
 
國 立 交 通 大 學 

 

財 務 金 融 所 
 

碩 士 論 文 
 

 
 

應用已實現波動度於選擇權評價的實證研究 

 

An Empirical Investigation of Option Pricing Models  

with Realized Volatility  

 
 
 
 
 

研 究 生：邱婉茜 

指導教授：周幼珍  博士 

 

 
 

中 華 民 國 九 十 七 年 六 月 



應用已實現波動度於選擇權評價的實證研究 

An Empirical Investigation of Option Pricing Models  

with Realized Volatility  

 

研 究 生：邱婉茜                  Student：Wan-Chien Chiu

指導教授：周幼珍 博士              Advisor：Yow-Jen Jou 

 
 

國立交通大學 

財務金融研究所碩士班 

碩士論文 

 
 

A Thesis 
Submitted to Graduate Institute of Finance 

National Chiao Tung University 
in partial Fulfillment of the Requirements 

for the Degree of  
Master of Science 

in 
 

Finance 
 

June 2008 
 

Hsinchu, Taiwan, Republic of China 
 
 

中華民國九十七年六月 

 



應用已實現波動度於選擇權評價的實證研究 

研究生：邱婉茜              指導教授：周幼珍 博士  

 

國立交通大學財務金融研究所碩士班 

2008 年 6 月 

 

摘要 

先前文獻已提出：利用高頻率資料的異質性自我相關已實現波動度(HAR-RV)模

型，較其他波動度模型更能捕捉財務市場報酬波動度的特性及更準確的預測波動度。然

而，就本文所知，直到目前為止尚未有研究探討應用 HAR-RV 模型於選擇權中，是否可

減少選擇權評價誤差及增進選擇權 delta 動態避險績效。此外，過去的實證結果發現

EGARCH 模型在選擇權評價上優於其他波動度模型。 

因此，本文研究目的為：將 HAR-RV 與 EGARCH 選擇權評價模型用於 S&P500 指

數選擇權的評價，並比較二模型在評價及避險績效上的差異。本文實證結果發現：第一、

除了樣本外的價外買權和價外賣權，HAR-RV 模型在樣本外的買權和賣權的評價誤差較

EGARCH 模型小；第二、HAR-RV 模型在樣本外的買權避險績效較佳，而 EGARCH 模

型在樣本外的賣權避險績效表現較好，然而，此樣本外的賣權避險績效並沒有顯著地比

HAR-RV 模型的樣本外賣權避險績效佳。 

關鍵字：高頻率資料、異質性自我相關已實現波動度(HAR-RV)模型、EGARCH 模型、

評價誤差、避險績效。 
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ABSTRACT 

Previous studies have documented that, with use of high frequency data, Heterogeneous 

Autoregressive of the Realized Volatility (HAR-RV) model performs better than other volatility 

models in fitting financial return volatility measurement and has a more accurate forecasting ability. 

However, to our knowledge, no previous studies have investigated whether the HAR-RV model can 

improve option pricing and delta dynamic hedging performance in financial markets. Additionally, 

previous empirical analysis of option pricing models with the framework of EGARCH have 

presented superior to other volatility models. Using S&P 500 index options data, this study 

compares the HAR-RV and the EGARCH option pricing model in terms of option pricing and 

dynamic hedging performance. As expected, the results of this study demonstrate that the HAR-RV 

option pricing model is superior in terms of out-of-sample call and out-of-sample put option pricing 

performance for all moneyness except for out-of-the-money options. In out-of-sample hedging 

performance, the HAR-RV model still performs better than the EGARCH model, except in the case 

of put options. However, the EGARCH option pricing model does not show significant superiority 

in hedging performance of put options.  

Keywords:  High frequency data; HAR-RV option pricing model; EGARCH option pricing model; 

option pricing performance; dynamic hedging performance; moneyness 
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1.   Introduction 

Since Black and Scholes (1973) introduced their renowned framework for option pricing, 

numerous theoretical and empirical studies have investigated option pricing. Many empirical studies 

found that the Black-Scholes model (henceforth BS) includes pricing errors across different 

situations of moneyness and maturity. In relation to identifying problems on the BS model, people 

have widely criticized the underlying assumptions of the model. An essential assumption of the BS 

model is that the underlying asset process follows the log normality distribution with constant 

volatility. However, the log normality cannot explain various empirical discoveries involving asset 

return series, most notably the characteristics of fat-tail and volatility clustering. Therefore, various 

attempts have been made to relax the assumptions of “constant volatility” in BS model.  

In the framework of generalized autoregressive conditional heteroskedasticity (GARCH) 

model introduced by Bollerslev (1986), volatility is allowed to depend on past innovations and 

volatilities, and thus the model can, in principle, interpret both excess kurtosis and volatility 

clustering. The model has been successfully applied to financial data such as stock return data, as 

demonstrated in the survey of Bollerslev et al. Various extended studies have adjusted original 

GARCH models to better fit real stock returns. In particular, Nelson (1991) identified the 

phenomenon of asymmetric volatility responses to negative and positive changes in returns, called 

exponential GARCH (EGARCH) model. It can explain the phenomenon known as the leverage 

effect, which refers to the tendency for changes in stock price to be negatively correlated with 

volatility. To date, numerous studies have demonstrated that EGARCH outperforms GARCH in 

volatility forecasting. 

Recently, researchers have found it more effective to use high frequency data for analysis. 

Anderson, Bollerslev, Diebold and Labys (2001) (henceforth ABDL) proposed a non-parametric 

method of volatility measurement that used intraday asset return data. The volatility model 

introduced by ABDL is termed “realized volatility”, and involves the summation of square intraday 

asset return. ABD and other authors further established the applicability of modeling and forecasting 

RV in a series of papers (ABDL (2003) and ABD (2005)).  

The Heteroskedasticity AR (HAR) model proposed by Corsi (2003) is called HAR-RV model, 

and is based on the concept that realized volatility is parameterized as a linear function of the lagged 

realized volatilities over different horizons. Although the HAR-RV model does not formally possess 
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long-memory, the mixture of relatively few volatility components makes it capable of reproducing 

remarkable slow volatility autocorrelation decay. The simulation results in Corsi (2003) seem to 

confirm that the HAR-RV model successfully fits the main empirical features of financial data (long 

memory and fat tail) in a simple and parsimonious way. Furthermore, the author found that the 

HAR-RV model outperforms ARFIMA in terms of volatility forecasting ability. Extension of the 

HAR-RV model to the HAR-RV-CJ model by ABDL (2007) is based on the mathematical results 

proposed by Barndorff-Nielsen et al. (2004). ABDL (2007) considered realized volatility a 

combination of integrated volatility and jump component. The authors found that integrated 

volatility is more persistent than jump, and that jump lacks any forecasting ability.  

In the application of option pricing, numerous empirical studies have discussed the use of 

non-constant volatility in option models. Hull and White (1987) and Heston (1993) introduced a 

continuous-time stochastic volatility model. Additionally, Duan (1995) developed an option pricing 

model based on the GARCH process. Moreover, Bakshi, Cao, & Chen (1997)(henceforth BCC) 

assessed the performance of various models allowing volatility, interest rates, and jumps to be 

stochastic for S&P500 index option contracts. BCC found that although the BS model does not 

outperform other more complicated models in terms of either in-sample fitting or out-of-sample 

forecasting, it does achieve comparable hedging performance. Dumas, Fleming, & Whaley (1998) 

assessed an ad hoc version of the BS model, and found that it performs no worse than a class of 

so-called deterministic volatility function models. For hedging purposes, they concluded that 

“simpler is better.” Heston and Nandi (2000) investigated the empirical performance of alternative 

option pricing models using S&P500 Index options data and found that GARCH outperforms the ad 

hoc BS model of Dumas et al. (1998) in terms of in-sample fitting and out-of-sample forecasting. 

