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摘要 

   本研究以台灣股票市場研究違約機率與股票報酬的關係。我們選擇三個預測財務危

機的模型，Logit 模型，Probit 模型和離散時間危險模型。利用 ROC 和錯誤分類表比較

此三種預測財務危機的模型，實證發現相對於 Logit 和 Probit 模型，離散時間危險模型

擁有較準確的預測財務危機的能力。我們以離散時間危險模型計算的違約機率和四因子

模型分析違約因子和 Fama-French 因子的關係。實證發現，在考慮投資組合或是考慮個

股股票之下，SMB 和 HML 因子係數的比重均與違約機率有相關。因此，實證結果證實

SMB 和 HML 是財務危機相關因子。 
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ABSTRACT 

We study how the default probability relates to the stock returns in Taiwan stock market. 

Three prediction models are chosen, Logit Model, Probit Model, and Discrete-Time Hazard 

Model. We find that Discrete-Time Hazard model outperforms the other two models in 

predicting financial distress. Using the default probabilities predicted by Discrete-Time 

Hazard Model, we analyze the relationship between default risk and the Fama and French 

factors, SMB and HML, by running the four-factor model. The empirical results show that 

both portfolio and individual stock factor loadings are related to the estimated default 

probabilities. This result supports the interpretation on SMB and HML as distress related 

factors. 
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1.  Introduction 

Sharpe (1964) and Lintner (1965) propose the capital assets pricing model (CAPM) to 

find whether the stock has the excess return, and suggest that there is a linear relation between 

the expected returns on stocks and market βs and that the market β is the only factor that can 

explain the expected return on stocks. Since 1980s, some studies find that the rule of firm 

characteristics, like that firm size (Banz, 1981), book-to-market ratios (Rosenberg, Reid and 

Lanstein, 1985), and earnings-price ratios (Basu, 1983), leverage (Bhandari, 1988) etc., can 

explain the cross-section return, those firm characteristics are not concluded in CAPM.  

However, in the empirical asset pricing literature, it has long been argued that the 

cross-section of stock returns is related to risk factors associated with systematic financial 

distress. The intertemporal capital asset pricing model (ICAPM) proposed by Merton (1973) 

and the arbitrage pricing theory (APT) proposed by Ross (1976), consider that there are many 

factors to affect the asset return, not only market risk. Chan, Chen, and Hsieh (1985) and 

Chen, Roll, and Ross (1986) find that a default factor, the spread between high- and low-grade 

bonds, has a significant contribution in explaining the cross-section of stock returns. Asset 

pricing theory claims stocks that underperform when the economy is in a high-distress state 

should reward the investors who hold them with higher expected returns as a compensation 

for bearing this non-diversifiable risk. Hence, these high returns would be partially 

unexplainable by a model that does not account for a distress factor, and therefore would be 

considered apparent mispricngs. 

   The existence of “pricing anomalies” such as the size and book-to-market effects has in 

fact been widely documented. The essence of the pricing anomalies lies in the fact that they 

cannot be justified by the return’s covariance with the market factor. The difference in market 

βs cannot explain the return differential between small and large firms, and between stocks 

with high and with low book-to-market values. Since market risk alone dose not price these 

stock, some other factors can explain the unexplained part. In their seminal papers, Fama and 

 1



French (1993) identify the two stock market factors related to size and book-to-market, i.e., 

SMB and HML, that in conjunction with the market factor form an impressive pricing model. 

In a later paper, Fama and French (1995) find that firms with high book-to-market tend to be 

relatively distressed, coming from a persistent period of negative earnings, and conversely, 

low book-to-market firms is associated with sustained strong profitability. They suggest that 

size and in particular book-to-market capture a firm’s level of financial distress. 

   A number of studies have tried to link default risk and stock returns with mixed and 

contradictory results. Altman (1993) finds that for most distressed firms subsequent average 

returns are lower. Dichev (1998) finds that bankruptcy risk is not rewarded by higher returns 

and concludes that a distress factor cannot be at the origin of the size and book-to-market 

effect. In particular, he finds that portfolios formed on the basis of a distress measure, whether 

Altman’s Z-score or Ohlson’s O-score, have returns inversely related to bankruptcy risk, a 

high probability of default is associated with low average returns. After examining the 

cross-sectional relation between stock returns and bankruptcy measures, as well as size and 

book-to-market, he concludes that the fact that firms with low bankruptcy risk outperform 

firms with high bankruptcy risk can only be explained by a mispricing argument. Griffin and 

Lemmon (2002) measure bankruptcy risk by using the Ohlson’s O-score, and find that the low 

return of high default-risk firms is driven by low book-to-market stocks with extremely low 

returns. They attribute these very low returns to mispricing due to a high degree of 

information asymmetry proxied by low analyst coverage.  

   By contrary to above studies, Lang and Stulz (1992), and Denis and Denis (1995) find that 

bankruptcy risk is related to aggregate factors, which implies that bankruptcy risk may be 

systematic. Fama and French (1996) suggest that small value stocks tend to be firms in 

distress (with high financial leverage and earnings uncertainty), with higher returns due to a 

distress premium. Vassalou and Xing (2004) use the distance to default implied by the Merton 

(1974) model to conclude that the size and book-to-market effects exist only in the quintiles 
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defined by high default risk stocks. They also provide evidence that distress risk is priced in 

the cross-section and that the Fama and French (FF) factors capture some of the 

default-related information. 

   Our study investigates the relationship between SMB, HML, and financial distress risk in 

Taiwan stock market (exclude banking, security and insurance industries). We focus on testing 

the hypothesis that the Fama and French (1993) factors are related to a default risk measure. 

The measurement of the expected default probability is critical in understanding how default 

risk related to stock return. We compare the performance of Logit model (Ohlson (1980)), 

Probit model (Zmijewski (1984)), and Discrete-Time Hazard model (Shumway (2001)) to 

predict default risk. Forecasting precision is imperative because we use the predicted 

probability of default to examine the relation between distress risk and stock returns. A more 

informative measure will give us a more complete understanding of what the FF factors 

represent. In our study, we establish a connection between the probability of default and factor 

loading. We anticipate that the return and default risk are related. A high probability of default 

should cause a stock to have high loading on the SMB and HML factors, thus delivering high 

returns which compensate the investor for holding default risk. 

   This study proceeds as follows. Relative researches are reviewed in section 2; the research 

methodologies are presented in section 3; the data employed are presented in section 4; the 

empirical results are presented and analyzed in section 5; conclusions are presented in section 

6. 
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2.  Literature Review 

2.1  Researches Related Financial Distress Prediction Model 

Beaver (1966) used the univariate analysis and dichotomous classification test to construct 

the model. Univariate analysis assumes that a single variable can be used for predictive 

purposes. He matched the sample by industry and asset size, and chose 79 failed and 

non-failed firms as a sample from 1954 to 1964. He used individual financial ratios to predict 

financial failure. The empirical results showed that his model achieved the accuracy rate of 

87%, 79%, and 77% in one year, two years, and three years prior to bankruptcy. 

