
SOFTWARE-PRAffICE AND EXPERIENCE, VOL. 21(1). 35-49 (JANUARY 1991)

A Letter-oriented Perfect Hashing Scheme
Based upon Sparse Table Compression

CHIN-CHEN CHANG
Institute of Computer Science and Information Engineering, National Chung Cheng

University, Chiayi, Taiwan 62107, R.O.C.

A N D

TZONG-CHEN WU
Institute of Computer Science and Information Engineering, National Chiao Tung

University, Hsinchu, Taiwan 30025, R. 0. C.

SUMMARY

In this paper, a new letter-oriented perfect hashing scheme based on Ziegler's row displacement method
is presented. A unique &tuple from a given set of static letter-oriented key words can be extracted by
a heuristic algorithm. Then the extracted distinct &tuples are associated with a 0/1 sparse matrix. Using
a sparse matrix compression technique, a perfect hashing function on the key words is then constructed.

KEY WORDS Perfect hashing functions Letter-oriented hashing Sparse table compression Row displacement
method

INTRODUCTION
Hashing is a fast addressing technique for directly accessing data in the memory
space. Given a set of keys, one can retrieve the information associated with a key
in a very short time through a preconstructed hashing function on keys. A perfect
hashing function is defined as a one-to-one mapping from the set of keys into an
address space. There are several methods which have been proposed for constructing
perfect hashing functions.'-" By a sparse table, we mean a table in which the number
of non-zero elements, as opposed to the zero elements, which are useless or vacant,
is much less than the size of the table itself. Also, there are many schemes that can
be used to compress a sparse table into a linear array to yield more efficient memory
usage.12-1ySome of them are frequently used for storing the parsing tables in compiler
design.

Consider the sets of static letter-oriented keys. We present here a new scheme for
constructing perfect hashing functions based on Ziegler's row displacement method.
One can extract a unique n-tuple on the keys by a heuristic algorithm for a set of
letter-oriented key words. The extracted n-tuples are associated with a 0/1 sparse
matrix. We first apply a sparse matrix compression technique to obtain a more
compact matrix, and then decompose the compressed matrix into a set of triangular-
like row vectors. A row displacement method is employed to compress these decom-

OO3&0644/9 1/010035-15$07.50
0 1991 by John Wiley 8z Sons, Ltd.

Received 2 May 1990
Revised 20 June 1990

36 C.-C. CHANG A N D T.-C. WU

posed row vectors into a more condensed linear array. The displacements of all
decomposed row vectors can be determined by applying Ziegler’s row displacement
method. Then a perfect hashing function for this set of letter-oriented keys is
constructed. In the following sections, we will give detailed descriptions of the
construction of perfect hashing functions on sets of static letter-oriented keys. Some
discussions about practical implementations of our scheme are also presented.

SPARSE TABLE COMPRESSION
There are several known displacement methods that have been proposed for storing
sparse tables.’”’’ Among them, many methods can be used as the bases of con-
structing perfect hashing functions. Since Ziegler’s row displacement” is simple, we
adopt it to form our perfect hashing functions. Therefore, we give a brief description
of Ziegler’s approach in this section. Reviews of some other compression methods
for static sparse tables are included in References 15, 16 and 19.

A sparse matrix with non-zero elements in it is given. For convenience, a matrix
is regarded as a set of row vectors or a set of column vectors. Ziegler proposed a
row displacement method to compress all row vectors of the matrix into a linear
array such that all non-zero elements are placed overlapped in the linear array
without conflict to yield more efficient memory usage. By applying Ziegler’s row
displacement method, the element at the position (i,j) of the matrix can be directly
stored at the location BASE(i)+j in memory, where BASE(i) is referred to as the row
displacement of the ith row vector. Figure 1 shows a graphical illustration of the
row displacement method. Furthermore, Ziegler also gave a suggestion that sorting
all the row vectors of the matrix in descending order of the number of non-zero
elements in them before placing these row vectors into the linear array will obtain
better results. It is known that the problem of computing the optimal displacements
of row vectors is NP-complete.’*, *‘I Tarjan and YaoI2 also pointed out that Ziegler’s
method, which is sometimes referred to as a first-fit decreasing method, yields
excellent results in practice.