Haynes, Yung, & Zhang (2003) compared the empirical performance of an ad hoc BS option pricing 

model with that of an EGARCH option pricing model, and found that EGARCH outperforms the ad 

hoc BS model in terms of both in-sample fitting and out-of-sample forecasting. However, the 

EGARCH performs worse than the ad hoc BS model in terms of hedging performance regardless of 

moneyness and hedging horizons. 

Previous studies demonstrate that the HAR-RV model is superior to alternative models for 

volatility forecasting. Furthermore, based on previous studies, EGARCH model has better option 

pricing performance for both in-sample fitting and out-of-sample forecasting, except in hedging 
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performance. Although the HAR-RV model is a better volatility model in forecasting, to date, no 

studies have examined its influence on options pricing. This study thus evaluates pricing 

performance of S&P 500 index option (SPX) (largely traded European option in U.S.) for two 

aspects, out-of-sample valuation errors and out-of-sample hedging errors, by using the HAR-RV 

model and the EGARCH model respectively. This study examines whether the HAR-RV model 

outperforms the EGARCH model in pricing and hedging performance.  

Generally, the results of this study indicate that the HAR-RV option pricing model is superior 

both in call and put one-day/five-days pricing performance and in call option hedging performance. 

However, the EGARCH option pricing model does not show significant superiority in put option 

hedging performance.   

The remainder of this paper is organized as follows. Section 2 describes the data, and Section 3 

then introduces time series volatility model and realized volatility model. Subsequently, Section 4 

describes how SPX can be priced in applying volatilities estimated by HAR-RV model and 

EGARCH model (see Duan (1995)). Section 5 presents out-of-sample pricing performance, and 

Section 6 discusses out-of-sample dynamics hedging errors. Conclusions are finally drawn in 

Section 7, along with recommendations for future research. 

2.   Data 

This work investigates a heavily traded option contract, the S&P 500 index option (SPX). To 

apply the HAR-RV model, high frequency data are required. Based on the Tickdata database, this 

study considers the S&P 500 index from Jan. 2, 2002 to June 29, 2007, including daily data and 15 

minute interval data. This study used daily data in EGARCH (1,1) models to estimate volatilities, 

and 15 minute interval data in the HAR-RV model to obtain the estimated volatilities.   

Additionally, option data of SPX is necessary to assess pricing performance and hedging errors. 

This study gathered option data with daily trading volume exceeding five contracts. Although this is 

not a guarantee against thin trade effects, it should go quite a way in terms of minimizing the 

problem. Furthermore, the choice of more than five contracts per day is used in the previous 

literature.  

This study takes into account the nearest contract months of option prices with maturity times 

that are greater than 21 days but less than 90 days. To mitigate the impact of price discreteness on 

option valuation, options with values smaller than 3/8 are excluded; based on the OptionMetrics 
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database, options with end of average bid-offer price exceeding 3/8 are included as our sample. In 

the OptionMetrics database, option data from Apr. 2, 2007 to June 29, 2007, totally 63 trading days, 

is selected as the sample.  

The OptionMetrics database also includes information on zero curve derived from BBA 

(British Bankers’ Association) LIBOR rates and settlement prices of CME Eurodollar futures. This 

study extracts necessary data from zero curve as our risk-free interest rates. The zero curve is used 

for the period from Apr. 2, 2007 to June 29, 2007 for option pricing. The table 2.1 and 2.2 are 

summary statistics of SPX in call and put options, respectively. 

3.   Volatility Models 

This section introduces our two competing volatility models, which are the EGARCH model 

and the HAR-RV model, respectively. The results obtained from these two models will be used as 

the inputs of the pricing models for assessing option pricing performance and hedging errors. 

3.1   EGARCH model 

The GARCH model fails to explain the leverage effect and is restrictive on parameters. Nelson 

(1991) found that the volatility responds asymmetrically responses to negative and positive return 

changes. The model, called exponential GARCH (EGARCH) can explain leverage effect, which 

refers to the tendency for changes in stock price to be negatively correlated with volatility. 

Furthermore, numerous studies show that EGARCH performs better than GARCH model in 

volatility forecasting. The EGARCH (1,1) was proposed by Nelson(1991)as follows. 

Define  as follows:             th

( ){ }0 1 1 1exp lnt tth f z hα α β− −= + +  

                ( )1 1 1t t t t 1f z z E Z zδ− − −= − + −⎡ ⎤⎣ ⎦                    (1)   

where 1tZ −  is standard error, defined as 1t thε 1− − , which conditional on the previous 

information, are independent random variables with mean zero, and variance one. In addition, 

1 1t t 1tz E Z zδ− −− + −  is an asymmetric formula of 1tz − . 

Considering this f  function, 1t 1tz E Z− −−  is a measure of shock size when volatility is 

systematic, called magnitude effect, and 1tzδ −  represents sign effect, which is a new shock in the 

 4



asymmetric formula. The full asymmetric formula represents the current volatility determined by 

past shock size and sign. Furthermore, the distribution of 1tZ −  should be set when using MLE. 

Nelson (1991) use generalized error distribution, whose pdf is as follows:  

           ( ) { } ( ) ( ){ } 11exp 0.5 2 3f z z ν ν νν λ λ
−

⎡ − ⎤⎣ ⎦⎡ ⎤= ⋅ − ⋅ ⋅ ⋅Γ⎣ ⎦ ν            (2) 

where ( ) ( ) 0.522 1 3νλ ν ν−⎡ ⎤= ⋅Γ Γ⎣ ⎦ , ν  controls the thickness of distribution tail, ( )Γ ⋅  is a 

Gamma function, and ( )1 2tE Z π− = . Therefore, the EGARCH (1,1) model for the random 

variable can be represented as follows: r

= +t tr tμ ε  

( )1 0,t t tN hε −Ω ∼  

 ( ){ }0 1 1 1 1 1 1exp 2 lnt t t t th h hα α ε π δ ε β− − − − −
⎡ ⎤= + ⋅ − + +⎣ ⎦ th       (3) 

3.2   HAR-RV model 

The Heterogeneous Autoregressive model of the Realized Volatility (HAR-RV) is proposed by 

Corsi (2003), which can directly model and forecast the time series behavior of volatility. The 

model is based on a straightforward extension of the so-called Heterogeneous ARCH, or HARCH, 

class of models analyzed by Müller et al. (1997). The purpose of the model is to obtain a conditional 

volatility model based on realized volatility which is able to reproduce the memory persistence 

observed in the data but, at the same time, remains parsimonious and easy to estimate. The 

simulation results in Corsi (2003) seem to confirm that the HAR-RV model successfully fits the 

main empirical features of financial data (long memory and fat tail) in a simple and parsimonious 

way. Furthermore, empirical results on USD/CHD data by applying HAR-RV model represent good 

out of sample forecasting performance which steadily and substantially outperforms other previous 

model (standard GARCH and SV models) (see Corsi (2003)). The following introduces the main 

framework of HAR-RV model in Corsi (2003):  

Assuming that the logarithmic asset price follows a continuous-time process: 

