I W % B TR R SR e) W 5%

b5/ EFEn EEHIR - mEH

NELESH BB LERNTE - Ga R EHENY B BEf B
Wi - DU EISE b ELE 2 BRAIE A Z B G e T R - HEERIRE Uy
Ry EEAE Yy - WS EAREEE - WIS ELUERPERZ LT Mm%
SR EPUERIERME AL - AT 7eiRe o RImERIEd 53 - 4R A ShtfupeR
L - HENEZERE A DUHEZ BRSBTS S RS R T o
ZER e HRABA (R ZE AR 2 AT o3k = 2 53T (detache) > 2= (staccato) ° AIELE

Z% (legato) ° Fef&az o7\ HENHZ K i A GTaE R Cploih5e pichass - HARRHMAE

\

IR A A SRR IR ARG S T A o

T - HRIE - RS RN - BAE BRI RGN

A Research of Automated Flute with Algorithmic Music Control

Student: Ching-Ya Hsu Advisor: Dr. Chih-Fang Huang
Institute of Music

National Chiao Tung University

ABSTRACT

The research of automated wind instrument is based on the acoustic flute
with automatic control mechanism, and the computer generative music
composition. The control mechanism is divided into two major components:
mouthpiece and keystroke mechanisms.;Stepper motor is the choice for the
mouthpiece mechanism and RCServos for the keystroke mechanism.

Two algorithmic composition‘modules; “Probability module” and “Cellular
Automata module” are implemented to the automatic flute system. Besides,
algorithmic composition, music score can also be entered in the “Score-Play”
module. The automatic flute could perform music from either one of the algorithmic
composition module or from the music score. Three performance settings are also
available. They are detache, staccato, and legato, according to the various control
modes. Eventually the integrated automated flute system prototype has been
successfully developed. The performance and generated music data will be

discussed in the thesis.

Keywords: Algorithmic Composition, Cellular Automata, Integrated

Automated Flute System Prototype

iii

Fin

Halelujah! [l 2 A E SERT AR/ IV INGY—E]) = [l [B] BR S M1 A 28T > 25
THETRANEESES: - HER-HENFREESE LRAVER > IEREEN
MERZ AV —IRAVBIERT A0S - 2 RERR £V E AR i S8 At » FE4E0E
b~ DAkl b o RS = RS R KAV IR - AT MIHY RS -

ISt E - WOCMAT ~ &

8

R EAEE - HITEEERZ TR - &
Schatten ~ 7785 ~ 40#% -+ to name afew - FFEICTEAIEE) » Ehl - 24h > #GHE

SAZE (R FE SRR) TR — S - S LA e B G A 2IHIHT
FEPTAETE o SR !

ARG S E T ERITE R SOPARZEE LSRR A T AF_EATEERR - RUEHERT

Az BB T HYEE A%) ERBAGR Y < o 7 | BN S RS2 Ay el - AIlfE
EAYRDE ~ RRIE ~ DURADE ~ BUE LH—1) - A SEHERTERAYE (AT > Phil
Winsor 2Rl ~ sSEVZEEEAD ~ SFSEAEAT ~ FT AT - GHUEEAT - DU RS

AT ES R ~ A0ER ~ EERY ~ PSR~ R JRJE - 8 T N e

qu

e AV -~ fREE -~ FRER -~ OL(E - S o RHEAKEETT - REE - B fE - £

W

o~ 2R~ Jose ~ FEEH ~ Y BAWHIAMHE - B EF - BE - Ay -

And cheers to GHEFHE |

iv

ACKNOWLEDGEMENTS

[would like to give special thanks to Prof. Phil Winsor and Prof. Huang Chih-
Fang for inspiration and support throughout the studies. Thanks to all my

classmates at the Institute of Music for all the memorable moments.

A\Y4

CONTENTS

ABSTRACT (CHINESE) ..ottt e s s e s e s i
ABSTRACT ..ottt e s e s e e s es s e e s n e nre s ii
ACKNOWLEDGMENTS (CHINESE) ..cciii it s iv
ACKNOWLEDGMENTS. ...ttt et e s e s s e s e \
LIST OF ILLUSTRATIONSottt s s e s s s viii
LIST OF TABLES ot s e e s s xi
Chapter 1 INTRODUCTIONcoiii ittt e ee e e e sn e e en e e e e e e sn e 1
1.1 MOtIVAION ..ttt e s e s 1
1.2 BaCKGIOUNA. ...ttt e e e e e e e e s er e e e ennee 1
Chapter 2 METHODOLOGYooi it e ssnssens sneeasifae e seeeae e seessssessesssssessseessnesssessnessnsesnes 3
2.1 System Architecture... ..o i i et e e e e 3
2.2 Overtone Series and Flute ACOUSEICS ilil. e 4
2.3 Automatic FIUL......eoe e e L i e s 7
2.4 Airflow Setup and Fine-Tuning Dynamics..........cceeorriemriireieeeise e 12
2.5 Flute FINgering Charts.........ocoiiie e e e e e sn e s nn e nn e e 14
2.6 Max/Msp and BS2 CommMUNIiCAtiONS.cceeveuerieereiee e e e e e e e e 14
2.7 MD2415 and Stepper Motor CONtIol........cccoooiiiieiiiin e e e e 18
2.8 PSCand RC Servo Control.........cccviiiiiinin i e s 20
2.9 Algorithmic Composition with Probability Table...........cccooiiiiiiin i 23
2.10 Interactive Platform: Cellular Automata with Automatic Flute....................... 28
Chapter 3 IMPLEMENTATION.......oiiiiiiiii st s e e s e e 31
3.1 Data Preparation in Max/MSPccccceerueineerreen e essies e s seeesses e e e se e see e 31

i

PART TWO

CONTENTS

3.2 Processing Data in Basic Stamp: Problems and Solutions.........c.cccccoeeveieennnen. 33
3.3 Detache MOde.......cooiiiiiiir i 38
3.4 StAcCato MOAe.....coiiiiei it e s 39
3.5 LeGato MO ... ettt et e en e e s e e e s 39
3.6 SCOTE PlaY ...ttt e e e e e e e r e e e en e nre s 42
Chapter 4 EXPERIMENTAL RESULTS. ...t it e e e e e s s 45
4.1 Automatic Flute Performance: Case 1 Probabilities.........cc.ccoririiiiiiniciinn, 45
4.2 Automatic Flute Performance: Case 2 Score Play.........ccooceiieininiieenicen e 51
Chapter 5 CONCLUSIONS.......ooe s e B i i et et e e e 54
REFERENCE ..ottt Tt ahnmssad 2eain e abt s Bab b s e e e e e e e sneereene e sne e e 56
APPENDIX .ottt ot s e S ke 2 s ng e et eat e s e en s s s s e e e e s 58
L. B.Stamp code: Detache......q i e eesifea et e 58
[I. B.Stamp code: STaCCAtO.....ccceeiiie ettt e enne e 62
[II. B.Stamp code: Legato......ccuiiioeirie ettt e e e e e s r e e e 66

[V. Max/Msp patch 1: include Detache, Staccato, Legato,
ANA SCOTE-PIAY ... e e e e e e e 70
V. Max/Msp patch 2: Cellular AULtOmMAta........cceeieeerieriieirer et e 71

wii

Figure
2.1.1.
2.2.1.
2.2.2.
2.3.1.
2.3.2.
2.3.3.
2.3.4.
2.3.5.
2.3.6.
2.3.7.
2.3.8.
2.3.9.
2.4.1.
2.5.1.
2.6.1.
2.6.2.
2.6.3.
2.7.1.
2.7.2.

2.7.3.

ILLUSTRATIONS

Page
ArchiteCture SUMMATYccoiiiieieee ettt e e e e e e e e e n e e 3
OVEITONE SEIIOS...uiiiiiiiieiiis st e e s s e 4
Overtone WavefOrm........uciiir i e s s s 5
SYStEM ATChItECEUTE... oottt et e e e e e e 7
Automatic Flute: Bird’s-Eye VIeW.......ccoooi i e 9
Parallax BS2 and BOE Board..........cccuuiiiiicieinin s 9
Parallax PSC Board..........cccciiiiiniin e e 10
Keystroke MechaniSm..........cuooiiiiieriein et et e e e e 10
Stepping Motor Driver MDZ24T5...... ..o e e e e s 11
Stepper Motor and Air GERUNIE......tiiel o 11
MoUthpPiece UnNit..........cooiueiine it drseasnh s sfaat e seeeessessreesssesseeesessneesesensses senens 12
DAV ol 000 00 o) =130) o e PP 12
Fine-Tuning DyNamiCs........ccoeiiiiiiiiii e e e 13
Flute Fingering Charts..........ccooiii it e 14
SERIN SYNEAX ... ueeiieeeiisste et eeseeeesies st eesesse e e es e seesenses sreean e ssesseeses e sreennnessas 15
SERIN SAMIPIE... ettt st e e e e e e s en e e e e enne s sreeenns 16
Max/Msp Data Preparation for SERIN.........ccooiiinir e 17
MD2415 PulSe SPECIfiCS..ceiuuerieirier ettt e e e e 18
PULSOUT SYNTAX....utiiiitiiiiieies st se e s e s e ss e s ss e s s e s s e e e e nens s 19
Step Rotation COMMANAS.......cccceeiiieiieieire et e e neas 20

wiii

Figure

2.8.1.

2.8.2.

2.8.3.

2.9.1.

2.9.2.

2.9.3.

2.9.4.

2.9.5.

2.9.6.

2.9.7.

2.10.1.

3.1.1.

3.2.1.

3.2.2.

3.2.3.

3.3.1.

3.4.1.

3.5.1.

3.5.2.

3.6.1.

PART TWO

ILLUSTRATIONS

Page
SEROUT SYNTAX ..utiitiiriitieraities et est e e e e e e ne e sre e sre e sne e smeee s smn e san e sanneens 21
Velocity equivalent of the “P” Value.......ccooiioeirir e 22
NoteOn/NoteOff: sample Servo Rotate Command..........ccccoeereeiriiriieiriinciennn. 22
Probability Module SUMMAry ..o e e s 24
Dennis MOAe.......ouiiii i 25
ShOTt-Long MOde... .ottt e s e e e e e e en e e 25
NOt t00 LOUd MOde.......oiiiiiiriiiin i e e 26
Multiphonics Mode.........oo e 26
ITSESISE D0 9 (o) LY 0T O o o PPN 27
WACILY P 1) ol I3 (= L ot A o U UPTUUPUPT TR 27
Four Characteristic Modes»A;:B, C, and D
for Cellular AUtOMALA........ooe s e e e e 30
Data Preparation in Max/MSPcocoeriiriieienie et e e e e 31
EEPROM StOrage.......coiiiiiiiiie it e s e e e 33
Move/Stop Decision Maker fOr SErvo.......ocoriiiriieiriies et e e 35
Turn/Freeze Action Module for Servo........ccooiii e 37
Detache Mode Action SUMMATYcocceerieriieeriiee e e e e s 38
Staccato Mode Action SUMMATY.......cccuiieiiiir e e e e ee e e e e eenes 39
Legato Module SUMMATYccoiieiiien e e e e e e 40
CW versus CCW Decision MaKer........ccoueiiiiiiiniiin e 41
Score-Play Module Principles........ccoooeiiiiiiiiie e e 42

PART THREE

ILLUSTRATIONS
Figure Page
3.6.2. Score-Play MOAUIE.........ccuiiiiiie et e er e s 43
4.1.1. Score Derived from Case 1 Data.......cocceriieriieiriiee e e e e e e 46
4.1.2. Score Derived from Performance of Case 1: Detache..........cccccoceeiiiiieinnennenns 47

4.1.3. Case 1 Performance Waveform View:

Midi Flute, Detache, and Legato.......ccceccveeeiriieiieiense e e e 48
4.1.4. System Processing Time InSPection.........cccooeviiiiiiiniriir e 49
4.2.1. ComMPOSEd MEIOAYcccueiieiiriieietee ettt e e e e e e e e s 51

4.2.2. Score Derived from Performance of Composed
Melody: Detache.......cooueeeeees s Bl i i e e e e 51

4.2.3. Case 2 Score-Play Waveform View: Midi Flute, Detache............c..cceeeeeeeenen .53

5.1. Future IMpProvements. feeasiaieneaanecesies tateseeesreeeseseseeesesseeesseseseessesseessenns 54

TABLES

Table Page
2.7.1. BOE and MD2415 CONNECHIONS.....ccrueriieiriieeeieien e eesies e ees e e esnessneeesessea sre s 19
4.1.1. Case 1 Probabilities: Data collected from

Probability MOAULE........coo e e e e e 45
4.2.1. Case 2 Score-Play: Data collected from Composed Melody.........ccccevrereruens 51

i

CHAPTER 1

INTRODUCTION

1.1 Motivation

[am always in search of different means of music expressions. One approach
lies in instrument making. Synthesizers, making instrumental patches from software,
algorithmic compositions, and interactive music machines are all different forms of
instrument making. Basically any objects that could assist in the production of
sound in a creative way could be called instruments. All of the steps I am taken are
nothing new. The histories is made as | walk in the foot steps of old school
composers, such as Harry Partch, Varese, and many other individuals of today.
The main motivation lies in thebuilding of an actual-physical instrument, which
could realize the full potential ofthe flute sonorities and further expand on the
already discovered extended-instrumental techniques of the flute. The research of
automatic flute will bring about a new interactive platform between composers,

performers, and machines.