o o x x [:,.:;I x o o o

(0 0 x x)

(0 0 0 x)

l x x O O l
(x 0 0 0)

(x x x x x XI

matrix

1st row-vector

2nd row-vector

3rd row-vector

4th row-vector

bear array

0 : zero element
x : nonzero element

Figure 1. A graphical illustration of [he row displacemenr method

A LETTER-ORIENTED PERFECT HASHING SCHEME 37

Let the sorted row vectors of a compressed matrix be LL and the maximal length
of row vector be rn. Ziegler’s row displacement method for placing row vectors into
a linear array is described as follows:

Step 1 . Allocate a set of rn free linear locations, denoted by S, in memory.
Step 2 . Get a row vector D from LL.
Step 3. Starting from the head of S, search for a free location from which the

non-zero elements of D can be fully placed without conflicting with the
non-zero elements of the previously placed row vectors in S. If such a
location is not found then allocate rn more contiguous locations from
memory; append them to S and repeat this step until such a location is
found.

Step 4 . Place D overlapped into S.
Step 5 . Repeat from Step 2 until no row vector remains in LL.

OUR SCHEME
This section presents a new perfect hashing scheme for sets of letter-oriented keys.
First, we assume that a unique n-tuple has been obtained on the set of keys by some
artificial rules. Then we map the extracted distinct n-tuples to a set of entries of a
011 sparse matrix M , where non-zero elements in M are represented as 1s; others
are represented as 0s. Throughout this section, we use a simple example to explain
our scheme in finding perfect hashing functions. A general model of our method is
also given in the last part of this section.

Consider the case of the twelve months’ identifiers in English listed as below:

JANUARY MAY SEPTEMBER
FEBRUARY JUNE OCTOBER
MARCH JULY N OVE M BE R
APRIL AUGUST DECEMBER

By extracting the second and the third letters, the twelve distinct extracted pairs (2-
tuples) are listed as following:

Then we produce a 26 X 26 O / l matrix M associated with the above twelve pairs
(see Figure 2). For the sake of readability, the 0s in M are represented as dots.

The reader may notice that the matrix M is rather sparse. Now the problem of
our hashing scheme turns out to be how to compress the matrix M of Figure 2 into
a more condensed linear array such that the storage used by all extracted n-tuples,
i.e. the 1s in the matrix M, is as small as possible. Here we present a straightforward
algorithm for compressing a sparse matrix into a more compact one. The compressed
matrix is used as the basis of our hashing scheme. First, we shall define some
functions which are used later for describing our algorithm more clearly:

38

c d

. 1 . . . 1 1 .

. l

. l l l

.

.

. . . .

. . .

.

.

. l

. l

.

.

. 1 1 . 1

.

.

.

. .
i -.

C.-C. CHANG AND T.-C. WU

A 1
B 2
c 3
D 4
E 5
F 6
G 7
H 8
I 9
J 10
K 11
L 12

M = M 1 3
N 14
0 15
P 16
Q 17
R 18
s 19
T 20
u 21
v 22
W 23
X 24
Y 25
Z 26

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2

1 2 3 4 S G 7 8 9 0 1 2 3 4 5 6 1 B 9 0 1 2 3 4 5 6

Figure 2

Check Row(M ,i ,j)
For the matrix M, if both the ith and the jth row vectors have Is at the same

position then return FALSE; otherwise return TRUE.