                 ( ) ( ) ( ) ( )dp t t dt t dW tμ σ= +                     (4) 

where ( )p t  is the logarithm of instantaneous price, ( )tμ  is a continuous, finite variation 

process,  is the standard Brownian motion, and ( )dW t ( )tσ  is a stochastic process independent 
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of . For this diffusion process, the integrated volatility associated with day t , is the 

integral of the instantaneous volatility over the one day interval 

( )dW t

( )1 ;t d t− , where a full 24 hours 

day is represented by the time interval ,  1d

                 ( ) ( )( )1 2
2

1

td
t t d

dσ σ ω
−

= ∫ ω                        (5) 

Andersen et al. (2001), applying the quadratic variation theory, suggested that the sum of 

intraday squared returns converges (as the maximal length of returns go to zero) to the integrated 

volatility of the prices. This nonparametric estimator is called realized volatility. The definition of 

the realized volatility over a time interval of one day is  

                   ( )
1

2

0

M
d

t
j

t jRV
−

r − Δ
=

= ∑                            (6) 

where
1d
M

Δ =  and ( ) ( )( )1t jr p t j p t j− Δ = − Δ − − + Δ defines continuously compounded 

-frequency returns. Under these assumptions, the ex-post realized volatility is an unbiased 

volatility estimator. Moreover, as the sampling frequency is increased, the realized volatility 

provides a consistent nonparametric measure of the integrated volatility over the fixed time interval: 

Δ

( ) ( )lim d d
M t tp RV σ→∞ = . 

When considering realized volatility over different time horizons longer than one day, these 

multi-period volatilities are normalized sums of the one-period realized volatilities (i.e. a simple 

average of the daily quantities). For example, a weekly realized volatility and a monthly realized 

volatility at time  will be given by the average as follows respectively:  t

        ( ) ( ) ( ) ( ) ( ) ( )( )1 2 3 4
1
5

W d d d d
t t d t d t d t d tRV RV RV RV RV RV− − − − −= + + + + 5

d
d          (7) 

        ( ) ( ) ( ) ( )( )1 2 2
1
22

M d d
t t d t dRV RV RV RV− − −= + + +… 2

d
t d                   (8) 

Then the one-day ahead volatility is expressed as a linear function of previous realized 

volatilities,  

( ) ( ) ( ) ( ) ( ) ( ) ( )
1 0
d d d W W M M

t d t t t t dRV RV RV RV 1β β β β+ += + + + +ε T  , 1, 2, ,t = …           (9) 

The Equation (9) is labeled as a Heterogeneous Autoregressive model for the Realized 
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Volatility (HAR-RV) model.  

4.   European Option Pricing Models 

  In this section, European option pricing model will be combined with the previously described 

models of volatility to assess the values of SPX. 

4.1. The EGARCH option pricing model 

For the time varying volatilities estimated from the EGARCH model, there is no analytical 

solution for pricing options. In this study, we only consider the EGARCH(1,1) model with S&P 500 

Index value  is assumed to be the following price dynamics under probability measure : tS P

2

1

1ln
2

t
t t

t

S r
S tλσ σ

−

= + − +ε  

{ } ( ). . . 0,1t t t tz z i i d Nε σ= ∼  

          ( )2 2
1 1 1 1ln lnt t t tz z E zσ ω ϕ σ θ γ− − − −t⎡ ⎤= + + + −⎣ ⎦                 (10) 

where  is the asset price at time ,  is the risk-free rate of return on the asset, and tS t r 2
tσ is the 

conditional variance of the asset at time . Notice that t ( )1 2tE Z π− = .      

Following Duan (1995), under the locally risk-neutralized measure Q, the stock price process 

is represented as follows: 

2

1

1ln
2

t
t t

t

S r
S

σ ξ
−

= − +  

( )t t t t t t tz zξ ε λσ σ λ σ ∗= + = + =       { } ( ). . . 0,1
Q

tz i i d N∗ ∼  

2 2
1 1 1

2ln lnt t t tz zσ ω ϕ σ θ γ
π− − −

⎡ ⎤
= + + + −⎢ ⎥

⎣ ⎦
 

( )2
1 1 1

2ln t t tz zω ϕ σ θ λ γ λ
π

∗ ∗
− − −

⎡ ⎤
= + + − + − −⎢ ⎥

⎣ ⎦
                (11) 

According to the definition of pricing option, the call option price at time  with maturity 

time and strike price

, ,tt C

T X is 

( ) ( ){ },0r T t Q
t t TC e E Max S X− − ⎡= ⎣ ⎤− ⎦                           (12) 

, and the put option price at time with maturity time and strike price, ,tt P T X is  
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( ) ( ){ },0r T t Q
t t TP e E Max X S− − ⎡= ⎣ ⎤− ⎦                         (13) 

where Q
tE  is the expectation operator under measure Q  and is the risk-free rate. r

Therefore, there are two steps to implement the EGARCH(1,1) option pricing model. First is to 

build the EGARCH(1,1) and forecast the one-step-ahead volatility. In this thesis, rolling window 

approach is used to forecast the volatilities. For example, when pricing the option of April 2, 2007, 

the daily index data from Jan. 2, 2002 to Mar. 30 2007 are used to build the EGARCH(1,1) model 

and the predicted volatility of April 2, 2007 are obtained accordingly. The predicted volatility of 

April 3, 2007 will be obtained using the historical data of the same length by dropping the data of 

Jan. 2, 2002 and adding that of April 2, 2007. The process goes on as time evolve until June 29, 

2007.  

The second step of EGARCH option pricing consists of first simulating N (5000 in our case) 

prices one period ahead according to (11) by Monte Carlo simulation. The simulation process 

continues in the next period, and so on until option maturity. Finally, the average value of 

( ){ }, 0TMax S X−  and the average value of ( ){ }, 0TMax X S−  are discounted to yield the 

estimated European call and put option value, respectively.  

Repeating this procedure, there are total 63 sets of estimated EGARCH(1,1) parameters; at the 

same time, the option from Apr. 2, 2007 to June 29, 2007 (63 trading days, total 7011 number of 

options) are evaluated for our interests of out-of-sample option pricing performance. In this study, 

we called this procedure: “window rolling”. When accounting for one-day out-of-sample valuation 

error, the data rolls one day every time; for five-days out-of-sample valuation error, it rolls five days 

every time. Table 4.1 reports the summary statistics of the parameter estimators of the 

EGARCH(1,1) option pricing model. 

4.2. The HAR-RV option pricing model 

Since the realized volatility is not a constant volatility, there is no analytic formula to price 

option. Similar to the EGARCH option pricing model discussed above, in this section, the same 

Monte Carlo simulation method for option pricing is used. The procedure of the HAR-RV option 

pricing model is introduced as follows:    

Under the risk-neutral world, assuming that the logarithmic asset price follows a 

continuous-time process: 

 8



                ( ) ( ) ( ) ( )dp t t dt t dW tμ σ= +                        (14) 

where ( )p t  is the logarithm of instantaneous price, ( )tμ  is a continuous, finite variation 

process,  is the standard Brownian motion, and ( )dW t ( )tσ  is a stochastic process independent 

of . By Ito’s lemma, the above equation can be represented as ( )dW t

 
2

ln
2
t

td S r dt dWσ σ
⎛ ⎞

= − +⎜ ⎟
⎝ ⎠

t t                          (15) 

where  is the underlying asset price.     tS

When considering discrete time process, the process becomes: 

( ) ( )
2

ln ln
2
t

tS t t S t r t tσ σ ε
⎛ ⎞

+ Δ − = − Δ + Δ⎜ ⎟
⎝ ⎠

                (16) 

which is equal to  

( ) ( )
2

exp
2
t

tS t t S t r t tσ σ ε
⎡ ⎤⎛ ⎞

+ Δ = − Δ + Δ⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

                  (17) 

where is risk-free interest rate, r tΔ  is time interval,  ( )
. . .

