Barndorff-Nielsen et al. (2004). ABDL (2007) considered realized volatility a
combination of integrated volatility and jump component. The authors found that integrated
volatility is more persistent than jump, and that jump lacks any forecasting ability.

In the application of option pricing, numerous empirical studies have discussed the use of
non-constant volatility in option models. Hull and White (1987) and Heston (1993) introduced a
continuous-time stochastic volatility model. Additionally, Duan (1995) developed an option pricing
model based on the GARCH process. Moreover, Bakshi, Cao, & Chen (1997)(henceforth BCC)
assessed the performance of wvarious models allowing volatility, interest rates, and jumps to be
stochastic for S&P500 index option contracts. BCC found that although the BS model does not
outperform other more complicated models in terms of either in-sample fitting or out-of-sample
forecasting, it does achieve comparable hedging performance. Dumas, Fleming, & Whaley (1998)
assessed an ad hoc version of the BS model, and found that it performs no worse than a class of
so-called deterministic volatility function models. For hedging purposes, they concluded that
“simpler is better.” Heston and Nandi (2000) investigated the empirical performance of alternative
option pricing models using S&P500 Index options data and found that GARCH outperforms the ad
hoc BS model of Dumas et al. (1998) in terms of in-sample fitting and out-of-sample forecasting.
Haynes, Yung, & Zhang (2003) compared the empirical performance of an ad hoc BS option pricing
model with that of an EGARCH option pricing model, and found that EGARCH outperforms the ad
hoc BS model in terms of both in-sample fitting and out-of-sample forecasting. However, the
EGARCH performs worse than the ad hoc BS model in terms of hedging performance regardless of
moneyness and hedging horizons.

Previous studies demonstrate that the HAR-RV model is superior to alternative models for
volatility forecasting. Furthermore, based on previous studies, EGARCH model has better option

pricing performance for both in-sample fitting and out-of-sample forecasting, except in hedging



performance. Although the HAR-RV model is a better volatility model in forecasting, to date, no
studies have examined its influence on options pricing. This study thus evaluates pricing
performance of S&P 500 index option (SPX) (largely traded European option in U.S.) for two
aspects, out-of-sample valuation errors and out-of-sample hedging errors, by using the HAR-RV
model and the EGARCH model respectively. This study examines whether the HAR-RV model
outperforms the EGARCH model in pricing and hedging performance.

Generally, the results of this study indicate that the HAR-RV option pricing model is superior
both in call and put one-day/five-days pricing performance and in call option hedging performance.
However, the EGARCH option pricing model does not show significant superiority in put option
hedging performance.

The remainder of this paper is organized as follows. Section 2 describes the data, and Section 3
then introduces time series volatility model and realized volatility model. Subsequently, Section 4
describes how SPX can be priced in applying volatilities estimated by HAR-RV model and
EGARCH model (see Duan (1995)). Section 5 presents out-of-sample pricing performance, and
Section 6 discusses out-of-sample dynamics hedging errors. Conclusions are finally drawn in

Section 7, along with recommendations for future research.
2. Data

This work investigates a heavily traded option contract, the S&P 500 index option (SPX). To
apply the HAR-RV model, high frequency data are required. Based on the Tickdata database, this
study considers the S&P 500 index from Jan. 2, 2002 to June 29, 2007, including daily data and 15
minute interval data. This study used daily data in EGARCH (1,1) models to estimate volatilities,
and 15 minute interval data in the HAR-RV model to obtain the estimated volatilities.

Additionally, option data of SPX is necessary to assess pricing performance and hedging errors.
This study gathered option data with daily trading volume exceeding five contracts. Although this is
not a guarantee against thin trade effects, it should go quite a way in terms of minimizing the
problem. Furthermore, the choice of more than five contracts per day is used in the previous
literature.

This study takes into account the nearest contract months of option prices with maturity times
that are greater than 21 days but less than 90 days. To mitigate the impact of price discreteness on

option valuation, options with values smaller than 3/8 are excluded; based on the OptionMetrics



database, options with end of average bid-offer price exceeding 3/8 are included as our sample. In
the OptionMetrics database, option data from Apr. 2, 2007 to June 29, 2007, totally 63 trading days,
is selected as the sample.

The OptionMetrics database also includes information on zero curve derived from BBA
(British Bankers’ Association) LIBOR rates and settlement prices of CME Eurodollar futures. This
study extracts necessary data from zero curve as our risk-free interest rates. The zero curve is used
for the period from Apr. 2, 2007 to June 29, 2007 for option pricing. The table 2.1 and 2.2 are

summary statistics of SPX in call and put options, respectively.
3. Volatility Models

This section introduces our two competing volatility models, which are the EGARCH model
and the HAR-RV model, respectively. The results obtained from these two models will be used as

the inputs of the pricing models for assessing option pricing performance and hedging errors.
3.1 EGARCH model

The GARCH model fails to explain the leverage effect and is restrictive on parameters. Nelson
(1991) found that the volatility responds asymmetrically responses to negative and positive return
changes. The model, called exponential GARCH (EGARCH) can explain leverage effect, which
refers to the tendency for changes in stock price to be negatively correlated with volatility.
Furthermore, numerous studies show that EGARCH performs better than GARCH model in

volatility forecasting. The EGARCH (1,1) was proposed by Nelson(1991)as follows.

