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SUMMARY 

In this paper, a new letter-oriented perfect hashing scheme based on Ziegler's row displacement method 
is presented. A unique &tuple from a given set of static letter-oriented key words can be extracted by 
a heuristic algorithm. Then the extracted distinct &tuples are associated with a 0/1 sparse matrix. Using 
a sparse matrix compression technique, a perfect hashing function on the key words is then constructed. 

KEY WORDS Perfect hashing functions Letter-oriented hashing Sparse table compression Row displacement 
method 

INTRODUCTION 
Hashing is a fast addressing technique for directly accessing data in the memory 
space. Given a set of keys, one can retrieve the information associated with a key 
in a very short time through a preconstructed hashing function on keys. A perfect 
hashing function is defined as a one-to-one mapping from the set of keys into an 
address space. There are several methods which have been proposed for constructing 
perfect hashing functions.'-" By a sparse table, we mean a table in which the number 
of non-zero elements, as opposed to the zero elements, which are useless or vacant, 
is much less than the size of the table itself. Also, there are many schemes that can 
be used to compress a sparse table into a linear array to yield more efficient memory 
usage.12-1ySome of them are frequently used for storing the parsing tables in compiler 
design. 

Consider the sets of static letter-oriented keys. We present here a new scheme for 
constructing perfect hashing functions based on Ziegler's row displacement method. 
One can extract a unique n-tuple on the keys by a heuristic algorithm for a set of 
letter-oriented key words. The extracted n-tuples are associated with a 0/1 sparse 
matrix. We first apply a sparse matrix compression technique to obtain a more 
compact matrix, and then decompose the compressed matrix into a set of triangular- 
like row vectors. A row displacement method is employed to compress these decom- 
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posed row vectors into a more condensed linear array. The displacements of all 
decomposed row vectors can be determined by applying Ziegler’s row displacement 
method. Then a perfect hashing function for this set of letter-oriented keys is 
constructed. In the following sections, we will give detailed descriptions of the 
construction of perfect hashing functions on sets of static letter-oriented keys. Some 
discussions about practical implementations of our scheme are also presented. 

SPARSE TABLE COMPRESSION 
There are several known displacement methods that have been proposed for storing 
sparse tables.’”’’ Among them, many methods can be used as the bases of con- 
structing perfect hashing functions. Since Ziegler’s row displacement” is simple, we 
adopt it to form our perfect hashing functions. Therefore, we give a brief description 
of Ziegler’s approach in this section. Reviews of some other compression methods 
for static sparse tables are included in References 15, 16 and 19. 

A sparse matrix with non-zero elements in it is given. For convenience, a matrix 
is regarded as a set of row vectors or a set of column vectors. Ziegler proposed a 
row displacement method to compress all row vectors of the matrix into a linear 
array such that all non-zero elements are placed overlapped in the linear array 
without conflict to yield more efficient memory usage. By applying Ziegler’s row 
displacement method, the element at the position (i,j) of the matrix can be directly 
stored at the location BASE(i)+j in memory, where BASE(i) is referred to as the row 
displacement of the ith row vector. Figure 1 shows a graphical illustration of the 
row displacement method. Furthermore, Ziegler also gave a suggestion that sorting 
all the row vectors of the matrix in descending order of the number of non-zero 
elements in them before placing these row vectors into the linear array will obtain 
better results. It is known that the problem of computing the optimal displacements 
of row vectors is NP-complete.’*, *‘I Tarjan and YaoI2 also pointed out that Ziegler’s 
method, which is sometimes referred to as a first-fit decreasing method, yields 
excellent results in practice. 
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Figure 1. A graphical illustration of [he row displacemenr method 
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Let the sorted row vectors of a compressed matrix be LL and the maximal length 
of row vector be rn. Ziegler’s row displacement method for placing row vectors into 
a linear array is described as follows: 

Step 1 .  Allocate a set of rn free linear locations, denoted by S, in memory. 
Step 2 .  Get a row vector D from LL. 
Step 3. Starting from the head of S, search for a free location from which the 

non-zero elements of D can be fully placed without conflicting with the 
non-zero elements of the previously placed row vectors in S. If such a 
location is not found then allocate rn more contiguous locations from 
memory; append them to S and repeat this step until such a location is 
found. 

