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Abs t r ac t - - -G iven  n elements and an arbitrary integer m for m ~ n, a systolic algorithm for generat- 
ing all r-subsets (subsets containing r elements) with 1 _~ r _~ m in lexicographJc order is presented. 
The computational model used is a linear systolic array consisting of m identical processing elements 
with a simple structure. One subset is produced at a time step. The elapsed time within a time step 
is independent of integers r, n and m. The design process of systolic array and the verification of 
systolic algorithm are considered in detail. 

1. I N T R O D U C T I O N  

There are many problems in science and engineering which require a computer having high 
computation speed and being able to solve them in real-time. Using parallel computers is a way 
to achieve higher computing speeds. This appealing approach has greatly increased interest in 
the area of design and analysis of parallel algorithms. Systolic arrays were introduced by H. T. 
Kung [4] and his colleagues in Carnegie-Mellon University. It is specified by the timing of data 
movement and interconnection of processing elements (PEs) such that the movement of data is 
simple, regular and uniform. These systolic arrays are made up of identical PEs that operate 
synchronously. Thus it is suitable for VLSI implementation. The parallel algorithms which can 
be executed on systolic arrays are called systolic algorithms. To solve a problem with a systolic 
algorithm, we have to do the following three things: (1) to determine the topology of a systolic 
array, (2) to propose a design strategy for deriving a systolic algorithm, and (3) to prove the 
correctness of a systolic algorithm. 

Given n elements and an integer m with m _< n, many algorithms for generating m-subsets 
(subsets containing m elements) have been proposed, see [1-3]. Two sequential algorithms for 
generating all of r-subsets (for 1 _< r < m _< n) in lexicographic order are presented in [5,6], 
respectively. In this paper we present a systolic algorithm to generate all of r--subsets in lexico- 
graphic order. The computational model used is a linear systolic array consisting of m identical 
PEs with a simple structure. All PEs perform the same program in an arbitrary time step. The 
elapsed time for producing a subset is constant. 

A parallel algorithm to generate (n) = n! m-subsets was presented in [1]. This algo- 

rithm uses arbitrary k processors for 1 < k < (~n)" For each processor PE(i), all it needs to do 
is: (a) to evaluate the index j of a specified m-subset, say Qi, (b) to obtain this Qi by applying 
an inverse ranking function on j ,  and (c) to generate sequentially an interval of subsets starting 
with Qi. This design idea can be applied to generate all subsets of n elements when the sequen- 
tial algorithm used in (c) is one of the algorithms presented in [5,6]. Here we design a parallel 
algorithm to generate r-subsets under a different design consideration. There are m identical 
PEs denoted by PE(i) for 1 < i < m to be used. The responsibility of PE(i) is to evaluate the 
ith component of each subset (including the empty element). The m components of an arbitrary 
subset are coming out simultaneously. 
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2. AN O V E R V I E W  O F  S Y S T O L I C  ARRAYS 

A systolic array can be viewed as a network composed of a few types of computational PEs. 
In our systolic array, its data communication is only allowed between two adjacent PEs because 
it has no shared memory and prohibits the behavior of data broadcasting. That is, let PE1 and 
PE2 be two PEs in an existing systolic array, if it is necessary to send data from PE1 to PE2 
then there exists a communication link (say e-link) from PE1 to PE2. We call such an e-link 
an input  Hnk of PE2 and an output  l ink of PE1. We also write ein and eo~t to denote an input 
value of PE2 and an output  value of PE1 via an e-link, respectively. We assume that  each PE 
can perform the following three tasks (phases): 

(1) to receive data  from its input links (read phase), 
(2) to execute the loop of a systolic algorithm once (computation phase), 
(3) to send data  to its output  links (write phase). 

The maximal time (considering all PEs) to do the above three tasks is called a t ime  step. More- 
over, if an e-link is labeled with 6 delays (denoted by 6D) for 6 a positive integer, it means 
that  when PE1 sends its eout at the time step t t ,  then such eou, is the ein of PE2 at the time 
step t l  + 5. For the sake of convenience, we also use ein, eout as the names of variables in our 
systolic algorithm. The symbol $D on a link will be omitted if 6 = 1. We will show that  each 
communication link used in our systolic array has 6 = 1. 