CheckCol(M ,iJ)

position then return FALSE; otherwise return TRUE.
For the matrix M , if both the ith and jth column vectors have 1s at the same

MoveRow(M,i,j)

elements of the jth row vector to 0.
For the matrix M, move the jth row vector to the ith row vector and set all

MoveCol(M,i,j)

all elements of the jth column vector to 0.
For the matrix M, move the jth column vector to the ith column vector and set

A LETTER-ORIENTED PERFECT HASHING SCHEME 39

MergeRow(M ,iJ)

the ith row vector and set all elements of the jth row vector to 0.
For the matrix M, place all the 1s of the jth row vector into the same position of

MergeCol(M ,i,j)

of the ith column vector and set all elements of the jth column vector to 0.
For the matrix M, place all the Is of the jth column vector into the same positions

Example 1

Let the matrix A be

CheckRow(A,1,2) will return FALSE, because both the first and the second row vectors
have 1s at the third position in A. Similarly, CheckCol(A,1,2) will return TRUE.
MergeRow(A,1,3) will make the first row vector [0 1 11 and MergeCol(A,2,3) will
make the second column vector

Again, for the original matrix A, MoveRow(A,1,2) will make A

[A e 91
Then MoveCol(A,1,2) will make A

Consider a sparse matrix M such as that associated with the example of the twelve
months. Let ROW(i) be the index of the row vector into which the ith row vector is
merged; let COL(i) be the index of the column vector into which the ith column

40 C.-C. CHANG A N D T.-C. WU

vector is merged. The algorithm to produce a more compact form of the sparse
matrix M is stated as follows.

Algorithm COM P R ESS-M ATR I X

Input
An m x n 0/1 matrix M.

output

1. A more compact 0/1 matrix CM with p rows and q columns.
2. The number of rows of CM, p .
3. The number of columns of CM, q.
4. ROW(i) and COLG), for i = l , 2, ..., rn and j=1, 2, ..., n.

Step I [initialization]
For i= l to m do RF(i) := TRUE;
For j = 1 to n do CF(i) := TRUE;
(* RF and CF mean row flag and column flag for indicating if the row and column

are available for check, respectively. *)

Step 2 [merge rows]

For i=l to m do
p := 1 ;

If R F (i) = TRUE then
Begin

For j=i+l to m do
If RFG) = TRUE and CheckRow(M,iJ) = TRUE then
Begin

MergeRow(M,i,j);
RFG) := FALSE;
ROWG) := p

End;
ROW(i) := p ;
MoveRow(M ,p,i);
p := p + l

End;
p := p-1 ; (* the number of rows of CM *)

Step 3 [merge columns]
q := 1;
For i=l to n do

A LETTER-ORIENTED PERFECT HASHING SCHEME 41

If CF(i) = TRUE then
Begin

For j = i + l to y1 do
If CFG) = TRUE and CheckCol(M,i,j) = TRUE then
Begin

M e rg eCo I (M , i ,j) ;
CFG) := FALSE;
COLO') := q

End;
COL(i) := q ;

q := q + l
MoveCol(M ,q,i);

End;
q := 4-1; (* the number of columns of CM *)

Step 4 [output results]
Output CM, p , and q ;
For i=l to m do Output ROW(i);
For j=1 to n do Output COLG);

A graphical illustration of the result produced by the above algorithm is shown in
Figure 3.

When a more compact matrix CM is obtained, we decompose it into two triangular-
like parts, U and L, as shown in Figure 4. Let p be the position (iJ) of CM, if j L
1 q i/p 1 then it is in U; otherwise it is in L. That is, some original row vectors are
decomposed into two row vectors, one is in U and the other is in L. Now, we define
the indices of the decomposed row vectors which will be used for determining the
displacements of these row vectors in a contiguous linear array. Let Ri(") be a row
vector in U and Ri(L) be a row vector in L which both are contained in the ith original
row vector of CM. Define the index of R,Cu) to be i and define the index of Ri(L) to
be (i - 2p / q 1 +
1) row vectors in total.

Reconsider the 0/1 sparse matrix M produced by the example of the twelve months.
After executing the algorithm COMPRESS-MATRIX, we obtain a compressed 2 x 8
matrix as follows:

2p / q 1 + p - 1) . Thus, CM can be decomposed into (2p -

1 1 1 1 1 1 1 1 1
1 1 1 0 1 0 0 0

Figure
M

3. Results of the algorithm COMPRESS -MATRIX

42 C . - C . CHANG 'AND T.-C. WU

J

CM
Figure 4. Triangular-like decomposition of the CM matrix

The values of ROW (i) and COL (i) are listed in Table I . Figure 5 depicts the
triangular-like decomposition of CM with the index of each decomposed row vector
to U and L.

