
Computers Math. Applic. VoL 21, No. 2-3, pp. 103-109, 1991 0097-4943/91 $3.00 + 0.00
Printed in Great Britain. All rights reserved Copyright~) 1991 Pergamon Press plc

G E N E R A T I N G S U B S E T S O N A S Y S T O L I C A R R A Y

C H A U - J Y LXN

Department of Applied Mathematics, National Chiao Tung University,

Hsinchu, Taiwan, 30050, Republic of China

(Receieed February, 1990 and in reviJed]arm May, 1990)

Abs t r ac t - - -G iven n elements and an arbitrary integer m for m ~ n, a systolic algorithm for generat-
ing all r-subsets (subsets containing r elements) with 1 _~ r _~ m in lexicographJc order is presented.
The computational model used is a linear systolic array consisting of m identical processing elements
with a simple structure. One subset is produced at a time step. The elapsed time within a time step
is independent of integers r, n and m. The design process of systolic array and the verification of
systolic algorithm are considered in detail.

1. I N T R O D U C T I O N

There are many problems in science and engineering which require a computer having high
computation speed and being able to solve them in real-time. Using parallel computers is a way
to achieve higher computing speeds. This appealing approach has greatly increased interest in
the area of design and analysis of parallel algorithms. Systolic arrays were introduced by H. T.
Kung [4] and his colleagues in Carnegie-Mellon University. It is specified by the timing of data
movement and interconnection of processing elements (PEs) such that the movement of data is
simple, regular and uniform. These systolic arrays are made up of identical PEs that operate
synchronously. Thus it is suitable for VLSI implementation. The parallel algorithms which can
be executed on systolic arrays are called systolic algorithms. To solve a problem with a systolic
algorithm, we have to do the following three things: (1) to determine the topology of a systolic
array, (2) to propose a design strategy for deriving a systolic algorithm, and (3) to prove the
correctness of a systolic algorithm.

Given n elements and an integer m with m _< n, many algorithms for generating m-subsets
(subsets containing m elements) have been proposed, see [1-3]. Two sequential algorithms for
generating all of r-subsets (for 1 _< r < m _< n) in lexicographic order are presented in [5,6],
respectively. In this paper we present a systolic algorithm to generate all of r--subsets in lexico-
graphic order. The computational model used is a linear systolic array consisting of m identical
PEs with a simple structure. All PEs perform the same program in an arbitrary time step. The
elapsed time for producing a subset is constant.

A parallel algorithm to generate (n) = n! m-subsets was presented in [1]. This algo-

rithm uses arbitrary k processors for 1 < k < (~n)" For each processor PE(i), all it needs to do
is: (a) to evaluate the index j of a specified m-subset, say Qi, (b) to obtain this Qi by applying
an inverse ranking function on j , and (c) to generate sequentially an interval of subsets starting
with Qi. This design idea can be applied to generate all subsets of n elements when the sequen-
tial algorithm used in (c) is one of the algorithms presented in [5,6]. Here we design a parallel
algorithm to generate r-subsets under a different design consideration. There are m identical
PEs denoted by PE(i) for 1 < i < m to be used. The responsibility of PE(i) is to evaluate the
ith component of each subset (including the empty element). The m components of an arbitrary
subset are coming out simultaneously.

I would like to thank the referees for their comments. This research was supported by National Science Council
of Republic of China under Grant NSC 79-0208-M009-22.

Typeset by A.M,S°TE, X

103

104 C.-J. LIs

2. AN O V E R V I E W O F S Y S T O L I C ARRAYS

A systolic array can be viewed as a network composed of a few types of computational PEs.
In our systolic array, its data communication is only allowed between two adjacent PEs because
it has no shared memory and prohibits the behavior of data broadcasting. That is, let PE1 and
PE2 be two PEs in an existing systolic array, if it is necessary to send data from PE1 to PE2
then there exists a communication link (say e-link) from PE1 to PE2. We call such an e-link
an input Hnk of PE2 and an output l ink of PE1. We also write ein and eo~t to denote an input
value of PE2 and an output value of PE1 via an e-link, respectively. We assume that each PE
can perform the following three tasks (phases):

(1) to receive data from its input links (read phase),
(2) to execute the loop of a systolic algorithm once (computation phase),
(3) to send data to its output links (write phase).