Define h, as follows:
h =exp{ao+ay f (24 )+BInh 4
f(21) =|]24|—E[Z | + 62, | 1)
where Z, , is standard error, defined as 51_1/\/h1__a which conditional on the previous

information, are independent random variables with mean zero, and variance one. In addition,

|2,4|—E|Z,,|+ 62, isanasymmetric formula of z,_,.
Considering this f function, |ZH|—E|ZH| is a measure of shock size when volatility is

systematic, called magnitude effect, and o7z, represents sign effect, which is a new shock in the



asymmetric formula. The full asymmetric formula represents the current volatility determined by

past shock size and sign. Furthermore, the distribution of Z, ; should be set when using MLE.

Nelson (1991) use generalized error distribution, whose pdf is as follows:

f(z):{v-exp[—0.5|z//1

-1

a2 ) 2)

where Z:[Z'Z/v -F(]/v)l“(3/v)]0'5, v controls the thickness of distribution tail, T'(+) is a

Gamma function, and E(|ZH|):«/2/7Z. Therefore, the EGARCH (1,1) model for the random

variable r can be represented as follows:

=4 +&
£|Q,~N(0h)

h, = exp{ao o '[gtfl/\/a—x/z/_ﬂ+5(8u/\/cﬂ+ﬂ In htl} 3)
3.2 HAR-RV model

The Heterogeneous Autoregressive model of the Realized Volatility (HAR-RV) is proposed by
Corsi (2003), which can directly model and forecast the time series behavior of volatility. The
model is based on a straightforward extension of the so-called Heterogeneous ARCH, or HARCH,
class of models analyzed by Muller et al. (1997). The purpose of the'model is to obtain a conditional
volatility model based on realized volatility which is able to reproduce the memory persistence
observed in the data but, at the same time, remains parsimonious and easy to estimate. The
simulation results in Corsi (2003) seem to confirm that the HAR-RV model successfully fits the
main empirical features of financial data (long memory and fat tail) in a simple and parsimonious
way. Furthermore, empirical results on USD/CHD data by applying HAR-RV model represent good
out of sample forecasting performance which steadily and substantially outperforms other previous
model (standard GARCH and SV models) (see Corsi (2003)). The following introduces the main
framework of HAR-RV model in Corsi (2003):

Assuming that the logarithmic asset price follows a continuous-time process:
dp(t)=u(t)dt+o(t)dwW (t) 4)
where p(t) is the logarithm of instantaneous price, ,u(t) is a continuous, finite variation

process, dW (t) is the standard Brownian motion, and o (t) is a stochastic process independent



of dwW (t) For this diffusion process, the integrated volatility associated with day t, is the

integral of the instantaneous volatility over the one day interval (t—ld;t), where a full 24 hours

day is represented by the time interval 1d ,

ot(d):( t O'Z(a))da))]/2 (5)

t-1d

Andersen et al. (2001), applying the quadratic variation theory, suggested that the sum of
intraday squared returns converges (as the maximal length of returns go to zero) to the integrated
volatility of the prices. This nonparametric estimator is called realized volatility. The definition of

the realized volatility over a time interval of one day is

d
RV = > 2, (6)

where A:% and _j, = p(t—jA)—p(t—(j+1)A) defines continuously compounded

A -frequency returns. Under these assumptions, the ex-post realized volatility is an unbiased
volatility estimator. Moreover, as the sampling frequency is increased, the realized volatility

provides a consistent nonparametric measure of the integrated volatility over the fixed time interval:

RV =&",

plim,,__ RV, ;

When considering realized volatility over different time horizons longer than one day, these
multi-period volatilities are normalized sums of the one-period realized volatilities (i.e. a simple
average of the daily quantities). For example, a weekly realized volatility and a monthly realized

volatility at time t will be given by the average as follows respectively:

RV = L(RVS% + RV, + RV, + RV + RV, ™
Rv,M) = %(th(ig FRV G+ RV ) ®)

Then the one-day ahead volatility is expressed as a linear function of previous realized

volatilities,
RV = g, + YRV + pMRV™W 4 pMRVM™ g t=12,...,T ©)

The Equation (9) is labeled as a Heterogeneous Autoregressive model for the Realized



\olatility (HAR-RV) model.
4.  European Option Pricing Models

In this section, European option pricing model will be combined with the previously described

models of volatility to assess the values of SPX.
4.1. The EGARCH option pricing model

For the time varying volatilities estimated from the EGARCH model, there is no analytical

solution for pricing options. In this study, we only consider the EGARCH(1,1) model with S&P 500

Index value S, is assumed to be the following price dynamics under probability measure P :

S 1
In—=r+1c,-=0’ +¢
t-1 2

& =0z {z,}~1id.N(0,1)
Inc? =w+plne?, + 0z, , + 7’[|Zt_1| N (|zt_1|)] (10)
where S, is the asset price at time t, r is the risk-free rate of return on the asset, and o7 is the

conditional variance of the asset at time t. Notice that E (|Z,_,|) =2/ .

Following Duan (1995), under the locally risk-neutralized measure Q, the stock price process

is represented as follows:

It - r—iaf +&
2
t-1

E=g+Ai0, =0,(3,+A) =01 {z;}° ~iid.N(02)

Inc’ =w+elnc!, +0z,_ + }{|Ztl|—\/z}
Vs
. 2
ztl—ﬂ\—\/ﬂ (11)

According to the definition of pricing option, the call option price at timet,C,, with maturity

:a)+(plnat21+6’(zfl—/1)+7{

time T and strike price X is

C,=e""ER [ Max{(s, - X),0} ] (12)

, and the put option price at time t, P, with maturity time T and strike price X is



R =e¢""ER [ Max{(X -, ),0} ] (13)
where EtQ is the expectation operator under measureQ and r is the risk-free rate.