Step 4 .  Place D overlapped into S. 
Step 5 .  Repeat from Step 2 until no row vector remains in LL. 

OUR SCHEME 
This section presents a new perfect hashing scheme for sets of letter-oriented keys. 
First, we assume that a unique n-tuple has been obtained on the set of keys by some 
artificial rules. Then we map the extracted distinct n-tuples to a set of entries of a 
011 sparse matrix M ,  where non-zero elements in M are represented as 1s; others 
are represented as 0s. Throughout this section, we use a simple example to explain 
our scheme in finding perfect hashing functions. A general model of our method is 
also given in the last part of this section. 

Consider the case of the twelve months’ identifiers in English listed as below: 

JANUARY MAY SEPTEMBER 
FEBRUARY JUNE OCTOBER 
MARCH JULY N OVE M BE R 
APRIL AUGUST DECEMBER 

By extracting the second and the third letters, the twelve distinct extracted pairs (2- 
tuples) are listed as following: 

Then we produce a 26 X 26 O / l  matrix M associated with the above twelve pairs 
(see Figure 2). For the sake of readability, the 0s in M are represented as dots. 

The reader may notice that the matrix M is rather sparse. Now the problem of 
our hashing scheme turns out to be how to compress the matrix M of Figure 2 into 
a more condensed linear array such that the storage used by all extracted n-tuples, 
i.e. the 1s in the matrix M, is as small as possible. Here we present a straightforward 
algorithm for compressing a sparse matrix into a more compact one. The compressed 
matrix is used as the basis of our hashing scheme. First, we shall define some 
functions which are used later for describing our algorithm more clearly: 
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A 1  
B 2  
c 3  
D 4  
E 5  
F 6  
G 7  
H 8  
I 9  
J 10 
K 11 
L 12 

M = M 1 3  
N 14 
0 15 
P 16 
Q 17 
R 18 
s 19 
T 20 
u 21 
v 22 
W 23 
X 24 
Y 25 
Z 26 

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z  
1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2  

1 2 3 4 S G 7 8 9 0 1 2 3 4 5 6 1 B 9 0 1 2 3 4 5 6  

Figure 2 

Check Row( M ,i ,j) 
For the matrix M, if both the ith and the jth row vectors have Is at the same 

position then return FALSE; otherwise return TRUE. 

CheckCol(M ,iJ) 

position then return FALSE; otherwise return TRUE. 
For the matrix M ,  if both the ith and jth column vectors have 1s at the same 

MoveRow( M,i,j) 

elements of the jth row vector to 0. 
For the matrix M, move the jth row vector to the ith row vector and set all 

MoveCol(M,i,j) 

all elements of the jth column vector to 0. 
For the matrix M, move the jth column vector to the ith column vector and set 
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MergeRow(M ,iJ) 

the ith row vector and set all elements of the jth row vector to 0. 
For the matrix M, place all the 1s of the jth row vector into the same position of 

MergeCol( M ,i,j) 

of the ith column vector and set all elements of the jth column vector to 0. 
For the matrix M, place all the Is of the jth column vector into the same positions 

Example 1 

Let the matrix A be 

CheckRow(A,1,2) will return FALSE, because both the first and the second row vectors 
have 1s at the third position in A. Similarly, CheckCol(A,1,2) will return TRUE. 
MergeRow(A,1,3) will make the first row vector [0 1 11 and MergeCol(A,2,3) will 
make the second column vector 

Again, for the original matrix A, MoveRow(A,1,2) will make A 

[A e 91 
Then MoveCol(A,1,2) will make A 

Consider a sparse matrix M such as that associated with the example of the twelve 
months. Let ROW(i) be the index of the row vector into which the ith row vector is 
merged; let COL(i) be the index of the column vector into which the ith column 
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vector is merged. The algorithm to produce a more compact form of the sparse 
matrix M is stated as follows. 