Altman (1968) is the first one who proposed the multiple discriminate analysis (MDA) 

method to predict financial failure. He selected a sample of 33 bankrupt manufacturing that 

had filed for bankruptcy petition under Chapter 7 of the National Bankruptcy Act between 

1946 and 1965, and matched these firms with another 33 non-bankrupt firms selected by both 

industry and asset size random basis. He chose 22 ratios and divided into five categories by 

using the stepwise multiple discriminate analysis: liquidity, profitability, leverage, solvency, 

and activity. Altman’s Z-score model contained the five ratios. According to this ratio, if Z 

score was greater than 2.99, the firms were classified as non-bankrupt. If Z score was below 

1.81, the firms were classified as bankrupt. The area between 1.81 and 2.99 was defined as the 

“gray area” because of the uncertainty. Altman’s MDA model proved to be extremely accurate 

in predicting bankruptcy with an accuracy rate of 94% in one year prior to bankruptcy. 

However, the accuracy of prediction decreases as the projection period got longer. 

   Deakin (1972) united Beaver’s and Altman’s model and formulated the tendency of 

bankruptcy by a quadratic function. Unlike Beaver, Deakin selected a sample random basis 

and chose 32 non-bankrupt firms and 32 bankrupt firms. His discriminate model achieved an 

accuracy rate of 80% three years prior to bankruptcy. Although, the accuracy rate dropped 

when trying to predict bankruptcy four or more years before it occurred. 

   Blum (1974) introduced the cash flow concept, considered the trend of ratios, and 
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included the variability, and used three types of financial ratios: liquidity, profitability, and 

variability as explanatory variables to construct his model. The empirical results showed that 

his discriminate model achieved an accuracy rate of approximately 94% and 80% in one year 

and two years prior to bankruptcy, and 70% in three, four and five years prior to bankruptcy. 

   Altman, Haldeman, and Naraynana (1977) introduced the ZETA model that improved the 

Z-score model in 1986. They used seven variables: return on asset, stability of earning, debt 

service, cumulative profitability, liquidity/current ratio, capitalization (five years average of 

total market value), and size as predictors in the ZETA model. The accuracy rate of the ZETA 

model was 96% for one year and 70% for five years prior to bankruptcy. 

   Ohlson (1980) is believed to be the first to used develop a model using Multiple Logistic 

Regression (Logit) to construct a probabilistic bankruptcy model in prediction bankruptcy. He 

supported that logit models were preferable over MDA in financial distress prediction because 

logit regression does not need the assumptions of MDA. He selected the firms traded on OTC 

or/and stock exchange market between 1970 and 1976, and excluded utilities, transportation 

companies, and financial services companies. Finally, Ohlson selected 105 bankruptcy firms 

and matched these firms with 2058 non-bankrupt firms randomly. He used nine variables in 

the model: SIZE (log(total assets/GNP price-level index)), TLTA (total liabilities/total assets), 

WCTA (working capital/total assets), CACL(current assets/current liabilities), OENEG (1 if 

total liabilities exceed total assets, 0 otherwise), NITA (net income/total assets), FUTL(funds 

provided by operations/total liabilities), INTWO (1 if net income was negative for the last two 

years, 0 otherwise),and CHIN ( 1( ) (t t t tNI NI NI NI−− + 1 )− ). He constructed three logit 

bankruptcy prediction models which predicted bankruptcy within one, two, and one or two 

years. The empirical results showed the three models’ accuracy rates were 91.12%, 95.55%, 

and 92.84%, and the model that predicted bankruptcy within one year had better prediction 

ability. 
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   Zmijewski (1984) used Probit model to construct financial distress prediction model. He 

selected 76 bankrupt firms and 3880 non-bankrupt firms from 1972 to 1978. His paper 

examined conceptually and empirically two estimation biases which can result when financial 

distress models are estimated on nonrandom samples. The first bias results from 

“oversampling” distressed firms and falls within the topic of choice-based sample biases. The 

second results from using a “complete data” sample selection criterion and falls within the 

topic of sample selection biases. His empirical results showed that the bias are clearly exist, 

but in general they don’t appear to affect the statistical inference or overall classification rates. 

   Shumway (2001) introduced a simple hazard model with a multiple logit model estimation 

program for forecasting bankruptcy. Shumway referred to models that used multiple period 

bankruptcy data to estimate single period classification as static models. While static models 

produce biased and inconsistent bankruptcy probability estimates, his hazard model which 

used all available information to determine each firm’s bankruptcy risk at each point in time 

was consistent in general and unbiased in some cases. Therefore, the simple hazard model is 

referred to as discrete-time hazard model. Shumway collected data of firms which began 

trading from 1962 to 1992 and were in the intersection of the Compustat Industial File and the 

CRSP Daily Stock Return File for NYSE and AMEX stocks. He incorporated Altman’s five 

independent variables and Zemijewski’s three independent variables in his model, and also 

added three market-driven variables: firms’ relative size, firms’ abnormal returns, and sigma 

of firms’ stocks. The empirical results showed that firms’ trading age wasn’t the significant 

variable and EBIT/TA, ME/TL, NI/TL, and TL/TA were in his model. He found that including 

accounting ratios and market-driven variables would improve the prediction ability of the 

discrete-time hazard model. 

 

2.2  Researches Related Stock Return 

Sharpe (1964) and Lintner (1965) proposed the Capital Asset Pricing Model (CAPM) and 
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find that there was a positive relation between the expected returns and market βs, and 

market βs could explain the change of the cross-section returns. In other words, knowing 

market βs can estimate the asset returns. 

Black, Jensen and Scholes (1972) selected monthly stock returns listed on NYSE from 

January 1926 to March 1966 and estimated βs of stocks. They used βs to sort all stock into 

ten portfolios. The empirical results showed that there was a linearly positive relation between 

market risk and stock returns. 

Fama and MacBeth (1973) used the monthly returns of common stock listed on NYSE as 

a sample from January 1926 to June 1968. They demonstrated that market risk can complete 

explain return and there existed a significantly positive relation between market risk and 

returns. 

Although CAPM has long shaped the way academics and practitioners, since 1980s some 

researchers found that some phenomena that CAPM cannot explain exist. Market βs cannot 

complete explain asset pricing, and “anomalies” which affect asset pricing exist, which is 

demonstrated such as size effect, price earning ratio, book-to-market effect etc. 

Banz (1981) tested the relation between total market value of common stocks and returns. 

Banz used a generalized asset pricing model on a sample which were monthly stock returns 

listed NYSE from 1936 to 1975, and constructed portfolios by using market value of common 

stock and market risk, and used generalized least square regression analysis. He found in 

general small firms had bigger risk-adjusted returns than large firms, and that is, size effect 

existed.  

Reinganum (1981) examined the earning/price and market value effects on stock returns. 

He collected stock listed NYSE and AMEX between 1963 and 1977 and constructed ten 

portfolios based on market value at the end of very year. The empirical results showed that the 

average returns of small firms were bigger 20% than large firm, and the effect existed at least 

two years. 
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Chan, Chen and Hsieh (1985) investigated the firm size effect for the period 1958 to 1977 

by using a multi-factor pricing model. They found that the risk-adjusted difference in returns 

between the top five percent and the bottom five percent of the NYSE firms is about one to 

two percent a year, a drop from about twelve percent per year before risk adjustment. The 

variable most responsible for the adjustment is the sensitivity of asset returns to the changing 

risk premium, measured by the return difference between low-grade bonds and long-term 

government bonds. 

Chan and Chen (1991) showed differences in structural characteristics that lead firms of 

different sizes to react differently to the same economic news. They found that a small firm 

portfolio contains a large proportion of marginal firms. They found that return indices are 

important in explaining the time-series return difference between small and large firms. 