0,1
i i d

Nε ∼

Similar to the EGARCH option pricing model, however, the meaning of stochastic variable 

tσ  in this part is realized volatility ( )d
tRV , defined in HAR-RV model. Based on the notations in 

the EGARCH option pricing model, the call option price at time  with maturity time and 

strike price

, tCt , T

X is 

( ) ( ){ },0r T t Q
t t TC e E Max S X− − ⎡= ⎣ ⎤− ⎦                           (18) 

and the put option price at time  is  t

( ) ( ){ },0r T t Q
t t TP e E Max X S− − ⎡= ⎣ ⎤− ⎦                            (19) 

The right-hand side of the above formula is calculated by first simulating  (5000, the same 

as in EGARCH option pricing model) prices one period ahead according to the system in Equation 

(17) by applying Monte Carlo simulation. Notice that how we determine 

N

tσ  based on HAR-RV 

model:  

Firstly, we obtain estimated parameters, l l ( ) l ( ) l ( )
0

d W M
andβ β β β by regressing the Equation 
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(20) with the high frequency index data from Jan. 2, 2002 to Mar. 30, 2007 (in this paper, per 15 

minutes high frequency index data is used).    

( ) ( ) ( ) ( ) ( ) ( )
1 0
d d d W W M M

t d t t t t dRV RV RV RV 1β β β β+ += + + + +ε T  , 1, 2, ,t = …      (20) 

After that, forecasting ahead one-day volatility by  

       m
( ) l l ( ) ( ) l ( ) ( ) l ( )

1 0

d d W Md W M
t d t t tRV RV RVβ β β β+ = + + + RV                (21) 

where     ( ) ( ) ( ) ( ) ( ) ( )( )1 2 3 4 5
1
5

W d d d d
t t d t d t d t d t dRV RV RV RV RV RV− − − − −= + + + + d  

( ) ( ) ( ) ( )( )1 2 2
1
22

M d d
t t d t dRV RV RV RV− − −= + + +… 2

d
t d  

Let m
( )

1
d

t d tRV σ+ =  and put into ( ) ( )
2

exp
2
t

tS t t S t r t tσ σ ε
⎡ ⎤⎛ ⎞

+ Δ = − Δ + Δ⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

, it will 

generate ; then, the simulation process continues in the next period. Similarly, it can 

generate  by the following equation               

(S t t+ Δ )

)( 2S t t+ Δ

( ) ( )
2

1
12 exp

2
t

tS t t S t t r t tσ σ ε+
+

⎡ ⎤⎛ ⎞
+ Δ = + Δ − Δ + Δ⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
            (22) 

Here, we decide m ( )
21

d
t dt RVσ ++ =  according to the system in Equation (21) by letting 

( ) m ( )
1

dd
t dtRV RV += , ( ) m ( )

1
WW

t dtRV RV += , ( ) m ( )
1

MM
t dtRV RV +=               (23) 

where   m
( ) ( ) ( ) ( ) ( ) m ( )

1 11 2 3 4
1
5

W dd d d d
t d t dt d t d t d t dRV RV RV RV RV RV+ +− − − −

⎛ ⎞= + + + +⎜ ⎟
⎝ ⎠

           (24) 

     m
( ) ( ) ( ) ( ) m ( )

1 11 2 21
1
22

M dd d d
t d t dt d t d t dRV RV RV RV RV+ +− − −

⎛ ⎞= + + + +⎜ ⎟
⎝ ⎠

…              (25) 

That is to say, for obtaining the next period one-day forecasting volatility, the main procedure is 

determine  and m ( )
1

W
t dRV +

m ( )
1

M
t dRV + , which are the average of the past five realized volatilities by both 

deleting the first historical realized volatility and at the same time, adding a new one-day 

forecasting realized volatility based on their original set.(see equation (24) and equation (25)). 

Repeating the procedure until achieving the expiration date (denoted asT ) of options, then we have 

5000 numbers of estimated  for evaluating options.  ( )S T
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By definition, the average value of ( )( ){ }, 0Max S T X−  and the average of 

( )({ ) }, 0Max X S T−  are discounted to yield the estimated European call and put option value, 

respectively. Similar to the above part, there are 63 numbers of days option as our sample for 

evaluating out-of-sample option pricing errors with the HAR-RV model. Table 4.2 reports the 

summary statistics of the parameter estimators of the HAR-RV option pricing model. Next section, 

we show our empirical results for SPX.   

5.   Out-Of-Sample Pricing Performance 

We will use three of the most commonly used evaluation criteria in the literature to examine 

the performance of the option pricing models at two different lengths of pricing period. Let  and 

denote the observed and the estimated th price, respectively. For 

kP

kP� k K observations, the 

forecasting criteria are defined as: 

1. The mean bias:                 ( )1

1

K

k k
k

MBIAS K P P−

=

≡ −∑ �     

2. The mean absolute error:          1

1

K

k k
k

MAE K P P−

=

≡ −∑ �       

3. The relative mean absolute error:    1

1

K
k k

k k

P P
RMAE K

P
−

=

−
≡ ∑

�
     

Additionally, to investigate the moneyness effect of options, based on the scale of S K , this 

study considers six segments: 0.94S K < , 0.94 0.97S K≤ ≤ , 0.97 1.00S K≤ ≤ , 

1.00 1.03S K≤ ≤ , 1.03 1.06S K≤ ≤ , and 1.06S K > . For call option, the option is said to 

out-of-the-money (OTM) if its 0.97S K ≤ ; at-the-money (ATM) if ( )0.97,1.03S K ∈ ; and 

in-the-money (ITM) if 1.03S K ≥ .  

However, for put option, it is called out-of-the-money (OTM) if its 1.03S K ≥ ; 

at-the-money (ATM) if (0.97,1.03S K ∈ ) ; and in-the-money (ITM) if 0.97S K ≤ . According 

to above definition, it will help analyze the following numerical results.  
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5.1  One-Day Out-Of-Sample Pricing Performance 

Table 5.1 and 5.2 provide the one-day out-of-sample performance for call and put options. The 

results are also plotted in Figures 5.1 and 5.2. Since our numerical results stand for pricing errors or 

hedging errors, the smaller reported number implies the better pricing performance or better 

hedging performance.  

Firstly, the HAR-RV model performs better than the more complicated EGARCH model in call 

options for all moneyness categories in the two criteria, MBIAS and MAE, except in the case of 

deep-out-of-the-money call option ( 0.94S K < ). At the same table, numerical results also show 

that the HAR-RV model outperforms EGARCH model in the criteria, RMAE, except for the OTM 

call options ( 0.97S K ≤ ). From the above results, for one-day out-of-sample call option valuation, 

the HAR-RV model performs better in most of conditions.     

Secondly, for put options, the HAR-RV model exhibits smaller pricing errors for all moneyness 

categories in terms of the three evaluating criteria, except in the case of deep-OTM put options in 

the criteria of RMAE. In sum, no matter focusing on call or put options, the HAR-RV model is 

superior in one-day out-of-sample valuation error mostly.    