Once the matrix CM is produced, the algorithm for determining the displacements
of the decomposed row vectors in CM to a contiguous linear array is given as follows.

Algorithm DETERM INE-DISPLACEM ENTS

Input
All decomposed row vectors in the matrix CM.

Output

Displacements of all the decomposed row vectors, BASE(i).

Table I . ROW(i) and COL(i) for the matrix M

1

ROW(i)
COL(i)

-

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2
1 2 3 4 . 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1
1 1 2 1 1 1 1 1 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 1 8 1

~ - _- - - - ~-

index

3 4--

4 4--

Figure 5 . Triangular-like decomposition with indices of CM

A LElTER-ORIENTED PERFECT HASHING SCHEME 43

Step 1

(a) Record the number of 1s and the index of each row vector.
(b) Sort all row vectors on the number of Is in their descending order.
(c) Let LL be the list of the sorted decomposed row vectors.

Step 2

(a) Get a row vector from LL with index i.
(b) Apply Ziegler's first-fit decreasing method to place this vector into a linear

array.

Step 3

(a) Record the position k at which the first element of the vector is located.
(b) Set BASE(I') = k-1.

Step 4
Repeat from Step 2 until no decomposed row vector remains in LL.

By executing the algorithm DETERMINE-DISPLACEMENTS, all displacements of the
decomposed row vectors of the matrix CM, i.e. BASE(i), for the twelve months are
listed as in Table 11.

Let the extracted n-tuple be mapped to the position (r , c) of the original matrix
M. The compressed matrix CM has two rows and eight columns. When all values of
ROW(i), COL(1') and BASE(i) are determined, by transforming the position of each
non-zero element in the matrix M to the location in the linear array applied by
Ziegler's row displacement method, we obtain a perfect hashing function for the
twelve months in English as below:

BASE(ROW(r)) + COL(c) - 4 * ROW(r) + 1 , if COL(c) 2 4 *
ROW(r) h(r,c) =

BASE(ROW(r) 4- 2) + COL(c), otherwise

Table 11. BASE(i)s of the CM matrix

44 C.-C. CHANG A N D 1 . - C . WU

For instance, for the key JANUARY in our example of the twelve months, the
extracted character tuple is (A, N) which is expressed as (1,14). From Table I , we
obtain ROW(1)=1 and COL(14)=3. Since COL(14) < 4 * ROW(1), the hashing value
is computed as

h(1,14) = BASE(ROW(1) + 2) + COL(1)
= BASE(3) + 3 = 10 + 3 = 13

For the key OCTOBER, the extracted character tuple is (C, T) which is expressed as
(3,20). Again, ROW(3)=1 and COL(20)=6 by Table I . Since COL(20) 2 1 8 * ROW(3)
/ 2 J , the hashing value is computed as

h(3,20) = BASE(ROW(3)) + COL(20) - 4 * ROW(3) + 1
= BASE(1) + 6 - 4 + 1 = 0 + 3 = 3

We give the general model of our scheme for constructing perfect hashing functions
on sets of letter-oriented keys in the following. For convenience, we use 2 to denote
the lexical order of x . For example, A is 1, B is 2, Z is 26 and so on.