Fama and French (1992) investigated all NYSE, AMEX, and NASDAQ stocks that met 

the CRSP-COMPUSTAT data requirements, and divided stocks into ten portfolios sorted by 

size and book-to-market equity. They found that the two variables, size and book-to-market 

equity, combined to capture the cross-sectional variation in average stock returns associated 

with market beta, size, leverage, book-to-market equity, and earnings-price ratios, and when 

the tests allow for variation in beta that is unrelated to size, the relation between market beta 

and average return is flat, even when beta is the only explanatory variable.  

Fama and French (1993,1995) confirmed that portfolio constructed to mimic risk factors 

related to size and book-to-market equity add substantially to the variation in stock returns 

explained by a market portfolio. They showed that a three-factor model that included a market 

factor and risk factors related to size and book-to-market equity seemed to capture the 

cross-section of average stock returns. 

Dichev (1998) finds that bankruptcy risk is not rewarded by higher returns and concludes 

that a distress factor cannot be at the origin of the size and book-to-market effect. In particular, 

he finds that portfolios formed on the basis of a distress measure, whether Altman’s Z-score or 
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Ohlson’s O-score, have returns inversely related to bankruptcy risk, a high probability of 

default is associated with low average returns. After examining the cross-sectional relation 

between stock returns and bankruptcy measures, as well as size and book-to-market, he 

concludes that the fact that firms with low bankruptcy risk outperform firms with high 

bankruptcy risk can only be explained by a mispricing argument. 

Griffin and Lemmon (2002) measured bankruptcy risk by using the Ohlson’s O-score, and 

found that the low return of high default-risk firms was driven by low book-to-market stocks 

with extremely low returns. They attributed these very low returns to mispricing due to a high 

degree of information asymmetry proxied by low analyst coverage. 

Vassalou and Xing (2004) used a sample from January 1971 to December 1999 and the 

distance to default implied by the Merton (1974) model to conclude that the size and 

book-to-market effects exist only in the quintiles defined by high default risk stocks. They 

also provided evidence that distress risk is priced in the cross-section and that the Fama and 

French (FF) factors capture some of the default-related information. 
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3.  Empirical Methodology 

   In this study, we will compare the performance of three models, Logit model, Probit 

model, and Discrete-time Hazard model. Then we are going to use the default measure (the 

predicted probability of default), estimated by the model with the best performance in the 

three models, to examine the relation between distress and the FF factors, SMB and HML. In 

this section we start with introducing the methodologies used in this study. 

   The outcomes of the financial distress are between two discrete alternatives, failed or 

non-failed, so the binary choice model is an appropriate method to apply to. The dependent 

variable  takes the value of 1 when the company suffers financial distress and takes the 

value of 0 when otherwise. We start from the concept of the regression model. Let 

iY

iX  denote 

a vector of predictors for the th observation, and i β  be a vector of unknown parameter and 

iε  be error term with zero mean. The dichotomous dependent variable regression model is 

given by 

  i iY X iβ ε′= +                                                       (1)   

where  
1 ,  if bankruptcy
0 ,    otherwise    iY ⎧

= ⎨
⎩

Take expectation of both sides in (1), and by given that i iX x= , we can get the linear 

probability model which is expressed by 

  ( ) ( ) ( )| 1 1| 0 0 |i i i i i i i i iE Y X x P Y X x P Y X x= = ⋅ = = + ⋅ = =  

              ( )1|i i iP Y X x xiβ′= = = =                                 (2)   

   Although { }1,0iY ∈ , β  often makes ix β′  lie out of the range . Hence, to make 

the range of the probability , we can use the cumulative probability function. 

(0,1)

)

( )

(0,1

  ( )1|i i i iP Y X x F x β′= = =                                           (3) 

   There are many kinds of cumulative probability functions. This study will introduce the 

Logit Model and Probit Model. 
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3.1  Logit Model 

   Financial distress problem can be viewed as a binary situation. Logit Model assumes that 

the bankruptcy probability has a Logistic distribution. Let ip  denote the bankruptcy 

probability ( ip  is between 0 and 1). Given ix , the basic Logit specification of ip  is stated 

by 

  ( ) ( ) 1 11|
1 1 1

i

i i

x

i i i i i ix x

ep P Y X x F x
e e

β

eπ ββ
′

β′ ′− −
′= = = = = = =

+ + +
               (4) 

or written in the form of the logit function of bankruptcy probability 

  ( ){ } ( )
( )

1|
logit 1| ln

1 1|
i i i

i i i
i i i

P Y X x
P Y X x x

P Y X x iβ
⎧ ⎫= =⎪ ⎪ ′= = = =⎨
− = =⎪ ⎪⎩ ⎭

⎬                  (5) 

We know that the higher the value of i ixπ β′=  is, the higher bankruptcy probability it stands 

for. In equation (4), the range of the probability should be between (0,1). 

   In the linear regression models, the OLS (ordinary least squares) is always used to 

estimate the parameters. However, we cannot use the OLS to estimate the coefficients due to 

bias. Thus, we use the MLE (maximum likelihood estimator). The likelihood function is: 

  ( ) ( )( )
1

1

1 1

11
1 1

i ii
ii

i i

y yxn nyy
i i x x

i i

eL F x F x
e e

β

β ββ β
−′

−

′ ′
= =

⎛ ⎞ ⎛ ⎞⎡ ⎤′ ′= − = ⎜ ⎟ ⎜ ⎟⎣ ⎦ + +⎝ ⎠⎝ ⎠
∏ ∏              (6) 

By equation (6), we can get the log-likelihood function as 

  ( ) ( ) ( )( )
1 1

ln log 1 log 1
n n

i i i i
i i

L y F x y F xβ β
= =

′ ′= + − −∑ ∑  

                                             (7) ({
1

log 1 i

n
x

i i
i

y x e ββ ′

=

′= − +∑ )}
where iy equals to one if the firm goes bankruptcy and equals to zero otherwise. 

We take differentiating with respect to β  for maximizing this equation (7), and set to 

zero. Then, we can get the normal equations: 

  
1

ln 0
1

i

i

xn

i i ix
i

eL y x x
e

β

ββ

′

′
=

⎛ ⎞∂
= −⎜∂ +⎝ ⎠
∑ =⎟                                      (8) 

By solving this equation (8) for β , we can get the MLE of β . 
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3.2  Probit Model 

   Probit model assumes that the bankruptcy probability has a standard normal distribution. 

Let ip  be the bankruptcy probability ( ip  is between 1 and0). Given ix , we can state the 

bankruptcy probability by cumulative probability function of the standard normal distribution: 

  ( ) ( ) ( ) ( )
2

211|
2

i
u

i i i i i i ip P Y X x F x e du x
π

β π
π

−

−∞
β′ ′= = = = = = Φ = Φ∫          (9) 

where i ixπ β′= , and ( )Φ ⋅  is the cumulative distribution function of the standard normal 

distribution. 

   As we mentioned above, the difference between the Probit model and Logit model is the 

cumulative probability function. Therefore, we also use the MLE to estimate the unknown 

parameters. The likelihood function is expressed as follow: 

  ( ) ( )( ) ( ) ( ) 11

1 1

1 1
i

iii

yn n yyy
i i i i

i i

L F x F x x xβ β β β
−−

= =

⎡ ⎤′ ′ ′ ′= − = Φ −Φ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎣ ⎦∏ ∏          (10) 

   According to equation (10), we take this natural logarithm and get the log-likelihood 

function: 

  ( ) ( ) ( )( )
1 1

ln log 1 log 1
n n

i i i i
i i

L y F x y F xβ β
= =

′ ′= + − −∑ ∑  

                           (11) ( )( ) ( ) ( )({ }
1

log 1 log 1
n

i i i i
i

y x y xβ
=

′= Φ + − −Φ∑ )β′

where iy equals to one if the firm goes bankruptcy and equals to zero otherwise. 