The maximal time (considering all PEs) to do the above three tasks is called a t ime step. More-
over, if an e-link is labeled with 6 delays (denoted by 6D) for 6 a positive integer, it means
that when PE1 sends its eout at the time step t t , then such eou, is the ein of PE2 at the time
step t l + 5. For the sake of convenience, we also use ein, eout as the names of variables in our
systolic algorithm. The symbol $D on a link will be omitted if 6 = 1. We will show that each
communication link used in our systolic array has 6 = 1.

3. T H E DESIGN P R O C E S S F O R G E N E R A T I N G SUBSETS

Without loss of generality, the given n elements are denoted by 1, 2, . . . , n. We write sublex to
denote the set which contains all of r-subsets of {1, 2 , . . . , n} (for 1 < r < m ~ n) in lexicograph-
ical order. We use an zy-plane with integer coordinates to describe the design consideration of
our systolic array. The x-axis is the index of PEs and the y-axis the time step as shown in Figure
1. Since we require the components of a subset to be come out at the same time step, and there
are m components in a subset (the empty component will be considered as blank), the number
of PEs used is m at any time step. The PEs appeared in Figure 1 can be referred to as PE(i, t)
for 1 < i < m and 1 < t. Figure 1 is constructed as follows.

(1) The i th component of any subset is not greater than n. An internal register R in PE(i , t)
is used to store this n because we need to test whether the ith component is n.

(2) A c-link in the direction from PE(i, t) to PE(i, t + 1) is used to transfer the ith component
of a subset which is produced at the time step t.

(3) A y-link in the direction from PE(i , t) to PE(i + 1,t + 1) is used to indicate whether the
co,t of PE(i , t) will influence the cout of PE(i + 1,t + 1).

(4) A d-link in the direction from PE(i , t) to PE(i + 1,t + 1) is used to transfer the Co~,t of
PE(i, t) to PE(i + 1, t + 1).

(5) An z-link in the direction from PE(i , t) to PE(i - 1,t + 1) is used to indicate whether the
cou, of PE(i, t) is equal to n.

(6) A register F in PE(i, t) is used to determine the Your of PE(i, t).
We project Figure 1 along y-axis to obtain a linear systolic array as shown in Figure 2, where

c, d, z, y are the aforementioned communication links and oi the output terminal which is used to
output the Cout if necessary. Each link has exactly one delay, so the delay symbol "ID" is omitted.
These PEs in Figure 2 are numbered from 1 to m and referred to as PE(i) for 1 < i < m. Each
PE(i) is responsible for generating the ith component of any subset in sublex. The specification
of PE(i) is depicted in Figure 3, where R and F are two internal registers.

4. T H E S Y S T O L I C A L G O R I T H M

At any time step, during the execution of our logarithm, the values transmitted on links and
the contents stored in registers of PE(i) for 1 < i < m are determined as below.

(1) On the c-link; according to Yi , , F , and xin there are four cases to assign a value to Co~,.
(~): When yin = 1, we assign din + 1 to cout. (~): When Y~n = 0 and F = 1, co,,, is an empty
element which is denoted by the symbol " " . (7): When yin = 0, F = 0 and z l , = 1, we assign
c i , + 1 to Cou,. (6): When Yin = 0, F = 0 and zin = 0, Cou~ has the same value as cin. These

Generat ing subsets on a systolic array 105

four cases to evaluate c~t will appear in our algorithm with procedure names: adding-one-din ,
empty -e l emen t , adding-one-c in , and preserving-cin, respectively.

2

I1 ~ ro - ~ - 0 ~ 0 0 X

T

I X
Yin Xin

Xout dout

Figure 1. Directed graph for generating r-subsets.

01

"1

0 2

C
41--

a ° o . . .