3. T H E  DESIGN P R O C E S S  F O R  G E N E R A T I N G  SUBSETS 

Without  loss of generality, the given n elements are denoted by 1, 2, . . . ,  n. We write sublex to 
denote the set which contains all of r-subsets of {1, 2 , . . . ,  n} (for 1 < r < m ~ n) in lexicograph- 
ical order. We use an zy-plane with integer coordinates to describe the design consideration of 
our systolic array. The x-axis is the index of PEs and the y-axis the time step as shown in Figure 
1. Since we require the components of a subset to be come out at the same time step, and there 
are m components in a subset (the empty component will be considered as blank), the number 
of PEs used is m at any time step. The PEs appeared in Figure 1 can be referred to as PE(i, t) 
for 1 < i < m and 1 < t. Figure 1 is constructed as follows. 

(1) The i th component of any subset is not greater than n. An internal register R in PE(i , t )  
is used to store this n because we need to test whether the ith component is n. 

(2) A c-link in the direction from PE(i, t) to PE(i, t + 1) is used to transfer the ith component 
of a subset which is produced at the time step t. 

(3) A y-link in the direction from PE(i , t )  to PE(i  + 1,t + 1) is used to indicate whether the 
co,t  of PE( i , t )  will influence the cout of PE(i  + 1,t + 1). 

(4) A d-link in the direction from PE(i , t )  to PE(i  + 1,t + 1) is used to transfer the Co~,t of 
PE(i, t) to PE(i + 1, t + 1). 

(5) An z-link in the direction from PE(i , t )  to PE(i  - 1,t + 1) is used to indicate whether the 
cou, of PE(i, t) is equal to n. 

(6) A register F in PE(i, t) is used to determine the Your of PE(i, t). 
We project Figure 1 along y-axis to obtain a linear systolic array as shown in Figure 2, where 

c, d, z, y are the aforementioned communication links and oi the output  terminal which is used to 
output  the Cout if necessary. Each link has exactly one delay, so the delay symbol "ID" is omitted. 
These PEs in Figure 2 are numbered from 1 to m and referred to as PE(i) for 1 < i < m. Each 
PE(i) is responsible for generating the ith component of any subset in sublex. The specification 
of PE(i) is depicted in Figure 3, where R and F are two internal registers. 

4. T H E  S Y S T O L I C  A L G O R I T H M  

At any time step, during the execution of our logarithm, the values transmitted on links and 
the contents stored in registers of PE(i) for 1 < i < m are determined as below. 

(1) On the c-link; according to Yi , ,  F ,  and xin there are four cases to assign a value to Co~,. 
(~): When yin = 1, we assign din + 1 to cout. (~): When Y~n = 0 and F = 1, co,,, is an empty 
element which is denoted by the symbol " " .  (7): When yin = 0, F = 0 and z l ,  = 1, we assign 
c i ,  + 1 to Cou,. (6): When Yin = 0, F = 0 and zin = 0, Cou~ has the same value as cin. These 



Generat ing subsets on a systolic array 105 

four cases to evaluate c~t  will appear in our algorithm with procedure names: adding-one-din ,  
empty -e l emen t ,  adding-one-c in ,  and preserving-cin,  respectively. 
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Figure 1. Directed graph for generating r-subsets.  
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Figure 2. Computat ional  model for generating r-subsets.  
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Figure 3. The specification of PE. 

(2) On the d-link; dour has the same value as coup. 