Therefore, there are two steps to implement the EGARCH(1,1) option pricing model. First is to
build the EGARCH(1,1) and forecast the one-step-ahead volatility. In this thesis, rolling window
approach is used to forecast the volatilities. For example, when pricing the option of April 2, 2007,
the daily index data from Jan. 2, 2002 to Mar. 30 2007 are used to build the EGARCH(1,1) model
and the predicted volatility of April 2, 2007 are obtained accordingly. The predicted volatility of
April 3, 2007 will be obtained using the historical data of the same length by dropping the data of
Jan. 2, 2002 and adding that of April 2, 2007. The process goes on as time evolve until June 29,
2007.

The second step of EGARCH option pricing consists of first simulating N (5000 in our case)
prices one period ahead according to (11) by Monte Carlo simulation. The simulation process

continues in the next period, and so on until option maturity. Finally, the average value of

Max{(ST —X),O} and the average value of Max{(x —ST),O} are discounted to yield the

estimated European call and put option value, respectively.

Repeating this procedure; there are total 63 sets of estimated EGARCH(1,1) parameters; at the
same time, the option from Apr. 2, 2007 to June 29, 2007 (63 trading days, total 7011 number of
options) are evaluated for our interests of out-of-sample option pricing performance. In this study,
we called this procedure: “window rolling”. When accounting for one-day out-of-sample valuation
error, the data rolls one day every time; for five-days out-of-sample valuation error, it rolls five days
every time. Table 4.1 reports the summary statistics of the parameter estimators of the

EGARCH(1,1) option pricing model.
4.2. The HAR-RV option pricing model

Since the realized volatility is not a constant volatility, there is no analytic formula to price
option. Similar to the EGARCH option pricing model discussed above, in this section, the same
Monte Carlo simulation method for option pricing is used. The procedure of the HAR-RV option
pricing model is introduced as follows:

Under the risk-neutral world, assuming that the logarithmic asset price follows a

continuous-time process:



dp(t) = u(t)dt+o(t)dW (t) (14)
where p(t) is the logarithm of instantaneous price, y(t) is a continuous, finite variation
process, dW (t) is the standard Brownian motion, and o (t) is a stochastic process independent

of dwW (t) . By Ito’s lemma, the above equation can be represented as
o 2
dIns, :(r—?)duqdwt (15)

where S, is the underlying asset price.

When considering discrete time process, the process becomes:
2
InS(t+At)—InS(t):(r—%jAt+atg\/E (16)
which is equal to

S(t+At):S(t)exp[(r—%}AHo—ta/A_t} (17)

i.i.d.
where r is risk-free interest rate, At is time interval, & ~ N(O,l)

Similar to the EGARCH option pricing model, however, the meaning of stochastic variable

o, in this part is realized volatility RVt(d), defined in HAR-RV model. Based on the notations in

the EGARCH option pricing model, the call option price at timet,C,, with maturity time T and
strike price X is

C, =" "E2 Max{(S, - X),0} | (18)
and the put option price at time t is

R =e""ER [ Max{(X -, ),0} ] (19)

The right-hand side of the above formula is calculated by first simulating N (5000, the same

as in EGARCH option pricing model) prices one period ahead according to the system in Equation
(17) by applying Monte Carlo simulation. Notice that how we determine o, based on HAR-RV

model:

~ A~

d) ~(W ~(M
Firstly, we obtain estimated parameters, /, ,B( : ,6’( ) and ,6’( )by regressing the Equation



(20) with the high frequency index data from Jan. 2, 2002 to Mar. 30, 2007 (in this paper, per 15

minutes high frequency index data is used).
RV(G =4+ ARV + YRV 4+ pMRVY gy t=12,,T (20)

After that, forecasting ahead one-day volatility by

RV = By + 2RV + 3" RV 4+ 3" RV 21)

where Rv,") :%(Rv}l), +RV 9 + RV, + RV + RV )

22d

RV = 2_12(th<‘13 FRV G+ + RV, )

———(d 2
Let RVii=o, and put into S(t+At):S(t)eprr—%}AHqg\/A_t}, it will

generateS(t+At); then, the simulation process continues in the next period. Similarly, it can

generate S(t+2At) by the following equation
2
S(t+2At)=S(t+At)epor—%jAHaMgJA_t} (22)

——(d
Here, we decide O'H_l:RV'le according to the system in Equation (21) by letting

———(d —~ e~
RV = RVils, RV™ ZRVIo RV™ = RV (23)
— (W
where RV = %( RV + RV RV 4RV LRV, j (24)
— (M
RV it = %(va 9 L RVE) 4 RV 4RV, j (25)

That is to say, for obtaining the next period one-day forecasting volatility, the main procedure is

— (W —~ (M
determine RV E+1)d and RV £+1c)i , which are the average of the past five realized volatilities by both
deleting the first historical realized volatility and at the same time, adding a new one-day
forecasting realized volatility based on their original set.(see equation (24) and equation (25)).

Repeating the procedure until achieving the expiration date (denoted asT ) of options, then we have

5000 numbers of estimated S (T) for evaluating options.