1.2 Background

Most of the automated music instrument system is based on the electronic
instruments, especially the synthesizers. Some cases of the acoustic music instruments
have already developed into the commercial products, and the most famous one is
Yamaha DISKLAVIER, which uses rapid hammer control mechanism with the digital

MIDI signal command issued via either a personal computer or an electronic device.

Some of the acoustic music instruments with automatic control have been brought into
the academic fields, including the automated guitar, automated drum, etc.' These
researches are still under verification, and need more implementations with music
technology integration to improve their feasibility. The automatic woodwind instruments,
such as flute or recorder are seldom discussed in the music technology fields. It can be
designed with some actuators and electrical controllers, and then the algorithmic
composition can be used to integrate with the automated flute or recorder, via the MIDI

programming.

1Yu-Wei Huang, Improvements of Automatic Guitar Mechanism Design and a Practical Music Input
System, Master Thesis of the Electrical Engineering Department, Southern Taiwan University, 1996.

CHAPTER 2

METHODOLOGY

2.1 System Architecture

Algorithmic

Composition

| microprocessor |

Mouthpiece mechanism Keystroke mechanism
T — T —

| Flute I

Fig. 2.1.1. Architecture Summary

The project is to build an automatic musical instrument, where when musical
data is entered, whether as a music score or live generated algorithms, the

instrument will be set to motion and creating sound. Figure 2.1.1 shows the major

processes from top to bottom. It is a non-feedback loop system. The algorithmic
composition module, realized in Max/Msp, can run in three different modes:
automatic, manual, and music score. When data enters the microprocessor, it is
translated and redirected to two different output terminals: keystroke mechanism
and mouthpiece mechanism. Both mechanical units will convert the input data into
PWM signals and therefore creating motion, one moving the flute keys, the other

controlling the airflow for the mouthpiece.

2.2 Overtone Series and Flute Acoustics

Overtone Series refers to a set of frequency components that are above a
musical tone (fundamental)(Fig. 2:2.1). The fundamental is the strongest in dynamic,
while other upper partials are relatively weak: Different strength combinations of
the upper partials constitute the-color of the'sound object. The overtone series exist

in nature and play a major factor in instrumental timbre.

b

[I11¢
L1l
1118
e

¢
l1®
119

) o
7]

7 O
Fan
A3V

J Py

e

A

partials/ 1 2 3 4 5 6
harmonics

~
(0]
e}
=
o

fundamental

Fig. 2.2.1. Overtone Series

Imagine a string or cylindrical tube of length L, when set to motion (excites
and vibrate the surrounding air), will generate a fundamental tone F. To get the

upper harmonics of F, we reduce the string or tube length to L/(# of partials).

Fundamental
1st partials
L
catve

2nd partials

L/2

Twelfth
3rd partials

L/3
Double Octave

4th partials

L/4 \/

Fig. 2.2.2. Overtone Waveform

According to figure 2.2.2, if the string length is reduced in half, we get the second
harmonic. If the string length is one third of the original, we get the third harmonic
and so on.

Figure 2.2.1 shows the overtone series on the musical staff. If the
fundamental note is C4, the 214, 4th 'and 8t partials will be C4’s next higher octave

respectively. From this, we denote that if the partial numbers are related by

multiple of 2, the pitch-note value will be octave equivalent. The 3rd partial, G5, is a

perfect 5t above the 2nd partial. The 6t partial, which is 2 times the 3rd, will be Gé6.
The 5t partial, E6, is a major 3rd above the 2md octave and E7 would be found on the
10th, The 7t partial, Bb5 (very flat), is a major 2nd below the 3rd octave. Last, the 9th

partial, D6, is a major 2nd above the 3rd octave.

Due to the nature of overtone series and acoustics of the flute, there are
several ways of producing pitches on the flute. The simplest way would be to
assume that one fingering combination produce one pitch-note. In reality, with an
experienced player, it is possible to blow in a way that will vibrate the air column
fractionally and bring out the harmonics above the fundamental. One of the easiest
techniques would be overblown. In flute, when overblown the 24 harmonic is
produced. The resulting pitch would be an octave higher for the same fingering. It is
also possible to get the first seven or eightharmonics by successively blowing with
more force while all the tone holes are closed.? One example of different ways of
producing the same pitch, for example G5, would be first, fingering G5 directly and
the other finger C4 and play its third harmonic (refer Fig. 2.2.1).

For simplicity of the research, the current automatic flute design will take
more precaution in neglecting the nature of flute acoustics and overtone series and
will assume that one fingering combination produce one pitch-note. The model will

not concentrate on the higher partials or the different vibrational mode3 in detail.

2 School of Physics, University of New South Wales, Flute Acoustics: an introduction, (Sydney:
accessed 5 Octover 2008) available from http://www.phys.unsw.edu.au/jw/fluteacoustics.html
3 Arthur H. Benade, Horns, Strings, and Harmony, (New York: Dover Publications, Inc., 1992), 48.

2.3 Automatic Flute

Algorithmic
Composition

| Basic Stamp 2 (BS2) + BOE |

at

% (Keystroke mechanism)

Mouthpiece mechanism

Parallax Servo Control (PSC)
MD 2415 Stepping i

Motor Driver

bre
Compressor RC Servo

\ Stepper Motor

[Air Gun]

Modified Flute

Fig. 2.3.1. System Architecture

The automatic flute system include a modified flute, a Parallax Basic Stamp 2
chip with Board of Education development board (BOE), a Parallax Servo Control
board (PSC), a 3-Men micro stepping motor driver (MD2415), a 2-phase stepper
motor, 12 RC servos, and an air compressor. It is driven by an algorithmic

composition module, realized in Max/Msp and Basic Stamp.

The algorithmic composition module will sent out pitch, duration, and
dynamics data. The BS2 then converts them into pwm and pulse signals. The
information is further passed down through different pins, to the mouthpiece and
keystroke mechanism. The MD2415 will translate the pulses to micro-steps for the
stepping motor. The PSC will redirect the pwm signals to different servo address,
where each servo addresses have a servo attached to a flute key. When all of the
necessary flute keys are in place, the stepping motor will open the valve of the air
gun and allow airflow to pass through the air compressor into the mouthpiece of the
flute.

Under detache mode, for every note event, the servos and stepping motor
will first open, pause for duration‘of the note, and then return to its original position.
Ideally, the servos will always return to the eriginal position, and that is when they
are ready for the next note event. Under legato mode, the steeping motor will
continue to remain open and will varyingits degree of valve cavity per note-event.
Which will result in a change of dynamics during a musical phrase. Only till the end
of phrase or when silence is required will the stepping motor return to its original
position.

The automatic flute is a non-feedback loop system for the most part. After the
data is sent out of the BS2, the information is processed in PSC and MD2415
automatically. The exact positions of the servos and the stepping motor after a note-
on event cannot be sent back. The position of the stepping motor can be calculated
beforehand, but not for the servos. Given the number of servos that are involved and

the nature of BS2 and PSC board, it is difficult to trace the position the servos.

Within the mouthpiece mechanism, the air compressor unit is independently
controlled. When the tank pressure level is below 300Kpa, the compressor will

automatically be turned on and when pressure is above 800Kpa, it will be shut off.

Fig. 2.3.3. Parallax BS2 and BOE Board

o

Fig. 2.3.5. Keystroke Mechanism

10

Fig. 2.3.7. Stepper Motor and Air Gun Unit

11

STEPPING MOTOR DRIVER

MODEL:MD2415

|

Fig. 2.3.9. Air Compressor

2.4 Airflow Setup and Fine-Tuning Dynamics

The resolution of MD2415 Stepping Motor Driver is adjusted to 400 steps
(Fig. 2.3.7 and 2.4.1). It is calibrated so that at approximately 200 steps the dynamic
would be relatively mezzoforte. All the major dynamic changes with its relative
number of steps are shown in the later part of figure 2.4.1. Between 200 and 215
steps, the tones are full, solid and more focused. Above 220 steps, we are at the

overblown and multiphonic section. At 220 steps, the overblown octave surfaces

12

and the original fundamental pitch will disappear. As the number of steps increases,
the octave will loose focus and other higher partials will join in, creating a
multiphonics effect (Fig. 2.2.1). Until reaching 240 steps, all multiphonics will
disappear. A sharp and piercing shrill will be created. It is the result of a higher

partial above the octave (the exact partial number is inconclusive).

0
300
240
sfz 220 180
gva [215 p
ff 200
mf
overblown
8va
. Clear Clear
Airy Non-clear tone, Airy Upper Partial + Multiphonics
| Barely Audible I Flat + Multiphonics I N |
[11 11 10 |
180 200 205 210 215 220 240
p mf f ff overblown sfz

Fig. 2.4.1. Fine-Tuning Dynamics

1

2.5 Flute Fingering Charts

All of the flute keys are labeled with a number (Fig. 2.5.1). On the music staff,
it shows all of the possible good-quality pitches from the current modified flute.
Their relative pitch-class representations are placed above the music staff. Each
note’s representation keys on the flute are shown in the “Pitch Key-List” under the

music staff.

Pitch-Class: 4 3 2 1 11 9 8 7 6 5
Fal " — -
“ ?j = 15 14 13 « S g
Pitch Key-List: E[1, 8] Al1.0,2 3] G[1.023.4] F[1,0,2 3, 4,5,6]
DA1,71 DILO.23. 7 C# 1] B[,0.2) Mat[1,0,2,3.49 F#[1,023 4,5

Fig. 2.5.1. Flute Fingering Charts
2.6 Max/Msp and BS2 Communications

The programming language for the Parallax Basic Stamp 2 board is Basic
Stamp. The command SERIN, within the Basic Stamp language, allows BS2 to
communicate to a foreign programming module. SERIN receives asynchronous
serial data through RS-232. A simplified definition of SERIN, extracted from the

Basic Stamp manual is shown in figure 2.6.1.

14

SERIN Rpin, Baudmode, [InputData]

Fig. 2.6.1. SERIN syntax

Rpin specifies the [/0 pin through which the serial data will be received. Baudmode
specifies the important characteristics of the incoming serial: the bit period, number
of data and parity bits, and polarity. Input data contain a list of variables and
formatters that tells SERIN what to do with the incoming data*.