(3) On the z-link; z0u~ is determined by cont. If co~,t = n then Xou: = 1 else zout = 0. 
(4) On the y--link; Your is determined by Fin,  din, F, z in,  and ci,.,. If (9i .  = 1, din < n - 1) 

or  ( Y i n  = O, F -~ O, x i n  "- 1, c in < n - 1) then You~ = 1 e l se  9out = O. 
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(5) The content of register F is also determined by yin, din, F, zin,  and cin. (a):  If (yin = 
1, din < n - l )  then F - 0; (/3): If (yin = 1, din - n - l )  or (Yin "- O, F - 0, ztn -- 1, c~n "- n - l )  
then F -- 1; (7): Otherwise F preserves its previous value. 

(6) Register R always contains the number n. 
The actions of PEs to set yot, = 1 and F = 1 will appear in our algorithm with names 

i nc reas ing -one -PE  and decreas ing-one-PE,  respectively. In fact, when PE(i )  receives Yin - 1, 
it means that  PE(i)  has cin - ^  and will assign a nonempty element, din + 1, to its cont. When 
P E ( i )  sets its F = 1, it means that  PE(i)  has Cout - n and will assign an empty element to its 
cout at the next  time step. 

Since systolic arrays are always attached to a host computer through an interface, the signal 
used to stop the execution of our systolic algorithm can be sent by the interface when PE(1) 
has sent its zo~,t = 1. The systolic algorithm for generating snblez with the name generating- 
snbse ts (n ,m)  is listed as follows. Note that  the elapsed time within a time step is independent of 
integers r, n and m. 

ALGORITHM 1. generat ing-subse ts (n ,m)  

[Initial state] 
Set Yin = 1 for PE(1) and Yin - 0 for PE(i)  2 < i < m. Set c4n " ^ ,  din - O, R - n and F = 1 
for PE(i)  1 < i < m. Set zin - 1 for PE(m)  and zin = 0 for PE(i) ,  1 < i < m - 1. Further, set 
yin = O, din = 0 for PE(1) and zin - 1 for PE(m)  at the time step t > 1. 
[Executive state] 

b e g i n  
r e p e a t / . d o  pa r a l l e l  fo r  all P E s . /  

i f  Yin -- 1 t h e n  adding-one-d in  
else  i f  F - 1 t h e n  emp ty - e l emen t  

else  i f  zin = 1 t h e n  add ing-one - t in  else  preserving-cin  
u n t i l  xo~t = 1 of PE(1) is recognized by host computer 

e nd .  
increas ing-one-PE =_ b e g i n  Your: = 1; zout: -" 0; F :  = 0 en d .  
d e c r e a s i n g - o n e - P E - b e g i n y o u t :  = 0 ;  zout: = 1; F :  = l e n d .  
adding-one-d in  - b e g i n  cot, t: = din + 1; dour: = d~n + 1; i f  din < n - 1 t h e n  increasing- 

one -P  E else  decreasing-one-P E end .  
e m p t y - e l e m e n t  - b e g i n  tout : =^ ;  dour : =^ ;  Your : = O; xout : = 0 e n d .  
adding-one-c in  - b e g i n  Cout : = tin + 1; dour : = cin + 1; i f  tin < n - 1 t h e n  increasing- 

o n e - P E  else  decreas ing-one-PE end .  
preserving-cin  - b e g i n  Cout : = Cin; dour : = Cin; Your : -- 0; Zo~t : - 0 e n d .  

An example with n = 4, m - 3 for illustrating the execution of generat ing-subse ts (n ,m)  
is given in Table 1. It contains all r-subsets  of {1,2,3,4} for 1 _< r _< 3. The wlues of 
Yin, Your, Zin, Xout, din, dour, Cin, cout, F and R are located at their corresponding positions 
as shown in Figures 1 and 2, where arrows are omitted for saving the space of Table 1. 

5. T H E  P R O O F  O F  C O R R E C T N E S S  

In what follows, we write PE(i)[yin = 1, din = 2, Cout = c i n  + 1 , . . . ] t  = to to mean that  PE(i)  
has values Yin = 1, din -- 2, co~,, = cin + 1 and so on at t ime step to. The symbol "A ::~ B" 
is used to mean that  s tatement A implies statement B. From the previous example, we observe 
that  there are three main processes involved in generating-subsets(re,  n)  to generate sublex. 