Given a set of letter-oriented keys k, , for i=1,2, ..., N . Let E,=(a,.l, ..., a;.,,)
be an extracted n-tuple from k;. Assume that all N extracted n-tuples are distinct.
Let w be the cardinality of the set of characters appeared in all extracted n- tuples.
For instance, if the characters that appeared are the letters from A to Z then w is
26. From all the Ejs , an s X t 011 sparse matrix M is produced, and the corresponding
entry (r , c) of M is 1, where s = wl"'*], t = w"-- L""],

Let CM be a matrix with p rows and q columns produced by the algorithm
COMPRESS-MATRIX. A perfect hashing function on the given N keys is defined as

BASE(ROW(r)) + COL(c) - 1 q * ROW(r) / p 1 + 1, if COL(c)
2 1 q * ROW(r) / p 1 I (1) h(r,c) =

BASE(ROW(r) - r2 * p / q 1 + p + 1) + COL(c), otherwise

where the ROW(I') and COL(i) are determined by the algorithm COMPRESS-MATRIX,
the BASE(i)s are determined by the algorithm DETERMINE-DISPLACEMENTS, p is the
number of rows of CM and q is the number of rows of CM.

One may ensure the correctness of formula (1) by transforming the position of a
non-zero element in a matrix to the location in a linear array.x The following example
illustrates how to map a set of keys with distinct extracted n-tuples to a 0/1 matrix.

Example 2

Let w be 26. Assume that a three-tuple is used to map the set of keys to a matrix
distinctly. Then a 26 x 676 matrix M is produced since s = 26 and t = 676. Suppose

A LElTER-ORIENTED PERFECT HASHING SCHEME 45

that one of the three-tuples is (A, C, E). Since r = 1 and c = 26x3 + 5 = 82, the
corresponding entry (1 , 82) of M will be set to 1. In the same way, assume that a
four-tuple is used to map the set of keys to a matrix distinctly. Then a 676 X 676
matrix M is produced since s = 676 and t = 676. Suppose that one of the four-tuples
is (A, C, E, F). Since Y = 26 + 3 = 29 and c = 26x5 + 6 = 136, the corresponding
entry (29, 136) will set to 1 .

In general, the algorithm for constructing a perfect hashing function for a set of
N keys is stated as follows.

Algorithm CONSTRUCT-PH F

Input

A set of N keys.

output

p , q , ROW(i)s, COL(i)s and BASE(i)s such that formula (1) is a perfect hashing
function.

Step I
Extract N distinct n-tuples on keys artificially.

Step 2
Produce an s x t 011 matrix M associated with all distinct extracted n-tuples, where

s=wL"'*J, ~ = W ' ~ - L ' ~ ' ~ J and w is the cardinality of the set of characters appeared in all
extracted n-tuples.

Step 3
Call the algorithm COMPRESS-MATRIX to compress the matrix M into a compact

matrix C M with p rows and q columns and determine the values of ROW(i) and
CO L(i) .

Step 4

the decomposed row vectors with their indices.
Decompose C M into two triangular-like parts U and L as shown in Figure 2. Record

Step 5

Call the algorithm DETERMINE-DISPLACEMENTS to find BASE(I').

46 C . - C . CHANG AND T.-C. WU

Step 6

Output p , q , ROW(i), COL(i) and BASE(i).

Here, we give two examples to explain how the algorithm CONSTRUCT-PHF works.

Example 3

Consider the CDC PASCAL reserved words listed as below:

AND ARRAY BEGIN CASE CONST DIV
DO DOWNTO ELSE END FILE FOR
FUNCTION GOT0 IF IN LABEL MOD
NIL NOT OF OR OTHERWISE PACKED
PROCEDUREPROGRAM RECORD REPEAT SEGMENT SET
THEN TO TYPE UNTIL VALUE VAR
WHILE WITH

For Step 1, let (a , b) be the extracted two-tuple of each reserved word k by the
following rules:

1. If length(k) 5 3 then a is the first character of k and b is the last character
of k .

2. If length(k) > 3 then a is the first character of k and b is the fourth character
of k .

Thus, there are 38 distinct extracted two-tuples as below:

By executing Step 3 to compress the original 26 x 26 0/1 matrix M produced in Step
2, we obtain a 7 X 15 compressed matrix CM for which p is 7 and q is 15, and
parameters ROW(Z) and COL(i). By executing Step 4 and Step 5, the parameters
BASE(i) are determined. The compressed matrix CM, the parameters ROW(i). COL(i)
and BASE(i) are shown in Figure 6.