We take differentiating with respect to β  for maximizing this equation (11), and set to 

zero. Then, we can get the normal equations: 

  ( )
( ) ( ) ( )

( )1

ln 1 0
1

n
i i

i i i i
i i i

x x
L y x y x

x x
β β

β β β=

⎧ ⎫′ ′ ′ ′Φ Φ∂ ⎪ ⎪= − −⎨ ⎬′ ′∂ Φ −Φ⎪ ⎪⎩ ⎭
∑ =                    (12) 

By solving this equation (12) for β , we can get the MLE of β . 

 

3.3  Discrete-Time Hazard Model 
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   Different from other models that we discussed above, the Discrete-Time Hazard Model, 

correcting for period at risk and allowing for the time-varying covariates, is a dynamic model. 

Shumway’s (2001) Discrete-Time Hazard Model uses all available information to produce 

bankruptcy probability estimates for all firms at each point in time. By using all available data, 

this model avoids the selection biases inherent in static models. Now, we are going to 

introduce this Discrete-Time Hazard Model. Let T  be a discrete-time random variable, 

where { }1,2,...., iT ∈ t

)

 which represent the time when the firm goes bankrupt, and  be the 

age of the th firm. The probability mass function of bankruptcy is 

it

i ( , ;i if t x θ , where ix  is 

the independent variable vector of the th firm and i θ  is the unknown parameter vector. 

   We denote the survival function as follow: 

( ) ( ) ( ), ; 1 , ; | ;
i

i i i i i
j t

S t x f j x P T t xθ θ
<

= − = ≥∑ θ                     

( ), ;
i

it
f u x duθ

∞
= ∫                                         (13) 

where ( , ;i iS t x )θ  can be interpreted that before the firm year , the firm does not go 

bankrupt. 

it

And define the hazard function (the instantaneous rate of default per unit of time) as follow: 

  ( ) ( )
( ) (, ;

, ; | , ;
, ;

i i
i i i i i

i i

f t x
h t x P T t T t x

S t x
θ )θ θ
θ

= = = ≥                           (14) 

It can be interpreted that the firm goes bankrupt at age . it

And ( , ;i iF t x )θ  is the cumulative probability density function of ( , ;i if t x )θ . Then, 

according to equation (13),  

  ( ) ( ) ( ) (
0

, ; , ; 1 , ; 1 , ;i

i

t

i i i i i it
F t x f u x du f u x du S t x )θ θ θ

∞
= = − = −∫ ∫ θ            (15) 

We can take differentiating and get 

  ( ) ( ), ; 1 , ;i i i i
d dF t x S t x
dt dt

θ θ= −⎡ ⎤⎣ ⎦  
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  ( ) ( , ; , ;i i i iF t x S t x )θ θ′ ′⇒ = −                                         (16) 

Then, we can use equation (14) to translate the survival function as follow: 

( ) ( )
( )

( )
( )

( )
( ) ( ), ; , ; , ;

, ; ln , ;
, ; , ; , ;

i i i i i i
i i i i

i i i i i i

f t x F t x S t x
h t x d S t x

S t x S t x S t x
θ θ θ

θ θ
θ θ θ

′ ′−
= = = = −  

( ) ( )
0 0

 , ; ln , ;i it t

i ih u x du d S u xθ θ⇒ − =∫ ∫  

( ) ( )
0

 , ; ln , ; ln (0)it

i i ih u x du S t x Sθ θ⇒ − = −∫  

Because the survival probability of a firm at time 0t =  should be one, (0) 1S =  

. Therefore, we can get  lnS(0)=0⇒

  ( ) (
0

 , ; ln , ;it

i ih u x du S t x )iθ θ⇒ − =∫  

  ( ) ( ) (0
, ; , ; , ;

ti
i i i

h u x du H t x
i iS t x e e

θ )θθ
− −∫⇒ = =                                 (17) 

where  is the cumulative probability function of ( )H ⋅ ( ), ;i ih t x θ . 

   According to Cox and Oakes (1984), we can show that the hazard function for a 

discrete-time hazard model as follow: 

  ∵ ( ) ( ) ( )( ) , ; 0   , ; ln 1 , ;i i i i i ih t x h t x h t xθ θ θ→ ⇒ ≈ − −  

  ∴ ( ) ( )( ) ( )( )
1 1

, ; ln 1 , ; ln 1 , ;
ii tt

i i i i
j j

H t x h j x h j xθ θ θ
= =

= − − = − −∑ ∏  

   Substituting above equation into equation (17), we can show the survival function as 

follow: 

( ) ( )
( )( )

((1

ln 1 , ;
, ;

1

, ; 1 , ;

ti

ii
ji i

th j x
H t x

i i i
j

S t x e e h j x
θ

θ ))θ θ=

−
−

=

∏
= = = −∏                  (18) 

   Shumway (2001) proved that interpreting the logit model as a hazard model can clarify 

the meaning of the model’s coefficients, and a discrete-time hazard model is equivalent to a 

multi-period logit model. So, the hazard function and likelihood function of a discrete-time 
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hazard model can be shown as follows: 

  ( ), ;
1

i

i

x

i i x

eh t x
e

θ

θθ
′

′=
+

                                                (19) 

  ( )( ) ( ) ( )
11

1 1

, ; 1 , ; 1 , ;
ii i

i i

tn y y

i t i t j
i j

L h t x h t x h j xθ θ
−−

= =

⎧ ⎫⎡ ⎤ θ⎡ ⎤= − −⎨ ⎬⎣ ⎦⎣ ⎦⎩ ⎭
∏ ∏  

    ( )
( ) ( )

1

1 1

, ;
1 , ;

1 , ;

i
i

y tn
i i

j
i ji i

h t x
h j x

h t x
θ

θ
θ

−

= =

⎧ ⎫⎡ ⎤⎪ ⎪⎡ ⎤= −⎨ ⎬⎢ ⎥ ⎣ ⎦−⎣ ⎦⎪ ⎪⎩ ⎭
∏ ∏  

    ( )
( ) (

1

, ;
, ;

1 , ;

iy
n

i i
i i

i i i

h t x
S t x

h t x
θ )θ
θ=

⎧ ⎫⎡ ⎤⎪= ⎨⎢ ⎥−⎣ ⎦⎪ ⎪⎩ ⎭
∏ ⎪

⎬                                  (20) 

where iy equals to one if the firm goes bankruptcy and equals to zero otherwise. 