10



By definition, the average value of Max{(S(T)—X),O} and the average of

Max{(x —S(T ))0} are discounted to yield the estimated European call and put option value,

respectively. Similar to the above part, there are 63 numbers of days option as our sample for
evaluating out-of-sample option pricing errors with the HAR-RV model. Table 4.2 reports the
summary statistics of the parameter estimators of the HAR-RV option pricing model. Next section,

we show our empirical results for SPX.
5. Out-Of-Sample Pricing Performance
We will use three of the most commonly used evaluation criteria in the literature to examine

the performance of the option pricing models at two different lengths of pricing period. Let B, and

f’k denote the observed and the estimated Kk th price, respectively. For K observations, the

forecasting criteria are defined as:

K
1. The mean bias: MBIAS = K*lz(Pk k Pk)
k=1
K ~
2. The mean absolute error: MAE = K‘lz‘Pk i Pk‘
k=1
: . aN ‘ P~ Pk‘
3. The relative mean absolute error: RMAE = K =
k=1 k

Additionally, to investigate the moneyness effect of options, based on the scale of S/ K, this
study considers six segments: S/K<0.94 , 0.94<S/K <097 , 0.97<S/K<1.00,
1.00<S/K <1.03, 1.03<S/K <1.06, and S/K >1.06. For call option, the option is said to
out-of-the-money (OTM) if its S/K <0.97; at-the-money (ATM) if S/K (0.97,1.03); and
in-the-money (ITM) if S/K >1.03.

However, for put option, it is called out-of-the-money (OTM) if its S/K >1.03 ;

at-the-money (ATM) if S/K €(0.97,1.03); and in-the-money (ITM) if S/K <0.97. According

to above definition, it will help analyze the following numerical results.

11



5.1 One-Day Out-Of-Sample Pricing Performance

Table 5.1 and 5.2 provide the one-day out-of-sample performance for call and put options. The
results are also plotted in Figures 5.1 and 5.2. Since our numerical results stand for pricing errors or
hedging errors, the smaller reported number implies the better pricing performance or better
hedging performance.

Firstly, the HAR-RV model performs better than the more complicated EGARCH model in call

options for all moneyness categories in the two criteria, MBIAS and MAE, except in the case of
deep-out-of-the-money call option (S/K <0.94). At the same table, numerical results also show
that the HAR-RV model outperforms EGARCH model in the criteria, RMAE, except for the OTM
call options (S/K <0.97). From the above results, for one-day out-of-sample call option valuation,

the HAR-RV model performs better in most of conditions.

Secondly, for put options, the HAR-RV model exhibits smaller pricing errors for all moneyness
categories in terms of the three evaluating criteria, except in the case of deep-OTM put options in
the criteria of RMAE. In sum, no matter focusing on call or put options, the HAR-RV model is

superior in one-day out-of-sample valuation error mostly.
5.2. Five-Days Out-Of-Sample Pricing Performance

Table 5.3 and 5.4 report five-days out-of-sample performance for call and put options,
respectively. Additionally, the results are also plotted in Figures 5.3 and 5.4 First of all, comparing
one-day with five-days pricing performance, it can obviously find that five-days pricing errors are
bigger than those for one-day, consistent with the intuition that using more previous data to forecast
price will exhibit bigger pricing bias. Secondly, the results in this section are almost consistent with
the discussion in the section of one-day out-of-sample valuation errors. That is to say, ho matter call

or put options, the HAR-RV model is superior in five days out-of-sample pricing performance.
6. Out-Of-Sample Dynamic Delta Hedging Performance

The out-of-sample dynamic delta hedging performances based on both option pricing models

are compared in this section.
6.1. The Mechanism of Dynamic Delta Hedging

Dynamic hedging is the most common hedging strategy used by traders to protect against risk.

12



Basically, it involves hedging an option with another asset, usually the underlying asset.
Additionally, the constructed partial hedge requires continuous rebalancing to reflect the market
variation. In practice, only discrete rebalancing is possible. To derive a hedging effectiveness

measure, suppose that hedging portfolio rebalancing only takes place at time point

t, t+At, t+2At,... ,ending in expiration date.

The delta determines how many units of the underlying asset will be purchased on a given day.
The observed underlying asset price and the daily end of average bid-ask prices of the option are

used for return calculation. For each day, the estimated parameters of the two competing models are

used to calculate the delta of options, that is, delta=0P/0S , which is approximated by

(P.x—PR)/AS, , where At is hedging horizon.

In this section, two hedging strategies are constructed for call and put options. Firstly, for call
options, the hedged portfolio is constructed by the combination of a short position in a call option
with 7 periods to expiration and strike price K and a long position of W number of units of
underlying asset. In this hedging strategy, W is delta, defined by the above discussion. Thus, a

hedged portfolio value at time t is

V(t) =P +ws, (24)
where P, is the option price at'time t, and S,, W are the price and the number of units of the

underlying asset held at time t, respectively. For our study, some conditions are imposed in
calculating hedging errors: no transaction cost, only a single instrument (i.e., the underlying stock),
no dividend, and no borrowing-lending cost. Based on the description about delta dynamic hedge in
Bakshi et al. (1997), the hedging error after one period is:
H(t+At)=V(t+At)-V(t)=P, -P,  +W(S,, - S,) (25)

where 1 is the risk-free rate.