Example 4

(A, D), which corresponds to (1, 4). Thus the hashing value is computed as
Reconsider Example 3. For instance, for the key AND, the extracted two-tuple is

h(1, 4) = BASE(ROW(1) - [2 x 7 / 151 + 15 + 1)) + COL(4)
= BASE(1 - 0 + 16) + 3 = BASE(17) + 3 = 21 + 3 = 24.

A LE'ITER-ORIENTED PERFECT HASHING SCHEME

i

ROW(i)

COL(i)

47

1 1 1 1 I 1 1 1 1 1 2 2 2 2 2 2 2
I 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6

1 1 1 1 2 3 2 1 2 1 1 4 3 1 2 1 1 6 2 7 2 1 2 1 I I

1 1 2 3 4 1 5 2 6 I 7 8 5 9 10 1 1 I 1 12 13 14 15 1 1 I 1

CM =

i

BASE(i)

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 0 1 1 1 0 0 1 0 0
0 1 1 1 0 0 0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0 1 0 0 0 0 0

(a) the compressed matrix CM

- 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 I
1 1 1 1 1

I 2 3 4 5 6 7 8 9 0 1 2 3 4

0 14 12 0 17 0 0 22 24 26 30 31 29 27

DISCUSSION
Recently, Sager"' proposed an efficient minimal prefect hashing scheme. Later, Fox
et al.' presented another effective scheme. Sager's algorithm applied his scheme on
sets up to 512 words, whereas Fox et al . , using an improvement of Sager's algorithm,
formed a minimal perfect hashing function for up to 1000 words; however the size
of the set of key words that can be hashed by our near minimal perfect hashing
scheme depends on the length of the extracted unique n-tuples and the available
memory in a practical implementation.

For the space requirements, the two methods proposed individually by Sager and
Fox et al. require only two words of storage per word hashed. In our method, for
the 38 reserved words of the CDC PASCAL programming language, we need 26 x
2 + 14 = 66 words, or about 1-7 words of storage per word hashed, where 26 X 2
= 52 words are used for ROW(i) and COL(i) and 14 words are used for BASE(I'). In
general, the number of storage per word required, NSPW, by our method is

number of ROW(i)s + ~ number of COL(i)s + number of BASE(i)s
N

~~ .. ~ NSPW =

L"'2J + - L"'21 + 2w L"'2] 4 0 y 1
~~ ~ < ~

N - N
I

48

or about

C.-C. CHANG AND T.-C. WU

where o is the cardinality of the set of characters appearing in all extracted n-tuples,
N denotes the number of key words hashed and n is the tuple length. Note that the
magnitude of n highly depends on the intelligence of the above-mentioned algorithm
for extracting distinct n-tuples. Thus, the space needed by our method is dominated
by the extracted n-tuples.

Since the time spent in finding a perfect hashing function for a set of N keys is
based on the time complexity of the algorithm DETERMINE-DISPLACEMENTS, we
analyse the time required to execute the algorithm. Let the compressed matrix CM
have p rows and q columns. We have Nlpq = p, the compression rate, where 0
< p 11. That is, N = ppq. The time complexity of the algorithm DETERMINE-
DISPLACEMENTS is

Thus, our method has a worst-case time complexity of O(W/p2).

CONCLUSIONS

We have presented a near minimal perfect hashing scheme for letter-oriented sets
of key words. Our scheme uses Ziegler's row displacement compression technique
for producing the parameters of hashing functions. Furthermore, two advantages are
achieved:

1. The extracted distinct n-tuples can be represented by a 0/1 matrix and it is
suitable for bit-string operations during the construction of hashing functions.

2. The computation of the hashing value for addressing a key is simple.
However, for the space requirement of our method, the sizes of ROW(i) and

COL(i) fully depend on the length of the extracted n-tuples from keys and the size
of BASE(i) heavily depends on the compactness of the compressed matrix resulted
from the adopted scheme for matrix compression. There are still many good methods
for static sparse matrix compression. For example, the method proposed by Durre''
based on Ziegler's row displacement method was applied well with large dictionaries.
It is worth while investigating further the choice of a more suitable compression
method as a good basis for a perfect hashing scheme on large word sets. U p to now,
researchers have proposed many perfect hashing schemes using extracted n-tuples.2-' I

They all used trial and error to find the needed n-tuples. How to find a good heuristic
algorithm to extract a unique n-tuple for an arbitrary list of word sets with the least
amount of required time still remains open.