   According to equation (20), we take this natural logarithm and get the log-likelihood 

function: 

  ( ) ( ) ( )( ) ( )( )
1

1 1

ln ln , ; 1 ln 1 , ; ln 1 , ;
itn

i i i i i i j
i j

L y h t x y h t x h j xθ θ
−

= =

θ
⎧ ⎫

= + − − + −⎨ ⎬
⎩ ⎭

∑ ∑  

     ( )
( ) ((

1 1 1

, ;
ln ln 1 , ;

1 , ;

itn n
i i

i j
i i ji i

h t x
y

h t x
θ

θ
θ= = =

⎡ ⎤⎛ ⎞ ))h j x⎡ ⎤= + −⎢ ⎥⎜ ⎟⎜ ⎟ ⎣ ⎦−⎢ ⎥⎝ ⎠⎣ ⎦
∑ ∑∑                    (21) 

Substituting equation (19) into equation (21), we can get 

  ( )
1 1 1

1ln ln
1

i

j

tn n

i i x
i i j

L y x
e θθ ′

= = =

⎡ ⎤′= + ⎢ ⎥+⎣ ⎦
∑ ∑∑                                   (22) 

   We take differentiating with respect to θ  for maximizing this equation (22), and get the 

first-order condition as follow: 

  ( )
1 1 1

ln 0
1

ji

j

xtn n
j

i i x
i i j

e x
L y x

e

θ

θθ

′

′
= = =

⎛ ⎞′−∂ ′= + ⎜ ⎟⎜ ⎟∂ +⎝ ⎠
∑ ∑∑ =                                (23) 

By solving this equation (24) for θ , we can get the MLE of θ . 

 

3.4  Error Classification 

   Logit model, Probit model, and Discrete-Time Hazard model can classify every firm as 
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Default group or Non-default group by using a cut-off point. According to the error 

classification, we can easily observe the predicted ability of a model. In order to analyze the 

performance of models, we first find a value for the bankruptcy probability that make the total 

error minimum. The value is called optimal cut-off point value. If the predicted bankruptcy 

probability of a firm is higher than the cut-off point value, we will classify the firm as the 

default group; if the predicted bankruptcy probability of a firm is lower than the cut-off point 

value, we will classify the firm as the non-default group. Then, we define two type errors: 

type I error and type II error. Type I error is that firms with a predicted default probability 

higher than the cut-off point value are classified as the non-default group; type II error is that 

firms with a predicted default probability lower than the cut-off point value are classified as 

the default group. In addition, α is the probability of type I error, β is the probability of type II 

error. 

   To search the optimal cut-off point value, we must find a cut-off point value that makes 

sum of α and β minimum. Using the error classification table, we can observe the sum of α 

and β for all cut-off point values, and then find the optimal cut-off point value. 

 

3.5  ROC (Receiver Operating Characteristic) Curve 

   ROC analysis is widely used in medicine, radiology, psychology and other areas for many 

decades. In the social sciences, ROC analysis is often called the ROC Accuracy Ratio, a 

common technique for judging the accuracy of default probability models. 

   Assume someone has to use the rating score for bankrupt and non-bankrupt firms to 

predict which firm will go bankrupt in the next period. One possible way for the 

decision-maker would be propose a cut-off point value . If the rating score is higher than the 

cut-off point value, the firm might go bankrupt; while if the rating score is lower than the 

cut-off point value, the firm is considered non-bankruptcy. The four outcomes can be 

formulated in a  contingency table in Table 1.  

C

2 2×
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   We define the hit ratio ( )HR C  as  

                                                (25) ( ) ( )DHR C P S C= ≤

where DS  means the random variable of the distribution of bankruptcy firms. 

And define the false alarm rate ( )FAR C  as 

                                               (26) ( ) ( )NDFAR C P S C= ≤

where  means the random variable of the distribution of non-bankruptcy firms. NDS

 

Table 1  Decision Results Given the Cut-off Point Value C 

 Bankruptcy Non-bankruptcy 

C<  
Correct Prediction 

(hit) 
Wrong Prediction 

(false alarm) Rating 
Score 

C>  
Wrong Prediction 

(miss) 
Correct Prediction 
(correct rejection) 

 

Figure 1  ROC Curve 
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   The construction of ROC is as follows. For all cut-off point values  that are contained 

in the range of the rating scores the quantities  

C

( )HR C  and ( )FAR C  are computed. The 

ROC curve is a plot of ( )HR C  versus ( )FAR C  for all cut-off point values . The ROC 

curve is illustrated in Figure 1. 

C

   A performance of a rating model is the better the steeper the ROC curve is at the left end 

and the closer the ROC curve’s position is to the point (0,1). Similarly, the model is the better 

the larger the area under the ROC is. Hence, we denote this by AUC (area under curve) which 

is the area under the ROC curve. It can be interpreted as the average power of the tests on 

bankruptcy/non-bankruptcy corresponding to all possible cut-off point values . The area 

AUC is 0.5 for a random model without discriminative power and is 1.0 for a perfect model. 

It’s between 0.5 and 1.0 for any reasonable rating model in practice. 

C

 

3.6  Four-Factor Model  

   Fama and French (1993) three-factor model is widely used to explain the cross-section 

stock return. Since it has been reported that there exists a momentum effect in stock prices 

(Jegadeesh and Titman (1993)) we would likely observe slightly higher returns corresponding 

to the group of firms that performed well in the past and slightly lower returns in the group of 

firms that performed poorly in the past. Therefore, a momentum factor is added to the Fama 

and French (1993) three-factor model because the default measure loads on the past economic 

performance as well as past stock returns. Accordingly, we consider a four factor model: the 

Fama and French (1993) three factor model plus a momentum factor. The Fama and French 

(1993) three-factor model is expressed as follow: 

  ( ), , ,it ft i MKT i mt ft SMB i t HML i t itR R R R SMB HMLα β β β− = + − + + +ε       

Then, the four-factor model can be shown: 
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( ), , , ,it ft i MKT i mt ft SMB i t HML i t MOM i t itR R R R SMB HML MOMα β β β β− = + − + + + + ε  

where, itR  is the value-weighted monthly return of a portfolio at time . t

      ftR  is the risk-free interest rate at time . t

      mtR  is the return on the valued-weighted portfolio of the stocks in the six benchmark 

portfolios at time . t

       is the difference between the returns on small- and big-stock benchmark 

portfolios with about the same weighted-average book-to-market equity at time 

. 

tSMB

t

       is the difference between the simple average of the return on the two 

high-BE/ME (book-to-market equity) benchmark portfolios and the average of 

the returns on the two low- BE/ME  benchmark portfolios at time . 

tHML

t

      tMOM  is the average of the returns on two high prior return benchmark portfolios 

minus the average of the returns on two low prior return benchmark portfolios 

at time . t

   According to Fama and French (1992), we use the same way to construct six benchmark 

portfolios formed from sorts of stocks on ME (stock price times number of shares) and 

BE/ME. In June of each year , we rank the stock on size (price times shares), and split 

stocks into two groups, small and big (S and B). And we also break stocks into three 

book-to-market equity groups based on the breakpoints for the bottom 30% (Low), middle 

40% (Medium), and top 30% (High) of the ranked values of BE/ME for stocks. Then, we 

construct six benchmark portfolios (S/L, S/M, S/H, B/L, B/M, B/H) from the intersections of 

the two ME and the three BE/ME groups. The six benchmark portfolios is illustrated in Table 

2. Monthly value-weighted returns on the six benchmark portfolios are calculated from July 

of year  to June of year . 

t

t 1t +

The portfolio SMB (small minus big) is the difference, each month, between the simple 
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average of the returns on the three small-stock portfolios (S/L, S/M, and S/H) and the simple 

average of the returns on the three big-stock portfolios (B/L, B/M, and B/H). Thus, SMB is 

the difference between the returns on small- and big-stock portfolios with about the same 

weighted-average book-to-market equity. 