,.,,)

O m

t-
Pg(m)

Figure 2. Computat ional model for generating r-subsets.

t - X
-4
.-f

o i T

eout~ ~ I ein

Xout ~
F

Yin ~
R

din 4

Xin

Your
dout

Figure 3. The specification of PE.

(2) On the d-link; dour has the same value as coup.

(3) On the z-link; z0u~ is determined by cont. If co~,t = n then Xou: = 1 else zout = 0.
(4) On the y--link; Your is determined by Fin, din, F, z in, and ci,.,. If (9i . = 1, din < n - 1)

or (Y i n = O, F -~ O, x i n "- 1, c in < n - 1) then You~ = 1 e l se 9out = O.

106 C.-J . LIN

(5) The content of register F is also determined by yin, din, F, zin, and cin. (a): If (yin =
1, din < n - l) then F - 0; (/3): If (yin = 1, din - n - l) or (Yin "- O, F - 0, ztn -- 1, c~n "- n - l)
then F -- 1; (7): Otherwise F preserves its previous value.

(6) Register R always contains the number n.
The actions of PEs to set yot, = 1 and F = 1 will appear in our algorithm with names

i nc reas ing -one -PE and decreas ing-one-PE, respectively. In fact, when PE(i) receives Yin - 1,
it means that PE(i) has cin - ^ and will assign a nonempty element, din + 1, to its cont. When
P E (i) sets its F = 1, it means that PE(i) has Cout - n and will assign an empty element to its
cout at the next time step.

Since systolic arrays are always attached to a host computer through an interface, the signal
used to stop the execution of our systolic algorithm can be sent by the interface when PE(1)
has sent its zo~,t = 1. The systolic algorithm for generating snblez with the name generating-
snbse ts (n ,m) is listed as follows. Note that the elapsed time within a time step is independent of
integers r, n and m.

ALGORITHM 1. generat ing-subse ts (n ,m)

[Initial state]
Set Yin = 1 for PE(1) and Yin - 0 for PE(i) 2 < i < m. Set c4n " ^ , din - O, R - n and F = 1
for PE(i) 1 < i < m. Set zin - 1 for PE(m) and zin = 0 for PE(i) , 1 < i < m - 1. Further, set
yin = O, din = 0 for PE(1) and zin - 1 for PE(m) at the time step t > 1.
[Executive state]

b e g i n
r e p e a t / . d o pa r a l l e l fo r all P E s . /

i f Yin -- 1 t h e n adding-one-d in
else i f F - 1 t h e n emp ty - e l emen t

else i f zin = 1 t h e n add ing-one - t in else preserving-cin
u n t i l xo~t = 1 of PE(1) is recognized by host computer

e nd .
increas ing-one-PE =_ b e g i n Your: = 1; zout: -" 0; F : = 0 en d .
d e c r e a s i n g - o n e - P E - b e g i n y o u t : = 0 ; zout: = 1; F : = l e n d .
adding-one-d in - b e g i n cot, t: = din + 1; dour: = d~n + 1; i f din < n - 1 t h e n increasing-

one -P E else decreasing-one-P E end .
e m p t y - e l e m e n t - b e g i n tout : =^ ; dour : =^ ; Your : = O; xout : = 0 e n d .
adding-one-c in - b e g i n Cout : = tin + 1; dour : = cin + 1; i f tin < n - 1 t h e n increasing-

o n e - P E else decreas ing-one-PE end .
preserving-cin - b e g i n Cout : = Cin; dour : = Cin; Your : -- 0; Zo~t : - 0 e n d .

An example with n = 4, m - 3 for illustrating the execution of generat ing-subse ts (n ,m)
is given in Table 1. It contains all r-subsets of {1,2,3,4} for 1 _< r _< 3. The wlues of
Yin, Your, Zin, Xout, din, dour, Cin, cout, F and R are located at their corresponding positions
as shown in Figures 1 and 2, where arrows are omitted for saving the space of Table 1.