A sample code is shown in figure 2.6.2. The input data, in square brackets,
will wait for the specific characters that are in between the quotation marks to be
received and then assign the numerical value that are attached afterwards to the
corresponding variable.

For example, in figure 2.6.2, the'code will wait for the characters “t”, “i”, "m”, and "e”
to be received, in the same order, then itlooksfor.the number that follows, and last
assign them to the variable “time”. If'an outside programming module sent out
“time123” the SERIN will first search for “t”, “i”, "m”, and "e” and then assign “123”
to the variable “time”.

When Basic Stamp is connected to a PC, the data that are transferred will be
in ASCII code. Therefore, command DEC, a decimal formatter specifics, will be

needed in the Input Data of SERIN. It will convert the ASCII code into the actual

numerical value and store them in the appropriate variable.

4 SERIN of Basic Stamp manual

18

SERIN wait for CUE, then Store number

DO big serial loop A{jlr‘

SERIN 16, 16780, [VAIT {"time"), DEC time, VAIT {"aa"),DEC aa, VAIT {"bh"),

DEC bb, WAIT {"cc"),DEC cc, WAIT ("dd"), DEC dd, WAIT {"e="),DEC ee,
WAIT ("ff"), DEC ff, WAIT ("gg"),DEC gg, WAIT ("hh"), DEC hh, WAIT ("ii"),

DEC ii, WAIT ("jj"), DEC jj, WAIT ("kk"),DEC kk, WAIT ("11"), DEC 1],

WAIT {"rau"™), DEC mm, WAIT ("stp"), DEC change]

Fig. 2.6.2. SERIN sample

The majority of the algorithmic composition module is realized in Max/Msp.
Max,/Msp is a graphical developmenténvironment for music and multimedias. In
order for Max/Msp to communicate with BS2, the output data need to be assembled
into the format that is understandable for the SERIN command. In Max/Msp, the
object “serial”, send and receive characters from the serial ports (Fig. 2.6.3). The “c”
follows the “serial” indicates the usb port name and the “2400” indicates the baud
rate. The 2400 Baud Rate’s no parity, 8-bit, and inverted equivalence would be
16780. It is shown in the command SERIN of Basic Stamp (Fig. 2.6.2). Now both of

the baud rate, from command SERIN and object “serial”, are properly tuned.

5 It is developed and maintained by a San Francisco software company Cyling 74.

1A

100 N OUTKEY
= " "
R prepand aa aa" CUE
for BS2
JU
convert to
@al00 —> asdii code
A=
add space | . | send out of
behind o serial port
™ ~
detache legato
will output 2 walue
consecutively;
[change] & [posneg]
|p outtime | |p outair |
change message to
ascii byte
add a space and CR
at the end
send it out (use 2400
baud, 9600 is too fast for
T —— Basic Stamp
[T [outkey]
D EEE E =] E
|prepend aa | |prepend bb | [prepend cc | |prepend dd | [prepend ee | [prepend *f | |prepend gg |
e

Fig. 2.6.3. Max/Msp Data Preparation for SERIN

Let us continue to examine the data preparation procedures within Max/Msp.

The object “prepend”, will add a header before any variables that are passing

through. For example, in the subpatch “outkey”, lower portion of figure 2.6.3, ifa

variable, “123”, passes through the object “prepend aa” the resulting data would

17

become “aa 123”. The data, “aa 123”, will later be converted into ascii code, have a
space attaching to its tail, and sent out of the object “serial”. In the time being, the
command SERIN of Basic Stamp, will wait for the data coming in. Only until the
character “aa” is received, will command SERIN begin colleting the variables

afterwards. It will ignore all data received if the condition “aa” is not met.

2.7 MD2415 and Stepper Motor Control

MD2415 Stepping Motor Driver, can operate in either 1-phase or 2-phase
mode (Fig. 2.3.6). Its step resolution ranges from 200, 400, 800, and 1600. The
optimal step resolution for the current system is 400 steps. The specification of the
pulse that is required for the MD2415 to_run in 2-phase mode is shown in figure
2.7.1. Each pulse’s duration and-the distance between successive pulses need to be
above 5 microseconds. The time-betweén clockwise pulse and counter-clockwise
pulse needs to be at least 10 microsecondsapart.

2P MODE

CW Pulse

under

H
B ‘10:}_].
above

Fig. 2.7.1. MD2415 Pulse Specifics

CCW Pulse

The command PULSOUT within Basic Stamp, will generate a pulse on a pin

with a specified width of duration (Fig. 2.7.2). The unit of duration is 2

1R

microseconds and the maximum pulse width is 131.07 milliseconds. To meet the
specification requirement of MD2415, the duration of PULSOUT is set to 10, which
equals 20 microseconds (fig.21).

PULSOUT Pin, Duration

Fig. 2.7.2. PULSOUT syntax

The wiring between the BOE board and the MD2415 are shown in table 2.7.1.
The first yellow and blue wire pair connects pin 1 and 2 of the BOE board to
“+CW/PLS” and “-CW/PLS” of the MD2415 respectively (Fig. 2.3.3 and 2.3.6). The
second yellow and blue wire pair connects pin 5 and 6 of the BOE board to

“+CCW/Dir” and “-CCW/Dir” of the MD2415 respectively.

BOE MD2415
Pin 1 +CW/PLS
Pin 2 -CW/PLS
Pin 5 +CCW/Dir
Pin 6 -CCW/Dir

Table 2.7.1. BOE and MD2415 Connections

In figure 2.7.3 the command LOW, before every PULSOUT loops, basically sets the
specified pin to zero (a 0 volt level) and then sets its mode to output. When pulse is
sent to pinl and a low current (close to 0 volt) is passed through pin2 the MD2415
will rotate the stepping motor in the clockwise direction. If the same pulse and
current is sent through pin5 and pin6, the stepping motor will rotate in counter

clockwise direction. Every counter-loop represents one pulse and one step. If

19

“change” equals 400, which the loop will run 400 times, the stepping motor will

move 400 steps, which equals one full rotation.

/ N
stepopen:
Low 2 Rotate CW
FOR counter = 1 TO change change = # of steps
PULSOUT 1, 10 400 steps = 1 complete
NEXT rotation
RETURN N Ve
stepclose: 4 N
Rotate CCW
LOW 6 change = # of steps
FOR counter = 1 TO change 400 steps = .I complete
PULSOUT 5, 10 rotation
NEXT L o

Fig. 2.7.3. Step Rotation Commands

2.8 PSC and RC Servo Control °

Parallax Servo Control board, can'control up to 16 servos simultaneously (Fig.
2.3.4). It is connected to the BOE board with a 3-pin lead connector. The setup of
PSC with BOE is simpler comparing to the MD2415 with BOE. However, controlling
the position of the servos with PSC is more complex than that of the stepping motor
with MD2415. The position of the servos could not be precisely controlled. The
syntax of position control in PSC, with the command SEROUT is shown in figure

2.8.1.

20

SEROUT PSC, N2400, [*!SC” C R P.LOWBYTE, P.HIGHBYTE, $0D]

SEROUT PSC,N2400, ["'5C",servoaddr, 1,position.LOWBYTE, position.HIGHEYTE, CR]

Fig. 2.8.1. SEROUT syntax

“ISC” is the header for the PSC. “C” parameter indicates the servo address (0 to 15).
“R” indicates the ramp speed (0 to 63). Ramp values of 1-63 correspond to speeds
from 34 of a second up to 60 seconds for a full 500uSec to 2.50 mSec excursion®.

“P” indicates the position of servo (250-1250). The 250-1250 corresponds to 0 to 180

degrees of servo rotation with each step equaling 2 uSec.

The ramp values are insignificant to the,overall speed among the servos. It is
given a value of 1, which is the fastest throughout. The word “position” is misleading
in that there are actually two constituents that determines the final position. One
being the “P” value and the other is time. The “P”in the syntax of figure 2.8.1 could
be imagined as the velocity of rotation. The centre value 750, half way between 250
and 1250, represents zero velocity (Fig 2.8.2). “P” values above 750 and towards
1250 will cause the servo to rotate in counter clockwise direction. The higher the “P”
values, above 750, the faster the rotation (in CCW). The same principles apply to “P”
values below 750 and towards 250. The lower the “P” values, below 750, the faster

the rotation (in CW).

6 Parallax, Parallax Servo Controller (#28023) - Rev B manual, (California: Parallax, Inc., 2004), 5.

21

Cw

250

750
STOP

1

CcCcw

1250

faster, accelerates

!

faster, accelerates

Fig. 2.8.2. Velocity equivalent of the “P” Value

Given the fact, if running the command line in figure 2.8.1 by itself, it will cause the

servo to rotate in the specified direction indefinitely. The servo will continue to
rotate until the same command line is applied again but with a “P” value of 750.
Therefore to control the position of the servo, one need specified how fast, which

includes the direction, for how long, and when to stop. Figure 2.8.3 is a simple

example that will make the servo turn clockwise, at its fastest speed for half second.

[t will then stop for a second and‘then turn in the feversed direction, at its fastest

speed, for another half second. JIn the end it will 'stols again.

FOR x =1 TO 1

——
PAUSE 1000 'stop, orphnote on t.i\
position = 1250
GOSUEB Write_Joint @

PAUSE 500

position = 750

GOSUE Write Joint ﬁ
PAUSE 1000

NEXT 2

END 4|\ 6

! Write to the PSC

Write Joint: (

SEROUT PSC,N2400,["!5C",Servoldddr,

position = 250
GOSUE Write_Joint
PAUSE 500

position = 750
GOSUE Write Joint

RETURN

——

rotate CW for 500ms

stop for 1000ms

rotate CCW for 500ms

stop for 1000ms

7

'

Action

Fig. 2.8.3. NoteOn/NoteOff: sample Servo Rotate Command

22

1,position.LOWEBYTE, position.HIGHEYTE,

CR]

At this point it is important to note that not all servos are exactly alike, which means
a “P” value of 1250 will have different effects on two different servos. It is important
to calibrate each servo accordingly, so that all of the servo could rotate in identical

velocity. This issue will be further addressed in the implementation section.

2.9 Algorithmic Composition with Probability Table

The core of the algorithmic composition module is realized in Max/Msp.
Probability theory was used as the main principle of design. It was the favored
method for the algorithmic composition in that the current automatic flute system
posses enough problems in itself that it is not capable of carrying out more complex
algorithms. In plain words, the current automatic flute is like a novice flute player. If
requesting him/her to play a big piece, €venif carried out, the interpretation of the
music will not even be close to a true repréesentation of the score (<60%
resemblance to score).

Probability by definition, for the current module, means that the number of
occurrence of certain pitch, durations, or dynamics is represented as percentages.
For example, a pitch that has a 90 percent weight within the probability table would
occur close to nine out of ten times. Figure 2.9.1 shows a sample module of the
probability table for the dynamics. The main Max/Msp objects that are used are
“histo” and “table”. “Histo” will remember and keep count of the numbers that are
inputted from its top left inlet. The left outlet of “histo” will output the number, for

example X, and the right outlet will output the number of occurrences of X.

23

Fig. 2.9.1. Probability Module Summary

15 Wiy 253, 450, B

HISTO:
remembers the history of data
inputed.

ocurence

output
p i

number x

TABLE:
stores data and when
requested will output data
according to its probability. The
higher the occurence of x, the
more likely X will be sent out.

OOO

output number of
occurence of x

occurence
of X

All of the information will be store in the Max/Msp object “table”. Within “table”, the

x-axis represents the number X, and the y-axis represents the number of

occurrences of X. The chance of the particular X to be sent out, when a “bang”

message is applied to the object “table”, to request a number from table, will be in

direct proportion to its stored value (number of occurrences).