Secondly, for put options, the hedged portfolio is constructed by holding a long position in a
put option with 7 periods to expiration and strike price K and W number of units of
underlying asset; however, in put hedging strategy, W= —delta. Thus, a hedged portfolio value at

time tis still:

V(t)=PR +ws, (26)
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But the hedging error after one period is:
H(t+At)=V(t+At)-V(t)=P,, —P,+W(S,., —S,). 27)
Both in call and put hedging cases, the mechanism of dynamics delta hedging is the same,

interpreting the mechanism as follows: according to above description, it can obtain hedging errors

at time t. It repeats the hedging error at time t+2At, and so on. Record the hedging

errorsH(t+IAt), for 1 =1,---,M =(zr—t)/At. Finally, compute the average absolute hedging
error as a function of rebalancing frequency At : H(At)= (/M )3" |H(t +IAt), and the average

dollar value hedging error: H(At) = (™) I“il H(t+IAt).

To obtain the hedging results reported in Table 6.1 and 6.2, we follow the three steps below:
first, estimate the set of parameter/volatility values by the index data before day t (note: daily index
in EGARCH model; per 15 minutes high frequency in HAR-RV model). Next, use these
parameter/volatility estimates and the current day’s spot index, to construct the desired hedge
position. Finally, calculate the hedging error as of day t+1 if the hedge is rebalanced daily or as of

day t+5 if the rebalancing takes place every five days.
6.2. Results of Out-of-Sample Dynamic Delta Hedging Performance

This study exhibits the empirical investigation -of ‘option hedging performance in the period
from Apr. 2, 2007 to June 29,2007 (totally 63 trading days). Table 6.1 and 6.2 report the
out-of-sample hedging performance for call and put options, respectively. The results are also
plotted in Figures 6.1 and 6.2 in terms of hedging horizon and different criteria of evaluation
hedging performance of different moneyness categories. Firstly, considering hedging errors in call
options, both in one-day hedging and five-days hedging, the HAR-RV model performs better than
the EGARCH model for all evaluating criteria.

Secondly, in the case of put options, contrasts to the case of call options, our numerical reports
exhibit the entirely different results. The HAR-RV model underperforms the EGARCH model for
all evaluating criteria and different hedging horizon. However, in Figure 6.2, it is easy to discover
that the difference of hedging errors between the HAR-RV model and the EGARCH model is close
to zero, except for ITM put options. In sum, although the EAGRCH model performs better than

HAR-RV model in put options, it does not show significant superior in hedging performance.
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7. Conclusion

This thesis uses S&P500 index options data to investigate the empirical pricing and hedging
performance of the HAR-RV option pricing model relative to the EGARCH option pricing model.
Our results show that the HAR-RV model outperforms the EGARCH model in terms of one-day and
five-days SPX call option pricing performance for all moneyness, except for OTM call options.
When considering put options, the HAR-RV model exhibits smaller pricing errors for all moneyness
categories in terms of the three evaluating criteria. Comparing one-day performance with five-day
pricing performance, both in call and put options, it can obviously find that five-days pricing errors
are bigger than one-day, consistent with the intuition that using more previous data to forecast
pricing will exhibit bigger pricing bias.

Furthermore, in hedging performance, this study shows that the HAR-RV option pricing model
performs better than the EGARCH option pricing model only in the case of call options for all
moneyness, while worse for put options. Although the EAGRCH option pricing model performs
better than the HAR-RV model in put options, it is easy to discover that the difference of hedging
errors between the HAR-RV model and the EGARCH maodel is close to:zero, except for ITM put
options.

Form the above results, it implies that the HAR-RV option pricing model is superior both for
call and put options in one-day and five-days pricing performance and in call option hedging
performance. The EGARCH option pricing model does not show significant superiority in hedging
performance for put options.

Various issues could be examined by future studies. Since this study ignores the effects of the
transaction cost, the dividend, and the borrowing-lending cost, in the future, it can add these factors
for the improvement of evaluating pricing and hedging performance. Additionally, in financial
markets, American options are heavily traded contracts, further researches can extend to evaluate

American options pricing and hedging performance by applying the HAR-RV volatility model.
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Table 2.1
Summary Statistics of SPX in Call Options

Moneyness Full sample <0.94 0.94 —0.970.97 —1.001.00-1.031.03 —1.06 >1.06

Average bid-offer option price  39.53 141 3.91 17.62 40.11 74.57 198.45
Minimum option price 0.40 0.40 0.40 1.23 17.00 51.80 91.50
Maximum option price 909.20 9.40 25.40 52.10 71.50 112.40 909.20

Total number of observations 2913 180 787 893 547 212 294

Note. This table summarizes the SPX call option data for the period from Apr. 2, 2007 to June 29,

2007. Moneyness is defined as S/K , where s is the index level and K is the strike price.

Table 2.2
Summary Statistics of SPX in Put Options

Moneyness Full sample <0.94 0.94 —0.97 0.97 —1.00 1.00-1.03 1.03 —1.06 >1.06

Average bid-offer option price  14.19  162.32 63.17 31.38 16.04 8.09 2.96
Minimum option price 0.40 9210 44.70 13.30 4.40 1.85 0.40
Maximum option price 263.30 263.30 91.50 59.20 43.50 2495 19.75

Total number of observations 4098 40 129 627 804 689 1809

Note. This table summarizes the SPX put option data for the period from Apr. 2, 2007 to June 29,

2007. Moneyness is defined ass/k , where s is the index level and K is the strike price.
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Table 4.1
Summary Statistic of the Parameter Estimators of
the EGARCH(1,1) Option Pricing Model

Parameter Mean Standard Deviation min max
o -0.1497 0.0090 -0.1719 -0.1357
4 0.9885 0.0007 0.9865 0.9896
0 -0.0859 0.0013 -0.0894 -0.0832
7 0.0469 0.0030 0.0430 0.0539

Note. The EGARCH(1,1) model parameters are estimated from daily S&P500 index return for

the period from Jan. 2, 2002 to June 29, 2007.