PROCESS-1. There exists an integer a with the time step to such that  PE(a)[yln = 1]t = 
to .The  procedure adding-one-d in  implies PE(a)[cout = din + 1]t = ta, and preserving-cin implies 
PE( i ) [c~ ,  = cin]t = to for 1 < i < m and i 5£ a . I f P E ( a ) [ d i n  = n - 1 ] t  = t~, we have PE(a)[cot, t = 
n, Your = 0, F = 1, zout = 1]t = to by decreasing-one-PE.  In this case, we go to PROCESS-3. 
If PE(a)[din < n - 1]t = ta,  increas ing-one-PE implies P(a)[cout < n, Your = 1, F = 0It = to. 
In this case, if a < m we go to PROCESS-1 for P E ( a  + 1)[yin = 1]t -- to + 1; otherwise, we go to 
PROCESS-2 because we have PE(m)[y in  = O, F = O, zin = 1]t = t~ + 1. 
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Table 1. Illustrative example for n--4, m--3. 

~(~) rE(2)  PF,(3) o~r ~ rE(1) PE(2) PE(3) ot~ 
. . . . . .  2 1  "4 " " 

1 . . . . .  2 2  3 "  ^" 
0 1 0 0 0 0 0 ~ 0  23 o oi o. ,, 

" ' 0 2 . 1 4 1  . 

1 1  2 "  " " 2 2  3 3  4 "  
o o ol--o7o I 2 o o 1 1 , 1 1 0  012  10 234 
0 1 l t - 2 - z 2  0 212 3 

1 1  2 2  3 "  2 2  4 3  " 4  
3 0 O 0  0 0 0 1  1 0  _1 

0 O 0  0 1  1 O O 0  O 0  0 24 
0 1 1  2 2  3 10 2 2  4 

1 1  2 2  4 3  3 2  " 4  " " 
0 O 0  O1 1 0[-0-]  1 0 1 

0 0 0  1 0 1 3 
0 0 0 1 4 [ 3  0 

1 1  3 2  " 4  3 3  4 ~ " ~ 

oo , o co o 
0 I l 3 " 0 t - 2 J 3 l  3 4 "  " 

1 1  3 3  4 "  4 3  " 4  " " 

m 6 0 0~0 0 1  1 1 3 4  14 1 1 0 1 4  
o 0 0  o 1 1 o o o o 
0 I11 ~t--~-J33 4 0 4 

1 1  4 3  " 4  
0 01 10 1 

, oo - o 

PROCESS-2.  The re  exists an integer fl with the t ime s tep t 0 such t ha t  PE(/~)[yin = 0, F = 
0, zi,~ = 1]t - t 0. T h e  procedure  adding-one-cin implies PE(fl)[cout = cir, + 1]t = t 0. I f  
PE(fl)[ein = n - 1]t = t0, we have PE(/~)[eou, = n, f = 1, xou, = 1]t = t 0 by decreasing-one- 
PE.  In this case, we go to PROCESS-3. I f  PE(•)[ein < n - 1It = to, increasing-one-PE implies 
PE(f l )  [eout = e/n + l < n, F =  O, Your = 1, Zout = 0]t = t  o . In  this case, i f / 3 =  m w e g o  
to  P R o c E s s - 2  for PE(m)[yln = 0, F = 0, z l ,  = 1]t = t o + 1; otherwise,  we go to PROCESS-1 
because  of  PE(/~ + 1)[y/,, = 1It = t o + 1. 

P R o c E s s - 3 .  The re  exists  an integer 7 with the t ime  s tep t~ such t ha t  PE(7 ) [ co~  = n]t = tT. 
T h e  p rocedure  decreasing-one-PE implies PE(7)[yout = 0, F = 1, zout = 1]t = t- v. This  
implies  t h a t  P E ( 7 )  will genera te  its eout "-^  a t  the nex t  t ime  s tep  t. r + 1 f rom the execut ion 
of  empty-element. I f  7 = 1 then  the execut ion of generating-subsets(n,m) s tops  a t  the t ime  
s tep  t. r + 1 because  PE(1 )  sends the  message  zout = 1 a t  the  t ime  s tep t.y and this message  is 
recognized by host  c o m p u t e r  a t  the t ime  s tep t. r + 1. I f  7 > 1 we go to PROCESS-2 because  of 
P E ( 7  - 1)[yin = 0, F = 0, z i ,  = 1It = t.¢ + 1. 