24

All of the probability tables that are used in the algorithmic composition

module are divided into three different categories: duration, dynamics, and pitch.

Each category contains two probability tables, each representing a specific

characteristic (mode). Figure 2.9.2 and 2.9.3 are the two duration probability tables.

In Dennis mode, the probability distribution of the note durations is custom made to

my own liking. In Short-Long mode, the options of note durations are limited to two.

The Short-Long mode is necessary in that it will prevent the music into becoming

overly complex. It will shift the attention to other aspects of the music and

sometimes provides the proper emphasis on certain pitch over the other.

35

30

25

probability
g
=

—
o

10

o
oW
w

25

16.

7 | 167
L ' I 83

960whole ~ 480half 240 quarter 120 eigth 60 sixteenth

70 6

60

50

.
=

probability

(%3
=3

’ 3
20
10 I
0

120 eigth 960 whole

Fig. 2.9.2. Dennis Mode

Fig. 2.9.3. Short-Long Mode

Figure 2.9.4 and 2.9.5 are the two dynamic probability tables. The not-too-

loud mode, speaks for itself, represents the comfortable dynamic ranges for the ear.

25

The multiphonics mode, on the surface appears to be tamed, due to the equal
distributions. In reality it is chaotic. The increment of the steps, which increase the
air valve cavity, not only increase the dynamics linearly, but also change the
combinations and the number of the higher harmonics that are involved. In simpler

terms, not only do the dynamics change, the timbre also changes.

35 333
30
25
2
= 20
=
2
e A4S 133 133 133 133
o
10
6.7 6.7
5 I I
0 T T T T T T T !
0 silence 180 p 200 mf 205f 210 215 ff 220
overblown

7 —

Fig. 2.9.4. Not too Loud Mode

18 16.7 16.7 16.7 16.7 16.7 16.7
16
14
12
£z
= 10
g
S 8
=
o
6
4
2
0 - : : : . :
0 silence 220 overblown 225 230 235 240 high
multiphonics multiphonics multiphonics partials sfz

Fig. 2.9.5. Multiphonics Mode

26

The above two probability categories are in higher hierarchy than the pitch

probabilities. When the dynamic equals to zero, the automatic flute will still play out

the silence for a specific duration. However, a pitch note will not be required from

the pitch probability tables.

Figure 2.9.6 and 2.9.7 are the two pitch probability tables. The less-error

mode, contain pitches that require to hold down four keys or less. They will be less

susceptible to error. The A-major like mode, contain pitches from the A-major scale

and place more emphasis on the tonic and the dominant.

25 25 25
25
i
20
I
e 11.5 11.5
=,
10 -
5 I I
0 T T T T
A (pc:9) C# (pc:13) D# (pc:15) E (pc:16)
Fig. 2.9.6. Less-Error Mode
35
30 28.6
25
21.4
2
= 20
2
° 15 14.3 14.3
(=9
19 T X 7.
S i I ‘
0 T T T

F# (pc:6) G# (pc:8)

B (pc:11) C#(pc:13) D (pc:14) E (pc:16)

Fig. 2.9.7. A-Major Like

2.10 Interactive Platform: Cellular Automata with Automatic Flute

This is an ambitious attempt to incorporate the automatic flute within the
evolution process of three other melodies from the Cellular Automata module.
Cellular Automata (CA), a category of Genetic Algorithms, uses the processes of
evolution from natural selections to determine whether an individual come to exist,
continue to exist, or cease to exist.” In music, metric modulation, can be said to have
the similar qualities to that of the Cellular Automata. Metric modulation by
definition is a change (modulation) from one tempo (meter) to another wherein a
note value from the first is made equivalent to a note value in the second, like a
pivot.8 A more concise description and how it is achieved by Elliott Carter is:

There is constant change of pulse. This is caused by an overlapping of speeds.

Say, one part in triplets will enter against another part in quintuplets and the

quintuplets fade into the background and the triplets establish a new speed ...

The structure of such speeds is correlated thnoughout the work and gives the

impression of varying rates of fluxand change of material and character.®
In plain terms, there are two degrees of metric modulations. One is horizontal,
which concerns the tempo change of a voice. The other is vertical, which concerns
the tempo change of a voice relative to the others. The vertical degree of metric
modulation will allow greater independence of voices, and therefore capable of
creating greater contrasts. In our Cellular Automata model we will only concentrate

on the vertical type of metric modulation. The tempo and velocity change of a voice

can either be influenced by others or be influential to the others.

7 David Cope, Computer Models of Musical Creativity, (Massachusetts: The MIT Press, 2005), 66.

8 Wikipedia contributors, "Metric modulation," Wikipedia, The Free Encyclopedia,
http://en.wikipedia.org/w/index.php?title=Metric_modulation&oldid=107710843 (accessed
January 10, 2007).

9 Elliott Carter, “Shop Talk by an American Composer, ” in Collected Essays and Lectures, 1937-1995,
ed. Jonathan W. Bernard (Rochester: University of Rochester Press, 1997), 218.

78

Four characteristic modes, “A”, “B”, “C”, and “D” are created (Fig. 2.10.1). The
four musical lines in SATB (Soprano, Alto, Tenor, and Bass), will begin with an initial
probability-generated pulse and dynamics value. After a period of time, each
musical line will then be categorize, according to its pulse and dynamics value, into
zone “A”, “B”, “C”, and “D”. If at the specific time, the mode setting was set to “A”, the
musical lines that are in zone “A” will be consider as the strongest. Musical lines that
are in zone “B” will be considered as the next strongest. Musical lines that are in
zone “C” will be the next in rank and the ones that are in zone “D” will be the
weakest. The order of the rank is measure by first its pulse value than the dynamic
value. The strongest will survive. Those that are in zone “B” and “C” will gradually
adapt to become more “A” like. The weakest will disappear for a while and will
rejoin at a later period. This cycle continues-Depending on the outcome of the
adaptation of the 2nd and 3rd strongest musical lines and the specific mode setting at
the time, the order of the ranking will'continue to change and therefore the
competitions among the four SATB lines will change. Figure 2.10.2 shows the

Cellular Automata module.

79

7 N o E Q
;1 ;g ;g ;i 1st digit = pulse value

\ P 5 2nd digit = dynamics value

e > & N
31 32 33 34 faster slower
41 42 43 44 heavier Iigt;ter

_ A -4 L =

C D

Fig. 2.10.1. Four Characteristic Modes: A, B, C, and D for Cellular Automata

To include the automatic flute into the CA process, the Alto voice’s data will
be transferred to the algorithmic composition module of the flute. Instead the
automatic flute will carry out the Altoiline ahd:then participate in the cycle of

Cellular Automata.

20

CHAPTER 3

IMPLEMENTATION

3.1 Data Preparation in Max/Msp

duration (time
data)

dynamics (air } N——
data) ~ Score- Play
\\\\\\

-

pitch (flute key-
list data)

3
\\\\‘\\\

Q™

True keys

Storage
{all values
stored in
variable)

/

Shipping (sent out data in
proper sequence. The
earlier the data is shipped
to the Departure Terminal,
the earlier it is ready for
departure to BS2)

Departure Terminal
(assemble data into
proper format for Basic
Stamp, then send it out)

Fig. 3.1.1. Data Preparation in Max/Msp

21

Duration and dynamics module both operate independently of each other
(Fig. 3.1.1). The duration-module will send data direct to the departure-terminal
module, because the duration data are the first data required by BS2. The dynamics
module, will either output air or no air. If the air condition is met, it will then trigger
the pitch module to generate a pitch from the probability table. Every pitch will
have a set of true-key-list and false-key-list. All of the proper key information
deduced from the key-lists will be entered in the storage module. Later passed on to
the shipping module and then the departure-terminal module. The specific functions
of the modules are shown in figure 3.1.1. If the dynamics module outputs silence, it
will then trigger the pitch module to automatically assign all keys to false.
Eventually, the automatic flute doesn’t haye to meve the keys while silence lasts for
the intended durations.

If the system is under Score-Play modg, the duration, dynamics, and pitch
module will not generate data accordingto the probability tables. Instead, the three-

parameter-modules will receive the data from the Score-Play module.

R?

3.2 Processing Data in Basic Stamp: Problems and Solutions

In section 2.8, we mention that each servo needs to be calibrated differently.
If applying the command SEROUT, with a single “P” value, to 12 identical servos,
each will actually return a different result (Fig. 2.8.1). Depending on the duration of
the command, when given enough time, greater than 20 seconds, all servos will be

pointing to a different clock position. It is not possible to have 12 WORD data type

EEPROM

data address 0 - 14: PSC servo #

data address 60 - 90: custom made "P" value, for each servo in order, (W direction
data address 100 - 130: custom made "P" value, for each servo in order, STOP

data address 140 - 160: custom made "P" value, for each servo in order, (CW direction
data address 180 - 210: custom made "P" value, for each servo in order, STOP

—

DETE 07 i1, 2% & 4 & & . 9 G a1, 125 495 19

' put bunch of 250 ... byte size not word size.... pointer doesn't need to be
'every CW OR CCW pointerZ is reassigned
DATAL @60, 250, 250, 250, 250, 250, 250, 250, 250, 250, 250, 250, 250,250, 25C

1

DATA @100, Word 750, Word 750, Word 750, Word 750, Word 750, Word 750,Word 7¢

: 100 102 104 106 108 110 112
cow DATAL @140, Word 925, Word 950, Word 987, Word 945, Word 208, Word 946, TUc
' servof 0 1 2 3 4 5

DATA @180, Word 750, Word 750, Word 750, Word 750, Word 750, Word 750, Word 7

Fig. 3.2.1. EEPROM Storage
variables for the servos. There is not enough of RAM space for BS2. Instead the
solution was to store all of the calibrated “P” values in the eeprom and using

pointers to locate the specific “P” values with the correct servos and at the specific

22

time. This will only temporarily resolved the problem of calibrating the servos. The
issue will be discussed later.

The SERIN command line in figure 2.6.2 shows a list of variables that will be
received from Max/Msp. After receiving all of the variables, BS2 will send them out
to the decision maker, “MOVE or STOP” (Fig. 3.2.2). If a particular servo is being
assign as the true-key from Max/Msp, it will pass its conditions in figure 3.2.2, such
as “ee = 4” and continue to the subrountine “turnbaby”. Under the subrountine
“turnbaby”, the servo will be executed and the pointer address of the corresponding
PSC servo address will move up by one. The pointer address of “P” value will move
up by two (Fig. 3.2.3). If a servo is being assign as the false-key from Max/Msp, it
will fail the condition in figure 3.2:2 and will continue to the subrountine “freeze”.
Under the subrountine “freeze”nothing would happen except that both of the
pointer address, PSC servo address and “P”value address, will move up in a similar

fashion.