Table 4.2
Summary Statistic of the Parameter Estimators of
the HAR-RV Option Pricing Model

Parameter Mean Standard Deviation min max
B 7.34E-06 7.28E-08 7.21E-06 7.60E-06
Z’(d) 0.1078 0.0007 0.1066 0.1092
s 0.6518 0.0009 0.6492 0.6531
IE(M) 0.1518 0.0004 0.1513 0.1535

Note. The HAR-RV model parameters are estimated from daily S&P500 index return for the

period from Jan. 2, 2002 to June 29, 2007.
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Table 5.1
One-day Out-of-sample Valuation Error of the HAR-RV
and EGARCH model for Call Options

MBIAS ($) MAE ($) RMAE (%)

Moneyness HAR EGARCH HAR EGARCH HAR EGARCH
All  Mean 1.2183 -6.6982 2.341  6.7065 05251 0.432
Stdev 2.6455 5.7242 1.7325 5.7144 09155  0.29

<0.94 Mean 2.1044 -1.3544 2.2114 1.3544 2.0548 0.9544
Stdev 1.6035 1.3777 1.4517 1.3777 1.4896 0.0459
0.94-0.97 Mean 2.7476 -2.8532 2.7885 2.8561 1.1862 0.6713
Stdev 1.9222 3.0866 1.8623 3.0839 1.0654 0.2202
0.97-1.00 Mean 17603 -8.0779 25215 8.0804 0214 0.4223
Stdev 2.4863 6.2236 1.7083  6.2204 0.2213 0.1716
1.00-1.03 Mean -0.742 -10.3007 1.8722 10.3007 0.048 0.2532
Stdev 2.3505 5.3174 1.6016 5.3174 0.0399 0.0994
1.03-1.06 Mean -1.7368 -10.0362 1.9885 10.0362 0.027 0.1336
Stdev 1.9249. 4.8689 1.6623 4.8689 0.0222 0.0552

>1.06  Mean 0.7135 -6.9621 1.8003  7.0292 0.0103 0.0493
Stdev 2.2099 3.9798 1.4637 3.8597 0.0086 0.0336

Note: MBIAS, MAE, and RMAE are the mean value of the valuation error in dollars, the mean
absolute valuation error in dollars, and the mean value of percentage absolute error, respectively.
The parameters implied by the S&P 500 index data in our sample before the being priced date are
used to calculate the forecasted call option prices. The valuation error is then calculated by
comparing the observed and forecasted prices. Moneyness is defined as s/k , where s is the S&P
500 index level and x is the strike price. The HAR-RV model follows

~@ A AW W) M) . . .

RVewa =B+ 4 RV +p rRV" +p Rrv" The EGARCH model, under risk-neutralized probability
- *

measure  Q, has  the  following  for  in(s;/S,4)=r-050 +oyz  :hn (atz) e

2 * * - -
+¢ln (at_l) + 6(zt_l - z) +7 Hzt_l - /1‘ - Jz/;;] , Where 4 s restricted to zero.
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Table 5.2
One-day Out-of-sample Valuation Error of the HAR-RV
and EGARCH model for Put Options

MBIAS ($) MAE ($) RMAE (%)

Moneyness HAR EGARCH HAR EGARCH HAR EGARCH
All  Mean -3.1351 -3.4014 3.2432  3.9542 05926  0.6062
Stdev 2.4449  3.8678 2.2995  3.3003 0.376 0.35

<0.94 Mean -3.0835  7.2592 3.2796  7.8156 00211  0.051
Stdev 23018  4.1135 2.0047  2.884 0.0149  0.0214
0.94-0.97 Mean -0.9555  2.9827 1.8819  4.4101 003 0.0703
Stdev 2.8748 3.9734 2.3696  2.2701 0.0361  0.0336
0.97-1.00 Mean -2.1006 -2.8639 25954  3.9577 0.0803  0.1187
Stdev 3.1105 5.0251 27108  4.2164 0.069  0.105
1.00-1.03 Mean -4.0164  -5.356 40233  5.3848 0.2755  0.3247
Stdev 23631 3.8934 2.3514  3.8534 0.1527  0.1582
1.03-1.06 Mean -4.7286  -5.3064 47286  5.3064 0.6393  0.6519
Stdev 1.836°  3.0249 1.836  3.0249 0.1654  0.117

>1.06  Mean -2.6515 -2.6843 2.6515  2.6843 0.9462  0.9333
Stdev 1.8642  2.0835 1.8642  2.0835 0.0794  0.0671

Note: MBIAS, MAE, and RMAE are the mean value of the valuation error in dollars, the mean
absolute valuation error in dollars, and the mean value of percentage absolute error, respectively.
The parameters implied by the S&P 500 index data in our sample before the being priced date are
used to calculate the forecasted put option prices. The valuation error is then calculated by
comparing the observed and forecasted prices. Moneyness is defined as s/k , where s is the S&P
500 index level and x is the strike price. The HAR-RV model follows

~@ A AW W) M) . . .