5. T H E P R O O F O F C O R R E C T N E S S

In what follows, we write PE(i)[yin = 1, din = 2, Cout = c i n + 1 , . . .] t = to to mean that PE(i)
has values Yin = 1, din -- 2, co~,, = cin + 1 and so on at t ime step to. The symbol "A ::~ B"
is used to mean that s tatement A implies statement B. From the previous example, we observe
that there are three main processes involved in generating-subsets(re, n) to generate sublex.

PROCESS-1. There exists an integer a with the time step to such that PE(a)[yln = 1]t =
to .The procedure adding-one-d in implies PE(a)[cout = din + 1]t = ta, and preserving-cin implies
PE(i) [c~ , = cin]t = to for 1 < i < m and i 5£ a . I f P E (a) [d i n = n - 1] t = t~, we have PE(a)[cot, t =
n, Your = 0, F = 1, zout = 1]t = to by decreasing-one-PE. In this case, we go to PROCESS-3.
If PE(a)[din < n - 1]t = ta, increas ing-one-PE implies P(a)[cout < n, Your = 1, F = 0It = to.
In this case, if a < m we go to PROCESS-1 for P E (a + 1)[yin = 1]t -- to + 1; otherwise, we go to
PROCESS-2 because we have PE(m)[y in = O, F = O, zin = 1]t = t~ + 1.

Generating subsets on a systolic array 107

Table 1. Illustrative example for n--4, m--3.

~(~) rE(2) PF,(3) o~r ~ rE(1) PE(2) PE(3) ot~
. 2 1 "4 " "

1 2 2 3 " ^"
0 1 0 0 0 0 0 ~ 0 23 o oi o. ,,

" ' 0 2 . 1 4 1 .

1 1 2 " " " 2 2 3 3 4 "
o o ol--o7o I 2 o o 1 1 , 1 1 0 012 10 234
0 1 l t - 2 - z 2 0 212 3

1 1 2 2 3 " 2 2 4 3 " 4
3 0 O 0 0 0 0 1 1 0 _1

0 O 0 0 1 1 O O 0 O 0 0 24
0 1 1 2 2 3 10 2 2 4

1 1 2 2 4 3 3 2 " 4 " "
0 O 0 O1 1 0[-0-] 1 0 1

0 0 0 1 0 1 3
0 0 0 1 4 [3 0

1 1 3 2 " 4 3 3 4 ~ " ~

oo , o co o
0 I l 3 " 0 t - 2 J 3 l 3 4 " "

1 1 3 3 4 " 4 3 " 4 " "

m 6 0 0~0 0 1 1 1 3 4 14 1 1 0 1 4
o 0 0 o 1 1 o o o o
0 I11 ~t--~-J33 4 0 4

1 1 4 3 " 4
0 01 10 1

, oo - o

PROCESS-2. The re exists an integer fl with the t ime s tep t 0 such t ha t PE(/~)[yin = 0, F =
0, zi,~ = 1]t - t 0. T h e procedure adding-one-cin implies PE(fl)[cout = cir, + 1]t = t 0. I f
PE(fl)[ein = n - 1]t = t0, we have PE(/~)[eou, = n, f = 1, xou, = 1]t = t 0 by decreasing-one-
PE. In this case, we go to PROCESS-3. I f PE(•)[ein < n - 1It = to, increasing-one-PE implies
PE(f l) [eout = e/n + l < n, F = O, Your = 1, Zout = 0]t = t o . In this case, i f / 3 = m w e g o
to P R o c E s s - 2 for PE(m)[yln = 0, F = 0, z l , = 1]t = t o + 1; otherwise, we go to PROCESS-1
because of PE(/~ + 1)[y/,, = 1It = t o + 1.

P R o c E s s - 3 . The re exists an integer 7 with the t ime s tep t~ such t ha t PE(7) [co~ = n]t = tT.
T h e p rocedure decreasing-one-PE implies PE(7)[yout = 0, F = 1, zout = 1]t = t- v. This
implies t h a t P E (7) will genera te its eout "-^ a t the nex t t ime s tep t. r + 1 f rom the execut ion
of empty-element. I f 7 = 1 then the execut ion of generating-subsets(n,m) s tops a t the t ime
s tep t. r + 1 because PE(1) sends the message zout = 1 a t the t ime s tep t.y and this message is
recognized by host c o m p u t e r a t the t ime s tep t. r + 1. I f 7 > 1 we go to PROCESS-2 because of
P E (7 - 1)[yin = 0, F = 0, z i , = 1It = t.¢ + 1.