Algorithm COM P R ESS-M ATR I X 

Input 
An m x n 0/1 matrix M. 

output 

1.  A more compact 0/1 matrix CM with p rows and q columns. 
2. The number of rows of CM, p .  
3. The number of columns of CM, q. 
4. ROW(i) and COLG), for i = l ,  2, ..., rn and j=1, 2, ..., n. 

Step I [initialization] 
For i= l  to m do RF(i) := TRUE; 
For j = 1  to n do CF(i) := TRUE; 
(* RF and CF mean row flag and column flag for indicating if the row and column 

are available for check, respectively. *) 

Step 2 [merge rows] 

For i=l to m do 
p := 1 ;  

If R F ( i )  = TRUE then 
Begin 

For j=i+l to m do 
If RFG) = TRUE and CheckRow(M,iJ) = TRUE then 
Begin 

MergeRow( M,i,j); 
RFG) := FALSE; 
ROWG) := p 

End; 
ROW(i) := p ;  
MoveRow( M ,p,i); 
p := p + l  

End; 
p := p-1 ;  ( *  the number of rows of CM *) 

Step 3 [merge columns] 
q := 1; 
For i=l to n do 
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If CF(i) = TRUE then 
Begin 

For j = i + l  to y1 do 
If CFG) = TRUE and CheckCol(M,i,j) = TRUE then 
Begin 

M e  rg eCo I ( M , i ,j) ; 
CFG) := FALSE; 
COLO') := q 

End; 
COL(i) := q ;  

q := q + l  
MoveCol(M ,q,i); 

End; 
q := 4-1; (* the number of columns of CM *) 

Step 4 [output results] 
Output CM, p ,  and q ;  
For i=l  to m do Output ROW(i); 
For j=1 to n do Output COLG); 

A graphical illustration of the result produced by the above algorithm is shown in 
Figure 3. 

When a more compact matrix CM is obtained, we decompose it into two triangular- 
like parts, U and L, as shown in Figure 4. Let p be the position (iJ) of CM, if j L 
1 q i/p 1 then it is in U; otherwise it is in L. That is, some original row vectors are 
decomposed into two row vectors, one is in U and the other is in L. Now, we define 
the indices of the decomposed row vectors which will be used for determining the 
displacements of these row vectors in a contiguous linear array. Let Ri(") be a row 
vector in U and Ri(L) be a row vector in L which both are contained in the ith original 
row vector of CM. Define the index of R,Cu) to be i and define the index of Ri(L) to 
be (i - 2p / q 1 + 
1) row vectors in total. 

Reconsider the 0/1 sparse matrix M produced by the example of the twelve months. 
After executing the algorithm COMPRESS-MATRIX, we obtain a compressed 2 x 8 
matrix as follows: 

2p / q 1 + p - 1) .  Thus, CM can be decomposed into (2p - 

1 1 1 1 1 1 1 1 1  
1 1 1 0 1 0 0 0  

Figure 
M 

3. Results of the algorithm COMPRESS -MATRIX 
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J 

CM 
Figure 4. Triangular-like decomposition of the CM matrix 

The values of ROW (i) and COL (i) are listed in Table I .  Figure 5 depicts the 
triangular-like decomposition of CM with the index of each decomposed row vector 
to U and L. 

Once the matrix CM is produced, the algorithm for determining the displacements 
of the decomposed row vectors in CM to a contiguous linear array is given as follows. 

Algorithm DETERM INE-DISPLACEM ENTS 

Input 
All decomposed row vectors in the matrix CM. 

Output 

Displacements of all the decomposed row vectors, BASE(i). 

Table I .  ROW(i) and COL(i) for the matrix M 

1 

ROW(i) 
COL(i) 

- 

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2  
1 2 3 4 . 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6  

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1  
1 1 2 1 1 1 1 1 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 1 8 1  

~ - _- - - - ~- 

index 

3 4-- 

4 4-- 

Figure 5 .  Triangular-like decomposition with indices of CM 
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Step 1 

(a) Record the number of 1s and the index of each row vector. 
(b) Sort all row vectors on the number of Is in their descending order. 
(c) Let LL be the list of the sorted decomposed row vectors. 