 

Table 2  Six Benchmark portfolios 

BE/ME  

High Medium Low 

Small S/H S/M S/L 
ME 

Big B/H B/M B/L 

 

   The portfolio HML (high minus low) is defined the difference, each month, between the 

simple average of the returns on the two high-BE/ME portfolios (S/H and B/H) and the 

average of the returns on the two low-BE/ME portfolios (S/L and B/L). 

   The mR  is the return on the value-weighted portfolio of the stocks in the six size-BE/ME 

benchmark portfolios. 

   The MOM factor is defined by the way from Kenneth French’s web page. The MOM is 

the average of the returns on two (big and small) high prior return portfolios minus the 

average of the returns on two low prior return portfolios. The six value-weight portfolios are 

formed using independent sorts on size and prior return of stocks. The portfolios are 

constructed monthly. Big means a firm is above the median market cap at the end of the 

previous month; small firms are below the median stock market cap. Prior return is measured 

from month -12 to -2. Firms in the low prior return portfolio are below the 30th percentile. 

Those in the high portfolio are above the 70th percentile (Details about construction of a 

momentum factor can be obtained from Kenneth French’s web page). 
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3.7  Fama and MacBeth Procedure 

We use the two-stage Fama and MacBeth (1973) procedure for investigating the 

relationship between default probability and factor loading at the individual stock level.  

In the first stage, for each stock in July of each year, we run a time-series regression using 

60-month window of monthly data to obtain estimates of the stock loadings on the factors. In 

the second stage, in July of each year, we run a regression of a logistic transformation of the 

default probability, 

log
1

it
it

it

PP
P

⎛ ⎞
= ⎜ ⎟−⎝ ⎠

 

, on the individual stock factor loading, ,SMB itβ  and ,HML itβ , and a set of control variables 

(size and book-to-market). Specifically: 

  , ,0, , , ,SMB it HML itit t SMB t HML t x t it itP xλ λ β λ β λ ε= + + + +  

Following Fama and MacBeth (1973), t-statistic is applied to test the null hypothesis that 

there is no relation between the factor loadings and the default probability against the 

alternative that there is a positive relation for SMBλ  and HMLλ : 

  H0： 0λ =  against  H1： 0λ >  
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4.  Data 

4.1  Definition of Financial Distress 

   A company encounters financial difficulties and defaults when it falls to service its debt 

obligation. Many researchers have studied corporate bankruptcy, different people have come 

up with different definitions that basically reflect their special interest in the field. 

   In Taiwan, definitions of bankruptcy can be found in Operating Rule of the Taiwan Stock 

Exchange Corporation and Company Law, which are in Operating Rule of the Taiwan Stock 

Exchange Corporation Article 49, 50, 50-1. And we also find the definitions of financial 

distress and quasi financial distress in TEJ database, and these definitions conform to 

Operating Rule of the Taiwan Stock Exchange Corporation Article 49, 50, 50-1. Therefore, we 

will use the definitions of financial distress and quasi financial distress in TEJ database as 

default event in our study. 

 

4.2  Sample Data 

  Our sample firms must be listed on Taiwan Stock Exchange Corporation (TSE) or GreTai 

Security Market (GTSM or OTC). Because the characteristics of banking, security and 

insurance industries are different from others, we exclude these industries from our sample 

firms. Besides, we also exclude the firms of which financial reports are incomplete. 

   We collect data of the sample firms from TEJ database. The study period is 1988-2006. 

The non-default firms are firms that remain traded on TSE or GTSM during 1988-2006. If the 

firms experience the financial distress situations mentioned in section 4.1 during this period, 

we classify firms as default group. We use the observations between 1988 and 2002 as the 

estimation sample, and the observations from 2003 to 2006 as the out-sample validation group 

to examine the models’ accuracy. Finally, there are 728 non-default firms and 109 default 

firms in the in-sample, and 956 non-default firms and 63 default firms in the out-sample. The 

number of in-sample and out-of-sample firms is shown in Table 3. 
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Table 3  Numbers of Sample Firms 

 Sample period No. of non-default firms No. of default firms

In-sample 1988～2002 728 109 

Out-sample 2003～2006 956 63 

 

   In order to estimate the coefficients of each financial prediction model, we collect firm’s 

financial information and calculate the market-driven variables from TEJ database each year 

in this sample period. The variables used by Logit Model (Ohlson, 1980), Probit Model 

(Zmijewski, 1984), and Discrete-Time Hazard Model (Shumway, 2001) are illustrated as 

follows: 

1. Variables of Logit Model (Ohlson, 1980)： 

 SIZE：log(total assets). 

 TLTA：total liabilities / total assets. 

 WCTA：working capital / total assets. 

 CACL：current assets / current liabilities. 

 OENEG：1 if total liabilities exceed total assets, 0 otherwise. 

NITA： net income/total assets. 

 FUTL：funds provided by operations / total liabilities. 

 INTWO：1 if net income was negative for the last two years, 0 otherwise. 

 CHIN： 1 1( ) (t t t tNI NI NI NI− −− + )  

2. Variables of Probit Model (Zmijewski, 1984)： 

 NITA：net income / total assets. 

 TLTA：total liabilities / total assets. 

 CACL：current assets / current liabilities. 

3. Variables of Discrete-Time Hazard Model (Shumway, 2001) 
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   NITA, TLTA and the market-driven variables which are as follows: 

Rel-Size：the logarithm of the ratio of the market capitalization of a firm to the total 

market capitalization. 

Ex-Ret：a firm’s excess return in year  is that the return of the firm in year  minus 

the value –weighted TAIEX index return in year 

t 1t −

1t − . 

SIGMA：regress each stock’s monthly returns in year 1t −  on the value -weighted 

TAIEX index return in year 1t − . Sigma is the standard deviation of the 

residual of this regression. 

Table 4 on next page reports the descriptive statistics of variables. 

Table 4  Descriptive Statistics 

Variable Mean Std. Dev. Maximum Minimum 

SIZE 9.547195 0.495793 11.7586 8.205242 

TLTA 0.40086 0.158352 1.513943 0.015454 

WCTA 0.201678 0.184536 0.866156 -1.07126 

CACL 2.161351 2.081144 92.96316 0.152729 

OENEG 0.000516 0.02271 1.000000 0.000000 

NITA 0.042586 0.102783 0.525305 -1.68247 

FUTL 0.792146 1.401729 47.42159 -0.84235 

INTWO 0.209854 0.407231 1.000000 0.00000 

CHIN -0.00633 0.514159 1.000000 -1.00000 

Rel-Size -3.15507 0.601494 -0.68152 -5.7928 

Ex-Ret 0.103095 0.779272 28.60954 -1.29635 

SIGMA 0.124292 0.075963 1.124059 0.003719 

 

For the four-factor model, we collect monthly stock returns from TEJ database in the 
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sample period. All variables are described as follows. The risk-free rate is the 30-day deposit 

interest rate of First Bank. The market equity, ME or size, is price times shares outstanding. 

The book equity, BE, is the book value of stockholder’ equity minus the book value of 

preferred stock. Then, the book-to-market ratio, BE/ME, used to form portfolios in June of 

year  is book equity for December of year t 1t − , divided by market equity at December of 

year . As mentioned in section 3.6, we can construct six benchmark portfolios formed 

form sorts of stocks on ME and BE/ME. Monthly value-weighted returns on the six portfolios 

are calculated from July of year  to June of 

1t −

t 1t − , and the six benchmark portfolios are 

reformed in June of each year. Then using the way mentioned in section 3.6, we can get 

returns of SMB, HML, and MOM every month. 
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5.  Empirical Results 

5.1  Predicting Default 

   In this study, we use MLE to estimate the coefficients in Logit model, Probit model, and 

Discrete-Time Hazard model. These coefficient estimates of each model are shown in Table 5. 