RVewa =B+ 4 RV +p rRV" +p Rrv" The EGARCH model, under risk-neutralized probability
- *

measure  Q, has  the  following  for  in(s;/S,4)=r-050 +oyz  :hn (atz) e

2 * * - -
+¢ln (at_l) + 6(zt_l - z) +7 Hzt_l - /1‘ - Jz/;;] , Where 4 s restricted to zero.
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Table 5.3
Five-days Out-of-sample Valuation Error of the HAR-RV
and EGARCH model for Call Options

MBIAS ($) MAE ($) RMAE (%)

Moneyness HAR EGARCH HAR EGARCH HAR EGARCH
All  Mean 1.0466 -6.8791 2.3188 6.8807 0.4982 0.4439
Stdev 2.7269 5.9339 1.7757 5.9321 0.9252 0.2943

<0.94 Mean 2.0702 -1.4232 2174 1.4232 1.9715 0.9593
Stdev 1.6905 1.4567 1.5541 1.4567 1.67  0.0432
0.94-0.97 Mean 25711 -2.964 2.6148 2.9659 1.0886 0.6896
Stdev 2.0394 3.1614 1.983 3.1596 1.0898 0.2127
0.97-1.00 Mean 1.54 . -8.4067 2516 8.4083 0.2074 0.4337
Stdev 2.6742 6.5829 1.7855  6.5808 0.221 0.1755
1.00-1.03 Mean -1.0039 -10.4699 2.0695 10.4699 0.0535 0.2582
Stdev 24468 5.4714 1.6449 54714 0.043 0.1023
1.03-1.06 Mean -1.7938 -10.1156 2.0456 10.1156 0.0279 0.1345
Stdev 1.8875 5.0194 1.6098 5.0194 0.022  0.0561

>1.06  Mean 0.7048 -7.2085 1.6825 7.2143 0.0096 0.0508
Stdev 2.0332 4.1893 1.3386 4.1792 0.0074 0.0353

Note: MBIAS, MAE, and RMAE are the mean value of the valuation error in dollars, the mean
absolute valuation error in dollars, and the mean value of percentage absolute error, respectively.
The parameters implied by the S&P 500 index data in our sample before the being priced date are
used to calculate the forecasted call option prices. The valuation error is then calculated by
comparing the observed and forecasted prices. Moneyness is defined as s/k , where s is the S&P
500 index level and x is the strike price. The HAR-RV model follows

~@ A AW W) M) . . .

RVewa =B+ 4 RV +p rRV" +p Rrv" The EGARCH model, under risk-neutralized probability
- *

measure  Q, has  the  following  for  in(s;/S,4)=r-050 +oyz  :hn (atz) e

2 * * - -
+¢ln (at_l) + 6(zt_l - z) +7 Hzt_l - /1‘ - Jz/;;] , Where 4 s restricted to zero.
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Table 5.4
Five-days Out-of-sample Valuation Error of the HAR-RV
and EGARCH model for Put Options

MBIAS ($) MAE ($) RMAE (%)

Moneyness HAR EGARCH HAR EGARCH HAR EGARCH
All  Mean -3.2914  -3.374 3.3924  3.9616 0597  0.5992
Stdev 2.6031  4.0096 2.4699  3.4301 0.3746  0.3529

<0.94 Mean -3.2119  7.5248 3.3169  7.7094 0.0229  0.0522
Stdev 21032  3.2179 1.9288  2.7331 0.0158  0.0201
0.94-0.97 Mean -1.1772  2.9189 1.9551  4.4724 0.031  0.0709
Stdev 2.7517 417 22621  2.4129 0035  0.035
0.97-1.00 Mean -2.4959  -2.8244 2.9464  4.0092 0.0892  0.1168
Stdev 3311 5.1399 29167  4.279 0.0744  0.1015
1.00-1.03 Mean -4.3455  -5.3496 43619 5.3783 0.2915  0.3178
Stdev 26307 4.1553 26034  4.118 0.1556  0.161
1.03-1.06 Mean -4.8635 -5.2823 48635 5.2823 0.654  0.6455
Stdev 2.0774  3.2576 2.0774  3.2576 0.164  0.1207

>1.06  Mean -2.6773  -2.6946 26773  2.6946 0.9488  0.9319
Stdev 1.9442  2.1542 1.9442  2.1542 0.0781  0.0704

Note. MBIAS, MAE, and RMAE are the mean value of the valuation error in dollars, the mean
absolute valuation error in dollars, and the mean value of percentage absolute error, respectively.
The parameters implied by the S&P 500 index data in our sample before the being priced date are
used to calculate the forecasted put option prices. The valuation error is then calculated by
comparing the observed and forecasted prices. Moneyness is defined as s/k , where s is the S&P
500 index level and x is the strike price. The HAR-RV model follows

~@ A AW W) M) . . .