5.2. Five-Days Out-Of-Sample Pricing Performance 

Table 5.3 and 5.4 report five-days out-of-sample performance for call and put options, 

respectively. Additionally, the results are also plotted in Figures 5.3 and 5.4 First of all, comparing 

one-day with five-days pricing performance, it can obviously find that five-days pricing errors are 

bigger than those for one-day, consistent with the intuition that using more previous data to forecast 

price will exhibit bigger pricing bias. Secondly, the results in this section are almost consistent with 

the discussion in the section of one-day out-of-sample valuation errors. That is to say, no matter call 

or put options, the HAR-RV model is superior in five days out-of-sample pricing performance. 

6. Out-Of-Sample Dynamic Delta Hedging Performance 

The out-of-sample dynamic delta hedging performances based on both option pricing models 

are compared in this section. 

6.1. The Mechanism of Dynamic Delta Hedging  

Dynamic hedging is the most common hedging strategy used by traders to protect against risk. 
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Basically, it involves hedging an option with another asset, usually the underlying asset. 

Additionally, the constructed partial hedge requires continuous rebalancing to reflect the market 

variation. In practice, only discrete rebalancing is possible. To derive a hedging effectiveness 

measure, suppose that hedging portfolio rebalancing only takes place at time point 

 , ending in expiration date.   …,2,, ttttt Δ+Δ+

The delta determines how many units of the underlying asset will be purchased on a given day. 

The observed underlying asset price and the daily end of average bid-ask prices of the option are 

used for return calculation. For each day, the estimated parameters of the two competing models are 

used to calculate the delta of options, that is, delta P S= ∂ ∂ , which is approximated by 

( )t t t tP P+Δ − ΔS , where  is hedging horizon.  tΔ

In this section, two hedging strategies are constructed for call and put options. Firstly, for call 

options, the hedged portfolio is constructed by the combination of a short position in a call option 

with τ  periods to expiration and strike price K  and a long position of  number of units of 

underlying asset. In this hedging strategy,  is , defined by the above discussion. Thus, a 

hedged portfolio value at time t is  

w

w delta

( ) tV t P wS= + t                                 (24) 

where  is the option price at time , and ,  are the price and the number of units of the 

underlying asset held at time t, respectively. For our study, some conditions are imposed in 

calculating hedging errors: no transaction cost, only a single instrument (i.e., the underlying stock), 

no dividend, and no borrowing-lending cost. Based on the description about delta dynamic hedge in 

Bakshi et al. (1997), the hedging error after one period is:  

tP t tS w

( ) ( ) ( ) ( )tttttt SSwPPtVttVttH −+−=−Δ+=Δ+ Δ+Δ+               (25) 

 where r is the risk-free rate. 

Secondly, for put options, the hedged portfolio is constructed by holding a long position in a 

put option with τ  periods to expiration and strike price K  and  number of units of 

underlying asset; however, in put hedging strategy, 

w

w delta= − . Thus, a hedged portfolio value at 

time t is still:  

( ) tV t P wS= + t                               (26) 
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But the hedging error after one period is:  

( ) ( ) ( ) ( )ttttt SSwPPtVttVttH −+−=−Δ+=Δ+ Δ+Δ+ .             (27) 

Both in call and put hedging cases, the mechanism of dynamics delta hedging is the same, 

interpreting the mechanism as follows: according to above description, it can obtain hedging errors 

at time . It repeats the hedging error at time t tt Δ+ 2 , and so on. Record the hedging 

errors , for ( tltH Δ+ ) ttMl Δ−≡= )(,,1 τ" . Finally, compute the average absolute hedging 

error as a function of rebalancing frequency ( ) ( ) ( ),1: 1 tltHMtHt M
l Δ+=ΔΔ Σ =

 and the average 

dollar value hedging error: ( ) ( ) ( )∑ =
Δ+=Δ

M

l
tltHMtH

1
1 . 

To obtain the hedging results reported in Table 6.1 and 6.2, we follow the three steps below: 

first, estimate the set of parameter/volatility values by the index data before day t (note: daily index 

in EGARCH model; per 15 minutes high frequency in HAR-RV model). Next, use these 

parameter/volatility estimates and the current day’s spot index, to construct the desired hedge 

position. Finally, calculate the hedging error as of day t+1 if the hedge is rebalanced daily or as of 

day t+5 if the rebalancing takes place every five days.  

6.2. Results of Out-of-Sample Dynamic Delta Hedging Performance 

This study exhibits the empirical investigation of option hedging performance in the period 

from Apr. 2, 2007 to June 29, 2007 (totally 63 trading days). Table 6.1 and 6.2 report the 

out-of-sample hedging performance for call and put options, respectively. The results are also 

plotted in Figures 6.1 and 6.2 in terms of hedging horizon and different criteria of evaluation 

hedging performance of different moneyness categories. Firstly, considering hedging errors in call 

options, both in one-day hedging and five-days hedging, the HAR-RV model performs better than 

the EGARCH model for all evaluating criteria.  

Secondly, in the case of put options, contrasts to the case of call options, our numerical reports 

exhibit the entirely different results. The HAR-RV model underperforms the EGARCH model for 

all evaluating criteria and different hedging horizon. However, in Figure 6.2, it is easy to discover 

that the difference of hedging errors between the HAR-RV model and the EGARCH model is close 

to zero, except for ITM put options. In sum, although the EAGRCH model performs better than 

HAR-RV model in put options, it does not show significant superior in hedging performance.    
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7. Conclusion 

This thesis uses S&P500 index options data to investigate the empirical pricing and hedging 

performance of the HAR-RV option pricing model relative to the EGARCH option pricing model. 

Our results show that the HAR-RV model outperforms the EGARCH model in terms of one-day and 

five-days SPX call option pricing performance for all moneyness, except for OTM call options. 

When considering put options, the HAR-RV model exhibits smaller pricing errors for all moneyness 

categories in terms of the three evaluating criteria. Comparing one-day performance with five-day 

pricing performance, both in call and put options, it can obviously find that five-days pricing errors 

are bigger than one-day, consistent with the intuition that using more previous data to forecast 

pricing will exhibit bigger pricing bias.  

Furthermore, in hedging performance, this study shows that the HAR-RV option pricing model 

performs better than the EGARCH option pricing model only in the case of call options for all 

moneyness, while worse for put options. Although the EAGRCH option pricing model performs 

better than the HAR-RV model in put options, it is easy to discover that the difference of hedging 

errors between the HAR-RV model and the EGARCH model is close to zero, except for ITM put 

options.  

Form the above results, it implies that the HAR-RV option pricing model is superior both for 

call and put options in one-day and five-days pricing performance and in call option hedging 

performance. The EGARCH option pricing model does not show significant superiority in hedging 

performance for put options.        

Various issues could be examined by future studies. Since this study ignores the effects of the 

transaction cost, the dividend, and the borrowing-lending cost, in the future, it can add these factors 

for the improvement of evaluating pricing and hedging performance. Additionally, in financial 

markets, American options are heavily traded contracts, further researches can extend to evaluate 

American options pricing and hedging performance by applying the HAR-RV volatility model. 

 

 

 

 

 

 15



Reference 

Andersen, T.G., T. Bollerslev, F. X. Diebold, and P. Labys (2001). The distribution of realized 

exchange rate volatility. Journal of the American Statistical Association, 96, 42-55. 