Step 2 

(a) Get a row vector from LL with index i. 
(b) Apply Ziegler's first-fit decreasing method to place this vector into a linear 

array. 

Step 3 

(a) Record the position k at which the first element of the vector is located. 
(b) Set BASE(I') = k-1.  

Step 4 
Repeat from Step 2 until no decomposed row vector remains in LL. 

By executing the algorithm DETERMINE-DISPLACEMENTS, all displacements of the 
decomposed row vectors of the matrix CM, i.e. BASE(i), for the twelve months are 
listed as in Table 11. 

Let the extracted n-tuple be mapped to the position ( r ,  c) of the original matrix 
M. The compressed matrix CM has two rows and eight columns. When all values of 
ROW(i), COL(1') and BASE(i) are determined, by transforming the position of each 
non-zero element in the matrix M to the location in the linear array applied by 
Ziegler's row displacement method, we obtain a perfect hashing function for the 
twelve months in English as below: 

BASE(ROW(r)) + COL(c) - 4 * ROW(r) + 1 ,  if COL(c) 2 4 * 
ROW(r) h(r,c) = 

BASE(ROW(r) 4- 2) + COL(c), otherwise 

Table 11. BASE(i)s of the CM matrix 
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For instance, for the key JANUARY in our example of the twelve months, the 
extracted character tuple is (A, N) which is expressed as (1,14). From Table I ,  we 
obtain ROW(1)=1 and COL(14)=3. Since COL(14) < 4 * ROW(1), the hashing value 
is computed as 

h(1,14) = BASE(ROW(1) + 2) + COL(1) 
= BASE(3) + 3 = 10 + 3 = 13 

For the key OCTOBER, the extracted character tuple is (C, T) which is expressed as 
(3,20). Again, ROW(3)=1 and COL(20)=6 by Table I .  Since COL(20) 2 1 8  * ROW(3) 
/ 2 J ,  the hashing value is computed as 

h(3,20) = BASE(ROW(3)) + COL(20) - 4 * ROW(3) + 1 
= BASE(1) + 6 - 4 + 1 = 0 + 3 = 3 

We give the general model of our scheme for constructing perfect hashing functions 
on sets of letter-oriented keys in the following. For convenience, we use 2 to denote 
the lexical order of x .  For example, A is 1, B is 2, Z is 26 and so on. 

Given a set of letter-oriented keys k, ,  for i=1,2, ..., N .  Let E,=(a,.l, ..., a;.,,) 
be an extracted n-tuple from k;. Assume that all N extracted n-tuples are distinct. 
Let w be the cardinality of the set of characters appeared in all extracted n- tuples. 
For instance, if the characters that appeared are the letters from A to Z then w is 
26. From all the Ejs ,  an s X t 011 sparse matrix M is produced, and the corresponding 
entry ( r ,  c) of M is 1, where s = wl"'*], t = w"-- L""], 

Let CM be a matrix with p rows and q columns produced by the algorithm 
COMPRESS-MATRIX. A perfect hashing function on the given N keys is defined as 

BASE(ROW(r)) + COL(c) - 1 q * ROW(r) / p 1 + 1, if COL(c) 
2 1 q * ROW(r) / p  1 I (1) h(r,c) = 

BASE(ROW(r) - r2 * p / q 1 + p + 1) + COL(c), otherwise 

where the ROW(I') and COL(i) are determined by the algorithm COMPRESS-MATRIX, 
the BASE(i)s are determined by the algorithm DETERMINE-DISPLACEMENTS, p is the 
number of rows of CM and q is the number of rows of CM. 

One may ensure the correctness of formula (1) by transforming the position of a 
non-zero element in a matrix to the location in a linear array.x The following example 
illustrates how to map a set of keys with distinct extracted n-tuples to a 0/1 matrix. 