RVewa =B+ 4 RV +p rRV" +p Rrv" The EGARCH model, under risk-neutralized probability
- *

measure  Q, has  the  following  for  in(s;/S,4)=r-050 +oyz  :hn (atz) e

2 * * - -
+¢ln (at_l) + 6(zt_l - z) +7 Hzt_l - /1‘ - Jz/;;] , Where 4 s restricted to zero.
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TBALE 6.1

Dynamic Delta Hedging Errors for SPX Call Options

1-Day Hedging 5-Day Hedging
Moneyness HAR EGARCH HAR EGARCH
Panel A: Absolute hedging errors
all 2.5354 2.8879 6.5231 7.3214
<0.94 0.0743 0.0813 0.2748 0.2887
0.94-0.97 0.4627 0.4825 0.9666 1.0118
0.97-1.00 2.3603 2.5071 5.1477 5.6212
1.00-1.03 4.2935 45678 18.6331 19.7269
1.03-1.06 7.4655 8.4452 22.7341 27.0333
>1.06 5.4789 6.7991 19.8412 23.7867
Panel B: Mean hedging errors
all -2:5186 -2.8788 -6.5115 -7.3104
<0.94 -0.0515 -0.0606 -0.1916 -0.2090
0.94-0.97 -0.4472 -0.4676 -0.9647 -1.0101
0.97-1.00 -2.3541 -2.5021 -5.1477 -5.6212
1.00-1.03 -4.2935 -4.5678 -18.6331 -19.7269
1.03-1.06 -7.4655 -8.4452 -22.7341 -27.0333
>1.06 -5.4315 -6.7949 -19.8412 -23.7867

Notes. This table presents the mean value of absolute hedging error ($), the mean value of
hedging error ($) of a dynamic delta hedging strategies established daily or five days for the sample
period. Delta is calculated daily using parameters implied by the index data period before the date
of being priced call option. Moneyness is defined as s/k , where s is the S&P 500 index level and
K'is the strike price. The best model is the one with a near zero hedging error.
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TBALE 6.2

Dynamic Delta Hedging Errors for SPX Put Options

1-Day Hedging 5-Day Hedging
Moneyness HAR EGARCH HAR EGARCH
Panel A: Absolute hedging errors
all 1.4344 1.3735 4.2896 3.9560
<0.94 7.4298 6.6413 43.3687 37.0871
0.94-0.97 4.2492 4.0576 13.5614 13.0808
0.97-1.00 1.6903 1.6333 3.5925 3.4118
1.00-1.03 1.4490 1.4244 1.1197 1.0955
1.03-1.06 0.6115 0.6022 1.8794 1.8272
>1.06 0.3133 0.3127 0.9276 0.9198
Panel B: Mean hedging errors
all -1.1724 -1.1155 -4.2896 -3.9560
<0.94 -7.4298 -6.6413 -43.3687 -37.0871
0.94-0.97 -4.2492 -4.0576 -13.5614 -13.0808
0.97-1.00 -1.3714 -1.3197 -3.5925 -3.4118
1.00-1.03 -0.0179 -0.0148 -1.1197 -1.0955
1.03-1.06 -0.6115 -0.6022 -1.8794 -1.8272
>1.06 -0.3133 -0.3127 -0.9276 -0.9198

Notes. This table presents the mean value of absolute hedging error ($), the mean value of
hedging error ($) of a dynamic delta hedging strategies established daily or five days for the
sample period. Delta is calculated daily using parameters implied by the index data period before
the date of being priced put option. Moneyness is defined as s/k , where s is the S&P 500 index
level and K is the strike price. The best model is the one with a near zero hedging error.
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FIGURE 5.1 One-day forecasting errors for SPX Call Options

These figures show the 1-day forecasting errors of the HAR-RV model and the EGARCH
model for SPX Call Options. The parameters implied by the S&P 500 index data in our sample
before the being priced date are used to calculate the forecasted prices. The valuation error is
then calculated by comparing the observed and forecasted prices. Moneyness is defined as
s/k , where s is the S&P 500 index level and x is the strike price.
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1-day valuation error for put option
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FIGURE 5.2 One-day forecasting errors for SPX Put Options

These figures show the 1-day forecasting errors of the HAR-RV model and the EGARCH
model for SPX Put Options. The parameters implied by the S&P 500 index data in our sample
before the being priced date are used to calculate the forecasted prices. The valuation error is
then calculated by comparing the observed and forecasted prices. Moneyness is defined as
s/K , where s is the S&P 500 index level and x is the strike price.
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S-day valuation error for call option
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FIGURE 5.3 Five-days forecasting errors for SPX Call Options

These figures show the 5-day forecasting errors of the HAR-RV model and the EGARCH
model for SPX Call Options. The parameters implied by the S&P 500 index data in our sample
before the being priced date are used to calculate the forecasted prices. The valuation error is
then calculated by comparing the observed and forecasted prices. Moneyness is defined as
s/k , where s is the S&P 500 index level and x is the strike price.
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5-day valuation error for put option
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FIGURE 5.4 Five-days forecasting errors for SPX Put Options

These figures show the 5-day forecasting errors of the HAR-RV model and the EGARCH
model for SPX Put Options. The parameters implied by the S&P 500 index data in our sample
before the being priced date are used to calculate the forecasted prices. The valuation error is
then calculated by comparing the observed and forecasted prices. Moneyness is defined as
s/K , where s is the S&P 500 index level and x is the strike price.
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1-day Absolute hedging error (call)
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FIGURE 6.1 Dynamic Delta Hedging Errors for SPX Call Options

These figures show the mean value of absolute error and the mean value of error of dynamic delta
hedging strategies with 1-day and 5-day rebalancing periods for call options. The best model is the
one that produces the smallest errors.
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1-day absolute hedging errors (put)
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FIGURE 6.2 Dynamic Delta Hedging Errors for SPX Put Options

These figures show the mean value of absolute error and the mean value of error of dynamic delta
hedging strategies with 1-day and 5-day rebalancing periods for put options. The best model is
the one that produces the smallest errors.
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