Andersen, T.G., T. Bollerslev, F. X. Diebold, and P. Labys (2003). Modeling and forecasting realized 

volatility. Econometrica, 71, 579-625. 

Andersen, T. G., T. Bollerslev, and F. X. Diebold (2005). Parametric and non-parametric volatility 

measurement. In Handbook of Financial Econometrics (L.P Hansen and Y. A AÏt-Sahalia, 

eds.). Elsevier Science, New York, forthcoming. 

Andersen, T. G., T. Bollerslev, and F. X. Diebold (2007). Roughing it up: Including jump 

components in the measurement, modeling and forecasting of return volatility. The Review of 

Economics and Statistics, 89(4): 701–720. 

Bakshi, G., C. Cao, , and Z. Chen (1997). Empirical performance of alternative option pricing 

models. Journal of Finance, 52, 2003-2049. 

Barnodorff-Nielsen, O.E. and N. Shephard (2004a). Power and bipower variation with stochastic 

volatility and jumps. Journal of Financial Econometrics, 2, 1-37. 

Barnodorff-Nielsen, O.E. and N. Shephard (2004b). How accurate is the asymptotic approximation 

to the distribution of realized volatility. In Identification and Inference for Econometric Models. 

A Festschrift in Honour of T.J. Rothenberg (D. Andrews, J. Powell, P.A. Ruud, and J. Stock, 

eds.). Cambridge, UK: Cambridge University Press.  

Barnodorff-Nielsen, O.E., S. E. Graversen, and N. Shephard (2004). Power variation and stochastic 

volatility: A review and some new results. Journal of Applied Probability, 41A, 133-143. 

Black, F. and M. Scholes (1973). The pricing of options and corporate liabilities. Journal of Political 

Economy, 637-653. 

Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of 

Econometrics, 31, 307-327. 

Bollerslev, T. and H. O. Mikkelsen. (1999). Long-term equity anticipation securities and stock 

market volatility dynamics. Journal of Econometics, 92, 75-99. 

Corsi, F. (2003). A simple long memory model of realized volatility. Manuscript, University of 

Southern Switzerland.  

Duan, J. C. (1995).The GARCH option pricing model. Mathematical Finance, 5, 13-32. 

 16



Dumas, B., J. Fleming, and R. Whaley (1998). Implied volatility functions: Empirical tests. Journal 

of Finance, 53, 2059-2106. 

Engle, R. and V. Ng (1993). Measuring and testing the impact of news on volatility. Journal of 

Finance, 48, 1749-1778.  

Haynes H., M. Yung, and H. Zhang (2003). An empirical investigation of the GARCH option 

pricing model: Hedging performance. The Journal of Futures Markets, 23,  1191-1207.  

Heston, S. and S. Nandi (2000). A closed-form GARCH option valuation model. Review of 

Financial Studies, 13, 585-625. 

Heston, S. L. (1993). A closed solution for options with stochastic volatility, with application to 

bond and currency options. Review of Financial Studies, 327-343. 

Hull, J. and A. White (1987). The pricing of options on assets with stochastic volatilities. Journal of 

Finance, 42, 281-300.  

Müller, U. A., M. M. Dacorogna, R. D. Davé, R. B. Olsen, O. V. Puctet, and J. von Weizsäcker 

(1997). Volatilities of different time resolutions - analyzing the dynamics of market 

components. Journal of EmpiricalFinance, 4, 213-239. 

Nelson, D. (1991). Conditional heteroskedasticity in asset returns: A New approach. Econometrica, 

59, 347-370.  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 17



Table 2.1 

Summary Statistics of SPX in Call Options 

Moneyness Full sample <0.94 0.94－0.97 0.97－1.00 1.00-1.03 1.03－1.06 >1.06

Average bid-offer option price 39.53  1.41 3.91  17.62 40.11  74.57 198.45 

Minimum option price 0.40  0.40 0.40  1.23  17.00  51.80 91.50 

Maximum option price 909.20 9.40 25.40 52.10 71.50  112.40 909.20 

Total number of observations 2913 180 787 893 547 212 294 

Note. This table summarizes the SPX call option data for the period from Apr. 2, 2007 to June 29, 

2007. Moneyness is defined as S K , where  is the index level and is the strike price. S K

 

 

 

 
Table 2.2 

Summary Statistics of SPX in Put Options 

Moneyness Full sample <0.94 0.94－0.97 0.97－1.00 1.00-1.03 1.03－1.06 >1.06

Average bid-offer option price 14.19 162.32 63.17 31.38 16.04 8.09 2.96

Minimum option price 0.40 92.10 44.70 13.30 4.40 1.85 0.40

Maximum option price 263.30 263.30 91.50 59.20 43.50 24.95 19.75

Total number of observations 4098 40 129 627 804 689 1809

Note. This table summarizes the SPX put option data for the period from Apr. 2, 2007 to June 29, 

2007. Moneyness is defined as S K , where  is the index level and is the strike price. S K
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Table 4.1 

Summary Statistic of the Parameter Estimators of  

the EGARCH(1,1) Option Pricing Model 

Parameter Mean Standard Deviation min max 

ω  -0.1497 0.0090 -0.1719 -0.1357 

ϕ  0.9885 0.0007 0.9865 0.9896 

θ  -0.0859 0.0013 -0.0894 -0.0832 

γ  0.0469 0.0030 0.0430 0.0539 

Note.  The EGARCH(1,1) model parameters are estimated from daily S&P500 index return for 

the period from Jan. 2, 2002 to June 29, 2007.  

 

 

 

 
Table 4.2 

Summary Statistic of the Parameter Estimators of  

the HAR-RV Option Pricing Model 

Parameter Mean Standard Deviation min max 

�
0β  7.34E-06 7.28E-08 7.21E-06 7.60E-06 

� ( )d
β  0.1078 0.0007 0.1066 0.1092 

� ( )W
β  0.6518 0.0009 0.6492 0.6531 

� ( )M
β  0.1518 0.0004 0.1513 0.1535 

Note.  The HAR-RV model parameters are estimated from daily S&P500 index return for the 

period from Jan. 2, 2002 to June 29, 2007.  

 

 

 

 
 

 19



Table 5.1 

One-day Out-of-sample Valuation Error of the HAR-RV  

and EGARCH model for Call Options 

    MBIAS ($)   MAE ($)   RMAE (%) 

Moneyness   HAR EGARCH   HAR EGARCH   HAR EGARCH

All Mean  1.2183 -6.6982  2.341 6.7065  0.5251 0.432 

 Stdev  2.6455 5.7242  1.7325 5.7144  0.9155 0.29 

<0.94 Mean  2.1044 -1.3544  2.2114 1.3544  2.0548 0.9544 

 Stdev  1.6035 1.3777  1.4517 1.3777  1.4896 0.0459 

0.94-0.97 Mean  2.7476 -2.8532  2.7885 2.8561  1.1862 0.6713 

 Stdev  1.9222 3.0866  1.8623 3.0839  1.0654 0.2202 

0.97-1.00 Mean  1.7603 -8.0779  2.5215 8.0804  0.214 0.4223 

 Stdev  2.4863 6.2236  1.7083 6.2204  0.2213 0.1716 

1.00-1.03 Mean  -0.742 -10.3007  1.8722 10.3007  0.048 0.2532 

 Stdev  2.3505 5.3174  1.6016 5.3174  0.0399 0.0994 

1.03-1.06 Mean  -1.7368 -10.0362  1.9885 10.0362  0.027 0.1336 

 Stdev  1.9249 4.8689  1.6623 4.8689  0.0222 0.0552 

>1.06 Mean  0.7135 -6.9621  1.8003 7.0292  0.0103 0.0493 

  Stdev   2.2099 3.9798   1.4637 3.8597   0.0086 0.0336 

Note:  MBIAS, MAE, and RMAE are the mean value of the valuation error in dollars, the mean 
absolute valuation error in dollars, and the mean value of percentage absolute error, respectively.  
The parameters implied by the S&P 500 index data in our sample before the being priced date are 
used to calculate the forecasted call option prices. The valuation error is then calculated by 
comparing the observed and forecasted prices. Moneyness is defined as S K , where is the S&P 
500 index level and is the strike price. The HAR-RV model follows 