24

MOVE or STOP
decision maker, check each servo

from servo 0 1o servo 9.(total 10
checks per loop)

one af a fime, X4

4 loops, reassign eeprom
pointers each fime.
cycle 1 = (W
cycle 2 = stop
cycle 3 = CCW
cycle 4 = stop

pointerZ = 60

FOR x

pointer

IF aa
IF bb
IF cc
IF dd
IF ee
IF ££
'IF gg

IEs hh =

IF ii
IF 33
'IF kk
F L i [|
'IF rao

T
IF
EE
EE
EE
T
EE
EE
: IF
NEXT
LOOP

E I

Fig. 3.2.2. Move/Stop Decision Maker for Servo

x

WWNNNNRR

= 0
0 THEN GOSUE turnbaby
1 THEN GOSUE turnbaby
2 THEN GOSUE turnbaby
3 THEN GOSUE turnbaby
4 THEN GOSUE turnbaby
5 THEN GOSUE turnbaby
&6 THEN GOSUEB turnbaby
7 THEN GOSUE turnbaby :
8 THEN GOSUE turnbaby :
9 THEN GOSUE turnbaby :
10 THEN GOSUEB turnbaby
11 THEN GOSUE turnbaby
12 THEN GOSUB turnbaby

THEN PAUSE 100
THEN pointerz = 100
THEN GOSUE stepopen
THEN PAUSE time
THEN GOSUE stepclose
THEN pointerz = 140
[THEN PAUSE 100
THEN pointerz = 180

= 4 THEN GOSUB stepclose

ELSE GOSUEB freeze
ELSE GOSUE freeze
ELSE GOSUEB freeze
ELSE GOSUEB freeze
ELSE GOSUEB freeze
ELSE GOSUEB freeze
ELSE GOSUB freeze
ELSE GOSUE freeze
ELSE GOSUEB freeze
ELSE GOSUEB freeze
ELSE GOSUB freeze
ELSE GOSUB freeze
ELSE GOSUB freeze

'when all servo oper

'since when all ser

After calibrating the servos with differentiated “P” values in the eeprom, all

of the servos are expected to be in proper position most of the times. However, it

only happens eighty percent of the time while one or two servo still went out of

position on different tests. In reality to make matters worse, those eighty percent

25

only happen when all of the servos are moving, drawing identical currents from the
single PSC. Every time a different pitch is requested, the combination of the servos
and the total number of the servos will be different. This will draw a varying degree
of electric currents to different PSC’s servo address each time. As a result some of

the servos will be pointing to odd clock positions after playing more than five
pitches. The solution to even out the electric current differences between pitches is
to send a SEROUT command to an empty PSC address when the particular servo is
not required to move (Fig. 3.2.3 freeze subroutine). This way the total current that is
applied to every pitch should be identical and the executing time between “turnbaby”
and “freeze” subrountines will be made equal.

Another problem exists when running the Basic Stamp codes in figure 3.2.2,
servos that are higher in the code;“aa = 0", whichralso passed the condition will be
executed first. The servo who arelower in‘the code, “mm = 12”, will be executed last.
The first servo in the question actually'hasan earlier start than the last. Even though
each servo’s total duration is identical given that the first servo also stop earlier
than the last servo, the time offsets between the servos will reduced the total
duration of the actual pitch. Part of the solution is to shorten the time differences by
eliminating those servos that are not involved in the possible pitch list (Fig. 2.5.1).

As aresult 4 lines of the code in figure 3.2.2 was eliminated (in green).

RA

FREEZE
send "P" value to false servo address.
pointer] address + |
pointer? address + 2

TURN
send "P" value 1o correct servo address.
pointer] address + 1
pointer? address + 2

Vs

turnbaby:

'S pointers servo need to he ran
READ pointer, servoaddr
IF (pointer2 < 90) THEN READ pointerZ, position : ELSE RELD pointer2, Word position
' 250 is a byte and therefore need to DATA and READ it differently

SEROUT PSC,N2400, ["'SC",servoaddr, 1,position.LOWBYTE, position.HIGHBYTE, CR]
pointer = pointer + 1
pointerZ = pointerZ + 2 "increment of 2 since each is a word

RETURN

freeze:
'//the following won't do anything but will slow the BStamp down,
'//which is good in that it balance out the executing time between
'//turn AND freeze (so that all servo would move in the same steps..
!
IF (pointer2 < 90) THEN READ pointerZ, position : ELSE REALD pointer2, Word position
' 250 i3 a byte and therefore need to DATA and READ it differently
SEROUT P3C,N2400,["!5C",14, 1,position.LOWBYTE, position.HIGHBYTE, CR]
el

pointer = pointer + 1

pointerZ = pointerZ + 2
RETURN

Fig. 3.2.3. Turn/Freeze Action Module for Servo

R7

3.3 Detache Mode

In music, detache means that there is a break between every note within a
phrase. In Detache mode, every note is detached. It can easily be accomplished by
cutting off the air in the end of every note. In other words, for every note event, after
the air valve opens for the length of durations, the air valve will then return to the
original position to provide the break for the next note. The bottom portion of figure
3.2.2 shows the procedures of actions, for the servos and the stepper motors, when

running in detache mode. The procedures can be simplified as follows (Fig. 3.3.1).

1) Servo open and hold ~~ 1st loop, X = 0, servo cw: 2nd loop, x=1, servo stop
2) Step open, allow air

3) Duration, wait

4) Step close, stop air

5) Servo close and hold ~~ x=2. servo ccw: x=3, servo stop

Fig. 3.3.1. Detache Mode Action Summary

The procedures in figure 3.3.1 represent a non-feedback loop system. It would be
more efficient, for the servos, if it is a open loop system. The servos, which are
already open and required for the next pitch, will remain in open position without
having to close and open again. However, given the nature of the eeprom, it is
difficult to accomplished in BS2. It would be difficult to locate the “P” value, position
data, in the eeprom address. The probability of different pitches, which have

overlapping keys must be studied and incorporated in the proper eeprom address.

28R

The extent of this study, the feedback loop systems for servos, is too great for the

current project.

3.4 Staccato Mode

In staccato, a form of detache, the duration of note is reduced into a very
short value, while the duration-distance between notes remains intact. To make
detache sound more staccato, in the program, instead of given a "time or duration”
to the air valve, just provide a standard of 160 milliseconds to the stepper motor (or
shorter). The distance between the current note and the next note stays the same

while each note will sounds shorter.

1) Servo open and hold ~~ 1st loop, x = 0, servo cw: 2nd loop. x=1, servo stop
2) Step open, allow air

3) WAIT 160millissecond, step close, stop air

4)(Duration minus 160ms) , wait

5) Servo close and hold ~~ x=2, servo ccw: X=3, servo stop

Fig. 3.4.1. Staccato Mode Action Summary

3.5 Legato Mode

Legato in music means the distance from one note to the next is well
connected to the point that the break in between notes becomes non-perceivable. In
legato mode, the servos will remain as a non-feedback loop system as that of the

detache mode. The main difference lies in the control of the air valves. The principle

29

is simple in that the air valve in between notes will remain open until the phrase
come to an end. The degree of openness of the air valve will change according to the

dynamics of each note.

’ Legato module summary

, E— embed in
Zl A V Max/Msp
if C > 0 then CW
if C <« 0 then CCW { embed in BS2]
if C = 0 then nothing
I=F ——————N\ | embedin
F=new -V Max/Msp

F & | = final and initial positions of step motor

Fig. 3.5.1. Legato Module Summaty

The main concept of legato mode is'shown in figure 3.5.1. Final position
minus initial position equals change. If change is greater than zero, the stepper
motor will rotate clockwise, which will increase the air valve cavity and the
dynamics. If change is less than zero, the stepper motor will rotate counter
clockwise, which will decrease the air valve cavity and the dynamics. If change
equals zero, nothing would happen. After the “if condition” is completed, the initial
value will become the final value. Later, a new “P” value will be generated from the
dynamics module and assign to the final (F). The process, loop, in figure 3.5.1 will
occur for every note event.

For some reason, Basic Stamp wasn’t able to receive negative values.

Therefore, another variable, “posneg”, is needed to indicate the positive or negative

40

status of C. Figure 3.5.2 shows all of the major subroutines for the legato mode. The
subroutine “mouth”, will use the direction variable, rather than “C”, to decide the

direction of the rotation.

mouth:
'"change” will me made as an absolute wvalue,
'so use "posneg" as cue measure
IF posneg = 6 THEN stepopen

decides CW or CCW

IF posneg = 5 THEN stepclose
'if posneg= 4 nothing
RETURN Y
7 N
stepopen:
LOwW 2 Rotate CW
FOR counter = 1 TO change é change = # of steps
PULSOUT 1, 10 400 steps = 1 complete
NEXT rotation
RETURN N\ /£
4 N\
stepclose:
é Rotate CCW
LOW 6 change = # of steps
FOR counter = 1 TO change 4008wpi=gcompmm
PULSOUT 5, 10 Foeaion
NEXT N\ Vs

Fig. 3.5.2. CW versus CCW Decision Maker

41

3.6 Score Play

7
Score-Play Module simplified

|1615141311

{;
listfunnel:

index and unpack list

counter: {L/
will allow "table” to output stored
values in sequence; from x = 0 1o

X = n (n=number of note events)

| 016, 115,214,313, 4 11

I L store value

trigger “table" to = ==f>,
output stored value

table:
the 5 pitches will be stored
in the address (in order)

fromx=0tox=4
voutput
N

—

B |987654|
L

m index and unpack the
list

2 wvar list to left input. will
store values 1st =x : 2nd =y

1 number supplied will trigger

it's corresbonding v and sent il
out

Fig. 3.6.1. Score-Play Module Principles

Music score can be keyed in as a number-list in the “message box” of
Max/Msp. Music parameters such as, pitch, duration and dynamics can each be

represented by a number-list and stored in the corresponding Max/Msp “table”. A

47

simplified version of the music score module is shown in figure 3.6.1. The object

“listfunnel” will both index and unpack the list and then store them in the “table”.

When the “counter” objects, sends out an increment of numbers from 0 to 9, the first

ten values store in the table will be sent out consecutively. Figure 3.6.2 shows an

Score-Play Module

L
V

listfunnel:

index and unpack list

]
VvV

9612121212

r
&

listfunnel:
index and unpack list

Il

Vv

[016,115,214,313,4 11 |

[096,112,212,312,4 12 |

r
]L store value

r
]' store value

43 42 42 40 41
Il

\V/

listfunnel:
index and unpack list

]
\V/

| 043,142,242,340, 4 41

r
]] store value

will allow “table" to output stored
values in sequence; from x = 0 to
X = n (h=number of note events)

will allow “table" to output stored
values in sequence; from x = 0 to

X = n (h=number of note events)

L7
V \7 V
send to send to send to
"table pitch” “table duration” "table dynamics”
N\ / ((/
Pitch Module Duration Module Dynamics Module
counter: counter: counter:

will allow “table" to output stored
values in sequence; from x = 0 to
X = n (h=number of note events)

S L e
,_,__Z:::::::_:? ’--~_::::;::::::: - ’-»~-:::::::::::\
trigger "table" to “:-'\ trigger "table" to ~> Shie trigger “table" to *-‘ tobie
output stored value itch: output stored value output stored value -
5 e 3 duration: dynamics:
ri output W output ri output
V \V Vv

Fig. 3.6.2. Score-Play Module

43

excerpt of the actual sample of the Score-Play module. The Max/Msp object “send”
will redirect the indexed and unpacked number-list to the appropriate pitch,
duration, and dynamics module that existed outside of the current patch (Fig.
3.1.1).10 Later the music scored tables can be played out like that of the probability

tables.

10 3 patch in max/msp, is like a window or module that helps in packing all of the components of
certain programs together. It organizes and categorizes different program components into a unit by
itself.

44

CHAPTER 4

EXPERIMENTAL RESULTS

4.1 Automatic Flute Performance: Case 1 Probabilities

1 2 3 4 5 6 7 8 9

Duration: | 96 12 12 96 12 12 96 12 12
Dynamics: | 0 43 41 40 42 41 43 40 43
Pitch: X 9 16 11 9 9 6 16 8

10 11 12 13 14 15 16 17 18 19
12 12 96 96 12 96 96 12 12 96
44 41 43 40 41 40 40 40 40 41
9 11 16 11 9 16 9 9 13 14
20 21 22 23 24 25 26 27
12 96 96 96 96 96 12 12 96
44 43 36 40 43 44 0 40 0
6 6 14 9 14 9 X 13 X

Durations scale: (every unit =|10 milliseconds)

96 48 24 12 60

[[| 4 |74
Dynamics scale: (each unit = 5 steps)
. Clear Clear
Airy Non-clear tone, Airy Upper Partial + Multiphonics
< Barely Audible ~| [:flat + Multiphon cs - = | =~
36 40 41 42 43 44 48
p mf f ff owverblown sfz
Pitch-Class: 4 3 e 1 11 9 8 7 6 5
0 I'e
\“3' 16 15 14 13 = * ‘

Table 4.1.1. Case 1 Probabilities: Data collected from Probability Module

The above data was collected from a performance under the short-long, not

too loud, and A-major mode of the probability tables (Table 4.1.1). It is first

45

performed under the detache setting and the second in legato setting. The results
will be studied and compared to the original data and midi soundfile. The music
score representation of the performance data is as follows. The detache score, figure

4.1.2, is a dictation from the actual wav recording of the performance under detache

mode.