Now, we want to show t h a t generating-subsets(n,m) is correct for genera t ing all subsets in
sub&z, which we s ta te as a theorem.

THEOREM. T h e a lgor i thm #enerating-subsets(n,m) is correct to genera te all of the r - s u b s e t s of
{1,2, n} for 1 < r < m _< n in lexicographical order.

108 C.-J . LIN

PROOF. We prove this theorem by induct ion on t ime step t.
[Basis]. For t = 1, at the beginning of the execution of g e n e r a t i , g - s u b s e t s (n , m) , we have

PE(1)[yin - 1, din "- 0It -" 1 and PE(i)[Yin - O, F - 1]t "- 1 for 2 < i < m. PROOESS-1 shows
that the first subset is {1} for PE(1) performing adding-one-din and the other PEs performing
e m p t y - e l e m e n t .

[Assumption]. Suppose tha t the k th subset A - {a l , a 2 , . . . , a ~ } in sub lex is genera ted in the
t ime step t - k.

[Induction]. For t -- k + 1, let B - {bl, b 2 , . . . , b#} be the subset genera ted by the a lgor i thm
g e n e r a t i n g - s n b s e t s (n , m) at the t ime step k + 1. We want to claim t h a t B belongs to sublez with
the index k q- 1. We divide the p roof into four cases according to the values of ~ and Ha.

Case (1): a = m and am - n.

P E (i) [e o , , = ai # nlt = k, 1 < i < m - 1; P E (m) [c o u t = n l t = k .

P E (i) [y o u t = O, F = O, Zout = 0]t = k, 1 < i < m - 1;

P E (m) [U o , . = 0, F = 1, Zo,,, = 1]t = k.

P E (i) [y l . = 0, F = 0, zi,~ = 0, e l . = Hi, tout = ci,, = ai]t = k + 1, 1 < i < m - 2;

P E (m - 1)[yi. = 0, F = 0, zin = 1, c i n = a , . - 1 , co . t = c i . + 1 = a m - 1 + 1]t = k + 1;

P E (m) [y . , = 0, F = 1, co . , =^]t = k + 1.

In this case, we have /3 = m - 1 and B = { a l , a 2 , . . . , a , n - 2 , a , , ~ - I + 1}.
Case (2): a = m and am ¢ n.

PE(i)[Cout = ai ~ n]t -- k , 1 < i < m .

P E (i) [y o , t = O, F = O, Zo,~ = 0]t = k, 1 < i < m - 1;

P E (m) [y o . , = 1, F = O, Xo., = 0It = k.

:=} P E (i) [y ~ n = O, F = O, x i , = O, t in = Hi, eo , t = t in = ai]t = k + 1, 1 < i < m - 1;

P E (m) [y l , = O, F = O, z in = 1, t in -- am , tout -" t in + 1 = am + 1]t = k + 1.

In this case, we have /3 = m and B = { a l , a 2 , . . . , a , n - l , a , n + 1}.
Case (3): a ¢ m and aa = n.

P E (i) [e o , t = ai ~k n i t = k, 1 < i < a - 1; P E (a) [e o , t = a~ = n i t = k;

PE(i) [Cout = ^] t = k, a + 1 < i < m.

=~ PE(i) [U o~ , = 0, F = 0, Zo., = 0It = / c , 1 < i < a - 1;

P E (a) [y o u t = O, F = 1, Zout = llt = k;

P E (i) [y o u , = O, F = 1, Xout = 0It = k, a + 1 < i < m.