S

X

l ( ) ( )
( )

( )
( )

( )

1 0
d d W M

d W
t d t t

M

tRV RV RVβ β β β+ = + + +� � � � RV The EGARCH model, under risk-neutralized probability 
measure Q, has the following for ( ) 2 *

ln 0.51S S r zt t t tt σ σ= − +− ( )2
; ln tσ ω=  

( ) ( )2 * *
ln 21 1 1z zt t tϕ σ θ λ γ λ+ + − + − −− − −⎡⎣ π ⎤⎦ , where λ is restricted to zero. 
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Table 5.2 

One-day Out-of-sample Valuation Error of the HAR-RV  

and EGARCH model for Put Options 

    MBIAS ($)   MAE ($)   RMAE (%) 

Moneyness   HAR EGARCH   HAR EGARCH   HAR EGARCH

All Mean  -3.1351 -3.4014  3.2432 3.9542  0.5926 0.6062

 Stdev  2.4449 3.8678  2.2995 3.3003  0.376 0.35

<0.94 Mean  -3.0835 7.2592  3.2796 7.8156  0.0211 0.051

 Stdev  2.3018 4.1135  2.0047 2.884  0.0149 0.0214

0.94-0.97 Mean  -0.9555 2.9827  1.8819 4.4101  0.03 0.0703

 Stdev  2.8748 3.9734  2.3696 2.2701  0.0361 0.0336

0.97-1.00 Mean  -2.1006 -2.8639  2.5954 3.9577  0.0803 0.1187

 Stdev  3.1105 5.0251  2.7108 4.2164  0.069 0.105

1.00-1.03 Mean  -4.0164 -5.356  4.0233 5.3848  0.2755 0.3247

 Stdev  2.3631 3.8934  2.3514 3.8534  0.1527 0.1582

1.03-1.06 Mean  -4.7286 -5.3064  4.7286 5.3064  0.6393 0.6519

 Stdev  1.836 3.0249  1.836 3.0249  0.1654 0.117

>1.06 Mean  -2.6515 -2.6843  2.6515 2.6843  0.9462 0.9333

  Stdev   1.8642 2.0835   1.8642 2.0835   0.0794 0.0671

Note:  MBIAS, MAE, and RMAE are the mean value of the valuation error in dollars, the mean 
absolute valuation error in dollars, and the mean value of percentage absolute error, respectively.  
The parameters implied by the S&P 500 index data in our sample before the being priced date are 
used to calculate the forecasted put option prices. The valuation error is then calculated by 
comparing the observed and forecasted prices. Moneyness is defined as S K , where is the S&P 
500 index level and is the strike price. The HAR-RV model follows 
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tRV RV RVβ β β β+ = + + +� � � � RV The EGARCH model, under risk-neutralized probability 
measure Q, has the following for ( ) 2 *

ln 0.51S S r zt t t tt σ σ= − +− ( )2
; ln tσ ω=  

( ) ( )2 * *
ln 21 1 1z zt t tϕ σ θ λ γ λ+ + − + − −− − −⎡⎣ π ⎤⎦ , where λ is restricted to zero. 
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   Table 5.3 

Five-days Out-of-sample Valuation Error of the HAR-RV  

and EGARCH model for Call Options 

    MBIAS ($)   MAE ($)   RMAE (%) 

Moneyness   HAR EGARCH   HAR EGARCH   HAR EGARCH

All Mean  1.0466 -6.8791  2.3188 6.8807  0.4982 0.4439 

 Stdev  2.7269 5.9339  1.7757 5.9321  0.9252 0.2943 

<0.94 Mean  2.0702 -1.4232  2.174 1.4232  1.9715 0.9593 

 Stdev  1.6905 1.4567  1.5541 1.4567  1.67 0.0432 

0.94-0.97 Mean  2.5711 -2.964  2.6148 2.9659  1.0886 0.6896 

 Stdev  2.0394 3.1614  1.983 3.1596  1.0898 0.2127 

0.97-1.00 Mean  1.54 -8.4067  2.516 8.4083  0.2074 0.4337 

 Stdev  2.6742 6.5829  1.7855 6.5808  0.221 0.1755 

1.00-1.03 Mean  -1.0039 -10.4699  2.0695 10.4699  0.0535 0.2582 

 Stdev  2.4468 5.4714  1.6449 5.4714  0.043 0.1023 

1.03-1.06 Mean  -1.7938 -10.1156  2.0456 10.1156  0.0279 0.1345 

 Stdev  1.8875 5.0194  1.6098 5.0194  0.022 0.0561 

>1.06 Mean  0.7048 -7.2085  1.6825 7.2143  0.0096 0.0508 

  Stdev   2.0332 4.1893   1.3386 4.1792   0.0074 0.0353 

Note:  MBIAS, MAE, and RMAE are the mean value of the valuation error in dollars, the mean 
absolute valuation error in dollars, and the mean value of percentage absolute error, respectively.  
The parameters implied by the S&P 500 index data in our sample before the being priced date are 
used to calculate the forecasted call option prices. The valuation error is then calculated by 
comparing the observed and forecasted prices. Moneyness is defined as S K , where is the S&P 
500 index level and is the strike price. The HAR-RV model follows 
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tRV RV RVβ β β β+ = + + +� � � � RV The EGARCH model, under risk-neutralized probability 
measure Q, has the following for ( ) 2 *

ln 0.51S S r zt t t tt σ σ= − +− ( )2
; ln tσ ω=  

( ) ( )2 * *
ln 21 1 1z zt t tϕ σ θ λ γ λ+ + − + − −− − −⎡⎣ π ⎤⎦ , where λ is restricted to zero. 