0 o r —
s — —— — e
or———— ¢ = : jo—o——
© —_ & ————f omf—

5
fa) e — |
SA—C —= 1 - 1 — 1
& = = | —e—e- |
g —— mf [— —
gh [r— h |
e e
= — = 3 =3 | = o |
© mf—oabnrr— f———— p mf
13
la) | | |
SA— e — 1 — T e E—— |
o=z | H z == EH——— 1
£ —— e mf

Fig. 4.1.1. Score Derived from Case 1 Data

4A

=i 4 Za —p iy . ‘
(Vm—?—'—ﬁs\'?—f—?—f—\'—ﬁ—O—O—P—ﬂ'ﬁgbﬂ—(
\\e‘_)\l fr 3 | M d‘ | ={ | | T | T | | 4]
F ——— mf ———— ff mf ————
5
o) [r—
SA —o 1 — ‘ e — i 1
4 —= 1 1 H——g—_F 1
) e o & o T — _
— _/
F _———— mf
A | can't hear: airy
S fo— p— I } I L —) } T }
He—_J—+——+—1— — 1 1 1 e |
J—® o & ®_©° [\ \ i
mf—— 1 ———— o) mf
13
o)
S f 2]) 4 e 7] — } — H
'Wﬂ\ I I I I I I I 1 N r I il |
\\;j/val } | } 1 | | -‘\-l | il |
ff mf

Fig. 4.1.2. Score Derived from Performance of Case 1: Detache

The duration of every note in figure 4.1:2is accurate. The only major differences for
time, is that there is a long silence separating every note (not shown in score). The
top of figure 4.1.3 shows the waveform view of the'midi sound file. Marker 1 and 2
separates the first two, 3-note motives, which finishes on the second beat of
measure 4 (score Fig. 4.1.1). Visually, it is difficult to separate each note from the 3-
note motive under waveform view. The middle of figure 4.1.3 represents the

waveform view of the detache performance. In it, every note can clearly be isolated.

47

Fig. 4.1.3. Case 1 Performance Waveform View: Midi Flute

)

Detache

)

and Legato

48

Despite the fact that every note’s duration is accurate, within acceptable
uncertainties, the long silence that lies in between is too great that it throws the
music off. The long silence can be explained in figure 4.1.4. Every servo action takes
time, “Tn”. Both directions of rotation take equal amounts of time. “Tm” is the pause
time that is required for the BS2, Max/Msp, and all serial ports to be ready. Many
attempts have being taken to shorten the amount of response time. However, the

minimum response time is still between 2.2 to 2.5 seconds.

Servo Duration Servo Servo Duration Semvo
CcW of note CCW Pause CW of note CcCcw

Tn (Tn Tm Tn) Tn
response time:
~221025sec

Fig. 4.1.4. System Processing Time Inspection

Upon first study, the detache performances and the original midi score, it is
difficult to not notice the off pitches. However, figure 4.1.2 provides enough
information in pointing out the major flaws of the flute system. First, pitches that are
off within a whole tone can be overlooked, because of the intonation or the tuning of
the flute during the performance.

There are two major issues that contribute to the off pitches. One is related
to the keystroke mechanism and the other mouthpiece mechanism. Many times
there will be one or two flute keys not pressed down completely. There will be a

slight gap in between. Occasionally some of the pressed down keys do not exert

49

enough of pressure and air escapes. The wrong high pitches, measure 3 and 10,
double forte, can be explained as overblown. When the air compressor tank is full,
air gun is more tightly adjusted, and double forte is requested at the same time it is
easy to overblown the flute. Sometimes it is overblown on the wrong notes.

The detache performance provides acceptable results. Despite wrong pitches
and long silences in between notes, the duration of each note was close to accurate
and that each output tone is clear and full. However it is not the case for the legato
performance. Therefore a score representation of the legato performance will not be
necessary. Imagine air being constantly supplied to a flute, while the keys are
consecutively pressed and released. With occasional gaps between key-holes, and
given a high response time, the messy sound thatimmerges and transforms without
any breaks will become chaotic:When all keys are open, if the air continues, like that
of the legato mode, a pitch, D4, will be produced instead of silence. In legato mode
the air tank will ran out very quickly and as the air pressure of the tank decreases
the air output per steps of stepping motor decreases. The air available will not be
enough to support the proper pitch at any given time. The bottom of figure 4.1.3
shows the first few measure of the legato performance. The disaster is shown right
after the first few notes. The open-hole tone that resulted during response time,
overshadows and blurs the actual note. There is not a clear ADSR curve for every

note and the air pressure is becoming too weak when required.

4.2 Automatic Flute Performance: Case 2 Score Play

50

The following melody is composed based on the possible good notes of the

automatic flutes (Fig. 4.2.1). The main design purpose is for easy playabilities. The

flute keys gradually increase from one to two and generally in the ascending order

of the servo address numbers. Its table representation is shown in table 4.2.1.

fa) | n >
SM&&—W—P—H& . H
4 J —— 1 — 1 “i H
f ~ mf ff
Fig. 4.2.1. Composed Melody
1 2 3 4 5 6 7 8 9 10 11
Duration: 12 12 24 12 12 24 12 60 12 12 24
Dynamics: | 41 41 42 41 41 42 40 40 41 41 42
Pitch: 13 11 9 8 7 6 5 14 15 16 13
Durations scale: (every unit =|10 milliseconds)
96 48 24 12 60
=—F—fF—f—7
[[| 4 |4
Dynamics scale: (each unit = 5 steps)
. Clear Clear
Airy Non-clear tone, Airy Upper Partial + Multiphonics
. Barely Audible _ | Flat + Multiphonics St =
<= > < > < > < >
36 40 41 42 43 44 48
p mf f ff overblown siz
Pitch-Class: 4 3 2 1 11 9 8 6 5
G Y e 7 /g
\‘:‘f 16 15 14 13 ; = o

Table 4.2.1. Case 2 Score-Play: Data collected from Composed Melod

H |

fr— "
'S \ \ \ I F\p
4 1

oJ — =
f mf

Fig. 4.2.2. Score Derived from Performance of Composed Melody: Detache

The data was entered and performed under the detache mode. The detache score,

derived from the dictation of the performance is shown in figure 4.2.2. It will be

compared and studied against the midi score.

&1

The composed melody produce better results than the probability table
modules. From figure 4.2.2, the major contours of the melody are intact. It gradually
descends by step and jumps up in the second measure. The phrase finishes on the
exact notes as that of the data. The slight chromaticism deviation around the third
beat of the first measure and the second beat of second measure are the results of
faulty servo-mechanism. Figure 4.2.3 shows the waveform view of the midi and
detache performances. The three markers that are placed in the top of figure two,
midi file, are placed before the accents. The pitches are “A”, “F#”, and “C#” (Fig.
4.2.1). This accent is also visible on the detache performance. The clear breaks
which isolate the notes in the detache performance is the reflection of the “response

time” of the automatic flute system.

5?2

, larker 2

Fig. 4.2.3. Case 2 Score-Play Waveform View: Midi Flute, Detache

53

CHAPTER 5

CONCLUSIONS

Given the resource available, the Automatic Flute is considered as a
successful prototype. The major issues are centered on the keystroke mechanism.
The choice of servos and the PSC board is a mistake. Unlike the mouthpiece
mechanism, the keystroke mechanism requires four lines of command, per servo,
for open and close. Given the number of the servos that are required, minimum 9 for
the current system, there are 36 position commands issued to the PSC board. The
servos move sluggishly and the final positions are inaccurate. Whereas the
mouthpiece mechanism, stepper motor and MD2415, it takes only two lines of
command for open and close. The degree of steps'is fast and accurate. The choice of
stepper motor, brass plunger and other controller board would be more ideal for
the keystroke mechanism. If the keystroke'mechanism can be improved, the overall
response time per note event would be drastically reduced. Figure 5.1 provides a list

of the “more-urgent” improvements that is needed for the automatic flute prototype.

Keystroke Mechanism
1) brass plunger or stepping motor for flute keys
2) improved control with a feedback locop systems for the keystroke mechanism

Mouthpiece Mechanism
1) a device that could modify the shape of air that passes through

Fig. 5.1. Future Improvements

54

Besides the brass plunger that is already mentioned, having a feedback loop system
for the keystroke mechanism will be ideal. The probability of different pitches,
which have overlapping keys must be studied and incorporated in the feedback
system. The call for improvement for the control system might mean choosing other
controller boards besides BS2 and the use of C language programming over the less
efficient Basic Stamp language. Unlike the keystroke mechanism, the current
mouthpiece mechanism is more successful (Fig. 2.3.7 and 2.3.8). The air output is
steady and the control of dynamics and articulations provides acceptable results. If
one must enforce an improvement on the mouthpiece mechanism, it would be
inventing a device that could modify the shape of air passing through. The current
mechanism is capable of change the air output strength. However, it is not capable
of changing the shape of the air-output. Changingthe shape of air output in real-time
will allow different articulations; such as flutter tongue, slap tongue, and growl tone.
Despite all of the issues, it is fun to'€ontrol the prototype manually. Real-time
control of the mouthpiece airflow within Max/Msp and manual control of the flute-
keys by hand will create interesting results. If a sensor is adapted to BS2, such as
any pressure sensor or a popular USB dance pad, the airflow could then be
controlled by a foot and leaving hands free for the keys, vibratos and other musical
gestures. For aesthetic purposes, the flaws of the prototype could be overlooked,
adapted and incorporated in itself as a form of expression for art performances. The
robotic sound produced by the servo gear wheels, the high pitch frequencies of the
charged currents within the stepper motor and the deep pulsic drone of the air

compressor while filling the tank are all too romantic when combined with the flute.

33

REFERENCES

Adler, Samuel. The Study of Orchestration. New York: W. W. Norton & Company, Inc.,
2002.

Allen, Thomas Tracy. “BASIC Stamp Support Index.” 1 August 2008. <http://www.
emesystems.com/BS2index.htm> (12 January 2009).

Blatter, Alfred. Instrumentation and Orchestration. Belmont: Schirmer, Thomson
Learning, Inc., 1997.

Benade, Arthur H. Horns, Strings, and Harmony. New York: Dover Publications, Inc.,
1992.

Carter, Elliott. Flawed Words and Stubborn Sounds: a Conversation with Elliott Carter.

interview by Allen Edwards. New York: W. W. Norton and Company Inc.,
1971.

. Collected Essays and Lectures, 1937- 1995: ed. Jonathan W. Bernard.
Rochester: University of Rochester Press, 1997.

Cassidy, Christopher. BASIC STAMP Il =HOW II. 5 December 2005. <http://www.
maelabs.ucsd.edu/mae “ds/stamp/how/index.html> (20 February 2009).

Cope, David. Computer Models of Musical'Creativity. Massachusetts: The MIT Press,
2005.

Dirks, Alex. CrustCrawler Robotics. 1 May 2007. <http://www.crustcrawler.com/>
(10 January 2009).