P E (i) [y i n = O, F = O, x in = O, Cout = Hi, t in = tout = ai]t = k + 1, 1 < i < a - 2;

P E (a - 1)[Yin = O, F = O, t i n = 1, cin = H a - t , Cout = cin + 1 = a = - i + 1]t = k + 1;

P E (a) [y i n = O, F = 1, Con, = ^] t = k + 1;

PE(i) [y i ,~ = O, f = 1, Co,, = ^ I t = k + 1, a + 1 < i < m.

In this case, we have /3 = a - 1 and B = { a l , a 2 , . . . , a ~ , - 2 , a a - 1 + 1}.
Case (4): a ¢ m and aa ¢ n.

P E (i) [C o , t = ai ~£ n i t = k , 1 < i < a; PE(i) [Cout = ^ I t = k, a + 1 < i < m.

P E (i) [y o u t = O, F = O, Zout = 0]t = k, 1 < i < a - 1;

PE(a)[Uo, . = 1, F = 0, Xo.~ = 0, do,. = a.,]t = k;

P E (i) [y o , t = O, F = 1, Xout = 0]t = k, a + 1 < i < m.

=} PE(i) [y i ,~ = O, F = O, x i , = O, t in = Hi, tout = ein = ai]t = k + 1, 1 < i < a;

P E (a + 1)[y~. = 1, d~. = a~, Co., = d~. + 1 = a~ + 1It = Ic + 1;

P E (i) [y l n = O, F = I , eout = ^] t = k + l , a + 2 < i < m .

In this case, we have /3 = a + 1 and B = { a l , a 2 , . . . , a o , a ~ + 1}.
Therefore the subset B genera ted by g e n e r a t i n g - s n b s e t s (n , m) h a s the index k + 1 in snblex.

This completes the proof of the THEOREM. II

Generating subsets on a systolic array 109

6. CONCLUSIONS

Although the rapid advance of VLSI technology has made the construction of a parallel com-
puter more feasible than ever before, it is still difficult to construct most parallel computers due
to their complex structure. In this paper, we present a new parallel algorithm to generate subsets
on a linear systolic array. The design of a systolic array and an algorithm is considered in detail.
Since all PEs presented in our systolic array have identical stucture and perform the same pro-
gram, this systolic array is very suitable for VLSI implementation. Note that we can modify our
systolic array so that it gives the subsets suceeding to a given subset Y. This is done by loading
adequate values from the components of Y into the initial state of the algorithm generating-
subsets(n,m). Moreover, for I < i < m, at the time step that PE(1) has just assigned n - i + I
to its Cout (if rn < n, it is done by adding-one-cin; if m = n, it is also done by adding-one-cin
except at the t ime step t - 1 which is done by adding-one-din), PE(1) sends a special s top-s ignal
to PE(i) . T h e n after PE(i) receives this signal, PE(i) will s top its executive s ta te at the next
time step.

We hope that our design consideration can be used to design new systolic algorithms for
other problems in the fields of numerical methods, computational geometry and graph theory.
For example, the solution of simultaneous linear equations of Gauss-Jordan elimination with
pivoting, the generation of m! permutations, the convex hull and planarity testing problems etc.
Furthermore, we are interested in investigating those systolic arrays in which the storage of a PE
and the elapsed time of a time step are independent of the problem size.

REFERENCES

1. S. G. Aid, Adaptive and Optimal Parallel Algorithms for Enumerating Permutations and Combinations,
Computer Journal 30, 433-436 (1987).

2. B. Chan and S. G. Aid, Generating Combinations in Parallel, B I T 26, 2-6 (1986).
3. G. H. Chen and M. S. Chern, ParM]el Generation of Permutations and Combinations, B I T 26, 277-282

(1986).
4. H. T. Kung, Why Systolic Architecture?, IEEE Computer 15, 37-46 (1982).
5. I. Semba, An Efficient Algorithm for Generating All k-subsets (1 < k < m < n) of the Set {1,2 n) in

Lexicographical Order~ Journal of Algorithms 5, 281-283 (1984).
6. I. Stojmenovic and M. Miyakawa, Applications of a Subset-Generating Algorithm to Base Enumeration,

Knapsack and Minimal Covering Problems, Computer Journal 32, 65-70 (1988).