Example 2 

Let w be 26. Assume that a three-tuple is used to map the set of keys to a matrix 
distinctly. Then a 26 x 676 matrix M is produced since s = 26 and t = 676. Suppose 
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that one of the three-tuples is (A, C, E). Since r = 1 and c = 26x3 + 5 = 82, the 
corresponding entry ( 1 ,  82) of M will be set to 1. In the same way, assume that a 
four-tuple is used to map the set of keys to a matrix distinctly. Then a 676 X 676 
matrix M is produced since s = 676 and t = 676. Suppose that one of the four-tuples 
is (A, C, E, F). Since Y = 26 + 3 = 29 and c = 26x5 + 6 = 136, the corresponding 
entry (29, 136) will set to  1 .  

In general, the algorithm for constructing a perfect hashing function for a set of 
N keys is stated as follows. 

Algorithm CONSTRUCT-PH F 

Input 

A set of N keys. 

output 

p ,  q ,  ROW(i)s, COL(i)s and BASE(i)s such that formula ( 1 )  is a perfect hashing 
function. 

Step I 
Extract N distinct n-tuples on keys artificially. 

Step 2 
Produce an s x t 011 matrix M associated with all distinct extracted n-tuples, where 

s=wL"'*J, ~ = W ' ~ - L ' ~ ' ~ J  and w is the cardinality of the set of characters appeared in all 
extracted n-tuples. 

Step 3 
Call the algorithm COMPRESS-MATRIX to compress the matrix M into a compact 

matrix C M  with p rows and q columns and determine the values of ROW(i) and 
CO L( i ) .  

Step 4 

the decomposed row vectors with their indices. 
Decompose C M  into two triangular-like parts U and L as shown in Figure 2. Record 

Step 5 

Call the algorithm DETERMINE-DISPLACEMENTS to find BASE(I'). 
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Step 6 

Output p ,  q ,  ROW(i), COL(i) and BASE(i). 

Here, we give two examples to explain how the algorithm CONSTRUCT-PHF works. 

Example 3 

Consider the CDC PASCAL reserved words listed as below: 

AND ARRAY BEGIN CASE CONST DIV 
DO DOWNTO ELSE END FILE FOR 
FUNCTION GOT0 IF IN LABEL MOD 
NIL NOT OF OR OTHERWISE PACKED 
PROCEDUREPROGRAM RECORD REPEAT SEGMENT SET 
THEN TO TYPE UNTIL VALUE VAR 
WHILE WITH 

For Step 1, let (a ,  b )  be the extracted two-tuple of each reserved word k by the 
following rules: 

1. If length(k) 5 3 then a is the first character of k and b is the last character 
of k .  

2. If length(k) > 3 then a is the first character of k and b is the fourth character 
of k .  

Thus, there are 38 distinct extracted two-tuples as below: 

By executing Step 3 to compress the original 26 x 26 0/1 matrix M produced in Step 
2, we obtain a 7 X 15 compressed matrix CM for which p is 7 and q is 15, and 
parameters ROW(Z) and COL(i). By executing Step 4 and Step 5, the parameters 
BASE(i) are determined. The compressed matrix CM, the parameters ROW(i). COL(i) 
and BASE(i) are shown in Figure 6. 

Example 4 

(A, D), which corresponds to (1, 4). Thus the hashing value is computed as 
Reconsider Example 3.  For instance, for the key AND, the extracted two-tuple is 

h(1, 4) = BASE(ROW(1) - [ 2 x 7  / 151 + 15 + 1)) + COL(4) 
= BASE(1 - 0 + 16) + 3 = BASE(17) + 3 = 21 + 3 = 24. 
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ROW(i) 

COL(i) 
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1 1 1 1 I  1 1 1  1 1  2 2 2 2 2 2 2  
I 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8  9 0 1 2 3 4 5 6  