A LETTER-ORIENTED PERFECT HASHING SCHEME 49

ACKNOWLEDGEMENTS

The authors would like to thank the referees for their very useful comments which
improved the presentation of this paper.

REFERENCES

1. R. Sprugnoli, ‘Perfect hashing functions: a single probe retrieving method for static sets’, CACM,

2. C. C. Chang. C. Y. Chen and J. K. Jan. ‘On the design of a machine-independent perfect hashing

3. C. C. Chang and R. C. T. Lee, ‘A letter-oriented minimal perfect hashing scheme’, The Computer

4. C. C. Chang and J. C. Shieh, ‘On the design of letter-oriented minimal perfect hashing functions’,

5 . R. J. Chichelli, ‘Minimal perfect hashing functions made simple’, CACM, 23, (1). 17-19 (1980).
6. C. R. Cook and R. R. Oldehoeft, ‘A letter oriented minimal perfect hashing function’, SIGPLAN

7. E. A. Fox, Q. F. Chen, L. S. Heath and S. Datta, ‘A more cost effective algorithm for finding

8. J. K. Jan and C. C. Chang, ‘Addressing for letter-oriented keys’, Journal of the Chinese Institute

9. G. Jasechke and G. Osterburg, ‘On Chichelli’s minimal perfect functions method’, CACM, 23,

10. T . J. Sager, ‘A polynomial time generator for minimal perfect hash functions’, CACM, 28, (5) ,

11. M. D. Brain and A. L. Tharp, ‘Near-perfect hashing of large word sets’, Software-Practice and

12. R. E. Tarjan and A. C. Yao, ‘Storing a sparse table’, CACM, 21, (l l) , 606-611 (1977).
13. A. C. Yao, ‘Should table be sorted?’, JACM, 28, (3), 615-628 (1981).
14. M. L. Fredman, J. Komlos and E. Szemerdi, ‘Storing a sparse table with 0(1) worst case access

15. K. Durre, ‘Storing static tries’, in U. Pape (ed.), Graphtheoretic Concepts in Computer Science,

16. K. Durre and G. Fels, ‘Efficiency of sparse matrix storage techniques’, in U. Pape (ed.), Discrete

17. S . F. Ziegler, ‘Smaller faster table driven parser’, Madison Academic Computing Center, University

18. A. V. Aho and J. D. Ullman, Principles of Compiler Design. Addison-Wesley Publishing Co.,

19. P. Dencker, K. Durre and J. Heuft, ‘Optimization of parser tables for portable compilers’, ACM

20. M. R. Garey and D. S . Johnson, Computers and Intructability-A Guide to the Theory of NP-

20, (l l) , 841-850 (1977).

scheme’, to appear in The Computer Journal (1990).

Journal, 29, (3), 277-281 (1986).

Journal of the Chinese Institute of Engineers, 8, (3), 285-297 (1985).

Notices, 17, (9), 18-27 (1982).

minimal perfect hashing functions’, ACM Conference Proceedings, 1989, pp. 114122.

of Engineers, 11, (3), 279-284 (1988).

(12), 728-729 (1980).

523-532 (1985).

Experience, 19, (lo), 967-978 (1989).

time’, JACM, 31, (3), 538-544 (1984).

Universitats-Verlag, Rudolf Trauner. Linz, 1984, pp. 125-134.

Structures and Algorithtns, Hanser-Verlag, 1980, pp. 209-221.

of Wisconsin, Madison, Wisconsin, 1977.

Reading, Mass., 1977.

Transactions on Programming Languages and Systems, 6 , (4). 546-572 (1984).

Completeness, W. H. Freeman and Company, San Francisco, 1979.