Huang, Yu-Wei. “Improvements of Automatic Guitar Mechanism Design and a
Practical Music Input System.” Master Thesis of the Electrical Engineering

Department, Southern Taiwan University, 1996.

Jones, Douglas W. Control of Stepping Motors. 14 February 2008. <http:// www.
cs.uiowa.edu/~jones/step/> (10 December 2008).

Kuhnel, Claus, and Klaus Zahnert. BASIC Stamp 2p: Commands, Features, and Projects.
Rocklin: Parallax, Inc. Press, 2003.

Norman, Katharine. Sounding Art: Eight Literary Excursions through Electronic Music.
Burlington: Ashgate Publishing Company, 2004.

5A

Parallax Team. BASIC Stamp Syntax and Reference Manual version 2.2. Rocklin:
Parallax Inc., 2005.

Rowe, Robert. Interactive Music Systems: Machine Listening and Composing.
Massachusetts: The MIT Press, 1993.

. Machine Musicianship. Massachusetts: The MIT Press, 2001.

Tingley, George Peter. “Metric Modulation and Elliott Carter’s First String Quartet.”
Indiana Theory Review, vol. 4, issue 3 (spring 1981): 3-11.

Williams, Al. Microcontroller Projects Using the Basic Stamp. Berkeley: Publishers
Group West, 2002

Winkler, Todd. Composing Interactive Music: Techniques and Ideas Using Max.
Massachusetts: The MIT Press, 1998.

Winsor, Phil. Automated Music Composition. Hsin Chu: University of North Texas
Press, 1989.

Wolfe, Joe. Robot Clarinet. 1 January 2009, <http://www.phys.unsw.edu.au/jw/clari
netrobot.html> (19 May 2009).

57

APPENDIX

I. B.Stamp code: Detache

' {$STAMP BS2}
' {$PBASIC 2.5}

J111111717117111177
'DETACHE

T

-------------------- [Programming Notes] ----------=--==-=m-mmmmmmm oo
e R e [1/0 Definitions]---------==-==-nmmmmmm oo

"PSC module
PSC PIN 15
#SELECT $STAMP

#CASE BS2SX, BS2P
N2400 CON 1021+$%$8000
#CASE BS2PX
N2400 CON 1646+%$8000
#CASE #ELSE
N2400 CON 396+$8000
#ENDSELECT

'variable for keys
aa VAR Nib ' value btw 0-15
bb VAR Nib

cc VAR Nib

dd VAR Nib

ee VAR Nib

ff VAR Nib

gg VAR Nib

hh VAR Nib

ii VAR Nib

jj VAR Nib

kk VAR Nib

11 VAR Nib

mm VAR Nib

servoaddr VAR Nib ' value btw 0-15
x VAR Nib

position =~ VAR Word

time VAR Word

5]

pointer VAR Byte
pointer2 VAR Byte

'variable for mouthpiece
counter VAR Word
change VAR Word

'@0, @50, @74, @98, @122

'april/10 these newly calibrated data taken without (servo 6, 10, 11, 12 in loop),
under the condition that

'not all the remaining servo will move simlutaneously (testing with different pitches
everytime), and

'adding redundant PWM SEROUT in subroutin "freeze" to balance the executing
time difference between turn and freeze

'subroutine...

DATA 0,1,2,3,4,5,7,8,9,10,11,12,13, 14

" put bunch of 250 ... byte size not word size...i pointer doesn't need to be specific....
since

‘every CW OR CCW pointer?2 is reassigned

DATA @60, 250, 250, 250, 250,250, 250, 250; 250, 250, 250, 250, 250,250, 250, 250,
250, 250, 250, 250, 250, 250, 250, 250, 250, 250, 250, 250, 250

DATA @100, Word 750, Word 750, Word 750, Word 750, Word 750, Word
750,Word 750, Word 750, Word 750, Word 750, Word 750, Word 750
' 100 102 104 106 108 110 112 114 116 118
120 122
ccw DATA @140, Word 925, Word 953, Word 987, Word 945, Word 908, Word 946,
Word 975, Word 963, Word 1000, Word 969, Word 933

'servo# 0 1 2 3 4 5 7 8 9

DATA @180, Word 750, Word 750, Word 750, Word 750, Word 750, Word 750,
Word 750, Word 750, Word 750, Word 750, Word 750, Word 750

DO 'big serial loop

SERIN 16, 16780, [WAIT ("time"), DEC time, WAIT ("aa"),DEC aa, WAIT ("bb"),
DEC bb, WAIT ("cc"),DEC cc, WAIT ("dd"), DEC dd, WAIT ("ee"),DEC ee,

WAIT ("ff"), DEC ff, WAIT ("gg"),DEC gg, WAIT ("hh"), DEC hh, WAIT ("ii"),
DEC ii, WAIT ("jj"), DEC jj, WAIT ("kk"),DEC kk, WAIT ("II"), DEC],

WAIT ("mm"), DEC mm, WAIT ("stp"), DEC change]

59

ST 1711777777171177777
pointer2 = 60

FORx=1TO 4
pointer = 0 "MOVE or NOT, pointer will be in place (or
follow)...

IF aa = 0 THEN GOSUB turnbaby : ELSE GOSUB freeze
[F bb =1 THEN GOSUB turnbaby : ELSE GOSUB freeze
IF cc = 2 THEN GOSUB turnbaby : ELSE GOSUB freeze
IF dd = 3 THEN GOSUB turnbaby : ELSE GOSUB freeze
IF ee =4 THEN GOSUB turnbaby : ELSE GOSUB freeze
[F ff = 5 THEN GOSUB turnbaby : ELSE GOSUB freeze
'IF gg = 6 THEN GOSUB turnbaby : ELSE GOSUB freeze
[F hh =7 THEN GOSUB turnbaby : ELSE GOSUB freeze
[F ii = 8 THEN GOSUB turnbaby : ELSE GOSUB freeze

IF jj =9 THEN GOSUB turnbaby : ELSE GOSUB freeze
'IF kk = 10 THEN GOSUB turnbaby : ELSE GOSUB freeze
'IF 11 =11 THEN GOSUB turnbaby : ELSE GOSUB freeze
'IF mm =12 THEN GOSUB turnbaby ; ELSE'‘GOSUB freeze

IF x =1 THEN PAUSE 100
IF x =1 THEN pointer2 = 100
IF x =2 THEN GOSUB stepopen
IF x = 2 THEN PAUSE time
IF x =2 THEN GOSUB stepclose
IF x = 2 THEN pointer2 = 140
IF x = 3 THEN PAUSE 100
IF x = 3 THEN pointer2 = 180
" [F x =4 THEN GOSUB stepclose
NEXT
LOOP
JI11T1171717711177
'mouthpiece valve open, hold(time), close
stepopen:
LOW 2
FOR counter = 1 TO change
PULSOUT 1, 10
NEXT

RETURN

AN

stepclose:

LOW 6
FOR counter = 1 TO change
PULSOUT 5, 10
NEXT

ST 177117777 777771777717

turnbaby:
'5 pointers servo need to be ran
READ pointer, servoaddr
IF (pointer2 < 90) THEN READ pointer2, position : ELSE READ pointer2, Word
position
' 250 is a byte and therefore need to DATA and READ it differently

SEROUT PSC,N2400,["!SC",servoaddr, 1,position.LOWBYTE, position.HIGHBYTE, CR]
pointer = pointer + 1
pointer2 = pointer2 + 2 'increment of 2 since each is a word

RETURN

freeze:
'/ /the following won't do anything but will slow the-BStamp down,
'//which is good in that it balance out the executing time between
'//turn AND freeze (so that all servo,would move in the same steps..
|
IF (pointer2 < 90) THEN READ pointer2;position : ELSE READ pointer2, Word
position
' 250 is a byte and therefore need to DATA and READ it differently
SEROUT PSC,N2400,["!SC",14, 1,position.LOWBYTE, position.HIGHBYTE, CR]
]

pointer = pointer + 1

pointer2 = pointer2 + 2
RETURN

A1

I1. B.Stamp code: Staccato

' {$STAMP BS2}
' {$PBASIC 2.5}

J111111717117171177
'STACCATO

T

-------------------- [Programming Notes] ----------=--==-=m-mmmmmm oo
e R e [1/0 Definitions]---------==-==-nmmmmmm oo

"PSC module
PSC PIN 15
#SELECT $STAMP

#CASE BS2SX, BS2P
N2400 CON 1021+%$8000
#CASE BS2PX
N2400 CON 1646+%$8000
#CASE #ELSE
N2400 CON 396+$8000
#ENDSELECT

'variable for keys
aa VAR Nib ' value btw 0-15
bb VAR Nib

cc VAR Nib

dd VAR Nib

ee VAR Nib

ff VAR Nib

gg VAR Nib

hh VAR Nib

ii VAR Nib

jj VAR Nib

kk VAR Nib

11 VAR Nib

mm VAR Nib

servoaddr VAR Nib ' value btw 0-15
x VAR Nib

position =~ VAR Word

time VAR Word

pointer VAR Byte
pointer2 VAR Byte

'variable for mouthpiece

A?

counter VAR Word
change VAR Word

'@0, @50, @74, @98, @122

'april/10 these newly calibrated data taken without (servo 6, 10, 11, 12 in loop),
under the condition that

'not all the remaining servo will move simlutaneously (testing with different pitches
everytime), and

'adding redundant PWM SEROUT in subroutin "freeze" to balance the executing
time difference between turn and freeze

'subroutine...

DATA 0,1, 2,3,4,5,7,8,9,10,11,12,13, 14

' put bunch of 250 ... byte size not word size.... pointer doesn't need to be specific....
since

'‘every CW OR CCW pointer?2 is reassigned

DATA @60, 250, 250, 250, 250, 250, 250, 250, 250, 250, 250, 250, 250,250, 250, 250,
250, 250, 250, 250, 250, 250, 250, 250, 250, 250, 250, 250, 250

DATA @100, Word 750, Word 750, Word 750, Word 750, Word 750, Word
750,Word 750, Word 750, Word=750, Word: 750, Werd 750, Word 750
' 100 102 104 106, 108 110 @ 112 114 116 118
120 122
ccw DATA @140, Word 925, Word 953, Word 987, Word 945, Word 908, Word 946,
Word 975, Word 963, Word 1000;Word 969, Word 933

'servo# 0 1 2 3 4 5 7 8 9

DATA @180, Word 750, Word 750, Word 750, Word 750, Word 750, Word 750,
Word 750, Word 750, Word 750, Word 750, Word 750, Word 750

DO 'big serial loop

SERIN 16, 16780, [WAIT ("time"), DEC time, WAIT ("aa"),DEC aa, WAIT ("bb"),
DEC bb, WAIT ("cc"),DEC cc, WAIT ("dd"), DEC dd, WAIT ("ee"),DEC ee,

WAIT ("ff"), DEC ff, WAIT ("gg"),DEC gg, WAIT ("hh"), DEC hh, WAIT ("ii"),
DEC ii, WAIT ("jj"), DEC jj, WAIT ("kk"),DEC kk, WAIT ("1I"), DEC],

WAIT ("mm"), DEC mm, WAIT ("stp"), DEC change]

ST 11777777771177777
pointer2 = 60

FORx=1TO4

AR

pointer = 0 "MOVE or NOT, pointer will be in place (or
follow)...