 

Table 5  Coefficient Estimates of Model 

 Logit Model Probit Model Discrete-Time Hazard Model
Intercept -16.9998** 

(-6.3880) 
-2.8396** 
(-8.2741) 

-8.5026** 
(-11.4487) 

SIZE 1.2284** 
(4.8348)   

TLTA 7.0393** 
(5.9854) 

3.81057** 
(7.0585) 

6.6777** 
(8.5981) 

WCTA -0.7054 
(-0.3939)   

CACL -0.0698 
(-0.2559) 

-0.11637 
(-1.4642)  

OENEG 19.9539 
(0.0000)   

NITA -9.8193** 
(-4.7382) 

-3.90448** 
(-5.6686) 

-6.7811** 
(-6.3059) 

FUTL -0.0506 
(-0.0570)   

INTWO -0.6132 
(-1.6680)   

CHIN 0.1898 
(0.6796)   

Rel-Size 
  

-0.3455 
(-1.8830) 

Ex-Ret 
  

-0.4201 
(-1.8719) 

SIGMA 
  

2.5800* 
(2.0595) 

1. z-statistics are presented in the parenthesis. 

2. ** and * indicate statistically significance at 1% and 5% statistical level, respectively. 
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   First, we see the coefficients in Logit model in Table 5. Three variables, NITA, SIZE, and 

TLTA, are statistically significant. Our expectation is that the coefficients of six variables 

(NITA, SIZE, WCTA, FUND, CACL, CHIN) are negative and the coefficients of two 

variables (TLTA, INTWO) are positive. Most of the coefficients are consistent of our 

expectation except for the signs of SIZE, CHIN, and INTWO. However, CHIN and INTWO 

are not statistically significant. Logit model indicates that NITA and TLTA are related to 

corporate defaults. The higher the income is, the lower the probability of default.  

In Probit model shown in Table 5, we have two statistically significant variables (TLTA, 

NITA). We expect that the coefficient of TLTA is positive and the coefficients of two variables 

(CACL, NITA) are negative. And all the coefficients are consistent with our expectation. Like 

Logit model, TLTA and NITA are statistically significant in Probit model. It may indicate that 

the variables, TLTA and NITA, are important for predicting financial distress. 

Eventually, in Discrete-Time Hazard model we expect that the coefficients of two 

variables (TLTA, SIGMA) are positive and the coefficients of three variables (NITA, Ex-Ret, 

Rel-Size) are negative. All variable are consistent with our expectation. And there are three 

statistically significant variable (TLTA, NITA, SIGMA). As similar to Logit model and Probit 

model, TLTA and NITA are also statistically significant in Discrete-Time Hazard model. This 

shows that TLTA and NITA are related to corporate default and important for predicting 

financial distress. 

With coefficient estimates of each model, we can calculate the optimal cut-off point value 

of each model by using data in in-sample period and compare the performance of each model. 

First, given each cut-off point value between 0 and 1, we can calculate the corresponding type 

I and type II error. Then, following Begley, Ming, and Watts (1996), where is the minimum 

sum of type I and II error r is corresponding to the optimal cut-off point value. Table 6 shows 

the optimal cut-off point value of each model and type I and type II error. In table 6, we can 

see that Discrete-Time Hazard Model has a minimum cut-off point value and minimum type I 

 27



error, but maximum type II error with in-sample data.  

 

Table 6  Optimal Cut-off Point Value  

 Logit Model Probit Model Discrete-Time Hazard Model

Optimal cut-off point 0.2044 0.2058 0.0313 

Type I error rate 0.2569 0.2752 0.2018 

Type II error rate 0.1126 0.1304 0.1703 

 

By given optimal cut-off point values, we can compare the performance of each model for 

predicting corporate default. Type I and II error in out-sample are calculated by using optimal 

cut-off point values. The results are shown in Table 7. 

 

Table 7  Out-sample Type I and II Error 

 Logit Model Probit Model 
Discrete-Time 

Hazard Model 

Type I error rate 0.3650 0.1904 0.1269 

Type II error rate 0.1056 0.1202 0.1422 

Sum of type I and II errors 0.4707 0.3107 0.2692 

  

We can see that Discrete-Time Hazard Model has a minimum type I error and maximum 

type II error, while Logit Model has a maximum type I error and minimum type II error. 

However, the minimum sum of type I and II errors is in Discrete-Time Hazard Model. 

Moreover, for investors and obliges, the cost that a firm with financial distress is misclassified 

as a non-default firm is bigger than that a non-default firm is misclassified as a default firm. 

This means that the cost of type I error is more serious than that in type II error. Hence, we 
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consider that Discrete-Time Hazard Model has a more power for predicting corporate default. 

   Besides, we also compare the performance of these three models by ROC curve. Figure 2 

shows the ROC curve with out-sample data and we can see the AUC of each  

 

 

Figure 2  ROC Curve For Each Model  

 

 Table 8  Area Under Curve 

 Logit Model Probit Model Discrete-Time Hazard Model 

AUC 0.8660 0.8889 0.9081 

 

model in Table 8. In Figure 2, we can find that the position of ROC curve of Discrete-Time 

Hazard Model is closer to the point (0,1) than the other two models. And in Table 8, the 

Discrete-Time Hazard Model with the highest area under the ROC curve (AUC) exhibits the 

best diagnostic performance. Again, we consider the Discrete-Time Hazard Model the best in 

predicting the financial distress among three models. Since forecasting precision is imperative, 

we use Discrete-Time Hazard Model to calculate probability of default for each firm with 
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out-sample data, and examine the relation between distress risk and the FF factor, SMB and 

HML. 

 

5.2  Stock’s Default Probability and FF Factors 

In June of every year, we form seven portfolios by sorting according to the predicted 

default probability obtained from Discrete-Time Hazard model. The portfolio stock 

composition is kept for one year (from July to the following June) with monthly rebalancing 

the portfolio weights. These seven portfolios are obtained by sorting the out-sample estimates 

of the probability of default. These predicted default probabilities are determined from 

accounting and market information since the end of the previous year. 

   We are going to test the hypothesis that the FF factors are related to a default risk measure. 

In particular, we try to establish a connection between returns and the probability of default, 

and between the probability of default and factor loadings. We anticipate that returns and 

default risk are related. A high probability of default should cause a stock to have high loading 

on the SMB and HML factors, thus delivering high returns which compensate the investor for 

holding default risk. 

   Table 9a reports the average characteristics of seven portfolios using the probabilities 

obtained from Discrete-Time Hazard Model. We can find that, generally, the portfolios with 

higher default probability have relatively higher returns. The average size (stock price times 

number of shares) is almost monotonically decreasing  



Table 9a   Characteristics of Default Portfolios 
The table shows reports average characteristics of seven portfolios when using the probability obtained from Discrete-Time Hazard Model. The 
average value-weighted returns are reported in percentage terms. The average size of each portfolio is reported in billions of NT dollars. 
 