Now, we want  to show t h a t  generating-subsets(n,m) is correct  for genera t ing  all subsets  in 
sub&z, which we s ta te  as a theorem.  

THEOREM. T h e  a lgor i thm #enerating-subsets(n,m) is correct  to genera te  all of  the  r - s u b s e t s  of  
{1,2,  . . . .  n} for 1 < r < m _< n in lexicographical  order.  
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PROOF. We prove this theorem by induct ion on t ime step t. 
[Basis]. For t = 1, at  the beginning of  the execution of  g e n e r a t i , g - s u b s e t s ( n , m ) ,  we have 

PE(1)[yin - 1, din "- 0It -" 1 and PE(i)[Yin - O, F - 1]t "- 1 for 2 < i < m. PROOESS-1 shows 
that the first subset is {1} for PE(1) performing adding-one-din and the other PEs performing 
e m p t y - e l e m e n t .  

[Assumption].  Suppose tha t  the k th  subset  A - {a l ,  a 2 , . . . ,  a ~ }  in sub lex  is genera ted  in the  
t ime step t - k. 

[Induction].  For t -- k + 1, let B - {bl, b 2 , . . . ,  b#} be the subset  genera ted  by the a lgor i thm 
g e n e r a t i n g - s n b s e t s ( n , m )  at the t ime step k + 1. We want  to  claim t h a t  B belongs to  sublez  with  
the  index k q- 1. We divide the p roof  into four cases according to  the values of  ~ and Ha. 

Case (1): a = m and am - n. 

P E ( i ) [ e o , ,  = ai # nlt = k,  1 < i < m - 1; P E ( m ) [ c o u t  = n l t  = k .  

P E ( i ) [ y o u t  = O, F = O, Zout = 0]t = k, 1 < i < m -  1; 

P E ( m ) [ U o , .  = 0, F = 1, Zo,,, = 1]t = k. 

P E ( i ) [ y l .  = 0, F = 0, zi,~ = 0, e l .  = Hi, tout = ci,, = ai]t = k + 1, 1 < i < m -  2; 

P E ( m  - 1)[yi. = 0, F = 0, zin = 1, c i n =  a , . - 1 ,  co . t  = c i .  + 1 = a m - 1  + 1]t = k + 1; 

P E ( m ) [ y . ,  = 0, F = 1, co . ,  =^]t  = k + 1. 

In this case, we have /3  = m -  1 and B = { a l , a 2 , . . .  , a , n - 2 , a , , ~ - I  + 1}. 
Case (2): a = m and am ¢ n. 

PE(i )[Cout  = ai ~ n]t --  k ,  1 < i < m .  

P E ( i ) [ y o , t  = O, F = O, Zo,~ = 0]t = k, 1 < i < m -  1; 

P E ( m ) [ y o . ,  = 1, F = O, Xo., = 0It = k.  

:=} P E ( i ) [ y ~ n  = O, F = O, x i ,  = O, t in  = Hi, eo , t  = t in  = ai]t = k + 1, 1 < i < m -  1; 

P E ( m ) [ y l ,  = O, F = O, z in  = 1, t in  -- am ,  tout -" t in  + 1 = am + 1]t = k + 1. 

In  this case, we have /3  = m and B = { a l , a 2 , . . . , a , n - l , a , n  + 1}. 
Case (3): a ¢ m and aa = n. 

P E ( i ) [ e o , t  = ai ~k n i t  = k, 1 < i < a - 1; P E ( a ) [ e o ,  t = a~ = n i t  = k; 

PE( i ) [Cout  = ^ ] t  = k, a + 1 < i < m. 