IF aa = 0 THEN GOSUB turnbaby : ELSE GOSUB freeze

[F bb =1 THEN GOSUB turnbaby : ELSE GOSUB freeze

IF cc = 2 THEN GOSUB turnbaby : ELSE GOSUB freeze

IF dd = 3 THEN GOSUB turnbaby : ELSE GOSUB freeze

IF ee =4 THEN GOSUB turnbaby : ELSE GOSUB freeze

[F ff = 5 THEN GOSUB turnbaby : ELSE GOSUB freeze

'IF gg = 6 THEN GOSUB turnbaby : ELSE GOSUB freeze

[F hh =7 THEN GOSUB turnbaby : ELSE GOSUB freeze

[F ii = 8 THEN GOSUB turnbaby : ELSE GOSUB freeze

IF jj =9 THEN GOSUB turnbaby : ELSE GOSUB freeze

'IF kk = 10 THEN GOSUB turnbaby : ELSE GOSUB freeze
'IF 11 =11 THEN GOSUB turnbaby : ELSE GOSUB freeze
'IF mm = 12 THEN GOSUB turnbaby : ELSE GOSUB freeze

IF x =1 THEN PAUSE 100
IF x =1 THEN pointer2 = 100
IF x =2 THEN GOSUB stepopen
IF x =2 THEN PAUSE 160 'Step will only open for 160 milliseconds
IF x = 2 THEN GOSUB stepclose
IF x = 2 THEN pointer2 = 140
IF x = 3 THEN PAUSE 100
IF x = 3 THEN pointer2 = 180
" [F x =4 THEN GOSUB stepclose
NEXT
LOOP

JI11117171171711717
J11TT70177711177111777117

'mouthpiece valve open, hold(time), close
stepopen:
LOW 2
FOR counter = 1 TO change
PULSOUT 1, 10
NEXT

RETURN
stepclose:

LOW 6
FOR counter = 1 TO change
PULSOUT 5, 10
NEXT

ST 17117777 777771777777

A4

turnbaby:
'5 pointers servo need to be ran
READ pointer, servoaddr
IF (pointer2 < 90) THEN READ pointer2, position : ELSE READ pointer2, Word
position
' 250 is a byte and therefore need to DATA and READ it differently

SEROUT PSC,N2400,["!SC",servoaddr, 1,position.LOWBYTE, position.HIGHBYTE, CR]
pointer = pointer + 1
pointer2 = pointer2 + 2 'increment of 2 since each is a word

RETURN

freeze:
'/ /the following won't do anything but will slow the BStamp down,
'//which is good in that it balance out the executing time between
'//turn AND freeze (so that all servo would move in the same steps..
|
IF (pointer2 < 90) THEN READ pointer2, position : ELSE READ pointer2, Word
position
' 250 is a byte and therefore need to DATA and READ it differently
SEROUT PSC,N2400,["!SC",14, L;pasition.LOWBYTE,position.HIGHBYTE, CR]
]

pointer = pointer + 1

pointer2 = pointer2 + 2
RETURN

AR

II1. B.Stamp code: Legato

' {$STAMP BS2}
' {$PBASIC 2.5}

J11171117777171717777
'LEGATO

JI11117771717177717
e e [Programming Notes] ----------=--==-=m-mmmmmm oo
e R e [1/0 Definitions]---------==--=-nmmmmmm oo
' PSC module
PSC PIN 15
#SELECT $STAMP
#CASE BS2SX, BS2P
N2400 CON 1021+$%$8000
#CASE BS2PX
N2400 CON 1646+%$8000
#CASE #ELSE
N2400 CON 396+$8000
#ENDSELECT
'variable for keys
aa VAR Nib ' value btw 0-15
bb VAR Nib
cc VAR Nib
dd VAR Nib
ee VAR Nib
ff VAR Nib
gg VAR Nib
hh VAR Nib
ii VAR Nib
jj VAR Nib
kk VAR Nib
11 VAR Nib
mm VAR Nib

servoaddr VAR Nib ' value btw 0-15
x VAR Nib

position =~ VAR Word

time VAR Word

pointer VAR Byte
pointer2 VAR Byte

'variable for mouthpiece

counter VAR Word
change VAR Word

AA

posneg VAR Nib ' BStamp serin won't recognize negative variables taken from
max/msp, therefore need one more variable.
'seems that BStamp will takein the negative number and makes it absolute...

'@0, @50, @74, @98, @122
DATA 0,1,2,3,4,5,7,8,9,10,11,12,13, 14

' put bunch of 250 ... byte size not word size.... pointer doesn't need to be specific....
since
'‘every CW OR CCW pointer?2 is reassigned
DATA @60, 250, 250, 250, 250, 250, 250, 250, 250, 250, 250, 250, 250, 250, 250,
250, 250, 250, 250, 250, 250, 250, 250, 250, 250, 250, 250, 250, 250
' 50 52 54 56 58 60 62 64 66 68 70 72
DATA @100, Word 750, Word 750, Word 750, Word 750, Word 750, Word 750,
Word 750, Word 750, Word 750, Word 750, Word 750, Word 750
' 74 76 78 80 82 84 86 88 90 92 94 96
ccw DATA @140, Word 970, Word 975, Word 992, Word 976, Word 955, Word 967,
Word 1010, Word 1024, Word 1007, Word 1139, Word 1010

"0 1 2 3 4 5 7 8 9

' 98 100 102 104 106__ 108 110 112 114 116
118 120
DATA @180, Word 750, Word 750, Word 750, Word:750, Word 750, Word 750,
Word 750, Word 750, Word 750, Word 750, Word 750, Word 750

DO 'big serial loop

SERIN 16, 16780, [WAIT ("time"), DEC time, WAIT ("aa"),DEC aa, WAIT ("bb"), DEC
bb, WAIT ("cc"),DEC cc,

WAIT ("dd"), DEC dd, WAIT ("ee"),DEC ee, WAIT ("ff"), DEC ff, WAIT ("gg"),DEC gg,
WAIT ("hh"), DEC hh,

WAIT ("ii"),DEC ii, WAIT ("jj"), DEC jj, WAIT ("kk"),DEC kk, WAIT ("1I"), DEC 1l, WAIT
("mm"), DEC mm,

WAIT ("stp"), DEC change, WAIT ("pn"), DEC posneg]

Y1011 1711777717771177777
pointer2 = 60

FORx=1TO 4
pointer = 0 "MOVE or NOT, pointer will be in place (or
follow)...

[F aa = 0 THEN GOSUB turnbaby : ELSE GOSUB freeze 'if freeze, then pointer
move + 1, pointer2 move + 2
[F bb =1 THEN GOSUB turnbaby : ELSE GOSUB freeze ' but no serial-out will be

A7

sent

IF cc = 2 THEN GOSUB turnbaby : ELSE GOSUB freeze
IF dd = 3 THEN GOSUB turnbaby : ELSE GOSUB freeze
IF ee =4 THEN GOSUB turnbaby : ELSE GOSUB freeze
[F ff = 5 THEN GOSUB turnbaby : ELSE GOSUB freeze
'IF gg = 6 THEN GOSUB turnbaby : ELSE GOSUB freeze
[F hh =7 THEN GOSUB turnbaby : ELSE GOSUB freeze
[F ii = 8 THEN GOSUB turnbaby : ELSE GOSUB freeze

IF jj =9 THEN GOSUB turnbaby : ELSE GOSUB freeze
'IF kk = 10 THEN GOSUB turnbaby : ELSE GOSUB freeze
'IF 11 =11 THEN GOSUB turnbaby : ELSE GOSUB freeze
'IF mm = 12 THEN GOSUB turnbaby : ELSE GOSUB freeze

"original pause 75
IF x =1 THEN PAUSE 100
IF x =1 THEN pointer2 = 100

IF x =2 THEN GOSUB mouth 'when all servo opens and hold then stepper will
move

IF x = 2 THEN PAUSE time
IF x = 2 THEN pointer2 = 140
IF x = 3 THEN PAUSE 100
IF x = 3 THEN pointer2 = 180

NEXT
LOOP
J1TT70117717177111177117

'mouthpiece valve open, hold(time), close

mouth:

""change" will me made as an absolute value,
'so use "posneg" as cue measure

IF posneg = 6 THEN stepopen

IF posneg = 5 THEN stepclose

'if posneg= 4 nothing ...

RETURN

stepopen:
LOW 2
FOR counter = 1 TO change
PULSOUT 1, 10
NEXT

RETURN

AR

stepclose:

LOW 6
FOR counter = 1 TO change
PULSOUT 5, 10
NEXT

ST 17711 117777777

turnbaby:
'5 pointers servo need to be ran
READ pointer, servoaddr
IF (pointer2 < 90) THEN READ pointer2, position : ELSE READ pointer2, Word
position
' 250 is a byte and therefore need to DATA and READ it differently

SEROUT PSC,N2400,["!SC",servoaddr, 1,position.LOWBYTE, position.HIGHBYTE,
CR]

pointer = pointer + 1

pointer2 = pointer2 + 2 'increment0f2 sinee each is a word
RETURN

freeze:

1/ the following won'tido anything but will'slow the BStamp down, which is
good in

'//that it balance out the executing time between turn and freeze (so that all servo
would move in the same steps..

IF (pointer2 < 90) THEN READ pointer2, position : ELSE READ pointer2, Word
position
' 250 is a byte and therefore need to DATA and READ it differently

SEROUT PSC,N2400,["!SC",14, 1,position.LOWBYTE, position.HIGHBYTE, CR]
1/

pointer = pointer + 1

pointer2 = pointer2 + 2
RETURN

A9

IV. Max/Msp patch1l: include Detache,

DEPARTUR
E TERMINALZetache

legato

will output 2 value
consecutively;
[change] & [posneq]

change message to
ascii byte

add a space and CR
at the end

send it out (use 2400
baud, 9600 is too fast

Staccato, Legato, and Score-Play

MUSIC COMPOSITION module for automatic flute

SCORE-PLAY

s autoORscore

this will help the loop not to stack up or JAM.... because

have to wait for the previous duration of the note to finish

first...;

on top BS2 will only wait till all serial variable collected in

proper order to execute the next run, so even if note-pitch

continue to excell... without the time it will freeze.. o
when a TIME duration is

choosed it will be storet

for Basic Stamp

slear table, and

the delay. Then after al
PIN# are triggered by t|
counter (ie all serialout
collections are complets
the servo set in motion
MAX will wait for equal

amount of time (+ - tin

after all int is stored, metro will oufput
them in sequence (one at a time) so that

SHIPPING

[select01234567891011 121314 |
7 5) 0 R U

score's counter

uncertainty), to genera

the next time variable..
prevent over stack

gmmglfgfiLRi\\VVVQ\

| p storeair

3%sfz;
4"silence
silence 0

fafidout change,
final, posneq within

o timeprab

each ligt represent 8 TRUE trigger> triggers
the "bang PSC * serves”

pitch npte

PITCH

1~equal;
2%pasy notes;
3% major like

Q00 FE

' pitchprob PETERMINE NOTE
e

DO Tseeto6 789 1T 1314151601712 eachselect

""""""" represent a pitch,
(12 PCsets)

|p falselist

|p truelist |

FALSE trigger > corresponding
to the true ones, by freezing
all the other "PSC* servos"

each sel * represent
psc serval channel *

gagasan

|p false |

70

V. Max/Msp patch 2: Cellular Automata

b Choomparissan 5 5] Cellular Automata for Automatic Flute
[Cpulse_Caleulations ! %! il velomax 127
R pomout 4] pgrout 3| [pomout 2 eprnqramS? %5 FUTURE PROBLEM, not
. . il 169,)
p Chvelocity Laloulstions iited i ,SUandpiano o duplicate same pulse
— after adaptation or
p CALateqorization same velocity..., quick
p Mode Decision_Console i troublesome i
S drdtionin to build new reverse-
i ;
table ie. 400 15 f =
pc:A-Adap«ation millseoonds (then ala[al :Xér:nliﬂoth:r i BLERSR
set this equal to the . =
o pulse_veloeity generator pulse or note on) ARRR :lie;::;ﬁ?erback“.or shastradn
' automation

xpr T =

convert pulse to duration
in miliseconds

71