 Low 2 3 4 5 6 High 

ret  1.9328 2.4728 3.0523 2.0030 2.1799 3.1359 2.7590 

size  28390.22 10158.65 13915.43 10299.67 4944.04 3932.51 2410.34 

/BM ME  0.5362 0.7692 0.8112 0.9352 1.0223 1.1005 1.1611 
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For each portfolios, we run a time-series regression of the value-weighted returns on a four-factor model. The table reports loading estimates 
along with robust Newey and West t-statistics. ** and * indicate statistically significance at the 1% and 5% statistical level, respectively. 

 Low 2 3 4 5 6 High 

α  -0.0009 
(-0.7004) 

 0.0002 
(0.0917) 

0.0058 
(1.7588) 

-0.0039 
(-1.5798) 

-0.0088 
(-2.0024) 

0.0008 
(0.1863) 

-0.0059 
(-1.7620) 

MKTβ     0.9281** 
(23.4592) 

   1.0678**
(12.5938) 

   1.3352**
(19.2555) 

  1.0473** 
(9.9220) 

   1.1456**
(16.8274) 

   1.0487**
(11.0575) 

   1.0005**
(12.7675) 

SMBβ    -0.1279** 
(-3.4090) 

 0.1923* 
(2.1908) 

0.0232 
(0.2359) 

0.0376 
(0.4672) 

  0.3737** 
(4.2024) 

 0.2779* 
(2.0693) 

  0.4352** 
(4.5351) 

HMLβ    -0.2068** 
(-6.8942) 

  -0.2241** 
(-3.1370) 

 -0.1583* 
(-2.1155) 

-0.0309 
(-0.3896) 

 0.1719* 
(2.4637) 

  0.3773** 
(3.5815) 

  0.5458** 
(7.5426) 

MOMβ   0.1646* 
(2.5689) 

-0.0387 
(-0.1829) 

-0.1341 
(-0.8036) 

  -0.4877** 
(-3.1050) 

0.1895 
(0.8785) 

-0.1077 
(-0.3883) 

0.0682 
(0.2773) 

Adjusted 2R 0.9273 0.8520 0.8689 0.7908 0.8241 0.7563 0.8220 
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Table 9b   Four-Factor Model on Default Portfolios 

 



along the default dimension. And the average of book-to-market is increasing in the default 

measure. Firms with high default probabilities have lower size (2410.34) and higher 

book-to-market (1.1611) on average, while firms with low default probabilities have relatively 

high average size (28390.22) and low book-to-market (0.5362). 

For each portfolios, we run a time-series regression of the value-weighted returns on a 

four-factor model (FF factors plus a momentum factor). 

( ), , , ,it ft i MKT i mt ft SMB i t HML i t MOM i t itR R R R SMB HML MOMα β β β β− = + − + + + + ε  

Table 9b represents the estimates of the factor loadings along with robust Newey and West 

(1987) t-statistics. We can find that all MKTβ  are statistically significant, but they don’t have 

a trend. If SMB and HML are related to financial distress, we would expect the portfolio 

loadings to increase along the dimension of default risk. The SMBβ s are not strongly 

increasing along the default measure, but generally they seem increasing. The result is much 

stronger for HML than SMB. The HMLβ  almost monotonically increase along the default 

measure (except second portfolio). In general, this result is consistent with our anticipation 

that a high probability of default should cause a stock to have high loading on the SMB and 

HML factors, thus delivering high returns which compensate the investor for holding default 

risk. 

   We also investigate how individual stocks (as opposed to portfolios) relate to default risk. 

If the factors are pricing systematic distress risk, it should be that individual firm loadings on 

the factors are related to their estimated default probability. Every month we estimate 

individual stock loading for four-factor model using a 60-month window and requiring that 

any stock has at least 36 monthly observations in every window. In June of each year, we sort 

the stocks into seven portfolios based on the default probability. Hence, for each portfolio, we 

compute the average loading for the stock in that portfolio in July of each year of the 

out-sample. The result is reported in Table 10. As we can see from the table, the average 
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loadings of SMB and HML are increasing along the default measure. The average firm in the 

low default probability has a negative loading on HML and that in the high default probability 

has a positive loading. This result is similar to result reported in Table 9b and conforms our 

anticipation. 

 

Table 10  Average Individual Stocks Loadings on Factors 

 Low 2 3 4 5 6 High 

SMBβ  0.4543 0.5903 0.6661 0.6354 0.7097 0.7604 1.0232 

HMLβ  -0.0462 0.0487 0.0426 0.0832 0.1561 0.1853 0.2125 

 

A more rigorous test of the relation between default probability and factor loading at the 

individual stock level involves a two-stage Fama and MacBeth (1973) procedure mentioned 

in section 3.7. 

 , ,0, , , ,SMB it HML itit t SMB t HML t x t it itP xλ λ β λ β λ ε= + + + +    where log
1

it
it

it

PP
P

⎛ ⎞
= ⎜ ⎟−⎝ ⎠

 

Table 11  Fama-MacBeth Procedure 

 Model(1) Model(2) Model(3) 

0λ   -1.8288 
(-2.1116) 

-5.1378 
(-48.1914) 

-2.6767 
(-3.6138) 

SMBλ   
   0.6658** 

(4.3007) 
   0.3477** 

(3.9915) 

HMLλ   
   0.8370** 

(3.8740) 
  0.3752* 
(2.1829) 

Sizeλ   -0.3894 
(-4.1890) 

 
-0.3167 

(-3.6742) 

/BM MEλ    0.3127 
(1.4785) 

 
   0.3073 
(1.6860) 
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Table 11 reports the results. Model (1) gives the estimates of the model which uses only size 

and book-to-market as opposed to the factor loadings. The base case regression Model (2), 

relates the SMB and HML loadings to the default probability and highlights a positive and 

statistically significant relationship. We re-estimate Model (2) by including size and 

book-to-market as control variables. If the FF factor loadings are related to the default 

probability, we expect that the parameter estimates retain statistically significance. In Model 

(3) of Table 11, we find that both of SMBλ  and HMLλ  maintain their signs and significance, 

although the significance of HMLλ  reduces. Therefore, we consider that SMB and HML are 

related to default risk. 
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6.  Conclusion 

   Fama and French (1996) suggest that small value stocks tend to be firms in distress (with 

high financial leverage and earnings uncertainty), with higher returns due to a distress 

premium. Vassalou and Xing (2004) conclude that the size and book-to-market effects exist 

only in the quintiles defined by high default risk stocks. They also provide evidence that 

distress risk is priced in the cross-section and that the Fama and French (FF) factors capture 

some of the default-related information. 

   In this study, we investigate the relationship between FF factors and financial distress risk 

in Taiwan stock market. Our sample data are collected form TEJ database form 1988 to 2006. 

We compare the performance of Logit model (Ohlson (1980)), Probit model (Zmijewski 

(1984)), and Discrete-Time Hazard model (Shumway (2001)) to predict default risk. By using 

error classification and ROC curve to measure the performance of each model, we find that 

Discrete-Time Hazard model, when compared to other two models, is more accurate in 

predicting financial distress. Then, using the default probabilities predicted by Discrete-Time 

Hazard model, we analyze the relationship between default risk and the Fama and French 

factors. Our results are consistent with our expectation that a high probability of default 

should cause a stock to have high loading on the SMB and HML factors, thus delivering high 

returns which compensate the investor for holding default risk. We provide evidence that both 

portfolio and individual stock factor loading of SMB and HML are related to the default 

probability, and consider that SMB and HML are related to default risk. Further, the future 

research can look at the role of the aggregate measure of financial distress in directly pricing 

the cross-section of average stock returns. 
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