1 1  1 1 2 3 2 1 2 1  1 4 3 1  2 1 1  6 2 7 2 1 2 1  I I 

1 1  2 3 4 1  5 2 6  I 7 8 5 9  10 1 1  I 1  12 13 14 15 1 1  I 1  

CM = 

i 

BASE(i) 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  
1 1 1 1 1 1 0 1 1 1 0 0 1 0 0  
0 1 1 1 0 0 0 0 0 0 1 0 0 0 0  
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0  
1 0 0 1 0 0 0 0 0 0 1 0 0 0 0  
0 0 0 1 0 0 0 0 0 1 0 0 0 0 0  

(a) the compressed matrix CM 

- 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0  I 
1 1 1 1 1  

I 2 3 4 5 6 7 8 9 0 1 2 3 4  

0 14 12 0 17 0 0 22 24 26 30 31 29 27 

DISCUSSION 
Recently, Sager"' proposed an efficient minimal prefect hashing scheme. Later, Fox 
et al.' presented another effective scheme. Sager's algorithm applied his scheme on 
sets up to 512 words, whereas Fox et al . ,  using an improvement of Sager's algorithm, 
formed a minimal perfect hashing function for up to  1000 words; however the size 
of the set of key words that can be hashed by our near minimal perfect hashing 
scheme depends on the length of the extracted unique n-tuples and the available 
memory in a practical implementation. 

For the space requirements, the two methods proposed individually by Sager and 
Fox et al. require only two words of storage per word hashed. In our method, for 
the 38 reserved words of the CDC PASCAL programming language, we need 26 x 
2 + 14 = 66 words, or  about 1-7 words of storage per word hashed, where 26 X 2 
= 52 words are used for ROW(i) and COL(i) and 14 words are used for BASE(I'). In 
general, the number of storage per word required, NSPW, by our method is 

number of ROW(i)s + ~ number of COL(i)s + number of BASE(i)s 
N 

~~ .. ~ NSPW = 

L"'2J + - L"'21 + 2w L"'2] 4 0  y 1  
~~ ~ < ~ 

N - N  
I 
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where o is the cardinality of the set of characters appearing in all extracted n-tuples, 
N denotes the number of key words hashed and n is the tuple length. Note that the 
magnitude of n highly depends on the intelligence of the above-mentioned algorithm 
for extracting distinct n-tuples. Thus, the space needed by our method is dominated 
by the extracted n-tuples. 

Since the time spent in finding a perfect hashing function for a set of N keys is 
based on the time complexity of the algorithm DETERMINE-DISPLACEMENTS, we 
analyse the time required to execute the algorithm. Let the compressed matrix CM 
have p rows and q columns. We have Nlpq = p, the compression rate, where 0 
< p 11. That is, N = ppq.  The time complexity of the algorithm DETERMINE- 
DISPLACEMENTS is 

Thus, our method has a worst-case time complexity of O(W/p2). 

CONCLUSIONS 

We have presented a near minimal perfect hashing scheme for letter-oriented sets 
of key words. Our scheme uses Ziegler's row displacement compression technique 
for producing the parameters of hashing functions. Furthermore, two advantages are 
achieved: 

1. The extracted distinct n-tuples can be represented by a 0/1 matrix and it is 
suitable for bit-string operations during the construction of hashing functions. 

2. The computation of the hashing value for addressing a key is simple. 
However, for the space requirement of our method, the sizes of ROW(i) and 

COL(i) fully depend on the length of the extracted n-tuples from keys and the size 
of BASE(i) heavily depends on the compactness of the compressed matrix resulted 
from the adopted scheme for matrix compression. There are still many good methods 
for static sparse matrix compression. For example, the method proposed by Durre'' 
based on Ziegler's row displacement method was applied well with large dictionaries. 
It is worth while investigating further the choice of a more suitable compression 
method as a good basis for a perfect hashing scheme on large word sets. U p  to now, 
researchers have proposed many perfect hashing schemes using extracted n-tuples.2-' I 

They all used trial and error to find the needed n-tuples. How to find a good heuristic 
algorithm to extract a unique n-tuple for an arbitrary list of word sets with the least 
amount of required time still remains open. 
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