=~ PE( i ) [U o~ ,  = 0, F = 0, Zo., = 0It = / c ,  1 < i < a - 1; 

P E ( a ) [ y o u t  = O, F = 1, Zout = llt = k; 

P E ( i ) [ y o u ,  = O, F = 1, Xout = 0It = k, a +  1 < i < m. 

P E ( i ) [ y i n  = O, F = O, x in  = O, Cout = Hi, t in  = tout = ai]t = k + 1, 1 < i < a -  2; 

P E ( a  - 1)[Yin = O, F = O, t i n  = 1, cin = H a - t ,  Cout = cin + 1 = a = - i  + 1]t = k + 1; 

P E ( a ) [ y i n  = O, F = 1, Con, = ^ ] t  = k + 1; 

PE( i ) [y i ,~  = O, f = 1, Co,, = ^ I t  = k + 1, a +  1 < i < m. 

In this case, we have /3  = a - 1 and B = { a l , a 2 , . . .  , a ~ , - 2 , a a - 1  + 1}. 
Case (4): a ¢ m and aa  ¢ n. 

P E ( i ) [ C o ,  t = ai ~£ n i t  = k ,  1 < i < a;  PE( i ) [Cout  = ^ I t  = k, a + 1 < i < m. 

P E ( i ) [ y o u t  = O, F = O, Zout = 0]t = k, 1 < i < a -  1; 

PE(a)[Uo, .  = 1, F = 0, Xo.~ = 0, do,.  = a.,]t = k; 

P E ( i ) [ y o ,  t = O, F = 1, Xout = 0]t = k, a +  1 < i < m. 

=} PE( i ) [y i ,~  = O, F = O, x i ,  = O, t in  = Hi, tout = ein = ai]t = k + 1, 1 < i < a; 

P E ( a  + 1)[y~. = 1, d~. = a~, Co., = d~. + 1 = a~ + 1It = Ic + 1; 

P E ( i ) [ y l n  = O, F = I ,  eout = ^ ] t  = k + l ,  a + 2 < i < m .  

In  this case, we have /3  = a + 1 and B = { a l , a 2 , . . .  , a o , a ~  + 1}. 
Therefore  the subset  B genera ted  by g e n e r a t i n g - s n b s e t s ( n , m ) h a s  the index k + 1 in snblex.  

This completes the proof of the THEOREM. II 
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6. CONCLUSIONS 

Although the rapid advance of VLSI technology has made the construction of a parallel com- 
puter more feasible than ever before, it is still difficult to construct most parallel computers due 
to their complex structure. In this paper, we present a new parallel algorithm to generate subsets 
on a linear systolic array. The design of a systolic array and an algorithm is considered in detail. 
Since all PEs presented in our systolic array have identical stucture and perform the same pro- 
gram, this systolic array is very suitable for VLSI implementation. Note that we can modify our 
systolic array so that it gives the subsets suceeding to a given subset Y. This is done by loading 
adequate values from the components of Y into the initial state of the algorithm generating- 
subsets(n,m). Moreover, for I < i < m, at the time step that PE(1) has just assigned n - i + I 
to  its Cout (if rn < n, it is done by adding-one-cin; if m = n, it is also done by adding-one-cin 
except  at  the t ime step t - 1 which is done by adding-one-din), PE(1)  sends a special s top-s ignal  
to  PE( i ) .  T h e n  after PE( i )  receives this signal, PE( i )  will s top  its executive s ta te  at  the next  
time step. 

We hope that our design consideration can be used to design new systolic algorithms for 
other problems in the fields of numerical methods, computational geometry and graph theory. 
For example, the solution of simultaneous linear equations of Gauss-Jordan elimination with 
pivoting, the generation of m! permutations, the convex hull and planarity testing problems etc. 
Furthermore, we are interested in investigating those systolic arrays in which the storage of a PE 
and the elapsed time of a time step are independent of the problem size. 
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