 

 

 

 22



Table 5.4 

Five-days Out-of-sample Valuation Error of the HAR-RV  

and EGARCH model for Put Options 

    MBIAS ($)   MAE ($)   RMAE (%) 

Moneyness   HAR EGARCH   HAR EGARCH   HAR EGARCH

All Mean  -3.2914 -3.374  3.3924 3.9616  0.597 0.5992

 Stdev  2.6031 4.0096  2.4699 3.4301  0.3746 0.3529

<0.94 Mean  -3.2119 7.5248  3.3169 7.7094  0.0229 0.0522

 Stdev  2.1032 3.2179  1.9288 2.7331  0.0158 0.0201

0.94-0.97 Mean  -1.1772 2.9189  1.9551 4.4724  0.031 0.0709

 Stdev  2.7517 4.17  2.2621 2.4129  0.035 0.035

0.97-1.00 Mean  -2.4959 -2.8244  2.9464 4.0092  0.0892 0.1168

 Stdev  3.311 5.1399  2.9167 4.279  0.0744 0.1015

1.00-1.03 Mean  -4.3455 -5.3496  4.3619 5.3783  0.2915 0.3178

 Stdev  2.6307 4.1553  2.6034 4.118  0.1556 0.161

1.03-1.06 Mean  -4.8635 -5.2823  4.8635 5.2823  0.654 0.6455

 Stdev  2.0774 3.2576  2.0774 3.2576  0.164 0.1207

>1.06 Mean  -2.6773 -2.6946  2.6773 2.6946  0.9488 0.9319

  Stdev   1.9442 2.1542   1.9442 2.1542   0.0781 0.0704

Note.  MBIAS, MAE, and RMAE are the mean value of the valuation error in dollars, the mean 
absolute valuation error in dollars, and the mean value of percentage absolute error, respectively.  
The parameters implied by the S&P 500 index data in our sample before the being priced date are 
used to calculate the forecasted put option prices. The valuation error is then calculated by 
comparing the observed and forecasted prices. Moneyness is defined as S K , where is the S&P 
500 index level and is the strike price. The HAR-RV model follows 
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tRV RV RVβ β β β+ = + + +� � � � RV The EGARCH model, under risk-neutralized probability 
measure Q, has the following for ( ) 2 *

ln 0.51S S r zt t t tt σ σ= − +− ( )2
; ln tσ ω=  

( ) ( )2 * *
ln 21 1 1z zt t tϕ σ θ λ γ λ+ + − + − −− − −⎡⎣ π ⎤⎦ , where λ is restricted to zero. 
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TBALE 6.1 

Dynamic Delta Hedging Errors for SPX Call Options 

  1-Day Hedging 5-Day Hedging 

Moneyness  HAR EGARCH HAR EGARCH 

Panel A: Absolute hedging errors    

all  2.5354 2.8879 6.5231 7.3214 

<0.94  0.0743 0.0813 0.2748 0.2887 

0.94-0.97  0.4627 0.4825 0.9666 1.0118 

0.97-1.00  2.3603 2.5071 5.1477 5.6212 

1.00-1.03  4.2935 4.5678 18.6331 19.7269 

1.03-1.06  7.4655 8.4452 22.7341 27.0333 

>1.06  5.4789 6.7991 19.8412 23.7867 

      

Panel B: Mean hedging errors    

all  -2.5186 -2.8788 -6.5115 -7.3104 

<0.94  -0.0515 -0.0606 -0.1916 -0.2090 

0.94-0.97  -0.4472 -0.4676 -0.9647 -1.0101 

0.97-1.00  -2.3541 -2.5021 -5.1477 -5.6212 

1.00-1.03  -4.2935 -4.5678 -18.6331 -19.7269 

1.03-1.06  -7.4655 -8.4452 -22.7341 -27.0333 

>1.06  -5.4315 -6.7949 -19.8412 -23.7867 

Notes.  This table presents the mean value of absolute hedging error ($), the mean value of 
hedging error ($) of a dynamic delta hedging strategies established daily or five days for the sample 
period. Delta is calculated daily using parameters implied by the index data period before the date 
of being priced call option. Moneyness is defined as S K , where is the S&P 500 index level and S

K is the strike price. The best model is the one with a near zero hedging error.  
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TBALE 6.2 

Dynamic Delta Hedging Errors for SPX Put Options 

  1-Day Hedging 5-Day Hedging 

Moneyness  HAR EGARCH HAR EGARCH 

Panel A: Absolute hedging errors    

all  1.4344 1.3735 4.2896 3.9560 

<0.94  7.4298 6.6413 43.3687 37.0871 

0.94-0.97  4.2492 4.0576 13.5614 13.0808 

0.97-1.00  1.6903 1.6333 3.5925 3.4118 

1.00-1.03  1.4490 1.4244 1.1197 1.0955 

1.03-1.06  0.6115 0.6022 1.8794 1.8272 

>1.06  0.3133 0.3127 0.9276 0.9198 

      

Panel B: Mean hedging errors    

all  -1.1724 -1.1155 -4.2896 -3.9560 

<0.94  -7.4298 -6.6413 -43.3687 -37.0871 

0.94-0.97  -4.2492 -4.0576 -13.5614 -13.0808 

0.97-1.00  -1.3714 -1.3197 -3.5925 -3.4118 

1.00-1.03  -0.0179 -0.0148 -1.1197 -1.0955 

1.03-1.06  -0.6115 -0.6022 -1.8794 -1.8272 

>1.06  -0.3133 -0.3127 -0.9276 -0.9198 

Notes.  This table presents the mean value of absolute hedging error ($), the mean value of 
hedging error ($) of a dynamic delta hedging strategies established daily or five days for the 
sample period. Delta is calculated daily using parameters implied by the index data period before 
the date of being priced put option. Moneyness is defined as S K , where is the S&P 500 index 
level and 

S

K is the strike price. The best model is the one with a near zero hedging error.  
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FIGURE 5.1  One-day forecasting errors for SPX Call Options 

These figures show the 1-day forecasting errors of the HAR-RV model and the EGARCH 
model for SPX Call Options. The parameters implied by the S&P 500 index data in our sample 
before the being priced date are used to calculate the forecasted prices. The valuation error is 
then calculated by comparing the observed and forecasted prices. Moneyness is defined as 
S K , where is the S&P 500 index level and is the strike price.  S X

 26



1-day  valuation error for put option
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FIGURE 5.2  One-day forecasting errors for SPX Put Options 

These figures show the 1-day forecasting errors of the HAR-RV model and the EGARCH 
model for SPX Put Options. The parameters implied by the S&P 500 index data in our sample 
before the being priced date are used to calculate the forecasted prices. The valuation error is 
then calculated by comparing the observed and forecasted prices. Moneyness is defined as 
S K , where is the S&P 500 index level and is the strike price.  S X
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5-day  valuation error for call option
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FIGURE 5.3  Five-days forecasting errors for SPX Call Options 

These figures show the 5-day forecasting errors of the HAR-RV model and the EGARCH 
model for SPX Call Options. The parameters implied by the S&P 500 index data in our sample 
before the being priced date are used to calculate the forecasted prices. The valuation error is 
then calculated by comparing the observed and forecasted prices. Moneyness is defined as 
S K , where is the S&P 500 index level and is the strike price.  S X
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5-day  valuation error for put option

-6

-4

-2

0

2

4

6

8

10

<0.94 0.94-0.97 0.97-1.00 1.00-1.03 1.03-1.06 >1.06

moneyness

M
B

IA
S

HAR

EGARCH
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FIGURE 5.4  Five-days forecasting errors for SPX Put Options 

These figures show the 5-day forecasting errors of the HAR-RV model and the EGARCH 
model for SPX Put Options. The parameters implied by the S&P 500 index data in our sample 
before the being priced date are used to calculate the forecasted prices. The valuation error is 
then calculated by comparing the observed and forecasted prices. Moneyness is defined as 
S K , where is the S&P 500 index level and is the strike price.  S X
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FIGURE 6.1  Dynamic Delta Hedging Errors for SPX Call Options 

These figures show the mean value of absolute error and the mean value of error of dynamic delta 
hedging strategies with 1-day and 5-day rebalancing periods for call options. The best model is the 
one that produces the smallest errors.     
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FIGURE 6.2  Dynamic Delta Hedging Errors for SPX Put Options 

These figures show the mean value of absolute error and the mean value of error of dynamic delta 
hedging strategies with 1-day and 5-day rebalancing periods for put options. The best model is 
the one that produces the smallest errors.   
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